diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineSink.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/MachineSink.cpp | 889 | 
1 files changed, 889 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineSink.cpp b/contrib/llvm/lib/CodeGen/MachineSink.cpp new file mode 100644 index 000000000000..79e3fea3f90c --- /dev/null +++ b/contrib/llvm/lib/CodeGen/MachineSink.cpp @@ -0,0 +1,889 @@ +//===-- MachineSink.cpp - Sinking for machine instructions ----------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass moves instructions into successor blocks when possible, so that +// they aren't executed on paths where their results aren't needed. +// +// This pass is not intended to be a replacement or a complete alternative +// for an LLVM-IR-level sinking pass. It is only designed to sink simple +// constructs that are not exposed before lowering and instruction selection. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SparseBitVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachinePostDominators.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <map> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "machine-sink" + +static cl::opt<bool> +SplitEdges("machine-sink-split", +           cl::desc("Split critical edges during machine sinking"), +           cl::init(true), cl::Hidden); + +static cl::opt<bool> +UseBlockFreqInfo("machine-sink-bfi", +           cl::desc("Use block frequency info to find successors to sink"), +           cl::init(true), cl::Hidden); + +static cl::opt<unsigned> SplitEdgeProbabilityThreshold( +    "machine-sink-split-probability-threshold", +    cl::desc( +        "Percentage threshold for splitting single-instruction critical edge. " +        "If the branch threshold is higher than this threshold, we allow " +        "speculative execution of up to 1 instruction to avoid branching to " +        "splitted critical edge"), +    cl::init(40), cl::Hidden); + +STATISTIC(NumSunk,      "Number of machine instructions sunk"); +STATISTIC(NumSplit,     "Number of critical edges split"); +STATISTIC(NumCoalesces, "Number of copies coalesced"); + +namespace { + +  class MachineSinking : public MachineFunctionPass { +    const TargetInstrInfo *TII; +    const TargetRegisterInfo *TRI; +    MachineRegisterInfo  *MRI;     // Machine register information +    MachineDominatorTree *DT;      // Machine dominator tree +    MachinePostDominatorTree *PDT; // Machine post dominator tree +    MachineLoopInfo *LI; +    const MachineBlockFrequencyInfo *MBFI; +    const MachineBranchProbabilityInfo *MBPI; +    AliasAnalysis *AA; + +    // Remember which edges have been considered for breaking. +    SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> +    CEBCandidates; +    // Remember which edges we are about to split. +    // This is different from CEBCandidates since those edges +    // will be split. +    SetVector<std::pair<MachineBasicBlock*, MachineBasicBlock*> > ToSplit; + +    SparseBitVector<> RegsToClearKillFlags; + +    typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>> +        AllSuccsCache; + +  public: +    static char ID; // Pass identification + +    MachineSinking() : MachineFunctionPass(ID) { +      initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); +    } + +    bool runOnMachineFunction(MachineFunction &MF) override; + +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.setPreservesCFG(); +      MachineFunctionPass::getAnalysisUsage(AU); +      AU.addRequired<AAResultsWrapperPass>(); +      AU.addRequired<MachineDominatorTree>(); +      AU.addRequired<MachinePostDominatorTree>(); +      AU.addRequired<MachineLoopInfo>(); +      AU.addRequired<MachineBranchProbabilityInfo>(); +      AU.addPreserved<MachineDominatorTree>(); +      AU.addPreserved<MachinePostDominatorTree>(); +      AU.addPreserved<MachineLoopInfo>(); +      if (UseBlockFreqInfo) +        AU.addRequired<MachineBlockFrequencyInfo>(); +    } + +    void releaseMemory() override { +      CEBCandidates.clear(); +    } + +  private: +    bool ProcessBlock(MachineBasicBlock &MBB); +    bool isWorthBreakingCriticalEdge(MachineInstr &MI, +                                     MachineBasicBlock *From, +                                     MachineBasicBlock *To); +    /// \brief Postpone the splitting of the given critical +    /// edge (\p From, \p To). +    /// +    /// We do not split the edges on the fly. Indeed, this invalidates +    /// the dominance information and thus triggers a lot of updates +    /// of that information underneath. +    /// Instead, we postpone all the splits after each iteration of +    /// the main loop. That way, the information is at least valid +    /// for the lifetime of an iteration. +    /// +    /// \return True if the edge is marked as toSplit, false otherwise. +    /// False can be returned if, for instance, this is not profitable. +    bool PostponeSplitCriticalEdge(MachineInstr &MI, +                                   MachineBasicBlock *From, +                                   MachineBasicBlock *To, +                                   bool BreakPHIEdge); +    bool SinkInstruction(MachineInstr &MI, bool &SawStore, +                         AllSuccsCache &AllSuccessors); +    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, +                                 MachineBasicBlock *DefMBB, +                                 bool &BreakPHIEdge, bool &LocalUse) const; +    MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, +               bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); +    bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, +                              MachineBasicBlock *MBB, +                              MachineBasicBlock *SuccToSinkTo, +                              AllSuccsCache &AllSuccessors); + +    bool PerformTrivialForwardCoalescing(MachineInstr &MI, +                                         MachineBasicBlock *MBB); + +    SmallVector<MachineBasicBlock *, 4> & +    GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, +                           AllSuccsCache &AllSuccessors) const; +  }; + +} // end anonymous namespace + +char MachineSinking::ID = 0; +char &llvm::MachineSinkingID = MachineSinking::ID; +INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, +                      "Machine code sinking", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, +                    "Machine code sinking", false, false) + +bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, +                                                     MachineBasicBlock *MBB) { +  if (!MI.isCopy()) +    return false; + +  unsigned SrcReg = MI.getOperand(1).getReg(); +  unsigned DstReg = MI.getOperand(0).getReg(); +  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || +      !TargetRegisterInfo::isVirtualRegister(DstReg) || +      !MRI->hasOneNonDBGUse(SrcReg)) +    return false; + +  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); +  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); +  if (SRC != DRC) +    return false; + +  MachineInstr *DefMI = MRI->getVRegDef(SrcReg); +  if (DefMI->isCopyLike()) +    return false; +  DEBUG(dbgs() << "Coalescing: " << *DefMI); +  DEBUG(dbgs() << "*** to: " << MI); +  MRI->replaceRegWith(DstReg, SrcReg); +  MI.eraseFromParent(); + +  // Conservatively, clear any kill flags, since it's possible that they are no +  // longer correct. +  MRI->clearKillFlags(SrcReg); + +  ++NumCoalesces; +  return true; +} + +/// AllUsesDominatedByBlock - Return true if all uses of the specified register +/// occur in blocks dominated by the specified block. If any use is in the +/// definition block, then return false since it is never legal to move def +/// after uses. +bool +MachineSinking::AllUsesDominatedByBlock(unsigned Reg, +                                        MachineBasicBlock *MBB, +                                        MachineBasicBlock *DefMBB, +                                        bool &BreakPHIEdge, +                                        bool &LocalUse) const { +  assert(TargetRegisterInfo::isVirtualRegister(Reg) && +         "Only makes sense for vregs"); + +  // Ignore debug uses because debug info doesn't affect the code. +  if (MRI->use_nodbg_empty(Reg)) +    return true; + +  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken +  // into and they are all PHI nodes. In this case, machine-sink must break +  // the critical edge first. e.g. +  // +  // BB#1: derived from LLVM BB %bb4.preheader +  //   Predecessors according to CFG: BB#0 +  //     ... +  //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> +  //     ... +  //     JE_4 <BB#37>, %EFLAGS<imp-use> +  //   Successors according to CFG: BB#37 BB#2 +  // +  // BB#2: derived from LLVM BB %bb.nph +  //   Predecessors according to CFG: BB#0 BB#1 +  //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> +  BreakPHIEdge = true; +  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { +    MachineInstr *UseInst = MO.getParent(); +    unsigned OpNo = &MO - &UseInst->getOperand(0); +    MachineBasicBlock *UseBlock = UseInst->getParent(); +    if (!(UseBlock == MBB && UseInst->isPHI() && +          UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { +      BreakPHIEdge = false; +      break; +    } +  } +  if (BreakPHIEdge) +    return true; + +  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { +    // Determine the block of the use. +    MachineInstr *UseInst = MO.getParent(); +    unsigned OpNo = &MO - &UseInst->getOperand(0); +    MachineBasicBlock *UseBlock = UseInst->getParent(); +    if (UseInst->isPHI()) { +      // PHI nodes use the operand in the predecessor block, not the block with +      // the PHI. +      UseBlock = UseInst->getOperand(OpNo+1).getMBB(); +    } else if (UseBlock == DefMBB) { +      LocalUse = true; +      return false; +    } + +    // Check that it dominates. +    if (!DT->dominates(MBB, UseBlock)) +      return false; +  } + +  return true; +} + +bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { +  if (skipFunction(*MF.getFunction())) +    return false; + +  DEBUG(dbgs() << "******** Machine Sinking ********\n"); + +  TII = MF.getSubtarget().getInstrInfo(); +  TRI = MF.getSubtarget().getRegisterInfo(); +  MRI = &MF.getRegInfo(); +  DT = &getAnalysis<MachineDominatorTree>(); +  PDT = &getAnalysis<MachinePostDominatorTree>(); +  LI = &getAnalysis<MachineLoopInfo>(); +  MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; +  MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); +  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + +  bool EverMadeChange = false; + +  while (true) { +    bool MadeChange = false; + +    // Process all basic blocks. +    CEBCandidates.clear(); +    ToSplit.clear(); +    for (auto &MBB: MF) +      MadeChange |= ProcessBlock(MBB); + +    // If we have anything we marked as toSplit, split it now. +    for (auto &Pair : ToSplit) { +      auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); +      if (NewSucc != nullptr) { +        DEBUG(dbgs() << " *** Splitting critical edge:" +              " BB#" << Pair.first->getNumber() +              << " -- BB#" << NewSucc->getNumber() +              << " -- BB#" << Pair.second->getNumber() << '\n'); +        MadeChange = true; +        ++NumSplit; +      } else +        DEBUG(dbgs() << " *** Not legal to break critical edge\n"); +    } +    // If this iteration over the code changed anything, keep iterating. +    if (!MadeChange) break; +    EverMadeChange = true; +  } + +  // Now clear any kill flags for recorded registers. +  for (auto I : RegsToClearKillFlags) +    MRI->clearKillFlags(I); +  RegsToClearKillFlags.clear(); + +  return EverMadeChange; +} + +bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { +  // Can't sink anything out of a block that has less than two successors. +  if (MBB.succ_size() <= 1 || MBB.empty()) return false; + +  // Don't bother sinking code out of unreachable blocks. In addition to being +  // unprofitable, it can also lead to infinite looping, because in an +  // unreachable loop there may be nowhere to stop. +  if (!DT->isReachableFromEntry(&MBB)) return false; + +  bool MadeChange = false; + +  // Cache all successors, sorted by frequency info and loop depth. +  AllSuccsCache AllSuccessors; + +  // Walk the basic block bottom-up.  Remember if we saw a store. +  MachineBasicBlock::iterator I = MBB.end(); +  --I; +  bool ProcessedBegin, SawStore = false; +  do { +    MachineInstr &MI = *I;  // The instruction to sink. + +    // Predecrement I (if it's not begin) so that it isn't invalidated by +    // sinking. +    ProcessedBegin = I == MBB.begin(); +    if (!ProcessedBegin) +      --I; + +    if (MI.isDebugValue()) +      continue; + +    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); +    if (Joined) { +      MadeChange = true; +      continue; +    } + +    if (SinkInstruction(MI, SawStore, AllSuccessors)) { +      ++NumSunk; +      MadeChange = true; +    } + +    // If we just processed the first instruction in the block, we're done. +  } while (!ProcessedBegin); + +  return MadeChange; +} + +bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, +                                                 MachineBasicBlock *From, +                                                 MachineBasicBlock *To) { +  // FIXME: Need much better heuristics. + +  // If the pass has already considered breaking this edge (during this pass +  // through the function), then let's go ahead and break it. This means +  // sinking multiple "cheap" instructions into the same block. +  if (!CEBCandidates.insert(std::make_pair(From, To)).second) +    return true; + +  if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) +    return true; + +  if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= +      BranchProbability(SplitEdgeProbabilityThreshold, 100)) +    return true; + +  // MI is cheap, we probably don't want to break the critical edge for it. +  // However, if this would allow some definitions of its source operands +  // to be sunk then it's probably worth it. +  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = MI.getOperand(i); +    if (!MO.isReg() || !MO.isUse()) +      continue; +    unsigned Reg = MO.getReg(); +    if (Reg == 0) +      continue; + +    // We don't move live definitions of physical registers, +    // so sinking their uses won't enable any opportunities. +    if (TargetRegisterInfo::isPhysicalRegister(Reg)) +      continue; + +    // If this instruction is the only user of a virtual register, +    // check if breaking the edge will enable sinking +    // both this instruction and the defining instruction. +    if (MRI->hasOneNonDBGUse(Reg)) { +      // If the definition resides in same MBB, +      // claim it's likely we can sink these together. +      // If definition resides elsewhere, we aren't +      // blocking it from being sunk so don't break the edge. +      MachineInstr *DefMI = MRI->getVRegDef(Reg); +      if (DefMI->getParent() == MI.getParent()) +        return true; +    } +  } + +  return false; +} + +bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, +                                               MachineBasicBlock *FromBB, +                                               MachineBasicBlock *ToBB, +                                               bool BreakPHIEdge) { +  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) +    return false; + +  // Avoid breaking back edge. From == To means backedge for single BB loop. +  if (!SplitEdges || FromBB == ToBB) +    return false; + +  // Check for backedges of more "complex" loops. +  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && +      LI->isLoopHeader(ToBB)) +    return false; + +  // It's not always legal to break critical edges and sink the computation +  // to the edge. +  // +  // BB#1: +  // v1024 +  // Beq BB#3 +  // <fallthrough> +  // BB#2: +  // ... no uses of v1024 +  // <fallthrough> +  // BB#3: +  // ... +  //       = v1024 +  // +  // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: +  // +  // BB#1: +  // ... +  // Bne BB#2 +  // BB#4: +  // v1024 = +  // B BB#3 +  // BB#2: +  // ... no uses of v1024 +  // <fallthrough> +  // BB#3: +  // ... +  //       = v1024 +  // +  // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 +  // flow. We need to ensure the new basic block where the computation is +  // sunk to dominates all the uses. +  // It's only legal to break critical edge and sink the computation to the +  // new block if all the predecessors of "To", except for "From", are +  // not dominated by "From". Given SSA property, this means these +  // predecessors are dominated by "To". +  // +  // There is no need to do this check if all the uses are PHI nodes. PHI +  // sources are only defined on the specific predecessor edges. +  if (!BreakPHIEdge) { +    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), +           E = ToBB->pred_end(); PI != E; ++PI) { +      if (*PI == FromBB) +        continue; +      if (!DT->dominates(ToBB, *PI)) +        return false; +    } +  } + +  ToSplit.insert(std::make_pair(FromBB, ToBB)); +   +  return true; +} + +/// collectDebgValues - Scan instructions following MI and collect any +/// matching DBG_VALUEs. +static void collectDebugValues(MachineInstr &MI, +                               SmallVectorImpl<MachineInstr *> &DbgValues) { +  DbgValues.clear(); +  if (!MI.getOperand(0).isReg()) +    return; + +  MachineBasicBlock::iterator DI = MI; ++DI; +  for (MachineBasicBlock::iterator DE = MI.getParent()->end(); +       DI != DE; ++DI) { +    if (!DI->isDebugValue()) +      return; +    if (DI->getOperand(0).isReg() && +        DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) +      DbgValues.push_back(&*DI); +  } +} + +/// isProfitableToSinkTo - Return true if it is profitable to sink MI. +bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, +                                          MachineBasicBlock *MBB, +                                          MachineBasicBlock *SuccToSinkTo, +                                          AllSuccsCache &AllSuccessors) { +  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); + +  if (MBB == SuccToSinkTo) +    return false; + +  // It is profitable if SuccToSinkTo does not post dominate current block. +  if (!PDT->dominates(SuccToSinkTo, MBB)) +    return true; + +  // It is profitable to sink an instruction from a deeper loop to a shallower +  // loop, even if the latter post-dominates the former (PR21115). +  if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) +    return true; + +  // Check if only use in post dominated block is PHI instruction. +  bool NonPHIUse = false; +  for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { +    MachineBasicBlock *UseBlock = UseInst.getParent(); +    if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) +      NonPHIUse = true; +  } +  if (!NonPHIUse) +    return true; + +  // If SuccToSinkTo post dominates then also it may be profitable if MI +  // can further profitably sinked into another block in next round. +  bool BreakPHIEdge = false; +  // FIXME - If finding successor is compile time expensive then cache results. +  if (MachineBasicBlock *MBB2 = +          FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) +    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); + +  // If SuccToSinkTo is final destination and it is a post dominator of current +  // block then it is not profitable to sink MI into SuccToSinkTo block. +  return false; +} + +/// Get the sorted sequence of successors for this MachineBasicBlock, possibly +/// computing it if it was not already cached. +SmallVector<MachineBasicBlock *, 4> & +MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, +                                       AllSuccsCache &AllSuccessors) const { + +  // Do we have the sorted successors in cache ? +  auto Succs = AllSuccessors.find(MBB); +  if (Succs != AllSuccessors.end()) +    return Succs->second; + +  SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), +                                               MBB->succ_end()); + +  // Handle cases where sinking can happen but where the sink point isn't a +  // successor. For example: +  // +  //   x = computation +  //   if () {} else {} +  //   use x +  // +  const std::vector<MachineDomTreeNode *> &Children = +    DT->getNode(MBB)->getChildren(); +  for (const auto &DTChild : Children) +    // DomTree children of MBB that have MBB as immediate dominator are added. +    if (DTChild->getIDom()->getBlock() == MI.getParent() && +        // Skip MBBs already added to the AllSuccs vector above. +        !MBB->isSuccessor(DTChild->getBlock())) +      AllSuccs.push_back(DTChild->getBlock()); + +  // Sort Successors according to their loop depth or block frequency info. +  std::stable_sort( +      AllSuccs.begin(), AllSuccs.end(), +      [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { +        uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; +        uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; +        bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; +        return HasBlockFreq ? LHSFreq < RHSFreq +                            : LI->getLoopDepth(L) < LI->getLoopDepth(R); +      }); + +  auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); + +  return it.first->second; +} + +/// FindSuccToSinkTo - Find a successor to sink this instruction to. +MachineBasicBlock * +MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, +                                 bool &BreakPHIEdge, +                                 AllSuccsCache &AllSuccessors) { +  assert (MBB && "Invalid MachineBasicBlock!"); + +  // Loop over all the operands of the specified instruction.  If there is +  // anything we can't handle, bail out. + +  // SuccToSinkTo - This is the successor to sink this instruction to, once we +  // decide. +  MachineBasicBlock *SuccToSinkTo = nullptr; +  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = MI.getOperand(i); +    if (!MO.isReg()) continue;  // Ignore non-register operands. + +    unsigned Reg = MO.getReg(); +    if (Reg == 0) continue; + +    if (TargetRegisterInfo::isPhysicalRegister(Reg)) { +      if (MO.isUse()) { +        // If the physreg has no defs anywhere, it's just an ambient register +        // and we can freely move its uses. Alternatively, if it's allocatable, +        // it could get allocated to something with a def during allocation. +        if (!MRI->isConstantPhysReg(Reg)) +          return nullptr; +      } else if (!MO.isDead()) { +        // A def that isn't dead. We can't move it. +        return nullptr; +      } +    } else { +      // Virtual register uses are always safe to sink. +      if (MO.isUse()) continue; + +      // If it's not safe to move defs of the register class, then abort. +      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) +        return nullptr; + +      // Virtual register defs can only be sunk if all their uses are in blocks +      // dominated by one of the successors. +      if (SuccToSinkTo) { +        // If a previous operand picked a block to sink to, then this operand +        // must be sinkable to the same block. +        bool LocalUse = false; +        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, +                                     BreakPHIEdge, LocalUse)) +          return nullptr; + +        continue; +      } + +      // Otherwise, we should look at all the successors and decide which one +      // we should sink to. If we have reliable block frequency information +      // (frequency != 0) available, give successors with smaller frequencies +      // higher priority, otherwise prioritize smaller loop depths. +      for (MachineBasicBlock *SuccBlock : +           GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { +        bool LocalUse = false; +        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, +                                    BreakPHIEdge, LocalUse)) { +          SuccToSinkTo = SuccBlock; +          break; +        } +        if (LocalUse) +          // Def is used locally, it's never safe to move this def. +          return nullptr; +      } + +      // If we couldn't find a block to sink to, ignore this instruction. +      if (!SuccToSinkTo) +        return nullptr; +      if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) +        return nullptr; +    } +  } + +  // It is not possible to sink an instruction into its own block.  This can +  // happen with loops. +  if (MBB == SuccToSinkTo) +    return nullptr; + +  // It's not safe to sink instructions to EH landing pad. Control flow into +  // landing pad is implicitly defined. +  if (SuccToSinkTo && SuccToSinkTo->isEHPad()) +    return nullptr; + +  return SuccToSinkTo; +} + +/// \brief Return true if MI is likely to be usable as a memory operation by the +/// implicit null check optimization. +/// +/// This is a "best effort" heuristic, and should not be relied upon for +/// correctness.  This returning true does not guarantee that the implicit null +/// check optimization is legal over MI, and this returning false does not +/// guarantee MI cannot possibly be used to do a null check. +static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, +                                             const TargetInstrInfo *TII, +                                             const TargetRegisterInfo *TRI) { +  typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; + +  auto *MBB = MI.getParent(); +  if (MBB->pred_size() != 1) +    return false; + +  auto *PredMBB = *MBB->pred_begin(); +  auto *PredBB = PredMBB->getBasicBlock(); + +  // Frontends that don't use implicit null checks have no reason to emit +  // branches with make.implicit metadata, and this function should always +  // return false for them. +  if (!PredBB || +      !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) +    return false; + +  unsigned BaseReg; +  int64_t Offset; +  if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) +    return false; + +  if (!(MI.mayLoad() && !MI.isPredicable())) +    return false; + +  MachineBranchPredicate MBP; +  if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) +    return false; + +  return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && +         (MBP.Predicate == MachineBranchPredicate::PRED_NE || +          MBP.Predicate == MachineBranchPredicate::PRED_EQ) && +         MBP.LHS.getReg() == BaseReg; +} + +/// SinkInstruction - Determine whether it is safe to sink the specified machine +/// instruction out of its current block into a successor. +bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, +                                     AllSuccsCache &AllSuccessors) { +  // Don't sink instructions that the target prefers not to sink. +  if (!TII->shouldSink(MI)) +    return false; + +  // Check if it's safe to move the instruction. +  if (!MI.isSafeToMove(AA, SawStore)) +    return false; + +  // Convergent operations may not be made control-dependent on additional +  // values. +  if (MI.isConvergent()) +    return false; + +  // Don't break implicit null checks.  This is a performance heuristic, and not +  // required for correctness. +  if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) +    return false; + +  // FIXME: This should include support for sinking instructions within the +  // block they are currently in to shorten the live ranges.  We often get +  // instructions sunk into the top of a large block, but it would be better to +  // also sink them down before their first use in the block.  This xform has to +  // be careful not to *increase* register pressure though, e.g. sinking +  // "x = y + z" down if it kills y and z would increase the live ranges of y +  // and z and only shrink the live range of x. + +  bool BreakPHIEdge = false; +  MachineBasicBlock *ParentBlock = MI.getParent(); +  MachineBasicBlock *SuccToSinkTo = +      FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); + +  // If there are no outputs, it must have side-effects. +  if (!SuccToSinkTo) +    return false; + + +  // If the instruction to move defines a dead physical register which is live +  // when leaving the basic block, don't move it because it could turn into a +  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) +  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { +    const MachineOperand &MO = MI.getOperand(I); +    if (!MO.isReg()) continue; +    unsigned Reg = MO.getReg(); +    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; +    if (SuccToSinkTo->isLiveIn(Reg)) +      return false; +  } + +  DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); + +  // If the block has multiple predecessors, this is a critical edge. +  // Decide if we can sink along it or need to break the edge. +  if (SuccToSinkTo->pred_size() > 1) { +    // We cannot sink a load across a critical edge - there may be stores in +    // other code paths. +    bool TryBreak = false; +    bool store = true; +    if (!MI.isSafeToMove(AA, store)) { +      DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); +      TryBreak = true; +    } + +    // We don't want to sink across a critical edge if we don't dominate the +    // successor. We could be introducing calculations to new code paths. +    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { +      DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); +      TryBreak = true; +    } + +    // Don't sink instructions into a loop. +    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { +      DEBUG(dbgs() << " *** NOTE: Loop header found\n"); +      TryBreak = true; +    } + +    // Otherwise we are OK with sinking along a critical edge. +    if (!TryBreak) +      DEBUG(dbgs() << "Sinking along critical edge.\n"); +    else { +      // Mark this edge as to be split. +      // If the edge can actually be split, the next iteration of the main loop +      // will sink MI in the newly created block. +      bool Status = +        PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); +      if (!Status) +        DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " +              "break critical edge\n"); +      // The instruction will not be sunk this time. +      return false; +    } +  } + +  if (BreakPHIEdge) { +    // BreakPHIEdge is true if all the uses are in the successor MBB being +    // sunken into and they are all PHI nodes. In this case, machine-sink must +    // break the critical edge first. +    bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, +                                            SuccToSinkTo, BreakPHIEdge); +    if (!Status) +      DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " +            "break critical edge\n"); +    // The instruction will not be sunk this time. +    return false; +  } + +  // Determine where to insert into. Skip phi nodes. +  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); +  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) +    ++InsertPos; + +  // collect matching debug values. +  SmallVector<MachineInstr *, 2> DbgValuesToSink; +  collectDebugValues(MI, DbgValuesToSink); + +  // Move the instruction. +  SuccToSinkTo->splice(InsertPos, ParentBlock, MI, +                       ++MachineBasicBlock::iterator(MI)); + +  // Move debug values. +  for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), +         DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { +    MachineInstr *DbgMI = *DBI; +    SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI, +                         ++MachineBasicBlock::iterator(DbgMI)); +  } + +  // Conservatively, clear any kill flags, since it's possible that they are no +  // longer correct. +  // Note that we have to clear the kill flags for any register this instruction +  // uses as we may sink over another instruction which currently kills the +  // used registers. +  for (MachineOperand &MO : MI.operands()) { +    if (MO.isReg() && MO.isUse()) +      RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. +  } + +  return true; +}  | 
