diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineLICM.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/MachineLICM.cpp | 1530 | 
1 files changed, 1530 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineLICM.cpp b/contrib/llvm/lib/CodeGen/MachineLICM.cpp new file mode 100644 index 000000000000..58fd1f238420 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/MachineLICM.cpp @@ -0,0 +1,1530 @@ +//===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass performs loop invariant code motion on machine instructions. We +// attempt to remove as much code from the body of a loop as possible. +// +// This pass is not intended to be a replacement or a complete alternative +// for the LLVM-IR-level LICM pass. It is only designed to hoist simple +// constructs that are not exposed before lowering and instruction selection. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <limits> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "machinelicm" + +static cl::opt<bool> +AvoidSpeculation("avoid-speculation", +                 cl::desc("MachineLICM should avoid speculation"), +                 cl::init(true), cl::Hidden); + +static cl::opt<bool> +HoistCheapInsts("hoist-cheap-insts", +                cl::desc("MachineLICM should hoist even cheap instructions"), +                cl::init(false), cl::Hidden); + +static cl::opt<bool> +SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", +                       cl::desc("MachineLICM should sink instructions into " +                                "loops to avoid register spills"), +                       cl::init(false), cl::Hidden); +static cl::opt<bool> +HoistConstStores("hoist-const-stores", +                 cl::desc("Hoist invariant stores"), +                 cl::init(true), cl::Hidden); + +STATISTIC(NumHoisted, +          "Number of machine instructions hoisted out of loops"); +STATISTIC(NumLowRP, +          "Number of instructions hoisted in low reg pressure situation"); +STATISTIC(NumHighLatency, +          "Number of high latency instructions hoisted"); +STATISTIC(NumCSEed, +          "Number of hoisted machine instructions CSEed"); +STATISTIC(NumPostRAHoisted, +          "Number of machine instructions hoisted out of loops post regalloc"); +STATISTIC(NumStoreConst, +          "Number of stores of const phys reg hoisted out of loops"); + +namespace { + +  class MachineLICMBase : public MachineFunctionPass { +    const TargetInstrInfo *TII; +    const TargetLoweringBase *TLI; +    const TargetRegisterInfo *TRI; +    const MachineFrameInfo *MFI; +    MachineRegisterInfo *MRI; +    TargetSchedModel SchedModel; +    bool PreRegAlloc; + +    // Various analyses that we use... +    AliasAnalysis        *AA;      // Alias analysis info. +    MachineLoopInfo      *MLI;     // Current MachineLoopInfo +    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop + +    // State that is updated as we process loops +    bool         Changed;          // True if a loop is changed. +    bool         FirstInLoop;      // True if it's the first LICM in the loop. +    MachineLoop *CurLoop;          // The current loop we are working on. +    MachineBasicBlock *CurPreheader; // The preheader for CurLoop. + +    // Exit blocks for CurLoop. +    SmallVector<MachineBasicBlock *, 8> ExitBlocks; + +    bool isExitBlock(const MachineBasicBlock *MBB) const { +      return is_contained(ExitBlocks, MBB); +    } + +    // Track 'estimated' register pressure. +    SmallSet<unsigned, 32> RegSeen; +    SmallVector<unsigned, 8> RegPressure; + +    // Register pressure "limit" per register pressure set. If the pressure +    // is higher than the limit, then it's considered high. +    SmallVector<unsigned, 8> RegLimit; + +    // Register pressure on path leading from loop preheader to current BB. +    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; + +    // For each opcode, keep a list of potential CSE instructions. +    DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap; + +    enum { +      SpeculateFalse   = 0, +      SpeculateTrue    = 1, +      SpeculateUnknown = 2 +    }; + +    // If a MBB does not dominate loop exiting blocks then it may not safe +    // to hoist loads from this block. +    // Tri-state: 0 - false, 1 - true, 2 - unknown +    unsigned SpeculationState; + +  public: +    MachineLICMBase(char &PassID, bool PreRegAlloc) +        : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} + +    bool runOnMachineFunction(MachineFunction &MF) override; + +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.addRequired<MachineLoopInfo>(); +      AU.addRequired<MachineDominatorTree>(); +      AU.addRequired<AAResultsWrapperPass>(); +      AU.addPreserved<MachineLoopInfo>(); +      AU.addPreserved<MachineDominatorTree>(); +      MachineFunctionPass::getAnalysisUsage(AU); +    } + +    void releaseMemory() override { +      RegSeen.clear(); +      RegPressure.clear(); +      RegLimit.clear(); +      BackTrace.clear(); +      CSEMap.clear(); +    } + +  private: +    /// Keep track of information about hoisting candidates. +    struct CandidateInfo { +      MachineInstr *MI; +      unsigned      Def; +      int           FI; + +      CandidateInfo(MachineInstr *mi, unsigned def, int fi) +        : MI(mi), Def(def), FI(fi) {} +    }; + +    void HoistRegionPostRA(); + +    void HoistPostRA(MachineInstr *MI, unsigned Def); + +    void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, +                   BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, +                   SmallVectorImpl<CandidateInfo> &Candidates); + +    void AddToLiveIns(unsigned Reg); + +    bool IsLICMCandidate(MachineInstr &I); + +    bool IsLoopInvariantInst(MachineInstr &I); + +    bool HasLoopPHIUse(const MachineInstr *MI) const; + +    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, +                               unsigned Reg) const; + +    bool IsCheapInstruction(MachineInstr &MI) const; + +    bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, +                                 bool Cheap); + +    void UpdateBackTraceRegPressure(const MachineInstr *MI); + +    bool IsProfitableToHoist(MachineInstr &MI); + +    bool IsGuaranteedToExecute(MachineBasicBlock *BB); + +    void EnterScope(MachineBasicBlock *MBB); + +    void ExitScope(MachineBasicBlock *MBB); + +    void ExitScopeIfDone( +        MachineDomTreeNode *Node, +        DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, +        DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); + +    void HoistOutOfLoop(MachineDomTreeNode *HeaderN); + +    void HoistRegion(MachineDomTreeNode *N, bool IsHeader); + +    void SinkIntoLoop(); + +    void InitRegPressure(MachineBasicBlock *BB); + +    DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, +                                             bool ConsiderSeen, +                                             bool ConsiderUnseenAsDef); + +    void UpdateRegPressure(const MachineInstr *MI, +                           bool ConsiderUnseenAsDef = false); + +    MachineInstr *ExtractHoistableLoad(MachineInstr *MI); + +    const MachineInstr * +    LookForDuplicate(const MachineInstr *MI, +                     std::vector<const MachineInstr *> &PrevMIs); + +    bool EliminateCSE( +        MachineInstr *MI, +        DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); + +    bool MayCSE(MachineInstr *MI); + +    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); + +    void InitCSEMap(MachineBasicBlock *BB); + +    MachineBasicBlock *getCurPreheader(); +  }; + +  class MachineLICM : public MachineLICMBase { +  public: +    static char ID; +    MachineLICM() : MachineLICMBase(ID, false) { +      initializeMachineLICMPass(*PassRegistry::getPassRegistry()); +    } +  }; + +  class EarlyMachineLICM : public MachineLICMBase { +  public: +    static char ID; +    EarlyMachineLICM() : MachineLICMBase(ID, true) { +      initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); +    } +  }; + +} // end anonymous namespace + +char MachineLICM::ID; +char EarlyMachineLICM::ID; + +char &llvm::MachineLICMID = MachineLICM::ID; +char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; + +INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, +                      "Machine Loop Invariant Code Motion", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, +                    "Machine Loop Invariant Code Motion", false, false) + +INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", +                      "Early Machine Loop Invariant Code Motion", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", +                    "Early Machine Loop Invariant Code Motion", false, false) + +/// Test if the given loop is the outer-most loop that has a unique predecessor. +static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { +  // Check whether this loop even has a unique predecessor. +  if (!CurLoop->getLoopPredecessor()) +    return false; +  // Ok, now check to see if any of its outer loops do. +  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) +    if (L->getLoopPredecessor()) +      return false; +  // None of them did, so this is the outermost with a unique predecessor. +  return true; +} + +bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { +  if (skipFunction(MF.getFunction())) +    return false; + +  Changed = FirstInLoop = false; +  const TargetSubtargetInfo &ST = MF.getSubtarget(); +  TII = ST.getInstrInfo(); +  TLI = ST.getTargetLowering(); +  TRI = ST.getRegisterInfo(); +  MFI = &MF.getFrameInfo(); +  MRI = &MF.getRegInfo(); +  SchedModel.init(&ST); + +  PreRegAlloc = MRI->isSSA(); + +  if (PreRegAlloc) +    LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); +  else +    LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); +  LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); + +  if (PreRegAlloc) { +    // Estimate register pressure during pre-regalloc pass. +    unsigned NumRPS = TRI->getNumRegPressureSets(); +    RegPressure.resize(NumRPS); +    std::fill(RegPressure.begin(), RegPressure.end(), 0); +    RegLimit.resize(NumRPS); +    for (unsigned i = 0, e = NumRPS; i != e; ++i) +      RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); +  } + +  // Get our Loop information... +  MLI = &getAnalysis<MachineLoopInfo>(); +  DT  = &getAnalysis<MachineDominatorTree>(); +  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + +  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); +  while (!Worklist.empty()) { +    CurLoop = Worklist.pop_back_val(); +    CurPreheader = nullptr; +    ExitBlocks.clear(); + +    // If this is done before regalloc, only visit outer-most preheader-sporting +    // loops. +    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { +      Worklist.append(CurLoop->begin(), CurLoop->end()); +      continue; +    } + +    CurLoop->getExitBlocks(ExitBlocks); + +    if (!PreRegAlloc) +      HoistRegionPostRA(); +    else { +      // CSEMap is initialized for loop header when the first instruction is +      // being hoisted. +      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); +      FirstInLoop = true; +      HoistOutOfLoop(N); +      CSEMap.clear(); + +      if (SinkInstsToAvoidSpills) +        SinkIntoLoop(); +    } +  } + +  return Changed; +} + +/// Return true if instruction stores to the specified frame. +static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { +  // Check mayStore before memory operands so that e.g. DBG_VALUEs will return +  // true since they have no memory operands. +  if (!MI->mayStore()) +     return false; +  // If we lost memory operands, conservatively assume that the instruction +  // writes to all slots. +  if (MI->memoperands_empty()) +    return true; +  for (const MachineMemOperand *MemOp : MI->memoperands()) { +    if (!MemOp->isStore() || !MemOp->getPseudoValue()) +      continue; +    if (const FixedStackPseudoSourceValue *Value = +        dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { +      if (Value->getFrameIndex() == FI) +        return true; +    } +  } +  return false; +} + +/// Examine the instruction for potentai LICM candidate. Also +/// gather register def and frame object update information. +void MachineLICMBase::ProcessMI(MachineInstr *MI, +                                BitVector &PhysRegDefs, +                                BitVector &PhysRegClobbers, +                                SmallSet<int, 32> &StoredFIs, +                                SmallVectorImpl<CandidateInfo> &Candidates) { +  bool RuledOut = false; +  bool HasNonInvariantUse = false; +  unsigned Def = 0; +  for (const MachineOperand &MO : MI->operands()) { +    if (MO.isFI()) { +      // Remember if the instruction stores to the frame index. +      int FI = MO.getIndex(); +      if (!StoredFIs.count(FI) && +          MFI->isSpillSlotObjectIndex(FI) && +          InstructionStoresToFI(MI, FI)) +        StoredFIs.insert(FI); +      HasNonInvariantUse = true; +      continue; +    } + +    // We can't hoist an instruction defining a physreg that is clobbered in +    // the loop. +    if (MO.isRegMask()) { +      PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); +      continue; +    } + +    if (!MO.isReg()) +      continue; +    unsigned Reg = MO.getReg(); +    if (!Reg) +      continue; +    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && +           "Not expecting virtual register!"); + +    if (!MO.isDef()) { +      if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) +        // If it's using a non-loop-invariant register, then it's obviously not +        // safe to hoist. +        HasNonInvariantUse = true; +      continue; +    } + +    if (MO.isImplicit()) { +      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) +        PhysRegClobbers.set(*AI); +      if (!MO.isDead()) +        // Non-dead implicit def? This cannot be hoisted. +        RuledOut = true; +      // No need to check if a dead implicit def is also defined by +      // another instruction. +      continue; +    } + +    // FIXME: For now, avoid instructions with multiple defs, unless +    // it's a dead implicit def. +    if (Def) +      RuledOut = true; +    else +      Def = Reg; + +    // If we have already seen another instruction that defines the same +    // register, then this is not safe.  Two defs is indicated by setting a +    // PhysRegClobbers bit. +    for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { +      if (PhysRegDefs.test(*AS)) +        PhysRegClobbers.set(*AS); +    } +    // Need a second loop because MCRegAliasIterator can visit the same +    // register twice. +    for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) +      PhysRegDefs.set(*AS); + +    if (PhysRegClobbers.test(Reg)) +      // MI defined register is seen defined by another instruction in +      // the loop, it cannot be a LICM candidate. +      RuledOut = true; +  } + +  // Only consider reloads for now and remats which do not have register +  // operands. FIXME: Consider unfold load folding instructions. +  if (Def && !RuledOut) { +    int FI = std::numeric_limits<int>::min(); +    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || +        (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) +      Candidates.push_back(CandidateInfo(MI, Def, FI)); +  } +} + +/// Walk the specified region of the CFG and hoist loop invariants out to the +/// preheader. +void MachineLICMBase::HoistRegionPostRA() { +  MachineBasicBlock *Preheader = getCurPreheader(); +  if (!Preheader) +    return; + +  unsigned NumRegs = TRI->getNumRegs(); +  BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. +  BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. + +  SmallVector<CandidateInfo, 32> Candidates; +  SmallSet<int, 32> StoredFIs; + +  // Walk the entire region, count number of defs for each register, and +  // collect potential LICM candidates. +  for (MachineBasicBlock *BB : CurLoop->getBlocks()) { +    // If the header of the loop containing this basic block is a landing pad, +    // then don't try to hoist instructions out of this loop. +    const MachineLoop *ML = MLI->getLoopFor(BB); +    if (ML && ML->getHeader()->isEHPad()) continue; + +    // Conservatively treat live-in's as an external def. +    // FIXME: That means a reload that're reused in successor block(s) will not +    // be LICM'ed. +    for (const auto &LI : BB->liveins()) { +      for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) +        PhysRegDefs.set(*AI); +    } + +    SpeculationState = SpeculateUnknown; +    for (MachineInstr &MI : *BB) +      ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); +  } + +  // Gather the registers read / clobbered by the terminator. +  BitVector TermRegs(NumRegs); +  MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); +  if (TI != Preheader->end()) { +    for (const MachineOperand &MO : TI->operands()) { +      if (!MO.isReg()) +        continue; +      unsigned Reg = MO.getReg(); +      if (!Reg) +        continue; +      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) +        TermRegs.set(*AI); +    } +  } + +  // Now evaluate whether the potential candidates qualify. +  // 1. Check if the candidate defined register is defined by another +  //    instruction in the loop. +  // 2. If the candidate is a load from stack slot (always true for now), +  //    check if the slot is stored anywhere in the loop. +  // 3. Make sure candidate def should not clobber +  //    registers read by the terminator. Similarly its def should not be +  //    clobbered by the terminator. +  for (CandidateInfo &Candidate : Candidates) { +    if (Candidate.FI != std::numeric_limits<int>::min() && +        StoredFIs.count(Candidate.FI)) +      continue; + +    unsigned Def = Candidate.Def; +    if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { +      bool Safe = true; +      MachineInstr *MI = Candidate.MI; +      for (const MachineOperand &MO : MI->operands()) { +        if (!MO.isReg() || MO.isDef() || !MO.getReg()) +          continue; +        unsigned Reg = MO.getReg(); +        if (PhysRegDefs.test(Reg) || +            PhysRegClobbers.test(Reg)) { +          // If it's using a non-loop-invariant register, then it's obviously +          // not safe to hoist. +          Safe = false; +          break; +        } +      } +      if (Safe) +        HoistPostRA(MI, Candidate.Def); +    } +  } +} + +/// Add register 'Reg' to the livein sets of BBs in the current loop, and make +/// sure it is not killed by any instructions in the loop. +void MachineLICMBase::AddToLiveIns(unsigned Reg) { +  for (MachineBasicBlock *BB : CurLoop->getBlocks()) { +    if (!BB->isLiveIn(Reg)) +      BB->addLiveIn(Reg); +    for (MachineInstr &MI : *BB) { +      for (MachineOperand &MO : MI.operands()) { +        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; +        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) +          MO.setIsKill(false); +      } +    } +  } +} + +/// When an instruction is found to only use loop invariant operands that is +/// safe to hoist, this instruction is called to do the dirty work. +void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { +  MachineBasicBlock *Preheader = getCurPreheader(); + +  // Now move the instructions to the predecessor, inserting it before any +  // terminator instructions. +  LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) +                    << " from " << printMBBReference(*MI->getParent()) << ": " +                    << *MI); + +  // Splice the instruction to the preheader. +  MachineBasicBlock *MBB = MI->getParent(); +  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); + +  // Add register to livein list to all the BBs in the current loop since a +  // loop invariant must be kept live throughout the whole loop. This is +  // important to ensure later passes do not scavenge the def register. +  AddToLiveIns(Def); + +  ++NumPostRAHoisted; +  Changed = true; +} + +/// Check if this mbb is guaranteed to execute. If not then a load from this mbb +/// may not be safe to hoist. +bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { +  if (SpeculationState != SpeculateUnknown) +    return SpeculationState == SpeculateFalse; + +  if (BB != CurLoop->getHeader()) { +    // Check loop exiting blocks. +    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; +    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); +    for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) +      if (!DT->dominates(BB, CurrentLoopExitingBlock)) { +        SpeculationState = SpeculateTrue; +        return false; +      } +  } + +  SpeculationState = SpeculateFalse; +  return true; +} + +void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { +  LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); + +  // Remember livein register pressure. +  BackTrace.push_back(RegPressure); +} + +void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { +  LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); +  BackTrace.pop_back(); +} + +/// Destroy scope for the MBB that corresponds to the given dominator tree node +/// if its a leaf or all of its children are done. Walk up the dominator tree to +/// destroy ancestors which are now done. +void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, +    DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, +    DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { +  if (OpenChildren[Node]) +    return; + +  // Pop scope. +  ExitScope(Node->getBlock()); + +  // Now traverse upwards to pop ancestors whose offsprings are all done. +  while (MachineDomTreeNode *Parent = ParentMap[Node]) { +    unsigned Left = --OpenChildren[Parent]; +    if (Left != 0) +      break; +    ExitScope(Parent->getBlock()); +    Node = Parent; +  } +} + +/// Walk the specified loop in the CFG (defined by all blocks dominated by the +/// specified header block, and that are in the current loop) in depth first +/// order w.r.t the DominatorTree. This allows us to visit definitions before +/// uses, allowing us to hoist a loop body in one pass without iteration. +void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { +  MachineBasicBlock *Preheader = getCurPreheader(); +  if (!Preheader) +    return; + +  SmallVector<MachineDomTreeNode*, 32> Scopes; +  SmallVector<MachineDomTreeNode*, 8> WorkList; +  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; +  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; + +  // Perform a DFS walk to determine the order of visit. +  WorkList.push_back(HeaderN); +  while (!WorkList.empty()) { +    MachineDomTreeNode *Node = WorkList.pop_back_val(); +    assert(Node && "Null dominator tree node?"); +    MachineBasicBlock *BB = Node->getBlock(); + +    // If the header of the loop containing this basic block is a landing pad, +    // then don't try to hoist instructions out of this loop. +    const MachineLoop *ML = MLI->getLoopFor(BB); +    if (ML && ML->getHeader()->isEHPad()) +      continue; + +    // If this subregion is not in the top level loop at all, exit. +    if (!CurLoop->contains(BB)) +      continue; + +    Scopes.push_back(Node); +    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); +    unsigned NumChildren = Children.size(); + +    // Don't hoist things out of a large switch statement.  This often causes +    // code to be hoisted that wasn't going to be executed, and increases +    // register pressure in a situation where it's likely to matter. +    if (BB->succ_size() >= 25) +      NumChildren = 0; + +    OpenChildren[Node] = NumChildren; +    // Add children in reverse order as then the next popped worklist node is +    // the first child of this node.  This means we ultimately traverse the +    // DOM tree in exactly the same order as if we'd recursed. +    for (int i = (int)NumChildren-1; i >= 0; --i) { +      MachineDomTreeNode *Child = Children[i]; +      ParentMap[Child] = Node; +      WorkList.push_back(Child); +    } +  } + +  if (Scopes.size() == 0) +    return; + +  // Compute registers which are livein into the loop headers. +  RegSeen.clear(); +  BackTrace.clear(); +  InitRegPressure(Preheader); + +  // Now perform LICM. +  for (MachineDomTreeNode *Node : Scopes) { +    MachineBasicBlock *MBB = Node->getBlock(); + +    EnterScope(MBB); + +    // Process the block +    SpeculationState = SpeculateUnknown; +    for (MachineBasicBlock::iterator +         MII = MBB->begin(), E = MBB->end(); MII != E; ) { +      MachineBasicBlock::iterator NextMII = MII; ++NextMII; +      MachineInstr *MI = &*MII; +      if (!Hoist(MI, Preheader)) +        UpdateRegPressure(MI); +      // If we have hoisted an instruction that may store, it can only be a +      // constant store. +      MII = NextMII; +    } + +    // If it's a leaf node, it's done. Traverse upwards to pop ancestors. +    ExitScopeIfDone(Node, OpenChildren, ParentMap); +  } +} + +/// Sink instructions into loops if profitable. This especially tries to prevent +/// register spills caused by register pressure if there is little to no +/// overhead moving instructions into loops. +void MachineLICMBase::SinkIntoLoop() { +  MachineBasicBlock *Preheader = getCurPreheader(); +  if (!Preheader) +    return; + +  SmallVector<MachineInstr *, 8> Candidates; +  for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); +       I != Preheader->instr_end(); ++I) { +    // We need to ensure that we can safely move this instruction into the loop. +    // As such, it must not have side-effects, e.g. such as a call has. +    if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) +      Candidates.push_back(&*I); +  } + +  for (MachineInstr *I : Candidates) { +    const MachineOperand &MO = I->getOperand(0); +    if (!MO.isDef() || !MO.isReg() || !MO.getReg()) +      continue; +    if (!MRI->hasOneDef(MO.getReg())) +      continue; +    bool CanSink = true; +    MachineBasicBlock *B = nullptr; +    for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { +      // FIXME: Come up with a proper cost model that estimates whether sinking +      // the instruction (and thus possibly executing it on every loop +      // iteration) is more expensive than a register. +      // For now assumes that copies are cheap and thus almost always worth it. +      if (!MI.isCopy()) { +        CanSink = false; +        break; +      } +      if (!B) { +        B = MI.getParent(); +        continue; +      } +      B = DT->findNearestCommonDominator(B, MI.getParent()); +      if (!B) { +        CanSink = false; +        break; +      } +    } +    if (!CanSink || !B || B == Preheader) +      continue; +    B->splice(B->getFirstNonPHI(), Preheader, I); +  } +} + +static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { +  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); +} + +/// Find all virtual register references that are liveout of the preheader to +/// initialize the starting "register pressure". Note this does not count live +/// through (livein but not used) registers. +void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { +  std::fill(RegPressure.begin(), RegPressure.end(), 0); + +  // If the preheader has only a single predecessor and it ends with a +  // fallthrough or an unconditional branch, then scan its predecessor for live +  // defs as well. This happens whenever the preheader is created by splitting +  // the critical edge from the loop predecessor to the loop header. +  if (BB->pred_size() == 1) { +    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; +    SmallVector<MachineOperand, 4> Cond; +    if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) +      InitRegPressure(*BB->pred_begin()); +  } + +  for (const MachineInstr &MI : *BB) +    UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); +} + +/// Update estimate of register pressure after the specified instruction. +void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, +                                        bool ConsiderUnseenAsDef) { +  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); +  for (const auto &RPIdAndCost : Cost) { +    unsigned Class = RPIdAndCost.first; +    if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) +      RegPressure[Class] = 0; +    else +      RegPressure[Class] += RPIdAndCost.second; +  } +} + +/// Calculate the additional register pressure that the registers used in MI +/// cause. +/// +/// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to +/// figure out which usages are live-ins. +/// FIXME: Figure out a way to consider 'RegSeen' from all code paths. +DenseMap<unsigned, int> +MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, +                                  bool ConsiderUnseenAsDef) { +  DenseMap<unsigned, int> Cost; +  if (MI->isImplicitDef()) +    return Cost; +  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = MI->getOperand(i); +    if (!MO.isReg() || MO.isImplicit()) +      continue; +    unsigned Reg = MO.getReg(); +    if (!TargetRegisterInfo::isVirtualRegister(Reg)) +      continue; + +    // FIXME: It seems bad to use RegSeen only for some of these calculations. +    bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; +    const TargetRegisterClass *RC = MRI->getRegClass(Reg); + +    RegClassWeight W = TRI->getRegClassWeight(RC); +    int RCCost = 0; +    if (MO.isDef()) +      RCCost = W.RegWeight; +    else { +      bool isKill = isOperandKill(MO, MRI); +      if (isNew && !isKill && ConsiderUnseenAsDef) +        // Haven't seen this, it must be a livein. +        RCCost = W.RegWeight; +      else if (!isNew && isKill) +        RCCost = -W.RegWeight; +    } +    if (RCCost == 0) +      continue; +    const int *PS = TRI->getRegClassPressureSets(RC); +    for (; *PS != -1; ++PS) { +      if (Cost.find(*PS) == Cost.end()) +        Cost[*PS] = RCCost; +      else +        Cost[*PS] += RCCost; +    } +  } +  return Cost; +} + +/// Return true if this machine instruction loads from global offset table or +/// constant pool. +static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { +  assert(MI.mayLoad() && "Expected MI that loads!"); + +  // If we lost memory operands, conservatively assume that the instruction +  // reads from everything.. +  if (MI.memoperands_empty()) +    return true; + +  for (MachineMemOperand *MemOp : MI.memoperands()) +    if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) +      if (PSV->isGOT() || PSV->isConstantPool()) +        return true; + +  return false; +} + +// This function iterates through all the operands of the input store MI and +// checks that each register operand statisfies isCallerPreservedPhysReg. +// This means, the value being stored and the address where it is being stored +// is constant throughout the body of the function (not including prologue and +// epilogue). When called with an MI that isn't a store, it returns false. +// A future improvement can be to check if the store registers are constant +// throughout the loop rather than throughout the funtion. +static bool isInvariantStore(const MachineInstr &MI, +                             const TargetRegisterInfo *TRI, +                             const MachineRegisterInfo *MRI) { + +  bool FoundCallerPresReg = false; +  if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || +      (MI.getNumOperands() == 0)) +    return false; + +  // Check that all register operands are caller-preserved physical registers. +  for (const MachineOperand &MO : MI.operands()) { +    if (MO.isReg()) { +      unsigned Reg = MO.getReg(); +      // If operand is a virtual register, check if it comes from a copy of a +      // physical register. +      if (TargetRegisterInfo::isVirtualRegister(Reg)) +        Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); +      if (TargetRegisterInfo::isVirtualRegister(Reg)) +        return false; +      if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF())) +        return false; +      else +        FoundCallerPresReg = true; +    } else if (!MO.isImm()) { +        return false; +    } +  } +  return FoundCallerPresReg; +} + +// Return true if the input MI is a copy instruction that feeds an invariant +// store instruction. This means that the src of the copy has to satisfy +// isCallerPreservedPhysReg and atleast one of it's users should satisfy +// isInvariantStore. +static bool isCopyFeedingInvariantStore(const MachineInstr &MI, +                                        const MachineRegisterInfo *MRI, +                                        const TargetRegisterInfo *TRI) { + +  // FIXME: If targets would like to look through instructions that aren't +  // pure copies, this can be updated to a query. +  if (!MI.isCopy()) +    return false; + +  const MachineFunction *MF = MI.getMF(); +  // Check that we are copying a constant physical register. +  unsigned CopySrcReg = MI.getOperand(1).getReg(); +  if (TargetRegisterInfo::isVirtualRegister(CopySrcReg)) +    return false; + +  if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF)) +    return false; + +  unsigned CopyDstReg = MI.getOperand(0).getReg(); +  // Check if any of the uses of the copy are invariant stores. +  assert (TargetRegisterInfo::isVirtualRegister(CopyDstReg) && +          "copy dst is not a virtual reg"); + +  for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { +    if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) +      return true; +  } +  return false; +} + +/// Returns true if the instruction may be a suitable candidate for LICM. +/// e.g. If the instruction is a call, then it's obviously not safe to hoist it. +bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { +  // Check if it's safe to move the instruction. +  bool DontMoveAcrossStore = true; +  if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && +      !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { +    return false; +  } + +  // If it is load then check if it is guaranteed to execute by making sure that +  // it dominates all exiting blocks. If it doesn't, then there is a path out of +  // the loop which does not execute this load, so we can't hoist it. Loads +  // from constant memory are not safe to speculate all the time, for example +  // indexed load from a jump table. +  // Stores and side effects are already checked by isSafeToMove. +  if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && +      !IsGuaranteedToExecute(I.getParent())) +    return false; + +  return true; +} + +/// Returns true if the instruction is loop invariant. +/// I.e., all virtual register operands are defined outside of the loop, +/// physical registers aren't accessed explicitly, and there are no side +/// effects that aren't captured by the operands or other flags. +bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { +  if (!IsLICMCandidate(I)) +    return false; + +  // The instruction is loop invariant if all of its operands are. +  for (const MachineOperand &MO : I.operands()) { +    if (!MO.isReg()) +      continue; + +    unsigned Reg = MO.getReg(); +    if (Reg == 0) continue; + +    // Don't hoist an instruction that uses or defines a physical register. +    if (TargetRegisterInfo::isPhysicalRegister(Reg)) { +      if (MO.isUse()) { +        // If the physreg has no defs anywhere, it's just an ambient register +        // and we can freely move its uses. Alternatively, if it's allocatable, +        // it could get allocated to something with a def during allocation. +        // However, if the physreg is known to always be caller saved/restored +        // then this use is safe to hoist. +        if (!MRI->isConstantPhysReg(Reg) && +            !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF()))) +          return false; +        // Otherwise it's safe to move. +        continue; +      } else if (!MO.isDead()) { +        // A def that isn't dead. We can't move it. +        return false; +      } else if (CurLoop->getHeader()->isLiveIn(Reg)) { +        // If the reg is live into the loop, we can't hoist an instruction +        // which would clobber it. +        return false; +      } +    } + +    if (!MO.isUse()) +      continue; + +    assert(MRI->getVRegDef(Reg) && +           "Machine instr not mapped for this vreg?!"); + +    // If the loop contains the definition of an operand, then the instruction +    // isn't loop invariant. +    if (CurLoop->contains(MRI->getVRegDef(Reg))) +      return false; +  } + +  // If we got this far, the instruction is loop invariant! +  return true; +} + +/// Return true if the specified instruction is used by a phi node and hoisting +/// it could cause a copy to be inserted. +bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { +  SmallVector<const MachineInstr*, 8> Work(1, MI); +  do { +    MI = Work.pop_back_val(); +    for (const MachineOperand &MO : MI->operands()) { +      if (!MO.isReg() || !MO.isDef()) +        continue; +      unsigned Reg = MO.getReg(); +      if (!TargetRegisterInfo::isVirtualRegister(Reg)) +        continue; +      for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { +        // A PHI may cause a copy to be inserted. +        if (UseMI.isPHI()) { +          // A PHI inside the loop causes a copy because the live range of Reg is +          // extended across the PHI. +          if (CurLoop->contains(&UseMI)) +            return true; +          // A PHI in an exit block can cause a copy to be inserted if the PHI +          // has multiple predecessors in the loop with different values. +          // For now, approximate by rejecting all exit blocks. +          if (isExitBlock(UseMI.getParent())) +            return true; +          continue; +        } +        // Look past copies as well. +        if (UseMI.isCopy() && CurLoop->contains(&UseMI)) +          Work.push_back(&UseMI); +      } +    } +  } while (!Work.empty()); +  return false; +} + +/// Compute operand latency between a def of 'Reg' and an use in the current +/// loop, return true if the target considered it high. +bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, +                                            unsigned DefIdx, +                                            unsigned Reg) const { +  if (MRI->use_nodbg_empty(Reg)) +    return false; + +  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { +    if (UseMI.isCopyLike()) +      continue; +    if (!CurLoop->contains(UseMI.getParent())) +      continue; +    for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { +      const MachineOperand &MO = UseMI.getOperand(i); +      if (!MO.isReg() || !MO.isUse()) +        continue; +      unsigned MOReg = MO.getReg(); +      if (MOReg != Reg) +        continue; + +      if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) +        return true; +    } + +    // Only look at the first in loop use. +    break; +  } + +  return false; +} + +/// Return true if the instruction is marked "cheap" or the operand latency +/// between its def and a use is one or less. +bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { +  if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) +    return true; + +  bool isCheap = false; +  unsigned NumDefs = MI.getDesc().getNumDefs(); +  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { +    MachineOperand &DefMO = MI.getOperand(i); +    if (!DefMO.isReg() || !DefMO.isDef()) +      continue; +    --NumDefs; +    unsigned Reg = DefMO.getReg(); +    if (TargetRegisterInfo::isPhysicalRegister(Reg)) +      continue; + +    if (!TII->hasLowDefLatency(SchedModel, MI, i)) +      return false; +    isCheap = true; +  } + +  return isCheap; +} + +/// Visit BBs from header to current BB, check if hoisting an instruction of the +/// given cost matrix can cause high register pressure. +bool +MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, +                                         bool CheapInstr) { +  for (const auto &RPIdAndCost : Cost) { +    if (RPIdAndCost.second <= 0) +      continue; + +    unsigned Class = RPIdAndCost.first; +    int Limit = RegLimit[Class]; + +    // Don't hoist cheap instructions if they would increase register pressure, +    // even if we're under the limit. +    if (CheapInstr && !HoistCheapInsts) +      return true; + +    for (const auto &RP : BackTrace) +      if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) +        return true; +  } + +  return false; +} + +/// Traverse the back trace from header to the current block and update their +/// register pressures to reflect the effect of hoisting MI from the current +/// block to the preheader. +void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { +  // First compute the 'cost' of the instruction, i.e. its contribution +  // to register pressure. +  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, +                               /*ConsiderUnseenAsDef=*/false); + +  // Update register pressure of blocks from loop header to current block. +  for (auto &RP : BackTrace) +    for (const auto &RPIdAndCost : Cost) +      RP[RPIdAndCost.first] += RPIdAndCost.second; +} + +/// Return true if it is potentially profitable to hoist the given loop +/// invariant. +bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { +  if (MI.isImplicitDef()) +    return true; + +  // Besides removing computation from the loop, hoisting an instruction has +  // these effects: +  // +  // - The value defined by the instruction becomes live across the entire +  //   loop. This increases register pressure in the loop. +  // +  // - If the value is used by a PHI in the loop, a copy will be required for +  //   lowering the PHI after extending the live range. +  // +  // - When hoisting the last use of a value in the loop, that value no longer +  //   needs to be live in the loop. This lowers register pressure in the loop. + +  if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI)) +    return true; + +  bool CheapInstr = IsCheapInstruction(MI); +  bool CreatesCopy = HasLoopPHIUse(&MI); + +  // Don't hoist a cheap instruction if it would create a copy in the loop. +  if (CheapInstr && CreatesCopy) { +    LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); +    return false; +  } + +  // Rematerializable instructions should always be hoisted since the register +  // allocator can just pull them down again when needed. +  if (TII->isTriviallyReMaterializable(MI, AA)) +    return true; + +  // FIXME: If there are long latency loop-invariant instructions inside the +  // loop at this point, why didn't the optimizer's LICM hoist them? +  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = MI.getOperand(i); +    if (!MO.isReg() || MO.isImplicit()) +      continue; +    unsigned Reg = MO.getReg(); +    if (!TargetRegisterInfo::isVirtualRegister(Reg)) +      continue; +    if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { +      LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); +      ++NumHighLatency; +      return true; +    } +  } + +  // Estimate register pressure to determine whether to LICM the instruction. +  // In low register pressure situation, we can be more aggressive about +  // hoisting. Also, favors hoisting long latency instructions even in +  // moderately high pressure situation. +  // Cheap instructions will only be hoisted if they don't increase register +  // pressure at all. +  auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, +                               /*ConsiderUnseenAsDef=*/false); + +  // Visit BBs from header to current BB, if hoisting this doesn't cause +  // high register pressure, then it's safe to proceed. +  if (!CanCauseHighRegPressure(Cost, CheapInstr)) { +    LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); +    ++NumLowRP; +    return true; +  } + +  // Don't risk increasing register pressure if it would create copies. +  if (CreatesCopy) { +    LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); +    return false; +  } + +  // Do not "speculate" in high register pressure situation. If an +  // instruction is not guaranteed to be executed in the loop, it's best to be +  // conservative. +  if (AvoidSpeculation && +      (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { +    LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); +    return false; +  } + +  // High register pressure situation, only hoist if the instruction is going +  // to be remat'ed. +  if (!TII->isTriviallyReMaterializable(MI, AA) && +      !MI.isDereferenceableInvariantLoad(AA)) { +    LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); +    return false; +  } + +  return true; +} + +/// Unfold a load from the given machineinstr if the load itself could be +/// hoisted. Return the unfolded and hoistable load, or null if the load +/// couldn't be unfolded or if it wouldn't be hoistable. +MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { +  // Don't unfold simple loads. +  if (MI->canFoldAsLoad()) +    return nullptr; + +  // If not, we may be able to unfold a load and hoist that. +  // First test whether the instruction is loading from an amenable +  // memory location. +  if (!MI->isDereferenceableInvariantLoad(AA)) +    return nullptr; + +  // Next determine the register class for a temporary register. +  unsigned LoadRegIndex; +  unsigned NewOpc = +    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), +                                    /*UnfoldLoad=*/true, +                                    /*UnfoldStore=*/false, +                                    &LoadRegIndex); +  if (NewOpc == 0) return nullptr; +  const MCInstrDesc &MID = TII->get(NewOpc); +  MachineFunction &MF = *MI->getMF(); +  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); +  // Ok, we're unfolding. Create a temporary register and do the unfold. +  unsigned Reg = MRI->createVirtualRegister(RC); + +  SmallVector<MachineInstr *, 2> NewMIs; +  bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, +                                          /*UnfoldLoad=*/true, +                                          /*UnfoldStore=*/false, NewMIs); +  (void)Success; +  assert(Success && +         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " +         "succeeded!"); +  assert(NewMIs.size() == 2 && +         "Unfolded a load into multiple instructions!"); +  MachineBasicBlock *MBB = MI->getParent(); +  MachineBasicBlock::iterator Pos = MI; +  MBB->insert(Pos, NewMIs[0]); +  MBB->insert(Pos, NewMIs[1]); +  // If unfolding produced a load that wasn't loop-invariant or profitable to +  // hoist, discard the new instructions and bail. +  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { +    NewMIs[0]->eraseFromParent(); +    NewMIs[1]->eraseFromParent(); +    return nullptr; +  } + +  // Update register pressure for the unfolded instruction. +  UpdateRegPressure(NewMIs[1]); + +  // Otherwise we successfully unfolded a load that we can hoist. +  MI->eraseFromParent(); +  return NewMIs[0]; +} + +/// Initialize the CSE map with instructions that are in the current loop +/// preheader that may become duplicates of instructions that are hoisted +/// out of the loop. +void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { +  for (MachineInstr &MI : *BB) +    CSEMap[MI.getOpcode()].push_back(&MI); +} + +/// Find an instruction amount PrevMIs that is a duplicate of MI. +/// Return this instruction if it's found. +const MachineInstr* +MachineLICMBase::LookForDuplicate(const MachineInstr *MI, +                                  std::vector<const MachineInstr*> &PrevMIs) { +  for (const MachineInstr *PrevMI : PrevMIs) +    if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) +      return PrevMI; + +  return nullptr; +} + +/// Given a LICM'ed instruction, look for an instruction on the preheader that +/// computes the same value. If it's found, do a RAU on with the definition of +/// the existing instruction rather than hoisting the instruction to the +/// preheader. +bool MachineLICMBase::EliminateCSE(MachineInstr *MI, +    DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) { +  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate +  // the undef property onto uses. +  if (CI == CSEMap.end() || MI->isImplicitDef()) +    return false; + +  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { +    LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); + +    // Replace virtual registers defined by MI by their counterparts defined +    // by Dup. +    SmallVector<unsigned, 2> Defs; +    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { +      const MachineOperand &MO = MI->getOperand(i); + +      // Physical registers may not differ here. +      assert((!MO.isReg() || MO.getReg() == 0 || +              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || +              MO.getReg() == Dup->getOperand(i).getReg()) && +             "Instructions with different phys regs are not identical!"); + +      if (MO.isReg() && MO.isDef() && +          !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) +        Defs.push_back(i); +    } + +    SmallVector<const TargetRegisterClass*, 2> OrigRCs; +    for (unsigned i = 0, e = Defs.size(); i != e; ++i) { +      unsigned Idx = Defs[i]; +      unsigned Reg = MI->getOperand(Idx).getReg(); +      unsigned DupReg = Dup->getOperand(Idx).getReg(); +      OrigRCs.push_back(MRI->getRegClass(DupReg)); + +      if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { +        // Restore old RCs if more than one defs. +        for (unsigned j = 0; j != i; ++j) +          MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); +        return false; +      } +    } + +    for (unsigned Idx : Defs) { +      unsigned Reg = MI->getOperand(Idx).getReg(); +      unsigned DupReg = Dup->getOperand(Idx).getReg(); +      MRI->replaceRegWith(Reg, DupReg); +      MRI->clearKillFlags(DupReg); +    } + +    MI->eraseFromParent(); +    ++NumCSEed; +    return true; +  } +  return false; +} + +/// Return true if the given instruction will be CSE'd if it's hoisted out of +/// the loop. +bool MachineLICMBase::MayCSE(MachineInstr *MI) { +  unsigned Opcode = MI->getOpcode(); +  DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator +    CI = CSEMap.find(Opcode); +  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate +  // the undef property onto uses. +  if (CI == CSEMap.end() || MI->isImplicitDef()) +    return false; + +  return LookForDuplicate(MI, CI->second) != nullptr; +} + +/// When an instruction is found to use only loop invariant operands +/// that are safe to hoist, this instruction is called to do the dirty work. +/// It returns true if the instruction is hoisted. +bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { +  // First check whether we should hoist this instruction. +  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { +    // If not, try unfolding a hoistable load. +    MI = ExtractHoistableLoad(MI); +    if (!MI) return false; +  } + +  // If we have hoisted an instruction that may store, it can only be a constant +  // store. +  if (MI->mayStore()) +    NumStoreConst++; + +  // Now move the instructions to the predecessor, inserting it before any +  // terminator instructions. +  LLVM_DEBUG({ +    dbgs() << "Hoisting " << *MI; +    if (MI->getParent()->getBasicBlock()) +      dbgs() << " from " << printMBBReference(*MI->getParent()); +    if (Preheader->getBasicBlock()) +      dbgs() << " to " << printMBBReference(*Preheader); +    dbgs() << "\n"; +  }); + +  // If this is the first instruction being hoisted to the preheader, +  // initialize the CSE map with potential common expressions. +  if (FirstInLoop) { +    InitCSEMap(Preheader); +    FirstInLoop = false; +  } + +  // Look for opportunity to CSE the hoisted instruction. +  unsigned Opcode = MI->getOpcode(); +  DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator +    CI = CSEMap.find(Opcode); +  if (!EliminateCSE(MI, CI)) { +    // Otherwise, splice the instruction to the preheader. +    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); + +    // Since we are moving the instruction out of its basic block, we do not +    // retain its debug location. Doing so would degrade the debugging +    // experience and adversely affect the accuracy of profiling information. +    MI->setDebugLoc(DebugLoc()); + +    // Update register pressure for BBs from header to this block. +    UpdateBackTraceRegPressure(MI); + +    // Clear the kill flags of any register this instruction defines, +    // since they may need to be live throughout the entire loop +    // rather than just live for part of it. +    for (MachineOperand &MO : MI->operands()) +      if (MO.isReg() && MO.isDef() && !MO.isDead()) +        MRI->clearKillFlags(MO.getReg()); + +    // Add to the CSE map. +    if (CI != CSEMap.end()) +      CI->second.push_back(MI); +    else +      CSEMap[Opcode].push_back(MI); +  } + +  ++NumHoisted; +  Changed = true; + +  return true; +} + +/// Get the preheader for the current loop, splitting a critical edge if needed. +MachineBasicBlock *MachineLICMBase::getCurPreheader() { +  // Determine the block to which to hoist instructions. If we can't find a +  // suitable loop predecessor, we can't do any hoisting. + +  // If we've tried to get a preheader and failed, don't try again. +  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) +    return nullptr; + +  if (!CurPreheader) { +    CurPreheader = CurLoop->getLoopPreheader(); +    if (!CurPreheader) { +      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); +      if (!Pred) { +        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); +        return nullptr; +      } + +      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); +      if (!CurPreheader) { +        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); +        return nullptr; +      } +    } +  } +  return CurPreheader; +}  | 
