diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachinePipeliner.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/MachinePipeliner.cpp | 3984 | 
1 files changed, 3984 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp b/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp new file mode 100644 index 000000000000..43a18099d39a --- /dev/null +++ b/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp @@ -0,0 +1,3984 @@ +//===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. +// +// Software pipelining (SWP) is an instruction scheduling technique for loops +// that overlap loop iterations and explioits ILP via a compiler transformation. +// +// Swing Modulo Scheduling is an implementation of software pipelining +// that generates schedules that are near optimal in terms of initiation +// interval, register requirements, and stage count. See the papers: +// +// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, +// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 +// Conference on Parallel Architectures and Compilation Techiniques. +// +// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. +// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE +// Transactions on Computers, Vol. 50, No. 3, 2001. +// +// "An Implementation of Swing Modulo Scheduling With Extensions for +// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at +// Urbana-Chambpain, 2005. +// +// +// The SMS algorithm consists of three main steps after computing the minimal +// initiation interval (MII). +// 1) Analyze the dependence graph and compute information about each +//    instruction in the graph. +// 2) Order the nodes (instructions) by priority based upon the heuristics +//    described in the algorithm. +// 3) Attempt to schedule the nodes in the specified order using the MII. +// +// This SMS implementation is a target-independent back-end pass. When enabled, +// the pass runs just prior to the register allocation pass, while the machine +// IR is in SSA form. If software pipelining is successful, then the original +// loop is replaced by the optimized loop. The optimized loop contains one or +// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If +// the instructions cannot be scheduled in a given MII, we increase the MII by +// one and try again. +// +// The SMS implementation is an extension of the ScheduleDAGInstrs class. We +// represent loop carried dependences in the DAG as order edges to the Phi +// nodes. We also perform several passes over the DAG to eliminate unnecessary +// edges that inhibit the ability to pipeline. The implementation uses the +// DFAPacketizer class to compute the minimum initiation interval and the check +// where an instruction may be inserted in the pipelined schedule. +// +// In order for the SMS pass to work, several target specific hooks need to be +// implemented to get information about the loop structure and to rewrite +// instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/PriorityQueue.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/DFAPacketizer.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineInstrBundle.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/RegisterPressure.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/ScheduleDAGInstrs.h" +#include "llvm/CodeGen/ScheduleDAGMutation.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/PassAnalysisSupport.h" +#include "llvm/PassRegistry.h" +#include "llvm/PassSupport.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cstdint> +#include <deque> +#include <functional> +#include <iterator> +#include <map> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "pipeliner" + +STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); +STATISTIC(NumPipelined, "Number of loops software pipelined"); + +/// A command line option to turn software pipelining on or off. +static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), +                               cl::ZeroOrMore, +                               cl::desc("Enable Software Pipelining")); + +/// A command line option to enable SWP at -Os. +static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", +                                      cl::desc("Enable SWP at Os."), cl::Hidden, +                                      cl::init(false)); + +/// A command line argument to limit minimum initial interval for pipelining. +static cl::opt<int> SwpMaxMii("pipeliner-max-mii", +                              cl::desc("Size limit for the the MII."), +                              cl::Hidden, cl::init(27)); + +/// A command line argument to limit the number of stages in the pipeline. +static cl::opt<int> +    SwpMaxStages("pipeliner-max-stages", +                 cl::desc("Maximum stages allowed in the generated scheduled."), +                 cl::Hidden, cl::init(3)); + +/// A command line option to disable the pruning of chain dependences due to +/// an unrelated Phi. +static cl::opt<bool> +    SwpPruneDeps("pipeliner-prune-deps", +                 cl::desc("Prune dependences between unrelated Phi nodes."), +                 cl::Hidden, cl::init(true)); + +/// A command line option to disable the pruning of loop carried order +/// dependences. +static cl::opt<bool> +    SwpPruneLoopCarried("pipeliner-prune-loop-carried", +                        cl::desc("Prune loop carried order dependences."), +                        cl::Hidden, cl::init(true)); + +#ifndef NDEBUG +static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); +#endif + +static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", +                                     cl::ReallyHidden, cl::init(false), +                                     cl::ZeroOrMore, cl::desc("Ignore RecMII")); + +namespace { + +class NodeSet; +class SMSchedule; +class SwingSchedulerDAG; + +/// The main class in the implementation of the target independent +/// software pipeliner pass. +class MachinePipeliner : public MachineFunctionPass { +public: +  MachineFunction *MF = nullptr; +  const MachineLoopInfo *MLI = nullptr; +  const MachineDominatorTree *MDT = nullptr; +  const InstrItineraryData *InstrItins; +  const TargetInstrInfo *TII = nullptr; +  RegisterClassInfo RegClassInfo; + +#ifndef NDEBUG +  static int NumTries; +#endif +  /// Cache the target analysis information about the loop. +  struct LoopInfo { +    MachineBasicBlock *TBB = nullptr; +    MachineBasicBlock *FBB = nullptr; +    SmallVector<MachineOperand, 4> BrCond; +    MachineInstr *LoopInductionVar = nullptr; +    MachineInstr *LoopCompare = nullptr; +  }; +  LoopInfo LI; + +  static char ID; +  MachinePipeliner() : MachineFunctionPass(ID) { +    initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnMachineFunction(MachineFunction &MF) override; + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<AAResultsWrapperPass>(); +    AU.addPreserved<AAResultsWrapperPass>(); +    AU.addRequired<MachineLoopInfo>(); +    AU.addRequired<MachineDominatorTree>(); +    AU.addRequired<LiveIntervals>(); +    MachineFunctionPass::getAnalysisUsage(AU); +  } + +private: +  bool canPipelineLoop(MachineLoop &L); +  bool scheduleLoop(MachineLoop &L); +  bool swingModuloScheduler(MachineLoop &L); +}; + +/// This class builds the dependence graph for the instructions in a loop, +/// and attempts to schedule the instructions using the SMS algorithm. +class SwingSchedulerDAG : public ScheduleDAGInstrs { +  MachinePipeliner &Pass; +  /// The minimum initiation interval between iterations for this schedule. +  unsigned MII; +  /// Set to true if a valid pipelined schedule is found for the loop. +  bool Scheduled; +  MachineLoop &Loop; +  LiveIntervals &LIS; +  const RegisterClassInfo &RegClassInfo; + +  /// A toplogical ordering of the SUnits, which is needed for changing +  /// dependences and iterating over the SUnits. +  ScheduleDAGTopologicalSort Topo; + +  struct NodeInfo { +    int ASAP; +    int ALAP; +    NodeInfo() : ASAP(0), ALAP(0) {} +  }; +  /// Computed properties for each node in the graph. +  std::vector<NodeInfo> ScheduleInfo; + +  enum OrderKind { BottomUp = 0, TopDown = 1 }; +  /// Computed node ordering for scheduling. +  SetVector<SUnit *> NodeOrder; + +  typedef SmallVector<NodeSet, 8> NodeSetType; +  typedef DenseMap<unsigned, unsigned> ValueMapTy; +  typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy; +  typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy; + +  /// Instructions to change when emitting the final schedule. +  DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; + +  /// We may create a new instruction, so remember it because it +  /// must be deleted when the pass is finished. +  SmallPtrSet<MachineInstr *, 4> NewMIs; + +  /// Ordered list of DAG postprocessing steps. +  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; + +  /// Helper class to implement Johnson's circuit finding algorithm. +  class Circuits { +    std::vector<SUnit> &SUnits; +    SetVector<SUnit *> Stack; +    BitVector Blocked; +    SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; +    SmallVector<SmallVector<int, 4>, 16> AdjK; +    unsigned NumPaths; +    static unsigned MaxPaths; + +  public: +    Circuits(std::vector<SUnit> &SUs) +        : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()), +          AdjK(SUs.size()) {} +    /// Reset the data structures used in the circuit algorithm. +    void reset() { +      Stack.clear(); +      Blocked.reset(); +      B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); +      NumPaths = 0; +    } +    void createAdjacencyStructure(SwingSchedulerDAG *DAG); +    bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); +    void unblock(int U); +  }; + +public: +  SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, +                    const RegisterClassInfo &rci) +      : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0), +        Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci), +        Topo(SUnits, &ExitSU) { +    P.MF->getSubtarget().getSMSMutations(Mutations); +  } + +  void schedule() override; +  void finishBlock() override; + +  /// Return true if the loop kernel has been scheduled. +  bool hasNewSchedule() { return Scheduled; } + +  /// Return the earliest time an instruction may be scheduled. +  int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } + +  /// Return the latest time an instruction my be scheduled. +  int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } + +  /// The mobility function, which the the number of slots in which +  /// an instruction may be scheduled. +  int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } + +  /// The depth, in the dependence graph, for a node. +  int getDepth(SUnit *Node) { return Node->getDepth(); } + +  /// The height, in the dependence graph, for a node. +  int getHeight(SUnit *Node) { return Node->getHeight(); } + +  /// Return true if the dependence is a back-edge in the data dependence graph. +  /// Since the DAG doesn't contain cycles, we represent a cycle in the graph +  /// using an anti dependence from a Phi to an instruction. +  bool isBackedge(SUnit *Source, const SDep &Dep) { +    if (Dep.getKind() != SDep::Anti) +      return false; +    return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); +  } + +  /// Return true if the dependence is an order dependence between non-Phis. +  static bool isOrder(SUnit *Source, const SDep &Dep) { +    if (Dep.getKind() != SDep::Order) +      return false; +    return (!Source->getInstr()->isPHI() && +            !Dep.getSUnit()->getInstr()->isPHI()); +  } + +  bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); + +  /// The latency of the dependence. +  unsigned getLatency(SUnit *Source, const SDep &Dep) { +    // Anti dependences represent recurrences, so use the latency of the +    // instruction on the back-edge. +    if (Dep.getKind() == SDep::Anti) { +      if (Source->getInstr()->isPHI()) +        return Dep.getSUnit()->Latency; +      if (Dep.getSUnit()->getInstr()->isPHI()) +        return Source->Latency; +      return Dep.getLatency(); +    } +    return Dep.getLatency(); +  } + +  /// The distance function, which indicates that operation V of iteration I +  /// depends on operations U of iteration I-distance. +  unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { +    // Instructions that feed a Phi have a distance of 1. Computing larger +    // values for arrays requires data dependence information. +    if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) +      return 1; +    return 0; +  } + +  /// Set the Minimum Initiation Interval for this schedule attempt. +  void setMII(unsigned mii) { MII = mii; } + +  MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule, +                                 bool UpdateDAG = false); + +  /// Return the new base register that was stored away for the changed +  /// instruction. +  unsigned getInstrBaseReg(SUnit *SU) { +    DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = +        InstrChanges.find(SU); +    if (It != InstrChanges.end()) +      return It->second.first; +    return 0; +  } + +  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { +    Mutations.push_back(std::move(Mutation)); +  } + +private: +  void addLoopCarriedDependences(AliasAnalysis *AA); +  void updatePhiDependences(); +  void changeDependences(); +  unsigned calculateResMII(); +  unsigned calculateRecMII(NodeSetType &RecNodeSets); +  void findCircuits(NodeSetType &NodeSets); +  void fuseRecs(NodeSetType &NodeSets); +  void removeDuplicateNodes(NodeSetType &NodeSets); +  void computeNodeFunctions(NodeSetType &NodeSets); +  void registerPressureFilter(NodeSetType &NodeSets); +  void colocateNodeSets(NodeSetType &NodeSets); +  void checkNodeSets(NodeSetType &NodeSets); +  void groupRemainingNodes(NodeSetType &NodeSets); +  void addConnectedNodes(SUnit *SU, NodeSet &NewSet, +                         SetVector<SUnit *> &NodesAdded); +  void computeNodeOrder(NodeSetType &NodeSets); +  bool schedulePipeline(SMSchedule &Schedule); +  void generatePipelinedLoop(SMSchedule &Schedule); +  void generateProlog(SMSchedule &Schedule, unsigned LastStage, +                      MachineBasicBlock *KernelBB, ValueMapTy *VRMap, +                      MBBVectorTy &PrologBBs); +  void generateEpilog(SMSchedule &Schedule, unsigned LastStage, +                      MachineBasicBlock *KernelBB, ValueMapTy *VRMap, +                      MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); +  void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, +                            MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, +                            SMSchedule &Schedule, ValueMapTy *VRMap, +                            InstrMapTy &InstrMap, unsigned LastStageNum, +                            unsigned CurStageNum, bool IsLast); +  void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, +                    MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, +                    SMSchedule &Schedule, ValueMapTy *VRMap, +                    InstrMapTy &InstrMap, unsigned LastStageNum, +                    unsigned CurStageNum, bool IsLast); +  void removeDeadInstructions(MachineBasicBlock *KernelBB, +                              MBBVectorTy &EpilogBBs); +  void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, +                      SMSchedule &Schedule); +  void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, +                   MBBVectorTy &EpilogBBs, SMSchedule &Schedule, +                   ValueMapTy *VRMap); +  bool computeDelta(MachineInstr &MI, unsigned &Delta); +  void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, +                         unsigned Num); +  MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, +                           unsigned InstStageNum); +  MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, +                                    unsigned InstStageNum, +                                    SMSchedule &Schedule); +  void updateInstruction(MachineInstr *NewMI, bool LastDef, +                         unsigned CurStageNum, unsigned InstStageNum, +                         SMSchedule &Schedule, ValueMapTy *VRMap); +  MachineInstr *findDefInLoop(unsigned Reg); +  unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, +                         unsigned LoopStage, ValueMapTy *VRMap, +                         MachineBasicBlock *BB); +  void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, +                        SMSchedule &Schedule, ValueMapTy *VRMap, +                        InstrMapTy &InstrMap); +  void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, +                             InstrMapTy &InstrMap, unsigned CurStageNum, +                             unsigned PhiNum, MachineInstr *Phi, +                             unsigned OldReg, unsigned NewReg, +                             unsigned PrevReg = 0); +  bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, +                             unsigned &OffsetPos, unsigned &NewBase, +                             int64_t &NewOffset); +  void postprocessDAG(); +}; + +/// A NodeSet contains a set of SUnit DAG nodes with additional information +/// that assigns a priority to the set. +class NodeSet { +  SetVector<SUnit *> Nodes; +  bool HasRecurrence; +  unsigned RecMII = 0; +  int MaxMOV = 0; +  int MaxDepth = 0; +  unsigned Colocate = 0; +  SUnit *ExceedPressure = nullptr; + +public: +  typedef SetVector<SUnit *>::const_iterator iterator; + +  NodeSet() : Nodes(), HasRecurrence(false) {} + +  NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {} + +  bool insert(SUnit *SU) { return Nodes.insert(SU); } + +  void insert(iterator S, iterator E) { Nodes.insert(S, E); } + +  template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { +    return Nodes.remove_if(P); +  } + +  unsigned count(SUnit *SU) const { return Nodes.count(SU); } + +  bool hasRecurrence() { return HasRecurrence; }; + +  unsigned size() const { return Nodes.size(); } + +  bool empty() const { return Nodes.empty(); } + +  SUnit *getNode(unsigned i) const { return Nodes[i]; }; + +  void setRecMII(unsigned mii) { RecMII = mii; }; + +  void setColocate(unsigned c) { Colocate = c; }; + +  void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } + +  bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } + +  int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } + +  int getRecMII() { return RecMII; } + +  /// Summarize node functions for the entire node set. +  void computeNodeSetInfo(SwingSchedulerDAG *SSD) { +    for (SUnit *SU : *this) { +      MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); +      MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); +    } +  } + +  void clear() { +    Nodes.clear(); +    RecMII = 0; +    HasRecurrence = false; +    MaxMOV = 0; +    MaxDepth = 0; +    Colocate = 0; +    ExceedPressure = nullptr; +  } + +  operator SetVector<SUnit *> &() { return Nodes; } + +  /// Sort the node sets by importance. First, rank them by recurrence MII, +  /// then by mobility (least mobile done first), and finally by depth. +  /// Each node set may contain a colocate value which is used as the first +  /// tie breaker, if it's set. +  bool operator>(const NodeSet &RHS) const { +    if (RecMII == RHS.RecMII) { +      if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) +        return Colocate < RHS.Colocate; +      if (MaxMOV == RHS.MaxMOV) +        return MaxDepth > RHS.MaxDepth; +      return MaxMOV < RHS.MaxMOV; +    } +    return RecMII > RHS.RecMII; +  } + +  bool operator==(const NodeSet &RHS) const { +    return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && +           MaxDepth == RHS.MaxDepth; +  } + +  bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } + +  iterator begin() { return Nodes.begin(); } +  iterator end() { return Nodes.end(); } + +  void print(raw_ostream &os) const { +    os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV +       << " depth " << MaxDepth << " col " << Colocate << "\n"; +    for (const auto &I : Nodes) +      os << "   SU(" << I->NodeNum << ") " << *(I->getInstr()); +    os << "\n"; +  } + +  void dump() const { print(dbgs()); } +}; + +/// This class repesents the scheduled code.  The main data structure is a +/// map from scheduled cycle to instructions.  During scheduling, the +/// data structure explicitly represents all stages/iterations.   When +/// the algorithm finshes, the schedule is collapsed into a single stage, +/// which represents instructions from different loop iterations. +/// +/// The SMS algorithm allows negative values for cycles, so the first cycle +/// in the schedule is the smallest cycle value. +class SMSchedule { +private: +  /// Map from execution cycle to instructions. +  DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; + +  /// Map from instruction to execution cycle. +  std::map<SUnit *, int> InstrToCycle; + +  /// Map for each register and the max difference between its uses and def. +  /// The first element in the pair is the max difference in stages. The +  /// second is true if the register defines a Phi value and loop value is +  /// scheduled before the Phi. +  std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; + +  /// Keep track of the first cycle value in the schedule.  It starts +  /// as zero, but the algorithm allows negative values. +  int FirstCycle; + +  /// Keep track of the last cycle value in the schedule. +  int LastCycle; + +  /// The initiation interval (II) for the schedule. +  int InitiationInterval; + +  /// Target machine information. +  const TargetSubtargetInfo &ST; + +  /// Virtual register information. +  MachineRegisterInfo &MRI; + +  DFAPacketizer *Resources; + +public: +  SMSchedule(MachineFunction *mf) +      : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), +        Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) { +    FirstCycle = 0; +    LastCycle = 0; +    InitiationInterval = 0; +  } + +  ~SMSchedule() { +    ScheduledInstrs.clear(); +    InstrToCycle.clear(); +    RegToStageDiff.clear(); +    delete Resources; +  } + +  void reset() { +    ScheduledInstrs.clear(); +    InstrToCycle.clear(); +    RegToStageDiff.clear(); +    FirstCycle = 0; +    LastCycle = 0; +    InitiationInterval = 0; +  } + +  /// Set the initiation interval for this schedule. +  void setInitiationInterval(int ii) { InitiationInterval = ii; } + +  /// Return the first cycle in the completed schedule.  This +  /// can be a negative value. +  int getFirstCycle() const { return FirstCycle; } + +  /// Return the last cycle in the finalized schedule. +  int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } + +  /// Return the cycle of the earliest scheduled instruction in the dependence +  /// chain. +  int earliestCycleInChain(const SDep &Dep); + +  /// Return the cycle of the latest scheduled instruction in the dependence +  /// chain. +  int latestCycleInChain(const SDep &Dep); + +  void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, +                    int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); +  bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); + +  /// Iterators for the cycle to instruction map. +  typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator; +  typedef DenseMap<int, std::deque<SUnit *>>::const_iterator +      const_sched_iterator; + +  /// Return true if the instruction is scheduled at the specified stage. +  bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { +    return (stageScheduled(SU) == (int)StageNum); +  } + +  /// Return the stage for a scheduled instruction.  Return -1 if +  /// the instruction has not been scheduled. +  int stageScheduled(SUnit *SU) const { +    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); +    if (it == InstrToCycle.end()) +      return -1; +    return (it->second - FirstCycle) / InitiationInterval; +  } + +  /// Return the cycle for a scheduled instruction. This function normalizes +  /// the first cycle to be 0. +  unsigned cycleScheduled(SUnit *SU) const { +    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); +    assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); +    return (it->second - FirstCycle) % InitiationInterval; +  } + +  /// Return the maximum stage count needed for this schedule. +  unsigned getMaxStageCount() { +    return (LastCycle - FirstCycle) / InitiationInterval; +  } + +  /// Return the max. number of stages/iterations that can occur between a +  /// register definition and its uses. +  unsigned getStagesForReg(int Reg, unsigned CurStage) { +    std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; +    if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) +      return 1; +    return Stages.first; +  } + +  /// The number of stages for a Phi is a little different than other +  /// instructions. The minimum value computed in RegToStageDiff is 1 +  /// because we assume the Phi is needed for at least 1 iteration. +  /// This is not the case if the loop value is scheduled prior to the +  /// Phi in the same stage.  This function returns the number of stages +  /// or iterations needed between the Phi definition and any uses. +  unsigned getStagesForPhi(int Reg) { +    std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; +    if (Stages.second) +      return Stages.first; +    return Stages.first - 1; +  } + +  /// Return the instructions that are scheduled at the specified cycle. +  std::deque<SUnit *> &getInstructions(int cycle) { +    return ScheduledInstrs[cycle]; +  } + +  bool isValidSchedule(SwingSchedulerDAG *SSD); +  void finalizeSchedule(SwingSchedulerDAG *SSD); +  bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, +                       std::deque<SUnit *> &Insts); +  bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); +  bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, +                             MachineOperand &MO); +  void print(raw_ostream &os) const; +  void dump() const; +}; + +} // end anonymous namespace + +unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; +char MachinePipeliner::ID = 0; +#ifndef NDEBUG +int MachinePipeliner::NumTries = 0; +#endif +char &llvm::MachinePipelinerID = MachinePipeliner::ID; +INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner", +                      "Modulo Software Pipelining", false, false) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_END(MachinePipeliner, "pipeliner", +                    "Modulo Software Pipelining", false, false) + +/// The "main" function for implementing Swing Modulo Scheduling. +bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { +  if (skipFunction(*mf.getFunction())) +    return false; + +  if (!EnableSWP) +    return false; + +  if (mf.getFunction()->getAttributes().hasAttribute( +          AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && +      !EnableSWPOptSize.getPosition()) +    return false; + +  MF = &mf; +  MLI = &getAnalysis<MachineLoopInfo>(); +  MDT = &getAnalysis<MachineDominatorTree>(); +  TII = MF->getSubtarget().getInstrInfo(); +  RegClassInfo.runOnMachineFunction(*MF); + +  for (auto &L : *MLI) +    scheduleLoop(*L); + +  return false; +} + +/// Attempt to perform the SMS algorithm on the specified loop. This function is +/// the main entry point for the algorithm.  The function identifies candidate +/// loops, calculates the minimum initiation interval, and attempts to schedule +/// the loop. +bool MachinePipeliner::scheduleLoop(MachineLoop &L) { +  bool Changed = false; +  for (auto &InnerLoop : L) +    Changed |= scheduleLoop(*InnerLoop); + +#ifndef NDEBUG +  // Stop trying after reaching the limit (if any). +  int Limit = SwpLoopLimit; +  if (Limit >= 0) { +    if (NumTries >= SwpLoopLimit) +      return Changed; +    NumTries++; +  } +#endif + +  if (!canPipelineLoop(L)) +    return Changed; + +  ++NumTrytoPipeline; + +  Changed = swingModuloScheduler(L); + +  return Changed; +} + +/// Return true if the loop can be software pipelined.  The algorithm is +/// restricted to loops with a single basic block.  Make sure that the +/// branch in the loop can be analyzed. +bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { +  if (L.getNumBlocks() != 1) +    return false; + +  // Check if the branch can't be understood because we can't do pipelining +  // if that's the case. +  LI.TBB = nullptr; +  LI.FBB = nullptr; +  LI.BrCond.clear(); +  if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) +    return false; + +  LI.LoopInductionVar = nullptr; +  LI.LoopCompare = nullptr; +  if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) +    return false; + +  if (!L.getLoopPreheader()) +    return false; + +  // If any of the Phis contain subregs, then we can't pipeline +  // because we don't know how to maintain subreg information in the +  // VMap structure. +  MachineBasicBlock *MBB = L.getHeader(); +  for (MachineBasicBlock::iterator BBI = MBB->instr_begin(), +                                   BBE = MBB->getFirstNonPHI(); +       BBI != BBE; ++BBI) +    for (unsigned i = 1; i != BBI->getNumOperands(); i += 2) +      if (BBI->getOperand(i).getSubReg() != 0) +        return false; + +  return true; +} + +/// The SMS algorithm consists of the following main steps: +/// 1. Computation and analysis of the dependence graph. +/// 2. Ordering of the nodes (instructions). +/// 3. Attempt to Schedule the loop. +bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { +  assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); + +  SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); + +  MachineBasicBlock *MBB = L.getHeader(); +  // The kernel should not include any terminator instructions.  These +  // will be added back later. +  SMS.startBlock(MBB); + +  // Compute the number of 'real' instructions in the basic block by +  // ignoring terminators. +  unsigned size = MBB->size(); +  for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), +                                   E = MBB->instr_end(); +       I != E; ++I, --size) +    ; + +  SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); +  SMS.schedule(); +  SMS.exitRegion(); + +  SMS.finishBlock(); +  return SMS.hasNewSchedule(); +} + +/// We override the schedule function in ScheduleDAGInstrs to implement the +/// scheduling part of the Swing Modulo Scheduling algorithm. +void SwingSchedulerDAG::schedule() { +  AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); +  buildSchedGraph(AA); +  addLoopCarriedDependences(AA); +  updatePhiDependences(); +  Topo.InitDAGTopologicalSorting(); +  postprocessDAG(); +  changeDependences(); +  DEBUG({ +    for (unsigned su = 0, e = SUnits.size(); su != e; ++su) +      SUnits[su].dumpAll(this); +  }); + +  NodeSetType NodeSets; +  findCircuits(NodeSets); + +  // Calculate the MII. +  unsigned ResMII = calculateResMII(); +  unsigned RecMII = calculateRecMII(NodeSets); + +  fuseRecs(NodeSets); + +  // This flag is used for testing and can cause correctness problems. +  if (SwpIgnoreRecMII) +    RecMII = 0; + +  MII = std::max(ResMII, RecMII); +  DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII +               << ")\n"); + +  // Can't schedule a loop without a valid MII. +  if (MII == 0) +    return; + +  // Don't pipeline large loops. +  if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) +    return; + +  computeNodeFunctions(NodeSets); + +  registerPressureFilter(NodeSets); + +  colocateNodeSets(NodeSets); + +  checkNodeSets(NodeSets); + +  DEBUG({ +    for (auto &I : NodeSets) { +      dbgs() << "  Rec NodeSet "; +      I.dump(); +    } +  }); + +  std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); + +  groupRemainingNodes(NodeSets); + +  removeDuplicateNodes(NodeSets); + +  DEBUG({ +    for (auto &I : NodeSets) { +      dbgs() << "  NodeSet "; +      I.dump(); +    } +  }); + +  computeNodeOrder(NodeSets); + +  SMSchedule Schedule(Pass.MF); +  Scheduled = schedulePipeline(Schedule); + +  if (!Scheduled) +    return; + +  unsigned numStages = Schedule.getMaxStageCount(); +  // No need to generate pipeline if there are no overlapped iterations. +  if (numStages == 0) +    return; + +  // Check that the maximum stage count is less than user-defined limit. +  if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) +    return; + +  generatePipelinedLoop(Schedule); +  ++NumPipelined; +} + +/// Clean up after the software pipeliner runs. +void SwingSchedulerDAG::finishBlock() { +  for (MachineInstr *I : NewMIs) +    MF.DeleteMachineInstr(I); +  NewMIs.clear(); + +  // Call the superclass. +  ScheduleDAGInstrs::finishBlock(); +} + +/// Return the register values for  the operands of a Phi instruction. +/// This function assume the instruction is a Phi. +static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, +                       unsigned &InitVal, unsigned &LoopVal) { +  assert(Phi.isPHI() && "Expecting a Phi."); + +  InitVal = 0; +  LoopVal = 0; +  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) +    if (Phi.getOperand(i + 1).getMBB() != Loop) +      InitVal = Phi.getOperand(i).getReg(); +    else if (Phi.getOperand(i + 1).getMBB() == Loop) +      LoopVal = Phi.getOperand(i).getReg(); + +  assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); +} + +/// Return the Phi register value that comes from the incoming block. +static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { +  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) +    if (Phi.getOperand(i + 1).getMBB() != LoopBB) +      return Phi.getOperand(i).getReg(); +  return 0; +} + +/// Return the Phi register value that comes the the loop block. +static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { +  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) +    if (Phi.getOperand(i + 1).getMBB() == LoopBB) +      return Phi.getOperand(i).getReg(); +  return 0; +} + +/// Return true if SUb can be reached from SUa following the chain edges. +static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { +  SmallPtrSet<SUnit *, 8> Visited; +  SmallVector<SUnit *, 8> Worklist; +  Worklist.push_back(SUa); +  while (!Worklist.empty()) { +    const SUnit *SU = Worklist.pop_back_val(); +    for (auto &SI : SU->Succs) { +      SUnit *SuccSU = SI.getSUnit(); +      if (SI.getKind() == SDep::Order) { +        if (Visited.count(SuccSU)) +          continue; +        if (SuccSU == SUb) +          return true; +        Worklist.push_back(SuccSU); +        Visited.insert(SuccSU); +      } +    } +  } +  return false; +} + +/// Return true if the instruction causes a chain between memory +/// references before and after it. +static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { +  return MI.isCall() || MI.hasUnmodeledSideEffects() || +         (MI.hasOrderedMemoryRef() && +          (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); +} + +/// Return the underlying objects for the memory references of an instruction. +/// This function calls the code in ValueTracking, but first checks that the +/// instruction has a memory operand. +static void getUnderlyingObjects(MachineInstr *MI, +                                 SmallVectorImpl<Value *> &Objs, +                                 const DataLayout &DL) { +  if (!MI->hasOneMemOperand()) +    return; +  MachineMemOperand *MM = *MI->memoperands_begin(); +  if (!MM->getValue()) +    return; +  GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); +} + +/// Add a chain edge between a load and store if the store can be an +/// alias of the load on a subsequent iteration, i.e., a loop carried +/// dependence. This code is very similar to the code in ScheduleDAGInstrs +/// but that code doesn't create loop carried dependences. +void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { +  MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; +  for (auto &SU : SUnits) { +    MachineInstr &MI = *SU.getInstr(); +    if (isDependenceBarrier(MI, AA)) +      PendingLoads.clear(); +    else if (MI.mayLoad()) { +      SmallVector<Value *, 4> Objs; +      getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); +      for (auto V : Objs) { +        SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; +        SUs.push_back(&SU); +      } +    } else if (MI.mayStore()) { +      SmallVector<Value *, 4> Objs; +      getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); +      for (auto V : Objs) { +        MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = +            PendingLoads.find(V); +        if (I == PendingLoads.end()) +          continue; +        for (auto Load : I->second) { +          if (isSuccOrder(Load, &SU)) +            continue; +          MachineInstr &LdMI = *Load->getInstr(); +          // First, perform the cheaper check that compares the base register. +          // If they are the same and the load offset is less than the store +          // offset, then mark the dependence as loop carried potentially. +          unsigned BaseReg1, BaseReg2; +          int64_t Offset1, Offset2; +          if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || +              !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { +            SU.addPred(SDep(Load, SDep::Barrier)); +            continue;             +          } +          if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { +            assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && +                   "What happened to the chain edge?"); +            SU.addPred(SDep(Load, SDep::Barrier)); +            continue; +          } +          // Second, the more expensive check that uses alias analysis on the +          // base registers. If they alias, and the load offset is less than +          // the store offset, the mark the dependence as loop carried. +          if (!AA) { +            SU.addPred(SDep(Load, SDep::Barrier)); +            continue; +          } +          MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); +          MachineMemOperand *MMO2 = *MI.memoperands_begin(); +          if (!MMO1->getValue() || !MMO2->getValue()) { +            SU.addPred(SDep(Load, SDep::Barrier)); +            continue; +          } +          if (MMO1->getValue() == MMO2->getValue() && +              MMO1->getOffset() <= MMO2->getOffset()) { +            SU.addPred(SDep(Load, SDep::Barrier)); +            continue; +          } +          AliasResult AAResult = AA->alias( +              MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, +                             MMO1->getAAInfo()), +              MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, +                             MMO2->getAAInfo())); + +          if (AAResult != NoAlias) +            SU.addPred(SDep(Load, SDep::Barrier)); +        } +      } +    } +  } +} + +/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer +/// processes dependences for PHIs. This function adds true dependences +/// from a PHI to a use, and a loop carried dependence from the use to the +/// PHI. The loop carried dependence is represented as an anti dependence +/// edge. This function also removes chain dependences between unrelated +/// PHIs. +void SwingSchedulerDAG::updatePhiDependences() { +  SmallVector<SDep, 4> RemoveDeps; +  const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); + +  // Iterate over each DAG node. +  for (SUnit &I : SUnits) { +    RemoveDeps.clear(); +    // Set to true if the instruction has an operand defined by a Phi. +    unsigned HasPhiUse = 0; +    unsigned HasPhiDef = 0; +    MachineInstr *MI = I.getInstr(); +    // Iterate over each operand, and we process the definitions. +    for (MachineInstr::mop_iterator MOI = MI->operands_begin(), +                                    MOE = MI->operands_end(); +         MOI != MOE; ++MOI) { +      if (!MOI->isReg()) +        continue; +      unsigned Reg = MOI->getReg(); +      if (MOI->isDef()) { +        // If the register is used by a Phi, then create an anti dependence. +        for (MachineRegisterInfo::use_instr_iterator +                 UI = MRI.use_instr_begin(Reg), +                 UE = MRI.use_instr_end(); +             UI != UE; ++UI) { +          MachineInstr *UseMI = &*UI; +          SUnit *SU = getSUnit(UseMI); +          if (SU != nullptr && UseMI->isPHI()) { +            if (!MI->isPHI()) { +              SDep Dep(SU, SDep::Anti, Reg); +              I.addPred(Dep); +            } else { +              HasPhiDef = Reg; +              // Add a chain edge to a dependent Phi that isn't an existing +              // predecessor. +              if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) +                I.addPred(SDep(SU, SDep::Barrier)); +            } +          } +        } +      } else if (MOI->isUse()) { +        // If the register is defined by a Phi, then create a true dependence. +        MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); +        if (DefMI == nullptr) +          continue; +        SUnit *SU = getSUnit(DefMI); +        if (SU != nullptr && DefMI->isPHI()) { +          if (!MI->isPHI()) { +            SDep Dep(SU, SDep::Data, Reg); +            Dep.setLatency(0); +            ST.adjustSchedDependency(SU, &I, Dep); +            I.addPred(Dep); +          } else { +            HasPhiUse = Reg; +            // Add a chain edge to a dependent Phi that isn't an existing +            // predecessor. +            if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) +              I.addPred(SDep(SU, SDep::Barrier)); +          } +        } +      } +    } +    // Remove order dependences from an unrelated Phi. +    if (!SwpPruneDeps) +      continue; +    for (auto &PI : I.Preds) { +      MachineInstr *PMI = PI.getSUnit()->getInstr(); +      if (PMI->isPHI() && PI.getKind() == SDep::Order) { +        if (I.getInstr()->isPHI()) { +          if (PMI->getOperand(0).getReg() == HasPhiUse) +            continue; +          if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) +            continue; +        } +        RemoveDeps.push_back(PI); +      } +    } +    for (int i = 0, e = RemoveDeps.size(); i != e; ++i) +      I.removePred(RemoveDeps[i]); +  } +} + +/// Iterate over each DAG node and see if we can change any dependences +/// in order to reduce the recurrence MII. +void SwingSchedulerDAG::changeDependences() { +  // See if an instruction can use a value from the previous iteration. +  // If so, we update the base and offset of the instruction and change +  // the dependences. +  for (SUnit &I : SUnits) { +    unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; +    int64_t NewOffset = 0; +    if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, +                               NewOffset)) +      continue; + +    // Get the MI and SUnit for the instruction that defines the original base. +    unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); +    MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); +    if (!DefMI) +      continue; +    SUnit *DefSU = getSUnit(DefMI); +    if (!DefSU) +      continue; +    // Get the MI and SUnit for the instruction that defins the new base. +    MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); +    if (!LastMI) +      continue; +    SUnit *LastSU = getSUnit(LastMI); +    if (!LastSU) +      continue; + +    if (Topo.IsReachable(&I, LastSU)) +      continue; + +    // Remove the dependence. The value now depends on a prior iteration. +    SmallVector<SDep, 4> Deps; +    for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; +         ++P) +      if (P->getSUnit() == DefSU) +        Deps.push_back(*P); +    for (int i = 0, e = Deps.size(); i != e; i++) { +      Topo.RemovePred(&I, Deps[i].getSUnit()); +      I.removePred(Deps[i]); +    } +    // Remove the chain dependence between the instructions. +    Deps.clear(); +    for (auto &P : LastSU->Preds) +      if (P.getSUnit() == &I && P.getKind() == SDep::Order) +        Deps.push_back(P); +    for (int i = 0, e = Deps.size(); i != e; i++) { +      Topo.RemovePred(LastSU, Deps[i].getSUnit()); +      LastSU->removePred(Deps[i]); +    } + +    // Add a dependence between the new instruction and the instruction +    // that defines the new base. +    SDep Dep(&I, SDep::Anti, NewBase); +    LastSU->addPred(Dep); + +    // Remember the base and offset information so that we can update the +    // instruction during code generation. +    InstrChanges[&I] = std::make_pair(NewBase, NewOffset); +  } +} + +namespace { + +// FuncUnitSorter - Comparison operator used to sort instructions by +// the number of functional unit choices. +struct FuncUnitSorter { +  const InstrItineraryData *InstrItins; +  DenseMap<unsigned, unsigned> Resources; + +  // Compute the number of functional unit alternatives needed +  // at each stage, and take the minimum value. We prioritize the +  // instructions by the least number of choices first. +  unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { +    unsigned schedClass = Inst->getDesc().getSchedClass(); +    unsigned min = UINT_MAX; +    for (const InstrStage *IS = InstrItins->beginStage(schedClass), +                          *IE = InstrItins->endStage(schedClass); +         IS != IE; ++IS) { +      unsigned funcUnits = IS->getUnits(); +      unsigned numAlternatives = countPopulation(funcUnits); +      if (numAlternatives < min) { +        min = numAlternatives; +        F = funcUnits; +      } +    } +    return min; +  } + +  // Compute the critical resources needed by the instruction. This +  // function records the functional units needed by instructions that +  // must use only one functional unit. We use this as a tie breaker +  // for computing the resource MII. The instrutions that require +  // the same, highly used, functional unit have high priority. +  void calcCriticalResources(MachineInstr &MI) { +    unsigned SchedClass = MI.getDesc().getSchedClass(); +    for (const InstrStage *IS = InstrItins->beginStage(SchedClass), +                          *IE = InstrItins->endStage(SchedClass); +         IS != IE; ++IS) { +      unsigned FuncUnits = IS->getUnits(); +      if (countPopulation(FuncUnits) == 1) +        Resources[FuncUnits]++; +    } +  } + +  FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} +  /// Return true if IS1 has less priority than IS2. +  bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { +    unsigned F1 = 0, F2 = 0; +    unsigned MFUs1 = minFuncUnits(IS1, F1); +    unsigned MFUs2 = minFuncUnits(IS2, F2); +    if (MFUs1 == 1 && MFUs2 == 1) +      return Resources.lookup(F1) < Resources.lookup(F2); +    return MFUs1 > MFUs2; +  } +}; + +} // end anonymous namespace + +/// Calculate the resource constrained minimum initiation interval for the +/// specified loop. We use the DFA to model the resources needed for +/// each instruction, and we ignore dependences. A different DFA is created +/// for each cycle that is required. When adding a new instruction, we attempt +/// to add it to each existing DFA, until a legal space is found. If the +/// instruction cannot be reserved in an existing DFA, we create a new one. +unsigned SwingSchedulerDAG::calculateResMII() { +  SmallVector<DFAPacketizer *, 8> Resources; +  MachineBasicBlock *MBB = Loop.getHeader(); +  Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); + +  // Sort the instructions by the number of available choices for scheduling, +  // least to most. Use the number of critical resources as the tie breaker. +  FuncUnitSorter FUS = +      FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); +  for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), +                                   E = MBB->getFirstTerminator(); +       I != E; ++I) +    FUS.calcCriticalResources(*I); +  PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> +      FuncUnitOrder(FUS); + +  for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), +                                   E = MBB->getFirstTerminator(); +       I != E; ++I) +    FuncUnitOrder.push(&*I); + +  while (!FuncUnitOrder.empty()) { +    MachineInstr *MI = FuncUnitOrder.top(); +    FuncUnitOrder.pop(); +    if (TII->isZeroCost(MI->getOpcode())) +      continue; +    // Attempt to reserve the instruction in an existing DFA. At least one +    // DFA is needed for each cycle. +    unsigned NumCycles = getSUnit(MI)->Latency; +    unsigned ReservedCycles = 0; +    SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); +    SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); +    for (unsigned C = 0; C < NumCycles; ++C) +      while (RI != RE) { +        if ((*RI++)->canReserveResources(*MI)) { +          ++ReservedCycles; +          break; +        } +      } +    // Start reserving resources using existing DFAs. +    for (unsigned C = 0; C < ReservedCycles; ++C) { +      --RI; +      (*RI)->reserveResources(*MI); +    } +    // Add new DFAs, if needed, to reserve resources. +    for (unsigned C = ReservedCycles; C < NumCycles; ++C) { +      DFAPacketizer *NewResource = +          TII->CreateTargetScheduleState(MF.getSubtarget()); +      assert(NewResource->canReserveResources(*MI) && "Reserve error."); +      NewResource->reserveResources(*MI); +      Resources.push_back(NewResource); +    } +  } +  int Resmii = Resources.size(); +  // Delete the memory for each of the DFAs that were created earlier. +  for (DFAPacketizer *RI : Resources) { +    DFAPacketizer *D = RI; +    delete D; +  } +  Resources.clear(); +  return Resmii; +} + +/// Calculate the recurrence-constrainted minimum initiation interval. +/// Iterate over each circuit.  Compute the delay(c) and distance(c) +/// for each circuit. The II needs to satisfy the inequality +/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest +/// II that satistifies the inequality, and the RecMII is the maximum +/// of those values. +unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { +  unsigned RecMII = 0; + +  for (NodeSet &Nodes : NodeSets) { +    if (Nodes.size() == 0) +      continue; + +    unsigned Delay = Nodes.size() - 1; +    unsigned Distance = 1; + +    // ii = ceil(delay / distance) +    unsigned CurMII = (Delay + Distance - 1) / Distance; +    Nodes.setRecMII(CurMII); +    if (CurMII > RecMII) +      RecMII = CurMII; +  } + +  return RecMII; +} + +/// Swap all the anti dependences in the DAG. That means it is no longer a DAG, +/// but we do this to find the circuits, and then change them back. +static void swapAntiDependences(std::vector<SUnit> &SUnits) { +  SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; +  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { +    SUnit *SU = &SUnits[i]; +    for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); +         IP != EP; ++IP) { +      if (IP->getKind() != SDep::Anti) +        continue; +      DepsAdded.push_back(std::make_pair(SU, *IP)); +    } +  } +  for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), +                                                          E = DepsAdded.end(); +       I != E; ++I) { +    // Remove this anti dependency and add one in the reverse direction. +    SUnit *SU = I->first; +    SDep &D = I->second; +    SUnit *TargetSU = D.getSUnit(); +    unsigned Reg = D.getReg(); +    unsigned Lat = D.getLatency(); +    SU->removePred(D); +    SDep Dep(SU, SDep::Anti, Reg); +    Dep.setLatency(Lat); +    TargetSU->addPred(Dep); +  } +} + +/// Create the adjacency structure of the nodes in the graph. +void SwingSchedulerDAG::Circuits::createAdjacencyStructure( +    SwingSchedulerDAG *DAG) { +  BitVector Added(SUnits.size()); +  for (int i = 0, e = SUnits.size(); i != e; ++i) { +    Added.reset(); +    // Add any successor to the adjacency matrix and exclude duplicates. +    for (auto &SI : SUnits[i].Succs) { +      // Do not process a boundary node and a back-edge is processed only +      // if it goes to a Phi. +      if (SI.getSUnit()->isBoundaryNode() || +          (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) +        continue; +      int N = SI.getSUnit()->NodeNum; +      if (!Added.test(N)) { +        AdjK[i].push_back(N); +        Added.set(N); +      } +    } +    // A chain edge between a store and a load is treated as a back-edge in the +    // adjacency matrix. +    for (auto &PI : SUnits[i].Preds) { +      if (!SUnits[i].getInstr()->mayStore() || +          !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) +        continue; +      if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { +        int N = PI.getSUnit()->NodeNum; +        if (!Added.test(N)) { +          AdjK[i].push_back(N); +          Added.set(N); +        } +      } +    } +  } +} + +/// Identify an elementary circuit in the dependence graph starting at the +/// specified node. +bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, +                                          bool HasBackedge) { +  SUnit *SV = &SUnits[V]; +  bool F = false; +  Stack.insert(SV); +  Blocked.set(V); + +  for (auto W : AdjK[V]) { +    if (NumPaths > MaxPaths) +      break; +    if (W < S) +      continue; +    if (W == S) { +      if (!HasBackedge) +        NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); +      F = true; +      ++NumPaths; +      break; +    } else if (!Blocked.test(W)) { +      if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) +        F = true; +    } +  } + +  if (F) +    unblock(V); +  else { +    for (auto W : AdjK[V]) { +      if (W < S) +        continue; +      if (B[W].count(SV) == 0) +        B[W].insert(SV); +    } +  } +  Stack.pop_back(); +  return F; +} + +/// Unblock a node in the circuit finding algorithm. +void SwingSchedulerDAG::Circuits::unblock(int U) { +  Blocked.reset(U); +  SmallPtrSet<SUnit *, 4> &BU = B[U]; +  while (!BU.empty()) { +    SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); +    assert(SI != BU.end() && "Invalid B set."); +    SUnit *W = *SI; +    BU.erase(W); +    if (Blocked.test(W->NodeNum)) +      unblock(W->NodeNum); +  } +} + +/// Identify all the elementary circuits in the dependence graph using +/// Johnson's circuit algorithm. +void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { +  // Swap all the anti dependences in the DAG. That means it is no longer a DAG, +  // but we do this to find the circuits, and then change them back. +  swapAntiDependences(SUnits); + +  Circuits Cir(SUnits); +  // Create the adjacency structure. +  Cir.createAdjacencyStructure(this); +  for (int i = 0, e = SUnits.size(); i != e; ++i) { +    Cir.reset(); +    Cir.circuit(i, i, NodeSets); +  } + +  // Change the dependences back so that we've created a DAG again. +  swapAntiDependences(SUnits); +} + +/// Return true for DAG nodes that we ignore when computing the cost functions. +/// We ignore the back-edge recurrence in order to avoid unbounded recurison +/// in the calculation of the ASAP, ALAP, etc functions. +static bool ignoreDependence(const SDep &D, bool isPred) { +  if (D.isArtificial()) +    return true; +  return D.getKind() == SDep::Anti && isPred; +} + +/// Compute several functions need to order the nodes for scheduling. +///  ASAP - Earliest time to schedule a node. +///  ALAP - Latest time to schedule a node. +///  MOV - Mobility function, difference between ALAP and ASAP. +///  D - Depth of each node. +///  H - Height of each node. +void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { + +  ScheduleInfo.resize(SUnits.size()); + +  DEBUG({ +    for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), +                                                    E = Topo.end(); +         I != E; ++I) { +      SUnit *SU = &SUnits[*I]; +      SU->dump(this); +    } +  }); + +  int maxASAP = 0; +  // Compute ASAP. +  for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), +                                                  E = Topo.end(); +       I != E; ++I) { +    int asap = 0; +    SUnit *SU = &SUnits[*I]; +    for (SUnit::const_pred_iterator IP = SU->Preds.begin(), +                                    EP = SU->Preds.end(); +         IP != EP; ++IP) { +      if (ignoreDependence(*IP, true)) +        continue; +      SUnit *pred = IP->getSUnit(); +      asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) - +                                  getDistance(pred, SU, *IP) * MII)); +    } +    maxASAP = std::max(maxASAP, asap); +    ScheduleInfo[*I].ASAP = asap; +  } + +  // Compute ALAP and MOV. +  for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), +                                                          E = Topo.rend(); +       I != E; ++I) { +    int alap = maxASAP; +    SUnit *SU = &SUnits[*I]; +    for (SUnit::const_succ_iterator IS = SU->Succs.begin(), +                                    ES = SU->Succs.end(); +         IS != ES; ++IS) { +      if (ignoreDependence(*IS, true)) +        continue; +      SUnit *succ = IS->getSUnit(); +      alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) + +                                  getDistance(SU, succ, *IS) * MII)); +    } + +    ScheduleInfo[*I].ALAP = alap; +  } + +  // After computing the node functions, compute the summary for each node set. +  for (NodeSet &I : NodeSets) +    I.computeNodeSetInfo(this); + +  DEBUG({ +    for (unsigned i = 0; i < SUnits.size(); i++) { +      dbgs() << "\tNode " << i << ":\n"; +      dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n"; +      dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n"; +      dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n"; +      dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n"; +      dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n"; +    } +  }); +} + +/// Compute the Pred_L(O) set, as defined in the paper. The set is defined +/// as the predecessors of the elements of NodeOrder that are not also in +/// NodeOrder. +static bool pred_L(SetVector<SUnit *> &NodeOrder, +                   SmallSetVector<SUnit *, 8> &Preds, +                   const NodeSet *S = nullptr) { +  Preds.clear(); +  for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); +       I != E; ++I) { +    for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); +         PI != PE; ++PI) { +      if (S && S->count(PI->getSUnit()) == 0) +        continue; +      if (ignoreDependence(*PI, true)) +        continue; +      if (NodeOrder.count(PI->getSUnit()) == 0) +        Preds.insert(PI->getSUnit()); +    } +    // Back-edges are predecessors with an anti-dependence. +    for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), +                                    ES = (*I)->Succs.end(); +         IS != ES; ++IS) { +      if (IS->getKind() != SDep::Anti) +        continue; +      if (S && S->count(IS->getSUnit()) == 0) +        continue; +      if (NodeOrder.count(IS->getSUnit()) == 0) +        Preds.insert(IS->getSUnit()); +    } +  } +  return Preds.size() > 0; +} + +/// Compute the Succ_L(O) set, as defined in the paper. The set is defined +/// as the successors of the elements of NodeOrder that are not also in +/// NodeOrder. +static bool succ_L(SetVector<SUnit *> &NodeOrder, +                   SmallSetVector<SUnit *, 8> &Succs, +                   const NodeSet *S = nullptr) { +  Succs.clear(); +  for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); +       I != E; ++I) { +    for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); +         SI != SE; ++SI) { +      if (S && S->count(SI->getSUnit()) == 0) +        continue; +      if (ignoreDependence(*SI, false)) +        continue; +      if (NodeOrder.count(SI->getSUnit()) == 0) +        Succs.insert(SI->getSUnit()); +    } +    for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), +                                    PE = (*I)->Preds.end(); +         PI != PE; ++PI) { +      if (PI->getKind() != SDep::Anti) +        continue; +      if (S && S->count(PI->getSUnit()) == 0) +        continue; +      if (NodeOrder.count(PI->getSUnit()) == 0) +        Succs.insert(PI->getSUnit()); +    } +  } +  return Succs.size() > 0; +} + +/// Return true if there is a path from the specified node to any of the nodes +/// in DestNodes. Keep track and return the nodes in any path. +static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, +                        SetVector<SUnit *> &DestNodes, +                        SetVector<SUnit *> &Exclude, +                        SmallPtrSet<SUnit *, 8> &Visited) { +  if (Cur->isBoundaryNode()) +    return false; +  if (Exclude.count(Cur) != 0) +    return false; +  if (DestNodes.count(Cur) != 0) +    return true; +  if (!Visited.insert(Cur).second) +    return Path.count(Cur) != 0; +  bool FoundPath = false; +  for (auto &SI : Cur->Succs) +    FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); +  for (auto &PI : Cur->Preds) +    if (PI.getKind() == SDep::Anti) +      FoundPath |= +          computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); +  if (FoundPath) +    Path.insert(Cur); +  return FoundPath; +} + +/// Return true if Set1 is a subset of Set2. +template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { +  for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) +    if (Set2.count(*I) == 0) +      return false; +  return true; +} + +/// Compute the live-out registers for the instructions in a node-set. +/// The live-out registers are those that are defined in the node-set, +/// but not used. Except for use operands of Phis. +static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, +                            NodeSet &NS) { +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  MachineRegisterInfo &MRI = MF.getRegInfo(); +  SmallVector<RegisterMaskPair, 8> LiveOutRegs; +  SmallSet<unsigned, 4> Uses; +  for (SUnit *SU : NS) { +    const MachineInstr *MI = SU->getInstr(); +    if (MI->isPHI()) +      continue; +    for (const MachineOperand &MO : MI->operands()) +      if (MO.isReg() && MO.isUse()) { +        unsigned Reg = MO.getReg(); +        if (TargetRegisterInfo::isVirtualRegister(Reg)) +          Uses.insert(Reg); +        else if (MRI.isAllocatable(Reg)) +          for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) +            Uses.insert(*Units); +      } +  } +  for (SUnit *SU : NS) +    for (const MachineOperand &MO : SU->getInstr()->operands()) +      if (MO.isReg() && MO.isDef() && !MO.isDead()) { +        unsigned Reg = MO.getReg(); +        if (TargetRegisterInfo::isVirtualRegister(Reg)) { +          if (!Uses.count(Reg)) +            LiveOutRegs.push_back(RegisterMaskPair(Reg, +                                                   LaneBitmask::getNone())); +        } else if (MRI.isAllocatable(Reg)) { +          for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) +            if (!Uses.count(*Units)) +              LiveOutRegs.push_back(RegisterMaskPair(*Units, +                                                     LaneBitmask::getNone())); +        } +      } +  RPTracker.addLiveRegs(LiveOutRegs); +} + +/// A heuristic to filter nodes in recurrent node-sets if the register +/// pressure of a set is too high. +void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { +  for (auto &NS : NodeSets) { +    // Skip small node-sets since they won't cause register pressure problems. +    if (NS.size() <= 2) +      continue; +    IntervalPressure RecRegPressure; +    RegPressureTracker RecRPTracker(RecRegPressure); +    RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); +    computeLiveOuts(MF, RecRPTracker, NS); +    RecRPTracker.closeBottom(); + +    std::vector<SUnit *> SUnits(NS.begin(), NS.end()); +    std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { +      return A->NodeNum > B->NodeNum; +    }); + +    for (auto &SU : SUnits) { +      // Since we're computing the register pressure for a subset of the +      // instructions in a block, we need to set the tracker for each +      // instruction in the node-set. The tracker is set to the instruction +      // just after the one we're interested in. +      MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); +      RecRPTracker.setPos(std::next(CurInstI)); + +      RegPressureDelta RPDelta; +      ArrayRef<PressureChange> CriticalPSets; +      RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, +                                             CriticalPSets, +                                             RecRegPressure.MaxSetPressure); +      if (RPDelta.Excess.isValid()) { +        DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " +                     << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) +                     << ":" << RPDelta.Excess.getUnitInc()); +        NS.setExceedPressure(SU); +        break; +      } +      RecRPTracker.recede(); +    } +  } +} + +/// A heuristic to colocate node sets that have the same set of +/// successors. +void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { +  unsigned Colocate = 0; +  for (int i = 0, e = NodeSets.size(); i < e; ++i) { +    NodeSet &N1 = NodeSets[i]; +    SmallSetVector<SUnit *, 8> S1; +    if (N1.empty() || !succ_L(N1, S1)) +      continue; +    for (int j = i + 1; j < e; ++j) { +      NodeSet &N2 = NodeSets[j]; +      if (N1.compareRecMII(N2) != 0) +        continue; +      SmallSetVector<SUnit *, 8> S2; +      if (N2.empty() || !succ_L(N2, S2)) +        continue; +      if (isSubset(S1, S2) && S1.size() == S2.size()) { +        N1.setColocate(++Colocate); +        N2.setColocate(Colocate); +        break; +      } +    } +  } +} + +/// Check if the existing node-sets are profitable. If not, then ignore the +/// recurrent node-sets, and attempt to schedule all nodes together. This is +/// a heuristic. If the MII is large and there is a non-recurrent node with +/// a large depth compared to the MII, then it's best to try and schedule +/// all instruction together instead of starting with the recurrent node-sets. +void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { +  // Look for loops with a large MII. +  if (MII <= 20) +    return; +  // Check if the node-set contains only a simple add recurrence. +  for (auto &NS : NodeSets) +    if (NS.size() > 2) +      return; +  // If the depth of any instruction is significantly larger than the MII, then +  // ignore the recurrent node-sets and treat all instructions equally. +  for (auto &SU : SUnits) +    if (SU.getDepth() > MII * 1.5) { +      NodeSets.clear(); +      DEBUG(dbgs() << "Clear recurrence node-sets\n"); +      return; +    } +} + +/// Add the nodes that do not belong to a recurrence set into groups +/// based upon connected componenets. +void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { +  SetVector<SUnit *> NodesAdded; +  SmallPtrSet<SUnit *, 8> Visited; +  // Add the nodes that are on a path between the previous node sets and +  // the current node set. +  for (NodeSet &I : NodeSets) { +    SmallSetVector<SUnit *, 8> N; +    // Add the nodes from the current node set to the previous node set. +    if (succ_L(I, N)) { +      SetVector<SUnit *> Path; +      for (SUnit *NI : N) { +        Visited.clear(); +        computePath(NI, Path, NodesAdded, I, Visited); +      } +      if (Path.size() > 0) +        I.insert(Path.begin(), Path.end()); +    } +    // Add the nodes from the previous node set to the current node set. +    N.clear(); +    if (succ_L(NodesAdded, N)) { +      SetVector<SUnit *> Path; +      for (SUnit *NI : N) { +        Visited.clear(); +        computePath(NI, Path, I, NodesAdded, Visited); +      } +      if (Path.size() > 0) +        I.insert(Path.begin(), Path.end()); +    } +    NodesAdded.insert(I.begin(), I.end()); +  } + +  // Create a new node set with the connected nodes of any successor of a node +  // in a recurrent set. +  NodeSet NewSet; +  SmallSetVector<SUnit *, 8> N; +  if (succ_L(NodesAdded, N)) +    for (SUnit *I : N) +      addConnectedNodes(I, NewSet, NodesAdded); +  if (NewSet.size() > 0) +    NodeSets.push_back(NewSet); + +  // Create a new node set with the connected nodes of any predecessor of a node +  // in a recurrent set. +  NewSet.clear(); +  if (pred_L(NodesAdded, N)) +    for (SUnit *I : N) +      addConnectedNodes(I, NewSet, NodesAdded); +  if (NewSet.size() > 0) +    NodeSets.push_back(NewSet); + +  // Create new nodes sets with the connected nodes any any remaining node that +  // has no predecessor. +  for (unsigned i = 0; i < SUnits.size(); ++i) { +    SUnit *SU = &SUnits[i]; +    if (NodesAdded.count(SU) == 0) { +      NewSet.clear(); +      addConnectedNodes(SU, NewSet, NodesAdded); +      if (NewSet.size() > 0) +        NodeSets.push_back(NewSet); +    } +  } +} + +/// Add the node to the set, and add all is its connected nodes to the set. +void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, +                                          SetVector<SUnit *> &NodesAdded) { +  NewSet.insert(SU); +  NodesAdded.insert(SU); +  for (auto &SI : SU->Succs) { +    SUnit *Successor = SI.getSUnit(); +    if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) +      addConnectedNodes(Successor, NewSet, NodesAdded); +  } +  for (auto &PI : SU->Preds) { +    SUnit *Predecessor = PI.getSUnit(); +    if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) +      addConnectedNodes(Predecessor, NewSet, NodesAdded); +  } +} + +/// Return true if Set1 contains elements in Set2. The elements in common +/// are returned in a different container. +static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, +                        SmallSetVector<SUnit *, 8> &Result) { +  Result.clear(); +  for (unsigned i = 0, e = Set1.size(); i != e; ++i) { +    SUnit *SU = Set1[i]; +    if (Set2.count(SU) != 0) +      Result.insert(SU); +  } +  return !Result.empty(); +} + +/// Merge the recurrence node sets that have the same initial node. +void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { +  for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; +       ++I) { +    NodeSet &NI = *I; +    for (NodeSetType::iterator J = I + 1; J != E;) { +      NodeSet &NJ = *J; +      if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { +        if (NJ.compareRecMII(NI) > 0) +          NI.setRecMII(NJ.getRecMII()); +        for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; +             ++NII) +          I->insert(*NII); +        NodeSets.erase(J); +        E = NodeSets.end(); +      } else { +        ++J; +      } +    } +  } +} + +/// Remove nodes that have been scheduled in previous NodeSets. +void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { +  for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; +       ++I) +    for (NodeSetType::iterator J = I + 1; J != E;) { +      J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); + +      if (J->size() == 0) { +        NodeSets.erase(J); +        E = NodeSets.end(); +      } else { +        ++J; +      } +    } +} + +/// Return true if Inst1 defines a value that is used in Inst2. +static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) { +  for (auto &SI : Inst1->Succs) +    if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data) +      return true; +  return false; +} + +/// Compute an ordered list of the dependence graph nodes, which +/// indicates the order that the nodes will be scheduled.  This is a +/// two-level algorithm. First, a partial order is created, which +/// consists of a list of sets ordered from highest to lowest priority. +void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { +  SmallSetVector<SUnit *, 8> R; +  NodeOrder.clear(); + +  for (auto &Nodes : NodeSets) { +    DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); +    OrderKind Order; +    SmallSetVector<SUnit *, 8> N; +    if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { +      R.insert(N.begin(), N.end()); +      Order = BottomUp; +      DEBUG(dbgs() << "  Bottom up (preds) "); +    } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { +      R.insert(N.begin(), N.end()); +      Order = TopDown; +      DEBUG(dbgs() << "  Top down (succs) "); +    } else if (isIntersect(N, Nodes, R)) { +      // If some of the successors are in the existing node-set, then use the +      // top-down ordering. +      Order = TopDown; +      DEBUG(dbgs() << "  Top down (intersect) "); +    } else if (NodeSets.size() == 1) { +      for (auto &N : Nodes) +        if (N->Succs.size() == 0) +          R.insert(N); +      Order = BottomUp; +      DEBUG(dbgs() << "  Bottom up (all) "); +    } else { +      // Find the node with the highest ASAP. +      SUnit *maxASAP = nullptr; +      for (SUnit *SU : Nodes) { +        if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) +          maxASAP = SU; +      } +      R.insert(maxASAP); +      Order = BottomUp; +      DEBUG(dbgs() << "  Bottom up (default) "); +    } + +    while (!R.empty()) { +      if (Order == TopDown) { +        // Choose the node with the maximum height.  If more than one, choose +        // the node with the lowest MOV. If still more than one, check if there +        // is a dependence between the instructions. +        while (!R.empty()) { +          SUnit *maxHeight = nullptr; +          for (SUnit *I : R) { +            if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) +              maxHeight = I; +            else if (getHeight(I) == getHeight(maxHeight) && +                     getMOV(I) < getMOV(maxHeight) && +                     !hasDataDependence(maxHeight, I)) +              maxHeight = I; +            else if (hasDataDependence(I, maxHeight)) +              maxHeight = I; +          } +          NodeOrder.insert(maxHeight); +          DEBUG(dbgs() << maxHeight->NodeNum << " "); +          R.remove(maxHeight); +          for (const auto &I : maxHeight->Succs) { +            if (Nodes.count(I.getSUnit()) == 0) +              continue; +            if (NodeOrder.count(I.getSUnit()) != 0) +              continue; +            if (ignoreDependence(I, false)) +              continue; +            R.insert(I.getSUnit()); +          } +          // Back-edges are predecessors with an anti-dependence. +          for (const auto &I : maxHeight->Preds) { +            if (I.getKind() != SDep::Anti) +              continue; +            if (Nodes.count(I.getSUnit()) == 0) +              continue; +            if (NodeOrder.count(I.getSUnit()) != 0) +              continue; +            R.insert(I.getSUnit()); +          } +        } +        Order = BottomUp; +        DEBUG(dbgs() << "\n   Switching order to bottom up "); +        SmallSetVector<SUnit *, 8> N; +        if (pred_L(NodeOrder, N, &Nodes)) +          R.insert(N.begin(), N.end()); +      } else { +        // Choose the node with the maximum depth.  If more than one, choose +        // the node with the lowest MOV. If there is still more than one, check +        // for a dependence between the instructions. +        while (!R.empty()) { +          SUnit *maxDepth = nullptr; +          for (SUnit *I : R) { +            if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) +              maxDepth = I; +            else if (getDepth(I) == getDepth(maxDepth) && +                     getMOV(I) < getMOV(maxDepth) && +                     !hasDataDependence(I, maxDepth)) +              maxDepth = I; +            else if (hasDataDependence(maxDepth, I)) +              maxDepth = I; +          } +          NodeOrder.insert(maxDepth); +          DEBUG(dbgs() << maxDepth->NodeNum << " "); +          R.remove(maxDepth); +          if (Nodes.isExceedSU(maxDepth)) { +            Order = TopDown; +            R.clear(); +            R.insert(Nodes.getNode(0)); +            break; +          } +          for (const auto &I : maxDepth->Preds) { +            if (Nodes.count(I.getSUnit()) == 0) +              continue; +            if (NodeOrder.count(I.getSUnit()) != 0) +              continue; +            if (I.getKind() == SDep::Anti) +              continue; +            R.insert(I.getSUnit()); +          } +          // Back-edges are predecessors with an anti-dependence. +          for (const auto &I : maxDepth->Succs) { +            if (I.getKind() != SDep::Anti) +              continue; +            if (Nodes.count(I.getSUnit()) == 0) +              continue; +            if (NodeOrder.count(I.getSUnit()) != 0) +              continue; +            R.insert(I.getSUnit()); +          } +        } +        Order = TopDown; +        DEBUG(dbgs() << "\n   Switching order to top down "); +        SmallSetVector<SUnit *, 8> N; +        if (succ_L(NodeOrder, N, &Nodes)) +          R.insert(N.begin(), N.end()); +      } +    } +    DEBUG(dbgs() << "\nDone with Nodeset\n"); +  } + +  DEBUG({ +    dbgs() << "Node order: "; +    for (SUnit *I : NodeOrder) +      dbgs() << " " << I->NodeNum << " "; +    dbgs() << "\n"; +  }); +} + +/// Process the nodes in the computed order and create the pipelined schedule +/// of the instructions, if possible. Return true if a schedule is found. +bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { + +  if (NodeOrder.size() == 0) +    return false; + +  bool scheduleFound = false; +  // Keep increasing II until a valid schedule is found. +  for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { +    Schedule.reset(); +    Schedule.setInitiationInterval(II); +    DEBUG(dbgs() << "Try to schedule with " << II << "\n"); + +    SetVector<SUnit *>::iterator NI = NodeOrder.begin(); +    SetVector<SUnit *>::iterator NE = NodeOrder.end(); +    do { +      SUnit *SU = *NI; + +      // Compute the schedule time for the instruction, which is based +      // upon the scheduled time for any predecessors/successors. +      int EarlyStart = INT_MIN; +      int LateStart = INT_MAX; +      // These values are set when the size of the schedule window is limited +      // due to chain dependences. +      int SchedEnd = INT_MAX; +      int SchedStart = INT_MIN; +      Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, +                            II, this); +      DEBUG({ +        dbgs() << "Inst (" << SU->NodeNum << ") "; +        SU->getInstr()->dump(); +        dbgs() << "\n"; +      }); +      DEBUG({ +        dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart +               << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; +      }); + +      if (EarlyStart > LateStart || SchedEnd < EarlyStart || +          SchedStart > LateStart) +        scheduleFound = false; +      else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { +        SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); +        scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); +      } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { +        SchedStart = std::max(SchedStart, LateStart - (int)II + 1); +        scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); +      } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { +        SchedEnd = +            std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); +        // When scheduling a Phi it is better to start at the late cycle and go +        // backwards. The default order may insert the Phi too far away from +        // its first dependence. +        if (SU->getInstr()->isPHI()) +          scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); +        else +          scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); +      } else { +        int FirstCycle = Schedule.getFirstCycle(); +        scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), +                                        FirstCycle + getASAP(SU) + II - 1, II); +      } +      // Even if we find a schedule, make sure the schedule doesn't exceed the +      // allowable number of stages. We keep trying if this happens. +      if (scheduleFound) +        if (SwpMaxStages > -1 && +            Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) +          scheduleFound = false; + +      DEBUG({ +        if (!scheduleFound) +          dbgs() << "\tCan't schedule\n"; +      }); +    } while (++NI != NE && scheduleFound); + +    // If a schedule is found, check if it is a valid schedule too. +    if (scheduleFound) +      scheduleFound = Schedule.isValidSchedule(this); +  } + +  DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); + +  if (scheduleFound) +    Schedule.finalizeSchedule(this); +  else +    Schedule.reset(); + +  return scheduleFound && Schedule.getMaxStageCount() > 0; +} + +/// Given a schedule for the loop, generate a new version of the loop, +/// and replace the old version.  This function generates a prolog +/// that contains the initial iterations in the pipeline, and kernel +/// loop, and the epilogue that contains the code for the final +/// iterations. +void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { +  // Create a new basic block for the kernel and add it to the CFG. +  MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); + +  unsigned MaxStageCount = Schedule.getMaxStageCount(); + +  // Remember the registers that are used in different stages. The index is +  // the iteration, or stage, that the instruction is scheduled in.  This is +  // a map between register names in the orignal block and the names created +  // in each stage of the pipelined loop. +  ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; +  InstrMapTy InstrMap; + +  SmallVector<MachineBasicBlock *, 4> PrologBBs; +  // Generate the prolog instructions that set up the pipeline. +  generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); +  MF.insert(BB->getIterator(), KernelBB); + +  // Rearrange the instructions to generate the new, pipelined loop, +  // and update register names as needed. +  for (int Cycle = Schedule.getFirstCycle(), +           LastCycle = Schedule.getFinalCycle(); +       Cycle <= LastCycle; ++Cycle) { +    std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); +    // This inner loop schedules each instruction in the cycle. +    for (SUnit *CI : CycleInstrs) { +      if (CI->getInstr()->isPHI()) +        continue; +      unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); +      MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); +      updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); +      KernelBB->push_back(NewMI); +      InstrMap[NewMI] = CI->getInstr(); +    } +  } + +  // Copy any terminator instructions to the new kernel, and update +  // names as needed. +  for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), +                                   E = BB->instr_end(); +       I != E; ++I) { +    MachineInstr *NewMI = MF.CloneMachineInstr(&*I); +    updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); +    KernelBB->push_back(NewMI); +    InstrMap[NewMI] = &*I; +  } + +  KernelBB->transferSuccessors(BB); +  KernelBB->replaceSuccessor(BB, KernelBB); + +  generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, +                       VRMap, InstrMap, MaxStageCount, MaxStageCount, false); +  generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, +               InstrMap, MaxStageCount, MaxStageCount, false); + +  DEBUG(dbgs() << "New block\n"; KernelBB->dump();); + +  SmallVector<MachineBasicBlock *, 4> EpilogBBs; +  // Generate the epilog instructions to complete the pipeline. +  generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, +                 PrologBBs); + +  // We need this step because the register allocation doesn't handle some +  // situations well, so we insert copies to help out. +  splitLifetimes(KernelBB, EpilogBBs, Schedule); + +  // Remove dead instructions due to loop induction variables. +  removeDeadInstructions(KernelBB, EpilogBBs); + +  // Add branches between prolog and epilog blocks. +  addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); + +  // Remove the original loop since it's no longer referenced. +  BB->clear(); +  BB->eraseFromParent(); + +  delete[] VRMap; +} + +/// Generate the pipeline prolog code. +void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, +                                       MachineBasicBlock *KernelBB, +                                       ValueMapTy *VRMap, +                                       MBBVectorTy &PrologBBs) { +  MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); +  assert(PreheaderBB != NULL && +         "Need to add code to handle loops w/o preheader"); +  MachineBasicBlock *PredBB = PreheaderBB; +  InstrMapTy InstrMap; + +  // Generate a basic block for each stage, not including the last stage, +  // which will be generated in the kernel. Each basic block may contain +  // instructions from multiple stages/iterations. +  for (unsigned i = 0; i < LastStage; ++i) { +    // Create and insert the prolog basic block prior to the original loop +    // basic block.  The original loop is removed later. +    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); +    PrologBBs.push_back(NewBB); +    MF.insert(BB->getIterator(), NewBB); +    NewBB->transferSuccessors(PredBB); +    PredBB->addSuccessor(NewBB); +    PredBB = NewBB; + +    // Generate instructions for each appropriate stage. Process instructions +    // in original program order. +    for (int StageNum = i; StageNum >= 0; --StageNum) { +      for (MachineBasicBlock::iterator BBI = BB->instr_begin(), +                                       BBE = BB->getFirstTerminator(); +           BBI != BBE; ++BBI) { +        if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { +          if (BBI->isPHI()) +            continue; +          MachineInstr *NewMI = +              cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); +          updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, +                            VRMap); +          NewBB->push_back(NewMI); +          InstrMap[NewMI] = &*BBI; +        } +      } +    } +    rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); +    DEBUG({ +      dbgs() << "prolog:\n"; +      NewBB->dump(); +    }); +  } + +  PredBB->replaceSuccessor(BB, KernelBB); + +  // Check if we need to remove the branch from the preheader to the original +  // loop, and replace it with a branch to the new loop. +  unsigned numBranches = TII->removeBranch(*PreheaderBB); +  if (numBranches) { +    SmallVector<MachineOperand, 0> Cond; +    TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); +  } +} + +/// Generate the pipeline epilog code. The epilog code finishes the iterations +/// that were started in either the prolog or the kernel.  We create a basic +/// block for each stage that needs to complete. +void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, +                                       MachineBasicBlock *KernelBB, +                                       ValueMapTy *VRMap, +                                       MBBVectorTy &EpilogBBs, +                                       MBBVectorTy &PrologBBs) { +  // We need to change the branch from the kernel to the first epilog block, so +  // this call to analyze branch uses the kernel rather than the original BB. +  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; +  SmallVector<MachineOperand, 4> Cond; +  bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); +  assert(!checkBranch && "generateEpilog must be able to analyze the branch"); +  if (checkBranch) +    return; + +  MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); +  if (*LoopExitI == KernelBB) +    ++LoopExitI; +  assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); +  MachineBasicBlock *LoopExitBB = *LoopExitI; + +  MachineBasicBlock *PredBB = KernelBB; +  MachineBasicBlock *EpilogStart = LoopExitBB; +  InstrMapTy InstrMap; + +  // Generate a basic block for each stage, not including the last stage, +  // which was generated for the kernel.  Each basic block may contain +  // instructions from multiple stages/iterations. +  int EpilogStage = LastStage + 1; +  for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { +    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); +    EpilogBBs.push_back(NewBB); +    MF.insert(BB->getIterator(), NewBB); + +    PredBB->replaceSuccessor(LoopExitBB, NewBB); +    NewBB->addSuccessor(LoopExitBB); + +    if (EpilogStart == LoopExitBB) +      EpilogStart = NewBB; + +    // Add instructions to the epilog depending on the current block. +    // Process instructions in original program order. +    for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { +      for (auto &BBI : *BB) { +        if (BBI.isPHI()) +          continue; +        MachineInstr *In = &BBI; +        if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { +          MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); +          updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); +          NewBB->push_back(NewMI); +          InstrMap[NewMI] = In; +        } +      } +    } +    generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, +                         VRMap, InstrMap, LastStage, EpilogStage, i == 1); +    generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, +                 InstrMap, LastStage, EpilogStage, i == 1); +    PredBB = NewBB; + +    DEBUG({ +      dbgs() << "epilog:\n"; +      NewBB->dump(); +    }); +  } + +  // Fix any Phi nodes in the loop exit block. +  for (MachineInstr &MI : *LoopExitBB) { +    if (!MI.isPHI()) +      break; +    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { +      MachineOperand &MO = MI.getOperand(i); +      if (MO.getMBB() == BB) +        MO.setMBB(PredBB); +    } +  } + +  // Create a branch to the new epilog from the kernel. +  // Remove the original branch and add a new branch to the epilog. +  TII->removeBranch(*KernelBB); +  TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); +  // Add a branch to the loop exit. +  if (EpilogBBs.size() > 0) { +    MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); +    SmallVector<MachineOperand, 4> Cond1; +    TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); +  } +} + +/// Replace all uses of FromReg that appear outside the specified +/// basic block with ToReg. +static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, +                                    MachineBasicBlock *MBB, +                                    MachineRegisterInfo &MRI, +                                    LiveIntervals &LIS) { +  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), +                                         E = MRI.use_end(); +       I != E;) { +    MachineOperand &O = *I; +    ++I; +    if (O.getParent()->getParent() != MBB) +      O.setReg(ToReg); +  } +  if (!LIS.hasInterval(ToReg)) +    LIS.createEmptyInterval(ToReg); +} + +/// Return true if the register has a use that occurs outside the +/// specified loop. +static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, +                            MachineRegisterInfo &MRI) { +  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), +                                         E = MRI.use_end(); +       I != E; ++I) +    if (I->getParent()->getParent() != BB) +      return true; +  return false; +} + +/// Generate Phis for the specific block in the generated pipelined code. +/// This function looks at the Phis from the original code to guide the +/// creation of new Phis. +void SwingSchedulerDAG::generateExistingPhis( +    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, +    MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, +    InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, +    bool IsLast) { +  // Compute the stage number for the inital value of the Phi, which +  // comes from the prolog. The prolog to use depends on to which kernel/ +  // epilog that we're adding the Phi. +  unsigned PrologStage = 0; +  unsigned PrevStage = 0; +  bool InKernel = (LastStageNum == CurStageNum); +  if (InKernel) { +    PrologStage = LastStageNum - 1; +    PrevStage = CurStageNum; +  } else { +    PrologStage = LastStageNum - (CurStageNum - LastStageNum); +    PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; +  } + +  for (MachineBasicBlock::iterator BBI = BB->instr_begin(), +                                   BBE = BB->getFirstNonPHI(); +       BBI != BBE; ++BBI) { +    unsigned Def = BBI->getOperand(0).getReg(); + +    unsigned InitVal = 0; +    unsigned LoopVal = 0; +    getPhiRegs(*BBI, BB, InitVal, LoopVal); + +    unsigned PhiOp1 = 0; +    // The Phi value from the loop body typically is defined in the loop, but +    // not always. So, we need to check if the value is defined in the loop. +    unsigned PhiOp2 = LoopVal; +    if (VRMap[LastStageNum].count(LoopVal)) +      PhiOp2 = VRMap[LastStageNum][LoopVal]; + +    int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); +    int LoopValStage = +        Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); +    unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); +    if (NumStages == 0) { +      // We don't need to generate a Phi anymore, but we need to rename any uses +      // of the Phi value. +      unsigned NewReg = VRMap[PrevStage][LoopVal]; +      rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, +                            Def, NewReg); +      if (VRMap[CurStageNum].count(LoopVal)) +        VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; +    } +    // Adjust the number of Phis needed depending on the number of prologs left, +    // and the distance from where the Phi is first scheduled. +    unsigned NumPhis = NumStages; +    if (!InKernel && (int)PrologStage < LoopValStage) +      // The NumPhis is the maximum number of new Phis needed during the steady +      // state. If the Phi has not been scheduled in current prolog, then we +      // need to generate less Phis. +      NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); +    // The number of Phis cannot exceed the number of prolog stages. Each +    // stage can potentially define two values. +    NumPhis = std::min(NumPhis, PrologStage + 2); + +    unsigned NewReg = 0; + +    unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; +    // In the epilog, we may need to look back one stage to get the correct +    // Phi name because the epilog and prolog blocks execute the same stage. +    // The correct name is from the previous block only when the Phi has +    // been completely scheduled prior to the epilog, and Phi value is not +    // needed in multiple stages. +    int StageDiff = 0; +    if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && +        NumPhis == 1) +      StageDiff = 1; +    // Adjust the computations below when the phi and the loop definition +    // are scheduled in different stages. +    if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) +      StageDiff = StageScheduled - LoopValStage; +    for (unsigned np = 0; np < NumPhis; ++np) { +      // If the Phi hasn't been scheduled, then use the initial Phi operand +      // value. Otherwise, use the scheduled version of the instruction. This +      // is a little complicated when a Phi references another Phi. +      if (np > PrologStage || StageScheduled >= (int)LastStageNum) +        PhiOp1 = InitVal; +      // Check if the Phi has already been scheduled in a prolog stage. +      else if (PrologStage >= AccessStage + StageDiff + np && +               VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) +        PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; +      // Check if the Phi has already been scheduled, but the loop intruction +      // is either another Phi, or doesn't occur in the loop. +      else if (PrologStage >= AccessStage + StageDiff + np) { +        // If the Phi references another Phi, we need to examine the other +        // Phi to get the correct value. +        PhiOp1 = LoopVal; +        MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); +        int Indirects = 1; +        while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { +          int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); +          if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) +            PhiOp1 = getInitPhiReg(*InstOp1, BB); +          else +            PhiOp1 = getLoopPhiReg(*InstOp1, BB); +          InstOp1 = MRI.getVRegDef(PhiOp1); +          int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); +          int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); +          if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && +              VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { +            PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; +            break; +          } +          ++Indirects; +        } +      } else +        PhiOp1 = InitVal; +      // If this references a generated Phi in the kernel, get the Phi operand +      // from the incoming block. +      if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) +        if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) +          PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); + +      MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); +      bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); +      // In the epilog, a map lookup is needed to get the value from the kernel, +      // or previous epilog block. How is does this depends on if the +      // instruction is scheduled in the previous block. +      if (!InKernel) { +        int StageDiffAdj = 0; +        if (LoopValStage != -1 && StageScheduled > LoopValStage) +          StageDiffAdj = StageScheduled - LoopValStage; +        // Use the loop value defined in the kernel, unless the kernel +        // contains the last definition of the Phi. +        if (np == 0 && PrevStage == LastStageNum && +            (StageScheduled != 0 || LoopValStage != 0) && +            VRMap[PrevStage - StageDiffAdj].count(LoopVal)) +          PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; +        // Use the value defined by the Phi. We add one because we switch +        // from looking at the loop value to the Phi definition. +        else if (np > 0 && PrevStage == LastStageNum && +                 VRMap[PrevStage - np + 1].count(Def)) +          PhiOp2 = VRMap[PrevStage - np + 1][Def]; +        // Use the loop value defined in the kernel. +        else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && +                 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) +          PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; +        // Use the value defined by the Phi, unless we're generating the first +        // epilog and the Phi refers to a Phi in a different stage. +        else if (VRMap[PrevStage - np].count(Def) && +                 (!LoopDefIsPhi || PrevStage != LastStageNum)) +          PhiOp2 = VRMap[PrevStage - np][Def]; +      } + +      // Check if we can reuse an existing Phi. This occurs when a Phi +      // references another Phi, and the other Phi is scheduled in an +      // earlier stage. We can try to reuse an existing Phi up until the last +      // stage of the current Phi. +      if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) { +        int LVNumStages = Schedule.getStagesForPhi(LoopVal); +        int StageDiff = (StageScheduled - LoopValStage); +        LVNumStages -= StageDiff; +        if (LVNumStages > (int)np) { +          NewReg = PhiOp2; +          unsigned ReuseStage = CurStageNum; +          if (Schedule.isLoopCarried(this, *PhiInst)) +            ReuseStage -= LVNumStages; +          // Check if the Phi to reuse has been generated yet. If not, then +          // there is nothing to reuse. +          if (VRMap[ReuseStage].count(LoopVal)) { +            NewReg = VRMap[ReuseStage][LoopVal]; + +            rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, +                                  &*BBI, Def, NewReg); +            // Update the map with the new Phi name. +            VRMap[CurStageNum - np][Def] = NewReg; +            PhiOp2 = NewReg; +            if (VRMap[LastStageNum - np - 1].count(LoopVal)) +              PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; + +            if (IsLast && np == NumPhis - 1) +              replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); +            continue; +          } +        } else if (InKernel && StageDiff > 0 && +                   VRMap[CurStageNum - StageDiff - np].count(LoopVal)) +          PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; +      } + +      const TargetRegisterClass *RC = MRI.getRegClass(Def); +      NewReg = MRI.createVirtualRegister(RC); + +      MachineInstrBuilder NewPhi = +          BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), +                  TII->get(TargetOpcode::PHI), NewReg); +      NewPhi.addReg(PhiOp1).addMBB(BB1); +      NewPhi.addReg(PhiOp2).addMBB(BB2); +      if (np == 0) +        InstrMap[NewPhi] = &*BBI; + +      // We define the Phis after creating the new pipelined code, so +      // we need to rename the Phi values in scheduled instructions. + +      unsigned PrevReg = 0; +      if (InKernel && VRMap[PrevStage - np].count(LoopVal)) +        PrevReg = VRMap[PrevStage - np][LoopVal]; +      rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, +                            Def, NewReg, PrevReg); +      // If the Phi has been scheduled, use the new name for rewriting. +      if (VRMap[CurStageNum - np].count(Def)) { +        unsigned R = VRMap[CurStageNum - np][Def]; +        rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, +                              R, NewReg); +      } + +      // Check if we need to rename any uses that occurs after the loop. The +      // register to replace depends on whether the Phi is scheduled in the +      // epilog. +      if (IsLast && np == NumPhis - 1) +        replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); + +      // In the kernel, a dependent Phi uses the value from this Phi. +      if (InKernel) +        PhiOp2 = NewReg; + +      // Update the map with the new Phi name. +      VRMap[CurStageNum - np][Def] = NewReg; +    } + +    while (NumPhis++ < NumStages) { +      rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, +                            &*BBI, Def, NewReg, 0); +    } + +    // Check if we need to rename a Phi that has been eliminated due to +    // scheduling. +    if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) +      replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); +  } +} + +/// Generate Phis for the specified block in the generated pipelined code. +/// These are new Phis needed because the definition is scheduled after the +/// use in the pipelened sequence. +void SwingSchedulerDAG::generatePhis( +    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, +    MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, +    InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, +    bool IsLast) { +  // Compute the stage number that contains the initial Phi value, and +  // the Phi from the previous stage. +  unsigned PrologStage = 0; +  unsigned PrevStage = 0; +  unsigned StageDiff = CurStageNum - LastStageNum; +  bool InKernel = (StageDiff == 0); +  if (InKernel) { +    PrologStage = LastStageNum - 1; +    PrevStage = CurStageNum; +  } else { +    PrologStage = LastStageNum - StageDiff; +    PrevStage = LastStageNum + StageDiff - 1; +  } + +  for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), +                                   BBE = BB->instr_end(); +       BBI != BBE; ++BBI) { +    for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { +      MachineOperand &MO = BBI->getOperand(i); +      if (!MO.isReg() || !MO.isDef() || +          !TargetRegisterInfo::isVirtualRegister(MO.getReg())) +        continue; + +      int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); +      assert(StageScheduled != -1 && "Expecting scheduled instruction."); +      unsigned Def = MO.getReg(); +      unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); +      // An instruction scheduled in stage 0 and is used after the loop +      // requires a phi in the epilog for the last definition from either +      // the kernel or prolog. +      if (!InKernel && NumPhis == 0 && StageScheduled == 0 && +          hasUseAfterLoop(Def, BB, MRI)) +        NumPhis = 1; +      if (!InKernel && (unsigned)StageScheduled > PrologStage) +        continue; + +      unsigned PhiOp2 = VRMap[PrevStage][Def]; +      if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) +        if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) +          PhiOp2 = getLoopPhiReg(*InstOp2, BB2); +      // The number of Phis can't exceed the number of prolog stages. The +      // prolog stage number is zero based. +      if (NumPhis > PrologStage + 1 - StageScheduled) +        NumPhis = PrologStage + 1 - StageScheduled; +      for (unsigned np = 0; np < NumPhis; ++np) { +        unsigned PhiOp1 = VRMap[PrologStage][Def]; +        if (np <= PrologStage) +          PhiOp1 = VRMap[PrologStage - np][Def]; +        if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { +          if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) +            PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); +          if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) +            PhiOp1 = getInitPhiReg(*InstOp1, NewBB); +        } +        if (!InKernel) +          PhiOp2 = VRMap[PrevStage - np][Def]; + +        const TargetRegisterClass *RC = MRI.getRegClass(Def); +        unsigned NewReg = MRI.createVirtualRegister(RC); + +        MachineInstrBuilder NewPhi = +            BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), +                    TII->get(TargetOpcode::PHI), NewReg); +        NewPhi.addReg(PhiOp1).addMBB(BB1); +        NewPhi.addReg(PhiOp2).addMBB(BB2); +        if (np == 0) +          InstrMap[NewPhi] = &*BBI; + +        // Rewrite uses and update the map. The actions depend upon whether +        // we generating code for the kernel or epilog blocks. +        if (InKernel) { +          rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, +                                &*BBI, PhiOp1, NewReg); +          rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, +                                &*BBI, PhiOp2, NewReg); + +          PhiOp2 = NewReg; +          VRMap[PrevStage - np - 1][Def] = NewReg; +        } else { +          VRMap[CurStageNum - np][Def] = NewReg; +          if (np == NumPhis - 1) +            rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, +                                  &*BBI, Def, NewReg); +        } +        if (IsLast && np == NumPhis - 1) +          replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); +      } +    } +  } +} + +/// Remove instructions that generate values with no uses. +/// Typically, these are induction variable operations that generate values +/// used in the loop itself.  A dead instruction has a definition with +/// no uses, or uses that occur in the original loop only. +void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, +                                               MBBVectorTy &EpilogBBs) { +  // For each epilog block, check that the value defined by each instruction +  // is used.  If not, delete it. +  for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), +                                     MBE = EpilogBBs.rend(); +       MBB != MBE; ++MBB) +    for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), +                                                   ME = (*MBB)->instr_rend(); +         MI != ME;) { +      // From DeadMachineInstructionElem. Don't delete inline assembly. +      if (MI->isInlineAsm()) { +        ++MI; +        continue; +      } +      bool SawStore = false; +      // Check if it's safe to remove the instruction due to side effects. +      // We can, and want to, remove Phis here. +      if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { +        ++MI; +        continue; +      } +      bool used = true; +      for (MachineInstr::mop_iterator MOI = MI->operands_begin(), +                                      MOE = MI->operands_end(); +           MOI != MOE; ++MOI) { +        if (!MOI->isReg() || !MOI->isDef()) +          continue; +        unsigned reg = MOI->getReg(); +        unsigned realUses = 0; +        for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), +                                               EI = MRI.use_end(); +             UI != EI; ++UI) { +          // Check if there are any uses that occur only in the original +          // loop.  If so, that's not a real use. +          if (UI->getParent()->getParent() != BB) { +            realUses++; +            used = true; +            break; +          } +        } +        if (realUses > 0) +          break; +        used = false; +      } +      if (!used) { +        MI++->eraseFromParent(); +        continue; +      } +      ++MI; +    } +  // In the kernel block, check if we can remove a Phi that generates a value +  // used in an instruction removed in the epilog block. +  for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), +                                   BBE = KernelBB->getFirstNonPHI(); +       BBI != BBE;) { +    MachineInstr *MI = &*BBI; +    ++BBI; +    unsigned reg = MI->getOperand(0).getReg(); +    if (MRI.use_begin(reg) == MRI.use_end()) { +      MI->eraseFromParent(); +    } +  } +} + +/// For loop carried definitions, we split the lifetime of a virtual register +/// that has uses past the definition in the next iteration. A copy with a new +/// virtual register is inserted before the definition, which helps with +/// generating a better register assignment. +/// +///   v1 = phi(a, v2)     v1 = phi(a, v2) +///   v2 = phi(b, v3)     v2 = phi(b, v3) +///   v3 = ..             v4 = copy v1 +///   .. = V1             v3 = .. +///                       .. = v4 +void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, +                                       MBBVectorTy &EpilogBBs, +                                       SMSchedule &Schedule) { +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), +                                   BBF = KernelBB->getFirstNonPHI(); +       BBI != BBF; ++BBI) { +    unsigned Def = BBI->getOperand(0).getReg(); +    // Check for any Phi definition that used as an operand of another Phi +    // in the same block. +    for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), +                                                 E = MRI.use_instr_end(); +         I != E; ++I) { +      if (I->isPHI() && I->getParent() == KernelBB) { +        // Get the loop carried definition. +        unsigned LCDef = getLoopPhiReg(*BBI, KernelBB); +        if (!LCDef) +          continue; +        MachineInstr *MI = MRI.getVRegDef(LCDef); +        if (!MI || MI->getParent() != KernelBB || MI->isPHI()) +          continue; +        // Search through the rest of the block looking for uses of the Phi +        // definition. If one occurs, then split the lifetime. +        unsigned SplitReg = 0; +        for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), +                                    KernelBB->instr_end())) +          if (BBJ.readsRegister(Def)) { +            // We split the lifetime when we find the first use. +            if (SplitReg == 0) { +              SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); +              BuildMI(*KernelBB, MI, MI->getDebugLoc(), +                      TII->get(TargetOpcode::COPY), SplitReg) +                  .addReg(Def); +            } +            BBJ.substituteRegister(Def, SplitReg, 0, *TRI); +          } +        if (!SplitReg) +          continue; +        // Search through each of the epilog blocks for any uses to be renamed. +        for (auto &Epilog : EpilogBBs) +          for (auto &I : *Epilog) +            if (I.readsRegister(Def)) +              I.substituteRegister(Def, SplitReg, 0, *TRI); +        break; +      } +    } +  } +} + +/// Remove the incoming block from the Phis in a basic block. +static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { +  for (MachineInstr &MI : *BB) { +    if (!MI.isPHI()) +      break; +    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) +      if (MI.getOperand(i + 1).getMBB() == Incoming) { +        MI.RemoveOperand(i + 1); +        MI.RemoveOperand(i); +        break; +      } +  } +} + +/// Create branches from each prolog basic block to the appropriate epilog +/// block.  These edges are needed if the loop ends before reaching the +/// kernel. +void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, +                                    MachineBasicBlock *KernelBB, +                                    MBBVectorTy &EpilogBBs, +                                    SMSchedule &Schedule, ValueMapTy *VRMap) { +  assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); +  MachineInstr *IndVar = Pass.LI.LoopInductionVar; +  MachineInstr *Cmp = Pass.LI.LoopCompare; +  MachineBasicBlock *LastPro = KernelBB; +  MachineBasicBlock *LastEpi = KernelBB; + +  // Start from the blocks connected to the kernel and work "out" +  // to the first prolog and the last epilog blocks. +  SmallVector<MachineInstr *, 4> PrevInsts; +  unsigned MaxIter = PrologBBs.size() - 1; +  unsigned LC = UINT_MAX; +  unsigned LCMin = UINT_MAX; +  for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { +    // Add branches to the prolog that go to the corresponding +    // epilog, and the fall-thru prolog/kernel block. +    MachineBasicBlock *Prolog = PrologBBs[j]; +    MachineBasicBlock *Epilog = EpilogBBs[i]; +    // We've executed one iteration, so decrement the loop count and check for +    // the loop end. +    SmallVector<MachineOperand, 4> Cond; +    // Check if the LOOP0 has already been removed. If so, then there is no need +    // to reduce the trip count. +    if (LC != 0) +      LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, +                                MaxIter); + +    // Record the value of the first trip count, which is used to determine if +    // branches and blocks can be removed for constant trip counts. +    if (LCMin == UINT_MAX) +      LCMin = LC; + +    unsigned numAdded = 0; +    if (TargetRegisterInfo::isVirtualRegister(LC)) { +      Prolog->addSuccessor(Epilog); +      numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); +    } else if (j >= LCMin) { +      Prolog->addSuccessor(Epilog); +      Prolog->removeSuccessor(LastPro); +      LastEpi->removeSuccessor(Epilog); +      numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); +      removePhis(Epilog, LastEpi); +      // Remove the blocks that are no longer referenced. +      if (LastPro != LastEpi) { +        LastEpi->clear(); +        LastEpi->eraseFromParent(); +      } +      LastPro->clear(); +      LastPro->eraseFromParent(); +    } else { +      numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); +      removePhis(Epilog, Prolog); +    } +    LastPro = Prolog; +    LastEpi = Epilog; +    for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), +                                                   E = Prolog->instr_rend(); +         I != E && numAdded > 0; ++I, --numAdded) +      updateInstruction(&*I, false, j, 0, Schedule, VRMap); +  } +} + +/// Return true if we can compute the amount the instruction changes +/// during each iteration. Set Delta to the amount of the change. +bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  unsigned BaseReg; +  int64_t Offset; +  if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) +    return false; + +  MachineRegisterInfo &MRI = MF.getRegInfo(); +  // Check if there is a Phi. If so, get the definition in the loop. +  MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); +  if (BaseDef && BaseDef->isPHI()) { +    BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); +    BaseDef = MRI.getVRegDef(BaseReg); +  } +  if (!BaseDef) +    return false; + +  int D = 0; +  if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) +    return false; + +  Delta = D; +  return true; +} + +/// Update the memory operand with a new offset when the pipeliner +/// generates a new copy of the instruction that refers to a +/// different memory location. +void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, +                                          MachineInstr &OldMI, unsigned Num) { +  if (Num == 0) +    return; +  // If the instruction has memory operands, then adjust the offset +  // when the instruction appears in different stages. +  unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); +  if (NumRefs == 0) +    return; +  MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); +  unsigned Refs = 0; +  for (MachineMemOperand *MMO : NewMI.memoperands()) { +    if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || +        (!MMO->getValue())) { +      NewMemRefs[Refs++] = MMO; +      continue; +    } +    unsigned Delta; +    if (computeDelta(OldMI, Delta)) { +      int64_t AdjOffset = Delta * Num; +      NewMemRefs[Refs++] = +          MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()); +    } else +      NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX); +  } +  NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); +} + +/// Clone the instruction for the new pipelined loop and update the +/// memory operands, if needed. +MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, +                                            unsigned CurStageNum, +                                            unsigned InstStageNum) { +  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); +  // Check for tied operands in inline asm instructions. This should be handled +  // elsewhere, but I'm not sure of the best solution. +  if (OldMI->isInlineAsm()) +    for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { +      const auto &MO = OldMI->getOperand(i); +      if (MO.isReg() && MO.isUse()) +        break; +      unsigned UseIdx; +      if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) +        NewMI->tieOperands(i, UseIdx); +    } +  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); +  return NewMI; +} + +/// Clone the instruction for the new pipelined loop. If needed, this +/// function updates the instruction using the values saved in the +/// InstrChanges structure. +MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, +                                                     unsigned CurStageNum, +                                                     unsigned InstStageNum, +                                                     SMSchedule &Schedule) { +  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); +  DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = +      InstrChanges.find(getSUnit(OldMI)); +  if (It != InstrChanges.end()) { +    std::pair<unsigned, int64_t> RegAndOffset = It->second; +    unsigned BasePos, OffsetPos; +    if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) +      return nullptr; +    int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); +    MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); +    if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) +      NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); +    NewMI->getOperand(OffsetPos).setImm(NewOffset); +  } +  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); +  return NewMI; +} + +/// Update the machine instruction with new virtual registers.  This +/// function may change the defintions and/or uses. +void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, +                                          unsigned CurStageNum, +                                          unsigned InstrStageNum, +                                          SMSchedule &Schedule, +                                          ValueMapTy *VRMap) { +  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { +    MachineOperand &MO = NewMI->getOperand(i); +    if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) +      continue; +    unsigned reg = MO.getReg(); +    if (MO.isDef()) { +      // Create a new virtual register for the definition. +      const TargetRegisterClass *RC = MRI.getRegClass(reg); +      unsigned NewReg = MRI.createVirtualRegister(RC); +      MO.setReg(NewReg); +      VRMap[CurStageNum][reg] = NewReg; +      if (LastDef) +        replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); +    } else if (MO.isUse()) { +      MachineInstr *Def = MRI.getVRegDef(reg); +      // Compute the stage that contains the last definition for instruction. +      int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); +      unsigned StageNum = CurStageNum; +      if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { +        // Compute the difference in stages between the defintion and the use. +        unsigned StageDiff = (InstrStageNum - DefStageNum); +        // Make an adjustment to get the last definition. +        StageNum -= StageDiff; +      } +      if (VRMap[StageNum].count(reg)) +        MO.setReg(VRMap[StageNum][reg]); +    } +  } +} + +/// Return the instruction in the loop that defines the register. +/// If the definition is a Phi, then follow the Phi operand to +/// the instruction in the loop. +MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { +  SmallPtrSet<MachineInstr *, 8> Visited; +  MachineInstr *Def = MRI.getVRegDef(Reg); +  while (Def->isPHI()) { +    if (!Visited.insert(Def).second) +      break; +    for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) +      if (Def->getOperand(i + 1).getMBB() == BB) { +        Def = MRI.getVRegDef(Def->getOperand(i).getReg()); +        break; +      } +  } +  return Def; +} + +/// Return the new name for the value from the previous stage. +unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, +                                          unsigned LoopVal, unsigned LoopStage, +                                          ValueMapTy *VRMap, +                                          MachineBasicBlock *BB) { +  unsigned PrevVal = 0; +  if (StageNum > PhiStage) { +    MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); +    if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) +      // The name is defined in the previous stage. +      PrevVal = VRMap[StageNum - 1][LoopVal]; +    else if (VRMap[StageNum].count(LoopVal)) +      // The previous name is defined in the current stage when the instruction +      // order is swapped. +      PrevVal = VRMap[StageNum][LoopVal]; +    else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) +      // The loop value hasn't yet been scheduled. +      PrevVal = LoopVal; +    else if (StageNum == PhiStage + 1) +      // The loop value is another phi, which has not been scheduled. +      PrevVal = getInitPhiReg(*LoopInst, BB); +    else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) +      // The loop value is another phi, which has been scheduled. +      PrevVal = +          getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), +                        LoopStage, VRMap, BB); +  } +  return PrevVal; +} + +/// Rewrite the Phi values in the specified block to use the mappings +/// from the initial operand. Once the Phi is scheduled, we switch +/// to using the loop value instead of the Phi value, so those names +/// do not need to be rewritten. +void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, +                                         unsigned StageNum, +                                         SMSchedule &Schedule, +                                         ValueMapTy *VRMap, +                                         InstrMapTy &InstrMap) { +  for (MachineBasicBlock::iterator BBI = BB->instr_begin(), +                                   BBE = BB->getFirstNonPHI(); +       BBI != BBE; ++BBI) { +    unsigned InitVal = 0; +    unsigned LoopVal = 0; +    getPhiRegs(*BBI, BB, InitVal, LoopVal); +    unsigned PhiDef = BBI->getOperand(0).getReg(); + +    unsigned PhiStage = +        (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); +    unsigned LoopStage = +        (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); +    unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); +    if (NumPhis > StageNum) +      NumPhis = StageNum; +    for (unsigned np = 0; np <= NumPhis; ++np) { +      unsigned NewVal = +          getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); +      if (!NewVal) +        NewVal = InitVal; +      rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI, +                            PhiDef, NewVal); +    } +  } +} + +/// Rewrite a previously scheduled instruction to use the register value +/// from the new instruction. Make sure the instruction occurs in the +/// basic block, and we don't change the uses in the new instruction. +void SwingSchedulerDAG::rewriteScheduledInstr( +    MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, +    unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, +    unsigned NewReg, unsigned PrevReg) { +  bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); +  int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; +  // Rewrite uses that have been scheduled already to use the new +  // Phi register. +  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), +                                         EI = MRI.use_end(); +       UI != EI;) { +    MachineOperand &UseOp = *UI; +    MachineInstr *UseMI = UseOp.getParent(); +    ++UI; +    if (UseMI->getParent() != BB) +      continue; +    if (UseMI->isPHI()) { +      if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) +        continue; +      if (getLoopPhiReg(*UseMI, BB) != OldReg) +        continue; +    } +    InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); +    assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); +    SUnit *OrigMISU = getSUnit(OrigInstr->second); +    int StageSched = Schedule.stageScheduled(OrigMISU); +    int CycleSched = Schedule.cycleScheduled(OrigMISU); +    unsigned ReplaceReg = 0; +    // This is the stage for the scheduled instruction. +    if (StagePhi == StageSched && Phi->isPHI()) { +      int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); +      if (PrevReg && InProlog) +        ReplaceReg = PrevReg; +      else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && +               (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) +        ReplaceReg = PrevReg; +      else +        ReplaceReg = NewReg; +    } +    // The scheduled instruction occurs before the scheduled Phi, and the +    // Phi is not loop carried. +    if (!InProlog && StagePhi + 1 == StageSched && +        !Schedule.isLoopCarried(this, *Phi)) +      ReplaceReg = NewReg; +    if (StagePhi > StageSched && Phi->isPHI()) +      ReplaceReg = NewReg; +    if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) +      ReplaceReg = NewReg; +    if (ReplaceReg) { +      MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); +      UseOp.setReg(ReplaceReg); +    } +  } +} + +/// Check if we can change the instruction to use an offset value from the +/// previous iteration. If so, return true and set the base and offset values +/// so that we can rewrite the load, if necessary. +///   v1 = Phi(v0, v3) +///   v2 = load v1, 0 +///   v3 = post_store v1, 4, x +/// This function enables the load to be rewritten as v2 = load v3, 4. +bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, +                                              unsigned &BasePos, +                                              unsigned &OffsetPos, +                                              unsigned &NewBase, +                                              int64_t &Offset) { +  // Get the load instruction. +  if (TII->isPostIncrement(*MI)) +    return false; +  unsigned BasePosLd, OffsetPosLd; +  if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) +    return false; +  unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); + +  // Look for the Phi instruction. +  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); +  MachineInstr *Phi = MRI.getVRegDef(BaseReg); +  if (!Phi || !Phi->isPHI()) +    return false; +  // Get the register defined in the loop block. +  unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); +  if (!PrevReg) +    return false; + +  // Check for the post-increment load/store instruction. +  MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); +  if (!PrevDef || PrevDef == MI) +    return false; + +  if (!TII->isPostIncrement(*PrevDef)) +    return false; + +  unsigned BasePos1 = 0, OffsetPos1 = 0; +  if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) +    return false; + +  // Make sure offset values are both positive or both negative. +  int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); +  int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); +  if ((LoadOffset >= 0) != (StoreOffset >= 0)) +    return false; + +  // Set the return value once we determine that we return true. +  BasePos = BasePosLd; +  OffsetPos = OffsetPosLd; +  NewBase = PrevReg; +  Offset = StoreOffset; +  return true; +} + +/// Apply changes to the instruction if needed. The changes are need +/// to improve the scheduling and depend up on the final schedule. +MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, +                                                  SMSchedule &Schedule, +                                                  bool UpdateDAG) { +  SUnit *SU = getSUnit(MI); +  DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = +      InstrChanges.find(SU); +  if (It != InstrChanges.end()) { +    std::pair<unsigned, int64_t> RegAndOffset = It->second; +    unsigned BasePos, OffsetPos; +    if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) +      return nullptr; +    unsigned BaseReg = MI->getOperand(BasePos).getReg(); +    MachineInstr *LoopDef = findDefInLoop(BaseReg); +    int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); +    int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); +    int BaseStageNum = Schedule.stageScheduled(SU); +    int BaseCycleNum = Schedule.cycleScheduled(SU); +    if (BaseStageNum < DefStageNum) { +      MachineInstr *NewMI = MF.CloneMachineInstr(MI); +      int OffsetDiff = DefStageNum - BaseStageNum; +      if (DefCycleNum < BaseCycleNum) { +        NewMI->getOperand(BasePos).setReg(RegAndOffset.first); +        if (OffsetDiff > 0) +          --OffsetDiff; +      } +      int64_t NewOffset = +          MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; +      NewMI->getOperand(OffsetPos).setImm(NewOffset); +      if (UpdateDAG) { +        SU->setInstr(NewMI); +        MISUnitMap[NewMI] = SU; +      } +      NewMIs.insert(NewMI); +      return NewMI; +    } +  } +  return nullptr; +} + +/// Return true for an order dependence that is loop carried potentially. +/// An order dependence is loop carried if the destination defines a value +/// that may be used by the source in a subsequent iteration. +bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, +                                           bool isSucc) { +  if (!isOrder(Source, Dep) || Dep.isArtificial()) +    return false; + +  if (!SwpPruneLoopCarried) +    return true; + +  MachineInstr *SI = Source->getInstr(); +  MachineInstr *DI = Dep.getSUnit()->getInstr(); +  if (!isSucc) +    std::swap(SI, DI); +  assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); + +  // Assume ordered loads and stores may have a loop carried dependence. +  if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || +      SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) +    return true; + +  // Only chain dependences between a load and store can be loop carried. +  if (!DI->mayStore() || !SI->mayLoad()) +    return false; + +  unsigned DeltaS, DeltaD; +  if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) +    return true; + +  unsigned BaseRegS, BaseRegD; +  int64_t OffsetS, OffsetD; +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || +      !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) +    return true; + +  if (BaseRegS != BaseRegD) +    return true; + +  uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); +  uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); + +  // This is the main test, which checks the offset values and the loop +  // increment value to determine if the accesses may be loop carried. +  if (OffsetS >= OffsetD) +    return OffsetS + AccessSizeS > DeltaS; +  else if (OffsetS < OffsetD) +    return OffsetD + AccessSizeD > DeltaD; + +  return true; +} + +void SwingSchedulerDAG::postprocessDAG() { +  for (auto &M : Mutations) +    M->apply(this); +} + +/// Try to schedule the node at the specified StartCycle and continue +/// until the node is schedule or the EndCycle is reached.  This function +/// returns true if the node is scheduled.  This routine may search either +/// forward or backward for a place to insert the instruction based upon +/// the relative values of StartCycle and EndCycle. +bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { +  bool forward = true; +  if (StartCycle > EndCycle) +    forward = false; + +  // The terminating condition depends on the direction. +  int termCycle = forward ? EndCycle + 1 : EndCycle - 1; +  for (int curCycle = StartCycle; curCycle != termCycle; +       forward ? ++curCycle : --curCycle) { + +    // Add the already scheduled instructions at the specified cycle to the DFA. +    Resources->clearResources(); +    for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); +         checkCycle <= LastCycle; checkCycle += II) { +      std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; + +      for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), +                                         E = cycleInstrs.end(); +           I != E; ++I) { +        if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) +          continue; +        assert(Resources->canReserveResources(*(*I)->getInstr()) && +               "These instructions have already been scheduled."); +        Resources->reserveResources(*(*I)->getInstr()); +      } +    } +    if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || +        Resources->canReserveResources(*SU->getInstr())) { +      DEBUG({ +        dbgs() << "\tinsert at cycle " << curCycle << " "; +        SU->getInstr()->dump(); +      }); + +      ScheduledInstrs[curCycle].push_back(SU); +      InstrToCycle.insert(std::make_pair(SU, curCycle)); +      if (curCycle > LastCycle) +        LastCycle = curCycle; +      if (curCycle < FirstCycle) +        FirstCycle = curCycle; +      return true; +    } +    DEBUG({ +      dbgs() << "\tfailed to insert at cycle " << curCycle << " "; +      SU->getInstr()->dump(); +    }); +  } +  return false; +} + +// Return the cycle of the earliest scheduled instruction in the chain. +int SMSchedule::earliestCycleInChain(const SDep &Dep) { +  SmallPtrSet<SUnit *, 8> Visited; +  SmallVector<SDep, 8> Worklist; +  Worklist.push_back(Dep); +  int EarlyCycle = INT_MAX; +  while (!Worklist.empty()) { +    const SDep &Cur = Worklist.pop_back_val(); +    SUnit *PrevSU = Cur.getSUnit(); +    if (Visited.count(PrevSU)) +      continue; +    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); +    if (it == InstrToCycle.end()) +      continue; +    EarlyCycle = std::min(EarlyCycle, it->second); +    for (const auto &PI : PrevSU->Preds) +      if (SwingSchedulerDAG::isOrder(PrevSU, PI)) +        Worklist.push_back(PI); +    Visited.insert(PrevSU); +  } +  return EarlyCycle; +} + +// Return the cycle of the latest scheduled instruction in the chain. +int SMSchedule::latestCycleInChain(const SDep &Dep) { +  SmallPtrSet<SUnit *, 8> Visited; +  SmallVector<SDep, 8> Worklist; +  Worklist.push_back(Dep); +  int LateCycle = INT_MIN; +  while (!Worklist.empty()) { +    const SDep &Cur = Worklist.pop_back_val(); +    SUnit *SuccSU = Cur.getSUnit(); +    if (Visited.count(SuccSU)) +      continue; +    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); +    if (it == InstrToCycle.end()) +      continue; +    LateCycle = std::max(LateCycle, it->second); +    for (const auto &SI : SuccSU->Succs) +      if (SwingSchedulerDAG::isOrder(SuccSU, SI)) +        Worklist.push_back(SI); +    Visited.insert(SuccSU); +  } +  return LateCycle; +} + +/// If an instruction has a use that spans multiple iterations, then +/// return true. These instructions are characterized by having a back-ege +/// to a Phi, which contains a reference to another Phi. +static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { +  for (auto &P : SU->Preds) +    if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) +      for (auto &S : P.getSUnit()->Succs) +        if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) +          return P.getSUnit(); +  return nullptr; +} + +/// Compute the scheduling start slot for the instruction.  The start slot +/// depends on any predecessor or successor nodes scheduled already. +void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, +                              int *MinEnd, int *MaxStart, int II, +                              SwingSchedulerDAG *DAG) { +  // Iterate over each instruction that has been scheduled already.  The start +  // slot computuation depends on whether the previously scheduled instruction +  // is a predecessor or successor of the specified instruction. +  for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { + +    // Iterate over each instruction in the current cycle. +    for (SUnit *I : getInstructions(cycle)) { +      // Because we're processing a DAG for the dependences, we recognize +      // the back-edge in recurrences by anti dependences. +      for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { +        const SDep &Dep = SU->Preds[i]; +        if (Dep.getSUnit() == I) { +          if (!DAG->isBackedge(SU, Dep)) { +            int EarlyStart = cycle + DAG->getLatency(SU, Dep) - +                             DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; +            *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); +            if (DAG->isLoopCarriedOrder(SU, Dep, false)) { +              int End = earliestCycleInChain(Dep) + (II - 1); +              *MinEnd = std::min(*MinEnd, End); +            } +          } else { +            int LateStart = cycle - DAG->getLatency(SU, Dep) + +                            DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; +            *MinLateStart = std::min(*MinLateStart, LateStart); +          } +        } +        // For instruction that requires multiple iterations, make sure that +        // the dependent instruction is not scheduled past the definition. +        SUnit *BE = multipleIterations(I, DAG); +        if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && +            !SU->isPred(I)) +          *MinLateStart = std::min(*MinLateStart, cycle); +      } +      for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) +        if (SU->Succs[i].getSUnit() == I) { +          const SDep &Dep = SU->Succs[i]; +          if (!DAG->isBackedge(SU, Dep)) { +            int LateStart = cycle - DAG->getLatency(SU, Dep) + +                            DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; +            *MinLateStart = std::min(*MinLateStart, LateStart); +            if (DAG->isLoopCarriedOrder(SU, Dep)) { +              int Start = latestCycleInChain(Dep) + 1 - II; +              *MaxStart = std::max(*MaxStart, Start); +            } +          } else { +            int EarlyStart = cycle + DAG->getLatency(SU, Dep) - +                             DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; +            *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); +          } +        } +    } +  } +} + +/// Order the instructions within a cycle so that the definitions occur +/// before the uses. Returns true if the instruction is added to the start +/// of the list, or false if added to the end. +bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, +                                 std::deque<SUnit *> &Insts) { +  MachineInstr *MI = SU->getInstr(); +  bool OrderBeforeUse = false; +  bool OrderAfterDef = false; +  bool OrderBeforeDef = false; +  unsigned MoveDef = 0; +  unsigned MoveUse = 0; +  int StageInst1 = stageScheduled(SU); + +  unsigned Pos = 0; +  for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; +       ++I, ++Pos) { +    // Relative order of Phis does not matter. +    if (MI->isPHI() && (*I)->getInstr()->isPHI()) +      continue; +    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { +      MachineOperand &MO = MI->getOperand(i); +      if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) +        continue; +      unsigned Reg = MO.getReg(); +      unsigned BasePos, OffsetPos; +      if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) +        if (MI->getOperand(BasePos).getReg() == Reg) +          if (unsigned NewReg = SSD->getInstrBaseReg(SU)) +            Reg = NewReg; +      bool Reads, Writes; +      std::tie(Reads, Writes) = +          (*I)->getInstr()->readsWritesVirtualRegister(Reg); +      if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { +        OrderBeforeUse = true; +        MoveUse = Pos; +      } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { +        // Add the instruction after the scheduled instruction. +        OrderAfterDef = true; +        MoveDef = Pos; +      } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { +        if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { +          OrderBeforeUse = true; +          MoveUse = Pos; +        } else { +          OrderAfterDef = true; +          MoveDef = Pos; +        } +      } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { +        OrderBeforeUse = true; +        MoveUse = Pos; +        if (MoveUse != 0) { +          OrderAfterDef = true; +          MoveDef = Pos - 1; +        } +      } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { +        // Add the instruction before the scheduled instruction. +        OrderBeforeUse = true; +        MoveUse = Pos; +      } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && +                 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { +        OrderBeforeDef = true; +        MoveUse = Pos; +      } +    } +    // Check for order dependences between instructions. Make sure the source +    // is ordered before the destination. +    for (auto &S : SU->Succs) +      if (S.getKind() == SDep::Order) { +        if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { +          OrderBeforeUse = true; +          MoveUse = Pos; +        } +      } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { +        if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { +          if (S.isAssignedRegDep()) { +            OrderAfterDef = true; +            MoveDef = Pos; +          } +        } else { +          OrderBeforeUse = true; +          MoveUse = Pos; +        } +      } +    for (auto &P : SU->Preds) +      if (P.getKind() == SDep::Order) { +        if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { +          OrderAfterDef = true; +          MoveDef = Pos; +        } +      } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { +        if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { +          if (P.isAssignedRegDep()) { +            OrderBeforeUse = true; +            MoveUse = Pos; +          } +        } else { +          OrderAfterDef = true; +          MoveDef = Pos; +        } +      } +  } + +  // A circular dependence. +  if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) +    OrderBeforeUse = false; + +  // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due +  // to a loop-carried dependence. +  if (OrderBeforeDef) +    OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); + +  // The uncommon case when the instruction order needs to be updated because +  // there is both a use and def. +  if (OrderBeforeUse && OrderAfterDef) { +    SUnit *UseSU = Insts.at(MoveUse); +    SUnit *DefSU = Insts.at(MoveDef); +    if (MoveUse > MoveDef) { +      Insts.erase(Insts.begin() + MoveUse); +      Insts.erase(Insts.begin() + MoveDef); +    } else { +      Insts.erase(Insts.begin() + MoveDef); +      Insts.erase(Insts.begin() + MoveUse); +    } +    if (orderDependence(SSD, UseSU, Insts)) { +      Insts.push_front(SU); +      orderDependence(SSD, DefSU, Insts); +      return true; +    } +    Insts.pop_back(); +    Insts.push_back(SU); +    Insts.push_back(UseSU); +    orderDependence(SSD, DefSU, Insts); +    return false; +  } +  // Put the new instruction first if there is a use in the list. Otherwise, +  // put it at the end of the list. +  if (OrderBeforeUse) +    Insts.push_front(SU); +  else +    Insts.push_back(SU); +  return OrderBeforeUse; +} + +/// Return true if the scheduled Phi has a loop carried operand. +bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { +  if (!Phi.isPHI()) +    return false; +  assert(Phi.isPHI() && "Expecing a Phi."); +  SUnit *DefSU = SSD->getSUnit(&Phi); +  unsigned DefCycle = cycleScheduled(DefSU); +  int DefStage = stageScheduled(DefSU); + +  unsigned InitVal = 0; +  unsigned LoopVal = 0; +  getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); +  SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); +  if (!UseSU) +    return true; +  if (UseSU->getInstr()->isPHI()) +    return true; +  unsigned LoopCycle = cycleScheduled(UseSU); +  int LoopStage = stageScheduled(UseSU); +  return (LoopCycle > DefCycle) || (LoopStage <= DefStage); +} + +/// Return true if the instruction is a definition that is loop carried +/// and defines the use on the next iteration. +///        v1 = phi(v2, v3) +///  (Def) v3 = op v1 +///  (MO)   = v1 +/// If MO appears before Def, then then v1 and v3 may get assigned to the same +/// register. +bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, +                                       MachineInstr *Def, MachineOperand &MO) { +  if (!MO.isReg()) +    return false; +  if (Def->isPHI()) +    return false; +  MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); +  if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) +    return false; +  if (!isLoopCarried(SSD, *Phi)) +    return false; +  unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); +  for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { +    MachineOperand &DMO = Def->getOperand(i); +    if (!DMO.isReg() || !DMO.isDef()) +      continue; +    if (DMO.getReg() == LoopReg) +      return true; +  } +  return false; +} + +// Check if the generated schedule is valid. This function checks if +// an instruction that uses a physical register is scheduled in a +// different stage than the definition. The pipeliner does not handle +// physical register values that may cross a basic block boundary. +bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { +  for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { +    SUnit &SU = SSD->SUnits[i]; +    if (!SU.hasPhysRegDefs) +      continue; +    int StageDef = stageScheduled(&SU); +    assert(StageDef != -1 && "Instruction should have been scheduled."); +    for (auto &SI : SU.Succs) +      if (SI.isAssignedRegDep()) +        if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) +          if (stageScheduled(SI.getSUnit()) != StageDef) +            return false; +  } +  return true; +} + +/// After the schedule has been formed, call this function to combine +/// the instructions from the different stages/cycles.  That is, this +/// function creates a schedule that represents a single iteration. +void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { +  // Move all instructions to the first stage from later stages. +  for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { +    for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; +         ++stage) { +      std::deque<SUnit *> &cycleInstrs = +          ScheduledInstrs[cycle + (stage * InitiationInterval)]; +      for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), +                                                 E = cycleInstrs.rend(); +           I != E; ++I) +        ScheduledInstrs[cycle].push_front(*I); +    } +  } +  // Iterate over the definitions in each instruction, and compute the +  // stage difference for each use.  Keep the maximum value. +  for (auto &I : InstrToCycle) { +    int DefStage = stageScheduled(I.first); +    MachineInstr *MI = I.first->getInstr(); +    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { +      MachineOperand &Op = MI->getOperand(i); +      if (!Op.isReg() || !Op.isDef()) +        continue; + +      unsigned Reg = Op.getReg(); +      unsigned MaxDiff = 0; +      bool PhiIsSwapped = false; +      for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), +                                             EI = MRI.use_end(); +           UI != EI; ++UI) { +        MachineOperand &UseOp = *UI; +        MachineInstr *UseMI = UseOp.getParent(); +        SUnit *SUnitUse = SSD->getSUnit(UseMI); +        int UseStage = stageScheduled(SUnitUse); +        unsigned Diff = 0; +        if (UseStage != -1 && UseStage >= DefStage) +          Diff = UseStage - DefStage; +        if (MI->isPHI()) { +          if (isLoopCarried(SSD, *MI)) +            ++Diff; +          else +            PhiIsSwapped = true; +        } +        MaxDiff = std::max(Diff, MaxDiff); +      } +      RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); +    } +  } + +  // Erase all the elements in the later stages. Only one iteration should +  // remain in the scheduled list, and it contains all the instructions. +  for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) +    ScheduledInstrs.erase(cycle); + +  // Change the registers in instruction as specified in the InstrChanges +  // map. We need to use the new registers to create the correct order. +  for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { +    SUnit *SU = &SSD->SUnits[i]; +    SSD->applyInstrChange(SU->getInstr(), *this, true); +  } + +  // Reorder the instructions in each cycle to fix and improve the +  // generated code. +  for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { +    std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; +    std::deque<SUnit *> newOrderZC; +    // Put the zero-cost, pseudo instructions at the start of the cycle. +    for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { +      SUnit *SU = cycleInstrs[i]; +      if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) +        orderDependence(SSD, SU, newOrderZC); +    } +    std::deque<SUnit *> newOrderI; +    // Then, add the regular instructions back. +    for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { +      SUnit *SU = cycleInstrs[i]; +      if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) +        orderDependence(SSD, SU, newOrderI); +    } +    // Replace the old order with the new order. +    cycleInstrs.swap(newOrderZC); +    cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); +  } + +  DEBUG(dump();); +} + +/// Print the schedule information to the given output. +void SMSchedule::print(raw_ostream &os) const { +  // Iterate over each cycle. +  for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { +    // Iterate over each instruction in the cycle. +    const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); +    for (SUnit *CI : cycleInstrs->second) { +      os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; +      os << "(" << CI->NodeNum << ") "; +      CI->getInstr()->print(os); +      os << "\n"; +    } +  } +} + +/// Utility function used for debugging to print the schedule. +void SMSchedule::dump() const { print(dbgs()); }  | 
