diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineOutliner.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/MachineOutliner.cpp | 1476 |
1 files changed, 0 insertions, 1476 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineOutliner.cpp b/contrib/llvm/lib/CodeGen/MachineOutliner.cpp deleted file mode 100644 index 80a235aeaa5c..000000000000 --- a/contrib/llvm/lib/CodeGen/MachineOutliner.cpp +++ /dev/null @@ -1,1476 +0,0 @@ -//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// Replaces repeated sequences of instructions with function calls. -/// -/// This works by placing every instruction from every basic block in a -/// suffix tree, and repeatedly querying that tree for repeated sequences of -/// instructions. If a sequence of instructions appears often, then it ought -/// to be beneficial to pull out into a function. -/// -/// The MachineOutliner communicates with a given target using hooks defined in -/// TargetInstrInfo.h. The target supplies the outliner with information on how -/// a specific sequence of instructions should be outlined. This information -/// is used to deduce the number of instructions necessary to -/// -/// * Create an outlined function -/// * Call that outlined function -/// -/// Targets must implement -/// * getOutliningCandidateInfo -/// * buildOutlinedFrame -/// * insertOutlinedCall -/// * isFunctionSafeToOutlineFrom -/// -/// in order to make use of the MachineOutliner. -/// -/// This was originally presented at the 2016 LLVM Developers' Meeting in the -/// talk "Reducing Code Size Using Outlining". For a high-level overview of -/// how this pass works, the talk is available on YouTube at -/// -/// https://www.youtube.com/watch?v=yorld-WSOeU -/// -/// The slides for the talk are available at -/// -/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf -/// -/// The talk provides an overview of how the outliner finds candidates and -/// ultimately outlines them. It describes how the main data structure for this -/// pass, the suffix tree, is queried and purged for candidates. It also gives -/// a simplified suffix tree construction algorithm for suffix trees based off -/// of the algorithm actually used here, Ukkonen's algorithm. -/// -/// For the original RFC for this pass, please see -/// -/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html -/// -/// For more information on the suffix tree data structure, please see -/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf -/// -//===----------------------------------------------------------------------===// -#include "llvm/CodeGen/MachineOutliner.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/Twine.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineModuleInfo.h" -#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/Passes.h" -#include "llvm/CodeGen/TargetInstrInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/IR/DIBuilder.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/Mangler.h" -#include "llvm/Support/Allocator.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include <functional> -#include <tuple> -#include <vector> - -#define DEBUG_TYPE "machine-outliner" - -using namespace llvm; -using namespace ore; -using namespace outliner; - -STATISTIC(NumOutlined, "Number of candidates outlined"); -STATISTIC(FunctionsCreated, "Number of functions created"); - -// Set to true if the user wants the outliner to run on linkonceodr linkage -// functions. This is false by default because the linker can dedupe linkonceodr -// functions. Since the outliner is confined to a single module (modulo LTO), -// this is off by default. It should, however, be the default behaviour in -// LTO. -static cl::opt<bool> EnableLinkOnceODROutlining( - "enable-linkonceodr-outlining", - cl::Hidden, - cl::desc("Enable the machine outliner on linkonceodr functions"), - cl::init(false)); - -namespace { - -/// Represents an undefined index in the suffix tree. -const unsigned EmptyIdx = -1; - -/// A node in a suffix tree which represents a substring or suffix. -/// -/// Each node has either no children or at least two children, with the root -/// being a exception in the empty tree. -/// -/// Children are represented as a map between unsigned integers and nodes. If -/// a node N has a child M on unsigned integer k, then the mapping represented -/// by N is a proper prefix of the mapping represented by M. Note that this, -/// although similar to a trie is somewhat different: each node stores a full -/// substring of the full mapping rather than a single character state. -/// -/// Each internal node contains a pointer to the internal node representing -/// the same string, but with the first character chopped off. This is stored -/// in \p Link. Each leaf node stores the start index of its respective -/// suffix in \p SuffixIdx. -struct SuffixTreeNode { - - /// The children of this node. - /// - /// A child existing on an unsigned integer implies that from the mapping - /// represented by the current node, there is a way to reach another - /// mapping by tacking that character on the end of the current string. - DenseMap<unsigned, SuffixTreeNode *> Children; - - /// The start index of this node's substring in the main string. - unsigned StartIdx = EmptyIdx; - - /// The end index of this node's substring in the main string. - /// - /// Every leaf node must have its \p EndIdx incremented at the end of every - /// step in the construction algorithm. To avoid having to update O(N) - /// nodes individually at the end of every step, the end index is stored - /// as a pointer. - unsigned *EndIdx = nullptr; - - /// For leaves, the start index of the suffix represented by this node. - /// - /// For all other nodes, this is ignored. - unsigned SuffixIdx = EmptyIdx; - - /// For internal nodes, a pointer to the internal node representing - /// the same sequence with the first character chopped off. - /// - /// This acts as a shortcut in Ukkonen's algorithm. One of the things that - /// Ukkonen's algorithm does to achieve linear-time construction is - /// keep track of which node the next insert should be at. This makes each - /// insert O(1), and there are a total of O(N) inserts. The suffix link - /// helps with inserting children of internal nodes. - /// - /// Say we add a child to an internal node with associated mapping S. The - /// next insertion must be at the node representing S - its first character. - /// This is given by the way that we iteratively build the tree in Ukkonen's - /// algorithm. The main idea is to look at the suffixes of each prefix in the - /// string, starting with the longest suffix of the prefix, and ending with - /// the shortest. Therefore, if we keep pointers between such nodes, we can - /// move to the next insertion point in O(1) time. If we don't, then we'd - /// have to query from the root, which takes O(N) time. This would make the - /// construction algorithm O(N^2) rather than O(N). - SuffixTreeNode *Link = nullptr; - - /// The length of the string formed by concatenating the edge labels from the - /// root to this node. - unsigned ConcatLen = 0; - - /// Returns true if this node is a leaf. - bool isLeaf() const { return SuffixIdx != EmptyIdx; } - - /// Returns true if this node is the root of its owning \p SuffixTree. - bool isRoot() const { return StartIdx == EmptyIdx; } - - /// Return the number of elements in the substring associated with this node. - size_t size() const { - - // Is it the root? If so, it's the empty string so return 0. - if (isRoot()) - return 0; - - assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); - - // Size = the number of elements in the string. - // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. - return *EndIdx - StartIdx + 1; - } - - SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) - : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} - - SuffixTreeNode() {} -}; - -/// A data structure for fast substring queries. -/// -/// Suffix trees represent the suffixes of their input strings in their leaves. -/// A suffix tree is a type of compressed trie structure where each node -/// represents an entire substring rather than a single character. Each leaf -/// of the tree is a suffix. -/// -/// A suffix tree can be seen as a type of state machine where each state is a -/// substring of the full string. The tree is structured so that, for a string -/// of length N, there are exactly N leaves in the tree. This structure allows -/// us to quickly find repeated substrings of the input string. -/// -/// In this implementation, a "string" is a vector of unsigned integers. -/// These integers may result from hashing some data type. A suffix tree can -/// contain 1 or many strings, which can then be queried as one large string. -/// -/// The suffix tree is implemented using Ukkonen's algorithm for linear-time -/// suffix tree construction. Ukkonen's algorithm is explained in more detail -/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The -/// paper is available at -/// -/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf -class SuffixTree { -public: - /// Each element is an integer representing an instruction in the module. - ArrayRef<unsigned> Str; - - /// A repeated substring in the tree. - struct RepeatedSubstring { - /// The length of the string. - unsigned Length; - - /// The start indices of each occurrence. - std::vector<unsigned> StartIndices; - }; - -private: - /// Maintains each node in the tree. - SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; - - /// The root of the suffix tree. - /// - /// The root represents the empty string. It is maintained by the - /// \p NodeAllocator like every other node in the tree. - SuffixTreeNode *Root = nullptr; - - /// Maintains the end indices of the internal nodes in the tree. - /// - /// Each internal node is guaranteed to never have its end index change - /// during the construction algorithm; however, leaves must be updated at - /// every step. Therefore, we need to store leaf end indices by reference - /// to avoid updating O(N) leaves at every step of construction. Thus, - /// every internal node must be allocated its own end index. - BumpPtrAllocator InternalEndIdxAllocator; - - /// The end index of each leaf in the tree. - unsigned LeafEndIdx = -1; - - /// Helper struct which keeps track of the next insertion point in - /// Ukkonen's algorithm. - struct ActiveState { - /// The next node to insert at. - SuffixTreeNode *Node; - - /// The index of the first character in the substring currently being added. - unsigned Idx = EmptyIdx; - - /// The length of the substring we have to add at the current step. - unsigned Len = 0; - }; - - /// The point the next insertion will take place at in the - /// construction algorithm. - ActiveState Active; - - /// Allocate a leaf node and add it to the tree. - /// - /// \param Parent The parent of this node. - /// \param StartIdx The start index of this node's associated string. - /// \param Edge The label on the edge leaving \p Parent to this node. - /// - /// \returns A pointer to the allocated leaf node. - SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, - unsigned Edge) { - - assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); - - SuffixTreeNode *N = new (NodeAllocator.Allocate()) - SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); - Parent.Children[Edge] = N; - - return N; - } - - /// Allocate an internal node and add it to the tree. - /// - /// \param Parent The parent of this node. Only null when allocating the root. - /// \param StartIdx The start index of this node's associated string. - /// \param EndIdx The end index of this node's associated string. - /// \param Edge The label on the edge leaving \p Parent to this node. - /// - /// \returns A pointer to the allocated internal node. - SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, - unsigned EndIdx, unsigned Edge) { - - assert(StartIdx <= EndIdx && "String can't start after it ends!"); - assert(!(!Parent && StartIdx != EmptyIdx) && - "Non-root internal nodes must have parents!"); - - unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); - SuffixTreeNode *N = new (NodeAllocator.Allocate()) - SuffixTreeNode(StartIdx, E, Root); - if (Parent) - Parent->Children[Edge] = N; - - return N; - } - - /// Set the suffix indices of the leaves to the start indices of their - /// respective suffixes. - /// - /// \param[in] CurrNode The node currently being visited. - /// \param CurrNodeLen The concatenation of all node sizes from the root to - /// this node. Used to produce suffix indices. - void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) { - - bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); - - // Store the concatenation of lengths down from the root. - CurrNode.ConcatLen = CurrNodeLen; - // Traverse the tree depth-first. - for (auto &ChildPair : CurrNode.Children) { - assert(ChildPair.second && "Node had a null child!"); - setSuffixIndices(*ChildPair.second, - CurrNodeLen + ChildPair.second->size()); - } - - // Is this node a leaf? If it is, give it a suffix index. - if (IsLeaf) - CurrNode.SuffixIdx = Str.size() - CurrNodeLen; - } - - /// Construct the suffix tree for the prefix of the input ending at - /// \p EndIdx. - /// - /// Used to construct the full suffix tree iteratively. At the end of each - /// step, the constructed suffix tree is either a valid suffix tree, or a - /// suffix tree with implicit suffixes. At the end of the final step, the - /// suffix tree is a valid tree. - /// - /// \param EndIdx The end index of the current prefix in the main string. - /// \param SuffixesToAdd The number of suffixes that must be added - /// to complete the suffix tree at the current phase. - /// - /// \returns The number of suffixes that have not been added at the end of - /// this step. - unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { - SuffixTreeNode *NeedsLink = nullptr; - - while (SuffixesToAdd > 0) { - - // Are we waiting to add anything other than just the last character? - if (Active.Len == 0) { - // If not, then say the active index is the end index. - Active.Idx = EndIdx; - } - - assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); - - // The first character in the current substring we're looking at. - unsigned FirstChar = Str[Active.Idx]; - - // Have we inserted anything starting with FirstChar at the current node? - if (Active.Node->Children.count(FirstChar) == 0) { - // If not, then we can just insert a leaf and move too the next step. - insertLeaf(*Active.Node, EndIdx, FirstChar); - - // The active node is an internal node, and we visited it, so it must - // need a link if it doesn't have one. - if (NeedsLink) { - NeedsLink->Link = Active.Node; - NeedsLink = nullptr; - } - } else { - // There's a match with FirstChar, so look for the point in the tree to - // insert a new node. - SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; - - unsigned SubstringLen = NextNode->size(); - - // Is the current suffix we're trying to insert longer than the size of - // the child we want to move to? - if (Active.Len >= SubstringLen) { - // If yes, then consume the characters we've seen and move to the next - // node. - Active.Idx += SubstringLen; - Active.Len -= SubstringLen; - Active.Node = NextNode; - continue; - } - - // Otherwise, the suffix we're trying to insert must be contained in the - // next node we want to move to. - unsigned LastChar = Str[EndIdx]; - - // Is the string we're trying to insert a substring of the next node? - if (Str[NextNode->StartIdx + Active.Len] == LastChar) { - // If yes, then we're done for this step. Remember our insertion point - // and move to the next end index. At this point, we have an implicit - // suffix tree. - if (NeedsLink && !Active.Node->isRoot()) { - NeedsLink->Link = Active.Node; - NeedsLink = nullptr; - } - - Active.Len++; - break; - } - - // The string we're trying to insert isn't a substring of the next node, - // but matches up to a point. Split the node. - // - // For example, say we ended our search at a node n and we're trying to - // insert ABD. Then we'll create a new node s for AB, reduce n to just - // representing C, and insert a new leaf node l to represent d. This - // allows us to ensure that if n was a leaf, it remains a leaf. - // - // | ABC ---split---> | AB - // n s - // C / \ D - // n l - - // The node s from the diagram - SuffixTreeNode *SplitNode = - insertInternalNode(Active.Node, NextNode->StartIdx, - NextNode->StartIdx + Active.Len - 1, FirstChar); - - // Insert the new node representing the new substring into the tree as - // a child of the split node. This is the node l from the diagram. - insertLeaf(*SplitNode, EndIdx, LastChar); - - // Make the old node a child of the split node and update its start - // index. This is the node n from the diagram. - NextNode->StartIdx += Active.Len; - SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; - - // SplitNode is an internal node, update the suffix link. - if (NeedsLink) - NeedsLink->Link = SplitNode; - - NeedsLink = SplitNode; - } - - // We've added something new to the tree, so there's one less suffix to - // add. - SuffixesToAdd--; - - if (Active.Node->isRoot()) { - if (Active.Len > 0) { - Active.Len--; - Active.Idx = EndIdx - SuffixesToAdd + 1; - } - } else { - // Start the next phase at the next smallest suffix. - Active.Node = Active.Node->Link; - } - } - - return SuffixesToAdd; - } - -public: - /// Construct a suffix tree from a sequence of unsigned integers. - /// - /// \param Str The string to construct the suffix tree for. - SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { - Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); - Active.Node = Root; - - // Keep track of the number of suffixes we have to add of the current - // prefix. - unsigned SuffixesToAdd = 0; - Active.Node = Root; - - // Construct the suffix tree iteratively on each prefix of the string. - // PfxEndIdx is the end index of the current prefix. - // End is one past the last element in the string. - for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; - PfxEndIdx++) { - SuffixesToAdd++; - LeafEndIdx = PfxEndIdx; // Extend each of the leaves. - SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); - } - - // Set the suffix indices of each leaf. - assert(Root && "Root node can't be nullptr!"); - setSuffixIndices(*Root, 0); - } - - - /// Iterator for finding all repeated substrings in the suffix tree. - struct RepeatedSubstringIterator { - private: - /// The current node we're visiting. - SuffixTreeNode *N = nullptr; - - /// The repeated substring associated with this node. - RepeatedSubstring RS; - - /// The nodes left to visit. - std::vector<SuffixTreeNode *> ToVisit; - - /// The minimum length of a repeated substring to find. - /// Since we're outlining, we want at least two instructions in the range. - /// FIXME: This may not be true for targets like X86 which support many - /// instruction lengths. - const unsigned MinLength = 2; - - /// Move the iterator to the next repeated substring. - void advance() { - // Clear the current state. If we're at the end of the range, then this - // is the state we want to be in. - RS = RepeatedSubstring(); - N = nullptr; - - // Each leaf node represents a repeat of a string. - std::vector<SuffixTreeNode *> LeafChildren; - - // Continue visiting nodes until we find one which repeats more than once. - while (!ToVisit.empty()) { - SuffixTreeNode *Curr = ToVisit.back(); - ToVisit.pop_back(); - LeafChildren.clear(); - - // Keep track of the length of the string associated with the node. If - // it's too short, we'll quit. - unsigned Length = Curr->ConcatLen; - - // Iterate over each child, saving internal nodes for visiting, and - // leaf nodes in LeafChildren. Internal nodes represent individual - // strings, which may repeat. - for (auto &ChildPair : Curr->Children) { - // Save all of this node's children for processing. - if (!ChildPair.second->isLeaf()) - ToVisit.push_back(ChildPair.second); - - // It's not an internal node, so it must be a leaf. If we have a - // long enough string, then save the leaf children. - else if (Length >= MinLength) - LeafChildren.push_back(ChildPair.second); - } - - // The root never represents a repeated substring. If we're looking at - // that, then skip it. - if (Curr->isRoot()) - continue; - - // Do we have any repeated substrings? - if (LeafChildren.size() >= 2) { - // Yes. Update the state to reflect this, and then bail out. - N = Curr; - RS.Length = Length; - for (SuffixTreeNode *Leaf : LeafChildren) - RS.StartIndices.push_back(Leaf->SuffixIdx); - break; - } - } - - // At this point, either NewRS is an empty RepeatedSubstring, or it was - // set in the above loop. Similarly, N is either nullptr, or the node - // associated with NewRS. - } - - public: - /// Return the current repeated substring. - RepeatedSubstring &operator*() { return RS; } - - RepeatedSubstringIterator &operator++() { - advance(); - return *this; - } - - RepeatedSubstringIterator operator++(int I) { - RepeatedSubstringIterator It(*this); - advance(); - return It; - } - - bool operator==(const RepeatedSubstringIterator &Other) { - return N == Other.N; - } - bool operator!=(const RepeatedSubstringIterator &Other) { - return !(*this == Other); - } - - RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { - // Do we have a non-null node? - if (N) { - // Yes. At the first step, we need to visit all of N's children. - // Note: This means that we visit N last. - ToVisit.push_back(N); - advance(); - } - } -}; - - typedef RepeatedSubstringIterator iterator; - iterator begin() { return iterator(Root); } - iterator end() { return iterator(nullptr); } -}; - -/// Maps \p MachineInstrs to unsigned integers and stores the mappings. -struct InstructionMapper { - - /// The next available integer to assign to a \p MachineInstr that - /// cannot be outlined. - /// - /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. - unsigned IllegalInstrNumber = -3; - - /// The next available integer to assign to a \p MachineInstr that can - /// be outlined. - unsigned LegalInstrNumber = 0; - - /// Correspondence from \p MachineInstrs to unsigned integers. - DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> - InstructionIntegerMap; - - /// Correspondence between \p MachineBasicBlocks and target-defined flags. - DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; - - /// The vector of unsigned integers that the module is mapped to. - std::vector<unsigned> UnsignedVec; - - /// Stores the location of the instruction associated with the integer - /// at index i in \p UnsignedVec for each index i. - std::vector<MachineBasicBlock::iterator> InstrList; - - // Set if we added an illegal number in the previous step. - // Since each illegal number is unique, we only need one of them between - // each range of legal numbers. This lets us make sure we don't add more - // than one illegal number per range. - bool AddedIllegalLastTime = false; - - /// Maps \p *It to a legal integer. - /// - /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, - /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. - /// - /// \returns The integer that \p *It was mapped to. - unsigned mapToLegalUnsigned( - MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, - bool &HaveLegalRange, unsigned &NumLegalInBlock, - std::vector<unsigned> &UnsignedVecForMBB, - std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { - // We added something legal, so we should unset the AddedLegalLastTime - // flag. - AddedIllegalLastTime = false; - - // If we have at least two adjacent legal instructions (which may have - // invisible instructions in between), remember that. - if (CanOutlineWithPrevInstr) - HaveLegalRange = true; - CanOutlineWithPrevInstr = true; - - // Keep track of the number of legal instructions we insert. - NumLegalInBlock++; - - // Get the integer for this instruction or give it the current - // LegalInstrNumber. - InstrListForMBB.push_back(It); - MachineInstr &MI = *It; - bool WasInserted; - DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator - ResultIt; - std::tie(ResultIt, WasInserted) = - InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); - unsigned MINumber = ResultIt->second; - - // There was an insertion. - if (WasInserted) - LegalInstrNumber++; - - UnsignedVecForMBB.push_back(MINumber); - - // Make sure we don't overflow or use any integers reserved by the DenseMap. - if (LegalInstrNumber >= IllegalInstrNumber) - report_fatal_error("Instruction mapping overflow!"); - - assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && - "Tried to assign DenseMap tombstone or empty key to instruction."); - assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && - "Tried to assign DenseMap tombstone or empty key to instruction."); - - return MINumber; - } - - /// Maps \p *It to an illegal integer. - /// - /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p - /// IllegalInstrNumber. - /// - /// \returns The integer that \p *It was mapped to. - unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It, - bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB, - std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { - // Can't outline an illegal instruction. Set the flag. - CanOutlineWithPrevInstr = false; - - // Only add one illegal number per range of legal numbers. - if (AddedIllegalLastTime) - return IllegalInstrNumber; - - // Remember that we added an illegal number last time. - AddedIllegalLastTime = true; - unsigned MINumber = IllegalInstrNumber; - - InstrListForMBB.push_back(It); - UnsignedVecForMBB.push_back(IllegalInstrNumber); - IllegalInstrNumber--; - - assert(LegalInstrNumber < IllegalInstrNumber && - "Instruction mapping overflow!"); - - assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && - "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); - - assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && - "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); - - return MINumber; - } - - /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds - /// and appends it to \p UnsignedVec and \p InstrList. - /// - /// Two instructions are assigned the same integer if they are identical. - /// If an instruction is deemed unsafe to outline, then it will be assigned an - /// unique integer. The resulting mapping is placed into a suffix tree and - /// queried for candidates. - /// - /// \param MBB The \p MachineBasicBlock to be translated into integers. - /// \param TII \p TargetInstrInfo for the function. - void convertToUnsignedVec(MachineBasicBlock &MBB, - const TargetInstrInfo &TII) { - unsigned Flags = 0; - - // Don't even map in this case. - if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) - return; - - // Store info for the MBB for later outlining. - MBBFlagsMap[&MBB] = Flags; - - MachineBasicBlock::iterator It = MBB.begin(); - - // The number of instructions in this block that will be considered for - // outlining. - unsigned NumLegalInBlock = 0; - - // True if we have at least two legal instructions which aren't separated - // by an illegal instruction. - bool HaveLegalRange = false; - - // True if we can perform outlining given the last mapped (non-invisible) - // instruction. This lets us know if we have a legal range. - bool CanOutlineWithPrevInstr = false; - - // FIXME: Should this all just be handled in the target, rather than using - // repeated calls to getOutliningType? - std::vector<unsigned> UnsignedVecForMBB; - std::vector<MachineBasicBlock::iterator> InstrListForMBB; - - for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) { - // Keep track of where this instruction is in the module. - switch (TII.getOutliningType(It, Flags)) { - case InstrType::Illegal: - mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, - UnsignedVecForMBB, InstrListForMBB); - break; - - case InstrType::Legal: - mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, - NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); - break; - - case InstrType::LegalTerminator: - mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, - NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); - // The instruction also acts as a terminator, so we have to record that - // in the string. - mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, - InstrListForMBB); - break; - - case InstrType::Invisible: - // Normally this is set by mapTo(Blah)Unsigned, but we just want to - // skip this instruction. So, unset the flag here. - AddedIllegalLastTime = false; - break; - } - } - - // Are there enough legal instructions in the block for outlining to be - // possible? - if (HaveLegalRange) { - // After we're done every insertion, uniquely terminate this part of the - // "string". This makes sure we won't match across basic block or function - // boundaries since the "end" is encoded uniquely and thus appears in no - // repeated substring. - mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, - InstrListForMBB); - InstrList.insert(InstrList.end(), InstrListForMBB.begin(), - InstrListForMBB.end()); - UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), - UnsignedVecForMBB.end()); - } - } - - InstructionMapper() { - // Make sure that the implementation of DenseMapInfo<unsigned> hasn't - // changed. - assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && - "DenseMapInfo<unsigned>'s empty key isn't -1!"); - assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && - "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); - } -}; - -/// An interprocedural pass which finds repeated sequences of -/// instructions and replaces them with calls to functions. -/// -/// Each instruction is mapped to an unsigned integer and placed in a string. -/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree -/// is then repeatedly queried for repeated sequences of instructions. Each -/// non-overlapping repeated sequence is then placed in its own -/// \p MachineFunction and each instance is then replaced with a call to that -/// function. -struct MachineOutliner : public ModulePass { - - static char ID; - - /// Set to true if the outliner should consider functions with - /// linkonceodr linkage. - bool OutlineFromLinkOnceODRs = false; - - /// Set to true if the outliner should run on all functions in the module - /// considered safe for outlining. - /// Set to true by default for compatibility with llc's -run-pass option. - /// Set when the pass is constructed in TargetPassConfig. - bool RunOnAllFunctions = true; - - StringRef getPassName() const override { return "Machine Outliner"; } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<MachineModuleInfo>(); - AU.addPreserved<MachineModuleInfo>(); - AU.setPreservesAll(); - ModulePass::getAnalysisUsage(AU); - } - - MachineOutliner() : ModulePass(ID) { - initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); - } - - /// Remark output explaining that not outlining a set of candidates would be - /// better than outlining that set. - void emitNotOutliningCheaperRemark( - unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, - OutlinedFunction &OF); - - /// Remark output explaining that a function was outlined. - void emitOutlinedFunctionRemark(OutlinedFunction &OF); - - /// Find all repeated substrings that satisfy the outlining cost model by - /// constructing a suffix tree. - /// - /// If a substring appears at least twice, then it must be represented by - /// an internal node which appears in at least two suffixes. Each suffix - /// is represented by a leaf node. To do this, we visit each internal node - /// in the tree, using the leaf children of each internal node. If an - /// internal node represents a beneficial substring, then we use each of - /// its leaf children to find the locations of its substring. - /// - /// \param Mapper Contains outlining mapping information. - /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions - /// each type of candidate. - void findCandidates(InstructionMapper &Mapper, - std::vector<OutlinedFunction> &FunctionList); - - /// Replace the sequences of instructions represented by \p OutlinedFunctions - /// with calls to functions. - /// - /// \param M The module we are outlining from. - /// \param FunctionList A list of functions to be inserted into the module. - /// \param Mapper Contains the instruction mappings for the module. - bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, - InstructionMapper &Mapper); - - /// Creates a function for \p OF and inserts it into the module. - MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, - InstructionMapper &Mapper, - unsigned Name); - - /// Construct a suffix tree on the instructions in \p M and outline repeated - /// strings from that tree. - bool runOnModule(Module &M) override; - - /// Return a DISubprogram for OF if one exists, and null otherwise. Helper - /// function for remark emission. - DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { - DISubprogram *SP; - for (const Candidate &C : OF.Candidates) - if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram())) - return SP; - return nullptr; - } - - /// Populate and \p InstructionMapper with instruction-to-integer mappings. - /// These are used to construct a suffix tree. - void populateMapper(InstructionMapper &Mapper, Module &M, - MachineModuleInfo &MMI); - - /// Initialize information necessary to output a size remark. - /// FIXME: This should be handled by the pass manager, not the outliner. - /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy - /// pass manager. - void initSizeRemarkInfo( - const Module &M, const MachineModuleInfo &MMI, - StringMap<unsigned> &FunctionToInstrCount); - - /// Emit the remark. - // FIXME: This should be handled by the pass manager, not the outliner. - void emitInstrCountChangedRemark( - const Module &M, const MachineModuleInfo &MMI, - const StringMap<unsigned> &FunctionToInstrCount); -}; -} // Anonymous namespace. - -char MachineOutliner::ID = 0; - -namespace llvm { -ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { - MachineOutliner *OL = new MachineOutliner(); - OL->RunOnAllFunctions = RunOnAllFunctions; - return OL; -} - -} // namespace llvm - -INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, - false) - -void MachineOutliner::emitNotOutliningCheaperRemark( - unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, - OutlinedFunction &OF) { - // FIXME: Right now, we arbitrarily choose some Candidate from the - // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. - // We should probably sort these by function name or something to make sure - // the remarks are stable. - Candidate &C = CandidatesForRepeatedSeq.front(); - MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); - MORE.emit([&]() { - MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", - C.front()->getDebugLoc(), C.getMBB()); - R << "Did not outline " << NV("Length", StringLen) << " instructions" - << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) - << " locations." - << " Bytes from outlining all occurrences (" - << NV("OutliningCost", OF.getOutliningCost()) << ")" - << " >= Unoutlined instruction bytes (" - << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" - << " (Also found at: "; - - // Tell the user the other places the candidate was found. - for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { - R << NV((Twine("OtherStartLoc") + Twine(i)).str(), - CandidatesForRepeatedSeq[i].front()->getDebugLoc()); - if (i != e - 1) - R << ", "; - } - - R << ")"; - return R; - }); -} - -void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { - MachineBasicBlock *MBB = &*OF.MF->begin(); - MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); - MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", - MBB->findDebugLoc(MBB->begin()), MBB); - R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " - << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " - << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) - << " locations. " - << "(Found at: "; - - // Tell the user the other places the candidate was found. - for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { - - R << NV((Twine("StartLoc") + Twine(i)).str(), - OF.Candidates[i].front()->getDebugLoc()); - if (i != e - 1) - R << ", "; - } - - R << ")"; - - MORE.emit(R); -} - -void -MachineOutliner::findCandidates(InstructionMapper &Mapper, - std::vector<OutlinedFunction> &FunctionList) { - FunctionList.clear(); - SuffixTree ST(Mapper.UnsignedVec); - - // First, find dall of the repeated substrings in the tree of minimum length - // 2. - std::vector<Candidate> CandidatesForRepeatedSeq; - for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { - CandidatesForRepeatedSeq.clear(); - SuffixTree::RepeatedSubstring RS = *It; - unsigned StringLen = RS.Length; - for (const unsigned &StartIdx : RS.StartIndices) { - unsigned EndIdx = StartIdx + StringLen - 1; - // Trick: Discard some candidates that would be incompatible with the - // ones we've already found for this sequence. This will save us some - // work in candidate selection. - // - // If two candidates overlap, then we can't outline them both. This - // happens when we have candidates that look like, say - // - // AA (where each "A" is an instruction). - // - // We might have some portion of the module that looks like this: - // AAAAAA (6 A's) - // - // In this case, there are 5 different copies of "AA" in this range, but - // at most 3 can be outlined. If only outlining 3 of these is going to - // be unbeneficial, then we ought to not bother. - // - // Note that two things DON'T overlap when they look like this: - // start1...end1 .... start2...end2 - // That is, one must either - // * End before the other starts - // * Start after the other ends - if (std::all_of( - CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), - [&StartIdx, &EndIdx](const Candidate &C) { - return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); - })) { - // It doesn't overlap with anything, so we can outline it. - // Each sequence is over [StartIt, EndIt]. - // Save the candidate and its location. - - MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; - MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; - MachineBasicBlock *MBB = StartIt->getParent(); - - CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, - EndIt, MBB, FunctionList.size(), - Mapper.MBBFlagsMap[MBB]); - } - } - - // We've found something we might want to outline. - // Create an OutlinedFunction to store it and check if it'd be beneficial - // to outline. - if (CandidatesForRepeatedSeq.size() < 2) - continue; - - // Arbitrarily choose a TII from the first candidate. - // FIXME: Should getOutliningCandidateInfo move to TargetMachine? - const TargetInstrInfo *TII = - CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); - - OutlinedFunction OF = - TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); - - // If we deleted too many candidates, then there's nothing worth outlining. - // FIXME: This should take target-specified instruction sizes into account. - if (OF.Candidates.size() < 2) - continue; - - // Is it better to outline this candidate than not? - if (OF.getBenefit() < 1) { - emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); - continue; - } - - FunctionList.push_back(OF); - } -} - -MachineFunction * -MachineOutliner::createOutlinedFunction(Module &M, OutlinedFunction &OF, - InstructionMapper &Mapper, - unsigned Name) { - - // Create the function name. This should be unique. - // FIXME: We should have a better naming scheme. This should be stable, - // regardless of changes to the outliner's cost model/traversal order. - std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str(); - - // Create the function using an IR-level function. - LLVMContext &C = M.getContext(); - Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), - Function::ExternalLinkage, FunctionName, M); - - // NOTE: If this is linkonceodr, then we can take advantage of linker deduping - // which gives us better results when we outline from linkonceodr functions. - F->setLinkage(GlobalValue::InternalLinkage); - F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - - // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's - // necessary. - - // Set optsize/minsize, so we don't insert padding between outlined - // functions. - F->addFnAttr(Attribute::OptimizeForSize); - F->addFnAttr(Attribute::MinSize); - - // Include target features from an arbitrary candidate for the outlined - // function. This makes sure the outlined function knows what kinds of - // instructions are going into it. This is fine, since all parent functions - // must necessarily support the instructions that are in the outlined region. - Candidate &FirstCand = OF.Candidates.front(); - const Function &ParentFn = FirstCand.getMF()->getFunction(); - if (ParentFn.hasFnAttribute("target-features")) - F->addFnAttr(ParentFn.getFnAttribute("target-features")); - - BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); - IRBuilder<> Builder(EntryBB); - Builder.CreateRetVoid(); - - MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); - MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); - MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); - const TargetSubtargetInfo &STI = MF.getSubtarget(); - const TargetInstrInfo &TII = *STI.getInstrInfo(); - - // Insert the new function into the module. - MF.insert(MF.begin(), &MBB); - - for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; - ++I) { - MachineInstr *NewMI = MF.CloneMachineInstr(&*I); - NewMI->dropMemRefs(MF); - - // Don't keep debug information for outlined instructions. - NewMI->setDebugLoc(DebugLoc()); - MBB.insert(MBB.end(), NewMI); - } - - TII.buildOutlinedFrame(MBB, MF, OF); - - // Outlined functions shouldn't preserve liveness. - MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); - MF.getRegInfo().freezeReservedRegs(MF); - - // If there's a DISubprogram associated with this outlined function, then - // emit debug info for the outlined function. - if (DISubprogram *SP = getSubprogramOrNull(OF)) { - // We have a DISubprogram. Get its DICompileUnit. - DICompileUnit *CU = SP->getUnit(); - DIBuilder DB(M, true, CU); - DIFile *Unit = SP->getFile(); - Mangler Mg; - // Get the mangled name of the function for the linkage name. - std::string Dummy; - llvm::raw_string_ostream MangledNameStream(Dummy); - Mg.getNameWithPrefix(MangledNameStream, F, false); - - DISubprogram *OutlinedSP = DB.createFunction( - Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), - Unit /* File */, - 0 /* Line 0 is reserved for compiler-generated code. */, - DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ - 0, /* Line 0 is reserved for compiler-generated code. */ - DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, - /* Outlined code is optimized code by definition. */ - DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); - - // Don't add any new variables to the subprogram. - DB.finalizeSubprogram(OutlinedSP); - - // Attach subprogram to the function. - F->setSubprogram(OutlinedSP); - // We're done with the DIBuilder. - DB.finalize(); - } - - return &MF; -} - -bool MachineOutliner::outline(Module &M, - std::vector<OutlinedFunction> &FunctionList, - InstructionMapper &Mapper) { - - bool OutlinedSomething = false; - - // Number to append to the current outlined function. - unsigned OutlinedFunctionNum = 0; - - // Sort by benefit. The most beneficial functions should be outlined first. - llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS, - const OutlinedFunction &RHS) { - return LHS.getBenefit() > RHS.getBenefit(); - }); - - // Walk over each function, outlining them as we go along. Functions are - // outlined greedily, based off the sort above. - for (OutlinedFunction &OF : FunctionList) { - // If we outlined something that overlapped with a candidate in a previous - // step, then we can't outline from it. - erase_if(OF.Candidates, [&Mapper](Candidate &C) { - return std::any_of( - Mapper.UnsignedVec.begin() + C.getStartIdx(), - Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, - [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); - }); - - // If we made it unbeneficial to outline this function, skip it. - if (OF.getBenefit() < 1) - continue; - - // It's beneficial. Create the function and outline its sequence's - // occurrences. - OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); - emitOutlinedFunctionRemark(OF); - FunctionsCreated++; - OutlinedFunctionNum++; // Created a function, move to the next name. - MachineFunction *MF = OF.MF; - const TargetSubtargetInfo &STI = MF->getSubtarget(); - const TargetInstrInfo &TII = *STI.getInstrInfo(); - - // Replace occurrences of the sequence with calls to the new function. - for (Candidate &C : OF.Candidates) { - MachineBasicBlock &MBB = *C.getMBB(); - MachineBasicBlock::iterator StartIt = C.front(); - MachineBasicBlock::iterator EndIt = C.back(); - - // Insert the call. - auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); - - // If the caller tracks liveness, then we need to make sure that - // anything we outline doesn't break liveness assumptions. The outlined - // functions themselves currently don't track liveness, but we should - // make sure that the ranges we yank things out of aren't wrong. - if (MBB.getParent()->getProperties().hasProperty( - MachineFunctionProperties::Property::TracksLiveness)) { - // Helper lambda for adding implicit def operands to the call - // instruction. It also updates call site information for moved - // code. - auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) { - for (MachineOperand &MOP : MI.operands()) { - // Skip over anything that isn't a register. - if (!MOP.isReg()) - continue; - - // If it's a def, add it to the call instruction. - if (MOP.isDef()) - CallInst->addOperand(MachineOperand::CreateReg( - MOP.getReg(), true, /* isDef = true */ - true /* isImp = true */)); - } - if (MI.isCall()) - MI.getMF()->updateCallSiteInfo(&MI); - }; - // Copy over the defs in the outlined range. - // First inst in outlined range <-- Anything that's defined in this - // ... .. range has to be added as an - // implicit Last inst in outlined range <-- def to the call - // instruction. Also remove call site information for outlined block - // of code. - std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls); - } - - // Erase from the point after where the call was inserted up to, and - // including, the final instruction in the sequence. - // Erase needs one past the end, so we need std::next there too. - MBB.erase(std::next(StartIt), std::next(EndIt)); - - // Keep track of what we removed by marking them all as -1. - std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), - Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, - [](unsigned &I) { I = static_cast<unsigned>(-1); }); - OutlinedSomething = true; - - // Statistics. - NumOutlined++; - } - } - - LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); - - return OutlinedSomething; -} - -void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, - MachineModuleInfo &MMI) { - // Build instruction mappings for each function in the module. Start by - // iterating over each Function in M. - for (Function &F : M) { - - // If there's nothing in F, then there's no reason to try and outline from - // it. - if (F.empty()) - continue; - - // There's something in F. Check if it has a MachineFunction associated with - // it. - MachineFunction *MF = MMI.getMachineFunction(F); - - // If it doesn't, then there's nothing to outline from. Move to the next - // Function. - if (!MF) - continue; - - const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); - - if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) - continue; - - // We have a MachineFunction. Ask the target if it's suitable for outlining. - // If it isn't, then move on to the next Function in the module. - if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) - continue; - - // We have a function suitable for outlining. Iterate over every - // MachineBasicBlock in MF and try to map its instructions to a list of - // unsigned integers. - for (MachineBasicBlock &MBB : *MF) { - // If there isn't anything in MBB, then there's no point in outlining from - // it. - // If there are fewer than 2 instructions in the MBB, then it can't ever - // contain something worth outlining. - // FIXME: This should be based off of the maximum size in B of an outlined - // call versus the size in B of the MBB. - if (MBB.empty() || MBB.size() < 2) - continue; - - // Check if MBB could be the target of an indirect branch. If it is, then - // we don't want to outline from it. - if (MBB.hasAddressTaken()) - continue; - - // MBB is suitable for outlining. Map it to a list of unsigneds. - Mapper.convertToUnsignedVec(MBB, *TII); - } - } -} - -void MachineOutliner::initSizeRemarkInfo( - const Module &M, const MachineModuleInfo &MMI, - StringMap<unsigned> &FunctionToInstrCount) { - // Collect instruction counts for every function. We'll use this to emit - // per-function size remarks later. - for (const Function &F : M) { - MachineFunction *MF = MMI.getMachineFunction(F); - - // We only care about MI counts here. If there's no MachineFunction at this - // point, then there won't be after the outliner runs, so let's move on. - if (!MF) - continue; - FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); - } -} - -void MachineOutliner::emitInstrCountChangedRemark( - const Module &M, const MachineModuleInfo &MMI, - const StringMap<unsigned> &FunctionToInstrCount) { - // Iterate over each function in the module and emit remarks. - // Note that we won't miss anything by doing this, because the outliner never - // deletes functions. - for (const Function &F : M) { - MachineFunction *MF = MMI.getMachineFunction(F); - - // The outliner never deletes functions. If we don't have a MF here, then we - // didn't have one prior to outlining either. - if (!MF) - continue; - - std::string Fname = F.getName(); - unsigned FnCountAfter = MF->getInstructionCount(); - unsigned FnCountBefore = 0; - - // Check if the function was recorded before. - auto It = FunctionToInstrCount.find(Fname); - - // Did we have a previously-recorded size? If yes, then set FnCountBefore - // to that. - if (It != FunctionToInstrCount.end()) - FnCountBefore = It->second; - - // Compute the delta and emit a remark if there was a change. - int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - - static_cast<int64_t>(FnCountBefore); - if (FnDelta == 0) - continue; - - MachineOptimizationRemarkEmitter MORE(*MF, nullptr); - MORE.emit([&]() { - MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", - DiagnosticLocation(), - &MF->front()); - R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") - << ": Function: " - << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) - << ": MI instruction count changed from " - << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", - FnCountBefore) - << " to " - << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", - FnCountAfter) - << "; Delta: " - << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); - return R; - }); - } -} - -bool MachineOutliner::runOnModule(Module &M) { - // Check if there's anything in the module. If it's empty, then there's - // nothing to outline. - if (M.empty()) - return false; - - MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); - - // If the user passed -enable-machine-outliner=always or - // -enable-machine-outliner, the pass will run on all functions in the module. - // Otherwise, if the target supports default outlining, it will run on all - // functions deemed by the target to be worth outlining from by default. Tell - // the user how the outliner is running. - LLVM_DEBUG( - dbgs() << "Machine Outliner: Running on "; - if (RunOnAllFunctions) - dbgs() << "all functions"; - else - dbgs() << "target-default functions"; - dbgs() << "\n" - ); - - // If the user specifies that they want to outline from linkonceodrs, set - // it here. - OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; - InstructionMapper Mapper; - - // Prepare instruction mappings for the suffix tree. - populateMapper(Mapper, M, MMI); - std::vector<OutlinedFunction> FunctionList; - - // Find all of the outlining candidates. - findCandidates(Mapper, FunctionList); - - // If we've requested size remarks, then collect the MI counts of every - // function before outlining, and the MI counts after outlining. - // FIXME: This shouldn't be in the outliner at all; it should ultimately be - // the pass manager's responsibility. - // This could pretty easily be placed in outline instead, but because we - // really ultimately *don't* want this here, it's done like this for now - // instead. - - // Check if we want size remarks. - bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); - StringMap<unsigned> FunctionToInstrCount; - if (ShouldEmitSizeRemarks) - initSizeRemarkInfo(M, MMI, FunctionToInstrCount); - - // Outline each of the candidates and return true if something was outlined. - bool OutlinedSomething = outline(M, FunctionList, Mapper); - - // If we outlined something, we definitely changed the MI count of the - // module. If we've asked for size remarks, then output them. - // FIXME: This should be in the pass manager. - if (ShouldEmitSizeRemarks && OutlinedSomething) - emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); - - return OutlinedSomething; -} |
