diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineScheduler.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/MachineScheduler.cpp | 3323 | 
1 files changed, 3323 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineScheduler.cpp b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp new file mode 100644 index 000000000000..a48e54caf3fe --- /dev/null +++ b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp @@ -0,0 +1,3323 @@ +//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// MachineScheduler schedules machine instructions after phi elimination. It +// preserves LiveIntervals so it can be invoked before register allocation. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineScheduler.h" +#include "llvm/ADT/PriorityQueue.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/ScheduleDFS.h" +#include "llvm/CodeGen/ScheduleHazardRecognizer.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include <queue> + +using namespace llvm; + +#define DEBUG_TYPE "misched" + +namespace llvm { +cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, +                           cl::desc("Force top-down list scheduling")); +cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, +                            cl::desc("Force bottom-up list scheduling")); +cl::opt<bool> +DumpCriticalPathLength("misched-dcpl", cl::Hidden, +                       cl::desc("Print critical path length to stdout")); +} + +#ifndef NDEBUG +static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, +  cl::desc("Pop up a window to show MISched dags after they are processed")); + +static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, +  cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); + +static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, +  cl::desc("Only schedule this function")); +static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, +  cl::desc("Only schedule this MBB#")); +#else +static bool ViewMISchedDAGs = false; +#endif // NDEBUG + +static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, +  cl::desc("Enable register pressure scheduling."), cl::init(true)); + +static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, +  cl::desc("Enable cyclic critical path analysis."), cl::init(true)); + +static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, +  cl::desc("Enable load clustering."), cl::init(true)); + +// Experimental heuristics +static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, +  cl::desc("Enable scheduling for macro fusion."), cl::init(true)); + +static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, +  cl::desc("Verify machine instrs before and after machine scheduling")); + +// DAG subtrees must have at least this many nodes. +static const unsigned MinSubtreeSize = 8; + +// Pin the vtables to this file. +void MachineSchedStrategy::anchor() {} +void ScheduleDAGMutation::anchor() {} + +//===----------------------------------------------------------------------===// +// Machine Instruction Scheduling Pass and Registry +//===----------------------------------------------------------------------===// + +MachineSchedContext::MachineSchedContext(): +    MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { +  RegClassInfo = new RegisterClassInfo(); +} + +MachineSchedContext::~MachineSchedContext() { +  delete RegClassInfo; +} + +namespace { +/// Base class for a machine scheduler class that can run at any point. +class MachineSchedulerBase : public MachineSchedContext, +                             public MachineFunctionPass { +public: +  MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} + +  void print(raw_ostream &O, const Module* = nullptr) const override; + +protected: +  void scheduleRegions(ScheduleDAGInstrs &Scheduler); +}; + +/// MachineScheduler runs after coalescing and before register allocation. +class MachineScheduler : public MachineSchedulerBase { +public: +  MachineScheduler(); + +  void getAnalysisUsage(AnalysisUsage &AU) const override; + +  bool runOnMachineFunction(MachineFunction&) override; + +  static char ID; // Class identification, replacement for typeinfo + +protected: +  ScheduleDAGInstrs *createMachineScheduler(); +}; + +/// PostMachineScheduler runs after shortly before code emission. +class PostMachineScheduler : public MachineSchedulerBase { +public: +  PostMachineScheduler(); + +  void getAnalysisUsage(AnalysisUsage &AU) const override; + +  bool runOnMachineFunction(MachineFunction&) override; + +  static char ID; // Class identification, replacement for typeinfo + +protected: +  ScheduleDAGInstrs *createPostMachineScheduler(); +}; +} // namespace + +char MachineScheduler::ID = 0; + +char &llvm::MachineSchedulerID = MachineScheduler::ID; + +INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", +                      "Machine Instruction Scheduler", false, false) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_DEPENDENCY(SlotIndexes) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", +                    "Machine Instruction Scheduler", false, false) + +MachineScheduler::MachineScheduler() +: MachineSchedulerBase(ID) { +  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); +} + +void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesCFG(); +  AU.addRequiredID(MachineDominatorsID); +  AU.addRequired<MachineLoopInfo>(); +  AU.addRequired<AliasAnalysis>(); +  AU.addRequired<TargetPassConfig>(); +  AU.addRequired<SlotIndexes>(); +  AU.addPreserved<SlotIndexes>(); +  AU.addRequired<LiveIntervals>(); +  AU.addPreserved<LiveIntervals>(); +  MachineFunctionPass::getAnalysisUsage(AU); +} + +char PostMachineScheduler::ID = 0; + +char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; + +INITIALIZE_PASS(PostMachineScheduler, "postmisched", +                "PostRA Machine Instruction Scheduler", false, false) + +PostMachineScheduler::PostMachineScheduler() +: MachineSchedulerBase(ID) { +  initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); +} + +void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesCFG(); +  AU.addRequiredID(MachineDominatorsID); +  AU.addRequired<MachineLoopInfo>(); +  AU.addRequired<TargetPassConfig>(); +  MachineFunctionPass::getAnalysisUsage(AU); +} + +MachinePassRegistry MachineSchedRegistry::Registry; + +/// A dummy default scheduler factory indicates whether the scheduler +/// is overridden on the command line. +static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { +  return nullptr; +} + +/// MachineSchedOpt allows command line selection of the scheduler. +static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, +               RegisterPassParser<MachineSchedRegistry> > +MachineSchedOpt("misched", +                cl::init(&useDefaultMachineSched), cl::Hidden, +                cl::desc("Machine instruction scheduler to use")); + +static MachineSchedRegistry +DefaultSchedRegistry("default", "Use the target's default scheduler choice.", +                     useDefaultMachineSched); + +static cl::opt<bool> EnableMachineSched( +    "enable-misched", +    cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), +    cl::Hidden); + +/// Forward declare the standard machine scheduler. This will be used as the +/// default scheduler if the target does not set a default. +static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); +static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); + +/// Decrement this iterator until reaching the top or a non-debug instr. +static MachineBasicBlock::const_iterator +priorNonDebug(MachineBasicBlock::const_iterator I, +              MachineBasicBlock::const_iterator Beg) { +  assert(I != Beg && "reached the top of the region, cannot decrement"); +  while (--I != Beg) { +    if (!I->isDebugValue()) +      break; +  } +  return I; +} + +/// Non-const version. +static MachineBasicBlock::iterator +priorNonDebug(MachineBasicBlock::iterator I, +              MachineBasicBlock::const_iterator Beg) { +  return const_cast<MachineInstr*>( +    &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); +} + +/// If this iterator is a debug value, increment until reaching the End or a +/// non-debug instruction. +static MachineBasicBlock::const_iterator +nextIfDebug(MachineBasicBlock::const_iterator I, +            MachineBasicBlock::const_iterator End) { +  for(; I != End; ++I) { +    if (!I->isDebugValue()) +      break; +  } +  return I; +} + +/// Non-const version. +static MachineBasicBlock::iterator +nextIfDebug(MachineBasicBlock::iterator I, +            MachineBasicBlock::const_iterator End) { +  // Cast the return value to nonconst MachineInstr, then cast to an +  // instr_iterator, which does not check for null, finally return a +  // bundle_iterator. +  return MachineBasicBlock::instr_iterator( +    const_cast<MachineInstr*>( +      &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); +} + +/// Instantiate a ScheduleDAGInstrs that will be owned by the caller. +ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { +  // Select the scheduler, or set the default. +  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; +  if (Ctor != useDefaultMachineSched) +    return Ctor(this); + +  // Get the default scheduler set by the target for this function. +  ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); +  if (Scheduler) +    return Scheduler; + +  // Default to GenericScheduler. +  return createGenericSchedLive(this); +} + +/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by +/// the caller. We don't have a command line option to override the postRA +/// scheduler. The Target must configure it. +ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { +  // Get the postRA scheduler set by the target for this function. +  ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); +  if (Scheduler) +    return Scheduler; + +  // Default to GenericScheduler. +  return createGenericSchedPostRA(this); +} + +/// Top-level MachineScheduler pass driver. +/// +/// Visit blocks in function order. Divide each block into scheduling regions +/// and visit them bottom-up. Visiting regions bottom-up is not required, but is +/// consistent with the DAG builder, which traverses the interior of the +/// scheduling regions bottom-up. +/// +/// This design avoids exposing scheduling boundaries to the DAG builder, +/// simplifying the DAG builder's support for "special" target instructions. +/// At the same time the design allows target schedulers to operate across +/// scheduling boundaries, for example to bundle the boudary instructions +/// without reordering them. This creates complexity, because the target +/// scheduler must update the RegionBegin and RegionEnd positions cached by +/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler +/// design would be to split blocks at scheduling boundaries, but LLVM has a +/// general bias against block splitting purely for implementation simplicity. +bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { +  if (EnableMachineSched.getNumOccurrences()) { +    if (!EnableMachineSched) +      return false; +  } else if (!mf.getSubtarget().enableMachineScheduler()) +    return false; + +  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); + +  // Initialize the context of the pass. +  MF = &mf; +  MLI = &getAnalysis<MachineLoopInfo>(); +  MDT = &getAnalysis<MachineDominatorTree>(); +  PassConfig = &getAnalysis<TargetPassConfig>(); +  AA = &getAnalysis<AliasAnalysis>(); + +  LIS = &getAnalysis<LiveIntervals>(); + +  if (VerifyScheduling) { +    DEBUG(LIS->dump()); +    MF->verify(this, "Before machine scheduling."); +  } +  RegClassInfo->runOnMachineFunction(*MF); + +  // Instantiate the selected scheduler for this target, function, and +  // optimization level. +  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); +  scheduleRegions(*Scheduler); + +  DEBUG(LIS->dump()); +  if (VerifyScheduling) +    MF->verify(this, "After machine scheduling."); +  return true; +} + +bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { +  if (skipOptnoneFunction(*mf.getFunction())) +    return false; + +  if (!mf.getSubtarget().enablePostRAScheduler()) { +    DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); +    return false; +  } +  DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); + +  // Initialize the context of the pass. +  MF = &mf; +  PassConfig = &getAnalysis<TargetPassConfig>(); + +  if (VerifyScheduling) +    MF->verify(this, "Before post machine scheduling."); + +  // Instantiate the selected scheduler for this target, function, and +  // optimization level. +  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); +  scheduleRegions(*Scheduler); + +  if (VerifyScheduling) +    MF->verify(this, "After post machine scheduling."); +  return true; +} + +/// Return true of the given instruction should not be included in a scheduling +/// region. +/// +/// MachineScheduler does not currently support scheduling across calls. To +/// handle calls, the DAG builder needs to be modified to create register +/// anti/output dependencies on the registers clobbered by the call's regmask +/// operand. In PreRA scheduling, the stack pointer adjustment already prevents +/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce +/// the boundary, but there would be no benefit to postRA scheduling across +/// calls this late anyway. +static bool isSchedBoundary(MachineBasicBlock::iterator MI, +                            MachineBasicBlock *MBB, +                            MachineFunction *MF, +                            const TargetInstrInfo *TII, +                            bool IsPostRA) { +  return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); +} + +/// Main driver for both MachineScheduler and PostMachineScheduler. +void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) { +  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); +  bool IsPostRA = Scheduler.isPostRA(); + +  // Visit all machine basic blocks. +  // +  // TODO: Visit blocks in global postorder or postorder within the bottom-up +  // loop tree. Then we can optionally compute global RegPressure. +  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); +       MBB != MBBEnd; ++MBB) { + +    Scheduler.startBlock(MBB); + +#ifndef NDEBUG +    if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) +      continue; +    if (SchedOnlyBlock.getNumOccurrences() +        && (int)SchedOnlyBlock != MBB->getNumber()) +      continue; +#endif + +    // Break the block into scheduling regions [I, RegionEnd), and schedule each +    // region as soon as it is discovered. RegionEnd points the scheduling +    // boundary at the bottom of the region. The DAG does not include RegionEnd, +    // but the region does (i.e. the next RegionEnd is above the previous +    // RegionBegin). If the current block has no terminator then RegionEnd == +    // MBB->end() for the bottom region. +    // +    // The Scheduler may insert instructions during either schedule() or +    // exitRegion(), even for empty regions. So the local iterators 'I' and +    // 'RegionEnd' are invalid across these calls. +    // +    // MBB::size() uses instr_iterator to count. Here we need a bundle to count +    // as a single instruction. +    unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); +    for(MachineBasicBlock::iterator RegionEnd = MBB->end(); +        RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { + +      // Avoid decrementing RegionEnd for blocks with no terminator. +      if (RegionEnd != MBB->end() || +          isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) { +        --RegionEnd; +        // Count the boundary instruction. +        --RemainingInstrs; +      } + +      // The next region starts above the previous region. Look backward in the +      // instruction stream until we find the nearest boundary. +      unsigned NumRegionInstrs = 0; +      MachineBasicBlock::iterator I = RegionEnd; +      for(;I != MBB->begin(); --I, --RemainingInstrs) { +        if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA)) +          break; +        if (!I->isDebugValue()) +          ++NumRegionInstrs; +      } +      // Notify the scheduler of the region, even if we may skip scheduling +      // it. Perhaps it still needs to be bundled. +      Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs); + +      // Skip empty scheduling regions (0 or 1 schedulable instructions). +      if (I == RegionEnd || I == std::prev(RegionEnd)) { +        // Close the current region. Bundle the terminator if needed. +        // This invalidates 'RegionEnd' and 'I'. +        Scheduler.exitRegion(); +        continue; +      } +      DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "") +            << "MI Scheduling **********\n"); +      DEBUG(dbgs() << MF->getName() +            << ":BB#" << MBB->getNumber() << " " << MBB->getName() +            << "\n  From: " << *I << "    To: "; +            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; +            else dbgs() << "End"; +            dbgs() << " RegionInstrs: " << NumRegionInstrs +            << " Remaining: " << RemainingInstrs << "\n"); +      if (DumpCriticalPathLength) { +        errs() << MF->getName(); +        errs() << ":BB# " << MBB->getNumber(); +        errs() << " " << MBB->getName() << " \n"; +      } + +      // Schedule a region: possibly reorder instructions. +      // This invalidates 'RegionEnd' and 'I'. +      Scheduler.schedule(); + +      // Close the current region. +      Scheduler.exitRegion(); + +      // Scheduling has invalidated the current iterator 'I'. Ask the +      // scheduler for the top of it's scheduled region. +      RegionEnd = Scheduler.begin(); +    } +    assert(RemainingInstrs == 0 && "Instruction count mismatch!"); +    Scheduler.finishBlock(); +    if (Scheduler.isPostRA()) { +      // FIXME: Ideally, no further passes should rely on kill flags. However, +      // thumb2 size reduction is currently an exception. +      Scheduler.fixupKills(MBB); +    } +  } +  Scheduler.finalizeSchedule(); +} + +void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { +  // unimplemented +} + +LLVM_DUMP_METHOD +void ReadyQueue::dump() { +  dbgs() << Name << ": "; +  for (unsigned i = 0, e = Queue.size(); i < e; ++i) +    dbgs() << Queue[i]->NodeNum << " "; +  dbgs() << "\n"; +} + +//===----------------------------------------------------------------------===// +// ScheduleDAGMI - Basic machine instruction scheduling. This is +// independent of PreRA/PostRA scheduling and involves no extra book-keeping for +// virtual registers. +// ===----------------------------------------------------------------------===/ + +// Provide a vtable anchor. +ScheduleDAGMI::~ScheduleDAGMI() { +} + +bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { +  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); +} + +bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { +  if (SuccSU != &ExitSU) { +    // Do not use WillCreateCycle, it assumes SD scheduling. +    // If Pred is reachable from Succ, then the edge creates a cycle. +    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) +      return false; +    Topo.AddPred(SuccSU, PredDep.getSUnit()); +  } +  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); +  // Return true regardless of whether a new edge needed to be inserted. +  return true; +} + +/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When +/// NumPredsLeft reaches zero, release the successor node. +/// +/// FIXME: Adjust SuccSU height based on MinLatency. +void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { +  SUnit *SuccSU = SuccEdge->getSUnit(); + +  if (SuccEdge->isWeak()) { +    --SuccSU->WeakPredsLeft; +    if (SuccEdge->isCluster()) +      NextClusterSucc = SuccSU; +    return; +  } +#ifndef NDEBUG +  if (SuccSU->NumPredsLeft == 0) { +    dbgs() << "*** Scheduling failed! ***\n"; +    SuccSU->dump(this); +    dbgs() << " has been released too many times!\n"; +    llvm_unreachable(nullptr); +  } +#endif +  // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, +  // CurrCycle may have advanced since then. +  if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) +    SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); + +  --SuccSU->NumPredsLeft; +  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) +    SchedImpl->releaseTopNode(SuccSU); +} + +/// releaseSuccessors - Call releaseSucc on each of SU's successors. +void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { +  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); +       I != E; ++I) { +    releaseSucc(SU, &*I); +  } +} + +/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When +/// NumSuccsLeft reaches zero, release the predecessor node. +/// +/// FIXME: Adjust PredSU height based on MinLatency. +void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { +  SUnit *PredSU = PredEdge->getSUnit(); + +  if (PredEdge->isWeak()) { +    --PredSU->WeakSuccsLeft; +    if (PredEdge->isCluster()) +      NextClusterPred = PredSU; +    return; +  } +#ifndef NDEBUG +  if (PredSU->NumSuccsLeft == 0) { +    dbgs() << "*** Scheduling failed! ***\n"; +    PredSU->dump(this); +    dbgs() << " has been released too many times!\n"; +    llvm_unreachable(nullptr); +  } +#endif +  // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, +  // CurrCycle may have advanced since then. +  if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) +    PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); + +  --PredSU->NumSuccsLeft; +  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) +    SchedImpl->releaseBottomNode(PredSU); +} + +/// releasePredecessors - Call releasePred on each of SU's predecessors. +void ScheduleDAGMI::releasePredecessors(SUnit *SU) { +  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); +       I != E; ++I) { +    releasePred(SU, &*I); +  } +} + +/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after +/// crossing a scheduling boundary. [begin, end) includes all instructions in +/// the region, including the boundary itself and single-instruction regions +/// that don't get scheduled. +void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, +                                     MachineBasicBlock::iterator begin, +                                     MachineBasicBlock::iterator end, +                                     unsigned regioninstrs) +{ +  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); + +  SchedImpl->initPolicy(begin, end, regioninstrs); +} + +/// This is normally called from the main scheduler loop but may also be invoked +/// by the scheduling strategy to perform additional code motion. +void ScheduleDAGMI::moveInstruction( +  MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { +  // Advance RegionBegin if the first instruction moves down. +  if (&*RegionBegin == MI) +    ++RegionBegin; + +  // Update the instruction stream. +  BB->splice(InsertPos, BB, MI); + +  // Update LiveIntervals +  if (LIS) +    LIS->handleMove(MI, /*UpdateFlags=*/true); + +  // Recede RegionBegin if an instruction moves above the first. +  if (RegionBegin == InsertPos) +    RegionBegin = MI; +} + +bool ScheduleDAGMI::checkSchedLimit() { +#ifndef NDEBUG +  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { +    CurrentTop = CurrentBottom; +    return false; +  } +  ++NumInstrsScheduled; +#endif +  return true; +} + +/// Per-region scheduling driver, called back from +/// MachineScheduler::runOnMachineFunction. This is a simplified driver that +/// does not consider liveness or register pressure. It is useful for PostRA +/// scheduling and potentially other custom schedulers. +void ScheduleDAGMI::schedule() { +  // Build the DAG. +  buildSchedGraph(AA); + +  Topo.InitDAGTopologicalSorting(); + +  postprocessDAG(); + +  SmallVector<SUnit*, 8> TopRoots, BotRoots; +  findRootsAndBiasEdges(TopRoots, BotRoots); + +  // Initialize the strategy before modifying the DAG. +  // This may initialize a DFSResult to be used for queue priority. +  SchedImpl->initialize(this); + +  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) +          SUnits[su].dumpAll(this)); +  if (ViewMISchedDAGs) viewGraph(); + +  // Initialize ready queues now that the DAG and priority data are finalized. +  initQueues(TopRoots, BotRoots); + +  bool IsTopNode = false; +  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { +    assert(!SU->isScheduled && "Node already scheduled"); +    if (!checkSchedLimit()) +      break; + +    MachineInstr *MI = SU->getInstr(); +    if (IsTopNode) { +      assert(SU->isTopReady() && "node still has unscheduled dependencies"); +      if (&*CurrentTop == MI) +        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); +      else +        moveInstruction(MI, CurrentTop); +    } +    else { +      assert(SU->isBottomReady() && "node still has unscheduled dependencies"); +      MachineBasicBlock::iterator priorII = +        priorNonDebug(CurrentBottom, CurrentTop); +      if (&*priorII == MI) +        CurrentBottom = priorII; +      else { +        if (&*CurrentTop == MI) +          CurrentTop = nextIfDebug(++CurrentTop, priorII); +        moveInstruction(MI, CurrentBottom); +        CurrentBottom = MI; +      } +    } +    // Notify the scheduling strategy before updating the DAG. +    // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues +    // runs, it can then use the accurate ReadyCycle time to determine whether +    // newly released nodes can move to the readyQ. +    SchedImpl->schedNode(SU, IsTopNode); + +    updateQueues(SU, IsTopNode); +  } +  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); + +  placeDebugValues(); + +  DEBUG({ +      unsigned BBNum = begin()->getParent()->getNumber(); +      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; +      dumpSchedule(); +      dbgs() << '\n'; +    }); +} + +/// Apply each ScheduleDAGMutation step in order. +void ScheduleDAGMI::postprocessDAG() { +  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { +    Mutations[i]->apply(this); +  } +} + +void ScheduleDAGMI:: +findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, +                      SmallVectorImpl<SUnit*> &BotRoots) { +  for (std::vector<SUnit>::iterator +         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { +    SUnit *SU = &(*I); +    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); + +    // Order predecessors so DFSResult follows the critical path. +    SU->biasCriticalPath(); + +    // A SUnit is ready to top schedule if it has no predecessors. +    if (!I->NumPredsLeft) +      TopRoots.push_back(SU); +    // A SUnit is ready to bottom schedule if it has no successors. +    if (!I->NumSuccsLeft) +      BotRoots.push_back(SU); +  } +  ExitSU.biasCriticalPath(); +} + +/// Identify DAG roots and setup scheduler queues. +void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, +                               ArrayRef<SUnit*> BotRoots) { +  NextClusterSucc = nullptr; +  NextClusterPred = nullptr; + +  // Release all DAG roots for scheduling, not including EntrySU/ExitSU. +  // +  // Nodes with unreleased weak edges can still be roots. +  // Release top roots in forward order. +  for (SmallVectorImpl<SUnit*>::const_iterator +         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { +    SchedImpl->releaseTopNode(*I); +  } +  // Release bottom roots in reverse order so the higher priority nodes appear +  // first. This is more natural and slightly more efficient. +  for (SmallVectorImpl<SUnit*>::const_reverse_iterator +         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { +    SchedImpl->releaseBottomNode(*I); +  } + +  releaseSuccessors(&EntrySU); +  releasePredecessors(&ExitSU); + +  SchedImpl->registerRoots(); + +  // Advance past initial DebugValues. +  CurrentTop = nextIfDebug(RegionBegin, RegionEnd); +  CurrentBottom = RegionEnd; +} + +/// Update scheduler queues after scheduling an instruction. +void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { +  // Release dependent instructions for scheduling. +  if (IsTopNode) +    releaseSuccessors(SU); +  else +    releasePredecessors(SU); + +  SU->isScheduled = true; +} + +/// Reinsert any remaining debug_values, just like the PostRA scheduler. +void ScheduleDAGMI::placeDebugValues() { +  // If first instruction was a DBG_VALUE then put it back. +  if (FirstDbgValue) { +    BB->splice(RegionBegin, BB, FirstDbgValue); +    RegionBegin = FirstDbgValue; +  } + +  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator +         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { +    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); +    MachineInstr *DbgValue = P.first; +    MachineBasicBlock::iterator OrigPrevMI = P.second; +    if (&*RegionBegin == DbgValue) +      ++RegionBegin; +    BB->splice(++OrigPrevMI, BB, DbgValue); +    if (OrigPrevMI == std::prev(RegionEnd)) +      RegionEnd = DbgValue; +  } +  DbgValues.clear(); +  FirstDbgValue = nullptr; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ScheduleDAGMI::dumpSchedule() const { +  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { +    if (SUnit *SU = getSUnit(&(*MI))) +      SU->dump(this); +    else +      dbgs() << "Missing SUnit\n"; +  } +} +#endif + +//===----------------------------------------------------------------------===// +// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals +// preservation. +//===----------------------------------------------------------------------===// + +ScheduleDAGMILive::~ScheduleDAGMILive() { +  delete DFSResult; +} + +/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after +/// crossing a scheduling boundary. [begin, end) includes all instructions in +/// the region, including the boundary itself and single-instruction regions +/// that don't get scheduled. +void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, +                                MachineBasicBlock::iterator begin, +                                MachineBasicBlock::iterator end, +                                unsigned regioninstrs) +{ +  // ScheduleDAGMI initializes SchedImpl's per-region policy. +  ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); + +  // For convenience remember the end of the liveness region. +  LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); + +  SUPressureDiffs.clear(); + +  ShouldTrackPressure = SchedImpl->shouldTrackPressure(); +} + +// Setup the register pressure trackers for the top scheduled top and bottom +// scheduled regions. +void ScheduleDAGMILive::initRegPressure() { +  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); +  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); + +  // Close the RPTracker to finalize live ins. +  RPTracker.closeRegion(); + +  DEBUG(RPTracker.dump()); + +  // Initialize the live ins and live outs. +  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); +  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); + +  // Close one end of the tracker so we can call +  // getMaxUpward/DownwardPressureDelta before advancing across any +  // instructions. This converts currently live regs into live ins/outs. +  TopRPTracker.closeTop(); +  BotRPTracker.closeBottom(); + +  BotRPTracker.initLiveThru(RPTracker); +  if (!BotRPTracker.getLiveThru().empty()) { +    TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); +    DEBUG(dbgs() << "Live Thru: "; +          dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); +  }; + +  // For each live out vreg reduce the pressure change associated with other +  // uses of the same vreg below the live-out reaching def. +  updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); + +  // Account for liveness generated by the region boundary. +  if (LiveRegionEnd != RegionEnd) { +    SmallVector<unsigned, 8> LiveUses; +    BotRPTracker.recede(&LiveUses); +    updatePressureDiffs(LiveUses); +  } + +  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); + +  // Cache the list of excess pressure sets in this region. This will also track +  // the max pressure in the scheduled code for these sets. +  RegionCriticalPSets.clear(); +  const std::vector<unsigned> &RegionPressure = +    RPTracker.getPressure().MaxSetPressure; +  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { +    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); +    if (RegionPressure[i] > Limit) { +      DEBUG(dbgs() << TRI->getRegPressureSetName(i) +            << " Limit " << Limit +            << " Actual " << RegionPressure[i] << "\n"); +      RegionCriticalPSets.push_back(PressureChange(i)); +    } +  } +  DEBUG(dbgs() << "Excess PSets: "; +        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) +          dbgs() << TRI->getRegPressureSetName( +            RegionCriticalPSets[i].getPSet()) << " "; +        dbgs() << "\n"); +} + +void ScheduleDAGMILive:: +updateScheduledPressure(const SUnit *SU, +                        const std::vector<unsigned> &NewMaxPressure) { +  const PressureDiff &PDiff = getPressureDiff(SU); +  unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); +  for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); +       I != E; ++I) { +    if (!I->isValid()) +      break; +    unsigned ID = I->getPSet(); +    while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) +      ++CritIdx; +    if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { +      if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() +          && NewMaxPressure[ID] <= INT16_MAX) +        RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); +    } +    unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); +    if (NewMaxPressure[ID] >= Limit - 2) { +      DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": " +            << NewMaxPressure[ID] +            << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit +            << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); +    } +  } +} + +/// Update the PressureDiff array for liveness after scheduling this +/// instruction. +void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { +  for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { +    /// FIXME: Currently assuming single-use physregs. +    unsigned Reg = LiveUses[LUIdx]; +    DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); +    if (!TRI->isVirtualRegister(Reg)) +      continue; + +    // This may be called before CurrentBottom has been initialized. However, +    // BotRPTracker must have a valid position. We want the value live into the +    // instruction or live out of the block, so ask for the previous +    // instruction's live-out. +    const LiveInterval &LI = LIS->getInterval(Reg); +    VNInfo *VNI; +    MachineBasicBlock::const_iterator I = +      nextIfDebug(BotRPTracker.getPos(), BB->end()); +    if (I == BB->end()) +      VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); +    else { +      LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); +      VNI = LRQ.valueIn(); +    } +    // RegisterPressureTracker guarantees that readsReg is true for LiveUses. +    assert(VNI && "No live value at use."); +    for (VReg2UseMap::iterator +           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { +      SUnit *SU = UI->SU; +      DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") " +            << *SU->getInstr()); +      // If this use comes before the reaching def, it cannot be a last use, so +      // descrease its pressure change. +      if (!SU->isScheduled && SU != &ExitSU) { +        LiveQueryResult LRQ +          = LI.Query(LIS->getInstructionIndex(SU->getInstr())); +        if (LRQ.valueIn() == VNI) +          getPressureDiff(SU).addPressureChange(Reg, true, &MRI); +      } +    } +  } +} + +/// schedule - Called back from MachineScheduler::runOnMachineFunction +/// after setting up the current scheduling region. [RegionBegin, RegionEnd) +/// only includes instructions that have DAG nodes, not scheduling boundaries. +/// +/// This is a skeletal driver, with all the functionality pushed into helpers, +/// so that it can be easilly extended by experimental schedulers. Generally, +/// implementing MachineSchedStrategy should be sufficient to implement a new +/// scheduling algorithm. However, if a scheduler further subclasses +/// ScheduleDAGMILive then it will want to override this virtual method in order +/// to update any specialized state. +void ScheduleDAGMILive::schedule() { +  buildDAGWithRegPressure(); + +  Topo.InitDAGTopologicalSorting(); + +  postprocessDAG(); + +  SmallVector<SUnit*, 8> TopRoots, BotRoots; +  findRootsAndBiasEdges(TopRoots, BotRoots); + +  // Initialize the strategy before modifying the DAG. +  // This may initialize a DFSResult to be used for queue priority. +  SchedImpl->initialize(this); + +  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) +          SUnits[su].dumpAll(this)); +  if (ViewMISchedDAGs) viewGraph(); + +  // Initialize ready queues now that the DAG and priority data are finalized. +  initQueues(TopRoots, BotRoots); + +  if (ShouldTrackPressure) { +    assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); +    TopRPTracker.setPos(CurrentTop); +  } + +  bool IsTopNode = false; +  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { +    assert(!SU->isScheduled && "Node already scheduled"); +    if (!checkSchedLimit()) +      break; + +    scheduleMI(SU, IsTopNode); + +    if (DFSResult) { +      unsigned SubtreeID = DFSResult->getSubtreeID(SU); +      if (!ScheduledTrees.test(SubtreeID)) { +        ScheduledTrees.set(SubtreeID); +        DFSResult->scheduleTree(SubtreeID); +        SchedImpl->scheduleTree(SubtreeID); +      } +    } + +    // Notify the scheduling strategy after updating the DAG. +    SchedImpl->schedNode(SU, IsTopNode); + +    updateQueues(SU, IsTopNode); +  } +  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); + +  placeDebugValues(); + +  DEBUG({ +      unsigned BBNum = begin()->getParent()->getNumber(); +      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; +      dumpSchedule(); +      dbgs() << '\n'; +    }); +} + +/// Build the DAG and setup three register pressure trackers. +void ScheduleDAGMILive::buildDAGWithRegPressure() { +  if (!ShouldTrackPressure) { +    RPTracker.reset(); +    RegionCriticalPSets.clear(); +    buildSchedGraph(AA); +    return; +  } + +  // Initialize the register pressure tracker used by buildSchedGraph. +  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, +                 /*TrackUntiedDefs=*/true); + +  // Account for liveness generate by the region boundary. +  if (LiveRegionEnd != RegionEnd) +    RPTracker.recede(); + +  // Build the DAG, and compute current register pressure. +  buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); + +  // Initialize top/bottom trackers after computing region pressure. +  initRegPressure(); +} + +void ScheduleDAGMILive::computeDFSResult() { +  if (!DFSResult) +    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); +  DFSResult->clear(); +  ScheduledTrees.clear(); +  DFSResult->resize(SUnits.size()); +  DFSResult->compute(SUnits); +  ScheduledTrees.resize(DFSResult->getNumSubtrees()); +} + +/// Compute the max cyclic critical path through the DAG. The scheduling DAG +/// only provides the critical path for single block loops. To handle loops that +/// span blocks, we could use the vreg path latencies provided by +/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently +/// available for use in the scheduler. +/// +/// The cyclic path estimation identifies a def-use pair that crosses the back +/// edge and considers the depth and height of the nodes. For example, consider +/// the following instruction sequence where each instruction has unit latency +/// and defines an epomymous virtual register: +/// +/// a->b(a,c)->c(b)->d(c)->exit +/// +/// The cyclic critical path is a two cycles: b->c->b +/// The acyclic critical path is four cycles: a->b->c->d->exit +/// LiveOutHeight = height(c) = len(c->d->exit) = 2 +/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 +/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 +/// LiveInDepth = depth(b) = len(a->b) = 1 +/// +/// LiveOutDepth - LiveInDepth = 3 - 1 = 2 +/// LiveInHeight - LiveOutHeight = 4 - 2 = 2 +/// CyclicCriticalPath = min(2, 2) = 2 +/// +/// This could be relevant to PostRA scheduling, but is currently implemented +/// assuming LiveIntervals. +unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { +  // This only applies to single block loop. +  if (!BB->isSuccessor(BB)) +    return 0; + +  unsigned MaxCyclicLatency = 0; +  // Visit each live out vreg def to find def/use pairs that cross iterations. +  ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; +  for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); +       RI != RE; ++RI) { +    unsigned Reg = *RI; +    if (!TRI->isVirtualRegister(Reg)) +        continue; +    const LiveInterval &LI = LIS->getInterval(Reg); +    const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); +    if (!DefVNI) +      continue; + +    MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); +    const SUnit *DefSU = getSUnit(DefMI); +    if (!DefSU) +      continue; + +    unsigned LiveOutHeight = DefSU->getHeight(); +    unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; +    // Visit all local users of the vreg def. +    for (VReg2UseMap::iterator +           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { +      if (UI->SU == &ExitSU) +        continue; + +      // Only consider uses of the phi. +      LiveQueryResult LRQ = +        LI.Query(LIS->getInstructionIndex(UI->SU->getInstr())); +      if (!LRQ.valueIn()->isPHIDef()) +        continue; + +      // Assume that a path spanning two iterations is a cycle, which could +      // overestimate in strange cases. This allows cyclic latency to be +      // estimated as the minimum slack of the vreg's depth or height. +      unsigned CyclicLatency = 0; +      if (LiveOutDepth > UI->SU->getDepth()) +        CyclicLatency = LiveOutDepth - UI->SU->getDepth(); + +      unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; +      if (LiveInHeight > LiveOutHeight) { +        if (LiveInHeight - LiveOutHeight < CyclicLatency) +          CyclicLatency = LiveInHeight - LiveOutHeight; +      } +      else +        CyclicLatency = 0; + +      DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" +            << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); +      if (CyclicLatency > MaxCyclicLatency) +        MaxCyclicLatency = CyclicLatency; +    } +  } +  DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); +  return MaxCyclicLatency; +} + +/// Move an instruction and update register pressure. +void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { +  // Move the instruction to its new location in the instruction stream. +  MachineInstr *MI = SU->getInstr(); + +  if (IsTopNode) { +    assert(SU->isTopReady() && "node still has unscheduled dependencies"); +    if (&*CurrentTop == MI) +      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); +    else { +      moveInstruction(MI, CurrentTop); +      TopRPTracker.setPos(MI); +    } + +    if (ShouldTrackPressure) { +      // Update top scheduled pressure. +      TopRPTracker.advance(); +      assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); +      updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); +    } +  } +  else { +    assert(SU->isBottomReady() && "node still has unscheduled dependencies"); +    MachineBasicBlock::iterator priorII = +      priorNonDebug(CurrentBottom, CurrentTop); +    if (&*priorII == MI) +      CurrentBottom = priorII; +    else { +      if (&*CurrentTop == MI) { +        CurrentTop = nextIfDebug(++CurrentTop, priorII); +        TopRPTracker.setPos(CurrentTop); +      } +      moveInstruction(MI, CurrentBottom); +      CurrentBottom = MI; +    } +    if (ShouldTrackPressure) { +      // Update bottom scheduled pressure. +      SmallVector<unsigned, 8> LiveUses; +      BotRPTracker.recede(&LiveUses); +      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); +      updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); +      updatePressureDiffs(LiveUses); +    } +  } +} + +//===----------------------------------------------------------------------===// +// LoadClusterMutation - DAG post-processing to cluster loads. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Post-process the DAG to create cluster edges between neighboring +/// loads. +class LoadClusterMutation : public ScheduleDAGMutation { +  struct LoadInfo { +    SUnit *SU; +    unsigned BaseReg; +    unsigned Offset; +    LoadInfo(SUnit *su, unsigned reg, unsigned ofs) +      : SU(su), BaseReg(reg), Offset(ofs) {} + +    bool operator<(const LoadInfo &RHS) const { +      return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); +    } +  }; + +  const TargetInstrInfo *TII; +  const TargetRegisterInfo *TRI; +public: +  LoadClusterMutation(const TargetInstrInfo *tii, +                      const TargetRegisterInfo *tri) +    : TII(tii), TRI(tri) {} + +  void apply(ScheduleDAGMI *DAG) override; +protected: +  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); +}; +} // anonymous + +void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, +                                                  ScheduleDAGMI *DAG) { +  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; +  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { +    SUnit *SU = Loads[Idx]; +    unsigned BaseReg; +    unsigned Offset; +    if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) +      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); +  } +  if (LoadRecords.size() < 2) +    return; +  std::sort(LoadRecords.begin(), LoadRecords.end()); +  unsigned ClusterLength = 1; +  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { +    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { +      ClusterLength = 1; +      continue; +    } + +    SUnit *SUa = LoadRecords[Idx].SU; +    SUnit *SUb = LoadRecords[Idx+1].SU; +    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) +        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { + +      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" +            << SUb->NodeNum << ")\n"); +      // Copy successor edges from SUa to SUb. Interleaving computation +      // dependent on SUa can prevent load combining due to register reuse. +      // Predecessor edges do not need to be copied from SUb to SUa since nearby +      // loads should have effectively the same inputs. +      for (SUnit::const_succ_iterator +             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { +        if (SI->getSUnit() == SUb) +          continue; +        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); +        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); +      } +      ++ClusterLength; +    } +    else +      ClusterLength = 1; +  } +} + +/// \brief Callback from DAG postProcessing to create cluster edges for loads. +void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { +  // Map DAG NodeNum to store chain ID. +  DenseMap<unsigned, unsigned> StoreChainIDs; +  // Map each store chain to a set of dependent loads. +  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; +  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { +    SUnit *SU = &DAG->SUnits[Idx]; +    if (!SU->getInstr()->mayLoad()) +      continue; +    unsigned ChainPredID = DAG->SUnits.size(); +    for (SUnit::const_pred_iterator +           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { +      if (PI->isCtrl()) { +        ChainPredID = PI->getSUnit()->NodeNum; +        break; +      } +    } +    // Check if this chain-like pred has been seen +    // before. ChainPredID==MaxNodeID for loads at the top of the schedule. +    unsigned NumChains = StoreChainDependents.size(); +    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = +      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); +    if (Result.second) +      StoreChainDependents.resize(NumChains + 1); +    StoreChainDependents[Result.first->second].push_back(SU); +  } +  // Iterate over the store chains. +  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) +    clusterNeighboringLoads(StoreChainDependents[Idx], DAG); +} + +//===----------------------------------------------------------------------===// +// MacroFusion - DAG post-processing to encourage fusion of macro ops. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Post-process the DAG to create cluster edges between instructions +/// that may be fused by the processor into a single operation. +class MacroFusion : public ScheduleDAGMutation { +  const TargetInstrInfo *TII; +public: +  MacroFusion(const TargetInstrInfo *tii): TII(tii) {} + +  void apply(ScheduleDAGMI *DAG) override; +}; +} // anonymous + +/// \brief Callback from DAG postProcessing to create cluster edges to encourage +/// fused operations. +void MacroFusion::apply(ScheduleDAGMI *DAG) { +  // For now, assume targets can only fuse with the branch. +  MachineInstr *Branch = DAG->ExitSU.getInstr(); +  if (!Branch) +    return; + +  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { +    SUnit *SU = &DAG->SUnits[--Idx]; +    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) +      continue; + +    // Create a single weak edge from SU to ExitSU. The only effect is to cause +    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no +    // need to copy predecessor edges from ExitSU to SU, since top-down +    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling +    // of SU, we could create an artificial edge from the deepest root, but it +    // hasn't been needed yet. +    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); +    (void)Success; +    assert(Success && "No DAG nodes should be reachable from ExitSU"); + +    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); +    break; +  } +} + +//===----------------------------------------------------------------------===// +// CopyConstrain - DAG post-processing to encourage copy elimination. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Post-process the DAG to create weak edges from all uses of a copy to +/// the one use that defines the copy's source vreg, most likely an induction +/// variable increment. +class CopyConstrain : public ScheduleDAGMutation { +  // Transient state. +  SlotIndex RegionBeginIdx; +  // RegionEndIdx is the slot index of the last non-debug instruction in the +  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. +  SlotIndex RegionEndIdx; +public: +  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} + +  void apply(ScheduleDAGMI *DAG) override; + +protected: +  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); +}; +} // anonymous + +/// constrainLocalCopy handles two possibilities: +/// 1) Local src: +/// I0:     = dst +/// I1: src = ... +/// I2:     = dst +/// I3: dst = src (copy) +/// (create pred->succ edges I0->I1, I2->I1) +/// +/// 2) Local copy: +/// I0: dst = src (copy) +/// I1:     = dst +/// I2: src = ... +/// I3:     = dst +/// (create pred->succ edges I1->I2, I3->I2) +/// +/// Although the MachineScheduler is currently constrained to single blocks, +/// this algorithm should handle extended blocks. An EBB is a set of +/// contiguously numbered blocks such that the previous block in the EBB is +/// always the single predecessor. +void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { +  LiveIntervals *LIS = DAG->getLIS(); +  MachineInstr *Copy = CopySU->getInstr(); + +  // Check for pure vreg copies. +  unsigned SrcReg = Copy->getOperand(1).getReg(); +  if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) +    return; + +  unsigned DstReg = Copy->getOperand(0).getReg(); +  if (!TargetRegisterInfo::isVirtualRegister(DstReg)) +    return; + +  // Check if either the dest or source is local. If it's live across a back +  // edge, it's not local. Note that if both vregs are live across the back +  // edge, we cannot successfully contrain the copy without cyclic scheduling. +  // If both the copy's source and dest are local live intervals, then we +  // should treat the dest as the global for the purpose of adding +  // constraints. This adds edges from source's other uses to the copy. +  unsigned LocalReg = SrcReg; +  unsigned GlobalReg = DstReg; +  LiveInterval *LocalLI = &LIS->getInterval(LocalReg); +  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { +    LocalReg = DstReg; +    GlobalReg = SrcReg; +    LocalLI = &LIS->getInterval(LocalReg); +    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) +      return; +  } +  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); + +  // Find the global segment after the start of the local LI. +  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); +  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a +  // local live range. We could create edges from other global uses to the local +  // start, but the coalescer should have already eliminated these cases, so +  // don't bother dealing with it. +  if (GlobalSegment == GlobalLI->end()) +    return; + +  // If GlobalSegment is killed at the LocalLI->start, the call to find() +  // returned the next global segment. But if GlobalSegment overlaps with +  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI +  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. +  if (GlobalSegment->contains(LocalLI->beginIndex())) +    ++GlobalSegment; + +  if (GlobalSegment == GlobalLI->end()) +    return; + +  // Check if GlobalLI contains a hole in the vicinity of LocalLI. +  if (GlobalSegment != GlobalLI->begin()) { +    // Two address defs have no hole. +    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, +                               GlobalSegment->start)) { +      return; +    } +    // If the prior global segment may be defined by the same two-address +    // instruction that also defines LocalLI, then can't make a hole here. +    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, +                               LocalLI->beginIndex())) { +      return; +    } +    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise +    // it would be a disconnected component in the live range. +    assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && +           "Disconnected LRG within the scheduling region."); +  } +  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); +  if (!GlobalDef) +    return; + +  SUnit *GlobalSU = DAG->getSUnit(GlobalDef); +  if (!GlobalSU) +    return; + +  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by +  // constraining the uses of the last local def to precede GlobalDef. +  SmallVector<SUnit*,8> LocalUses; +  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); +  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); +  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); +  for (SUnit::const_succ_iterator +         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); +       I != E; ++I) { +    if (I->getKind() != SDep::Data || I->getReg() != LocalReg) +      continue; +    if (I->getSUnit() == GlobalSU) +      continue; +    if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) +      return; +    LocalUses.push_back(I->getSUnit()); +  } +  // Open the top of the GlobalLI hole by constraining any earlier global uses +  // to precede the start of LocalLI. +  SmallVector<SUnit*,8> GlobalUses; +  MachineInstr *FirstLocalDef = +    LIS->getInstructionFromIndex(LocalLI->beginIndex()); +  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); +  for (SUnit::const_pred_iterator +         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { +    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) +      continue; +    if (I->getSUnit() == FirstLocalSU) +      continue; +    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) +      return; +    GlobalUses.push_back(I->getSUnit()); +  } +  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); +  // Add the weak edges. +  for (SmallVectorImpl<SUnit*>::const_iterator +         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { +    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU(" +          << GlobalSU->NodeNum << ")\n"); +    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); +  } +  for (SmallVectorImpl<SUnit*>::const_iterator +         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { +    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU(" +          << FirstLocalSU->NodeNum << ")\n"); +    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); +  } +} + +/// \brief Callback from DAG postProcessing to create weak edges to encourage +/// copy elimination. +void CopyConstrain::apply(ScheduleDAGMI *DAG) { +  assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); + +  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); +  if (FirstPos == DAG->end()) +    return; +  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); +  RegionEndIdx = DAG->getLIS()->getInstructionIndex( +    &*priorNonDebug(DAG->end(), DAG->begin())); + +  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { +    SUnit *SU = &DAG->SUnits[Idx]; +    if (!SU->getInstr()->isCopy()) +      continue; + +    constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); +  } +} + +//===----------------------------------------------------------------------===// +// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler +// and possibly other custom schedulers. +//===----------------------------------------------------------------------===// + +static const unsigned InvalidCycle = ~0U; + +SchedBoundary::~SchedBoundary() { delete HazardRec; } + +void SchedBoundary::reset() { +  // A new HazardRec is created for each DAG and owned by SchedBoundary. +  // Destroying and reconstructing it is very expensive though. So keep +  // invalid, placeholder HazardRecs. +  if (HazardRec && HazardRec->isEnabled()) { +    delete HazardRec; +    HazardRec = nullptr; +  } +  Available.clear(); +  Pending.clear(); +  CheckPending = false; +  NextSUs.clear(); +  CurrCycle = 0; +  CurrMOps = 0; +  MinReadyCycle = UINT_MAX; +  ExpectedLatency = 0; +  DependentLatency = 0; +  RetiredMOps = 0; +  MaxExecutedResCount = 0; +  ZoneCritResIdx = 0; +  IsResourceLimited = false; +  ReservedCycles.clear(); +#ifndef NDEBUG +  // Track the maximum number of stall cycles that could arise either from the +  // latency of a DAG edge or the number of cycles that a processor resource is +  // reserved (SchedBoundary::ReservedCycles). +  MaxObservedStall = 0; +#endif +  // Reserve a zero-count for invalid CritResIdx. +  ExecutedResCounts.resize(1); +  assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); +} + +void SchedRemainder:: +init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { +  reset(); +  if (!SchedModel->hasInstrSchedModel()) +    return; +  RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); +  for (std::vector<SUnit>::iterator +         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { +    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); +    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) +      * SchedModel->getMicroOpFactor(); +    for (TargetSchedModel::ProcResIter +           PI = SchedModel->getWriteProcResBegin(SC), +           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { +      unsigned PIdx = PI->ProcResourceIdx; +      unsigned Factor = SchedModel->getResourceFactor(PIdx); +      RemainingCounts[PIdx] += (Factor * PI->Cycles); +    } +  } +} + +void SchedBoundary:: +init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { +  reset(); +  DAG = dag; +  SchedModel = smodel; +  Rem = rem; +  if (SchedModel->hasInstrSchedModel()) { +    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); +    ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); +  } +} + +/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat +/// these "soft stalls" differently than the hard stall cycles based on CPU +/// resources and computed by checkHazard(). A fully in-order model +/// (MicroOpBufferSize==0) will not make use of this since instructions are not +/// available for scheduling until they are ready. However, a weaker in-order +/// model may use this for heuristics. For example, if a processor has in-order +/// behavior when reading certain resources, this may come into play. +unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { +  if (!SU->isUnbuffered) +    return 0; + +  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); +  if (ReadyCycle > CurrCycle) +    return ReadyCycle - CurrCycle; +  return 0; +} + +/// Compute the next cycle at which the given processor resource can be +/// scheduled. +unsigned SchedBoundary:: +getNextResourceCycle(unsigned PIdx, unsigned Cycles) { +  unsigned NextUnreserved = ReservedCycles[PIdx]; +  // If this resource has never been used, always return cycle zero. +  if (NextUnreserved == InvalidCycle) +    return 0; +  // For bottom-up scheduling add the cycles needed for the current operation. +  if (!isTop()) +    NextUnreserved += Cycles; +  return NextUnreserved; +} + +/// Does this SU have a hazard within the current instruction group. +/// +/// The scheduler supports two modes of hazard recognition. The first is the +/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that +/// supports highly complicated in-order reservation tables +/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. +/// +/// The second is a streamlined mechanism that checks for hazards based on +/// simple counters that the scheduler itself maintains. It explicitly checks +/// for instruction dispatch limitations, including the number of micro-ops that +/// can dispatch per cycle. +/// +/// TODO: Also check whether the SU must start a new group. +bool SchedBoundary::checkHazard(SUnit *SU) { +  if (HazardRec->isEnabled() +      && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { +    return true; +  } +  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); +  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { +    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops=" +          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); +    return true; +  } +  if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { +    const MCSchedClassDesc *SC = DAG->getSchedClass(SU); +    for (TargetSchedModel::ProcResIter +           PI = SchedModel->getWriteProcResBegin(SC), +           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { +      unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); +      if (NRCycle > CurrCycle) { +#ifndef NDEBUG +        MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); +#endif +        DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") " +              << SchedModel->getResourceName(PI->ProcResourceIdx) +              << "=" << NRCycle << "c\n"); +        return true; +      } +    } +  } +  return false; +} + +// Find the unscheduled node in ReadySUs with the highest latency. +unsigned SchedBoundary:: +findMaxLatency(ArrayRef<SUnit*> ReadySUs) { +  SUnit *LateSU = nullptr; +  unsigned RemLatency = 0; +  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); +       I != E; ++I) { +    unsigned L = getUnscheduledLatency(*I); +    if (L > RemLatency) { +      RemLatency = L; +      LateSU = *I; +    } +  } +  if (LateSU) { +    DEBUG(dbgs() << Available.getName() << " RemLatency SU(" +          << LateSU->NodeNum << ") " << RemLatency << "c\n"); +  } +  return RemLatency; +} + +// Count resources in this zone and the remaining unscheduled +// instruction. Return the max count, scaled. Set OtherCritIdx to the critical +// resource index, or zero if the zone is issue limited. +unsigned SchedBoundary:: +getOtherResourceCount(unsigned &OtherCritIdx) { +  OtherCritIdx = 0; +  if (!SchedModel->hasInstrSchedModel()) +    return 0; + +  unsigned OtherCritCount = Rem->RemIssueCount +    + (RetiredMOps * SchedModel->getMicroOpFactor()); +  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: " +        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); +  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); +       PIdx != PEnd; ++PIdx) { +    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; +    if (OtherCount > OtherCritCount) { +      OtherCritCount = OtherCount; +      OtherCritIdx = PIdx; +    } +  } +  if (OtherCritIdx) { +    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: " +          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) +          << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); +  } +  return OtherCritCount; +} + +void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { +  assert(SU->getInstr() && "Scheduled SUnit must have instr"); + +#ifndef NDEBUG +  // ReadyCycle was been bumped up to the CurrCycle when this node was +  // scheduled, but CurrCycle may have been eagerly advanced immediately after +  // scheduling, so may now be greater than ReadyCycle. +  if (ReadyCycle > CurrCycle) +    MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); +#endif + +  if (ReadyCycle < MinReadyCycle) +    MinReadyCycle = ReadyCycle; + +  // Check for interlocks first. For the purpose of other heuristics, an +  // instruction that cannot issue appears as if it's not in the ReadyQueue. +  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; +  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) +    Pending.push(SU); +  else +    Available.push(SU); + +  // Record this node as an immediate dependent of the scheduled node. +  NextSUs.insert(SU); +} + +void SchedBoundary::releaseTopNode(SUnit *SU) { +  if (SU->isScheduled) +    return; + +  releaseNode(SU, SU->TopReadyCycle); +} + +void SchedBoundary::releaseBottomNode(SUnit *SU) { +  if (SU->isScheduled) +    return; + +  releaseNode(SU, SU->BotReadyCycle); +} + +/// Move the boundary of scheduled code by one cycle. +void SchedBoundary::bumpCycle(unsigned NextCycle) { +  if (SchedModel->getMicroOpBufferSize() == 0) { +    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); +    if (MinReadyCycle > NextCycle) +      NextCycle = MinReadyCycle; +  } +  // Update the current micro-ops, which will issue in the next cycle. +  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); +  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; + +  // Decrement DependentLatency based on the next cycle. +  if ((NextCycle - CurrCycle) > DependentLatency) +    DependentLatency = 0; +  else +    DependentLatency -= (NextCycle - CurrCycle); + +  if (!HazardRec->isEnabled()) { +    // Bypass HazardRec virtual calls. +    CurrCycle = NextCycle; +  } +  else { +    // Bypass getHazardType calls in case of long latency. +    for (; CurrCycle != NextCycle; ++CurrCycle) { +      if (isTop()) +        HazardRec->AdvanceCycle(); +      else +        HazardRec->RecedeCycle(); +    } +  } +  CheckPending = true; +  unsigned LFactor = SchedModel->getLatencyFactor(); +  IsResourceLimited = +    (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) +    > (int)LFactor; + +  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); +} + +void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { +  ExecutedResCounts[PIdx] += Count; +  if (ExecutedResCounts[PIdx] > MaxExecutedResCount) +    MaxExecutedResCount = ExecutedResCounts[PIdx]; +} + +/// Add the given processor resource to this scheduled zone. +/// +/// \param Cycles indicates the number of consecutive (non-pipelined) cycles +/// during which this resource is consumed. +/// +/// \return the next cycle at which the instruction may execute without +/// oversubscribing resources. +unsigned SchedBoundary:: +countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { +  unsigned Factor = SchedModel->getResourceFactor(PIdx); +  unsigned Count = Factor * Cycles; +  DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) +        << " +" << Cycles << "x" << Factor << "u\n"); + +  // Update Executed resources counts. +  incExecutedResources(PIdx, Count); +  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); +  Rem->RemainingCounts[PIdx] -= Count; + +  // Check if this resource exceeds the current critical resource. If so, it +  // becomes the critical resource. +  if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { +    ZoneCritResIdx = PIdx; +    DEBUG(dbgs() << "  *** Critical resource " +          << SchedModel->getResourceName(PIdx) << ": " +          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); +  } +  // For reserved resources, record the highest cycle using the resource. +  unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); +  if (NextAvailable > CurrCycle) { +    DEBUG(dbgs() << "  Resource conflict: " +          << SchedModel->getProcResource(PIdx)->Name << " reserved until @" +          << NextAvailable << "\n"); +  } +  return NextAvailable; +} + +/// Move the boundary of scheduled code by one SUnit. +void SchedBoundary::bumpNode(SUnit *SU) { +  // Update the reservation table. +  if (HazardRec->isEnabled()) { +    if (!isTop() && SU->isCall) { +      // Calls are scheduled with their preceding instructions. For bottom-up +      // scheduling, clear the pipeline state before emitting. +      HazardRec->Reset(); +    } +    HazardRec->EmitInstruction(SU); +  } +  // checkHazard should prevent scheduling multiple instructions per cycle that +  // exceed the issue width. +  const MCSchedClassDesc *SC = DAG->getSchedClass(SU); +  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); +  assert( +      (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && +      "Cannot schedule this instruction's MicroOps in the current cycle."); + +  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); +  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n"); + +  unsigned NextCycle = CurrCycle; +  switch (SchedModel->getMicroOpBufferSize()) { +  case 0: +    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); +    break; +  case 1: +    if (ReadyCycle > NextCycle) { +      NextCycle = ReadyCycle; +      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n"); +    } +    break; +  default: +    // We don't currently model the OOO reorder buffer, so consider all +    // scheduled MOps to be "retired". We do loosely model in-order resource +    // latency. If this instruction uses an in-order resource, account for any +    // likely stall cycles. +    if (SU->isUnbuffered && ReadyCycle > NextCycle) +      NextCycle = ReadyCycle; +    break; +  } +  RetiredMOps += IncMOps; + +  // Update resource counts and critical resource. +  if (SchedModel->hasInstrSchedModel()) { +    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); +    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); +    Rem->RemIssueCount -= DecRemIssue; +    if (ZoneCritResIdx) { +      // Scale scheduled micro-ops for comparing with the critical resource. +      unsigned ScaledMOps = +        RetiredMOps * SchedModel->getMicroOpFactor(); + +      // If scaled micro-ops are now more than the previous critical resource by +      // a full cycle, then micro-ops issue becomes critical. +      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) +          >= (int)SchedModel->getLatencyFactor()) { +        ZoneCritResIdx = 0; +        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: " +              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); +      } +    } +    for (TargetSchedModel::ProcResIter +           PI = SchedModel->getWriteProcResBegin(SC), +           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { +      unsigned RCycle = +        countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); +      if (RCycle > NextCycle) +        NextCycle = RCycle; +    } +    if (SU->hasReservedResource) { +      // For reserved resources, record the highest cycle using the resource. +      // For top-down scheduling, this is the cycle in which we schedule this +      // instruction plus the number of cycles the operations reserves the +      // resource. For bottom-up is it simply the instruction's cycle. +      for (TargetSchedModel::ProcResIter +             PI = SchedModel->getWriteProcResBegin(SC), +             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { +        unsigned PIdx = PI->ProcResourceIdx; +        if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { +          if (isTop()) { +            ReservedCycles[PIdx] = +              std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); +          } +          else +            ReservedCycles[PIdx] = NextCycle; +        } +      } +    } +  } +  // Update ExpectedLatency and DependentLatency. +  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; +  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; +  if (SU->getDepth() > TopLatency) { +    TopLatency = SU->getDepth(); +    DEBUG(dbgs() << "  " << Available.getName() +          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); +  } +  if (SU->getHeight() > BotLatency) { +    BotLatency = SU->getHeight(); +    DEBUG(dbgs() << "  " << Available.getName() +          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); +  } +  // If we stall for any reason, bump the cycle. +  if (NextCycle > CurrCycle) { +    bumpCycle(NextCycle); +  } +  else { +    // After updating ZoneCritResIdx and ExpectedLatency, check if we're +    // resource limited. If a stall occurred, bumpCycle does this. +    unsigned LFactor = SchedModel->getLatencyFactor(); +    IsResourceLimited = +      (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) +      > (int)LFactor; +  } +  // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle +  // resets CurrMOps. Loop to handle instructions with more MOps than issue in +  // one cycle.  Since we commonly reach the max MOps here, opportunistically +  // bump the cycle to avoid uselessly checking everything in the readyQ. +  CurrMOps += IncMOps; +  while (CurrMOps >= SchedModel->getIssueWidth()) { +    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps +          << " at cycle " << CurrCycle << '\n'); +    bumpCycle(++NextCycle); +  } +  DEBUG(dumpScheduledState()); +} + +/// Release pending ready nodes in to the available queue. This makes them +/// visible to heuristics. +void SchedBoundary::releasePending() { +  // If the available queue is empty, it is safe to reset MinReadyCycle. +  if (Available.empty()) +    MinReadyCycle = UINT_MAX; + +  // Check to see if any of the pending instructions are ready to issue.  If +  // so, add them to the available queue. +  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; +  for (unsigned i = 0, e = Pending.size(); i != e; ++i) { +    SUnit *SU = *(Pending.begin()+i); +    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; + +    if (ReadyCycle < MinReadyCycle) +      MinReadyCycle = ReadyCycle; + +    if (!IsBuffered && ReadyCycle > CurrCycle) +      continue; + +    if (checkHazard(SU)) +      continue; + +    Available.push(SU); +    Pending.remove(Pending.begin()+i); +    --i; --e; +  } +  DEBUG(if (!Pending.empty()) Pending.dump()); +  CheckPending = false; +} + +/// Remove SU from the ready set for this boundary. +void SchedBoundary::removeReady(SUnit *SU) { +  if (Available.isInQueue(SU)) +    Available.remove(Available.find(SU)); +  else { +    assert(Pending.isInQueue(SU) && "bad ready count"); +    Pending.remove(Pending.find(SU)); +  } +} + +/// If this queue only has one ready candidate, return it. As a side effect, +/// defer any nodes that now hit a hazard, and advance the cycle until at least +/// one node is ready. If multiple instructions are ready, return NULL. +SUnit *SchedBoundary::pickOnlyChoice() { +  if (CheckPending) +    releasePending(); + +  if (CurrMOps > 0) { +    // Defer any ready instrs that now have a hazard. +    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { +      if (checkHazard(*I)) { +        Pending.push(*I); +        I = Available.remove(I); +        continue; +      } +      ++I; +    } +  } +  for (unsigned i = 0; Available.empty(); ++i) { +//  FIXME: Re-enable assert once PR20057 is resolved. +//    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && +//           "permanent hazard"); +    (void)i; +    bumpCycle(CurrCycle + 1); +    releasePending(); +  } +  if (Available.size() == 1) +    return *Available.begin(); +  return nullptr; +} + +#ifndef NDEBUG +// This is useful information to dump after bumpNode. +// Note that the Queue contents are more useful before pickNodeFromQueue. +void SchedBoundary::dumpScheduledState() { +  unsigned ResFactor; +  unsigned ResCount; +  if (ZoneCritResIdx) { +    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); +    ResCount = getResourceCount(ZoneCritResIdx); +  } +  else { +    ResFactor = SchedModel->getMicroOpFactor(); +    ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); +  } +  unsigned LFactor = SchedModel->getLatencyFactor(); +  dbgs() << Available.getName() << " @" << CurrCycle << "c\n" +         << "  Retired: " << RetiredMOps; +  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c"; +  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, " +         << ResCount / ResFactor << " " +         << SchedModel->getResourceName(ZoneCritResIdx) +         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n" +         << (IsResourceLimited ? "  - Resource" : "  - Latency") +         << " limited.\n"; +} +#endif + +//===----------------------------------------------------------------------===// +// GenericScheduler - Generic implementation of MachineSchedStrategy. +//===----------------------------------------------------------------------===// + +void GenericSchedulerBase::SchedCandidate:: +initResourceDelta(const ScheduleDAGMI *DAG, +                  const TargetSchedModel *SchedModel) { +  if (!Policy.ReduceResIdx && !Policy.DemandResIdx) +    return; + +  const MCSchedClassDesc *SC = DAG->getSchedClass(SU); +  for (TargetSchedModel::ProcResIter +         PI = SchedModel->getWriteProcResBegin(SC), +         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { +    if (PI->ProcResourceIdx == Policy.ReduceResIdx) +      ResDelta.CritResources += PI->Cycles; +    if (PI->ProcResourceIdx == Policy.DemandResIdx) +      ResDelta.DemandedResources += PI->Cycles; +  } +} + +/// Set the CandPolicy given a scheduling zone given the current resources and +/// latencies inside and outside the zone. +void GenericSchedulerBase::setPolicy(CandPolicy &Policy, +                                     bool IsPostRA, +                                     SchedBoundary &CurrZone, +                                     SchedBoundary *OtherZone) { +  // Apply preemptive heuristics based on the total latency and resources +  // inside and outside this zone. Potential stalls should be considered before +  // following this policy. + +  // Compute remaining latency. We need this both to determine whether the +  // overall schedule has become latency-limited and whether the instructions +  // outside this zone are resource or latency limited. +  // +  // The "dependent" latency is updated incrementally during scheduling as the +  // max height/depth of scheduled nodes minus the cycles since it was +  // scheduled: +  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone +  // +  // The "independent" latency is the max ready queue depth: +  //   ILat = max N.depth for N in Available|Pending +  // +  // RemainingLatency is the greater of independent and dependent latency. +  unsigned RemLatency = CurrZone.getDependentLatency(); +  RemLatency = std::max(RemLatency, +                        CurrZone.findMaxLatency(CurrZone.Available.elements())); +  RemLatency = std::max(RemLatency, +                        CurrZone.findMaxLatency(CurrZone.Pending.elements())); + +  // Compute the critical resource outside the zone. +  unsigned OtherCritIdx = 0; +  unsigned OtherCount = +    OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; + +  bool OtherResLimited = false; +  if (SchedModel->hasInstrSchedModel()) { +    unsigned LFactor = SchedModel->getLatencyFactor(); +    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; +  } +  // Schedule aggressively for latency in PostRA mode. We don't check for +  // acyclic latency during PostRA, and highly out-of-order processors will +  // skip PostRA scheduling. +  if (!OtherResLimited) { +    if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { +      Policy.ReduceLatency |= true; +      DEBUG(dbgs() << "  " << CurrZone.Available.getName() +            << " RemainingLatency " << RemLatency << " + " +            << CurrZone.getCurrCycle() << "c > CritPath " +            << Rem.CriticalPath << "\n"); +    } +  } +  // If the same resource is limiting inside and outside the zone, do nothing. +  if (CurrZone.getZoneCritResIdx() == OtherCritIdx) +    return; + +  DEBUG( +    if (CurrZone.isResourceLimited()) { +      dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: " +             << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) +             << "\n"; +    } +    if (OtherResLimited) +      dbgs() << "  RemainingLimit: " +             << SchedModel->getResourceName(OtherCritIdx) << "\n"; +    if (!CurrZone.isResourceLimited() && !OtherResLimited) +      dbgs() << "  Latency limited both directions.\n"); + +  if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) +    Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); + +  if (OtherResLimited) +    Policy.DemandResIdx = OtherCritIdx; +} + +#ifndef NDEBUG +const char *GenericSchedulerBase::getReasonStr( +  GenericSchedulerBase::CandReason Reason) { +  switch (Reason) { +  case NoCand:         return "NOCAND    "; +  case PhysRegCopy:    return "PREG-COPY"; +  case RegExcess:      return "REG-EXCESS"; +  case RegCritical:    return "REG-CRIT  "; +  case Stall:          return "STALL     "; +  case Cluster:        return "CLUSTER   "; +  case Weak:           return "WEAK      "; +  case RegMax:         return "REG-MAX   "; +  case ResourceReduce: return "RES-REDUCE"; +  case ResourceDemand: return "RES-DEMAND"; +  case TopDepthReduce: return "TOP-DEPTH "; +  case TopPathReduce:  return "TOP-PATH  "; +  case BotHeightReduce:return "BOT-HEIGHT"; +  case BotPathReduce:  return "BOT-PATH  "; +  case NextDefUse:     return "DEF-USE   "; +  case NodeOrder:      return "ORDER     "; +  }; +  llvm_unreachable("Unknown reason!"); +} + +void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { +  PressureChange P; +  unsigned ResIdx = 0; +  unsigned Latency = 0; +  switch (Cand.Reason) { +  default: +    break; +  case RegExcess: +    P = Cand.RPDelta.Excess; +    break; +  case RegCritical: +    P = Cand.RPDelta.CriticalMax; +    break; +  case RegMax: +    P = Cand.RPDelta.CurrentMax; +    break; +  case ResourceReduce: +    ResIdx = Cand.Policy.ReduceResIdx; +    break; +  case ResourceDemand: +    ResIdx = Cand.Policy.DemandResIdx; +    break; +  case TopDepthReduce: +    Latency = Cand.SU->getDepth(); +    break; +  case TopPathReduce: +    Latency = Cand.SU->getHeight(); +    break; +  case BotHeightReduce: +    Latency = Cand.SU->getHeight(); +    break; +  case BotPathReduce: +    Latency = Cand.SU->getDepth(); +    break; +  } +  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); +  if (P.isValid()) +    dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) +           << ":" << P.getUnitInc() << " "; +  else +    dbgs() << "      "; +  if (ResIdx) +    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; +  else +    dbgs() << "         "; +  if (Latency) +    dbgs() << " " << Latency << " cycles "; +  else +    dbgs() << "          "; +  dbgs() << '\n'; +} +#endif + +/// Return true if this heuristic determines order. +static bool tryLess(int TryVal, int CandVal, +                    GenericSchedulerBase::SchedCandidate &TryCand, +                    GenericSchedulerBase::SchedCandidate &Cand, +                    GenericSchedulerBase::CandReason Reason) { +  if (TryVal < CandVal) { +    TryCand.Reason = Reason; +    return true; +  } +  if (TryVal > CandVal) { +    if (Cand.Reason > Reason) +      Cand.Reason = Reason; +    return true; +  } +  Cand.setRepeat(Reason); +  return false; +} + +static bool tryGreater(int TryVal, int CandVal, +                       GenericSchedulerBase::SchedCandidate &TryCand, +                       GenericSchedulerBase::SchedCandidate &Cand, +                       GenericSchedulerBase::CandReason Reason) { +  if (TryVal > CandVal) { +    TryCand.Reason = Reason; +    return true; +  } +  if (TryVal < CandVal) { +    if (Cand.Reason > Reason) +      Cand.Reason = Reason; +    return true; +  } +  Cand.setRepeat(Reason); +  return false; +} + +static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, +                       GenericSchedulerBase::SchedCandidate &Cand, +                       SchedBoundary &Zone) { +  if (Zone.isTop()) { +    if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { +      if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), +                  TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) +        return true; +    } +    if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), +                   TryCand, Cand, GenericSchedulerBase::TopPathReduce)) +      return true; +  } +  else { +    if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { +      if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), +                  TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) +        return true; +    } +    if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), +                   TryCand, Cand, GenericSchedulerBase::BotPathReduce)) +      return true; +  } +  return false; +} + +static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, +                      bool IsTop) { +  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") +        << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); +} + +void GenericScheduler::initialize(ScheduleDAGMI *dag) { +  assert(dag->hasVRegLiveness() && +         "(PreRA)GenericScheduler needs vreg liveness"); +  DAG = static_cast<ScheduleDAGMILive*>(dag); +  SchedModel = DAG->getSchedModel(); +  TRI = DAG->TRI; + +  Rem.init(DAG, SchedModel); +  Top.init(DAG, SchedModel, &Rem); +  Bot.init(DAG, SchedModel, &Rem); + +  // Initialize resource counts. + +  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or +  // are disabled, then these HazardRecs will be disabled. +  const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); +  if (!Top.HazardRec) { +    Top.HazardRec = +        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( +            Itin, DAG); +  } +  if (!Bot.HazardRec) { +    Bot.HazardRec = +        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( +            Itin, DAG); +  } +} + +/// Initialize the per-region scheduling policy. +void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, +                                  MachineBasicBlock::iterator End, +                                  unsigned NumRegionInstrs) { +  const MachineFunction &MF = *Begin->getParent()->getParent(); +  const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); + +  // Avoid setting up the register pressure tracker for small regions to save +  // compile time. As a rough heuristic, only track pressure when the number of +  // schedulable instructions exceeds half the integer register file. +  RegionPolicy.ShouldTrackPressure = true; +  for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { +    MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; +    if (TLI->isTypeLegal(LegalIntVT)) { +      unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( +        TLI->getRegClassFor(LegalIntVT)); +      RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); +    } +  } + +  // For generic targets, we default to bottom-up, because it's simpler and more +  // compile-time optimizations have been implemented in that direction. +  RegionPolicy.OnlyBottomUp = true; + +  // Allow the subtarget to override default policy. +  MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, +                                        NumRegionInstrs); + +  // After subtarget overrides, apply command line options. +  if (!EnableRegPressure) +    RegionPolicy.ShouldTrackPressure = false; + +  // Check -misched-topdown/bottomup can force or unforce scheduling direction. +  // e.g. -misched-bottomup=false allows scheduling in both directions. +  assert((!ForceTopDown || !ForceBottomUp) && +         "-misched-topdown incompatible with -misched-bottomup"); +  if (ForceBottomUp.getNumOccurrences() > 0) { +    RegionPolicy.OnlyBottomUp = ForceBottomUp; +    if (RegionPolicy.OnlyBottomUp) +      RegionPolicy.OnlyTopDown = false; +  } +  if (ForceTopDown.getNumOccurrences() > 0) { +    RegionPolicy.OnlyTopDown = ForceTopDown; +    if (RegionPolicy.OnlyTopDown) +      RegionPolicy.OnlyBottomUp = false; +  } +} + +/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic +/// critical path by more cycles than it takes to drain the instruction buffer. +/// We estimate an upper bounds on in-flight instructions as: +/// +/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) +/// InFlightIterations = AcyclicPath / CyclesPerIteration +/// InFlightResources = InFlightIterations * LoopResources +/// +/// TODO: Check execution resources in addition to IssueCount. +void GenericScheduler::checkAcyclicLatency() { +  if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) +    return; + +  // Scaled number of cycles per loop iteration. +  unsigned IterCount = +    std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), +             Rem.RemIssueCount); +  // Scaled acyclic critical path. +  unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); +  // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop +  unsigned InFlightCount = +    (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; +  unsigned BufferLimit = +    SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); + +  Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; + +  DEBUG(dbgs() << "IssueCycles=" +        << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " +        << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() +        << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount +        << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() +        << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; +        if (Rem.IsAcyclicLatencyLimited) +          dbgs() << "  ACYCLIC LATENCY LIMIT\n"); +} + +void GenericScheduler::registerRoots() { +  Rem.CriticalPath = DAG->ExitSU.getDepth(); + +  // Some roots may not feed into ExitSU. Check all of them in case. +  for (std::vector<SUnit*>::const_iterator +         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { +    if ((*I)->getDepth() > Rem.CriticalPath) +      Rem.CriticalPath = (*I)->getDepth(); +  } +  DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); +  if (DumpCriticalPathLength) { +    errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; +  } + +  if (EnableCyclicPath) { +    Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); +    checkAcyclicLatency(); +  } +} + +static bool tryPressure(const PressureChange &TryP, +                        const PressureChange &CandP, +                        GenericSchedulerBase::SchedCandidate &TryCand, +                        GenericSchedulerBase::SchedCandidate &Cand, +                        GenericSchedulerBase::CandReason Reason) { +  int TryRank = TryP.getPSetOrMax(); +  int CandRank = CandP.getPSetOrMax(); +  // If both candidates affect the same set, go with the smallest increase. +  if (TryRank == CandRank) { +    return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, +                   Reason); +  } +  // If one candidate decreases and the other increases, go with it. +  // Invalid candidates have UnitInc==0. +  if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, +                 Reason)) { +    return true; +  } +  // If the candidates are decreasing pressure, reverse priority. +  if (TryP.getUnitInc() < 0) +    std::swap(TryRank, CandRank); +  return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); +} + +static unsigned getWeakLeft(const SUnit *SU, bool isTop) { +  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; +} + +/// Minimize physical register live ranges. Regalloc wants them adjacent to +/// their physreg def/use. +/// +/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf +/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled +/// with the operation that produces or consumes the physreg. We'll do this when +/// regalloc has support for parallel copies. +static int biasPhysRegCopy(const SUnit *SU, bool isTop) { +  const MachineInstr *MI = SU->getInstr(); +  if (!MI->isCopy()) +    return 0; + +  unsigned ScheduledOper = isTop ? 1 : 0; +  unsigned UnscheduledOper = isTop ? 0 : 1; +  // If we have already scheduled the physreg produce/consumer, immediately +  // schedule the copy. +  if (TargetRegisterInfo::isPhysicalRegister( +        MI->getOperand(ScheduledOper).getReg())) +    return 1; +  // If the physreg is at the boundary, defer it. Otherwise schedule it +  // immediately to free the dependent. We can hoist the copy later. +  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; +  if (TargetRegisterInfo::isPhysicalRegister( +        MI->getOperand(UnscheduledOper).getReg())) +    return AtBoundary ? -1 : 1; +  return 0; +} + +/// Apply a set of heursitics to a new candidate. Heuristics are currently +/// hierarchical. This may be more efficient than a graduated cost model because +/// we don't need to evaluate all aspects of the model for each node in the +/// queue. But it's really done to make the heuristics easier to debug and +/// statistically analyze. +/// +/// \param Cand provides the policy and current best candidate. +/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. +/// \param Zone describes the scheduled zone that we are extending. +/// \param RPTracker describes reg pressure within the scheduled zone. +/// \param TempTracker is a scratch pressure tracker to reuse in queries. +void GenericScheduler::tryCandidate(SchedCandidate &Cand, +                                    SchedCandidate &TryCand, +                                    SchedBoundary &Zone, +                                    const RegPressureTracker &RPTracker, +                                    RegPressureTracker &TempTracker) { + +  if (DAG->isTrackingPressure()) { +    // Always initialize TryCand's RPDelta. +    if (Zone.isTop()) { +      TempTracker.getMaxDownwardPressureDelta( +        TryCand.SU->getInstr(), +        TryCand.RPDelta, +        DAG->getRegionCriticalPSets(), +        DAG->getRegPressure().MaxSetPressure); +    } +    else { +      if (VerifyScheduling) { +        TempTracker.getMaxUpwardPressureDelta( +          TryCand.SU->getInstr(), +          &DAG->getPressureDiff(TryCand.SU), +          TryCand.RPDelta, +          DAG->getRegionCriticalPSets(), +          DAG->getRegPressure().MaxSetPressure); +      } +      else { +        RPTracker.getUpwardPressureDelta( +          TryCand.SU->getInstr(), +          DAG->getPressureDiff(TryCand.SU), +          TryCand.RPDelta, +          DAG->getRegionCriticalPSets(), +          DAG->getRegPressure().MaxSetPressure); +      } +    } +  } +  DEBUG(if (TryCand.RPDelta.Excess.isValid()) +          dbgs() << "  SU(" << TryCand.SU->NodeNum << ") " +                 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) +                 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); + +  // Initialize the candidate if needed. +  if (!Cand.isValid()) { +    TryCand.Reason = NodeOrder; +    return; +  } + +  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), +                 biasPhysRegCopy(Cand.SU, Zone.isTop()), +                 TryCand, Cand, PhysRegCopy)) +    return; + +  // Avoid exceeding the target's limit. +  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, +                                               Cand.RPDelta.Excess, +                                               TryCand, Cand, RegExcess)) +    return; + +  // Avoid increasing the max critical pressure in the scheduled region. +  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, +                                               Cand.RPDelta.CriticalMax, +                                               TryCand, Cand, RegCritical)) +    return; + +  // For loops that are acyclic path limited, aggressively schedule for latency. +  // This can result in very long dependence chains scheduled in sequence, so +  // once every cycle (when CurrMOps == 0), switch to normal heuristics. +  if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() +      && tryLatency(TryCand, Cand, Zone)) +    return; + +  // Prioritize instructions that read unbuffered resources by stall cycles. +  if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), +              Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) +    return; + +  // Keep clustered nodes together to encourage downstream peephole +  // optimizations which may reduce resource requirements. +  // +  // This is a best effort to set things up for a post-RA pass. Optimizations +  // like generating loads of multiple registers should ideally be done within +  // the scheduler pass by combining the loads during DAG postprocessing. +  const SUnit *NextClusterSU = +    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); +  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, +                 TryCand, Cand, Cluster)) +    return; + +  // Weak edges are for clustering and other constraints. +  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), +              getWeakLeft(Cand.SU, Zone.isTop()), +              TryCand, Cand, Weak)) { +    return; +  } +  // Avoid increasing the max pressure of the entire region. +  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, +                                               Cand.RPDelta.CurrentMax, +                                               TryCand, Cand, RegMax)) +    return; + +  // Avoid critical resource consumption and balance the schedule. +  TryCand.initResourceDelta(DAG, SchedModel); +  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, +              TryCand, Cand, ResourceReduce)) +    return; +  if (tryGreater(TryCand.ResDelta.DemandedResources, +                 Cand.ResDelta.DemandedResources, +                 TryCand, Cand, ResourceDemand)) +    return; + +  // Avoid serializing long latency dependence chains. +  // For acyclic path limited loops, latency was already checked above. +  if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited +      && tryLatency(TryCand, Cand, Zone)) { +    return; +  } + +  // Prefer immediate defs/users of the last scheduled instruction. This is a +  // local pressure avoidance strategy that also makes the machine code +  // readable. +  if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), +                 TryCand, Cand, NextDefUse)) +    return; + +  // Fall through to original instruction order. +  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) +      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { +    TryCand.Reason = NodeOrder; +  } +} + +/// Pick the best candidate from the queue. +/// +/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during +/// DAG building. To adjust for the current scheduling location we need to +/// maintain the number of vreg uses remaining to be top-scheduled. +void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, +                                         const RegPressureTracker &RPTracker, +                                         SchedCandidate &Cand) { +  ReadyQueue &Q = Zone.Available; + +  DEBUG(Q.dump()); + +  // getMaxPressureDelta temporarily modifies the tracker. +  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); + +  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { + +    SchedCandidate TryCand(Cand.Policy); +    TryCand.SU = *I; +    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); +    if (TryCand.Reason != NoCand) { +      // Initialize resource delta if needed in case future heuristics query it. +      if (TryCand.ResDelta == SchedResourceDelta()) +        TryCand.initResourceDelta(DAG, SchedModel); +      Cand.setBest(TryCand); +      DEBUG(traceCandidate(Cand)); +    } +  } +} + +/// Pick the best candidate node from either the top or bottom queue. +SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { +  // Schedule as far as possible in the direction of no choice. This is most +  // efficient, but also provides the best heuristics for CriticalPSets. +  if (SUnit *SU = Bot.pickOnlyChoice()) { +    IsTopNode = false; +    DEBUG(dbgs() << "Pick Bot NOCAND\n"); +    return SU; +  } +  if (SUnit *SU = Top.pickOnlyChoice()) { +    IsTopNode = true; +    DEBUG(dbgs() << "Pick Top NOCAND\n"); +    return SU; +  } +  CandPolicy NoPolicy; +  SchedCandidate BotCand(NoPolicy); +  SchedCandidate TopCand(NoPolicy); +  // Set the bottom-up policy based on the state of the current bottom zone and +  // the instructions outside the zone, including the top zone. +  setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); +  // Set the top-down policy based on the state of the current top zone and +  // the instructions outside the zone, including the bottom zone. +  setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); + +  // Prefer bottom scheduling when heuristics are silent. +  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); +  assert(BotCand.Reason != NoCand && "failed to find the first candidate"); + +  // If either Q has a single candidate that provides the least increase in +  // Excess pressure, we can immediately schedule from that Q. +  // +  // RegionCriticalPSets summarizes the pressure within the scheduled region and +  // affects picking from either Q. If scheduling in one direction must +  // increase pressure for one of the excess PSets, then schedule in that +  // direction first to provide more freedom in the other direction. +  if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) +      || (BotCand.Reason == RegCritical +          && !BotCand.isRepeat(RegCritical))) +  { +    IsTopNode = false; +    tracePick(BotCand, IsTopNode); +    return BotCand.SU; +  } +  // Check if the top Q has a better candidate. +  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); +  assert(TopCand.Reason != NoCand && "failed to find the first candidate"); + +  // Choose the queue with the most important (lowest enum) reason. +  if (TopCand.Reason < BotCand.Reason) { +    IsTopNode = true; +    tracePick(TopCand, IsTopNode); +    return TopCand.SU; +  } +  // Otherwise prefer the bottom candidate, in node order if all else failed. +  IsTopNode = false; +  tracePick(BotCand, IsTopNode); +  return BotCand.SU; +} + +/// Pick the best node to balance the schedule. Implements MachineSchedStrategy. +SUnit *GenericScheduler::pickNode(bool &IsTopNode) { +  if (DAG->top() == DAG->bottom()) { +    assert(Top.Available.empty() && Top.Pending.empty() && +           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); +    return nullptr; +  } +  SUnit *SU; +  do { +    if (RegionPolicy.OnlyTopDown) { +      SU = Top.pickOnlyChoice(); +      if (!SU) { +        CandPolicy NoPolicy; +        SchedCandidate TopCand(NoPolicy); +        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); +        assert(TopCand.Reason != NoCand && "failed to find a candidate"); +        tracePick(TopCand, true); +        SU = TopCand.SU; +      } +      IsTopNode = true; +    } +    else if (RegionPolicy.OnlyBottomUp) { +      SU = Bot.pickOnlyChoice(); +      if (!SU) { +        CandPolicy NoPolicy; +        SchedCandidate BotCand(NoPolicy); +        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); +        assert(BotCand.Reason != NoCand && "failed to find a candidate"); +        tracePick(BotCand, false); +        SU = BotCand.SU; +      } +      IsTopNode = false; +    } +    else { +      SU = pickNodeBidirectional(IsTopNode); +    } +  } while (SU->isScheduled); + +  if (SU->isTopReady()) +    Top.removeReady(SU); +  if (SU->isBottomReady()) +    Bot.removeReady(SU); + +  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); +  return SU; +} + +void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { + +  MachineBasicBlock::iterator InsertPos = SU->getInstr(); +  if (!isTop) +    ++InsertPos; +  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; + +  // Find already scheduled copies with a single physreg dependence and move +  // them just above the scheduled instruction. +  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); +       I != E; ++I) { +    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) +      continue; +    SUnit *DepSU = I->getSUnit(); +    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) +      continue; +    MachineInstr *Copy = DepSU->getInstr(); +    if (!Copy->isCopy()) +      continue; +    DEBUG(dbgs() << "  Rescheduling physreg copy "; +          I->getSUnit()->dump(DAG)); +    DAG->moveInstruction(Copy, InsertPos); +  } +} + +/// Update the scheduler's state after scheduling a node. This is the same node +/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to +/// update it's state based on the current cycle before MachineSchedStrategy +/// does. +/// +/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling +/// them here. See comments in biasPhysRegCopy. +void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { +  if (IsTopNode) { +    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); +    Top.bumpNode(SU); +    if (SU->hasPhysRegUses) +      reschedulePhysRegCopies(SU, true); +  } +  else { +    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); +    Bot.bumpNode(SU); +    if (SU->hasPhysRegDefs) +      reschedulePhysRegCopies(SU, false); +  } +} + +/// Create the standard converging machine scheduler. This will be used as the +/// default scheduler if the target does not set a default. +static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { +  ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); +  // Register DAG post-processors. +  // +  // FIXME: extend the mutation API to allow earlier mutations to instantiate +  // data and pass it to later mutations. Have a single mutation that gathers +  // the interesting nodes in one pass. +  DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); +  if (EnableLoadCluster && DAG->TII->enableClusterLoads()) +    DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); +  if (EnableMacroFusion) +    DAG->addMutation(make_unique<MacroFusion>(DAG->TII)); +  return DAG; +} + +static MachineSchedRegistry +GenericSchedRegistry("converge", "Standard converging scheduler.", +                     createGenericSchedLive); + +//===----------------------------------------------------------------------===// +// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. +//===----------------------------------------------------------------------===// + +void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { +  DAG = Dag; +  SchedModel = DAG->getSchedModel(); +  TRI = DAG->TRI; + +  Rem.init(DAG, SchedModel); +  Top.init(DAG, SchedModel, &Rem); +  BotRoots.clear(); + +  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, +  // or are disabled, then these HazardRecs will be disabled. +  const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); +  if (!Top.HazardRec) { +    Top.HazardRec = +        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( +            Itin, DAG); +  } +} + + +void PostGenericScheduler::registerRoots() { +  Rem.CriticalPath = DAG->ExitSU.getDepth(); + +  // Some roots may not feed into ExitSU. Check all of them in case. +  for (SmallVectorImpl<SUnit*>::const_iterator +         I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { +    if ((*I)->getDepth() > Rem.CriticalPath) +      Rem.CriticalPath = (*I)->getDepth(); +  } +  DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); +  if (DumpCriticalPathLength) { +    errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; +  } +} + +/// Apply a set of heursitics to a new candidate for PostRA scheduling. +/// +/// \param Cand provides the policy and current best candidate. +/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. +void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, +                                        SchedCandidate &TryCand) { + +  // Initialize the candidate if needed. +  if (!Cand.isValid()) { +    TryCand.Reason = NodeOrder; +    return; +  } + +  // Prioritize instructions that read unbuffered resources by stall cycles. +  if (tryLess(Top.getLatencyStallCycles(TryCand.SU), +              Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) +    return; + +  // Avoid critical resource consumption and balance the schedule. +  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, +              TryCand, Cand, ResourceReduce)) +    return; +  if (tryGreater(TryCand.ResDelta.DemandedResources, +                 Cand.ResDelta.DemandedResources, +                 TryCand, Cand, ResourceDemand)) +    return; + +  // Avoid serializing long latency dependence chains. +  if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { +    return; +  } + +  // Fall through to original instruction order. +  if (TryCand.SU->NodeNum < Cand.SU->NodeNum) +    TryCand.Reason = NodeOrder; +} + +void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { +  ReadyQueue &Q = Top.Available; + +  DEBUG(Q.dump()); + +  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { +    SchedCandidate TryCand(Cand.Policy); +    TryCand.SU = *I; +    TryCand.initResourceDelta(DAG, SchedModel); +    tryCandidate(Cand, TryCand); +    if (TryCand.Reason != NoCand) { +      Cand.setBest(TryCand); +      DEBUG(traceCandidate(Cand)); +    } +  } +} + +/// Pick the next node to schedule. +SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { +  if (DAG->top() == DAG->bottom()) { +    assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); +    return nullptr; +  } +  SUnit *SU; +  do { +    SU = Top.pickOnlyChoice(); +    if (!SU) { +      CandPolicy NoPolicy; +      SchedCandidate TopCand(NoPolicy); +      // Set the top-down policy based on the state of the current top zone and +      // the instructions outside the zone, including the bottom zone. +      setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); +      pickNodeFromQueue(TopCand); +      assert(TopCand.Reason != NoCand && "failed to find a candidate"); +      tracePick(TopCand, true); +      SU = TopCand.SU; +    } +  } while (SU->isScheduled); + +  IsTopNode = true; +  Top.removeReady(SU); + +  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); +  return SU; +} + +/// Called after ScheduleDAGMI has scheduled an instruction and updated +/// scheduled/remaining flags in the DAG nodes. +void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { +  SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); +  Top.bumpNode(SU); +} + +/// Create a generic scheduler with no vreg liveness or DAG mutation passes. +static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { +  return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); +} + +//===----------------------------------------------------------------------===// +// ILP Scheduler. Currently for experimental analysis of heuristics. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Order nodes by the ILP metric. +struct ILPOrder { +  const SchedDFSResult *DFSResult; +  const BitVector *ScheduledTrees; +  bool MaximizeILP; + +  ILPOrder(bool MaxILP) +    : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} + +  /// \brief Apply a less-than relation on node priority. +  /// +  /// (Return true if A comes after B in the Q.) +  bool operator()(const SUnit *A, const SUnit *B) const { +    unsigned SchedTreeA = DFSResult->getSubtreeID(A); +    unsigned SchedTreeB = DFSResult->getSubtreeID(B); +    if (SchedTreeA != SchedTreeB) { +      // Unscheduled trees have lower priority. +      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) +        return ScheduledTrees->test(SchedTreeB); + +      // Trees with shallower connections have have lower priority. +      if (DFSResult->getSubtreeLevel(SchedTreeA) +          != DFSResult->getSubtreeLevel(SchedTreeB)) { +        return DFSResult->getSubtreeLevel(SchedTreeA) +          < DFSResult->getSubtreeLevel(SchedTreeB); +      } +    } +    if (MaximizeILP) +      return DFSResult->getILP(A) < DFSResult->getILP(B); +    else +      return DFSResult->getILP(A) > DFSResult->getILP(B); +  } +}; + +/// \brief Schedule based on the ILP metric. +class ILPScheduler : public MachineSchedStrategy { +  ScheduleDAGMILive *DAG; +  ILPOrder Cmp; + +  std::vector<SUnit*> ReadyQ; +public: +  ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} + +  void initialize(ScheduleDAGMI *dag) override { +    assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); +    DAG = static_cast<ScheduleDAGMILive*>(dag); +    DAG->computeDFSResult(); +    Cmp.DFSResult = DAG->getDFSResult(); +    Cmp.ScheduledTrees = &DAG->getScheduledTrees(); +    ReadyQ.clear(); +  } + +  void registerRoots() override { +    // Restore the heap in ReadyQ with the updated DFS results. +    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); +  } + +  /// Implement MachineSchedStrategy interface. +  /// ----------------------------------------- + +  /// Callback to select the highest priority node from the ready Q. +  SUnit *pickNode(bool &IsTopNode) override { +    if (ReadyQ.empty()) return nullptr; +    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); +    SUnit *SU = ReadyQ.back(); +    ReadyQ.pop_back(); +    IsTopNode = false; +    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " +          << " ILP: " << DAG->getDFSResult()->getILP(SU) +          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" +          << DAG->getDFSResult()->getSubtreeLevel( +            DAG->getDFSResult()->getSubtreeID(SU)) << '\n' +          << "Scheduling " << *SU->getInstr()); +    return SU; +  } + +  /// \brief Scheduler callback to notify that a new subtree is scheduled. +  void scheduleTree(unsigned SubtreeID) override { +    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); +  } + +  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify +  /// DFSResults, and resort the priority Q. +  void schedNode(SUnit *SU, bool IsTopNode) override { +    assert(!IsTopNode && "SchedDFSResult needs bottom-up"); +  } + +  void releaseTopNode(SUnit *) override { /*only called for top roots*/ } + +  void releaseBottomNode(SUnit *SU) override { +    ReadyQ.push_back(SU); +    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); +  } +}; +} // namespace + +static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { +  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); +} +static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { +  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); +} +static MachineSchedRegistry ILPMaxRegistry( +  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); +static MachineSchedRegistry ILPMinRegistry( +  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); + +//===----------------------------------------------------------------------===// +// Machine Instruction Shuffler for Correctness Testing +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +namespace { +/// Apply a less-than relation on the node order, which corresponds to the +/// instruction order prior to scheduling. IsReverse implements greater-than. +template<bool IsReverse> +struct SUnitOrder { +  bool operator()(SUnit *A, SUnit *B) const { +    if (IsReverse) +      return A->NodeNum > B->NodeNum; +    else +      return A->NodeNum < B->NodeNum; +  } +}; + +/// Reorder instructions as much as possible. +class InstructionShuffler : public MachineSchedStrategy { +  bool IsAlternating; +  bool IsTopDown; + +  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority +  // gives nodes with a higher number higher priority causing the latest +  // instructions to be scheduled first. +  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > +    TopQ; +  // When scheduling bottom-up, use greater-than as the queue priority. +  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > +    BottomQ; +public: +  InstructionShuffler(bool alternate, bool topdown) +    : IsAlternating(alternate), IsTopDown(topdown) {} + +  void initialize(ScheduleDAGMI*) override { +    TopQ.clear(); +    BottomQ.clear(); +  } + +  /// Implement MachineSchedStrategy interface. +  /// ----------------------------------------- + +  SUnit *pickNode(bool &IsTopNode) override { +    SUnit *SU; +    if (IsTopDown) { +      do { +        if (TopQ.empty()) return nullptr; +        SU = TopQ.top(); +        TopQ.pop(); +      } while (SU->isScheduled); +      IsTopNode = true; +    } +    else { +      do { +        if (BottomQ.empty()) return nullptr; +        SU = BottomQ.top(); +        BottomQ.pop(); +      } while (SU->isScheduled); +      IsTopNode = false; +    } +    if (IsAlternating) +      IsTopDown = !IsTopDown; +    return SU; +  } + +  void schedNode(SUnit *SU, bool IsTopNode) override {} + +  void releaseTopNode(SUnit *SU) override { +    TopQ.push(SU); +  } +  void releaseBottomNode(SUnit *SU) override { +    BottomQ.push(SU); +  } +}; +} // namespace + +static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { +  bool Alternate = !ForceTopDown && !ForceBottomUp; +  bool TopDown = !ForceBottomUp; +  assert((TopDown || !ForceTopDown) && +         "-misched-topdown incompatible with -misched-bottomup"); +  return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); +} +static MachineSchedRegistry ShufflerRegistry( +  "shuffle", "Shuffle machine instructions alternating directions", +  createInstructionShuffler); +#endif // !NDEBUG + +//===----------------------------------------------------------------------===// +// GraphWriter support for ScheduleDAGMILive. +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +namespace llvm { + +template<> struct GraphTraits< +  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; + +template<> +struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { + +  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} + +  static std::string getGraphName(const ScheduleDAG *G) { +    return G->MF.getName(); +  } + +  static bool renderGraphFromBottomUp() { +    return true; +  } + +  static bool isNodeHidden(const SUnit *Node) { +    return (Node->Preds.size() > 10 || Node->Succs.size() > 10); +  } + +  static bool hasNodeAddressLabel(const SUnit *Node, +                                  const ScheduleDAG *Graph) { +    return false; +  } + +  /// If you want to override the dot attributes printed for a particular +  /// edge, override this method. +  static std::string getEdgeAttributes(const SUnit *Node, +                                       SUnitIterator EI, +                                       const ScheduleDAG *Graph) { +    if (EI.isArtificialDep()) +      return "color=cyan,style=dashed"; +    if (EI.isCtrlDep()) +      return "color=blue,style=dashed"; +    return ""; +  } + +  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { +    std::string Str; +    raw_string_ostream SS(Str); +    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); +    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? +      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; +    SS << "SU:" << SU->NodeNum; +    if (DFS) +      SS << " I:" << DFS->getNumInstrs(SU); +    return SS.str(); +  } +  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { +    return G->getGraphNodeLabel(SU); +  } + +  static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { +    std::string Str("shape=Mrecord"); +    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); +    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? +      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; +    if (DFS) { +      Str += ",style=filled,fillcolor=\"#"; +      Str += DOT::getColorString(DFS->getSubtreeID(N)); +      Str += '"'; +    } +    return Str; +  } +}; +} // namespace llvm +#endif // NDEBUG + +/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG +/// rendered using 'dot'. +/// +void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { +#ifndef NDEBUG +  ViewGraph(this, Name, false, Title); +#else +  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " +         << "systems with Graphviz or gv!\n"; +#endif  // NDEBUG +} + +/// Out-of-line implementation with no arguments is handy for gdb. +void ScheduleDAGMI::viewGraph() { +  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); +}  | 
