summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ScheduleDAG.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAG.cpp694
1 files changed, 694 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
new file mode 100644
index 000000000000..dc72ac073258
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAG.cpp
@@ -0,0 +1,694 @@
+//===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file Implements the ScheduleDAG class, which is a base class used by
+/// scheduling implementation classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <limits>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "pre-RA-sched"
+
+#ifndef NDEBUG
+static cl::opt<bool> StressSchedOpt(
+ "stress-sched", cl::Hidden, cl::init(false),
+ cl::desc("Stress test instruction scheduling"));
+#endif
+
+void SchedulingPriorityQueue::anchor() {}
+
+ScheduleDAG::ScheduleDAG(MachineFunction &mf)
+ : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()),
+ TRI(mf.getSubtarget().getRegisterInfo()), MF(mf),
+ MRI(mf.getRegInfo()) {
+#ifndef NDEBUG
+ StressSched = StressSchedOpt;
+#endif
+}
+
+ScheduleDAG::~ScheduleDAG() = default;
+
+void ScheduleDAG::clearDAG() {
+ SUnits.clear();
+ EntrySU = SUnit();
+ ExitSU = SUnit();
+}
+
+const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
+ if (!Node || !Node->isMachineOpcode()) return nullptr;
+ return &TII->get(Node->getMachineOpcode());
+}
+
+bool SUnit::addPred(const SDep &D, bool Required) {
+ // If this node already has this dependence, don't add a redundant one.
+ for (SDep &PredDep : Preds) {
+ // Zero-latency weak edges may be added purely for heuristic ordering. Don't
+ // add them if another kind of edge already exists.
+ if (!Required && PredDep.getSUnit() == D.getSUnit())
+ return false;
+ if (PredDep.overlaps(D)) {
+ // Extend the latency if needed. Equivalent to
+ // removePred(PredDep) + addPred(D).
+ if (PredDep.getLatency() < D.getLatency()) {
+ SUnit *PredSU = PredDep.getSUnit();
+ // Find the corresponding successor in N.
+ SDep ForwardD = PredDep;
+ ForwardD.setSUnit(this);
+ for (SDep &SuccDep : PredSU->Succs) {
+ if (SuccDep == ForwardD) {
+ SuccDep.setLatency(D.getLatency());
+ break;
+ }
+ }
+ PredDep.setLatency(D.getLatency());
+ }
+ return false;
+ }
+ }
+ // Now add a corresponding succ to N.
+ SDep P = D;
+ P.setSUnit(this);
+ SUnit *N = D.getSUnit();
+ // Update the bookkeeping.
+ if (D.getKind() == SDep::Data) {
+ assert(NumPreds < std::numeric_limits<unsigned>::max() &&
+ "NumPreds will overflow!");
+ assert(N->NumSuccs < std::numeric_limits<unsigned>::max() &&
+ "NumSuccs will overflow!");
+ ++NumPreds;
+ ++N->NumSuccs;
+ }
+ if (!N->isScheduled) {
+ if (D.isWeak()) {
+ ++WeakPredsLeft;
+ }
+ else {
+ assert(NumPredsLeft < std::numeric_limits<unsigned>::max() &&
+ "NumPredsLeft will overflow!");
+ ++NumPredsLeft;
+ }
+ }
+ if (!isScheduled) {
+ if (D.isWeak()) {
+ ++N->WeakSuccsLeft;
+ }
+ else {
+ assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
+ "NumSuccsLeft will overflow!");
+ ++N->NumSuccsLeft;
+ }
+ }
+ Preds.push_back(D);
+ N->Succs.push_back(P);
+ if (P.getLatency() != 0) {
+ this->setDepthDirty();
+ N->setHeightDirty();
+ }
+ return true;
+}
+
+void SUnit::removePred(const SDep &D) {
+ // Find the matching predecessor.
+ SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D);
+ if (I == Preds.end())
+ return;
+ // Find the corresponding successor in N.
+ SDep P = D;
+ P.setSUnit(this);
+ SUnit *N = D.getSUnit();
+ SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P);
+ assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
+ N->Succs.erase(Succ);
+ Preds.erase(I);
+ // Update the bookkeeping.
+ if (P.getKind() == SDep::Data) {
+ assert(NumPreds > 0 && "NumPreds will underflow!");
+ assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
+ --NumPreds;
+ --N->NumSuccs;
+ }
+ if (!N->isScheduled) {
+ if (D.isWeak())
+ --WeakPredsLeft;
+ else {
+ assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
+ --NumPredsLeft;
+ }
+ }
+ if (!isScheduled) {
+ if (D.isWeak())
+ --N->WeakSuccsLeft;
+ else {
+ assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
+ --N->NumSuccsLeft;
+ }
+ }
+ if (P.getLatency() != 0) {
+ this->setDepthDirty();
+ N->setHeightDirty();
+ }
+}
+
+void SUnit::setDepthDirty() {
+ if (!isDepthCurrent) return;
+ SmallVector<SUnit*, 8> WorkList;
+ WorkList.push_back(this);
+ do {
+ SUnit *SU = WorkList.pop_back_val();
+ SU->isDepthCurrent = false;
+ for (SDep &SuccDep : SU->Succs) {
+ SUnit *SuccSU = SuccDep.getSUnit();
+ if (SuccSU->isDepthCurrent)
+ WorkList.push_back(SuccSU);
+ }
+ } while (!WorkList.empty());
+}
+
+void SUnit::setHeightDirty() {
+ if (!isHeightCurrent) return;
+ SmallVector<SUnit*, 8> WorkList;
+ WorkList.push_back(this);
+ do {
+ SUnit *SU = WorkList.pop_back_val();
+ SU->isHeightCurrent = false;
+ for (SDep &PredDep : SU->Preds) {
+ SUnit *PredSU = PredDep.getSUnit();
+ if (PredSU->isHeightCurrent)
+ WorkList.push_back(PredSU);
+ }
+ } while (!WorkList.empty());
+}
+
+void SUnit::setDepthToAtLeast(unsigned NewDepth) {
+ if (NewDepth <= getDepth())
+ return;
+ setDepthDirty();
+ Depth = NewDepth;
+ isDepthCurrent = true;
+}
+
+void SUnit::setHeightToAtLeast(unsigned NewHeight) {
+ if (NewHeight <= getHeight())
+ return;
+ setHeightDirty();
+ Height = NewHeight;
+ isHeightCurrent = true;
+}
+
+/// Calculates the maximal path from the node to the exit.
+void SUnit::ComputeDepth() {
+ SmallVector<SUnit*, 8> WorkList;
+ WorkList.push_back(this);
+ do {
+ SUnit *Cur = WorkList.back();
+
+ bool Done = true;
+ unsigned MaxPredDepth = 0;
+ for (const SDep &PredDep : Cur->Preds) {
+ SUnit *PredSU = PredDep.getSUnit();
+ if (PredSU->isDepthCurrent)
+ MaxPredDepth = std::max(MaxPredDepth,
+ PredSU->Depth + PredDep.getLatency());
+ else {
+ Done = false;
+ WorkList.push_back(PredSU);
+ }
+ }
+
+ if (Done) {
+ WorkList.pop_back();
+ if (MaxPredDepth != Cur->Depth) {
+ Cur->setDepthDirty();
+ Cur->Depth = MaxPredDepth;
+ }
+ Cur->isDepthCurrent = true;
+ }
+ } while (!WorkList.empty());
+}
+
+/// Calculates the maximal path from the node to the entry.
+void SUnit::ComputeHeight() {
+ SmallVector<SUnit*, 8> WorkList;
+ WorkList.push_back(this);
+ do {
+ SUnit *Cur = WorkList.back();
+
+ bool Done = true;
+ unsigned MaxSuccHeight = 0;
+ for (const SDep &SuccDep : Cur->Succs) {
+ SUnit *SuccSU = SuccDep.getSUnit();
+ if (SuccSU->isHeightCurrent)
+ MaxSuccHeight = std::max(MaxSuccHeight,
+ SuccSU->Height + SuccDep.getLatency());
+ else {
+ Done = false;
+ WorkList.push_back(SuccSU);
+ }
+ }
+
+ if (Done) {
+ WorkList.pop_back();
+ if (MaxSuccHeight != Cur->Height) {
+ Cur->setHeightDirty();
+ Cur->Height = MaxSuccHeight;
+ }
+ Cur->isHeightCurrent = true;
+ }
+ } while (!WorkList.empty());
+}
+
+void SUnit::biasCriticalPath() {
+ if (NumPreds < 2)
+ return;
+
+ SUnit::pred_iterator BestI = Preds.begin();
+ unsigned MaxDepth = BestI->getSUnit()->getDepth();
+ for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
+ ++I) {
+ if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
+ BestI = I;
+ }
+ if (BestI != Preds.begin())
+ std::swap(*Preds.begin(), *BestI);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD
+void SUnit::print(raw_ostream &OS, const ScheduleDAG *DAG) const {
+ if (this == &DAG->ExitSU)
+ OS << "ExitSU";
+ else if (this == &DAG->EntrySU)
+ OS << "EntrySU";
+ else
+ OS << "SU(" << NodeNum << ")";
+}
+
+LLVM_DUMP_METHOD void SUnit::dump(const ScheduleDAG *G) const {
+ print(dbgs(), G);
+ dbgs() << ": ";
+ G->dumpNode(this);
+}
+
+LLVM_DUMP_METHOD void SUnit::dumpAll(const ScheduleDAG *G) const {
+ dump(G);
+
+ dbgs() << " # preds left : " << NumPredsLeft << "\n";
+ dbgs() << " # succs left : " << NumSuccsLeft << "\n";
+ if (WeakPredsLeft)
+ dbgs() << " # weak preds left : " << WeakPredsLeft << "\n";
+ if (WeakSuccsLeft)
+ dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n";
+ dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n";
+ dbgs() << " Latency : " << Latency << "\n";
+ dbgs() << " Depth : " << getDepth() << "\n";
+ dbgs() << " Height : " << getHeight() << "\n";
+
+ if (Preds.size() != 0) {
+ dbgs() << " Predecessors:\n";
+ for (const SDep &SuccDep : Preds) {
+ dbgs() << " ";
+ switch (SuccDep.getKind()) {
+ case SDep::Data: dbgs() << "data "; break;
+ case SDep::Anti: dbgs() << "anti "; break;
+ case SDep::Output: dbgs() << "out "; break;
+ case SDep::Order: dbgs() << "ord "; break;
+ }
+ SuccDep.getSUnit()->print(dbgs(), G);
+ if (SuccDep.isArtificial())
+ dbgs() << " *";
+ dbgs() << ": Latency=" << SuccDep.getLatency();
+ if (SuccDep.isAssignedRegDep())
+ dbgs() << " Reg=" << PrintReg(SuccDep.getReg(), G->TRI);
+ dbgs() << "\n";
+ }
+ }
+ if (Succs.size() != 0) {
+ dbgs() << " Successors:\n";
+ for (const SDep &SuccDep : Succs) {
+ dbgs() << " ";
+ switch (SuccDep.getKind()) {
+ case SDep::Data: dbgs() << "data "; break;
+ case SDep::Anti: dbgs() << "anti "; break;
+ case SDep::Output: dbgs() << "out "; break;
+ case SDep::Order: dbgs() << "ord "; break;
+ }
+ SuccDep.getSUnit()->print(dbgs(), G);
+ if (SuccDep.isArtificial())
+ dbgs() << " *";
+ dbgs() << ": Latency=" << SuccDep.getLatency();
+ if (SuccDep.isAssignedRegDep())
+ dbgs() << " Reg=" << PrintReg(SuccDep.getReg(), G->TRI);
+ dbgs() << "\n";
+ }
+ }
+}
+#endif
+
+#ifndef NDEBUG
+unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
+ bool AnyNotSched = false;
+ unsigned DeadNodes = 0;
+ for (const SUnit &SUnit : SUnits) {
+ if (!SUnit.isScheduled) {
+ if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) {
+ ++DeadNodes;
+ continue;
+ }
+ if (!AnyNotSched)
+ dbgs() << "*** Scheduling failed! ***\n";
+ SUnit.dump(this);
+ dbgs() << "has not been scheduled!\n";
+ AnyNotSched = true;
+ }
+ if (SUnit.isScheduled &&
+ (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) >
+ unsigned(std::numeric_limits<int>::max())) {
+ if (!AnyNotSched)
+ dbgs() << "*** Scheduling failed! ***\n";
+ SUnit.dump(this);
+ dbgs() << "has an unexpected "
+ << (isBottomUp ? "Height" : "Depth") << " value!\n";
+ AnyNotSched = true;
+ }
+ if (isBottomUp) {
+ if (SUnit.NumSuccsLeft != 0) {
+ if (!AnyNotSched)
+ dbgs() << "*** Scheduling failed! ***\n";
+ SUnit.dump(this);
+ dbgs() << "has successors left!\n";
+ AnyNotSched = true;
+ }
+ } else {
+ if (SUnit.NumPredsLeft != 0) {
+ if (!AnyNotSched)
+ dbgs() << "*** Scheduling failed! ***\n";
+ SUnit.dump(this);
+ dbgs() << "has predecessors left!\n";
+ AnyNotSched = true;
+ }
+ }
+ }
+ assert(!AnyNotSched);
+ return SUnits.size() - DeadNodes;
+}
+#endif
+
+void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
+ // The idea of the algorithm is taken from
+ // "Online algorithms for managing the topological order of
+ // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
+ // This is the MNR algorithm, which was first introduced by
+ // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
+ // "Maintaining a topological order under edge insertions".
+ //
+ // Short description of the algorithm:
+ //
+ // Topological ordering, ord, of a DAG maps each node to a topological
+ // index so that for all edges X->Y it is the case that ord(X) < ord(Y).
+ //
+ // This means that if there is a path from the node X to the node Z,
+ // then ord(X) < ord(Z).
+ //
+ // This property can be used to check for reachability of nodes:
+ // if Z is reachable from X, then an insertion of the edge Z->X would
+ // create a cycle.
+ //
+ // The algorithm first computes a topological ordering for the DAG by
+ // initializing the Index2Node and Node2Index arrays and then tries to keep
+ // the ordering up-to-date after edge insertions by reordering the DAG.
+ //
+ // On insertion of the edge X->Y, the algorithm first marks by calling DFS
+ // the nodes reachable from Y, and then shifts them using Shift to lie
+ // immediately after X in Index2Node.
+ unsigned DAGSize = SUnits.size();
+ std::vector<SUnit*> WorkList;
+ WorkList.reserve(DAGSize);
+
+ Index2Node.resize(DAGSize);
+ Node2Index.resize(DAGSize);
+
+ // Initialize the data structures.
+ if (ExitSU)
+ WorkList.push_back(ExitSU);
+ for (SUnit &SU : SUnits) {
+ int NodeNum = SU.NodeNum;
+ unsigned Degree = SU.Succs.size();
+ // Temporarily use the Node2Index array as scratch space for degree counts.
+ Node2Index[NodeNum] = Degree;
+
+ // Is it a node without dependencies?
+ if (Degree == 0) {
+ assert(SU.Succs.empty() && "SUnit should have no successors");
+ // Collect leaf nodes.
+ WorkList.push_back(&SU);
+ }
+ }
+
+ int Id = DAGSize;
+ while (!WorkList.empty()) {
+ SUnit *SU = WorkList.back();
+ WorkList.pop_back();
+ if (SU->NodeNum < DAGSize)
+ Allocate(SU->NodeNum, --Id);
+ for (const SDep &PredDep : SU->Preds) {
+ SUnit *SU = PredDep.getSUnit();
+ if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
+ // If all dependencies of the node are processed already,
+ // then the node can be computed now.
+ WorkList.push_back(SU);
+ }
+ }
+
+ Visited.resize(DAGSize);
+
+#ifndef NDEBUG
+ // Check correctness of the ordering
+ for (SUnit &SU : SUnits) {
+ for (const SDep &PD : SU.Preds) {
+ assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] &&
+ "Wrong topological sorting");
+ }
+ }
+#endif
+}
+
+void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
+ int UpperBound, LowerBound;
+ LowerBound = Node2Index[Y->NodeNum];
+ UpperBound = Node2Index[X->NodeNum];
+ bool HasLoop = false;
+ // Is Ord(X) < Ord(Y) ?
+ if (LowerBound < UpperBound) {
+ // Update the topological order.
+ Visited.reset();
+ DFS(Y, UpperBound, HasLoop);
+ assert(!HasLoop && "Inserted edge creates a loop!");
+ // Recompute topological indexes.
+ Shift(Visited, LowerBound, UpperBound);
+ }
+}
+
+void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
+ // InitDAGTopologicalSorting();
+}
+
+void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
+ bool &HasLoop) {
+ std::vector<const SUnit*> WorkList;
+ WorkList.reserve(SUnits.size());
+
+ WorkList.push_back(SU);
+ do {
+ SU = WorkList.back();
+ WorkList.pop_back();
+ Visited.set(SU->NodeNum);
+ for (const SDep &SuccDep
+ : make_range(SU->Succs.rbegin(), SU->Succs.rend())) {
+ unsigned s = SuccDep.getSUnit()->NodeNum;
+ // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
+ if (s >= Node2Index.size())
+ continue;
+ if (Node2Index[s] == UpperBound) {
+ HasLoop = true;
+ return;
+ }
+ // Visit successors if not already and in affected region.
+ if (!Visited.test(s) && Node2Index[s] < UpperBound) {
+ WorkList.push_back(SuccDep.getSUnit());
+ }
+ }
+ } while (!WorkList.empty());
+}
+
+std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU,
+ const SUnit &TargetSU,
+ bool &Success) {
+ std::vector<const SUnit*> WorkList;
+ int LowerBound = Node2Index[StartSU.NodeNum];
+ int UpperBound = Node2Index[TargetSU.NodeNum];
+ bool Found = false;
+ BitVector VisitedBack;
+ std::vector<int> Nodes;
+
+ if (LowerBound > UpperBound) {
+ Success = false;
+ return Nodes;
+ }
+
+ WorkList.reserve(SUnits.size());
+ Visited.reset();
+
+ // Starting from StartSU, visit all successors up
+ // to UpperBound.
+ WorkList.push_back(&StartSU);
+ do {
+ const SUnit *SU = WorkList.back();
+ WorkList.pop_back();
+ for (int I = SU->Succs.size()-1; I >= 0; --I) {
+ const SUnit *Succ = SU->Succs[I].getSUnit();
+ unsigned s = Succ->NodeNum;
+ // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
+ if (Succ->isBoundaryNode())
+ continue;
+ if (Node2Index[s] == UpperBound) {
+ Found = true;
+ continue;
+ }
+ // Visit successors if not already and in affected region.
+ if (!Visited.test(s) && Node2Index[s] < UpperBound) {
+ Visited.set(s);
+ WorkList.push_back(Succ);
+ }
+ }
+ } while (!WorkList.empty());
+
+ if (!Found) {
+ Success = false;
+ return Nodes;
+ }
+
+ WorkList.clear();
+ VisitedBack.resize(SUnits.size());
+ Found = false;
+
+ // Starting from TargetSU, visit all predecessors up
+ // to LowerBound. SUs that are visited by the two
+ // passes are added to Nodes.
+ WorkList.push_back(&TargetSU);
+ do {
+ const SUnit *SU = WorkList.back();
+ WorkList.pop_back();
+ for (int I = SU->Preds.size()-1; I >= 0; --I) {
+ const SUnit *Pred = SU->Preds[I].getSUnit();
+ unsigned s = Pred->NodeNum;
+ // Edges to non-SUnits are allowed but ignored (e.g. EntrySU).
+ if (Pred->isBoundaryNode())
+ continue;
+ if (Node2Index[s] == LowerBound) {
+ Found = true;
+ continue;
+ }
+ if (!VisitedBack.test(s) && Visited.test(s)) {
+ VisitedBack.set(s);
+ WorkList.push_back(Pred);
+ Nodes.push_back(s);
+ }
+ }
+ } while (!WorkList.empty());
+
+ assert(Found && "Error in SUnit Graph!");
+ Success = true;
+ return Nodes;
+}
+
+void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
+ int UpperBound) {
+ std::vector<int> L;
+ int shift = 0;
+ int i;
+
+ for (i = LowerBound; i <= UpperBound; ++i) {
+ // w is node at topological index i.
+ int w = Index2Node[i];
+ if (Visited.test(w)) {
+ // Unmark.
+ Visited.reset(w);
+ L.push_back(w);
+ shift = shift + 1;
+ } else {
+ Allocate(w, i - shift);
+ }
+ }
+
+ for (unsigned LI : L) {
+ Allocate(LI, i - shift);
+ i = i + 1;
+ }
+}
+
+bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
+ // Is SU reachable from TargetSU via successor edges?
+ if (IsReachable(SU, TargetSU))
+ return true;
+ for (const SDep &PredDep : TargetSU->Preds)
+ if (PredDep.isAssignedRegDep() &&
+ IsReachable(SU, PredDep.getSUnit()))
+ return true;
+ return false;
+}
+
+bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
+ const SUnit *TargetSU) {
+ // If insertion of the edge SU->TargetSU would create a cycle
+ // then there is a path from TargetSU to SU.
+ int UpperBound, LowerBound;
+ LowerBound = Node2Index[TargetSU->NodeNum];
+ UpperBound = Node2Index[SU->NodeNum];
+ bool HasLoop = false;
+ // Is Ord(TargetSU) < Ord(SU) ?
+ if (LowerBound < UpperBound) {
+ Visited.reset();
+ // There may be a path from TargetSU to SU. Check for it.
+ DFS(TargetSU, UpperBound, HasLoop);
+ }
+ return HasLoop;
+}
+
+void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
+ Node2Index[n] = index;
+ Index2Node[index] = n;
+}
+
+ScheduleDAGTopologicalSort::
+ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
+ : SUnits(sunits), ExitSU(exitsu) {}
+
+ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default;