diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp | 7222 | 
1 files changed, 7222 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp new file mode 100644 index 000000000000..c9c4d91e9736 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp @@ -0,0 +1,7222 @@ +//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run +// both before and after the DAG is legalized. +// +// This pass is not a substitute for the LLVM IR instcombine pass. This pass is +// primarily intended to handle simplification opportunities that are implicit +// in the LLVM IR and exposed by the various codegen lowering phases. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "dagcombine" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/DerivedTypes.h" +#include "llvm/LLVMContext.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetFrameInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NodesCombined   , "Number of dag nodes combined"); +STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); +STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); +STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed"); + +namespace { +  static cl::opt<bool> +    CombinerAA("combiner-alias-analysis", cl::Hidden, +               cl::desc("Turn on alias analysis during testing")); + +  static cl::opt<bool> +    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, +               cl::desc("Include global information in alias analysis")); + +//------------------------------ DAGCombiner ---------------------------------// + +  class DAGCombiner { +    SelectionDAG &DAG; +    const TargetLowering &TLI; +    CombineLevel Level; +    CodeGenOpt::Level OptLevel; +    bool LegalOperations; +    bool LegalTypes; + +    // Worklist of all of the nodes that need to be simplified. +    std::vector<SDNode*> WorkList; + +    // AA - Used for DAG load/store alias analysis. +    AliasAnalysis &AA; + +    /// AddUsersToWorkList - When an instruction is simplified, add all users of +    /// the instruction to the work lists because they might get more simplified +    /// now. +    /// +    void AddUsersToWorkList(SDNode *N) { +      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); +           UI != UE; ++UI) +        AddToWorkList(*UI); +    } + +    /// visit - call the node-specific routine that knows how to fold each +    /// particular type of node. +    SDValue visit(SDNode *N); + +  public: +    /// AddToWorkList - Add to the work list making sure it's instance is at the +    /// the back (next to be processed.) +    void AddToWorkList(SDNode *N) { +      removeFromWorkList(N); +      WorkList.push_back(N); +    } + +    /// removeFromWorkList - remove all instances of N from the worklist. +    /// +    void removeFromWorkList(SDNode *N) { +      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), +                     WorkList.end()); +    } + +    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, +                      bool AddTo = true); + +    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { +      return CombineTo(N, &Res, 1, AddTo); +    } + +    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, +                      bool AddTo = true) { +      SDValue To[] = { Res0, Res1 }; +      return CombineTo(N, To, 2, AddTo); +    } + +    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); + +  private: + +    /// SimplifyDemandedBits - Check the specified integer node value to see if +    /// it can be simplified or if things it uses can be simplified by bit +    /// propagation.  If so, return true. +    bool SimplifyDemandedBits(SDValue Op) { +      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); +      APInt Demanded = APInt::getAllOnesValue(BitWidth); +      return SimplifyDemandedBits(Op, Demanded); +    } + +    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded); + +    bool CombineToPreIndexedLoadStore(SDNode *N); +    bool CombineToPostIndexedLoadStore(SDNode *N); + +    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); +    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); +    SDValue SExtPromoteOperand(SDValue Op, EVT PVT); +    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); +    SDValue PromoteIntBinOp(SDValue Op); +    SDValue PromoteIntShiftOp(SDValue Op); +    SDValue PromoteExtend(SDValue Op); +    bool PromoteLoad(SDValue Op); + +    /// combine - call the node-specific routine that knows how to fold each +    /// particular type of node. If that doesn't do anything, try the +    /// target-specific DAG combines. +    SDValue combine(SDNode *N); + +    // Visitation implementation - Implement dag node combining for different +    // node types.  The semantics are as follows: +    // Return Value: +    //   SDValue.getNode() == 0 - No change was made +    //   SDValue.getNode() == N - N was replaced, is dead and has been handled. +    //   otherwise              - N should be replaced by the returned Operand. +    // +    SDValue visitTokenFactor(SDNode *N); +    SDValue visitMERGE_VALUES(SDNode *N); +    SDValue visitADD(SDNode *N); +    SDValue visitSUB(SDNode *N); +    SDValue visitADDC(SDNode *N); +    SDValue visitADDE(SDNode *N); +    SDValue visitMUL(SDNode *N); +    SDValue visitSDIV(SDNode *N); +    SDValue visitUDIV(SDNode *N); +    SDValue visitSREM(SDNode *N); +    SDValue visitUREM(SDNode *N); +    SDValue visitMULHU(SDNode *N); +    SDValue visitMULHS(SDNode *N); +    SDValue visitSMUL_LOHI(SDNode *N); +    SDValue visitUMUL_LOHI(SDNode *N); +    SDValue visitSDIVREM(SDNode *N); +    SDValue visitUDIVREM(SDNode *N); +    SDValue visitAND(SDNode *N); +    SDValue visitOR(SDNode *N); +    SDValue visitXOR(SDNode *N); +    SDValue SimplifyVBinOp(SDNode *N); +    SDValue visitSHL(SDNode *N); +    SDValue visitSRA(SDNode *N); +    SDValue visitSRL(SDNode *N); +    SDValue visitCTLZ(SDNode *N); +    SDValue visitCTTZ(SDNode *N); +    SDValue visitCTPOP(SDNode *N); +    SDValue visitSELECT(SDNode *N); +    SDValue visitSELECT_CC(SDNode *N); +    SDValue visitSETCC(SDNode *N); +    SDValue visitSIGN_EXTEND(SDNode *N); +    SDValue visitZERO_EXTEND(SDNode *N); +    SDValue visitANY_EXTEND(SDNode *N); +    SDValue visitSIGN_EXTEND_INREG(SDNode *N); +    SDValue visitTRUNCATE(SDNode *N); +    SDValue visitBIT_CONVERT(SDNode *N); +    SDValue visitBUILD_PAIR(SDNode *N); +    SDValue visitFADD(SDNode *N); +    SDValue visitFSUB(SDNode *N); +    SDValue visitFMUL(SDNode *N); +    SDValue visitFDIV(SDNode *N); +    SDValue visitFREM(SDNode *N); +    SDValue visitFCOPYSIGN(SDNode *N); +    SDValue visitSINT_TO_FP(SDNode *N); +    SDValue visitUINT_TO_FP(SDNode *N); +    SDValue visitFP_TO_SINT(SDNode *N); +    SDValue visitFP_TO_UINT(SDNode *N); +    SDValue visitFP_ROUND(SDNode *N); +    SDValue visitFP_ROUND_INREG(SDNode *N); +    SDValue visitFP_EXTEND(SDNode *N); +    SDValue visitFNEG(SDNode *N); +    SDValue visitFABS(SDNode *N); +    SDValue visitBRCOND(SDNode *N); +    SDValue visitBR_CC(SDNode *N); +    SDValue visitLOAD(SDNode *N); +    SDValue visitSTORE(SDNode *N); +    SDValue visitINSERT_VECTOR_ELT(SDNode *N); +    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); +    SDValue visitBUILD_VECTOR(SDNode *N); +    SDValue visitCONCAT_VECTORS(SDNode *N); +    SDValue visitVECTOR_SHUFFLE(SDNode *N); +    SDValue visitMEMBARRIER(SDNode *N); + +    SDValue XformToShuffleWithZero(SDNode *N); +    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS); + +    SDValue visitShiftByConstant(SDNode *N, unsigned Amt); + +    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); +    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N); +    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2); +    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2, +                             SDValue N3, ISD::CondCode CC, +                             bool NotExtCompare = false); +    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, +                          DebugLoc DL, bool foldBooleans = true); +    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, +                                         unsigned HiOp); +    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); +    SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, EVT); +    SDValue BuildSDIV(SDNode *N); +    SDValue BuildUDIV(SDNode *N); +    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL); +    SDValue ReduceLoadWidth(SDNode *N); +    SDValue ReduceLoadOpStoreWidth(SDNode *N); + +    SDValue GetDemandedBits(SDValue V, const APInt &Mask); + +    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, +    /// looking for aliasing nodes and adding them to the Aliases vector. +    void GatherAllAliases(SDNode *N, SDValue OriginalChain, +                          SmallVector<SDValue, 8> &Aliases); + +    /// isAlias - Return true if there is any possibility that the two addresses +    /// overlap. +    bool isAlias(SDValue Ptr1, int64_t Size1, +                 const Value *SrcValue1, int SrcValueOffset1, +                 unsigned SrcValueAlign1, +                 SDValue Ptr2, int64_t Size2, +                 const Value *SrcValue2, int SrcValueOffset2, +                 unsigned SrcValueAlign2) const; + +    /// FindAliasInfo - Extracts the relevant alias information from the memory +    /// node.  Returns true if the operand was a load. +    bool FindAliasInfo(SDNode *N, +                       SDValue &Ptr, int64_t &Size, +                       const Value *&SrcValue, int &SrcValueOffset, +                       unsigned &SrcValueAlignment) const; + +    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, +    /// looking for a better chain (aliasing node.) +    SDValue FindBetterChain(SDNode *N, SDValue Chain); + +  public: +    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL) +      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(Unrestricted), +        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {} + +    /// Run - runs the dag combiner on all nodes in the work list +    void Run(CombineLevel AtLevel); +     +    SelectionDAG &getDAG() const { return DAG; } +     +    /// getShiftAmountTy - Returns a type large enough to hold any valid +    /// shift amount - before type legalization these can be huge. +    EVT getShiftAmountTy() { +      return LegalTypes ? TLI.getShiftAmountTy() : TLI.getPointerTy(); +    } +     +    /// isTypeLegal - This method returns true if we are running before type +    /// legalization or if the specified VT is legal. +    bool isTypeLegal(const EVT &VT) { +      if (!LegalTypes) return true; +      return TLI.isTypeLegal(VT); +    } +  }; +} + + +namespace { +/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted +/// nodes from the worklist. +class WorkListRemover : public SelectionDAG::DAGUpdateListener { +  DAGCombiner &DC; +public: +  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {} + +  virtual void NodeDeleted(SDNode *N, SDNode *E) { +    DC.removeFromWorkList(N); +  } + +  virtual void NodeUpdated(SDNode *N) { +    // Ignore updates. +  } +}; +} + +//===----------------------------------------------------------------------===// +//  TargetLowering::DAGCombinerInfo implementation +//===----------------------------------------------------------------------===// + +void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { +  ((DAGCombiner*)DC)->AddToWorkList(N); +} + +SDValue TargetLowering::DAGCombinerInfo:: +CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) { +  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); +} + +SDValue TargetLowering::DAGCombinerInfo:: +CombineTo(SDNode *N, SDValue Res, bool AddTo) { +  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); +} + + +SDValue TargetLowering::DAGCombinerInfo:: +CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { +  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); +} + +void TargetLowering::DAGCombinerInfo:: +CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { +  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); +} + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +/// isNegatibleForFree - Return 1 if we can compute the negated form of the +/// specified expression for the same cost as the expression itself, or 2 if we +/// can compute the negated form more cheaply than the expression itself. +static char isNegatibleForFree(SDValue Op, bool LegalOperations, +                               unsigned Depth = 0) { +  // No compile time optimizations on this type. +  if (Op.getValueType() == MVT::ppcf128) +    return 0; + +  // fneg is removable even if it has multiple uses. +  if (Op.getOpcode() == ISD::FNEG) return 2; + +  // Don't allow anything with multiple uses. +  if (!Op.hasOneUse()) return 0; + +  // Don't recurse exponentially. +  if (Depth > 6) return 0; + +  switch (Op.getOpcode()) { +  default: return false; +  case ISD::ConstantFP: +    // Don't invert constant FP values after legalize.  The negated constant +    // isn't necessarily legal. +    return LegalOperations ? 0 : 1; +  case ISD::FADD: +    // FIXME: determine better conditions for this xform. +    if (!UnsafeFPMath) return 0; + +    // fold (fsub (fadd A, B)) -> (fsub (fneg A), B) +    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1)) +      return V; +    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) +    return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1); +  case ISD::FSUB: +    // We can't turn -(A-B) into B-A when we honor signed zeros. +    if (!UnsafeFPMath) return 0; + +    // fold (fneg (fsub A, B)) -> (fsub B, A) +    return 1; + +  case ISD::FMUL: +  case ISD::FDIV: +    if (HonorSignDependentRoundingFPMath()) return 0; + +    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) +    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1)) +      return V; + +    return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1); + +  case ISD::FP_EXTEND: +  case ISD::FP_ROUND: +  case ISD::FSIN: +    return isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1); +  } +} + +/// GetNegatedExpression - If isNegatibleForFree returns true, this function +/// returns the newly negated expression. +static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG, +                                    bool LegalOperations, unsigned Depth = 0) { +  // fneg is removable even if it has multiple uses. +  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0); + +  // Don't allow anything with multiple uses. +  assert(Op.hasOneUse() && "Unknown reuse!"); + +  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree"); +  switch (Op.getOpcode()) { +  default: llvm_unreachable("Unknown code"); +  case ISD::ConstantFP: { +    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); +    V.changeSign(); +    return DAG.getConstantFP(V, Op.getValueType()); +  } +  case ISD::FADD: +    // FIXME: determine better conditions for this xform. +    assert(UnsafeFPMath); + +    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) +    if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1)) +      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), +                         GetNegatedExpression(Op.getOperand(0), DAG, +                                              LegalOperations, Depth+1), +                         Op.getOperand(1)); +    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) +    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), +                       GetNegatedExpression(Op.getOperand(1), DAG, +                                            LegalOperations, Depth+1), +                       Op.getOperand(0)); +  case ISD::FSUB: +    // We can't turn -(A-B) into B-A when we honor signed zeros. +    assert(UnsafeFPMath); + +    // fold (fneg (fsub 0, B)) -> B +    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0))) +      if (N0CFP->getValueAPF().isZero()) +        return Op.getOperand(1); + +    // fold (fneg (fsub A, B)) -> (fsub B, A) +    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), +                       Op.getOperand(1), Op.getOperand(0)); + +  case ISD::FMUL: +  case ISD::FDIV: +    assert(!HonorSignDependentRoundingFPMath()); + +    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) +    if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1)) +      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(), +                         GetNegatedExpression(Op.getOperand(0), DAG, +                                              LegalOperations, Depth+1), +                         Op.getOperand(1)); + +    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) +    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(), +                       Op.getOperand(0), +                       GetNegatedExpression(Op.getOperand(1), DAG, +                                            LegalOperations, Depth+1)); + +  case ISD::FP_EXTEND: +  case ISD::FSIN: +    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(), +                       GetNegatedExpression(Op.getOperand(0), DAG, +                                            LegalOperations, Depth+1)); +  case ISD::FP_ROUND: +      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(), +                         GetNegatedExpression(Op.getOperand(0), DAG, +                                              LegalOperations, Depth+1), +                         Op.getOperand(1)); +  } +} + + +// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc +// that selects between the values 1 and 0, making it equivalent to a setcc. +// Also, set the incoming LHS, RHS, and CC references to the appropriate +// nodes based on the type of node we are checking.  This simplifies life a +// bit for the callers. +static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, +                              SDValue &CC) { +  if (N.getOpcode() == ISD::SETCC) { +    LHS = N.getOperand(0); +    RHS = N.getOperand(1); +    CC  = N.getOperand(2); +    return true; +  } +  if (N.getOpcode() == ISD::SELECT_CC && +      N.getOperand(2).getOpcode() == ISD::Constant && +      N.getOperand(3).getOpcode() == ISD::Constant && +      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 && +      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) { +    LHS = N.getOperand(0); +    RHS = N.getOperand(1); +    CC  = N.getOperand(4); +    return true; +  } +  return false; +} + +// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only +// one use.  If this is true, it allows the users to invert the operation for +// free when it is profitable to do so. +static bool isOneUseSetCC(SDValue N) { +  SDValue N0, N1, N2; +  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) +    return true; +  return false; +} + +SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL, +                                    SDValue N0, SDValue N1) { +  EVT VT = N0.getValueType(); +  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) { +    if (isa<ConstantSDNode>(N1)) { +      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) +      SDValue OpNode = +        DAG.FoldConstantArithmetic(Opc, VT, +                                   cast<ConstantSDNode>(N0.getOperand(1)), +                                   cast<ConstantSDNode>(N1)); +      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); +    } else if (N0.hasOneUse()) { +      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use +      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT, +                                   N0.getOperand(0), N1); +      AddToWorkList(OpNode.getNode()); +      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); +    } +  } + +  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) { +    if (isa<ConstantSDNode>(N0)) { +      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) +      SDValue OpNode = +        DAG.FoldConstantArithmetic(Opc, VT, +                                   cast<ConstantSDNode>(N1.getOperand(1)), +                                   cast<ConstantSDNode>(N0)); +      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode); +    } else if (N1.hasOneUse()) { +      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use +      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT, +                                   N1.getOperand(0), N0); +      AddToWorkList(OpNode.getNode()); +      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1)); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, +                               bool AddTo) { +  assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); +  ++NodesCombined; +  DEBUG(dbgs() << "\nReplacing.1 "; +        N->dump(&DAG); +        dbgs() << "\nWith: "; +        To[0].getNode()->dump(&DAG); +        dbgs() << " and " << NumTo-1 << " other values\n"; +        for (unsigned i = 0, e = NumTo; i != e; ++i) +          assert((!To[i].getNode() || +                  N->getValueType(i) == To[i].getValueType()) && +                 "Cannot combine value to value of different type!")); +  WorkListRemover DeadNodes(*this); +  DAG.ReplaceAllUsesWith(N, To, &DeadNodes); + +  if (AddTo) { +    // Push the new nodes and any users onto the worklist +    for (unsigned i = 0, e = NumTo; i != e; ++i) { +      if (To[i].getNode()) { +        AddToWorkList(To[i].getNode()); +        AddUsersToWorkList(To[i].getNode()); +      } +    } +  } + +  // Finally, if the node is now dead, remove it from the graph.  The node +  // may not be dead if the replacement process recursively simplified to +  // something else needing this node. +  if (N->use_empty()) { +    // Nodes can be reintroduced into the worklist.  Make sure we do not +    // process a node that has been replaced. +    removeFromWorkList(N); + +    // Finally, since the node is now dead, remove it from the graph. +    DAG.DeleteNode(N); +  } +  return SDValue(N, 0); +} + +void DAGCombiner:: +CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { +  // Replace all uses.  If any nodes become isomorphic to other nodes and +  // are deleted, make sure to remove them from our worklist. +  WorkListRemover DeadNodes(*this); +  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes); + +  // Push the new node and any (possibly new) users onto the worklist. +  AddToWorkList(TLO.New.getNode()); +  AddUsersToWorkList(TLO.New.getNode()); + +  // Finally, if the node is now dead, remove it from the graph.  The node +  // may not be dead if the replacement process recursively simplified to +  // something else needing this node. +  if (TLO.Old.getNode()->use_empty()) { +    removeFromWorkList(TLO.Old.getNode()); + +    // If the operands of this node are only used by the node, they will now +    // be dead.  Make sure to visit them first to delete dead nodes early. +    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i) +      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse()) +        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode()); + +    DAG.DeleteNode(TLO.Old.getNode()); +  } +} + +/// SimplifyDemandedBits - Check the specified integer node value to see if +/// it can be simplified or if things it uses can be simplified by bit +/// propagation.  If so, return true. +bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) { +  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); +  APInt KnownZero, KnownOne; +  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) +    return false; + +  // Revisit the node. +  AddToWorkList(Op.getNode()); + +  // Replace the old value with the new one. +  ++NodesCombined; +  DEBUG(dbgs() << "\nReplacing.2 ";  +        TLO.Old.getNode()->dump(&DAG); +        dbgs() << "\nWith: "; +        TLO.New.getNode()->dump(&DAG); +        dbgs() << '\n'); + +  CommitTargetLoweringOpt(TLO); +  return true; +} + +void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { +  DebugLoc dl = Load->getDebugLoc(); +  EVT VT = Load->getValueType(0); +  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0)); + +  DEBUG(dbgs() << "\nReplacing.9 "; +        Load->dump(&DAG); +        dbgs() << "\nWith: "; +        Trunc.getNode()->dump(&DAG); +        dbgs() << '\n'); +  WorkListRemover DeadNodes(*this); +  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc, &DeadNodes); +  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1), +                                &DeadNodes); +  removeFromWorkList(Load); +  DAG.DeleteNode(Load); +  AddToWorkList(Trunc.getNode()); +} + +SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { +  Replace = false; +  DebugLoc dl = Op.getDebugLoc(); +  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { +    EVT MemVT = LD->getMemoryVT(); +    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) +      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD : ISD::EXTLOAD) +      : LD->getExtensionType(); +    Replace = true; +    return DAG.getExtLoad(ExtType, PVT, dl, +                          LD->getChain(), LD->getBasePtr(), +                          LD->getSrcValue(), LD->getSrcValueOffset(), +                          MemVT, LD->isVolatile(), +                          LD->isNonTemporal(), LD->getAlignment()); +  } + +  unsigned Opc = Op.getOpcode(); +  switch (Opc) { +  default: break; +  case ISD::AssertSext: +    return DAG.getNode(ISD::AssertSext, dl, PVT, +                       SExtPromoteOperand(Op.getOperand(0), PVT), +                       Op.getOperand(1)); +  case ISD::AssertZext: +    return DAG.getNode(ISD::AssertZext, dl, PVT, +                       ZExtPromoteOperand(Op.getOperand(0), PVT), +                       Op.getOperand(1)); +  case ISD::Constant: { +    unsigned ExtOpc = +      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; +    return DAG.getNode(ExtOpc, dl, PVT, Op); +  }     +  } + +  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) +    return SDValue(); +  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op); +} + +SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { +  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) +    return SDValue(); +  EVT OldVT = Op.getValueType(); +  DebugLoc dl = Op.getDebugLoc(); +  bool Replace = false; +  SDValue NewOp = PromoteOperand(Op, PVT, Replace); +  if (NewOp.getNode() == 0) +    return SDValue(); +  AddToWorkList(NewOp.getNode()); + +  if (Replace) +    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); +  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp, +                     DAG.getValueType(OldVT)); +} + +SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { +  EVT OldVT = Op.getValueType(); +  DebugLoc dl = Op.getDebugLoc(); +  bool Replace = false; +  SDValue NewOp = PromoteOperand(Op, PVT, Replace); +  if (NewOp.getNode() == 0) +    return SDValue(); +  AddToWorkList(NewOp.getNode()); + +  if (Replace) +    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); +  return DAG.getZeroExtendInReg(NewOp, dl, OldVT); +} + +/// PromoteIntBinOp - Promote the specified integer binary operation if the +/// target indicates it is beneficial. e.g. On x86, it's usually better to +/// promote i16 operations to i32 since i16 instructions are longer. +SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { +  if (!LegalOperations) +    return SDValue(); + +  EVT VT = Op.getValueType(); +  if (VT.isVector() || !VT.isInteger()) +    return SDValue(); + +  // If operation type is 'undesirable', e.g. i16 on x86, consider +  // promoting it. +  unsigned Opc = Op.getOpcode(); +  if (TLI.isTypeDesirableForOp(Opc, VT)) +    return SDValue(); + +  EVT PVT = VT; +  // Consult target whether it is a good idea to promote this operation and +  // what's the right type to promote it to. +  if (TLI.IsDesirableToPromoteOp(Op, PVT)) { +    assert(PVT != VT && "Don't know what type to promote to!"); + +    bool Replace0 = false; +    SDValue N0 = Op.getOperand(0); +    SDValue NN0 = PromoteOperand(N0, PVT, Replace0); +    if (NN0.getNode() == 0) +      return SDValue(); + +    bool Replace1 = false; +    SDValue N1 = Op.getOperand(1); +    SDValue NN1; +    if (N0 == N1) +      NN1 = NN0; +    else { +      NN1 = PromoteOperand(N1, PVT, Replace1); +      if (NN1.getNode() == 0) +        return SDValue(); +    } + +    AddToWorkList(NN0.getNode()); +    if (NN1.getNode()) +      AddToWorkList(NN1.getNode()); + +    if (Replace0) +      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); +    if (Replace1) +      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); + +    DEBUG(dbgs() << "\nPromoting "; +          Op.getNode()->dump(&DAG)); +    DebugLoc dl = Op.getDebugLoc(); +    return DAG.getNode(ISD::TRUNCATE, dl, VT, +                       DAG.getNode(Opc, dl, PVT, NN0, NN1)); +  } +  return SDValue(); +} + +/// PromoteIntShiftOp - Promote the specified integer shift operation if the +/// target indicates it is beneficial. e.g. On x86, it's usually better to +/// promote i16 operations to i32 since i16 instructions are longer. +SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { +  if (!LegalOperations) +    return SDValue(); + +  EVT VT = Op.getValueType(); +  if (VT.isVector() || !VT.isInteger()) +    return SDValue(); + +  // If operation type is 'undesirable', e.g. i16 on x86, consider +  // promoting it. +  unsigned Opc = Op.getOpcode(); +  if (TLI.isTypeDesirableForOp(Opc, VT)) +    return SDValue(); + +  EVT PVT = VT; +  // Consult target whether it is a good idea to promote this operation and +  // what's the right type to promote it to. +  if (TLI.IsDesirableToPromoteOp(Op, PVT)) { +    assert(PVT != VT && "Don't know what type to promote to!"); + +    bool Replace = false; +    SDValue N0 = Op.getOperand(0); +    if (Opc == ISD::SRA) +      N0 = SExtPromoteOperand(Op.getOperand(0), PVT); +    else if (Opc == ISD::SRL) +      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT); +    else +      N0 = PromoteOperand(N0, PVT, Replace); +    if (N0.getNode() == 0) +      return SDValue(); + +    AddToWorkList(N0.getNode()); +    if (Replace) +      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); + +    DEBUG(dbgs() << "\nPromoting "; +          Op.getNode()->dump(&DAG)); +    DebugLoc dl = Op.getDebugLoc(); +    return DAG.getNode(ISD::TRUNCATE, dl, VT, +                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1))); +  } +  return SDValue(); +} + +SDValue DAGCombiner::PromoteExtend(SDValue Op) { +  if (!LegalOperations) +    return SDValue(); + +  EVT VT = Op.getValueType(); +  if (VT.isVector() || !VT.isInteger()) +    return SDValue(); + +  // If operation type is 'undesirable', e.g. i16 on x86, consider +  // promoting it. +  unsigned Opc = Op.getOpcode(); +  if (TLI.isTypeDesirableForOp(Opc, VT)) +    return SDValue(); + +  EVT PVT = VT; +  // Consult target whether it is a good idea to promote this operation and +  // what's the right type to promote it to. +  if (TLI.IsDesirableToPromoteOp(Op, PVT)) { +    assert(PVT != VT && "Don't know what type to promote to!"); +    // fold (aext (aext x)) -> (aext x) +    // fold (aext (zext x)) -> (zext x) +    // fold (aext (sext x)) -> (sext x) +    DEBUG(dbgs() << "\nPromoting "; +          Op.getNode()->dump(&DAG)); +    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0)); +  } +  return SDValue(); +} + +bool DAGCombiner::PromoteLoad(SDValue Op) { +  if (!LegalOperations) +    return false; + +  EVT VT = Op.getValueType(); +  if (VT.isVector() || !VT.isInteger()) +    return false; + +  // If operation type is 'undesirable', e.g. i16 on x86, consider +  // promoting it. +  unsigned Opc = Op.getOpcode(); +  if (TLI.isTypeDesirableForOp(Opc, VT)) +    return false; + +  EVT PVT = VT; +  // Consult target whether it is a good idea to promote this operation and +  // what's the right type to promote it to. +  if (TLI.IsDesirableToPromoteOp(Op, PVT)) { +    assert(PVT != VT && "Don't know what type to promote to!"); + +    DebugLoc dl = Op.getDebugLoc(); +    SDNode *N = Op.getNode(); +    LoadSDNode *LD = cast<LoadSDNode>(N); +    EVT MemVT = LD->getMemoryVT(); +    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) +      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD : ISD::EXTLOAD) +      : LD->getExtensionType(); +    SDValue NewLD = DAG.getExtLoad(ExtType, PVT, dl, +                                   LD->getChain(), LD->getBasePtr(), +                                   LD->getSrcValue(), LD->getSrcValueOffset(), +                                   MemVT, LD->isVolatile(), +                                   LD->isNonTemporal(), LD->getAlignment()); +    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD); + +    DEBUG(dbgs() << "\nPromoting "; +          N->dump(&DAG); +          dbgs() << "\nTo: "; +          Result.getNode()->dump(&DAG); +          dbgs() << '\n'); +    WorkListRemover DeadNodes(*this); +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result, &DeadNodes); +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1), &DeadNodes); +    removeFromWorkList(N); +    DAG.DeleteNode(N); +    AddToWorkList(Result.getNode()); +    return true; +  } +  return false; +} + + +//===----------------------------------------------------------------------===// +//  Main DAG Combiner implementation +//===----------------------------------------------------------------------===// + +void DAGCombiner::Run(CombineLevel AtLevel) { +  // set the instance variables, so that the various visit routines may use it. +  Level = AtLevel; +  LegalOperations = Level >= NoIllegalOperations; +  LegalTypes = Level >= NoIllegalTypes; + +  // Add all the dag nodes to the worklist. +  WorkList.reserve(DAG.allnodes_size()); +  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), +       E = DAG.allnodes_end(); I != E; ++I) +    WorkList.push_back(I); + +  // Create a dummy node (which is not added to allnodes), that adds a reference +  // to the root node, preventing it from being deleted, and tracking any +  // changes of the root. +  HandleSDNode Dummy(DAG.getRoot()); + +  // The root of the dag may dangle to deleted nodes until the dag combiner is +  // done.  Set it to null to avoid confusion. +  DAG.setRoot(SDValue()); + +  // while the worklist isn't empty, inspect the node on the end of it and +  // try and combine it. +  while (!WorkList.empty()) { +    SDNode *N = WorkList.back(); +    WorkList.pop_back(); + +    // If N has no uses, it is dead.  Make sure to revisit all N's operands once +    // N is deleted from the DAG, since they too may now be dead or may have a +    // reduced number of uses, allowing other xforms. +    if (N->use_empty() && N != &Dummy) { +      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) +        AddToWorkList(N->getOperand(i).getNode()); + +      DAG.DeleteNode(N); +      continue; +    } + +    SDValue RV = combine(N); + +    if (RV.getNode() == 0) +      continue; + +    ++NodesCombined; + +    // If we get back the same node we passed in, rather than a new node or +    // zero, we know that the node must have defined multiple values and +    // CombineTo was used.  Since CombineTo takes care of the worklist +    // mechanics for us, we have no work to do in this case. +    if (RV.getNode() == N) +      continue; + +    assert(N->getOpcode() != ISD::DELETED_NODE && +           RV.getNode()->getOpcode() != ISD::DELETED_NODE && +           "Node was deleted but visit returned new node!"); + +    DEBUG(dbgs() << "\nReplacing.3 ";  +          N->dump(&DAG); +          dbgs() << "\nWith: "; +          RV.getNode()->dump(&DAG); +          dbgs() << '\n'); +    WorkListRemover DeadNodes(*this); +    if (N->getNumValues() == RV.getNode()->getNumValues()) +      DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes); +    else { +      assert(N->getValueType(0) == RV.getValueType() && +             N->getNumValues() == 1 && "Type mismatch"); +      SDValue OpV = RV; +      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes); +    } + +    // Push the new node and any users onto the worklist +    AddToWorkList(RV.getNode()); +    AddUsersToWorkList(RV.getNode()); + +    // Add any uses of the old node to the worklist in case this node is the +    // last one that uses them.  They may become dead after this node is +    // deleted. +    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) +      AddToWorkList(N->getOperand(i).getNode()); + +    // Finally, if the node is now dead, remove it from the graph.  The node +    // may not be dead if the replacement process recursively simplified to +    // something else needing this node. +    if (N->use_empty()) { +      // Nodes can be reintroduced into the worklist.  Make sure we do not +      // process a node that has been replaced. +      removeFromWorkList(N); + +      // Finally, since the node is now dead, remove it from the graph. +      DAG.DeleteNode(N); +    } +  } + +  // If the root changed (e.g. it was a dead load, update the root). +  DAG.setRoot(Dummy.getValue()); +} + +SDValue DAGCombiner::visit(SDNode *N) { +  switch (N->getOpcode()) { +  default: break; +  case ISD::TokenFactor:        return visitTokenFactor(N); +  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N); +  case ISD::ADD:                return visitADD(N); +  case ISD::SUB:                return visitSUB(N); +  case ISD::ADDC:               return visitADDC(N); +  case ISD::ADDE:               return visitADDE(N); +  case ISD::MUL:                return visitMUL(N); +  case ISD::SDIV:               return visitSDIV(N); +  case ISD::UDIV:               return visitUDIV(N); +  case ISD::SREM:               return visitSREM(N); +  case ISD::UREM:               return visitUREM(N); +  case ISD::MULHU:              return visitMULHU(N); +  case ISD::MULHS:              return visitMULHS(N); +  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N); +  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N); +  case ISD::SDIVREM:            return visitSDIVREM(N); +  case ISD::UDIVREM:            return visitUDIVREM(N); +  case ISD::AND:                return visitAND(N); +  case ISD::OR:                 return visitOR(N); +  case ISD::XOR:                return visitXOR(N); +  case ISD::SHL:                return visitSHL(N); +  case ISD::SRA:                return visitSRA(N); +  case ISD::SRL:                return visitSRL(N); +  case ISD::CTLZ:               return visitCTLZ(N); +  case ISD::CTTZ:               return visitCTTZ(N); +  case ISD::CTPOP:              return visitCTPOP(N); +  case ISD::SELECT:             return visitSELECT(N); +  case ISD::SELECT_CC:          return visitSELECT_CC(N); +  case ISD::SETCC:              return visitSETCC(N); +  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N); +  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N); +  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N); +  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N); +  case ISD::TRUNCATE:           return visitTRUNCATE(N); +  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N); +  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N); +  case ISD::FADD:               return visitFADD(N); +  case ISD::FSUB:               return visitFSUB(N); +  case ISD::FMUL:               return visitFMUL(N); +  case ISD::FDIV:               return visitFDIV(N); +  case ISD::FREM:               return visitFREM(N); +  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N); +  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N); +  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N); +  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N); +  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N); +  case ISD::FP_ROUND:           return visitFP_ROUND(N); +  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N); +  case ISD::FP_EXTEND:          return visitFP_EXTEND(N); +  case ISD::FNEG:               return visitFNEG(N); +  case ISD::FABS:               return visitFABS(N); +  case ISD::BRCOND:             return visitBRCOND(N); +  case ISD::BR_CC:              return visitBR_CC(N); +  case ISD::LOAD:               return visitLOAD(N); +  case ISD::STORE:              return visitSTORE(N); +  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N); +  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); +  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N); +  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N); +  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N); +  case ISD::MEMBARRIER:         return visitMEMBARRIER(N); +  } +  return SDValue(); +} + +SDValue DAGCombiner::combine(SDNode *N) { +  SDValue RV = visit(N); + +  // If nothing happened, try a target-specific DAG combine. +  if (RV.getNode() == 0) { +    assert(N->getOpcode() != ISD::DELETED_NODE && +           "Node was deleted but visit returned NULL!"); + +    if (N->getOpcode() >= ISD::BUILTIN_OP_END || +        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { + +      // Expose the DAG combiner to the target combiner impls. +      TargetLowering::DAGCombinerInfo +        DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this); + +      RV = TLI.PerformDAGCombine(N, DagCombineInfo); +    } +  } + +  // If nothing happened still, try promoting the operation. +  if (RV.getNode() == 0) { +    switch (N->getOpcode()) { +    default: break; +    case ISD::ADD: +    case ISD::SUB: +    case ISD::MUL: +    case ISD::AND: +    case ISD::OR: +    case ISD::XOR: +      RV = PromoteIntBinOp(SDValue(N, 0)); +      break; +    case ISD::SHL: +    case ISD::SRA: +    case ISD::SRL: +      RV = PromoteIntShiftOp(SDValue(N, 0)); +      break; +    case ISD::SIGN_EXTEND: +    case ISD::ZERO_EXTEND: +    case ISD::ANY_EXTEND: +      RV = PromoteExtend(SDValue(N, 0)); +      break; +    case ISD::LOAD: +      if (PromoteLoad(SDValue(N, 0))) +        RV = SDValue(N, 0); +      break; +    } +  } + +  // If N is a commutative binary node, try commuting it to enable more +  // sdisel CSE. +  if (RV.getNode() == 0 && +      SelectionDAG::isCommutativeBinOp(N->getOpcode()) && +      N->getNumValues() == 1) { +    SDValue N0 = N->getOperand(0); +    SDValue N1 = N->getOperand(1); + +    // Constant operands are canonicalized to RHS. +    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) { +      SDValue Ops[] = { N1, N0 }; +      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), +                                            Ops, 2); +      if (CSENode) +        return SDValue(CSENode, 0); +    } +  } + +  return RV; +} + +/// getInputChainForNode - Given a node, return its input chain if it has one, +/// otherwise return a null sd operand. +static SDValue getInputChainForNode(SDNode *N) { +  if (unsigned NumOps = N->getNumOperands()) { +    if (N->getOperand(0).getValueType() == MVT::Other) +      return N->getOperand(0); +    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other) +      return N->getOperand(NumOps-1); +    for (unsigned i = 1; i < NumOps-1; ++i) +      if (N->getOperand(i).getValueType() == MVT::Other) +        return N->getOperand(i); +  } +  return SDValue(); +} + +SDValue DAGCombiner::visitTokenFactor(SDNode *N) { +  // If N has two operands, where one has an input chain equal to the other, +  // the 'other' chain is redundant. +  if (N->getNumOperands() == 2) { +    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) +      return N->getOperand(0); +    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) +      return N->getOperand(1); +  } + +  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit. +  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor. +  SmallPtrSet<SDNode*, 16> SeenOps; +  bool Changed = false;             // If we should replace this token factor. + +  // Start out with this token factor. +  TFs.push_back(N); + +  // Iterate through token factors.  The TFs grows when new token factors are +  // encountered. +  for (unsigned i = 0; i < TFs.size(); ++i) { +    SDNode *TF = TFs[i]; + +    // Check each of the operands. +    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) { +      SDValue Op = TF->getOperand(i); + +      switch (Op.getOpcode()) { +      case ISD::EntryToken: +        // Entry tokens don't need to be added to the list. They are +        // rededundant. +        Changed = true; +        break; + +      case ISD::TokenFactor: +        if (Op.hasOneUse() && +            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) { +          // Queue up for processing. +          TFs.push_back(Op.getNode()); +          // Clean up in case the token factor is removed. +          AddToWorkList(Op.getNode()); +          Changed = true; +          break; +        } +        // Fall thru + +      default: +        // Only add if it isn't already in the list. +        if (SeenOps.insert(Op.getNode())) +          Ops.push_back(Op); +        else +          Changed = true; +        break; +      } +    } +  } +   +  SDValue Result; + +  // If we've change things around then replace token factor. +  if (Changed) { +    if (Ops.empty()) { +      // The entry token is the only possible outcome. +      Result = DAG.getEntryNode(); +    } else { +      // New and improved token factor. +      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), +                           MVT::Other, &Ops[0], Ops.size()); +    } + +    // Don't add users to work list. +    return CombineTo(N, Result, false); +  } + +  return Result; +} + +/// MERGE_VALUES can always be eliminated. +SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { +  WorkListRemover DeadNodes(*this); +  // Replacing results may cause a different MERGE_VALUES to suddenly +  // be CSE'd with N, and carry its uses with it. Iterate until no +  // uses remain, to ensure that the node can be safely deleted. +  do { +    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) +      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i), +                                    &DeadNodes); +  } while (!N->use_empty()); +  removeFromWorkList(N); +  DAG.DeleteNode(N); +  return SDValue(N, 0);   // Return N so it doesn't get rechecked! +} + +static +SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1, +                              SelectionDAG &DAG) { +  EVT VT = N0.getValueType(); +  SDValue N00 = N0.getOperand(0); +  SDValue N01 = N0.getOperand(1); +  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01); + +  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() && +      isa<ConstantSDNode>(N00.getOperand(1))) { +    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), ) +    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, +                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT, +                                 N00.getOperand(0), N01), +                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT, +                                 N00.getOperand(1), N01)); +    return DAG.getNode(ISD::ADD, DL, VT, N0, N1); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitADD(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N0.getValueType(); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (add x, undef) -> undef +  if (N0.getOpcode() == ISD::UNDEF) +    return N0; +  if (N1.getOpcode() == ISD::UNDEF) +    return N1; +  // fold (add c1, c2) -> c1+c2 +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C); +  // canonicalize constant to RHS +  if (N0C && !N1C) +    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0); +  // fold (add x, 0) -> x +  if (N1C && N1C->isNullValue()) +    return N0; +  // fold (add Sym, c) -> Sym+c +  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) +    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C && +        GA->getOpcode() == ISD::GlobalAddress) +      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT, +                                  GA->getOffset() + +                                    (uint64_t)N1C->getSExtValue()); +  // fold ((c1-A)+c2) -> (c1+c2)-A +  if (N1C && N0.getOpcode() == ISD::SUB) +    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0))) +      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, +                         DAG.getConstant(N1C->getAPIntValue()+ +                                         N0C->getAPIntValue(), VT), +                         N0.getOperand(1)); +  // reassociate add +  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1); +  if (RADD.getNode() != 0) +    return RADD; +  // fold ((0-A) + B) -> B-A +  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) && +      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue()) +    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1)); +  // fold (A + (0-B)) -> A-B +  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) && +      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue()) +    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1)); +  // fold (A+(B-A)) -> B +  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) +    return N1.getOperand(0); +  // fold ((B-A)+A) -> B +  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) +    return N0.getOperand(0); +  // fold (A+(B-(A+C))) to (B-C) +  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && +      N0 == N1.getOperand(1).getOperand(0)) +    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0), +                       N1.getOperand(1).getOperand(1)); +  // fold (A+(B-(C+A))) to (B-C) +  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && +      N0 == N1.getOperand(1).getOperand(1)) +    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0), +                       N1.getOperand(1).getOperand(0)); +  // fold (A+((B-A)+or-C)) to (B+or-C) +  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && +      N1.getOperand(0).getOpcode() == ISD::SUB && +      N0 == N1.getOperand(0).getOperand(1)) +    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT, +                       N1.getOperand(0).getOperand(0), N1.getOperand(1)); + +  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant +  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { +    SDValue N00 = N0.getOperand(0); +    SDValue N01 = N0.getOperand(1); +    SDValue N10 = N1.getOperand(0); +    SDValue N11 = N1.getOperand(1); + +    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10)) +      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, +                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10), +                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11)); +  } + +  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // fold (a+b) -> (a|b) iff a and b share no bits. +  if (VT.isInteger() && !VT.isVector()) { +    APInt LHSZero, LHSOne; +    APInt RHSZero, RHSOne; +    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); +    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); + +    if (LHSZero.getBoolValue()) { +      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); + +      // If all possibly-set bits on the LHS are clear on the RHS, return an OR. +      // If all possibly-set bits on the RHS are clear on the LHS, return an OR. +      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || +          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) +        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1); +    } +  } + +  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), ) +  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) { +    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG); +    if (Result.getNode()) return Result; +  } +  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) { +    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG); +    if (Result.getNode()) return Result; +  } + +  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) +  if (N1.getOpcode() == ISD::SHL && +      N1.getOperand(0).getOpcode() == ISD::SUB) +    if (ConstantSDNode *C = +          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0))) +      if (C->getAPIntValue() == 0) +        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, +                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, +                                       N1.getOperand(0).getOperand(1), +                                       N1.getOperand(1))); +  if (N0.getOpcode() == ISD::SHL && +      N0.getOperand(0).getOpcode() == ISD::SUB) +    if (ConstantSDNode *C = +          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0))) +      if (C->getAPIntValue() == 0) +        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, +                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, +                                       N0.getOperand(0).getOperand(1), +                                       N0.getOperand(1))); + +  return SDValue(); +} + +SDValue DAGCombiner::visitADDC(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N0.getValueType(); + +  // If the flag result is dead, turn this into an ADD. +  if (N->hasNUsesOfValue(0, 1)) +    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0), +                     DAG.getNode(ISD::CARRY_FALSE, +                                 N->getDebugLoc(), MVT::Flag)); + +  // canonicalize constant to RHS. +  if (N0C && !N1C) +    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0); + +  // fold (addc x, 0) -> x + no carry out +  if (N1C && N1C->isNullValue()) +    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, +                                        N->getDebugLoc(), MVT::Flag)); + +  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits. +  APInt LHSZero, LHSOne; +  APInt RHSZero, RHSOne; +  APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); +  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne); + +  if (LHSZero.getBoolValue()) { +    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne); + +    // If all possibly-set bits on the LHS are clear on the RHS, return an OR. +    // If all possibly-set bits on the RHS are clear on the LHS, return an OR. +    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) || +        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask)) +      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1), +                       DAG.getNode(ISD::CARRY_FALSE, +                                   N->getDebugLoc(), MVT::Flag)); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitADDE(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue CarryIn = N->getOperand(2); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + +  // canonicalize constant to RHS +  if (N0C && !N1C) +    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(), +                       N1, N0, CarryIn); + +  // fold (adde x, y, false) -> (addc x, y) +  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) +    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitSUB(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); +  EVT VT = N0.getValueType(); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (sub x, x) -> 0 +  if (N0 == N1) +    return DAG.getConstant(0, N->getValueType(0)); +  // fold (sub c1, c2) -> c1-c2 +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C); +  // fold (sub x, c) -> (add x, -c) +  if (N1C) +    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, +                       DAG.getConstant(-N1C->getAPIntValue(), VT)); +  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) +  if (N0C && N0C->isAllOnesValue()) +    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0); +  // fold (A+B)-A -> B +  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) +    return N0.getOperand(1); +  // fold (A+B)-B -> A +  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) +    return N0.getOperand(0); +  // fold ((A+(B+or-C))-B) -> A+or-C +  if (N0.getOpcode() == ISD::ADD && +      (N0.getOperand(1).getOpcode() == ISD::SUB || +       N0.getOperand(1).getOpcode() == ISD::ADD) && +      N0.getOperand(1).getOperand(0) == N1) +    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT, +                       N0.getOperand(0), N0.getOperand(1).getOperand(1)); +  // fold ((A+(C+B))-B) -> A+C +  if (N0.getOpcode() == ISD::ADD && +      N0.getOperand(1).getOpcode() == ISD::ADD && +      N0.getOperand(1).getOperand(1) == N1) +    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, +                       N0.getOperand(0), N0.getOperand(1).getOperand(0)); +  // fold ((A-(B-C))-C) -> A-B +  if (N0.getOpcode() == ISD::SUB && +      N0.getOperand(1).getOpcode() == ISD::SUB && +      N0.getOperand(1).getOperand(1) == N1) +    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, +                       N0.getOperand(0), N0.getOperand(1).getOperand(0)); + +  // If either operand of a sub is undef, the result is undef +  if (N0.getOpcode() == ISD::UNDEF) +    return N0; +  if (N1.getOpcode() == ISD::UNDEF) +    return N1; + +  // If the relocation model supports it, consider symbol offsets. +  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) +    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { +      // fold (sub Sym, c) -> Sym-c +      if (N1C && GA->getOpcode() == ISD::GlobalAddress) +        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT, +                                    GA->getOffset() - +                                      (uint64_t)N1C->getSExtValue()); +      // fold (sub Sym+c1, Sym+c2) -> c1-c2 +      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) +        if (GA->getGlobal() == GB->getGlobal()) +          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), +                                 VT); +    } + +  return SDValue(); +} + +SDValue DAGCombiner::visitMUL(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N0.getValueType(); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (mul x, undef) -> 0 +  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) +    return DAG.getConstant(0, VT); +  // fold (mul c1, c2) -> c1*c2 +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C); +  // canonicalize constant to RHS +  if (N0C && !N1C) +    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0); +  // fold (mul x, 0) -> 0 +  if (N1C && N1C->isNullValue()) +    return N1; +  // fold (mul x, -1) -> 0-x +  if (N1C && N1C->isAllOnesValue()) +    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, +                       DAG.getConstant(0, VT), N0); +  // fold (mul x, (1 << c)) -> x << c +  if (N1C && N1C->getAPIntValue().isPowerOf2()) +    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0, +                       DAG.getConstant(N1C->getAPIntValue().logBase2(), +                                       getShiftAmountTy())); +  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c +  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) { +    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2(); +    // FIXME: If the input is something that is easily negated (e.g. a +    // single-use add), we should put the negate there. +    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, +                       DAG.getConstant(0, VT), +                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0, +                            DAG.getConstant(Log2Val, getShiftAmountTy()))); +  } +  // (mul (shl X, c1), c2) -> (mul X, c2 << c1) +  if (N1C && N0.getOpcode() == ISD::SHL && +      isa<ConstantSDNode>(N0.getOperand(1))) { +    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, +                             N1, N0.getOperand(1)); +    AddToWorkList(C3.getNode()); +    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, +                       N0.getOperand(0), C3); +  } + +  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one +  // use. +  { +    SDValue Sh(0,0), Y(0,0); +    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)). +    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) && +        N0.getNode()->hasOneUse()) { +      Sh = N0; Y = N1; +    } else if (N1.getOpcode() == ISD::SHL && +               isa<ConstantSDNode>(N1.getOperand(1)) && +               N1.getNode()->hasOneUse()) { +      Sh = N1; Y = N0; +    } + +    if (Sh.getNode()) { +      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, +                                Sh.getOperand(0), Y); +      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, +                         Mul, Sh.getOperand(1)); +    } +  } + +  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) +  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() && +      isa<ConstantSDNode>(N0.getOperand(1))) +    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, +                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT, +                                   N0.getOperand(0), N1), +                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT, +                                   N0.getOperand(1), N1)); + +  // reassociate mul +  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1); +  if (RMUL.getNode() != 0) +    return RMUL; + +  return SDValue(); +} + +SDValue DAGCombiner::visitSDIV(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); +  EVT VT = N->getValueType(0); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (sdiv c1, c2) -> c1/c2 +  if (N0C && N1C && !N1C->isNullValue()) +    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C); +  // fold (sdiv X, 1) -> X +  if (N1C && N1C->getSExtValue() == 1LL) +    return N0; +  // fold (sdiv X, -1) -> 0-X +  if (N1C && N1C->isAllOnesValue()) +    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, +                       DAG.getConstant(0, VT), N0); +  // If we know the sign bits of both operands are zero, strength reduce to a +  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2 +  if (!VT.isVector()) { +    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) +      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(), +                         N0, N1); +  } +  // fold (sdiv X, pow2) -> simple ops after legalize +  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() && +      (isPowerOf2_64(N1C->getSExtValue()) || +       isPowerOf2_64(-N1C->getSExtValue()))) { +    // If dividing by powers of two is cheap, then don't perform the following +    // fold. +    if (TLI.isPow2DivCheap()) +      return SDValue(); + +    int64_t pow2 = N1C->getSExtValue(); +    int64_t abs2 = pow2 > 0 ? pow2 : -pow2; +    unsigned lg2 = Log2_64(abs2); + +    // Splat the sign bit into the register +    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0, +                              DAG.getConstant(VT.getSizeInBits()-1, +                                              getShiftAmountTy())); +    AddToWorkList(SGN.getNode()); + +    // Add (N0 < 0) ? abs2 - 1 : 0; +    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN, +                              DAG.getConstant(VT.getSizeInBits() - lg2, +                                              getShiftAmountTy())); +    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL); +    AddToWorkList(SRL.getNode()); +    AddToWorkList(ADD.getNode());    // Divide by pow2 +    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD, +                              DAG.getConstant(lg2, getShiftAmountTy())); + +    // If we're dividing by a positive value, we're done.  Otherwise, we must +    // negate the result. +    if (pow2 > 0) +      return SRA; + +    AddToWorkList(SRA.getNode()); +    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, +                       DAG.getConstant(0, VT), SRA); +  } + +  // if integer divide is expensive and we satisfy the requirements, emit an +  // alternate sequence. +  if (N1C && (N1C->getSExtValue() < -1 || N1C->getSExtValue() > 1) && +      !TLI.isIntDivCheap()) { +    SDValue Op = BuildSDIV(N); +    if (Op.getNode()) return Op; +  } + +  // undef / X -> 0 +  if (N0.getOpcode() == ISD::UNDEF) +    return DAG.getConstant(0, VT); +  // X / undef -> undef +  if (N1.getOpcode() == ISD::UNDEF) +    return N1; + +  return SDValue(); +} + +SDValue DAGCombiner::visitUDIV(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode()); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); +  EVT VT = N->getValueType(0); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (udiv c1, c2) -> c1/c2 +  if (N0C && N1C && !N1C->isNullValue()) +    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C); +  // fold (udiv x, (1 << c)) -> x >>u c +  if (N1C && N1C->getAPIntValue().isPowerOf2()) +    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, +                       DAG.getConstant(N1C->getAPIntValue().logBase2(), +                                       getShiftAmountTy())); +  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 +  if (N1.getOpcode() == ISD::SHL) { +    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { +      if (SHC->getAPIntValue().isPowerOf2()) { +        EVT ADDVT = N1.getOperand(1).getValueType(); +        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT, +                                  N1.getOperand(1), +                                  DAG.getConstant(SHC->getAPIntValue() +                                                                  .logBase2(), +                                                  ADDVT)); +        AddToWorkList(Add.getNode()); +        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add); +      } +    } +  } +  // fold (udiv x, c) -> alternate +  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) { +    SDValue Op = BuildUDIV(N); +    if (Op.getNode()) return Op; +  } + +  // undef / X -> 0 +  if (N0.getOpcode() == ISD::UNDEF) +    return DAG.getConstant(0, VT); +  // X / undef -> undef +  if (N1.getOpcode() == ISD::UNDEF) +    return N1; + +  return SDValue(); +} + +SDValue DAGCombiner::visitSREM(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold (srem c1, c2) -> c1%c2 +  if (N0C && N1C && !N1C->isNullValue()) +    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C); +  // If we know the sign bits of both operands are zero, strength reduce to a +  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15 +  if (!VT.isVector()) { +    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) +      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1); +  } + +  // If X/C can be simplified by the division-by-constant logic, lower +  // X%C to the equivalent of X-X/C*C. +  if (N1C && !N1C->isNullValue()) { +    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1); +    AddToWorkList(Div.getNode()); +    SDValue OptimizedDiv = combine(Div.getNode()); +    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { +      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, +                                OptimizedDiv, N1); +      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul); +      AddToWorkList(Mul.getNode()); +      return Sub; +    } +  } + +  // undef % X -> 0 +  if (N0.getOpcode() == ISD::UNDEF) +    return DAG.getConstant(0, VT); +  // X % undef -> undef +  if (N1.getOpcode() == ISD::UNDEF) +    return N1; + +  return SDValue(); +} + +SDValue DAGCombiner::visitUREM(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold (urem c1, c2) -> c1%c2 +  if (N0C && N1C && !N1C->isNullValue()) +    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C); +  // fold (urem x, pow2) -> (and x, pow2-1) +  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2()) +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, +                       DAG.getConstant(N1C->getAPIntValue()-1,VT)); +  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) +  if (N1.getOpcode() == ISD::SHL) { +    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { +      if (SHC->getAPIntValue().isPowerOf2()) { +        SDValue Add = +          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, +                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), +                                 VT)); +        AddToWorkList(Add.getNode()); +        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add); +      } +    } +  } + +  // If X/C can be simplified by the division-by-constant logic, lower +  // X%C to the equivalent of X-X/C*C. +  if (N1C && !N1C->isNullValue()) { +    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1); +    AddToWorkList(Div.getNode()); +    SDValue OptimizedDiv = combine(Div.getNode()); +    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) { +      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, +                                OptimizedDiv, N1); +      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul); +      AddToWorkList(Mul.getNode()); +      return Sub; +    } +  } + +  // undef % X -> 0 +  if (N0.getOpcode() == ISD::UNDEF) +    return DAG.getConstant(0, VT); +  // X % undef -> undef +  if (N1.getOpcode() == ISD::UNDEF) +    return N1; + +  return SDValue(); +} + +SDValue DAGCombiner::visitMULHS(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold (mulhs x, 0) -> 0 +  if (N1C && N1C->isNullValue()) +    return N1; +  // fold (mulhs x, 1) -> (sra x, size(x)-1) +  if (N1C && N1C->getAPIntValue() == 1) +    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0, +                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1, +                                       getShiftAmountTy())); +  // fold (mulhs x, undef) -> 0 +  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) +    return DAG.getConstant(0, VT); + +  return SDValue(); +} + +SDValue DAGCombiner::visitMULHU(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold (mulhu x, 0) -> 0 +  if (N1C && N1C->isNullValue()) +    return N1; +  // fold (mulhu x, 1) -> 0 +  if (N1C && N1C->getAPIntValue() == 1) +    return DAG.getConstant(0, N0.getValueType()); +  // fold (mulhu x, undef) -> 0 +  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) +    return DAG.getConstant(0, VT); + +  return SDValue(); +} + +/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that +/// compute two values. LoOp and HiOp give the opcodes for the two computations +/// that are being performed. Return true if a simplification was made. +/// +SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, +                                                unsigned HiOp) { +  // If the high half is not needed, just compute the low half. +  bool HiExists = N->hasAnyUseOfValue(1); +  if (!HiExists && +      (!LegalOperations || +       TLI.isOperationLegal(LoOp, N->getValueType(0)))) { +    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0), +                              N->op_begin(), N->getNumOperands()); +    return CombineTo(N, Res, Res); +  } + +  // If the low half is not needed, just compute the high half. +  bool LoExists = N->hasAnyUseOfValue(0); +  if (!LoExists && +      (!LegalOperations || +       TLI.isOperationLegal(HiOp, N->getValueType(1)))) { +    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1), +                              N->op_begin(), N->getNumOperands()); +    return CombineTo(N, Res, Res); +  } + +  // If both halves are used, return as it is. +  if (LoExists && HiExists) +    return SDValue(); + +  // If the two computed results can be simplified separately, separate them. +  if (LoExists) { +    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0), +                             N->op_begin(), N->getNumOperands()); +    AddToWorkList(Lo.getNode()); +    SDValue LoOpt = combine(Lo.getNode()); +    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && +        (!LegalOperations || +         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))) +      return CombineTo(N, LoOpt, LoOpt); +  } + +  if (HiExists) { +    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1), +                             N->op_begin(), N->getNumOperands()); +    AddToWorkList(Hi.getNode()); +    SDValue HiOpt = combine(Hi.getNode()); +    if (HiOpt.getNode() && HiOpt != Hi && +        (!LegalOperations || +         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))) +      return CombineTo(N, HiOpt, HiOpt); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { +  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS); +  if (Res.getNode()) return Res; + +  return SDValue(); +} + +SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { +  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU); +  if (Res.getNode()) return Res; + +  return SDValue(); +} + +SDValue DAGCombiner::visitSDIVREM(SDNode *N) { +  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM); +  if (Res.getNode()) return Res; + +  return SDValue(); +} + +SDValue DAGCombiner::visitUDIVREM(SDNode *N) { +  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM); +  if (Res.getNode()) return Res; + +  return SDValue(); +} + +/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with +/// two operands of the same opcode, try to simplify it. +SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) { +  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); +  EVT VT = N0.getValueType(); +  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!"); + +  // Bail early if none of these transforms apply. +  if (N0.getNode()->getNumOperands() == 0) return SDValue(); + +  // For each of OP in AND/OR/XOR: +  // fold (OP (zext x), (zext y)) -> (zext (OP x, y)) +  // fold (OP (sext x), (sext y)) -> (sext (OP x, y)) +  // fold (OP (aext x), (aext y)) -> (aext (OP x, y)) +  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free) +  // +  // do not sink logical op inside of a vector extend, since it may combine +  // into a vsetcc. +  EVT Op0VT = N0.getOperand(0).getValueType(); +  if ((N0.getOpcode() == ISD::ZERO_EXTEND || +       N0.getOpcode() == ISD::SIGN_EXTEND || +       // Avoid infinite looping with PromoteIntBinOp. +       (N0.getOpcode() == ISD::ANY_EXTEND && +        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) || +       (N0.getOpcode() == ISD::TRUNCATE && +        (!TLI.isZExtFree(VT, Op0VT) || +         !TLI.isTruncateFree(Op0VT, VT)) && +        TLI.isTypeLegal(Op0VT))) && +      !VT.isVector() && +      Op0VT == N1.getOperand(0).getValueType() && +      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) { +    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), +                                 N0.getOperand(0).getValueType(), +                                 N0.getOperand(0), N1.getOperand(0)); +    AddToWorkList(ORNode.getNode()); +    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode); +  } + +  // For each of OP in SHL/SRL/SRA/AND... +  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z) +  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z) +  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z) +  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL || +       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) && +      N0.getOperand(1) == N1.getOperand(1)) { +    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), +                                 N0.getOperand(0).getValueType(), +                                 N0.getOperand(0), N1.getOperand(0)); +    AddToWorkList(ORNode.getNode()); +    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, +                       ORNode, N0.getOperand(1)); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitAND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue LL, LR, RL, RR, CC0, CC1; +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N1.getValueType(); +  unsigned BitWidth = VT.getScalarType().getSizeInBits(); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (and x, undef) -> 0 +  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF) +    return DAG.getConstant(0, VT); +  // fold (and c1, c2) -> c1&c2 +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C); +  // canonicalize constant to RHS +  if (N0C && !N1C) +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0); +  // fold (and x, -1) -> x +  if (N1C && N1C->isAllOnesValue()) +    return N0; +  // if (and x, c) is known to be zero, return 0 +  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), +                                   APInt::getAllOnesValue(BitWidth))) +    return DAG.getConstant(0, VT); +  // reassociate and +  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1); +  if (RAND.getNode() != 0) +    return RAND; +  // fold (and (or x, C), D) -> D if (C & D) == D +  if (N1C && N0.getOpcode() == ISD::OR) +    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) +      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue()) +        return N1; +  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. +  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { +    SDValue N0Op0 = N0.getOperand(0); +    APInt Mask = ~N1C->getAPIntValue(); +    Mask.trunc(N0Op0.getValueSizeInBits()); +    if (DAG.MaskedValueIsZero(N0Op0, Mask)) { +      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), +                                 N0.getValueType(), N0Op0); + +      // Replace uses of the AND with uses of the Zero extend node. +      CombineTo(N, Zext); + +      // We actually want to replace all uses of the any_extend with the +      // zero_extend, to avoid duplicating things.  This will later cause this +      // AND to be folded. +      CombineTo(N0.getNode(), Zext); +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } +  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) +  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ +    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); +    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); + +    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && +        LL.getValueType().isInteger()) { +      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0) +      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) { +        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(), +                                     LR.getValueType(), LL, RL); +        AddToWorkList(ORNode.getNode()); +        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1); +      } +      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1) +      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { +        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(), +                                      LR.getValueType(), LL, RL); +        AddToWorkList(ANDNode.getNode()); +        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1); +      } +      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1) +      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { +        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(), +                                     LR.getValueType(), LL, RL); +        AddToWorkList(ORNode.getNode()); +        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1); +      } +    } +    // canonicalize equivalent to ll == rl +    if (LL == RR && LR == RL) { +      Op1 = ISD::getSetCCSwappedOperands(Op1); +      std::swap(RL, RR); +    } +    if (LL == RL && LR == RR) { +      bool isInteger = LL.getValueType().isInteger(); +      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); +      if (Result != ISD::SETCC_INVALID && +          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType()))) +        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(), +                            LL, LR, Result); +    } +  } + +  // Simplify: (and (op x...), (op y...))  -> (op (and x, y)) +  if (N0.getOpcode() == N1.getOpcode()) { +    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); +    if (Tmp.getNode()) return Tmp; +  } + +  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) +  // fold (and (sra)) -> (and (srl)) when possible. +  if (!VT.isVector() && +      SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // fold (zext_inreg (extload x)) -> (zextload x) +  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    EVT MemVT = LN0->getMemoryVT(); +    // If we zero all the possible extended bits, then we can turn this into +    // a zextload if we are running before legalize or the operation is legal. +    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); +    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, +                           BitWidth - MemVT.getScalarType().getSizeInBits())) && +        ((!LegalOperations && !LN0->isVolatile()) || +         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) { +      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getDebugLoc(), +                                       LN0->getChain(), LN0->getBasePtr(), +                                       LN0->getSrcValue(), +                                       LN0->getSrcValueOffset(), MemVT, +                                       LN0->isVolatile(), LN0->isNonTemporal(), +                                       LN0->getAlignment()); +      AddToWorkList(N); +      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } +  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use +  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && +      N0.hasOneUse()) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    EVT MemVT = LN0->getMemoryVT(); +    // If we zero all the possible extended bits, then we can turn this into +    // a zextload if we are running before legalize or the operation is legal. +    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits(); +    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth, +                           BitWidth - MemVT.getScalarType().getSizeInBits())) && +        ((!LegalOperations && !LN0->isVolatile()) || +         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) { +      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getDebugLoc(), +                                       LN0->getChain(), +                                       LN0->getBasePtr(), LN0->getSrcValue(), +                                       LN0->getSrcValueOffset(), MemVT, +                                       LN0->isVolatile(), LN0->isNonTemporal(), +                                       LN0->getAlignment()); +      AddToWorkList(N); +      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } + +  // fold (and (load x), 255) -> (zextload x, i8) +  // fold (and (extload x, i16), 255) -> (zextload x, i8) +  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) +  if (N1C && (N0.getOpcode() == ISD::LOAD || +              (N0.getOpcode() == ISD::ANY_EXTEND && +               N0.getOperand(0).getOpcode() == ISD::LOAD))) { +    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND; +    LoadSDNode *LN0 = HasAnyExt +      ? cast<LoadSDNode>(N0.getOperand(0)) +      : cast<LoadSDNode>(N0); +    if (LN0->getExtensionType() != ISD::SEXTLOAD && +        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) { +      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits(); +      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){ +        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); +        EVT LoadedVT = LN0->getMemoryVT(); + +        if (ExtVT == LoadedVT && +            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) { +          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; +           +          SDValue NewLoad =  +            DAG.getExtLoad(ISD::ZEXTLOAD, LoadResultTy, LN0->getDebugLoc(), +                           LN0->getChain(), LN0->getBasePtr(), +                           LN0->getSrcValue(), LN0->getSrcValueOffset(), +                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), +                           LN0->getAlignment()); +          AddToWorkList(N); +          CombineTo(LN0, NewLoad, NewLoad.getValue(1)); +          return SDValue(N, 0);   // Return N so it doesn't get rechecked! +        } +         +        // Do not change the width of a volatile load. +        // Do not generate loads of non-round integer types since these can +        // be expensive (and would be wrong if the type is not byte sized). +        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() && +            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) { +          EVT PtrType = LN0->getOperand(1).getValueType(); + +          unsigned Alignment = LN0->getAlignment(); +          SDValue NewPtr = LN0->getBasePtr(); + +          // For big endian targets, we need to add an offset to the pointer +          // to load the correct bytes.  For little endian systems, we merely +          // need to read fewer bytes from the same pointer. +          if (TLI.isBigEndian()) { +            unsigned LVTStoreBytes = LoadedVT.getStoreSize(); +            unsigned EVTStoreBytes = ExtVT.getStoreSize(); +            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes; +            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType, +                                 NewPtr, DAG.getConstant(PtrOff, PtrType)); +            Alignment = MinAlign(Alignment, PtrOff); +          } + +          AddToWorkList(NewPtr.getNode()); +           +          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT; +          SDValue Load = +            DAG.getExtLoad(ISD::ZEXTLOAD, LoadResultTy, LN0->getDebugLoc(), +                           LN0->getChain(), NewPtr, +                           LN0->getSrcValue(), LN0->getSrcValueOffset(), +                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), +                           Alignment); +          AddToWorkList(N); +          CombineTo(LN0, Load, Load.getValue(1)); +          return SDValue(N, 0);   // Return N so it doesn't get rechecked! +        } +      } +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitOR(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue LL, LR, RL, RR, CC0, CC1; +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N1.getValueType(); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (or x, undef) -> -1 +  if (!LegalOperations && +      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) { +    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT; +    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT); +  } +  // fold (or c1, c2) -> c1|c2 +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C); +  // canonicalize constant to RHS +  if (N0C && !N1C) +    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0); +  // fold (or x, 0) -> x +  if (N1C && N1C->isNullValue()) +    return N0; +  // fold (or x, -1) -> -1 +  if (N1C && N1C->isAllOnesValue()) +    return N1; +  // fold (or x, c) -> c iff (x & ~c) == 0 +  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) +    return N1; +  // reassociate or +  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1); +  if (ROR.getNode() != 0) +    return ROR; +  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) +  // iff (c1 & c2) == 0. +  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && +             isa<ConstantSDNode>(N0.getOperand(1))) { +    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); +    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) +      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, +                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT, +                                     N0.getOperand(0), N1), +                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1)); +  } +  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) +  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ +    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); +    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); + +    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && +        LL.getValueType().isInteger()) { +      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0) +      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0) +      if (cast<ConstantSDNode>(LR)->isNullValue() && +          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { +        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(), +                                     LR.getValueType(), LL, RL); +        AddToWorkList(ORNode.getNode()); +        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1); +      } +      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1) +      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1) +      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && +          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { +        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(), +                                      LR.getValueType(), LL, RL); +        AddToWorkList(ANDNode.getNode()); +        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1); +      } +    } +    // canonicalize equivalent to ll == rl +    if (LL == RR && LR == RL) { +      Op1 = ISD::getSetCCSwappedOperands(Op1); +      std::swap(RL, RR); +    } +    if (LL == RL && LR == RR) { +      bool isInteger = LL.getValueType().isInteger(); +      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); +      if (Result != ISD::SETCC_INVALID && +          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType()))) +        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(), +                            LL, LR, Result); +    } +  } + +  // Simplify: (or (op x...), (op y...))  -> (op (or x, y)) +  if (N0.getOpcode() == N1.getOpcode()) { +    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); +    if (Tmp.getNode()) return Tmp; +  } + +  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible. +  if (N0.getOpcode() == ISD::AND && +      N1.getOpcode() == ISD::AND && +      N0.getOperand(1).getOpcode() == ISD::Constant && +      N1.getOperand(1).getOpcode() == ISD::Constant && +      // Don't increase # computations. +      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { +    // We can only do this xform if we know that bits from X that are set in C2 +    // but not in C1 are already zero.  Likewise for Y. +    const APInt &LHSMask = +      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); +    const APInt &RHSMask = +      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue(); + +    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && +        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { +      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT, +                              N0.getOperand(0), N1.getOperand(0)); +      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X, +                         DAG.getConstant(LHSMask | RHSMask, VT)); +    } +  } + +  // See if this is some rotate idiom. +  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc())) +    return SDValue(Rot, 0); + +  // Simplify the operands using demanded-bits information. +  if (!VT.isVector() && +      SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  return SDValue(); +} + +/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present. +static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) { +  if (Op.getOpcode() == ISD::AND) { +    if (isa<ConstantSDNode>(Op.getOperand(1))) { +      Mask = Op.getOperand(1); +      Op = Op.getOperand(0); +    } else { +      return false; +    } +  } + +  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { +    Shift = Op; +    return true; +  } + +  return false; +} + +// MatchRotate - Handle an 'or' of two operands.  If this is one of the many +// idioms for rotate, and if the target supports rotation instructions, generate +// a rot[lr]. +SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) { +  // Must be a legal type.  Expanded 'n promoted things won't work with rotates. +  EVT VT = LHS.getValueType(); +  if (!TLI.isTypeLegal(VT)) return 0; + +  // The target must have at least one rotate flavor. +  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT); +  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT); +  if (!HasROTL && !HasROTR) return 0; + +  // Match "(X shl/srl V1) & V2" where V2 may not be present. +  SDValue LHSShift;   // The shift. +  SDValue LHSMask;    // AND value if any. +  if (!MatchRotateHalf(LHS, LHSShift, LHSMask)) +    return 0; // Not part of a rotate. + +  SDValue RHSShift;   // The shift. +  SDValue RHSMask;    // AND value if any. +  if (!MatchRotateHalf(RHS, RHSShift, RHSMask)) +    return 0; // Not part of a rotate. + +  if (LHSShift.getOperand(0) != RHSShift.getOperand(0)) +    return 0;   // Not shifting the same value. + +  if (LHSShift.getOpcode() == RHSShift.getOpcode()) +    return 0;   // Shifts must disagree. + +  // Canonicalize shl to left side in a shl/srl pair. +  if (RHSShift.getOpcode() == ISD::SHL) { +    std::swap(LHS, RHS); +    std::swap(LHSShift, RHSShift); +    std::swap(LHSMask , RHSMask ); +  } + +  unsigned OpSizeInBits = VT.getSizeInBits(); +  SDValue LHSShiftArg = LHSShift.getOperand(0); +  SDValue LHSShiftAmt = LHSShift.getOperand(1); +  SDValue RHSShiftAmt = RHSShift.getOperand(1); + +  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) +  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) +  if (LHSShiftAmt.getOpcode() == ISD::Constant && +      RHSShiftAmt.getOpcode() == ISD::Constant) { +    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue(); +    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue(); +    if ((LShVal + RShVal) != OpSizeInBits) +      return 0; + +    SDValue Rot; +    if (HasROTL) +      Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt); +    else +      Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt); + +    // If there is an AND of either shifted operand, apply it to the result. +    if (LHSMask.getNode() || RHSMask.getNode()) { +      APInt Mask = APInt::getAllOnesValue(OpSizeInBits); + +      if (LHSMask.getNode()) { +        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal); +        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits; +      } +      if (RHSMask.getNode()) { +        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal); +        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits; +      } + +      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT)); +    } + +    return Rot.getNode(); +  } + +  // If there is a mask here, and we have a variable shift, we can't be sure +  // that we're masking out the right stuff. +  if (LHSMask.getNode() || RHSMask.getNode()) +    return 0; + +  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y) +  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y)) +  if (RHSShiftAmt.getOpcode() == ISD::SUB && +      LHSShiftAmt == RHSShiftAmt.getOperand(1)) { +    if (ConstantSDNode *SUBC = +          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) { +      if (SUBC->getAPIntValue() == OpSizeInBits) { +        if (HasROTL) +          return DAG.getNode(ISD::ROTL, DL, VT, +                             LHSShiftArg, LHSShiftAmt).getNode(); +        else +          return DAG.getNode(ISD::ROTR, DL, VT, +                             LHSShiftArg, RHSShiftAmt).getNode(); +      } +    } +  } + +  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y) +  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y)) +  if (LHSShiftAmt.getOpcode() == ISD::SUB && +      RHSShiftAmt == LHSShiftAmt.getOperand(1)) { +    if (ConstantSDNode *SUBC = +          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) { +      if (SUBC->getAPIntValue() == OpSizeInBits) { +        if (HasROTR) +          return DAG.getNode(ISD::ROTR, DL, VT, +                             LHSShiftArg, RHSShiftAmt).getNode(); +        else +          return DAG.getNode(ISD::ROTL, DL, VT, +                             LHSShiftArg, LHSShiftAmt).getNode(); +      } +    } +  } + +  // Look for sign/zext/any-extended or truncate cases: +  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND +       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND +       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND +       || LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && +      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND +       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND +       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND +       || RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { +    SDValue LExtOp0 = LHSShiftAmt.getOperand(0); +    SDValue RExtOp0 = RHSShiftAmt.getOperand(0); +    if (RExtOp0.getOpcode() == ISD::SUB && +        RExtOp0.getOperand(1) == LExtOp0) { +      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> +      //   (rotl x, y) +      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) -> +      //   (rotr x, (sub 32, y)) +      if (ConstantSDNode *SUBC = +            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) { +        if (SUBC->getAPIntValue() == OpSizeInBits) { +          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, +                             LHSShiftArg, +                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode(); +        } +      } +    } else if (LExtOp0.getOpcode() == ISD::SUB && +               RExtOp0 == LExtOp0.getOperand(1)) { +      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) -> +      //   (rotr x, y) +      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) -> +      //   (rotl x, (sub 32, y)) +      if (ConstantSDNode *SUBC = +            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) { +        if (SUBC->getAPIntValue() == OpSizeInBits) { +          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, +                             LHSShiftArg, +                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode(); +        } +      } +    } +  } + +  return 0; +} + +SDValue DAGCombiner::visitXOR(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue LHS, RHS, CC; +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N0.getValueType(); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (xor undef, undef) -> 0. This is a common idiom (misuse). +  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF) +    return DAG.getConstant(0, VT); +  // fold (xor x, undef) -> undef +  if (N0.getOpcode() == ISD::UNDEF) +    return N0; +  if (N1.getOpcode() == ISD::UNDEF) +    return N1; +  // fold (xor c1, c2) -> c1^c2 +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C); +  // canonicalize constant to RHS +  if (N0C && !N1C) +    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0); +  // fold (xor x, 0) -> x +  if (N1C && N1C->isNullValue()) +    return N0; +  // reassociate xor +  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1); +  if (RXOR.getNode() != 0) +    return RXOR; + +  // fold !(x cc y) -> (x !cc y) +  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { +    bool isInt = LHS.getValueType().isInteger(); +    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), +                                               isInt); + +    if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) { +      switch (N0.getOpcode()) { +      default: +        llvm_unreachable("Unhandled SetCC Equivalent!"); +      case ISD::SETCC: +        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC); +      case ISD::SELECT_CC: +        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2), +                               N0.getOperand(3), NotCC); +      } +    } +  } + +  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) +  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND && +      N0.getNode()->hasOneUse() && +      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ +    SDValue V = N0.getOperand(0); +    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V, +                    DAG.getConstant(1, V.getValueType())); +    AddToWorkList(V.getNode()); +    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V); +  } + +  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc +  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 && +      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { +    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); +    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { +      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; +      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS +      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS +      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode()); +      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS); +    } +  } +  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants +  if (N1C && N1C->isAllOnesValue() && +      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { +    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); +    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { +      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; +      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS +      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS +      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode()); +      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS); +    } +  } +  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2)) +  if (N1C && N0.getOpcode() == ISD::XOR) { +    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0)); +    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +    if (N00C) +      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1), +                         DAG.getConstant(N1C->getAPIntValue() ^ +                                         N00C->getAPIntValue(), VT)); +    if (N01C) +      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0), +                         DAG.getConstant(N1C->getAPIntValue() ^ +                                         N01C->getAPIntValue(), VT)); +  } +  // fold (xor x, x) -> 0 +  if (N0 == N1) { +    if (!VT.isVector()) { +      return DAG.getConstant(0, VT); +    } else if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)){ +      // Produce a vector of zeros. +      SDValue El = DAG.getConstant(0, VT.getVectorElementType()); +      std::vector<SDValue> Ops(VT.getVectorNumElements(), El); +      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, +                         &Ops[0], Ops.size()); +    } +  } + +  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y)) +  if (N0.getOpcode() == N1.getOpcode()) { +    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N); +    if (Tmp.getNode()) return Tmp; +  } + +  // Simplify the expression using non-local knowledge. +  if (!VT.isVector() && +      SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  return SDValue(); +} + +/// visitShiftByConstant - Handle transforms common to the three shifts, when +/// the shift amount is a constant. +SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) { +  SDNode *LHS = N->getOperand(0).getNode(); +  if (!LHS->hasOneUse()) return SDValue(); + +  // We want to pull some binops through shifts, so that we have (and (shift)) +  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of +  // thing happens with address calculations, so it's important to canonicalize +  // it. +  bool HighBitSet = false;  // Can we transform this if the high bit is set? + +  switch (LHS->getOpcode()) { +  default: return SDValue(); +  case ISD::OR: +  case ISD::XOR: +    HighBitSet = false; // We can only transform sra if the high bit is clear. +    break; +  case ISD::AND: +    HighBitSet = true;  // We can only transform sra if the high bit is set. +    break; +  case ISD::ADD: +    if (N->getOpcode() != ISD::SHL) +      return SDValue(); // only shl(add) not sr[al](add). +    HighBitSet = false; // We can only transform sra if the high bit is clear. +    break; +  } + +  // We require the RHS of the binop to be a constant as well. +  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1)); +  if (!BinOpCst) return SDValue(); + +  // FIXME: disable this unless the input to the binop is a shift by a constant. +  // If it is not a shift, it pessimizes some common cases like: +  // +  //    void foo(int *X, int i) { X[i & 1235] = 1; } +  //    int bar(int *X, int i) { return X[i & 255]; } +  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode(); +  if ((BinOpLHSVal->getOpcode() != ISD::SHL && +       BinOpLHSVal->getOpcode() != ISD::SRA && +       BinOpLHSVal->getOpcode() != ISD::SRL) || +      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1))) +    return SDValue(); + +  EVT VT = N->getValueType(0); + +  // If this is a signed shift right, and the high bit is modified by the +  // logical operation, do not perform the transformation. The highBitSet +  // boolean indicates the value of the high bit of the constant which would +  // cause it to be modified for this operation. +  if (N->getOpcode() == ISD::SRA) { +    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative(); +    if (BinOpRHSSignSet != HighBitSet) +      return SDValue(); +  } + +  // Fold the constants, shifting the binop RHS by the shift amount. +  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(), +                               N->getValueType(0), +                               LHS->getOperand(1), N->getOperand(1)); + +  // Create the new shift. +  SDValue NewShift = DAG.getNode(N->getOpcode(), LHS->getOperand(0).getDebugLoc(), +                                 VT, LHS->getOperand(0), N->getOperand(1)); + +  // Create the new binop. +  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS); +} + +SDValue DAGCombiner::visitSHL(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N0.getValueType(); +  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); + +  // fold (shl c1, c2) -> c1<<c2 +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C); +  // fold (shl 0, x) -> 0 +  if (N0C && N0C->isNullValue()) +    return N0; +  // fold (shl x, c >= size(x)) -> undef +  if (N1C && N1C->getZExtValue() >= OpSizeInBits) +    return DAG.getUNDEF(VT); +  // fold (shl x, 0) -> x +  if (N1C && N1C->isNullValue()) +    return N0; +  // if (shl x, c) is known to be zero, return 0 +  if (DAG.MaskedValueIsZero(SDValue(N, 0), +                            APInt::getAllOnesValue(OpSizeInBits))) +    return DAG.getConstant(0, VT); +  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). +  if (N1.getOpcode() == ISD::TRUNCATE && +      N1.getOperand(0).getOpcode() == ISD::AND && +      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) { +    SDValue N101 = N1.getOperand(0).getOperand(1); +    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) { +      EVT TruncVT = N1.getValueType(); +      SDValue N100 = N1.getOperand(0).getOperand(0); +      APInt TruncC = N101C->getAPIntValue(); +      TruncC.trunc(TruncVT.getSizeInBits()); +      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0, +                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT, +                                     DAG.getNode(ISD::TRUNCATE, +                                                 N->getDebugLoc(), +                                                 TruncVT, N100), +                                     DAG.getConstant(TruncC, TruncVT))); +    } +  } + +  if (N1C && SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) +  if (N1C && N0.getOpcode() == ISD::SHL && +      N0.getOperand(1).getOpcode() == ISD::Constant) { +    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue(); +    uint64_t c2 = N1C->getZExtValue(); +    if (c1 + c2 > OpSizeInBits) +      return DAG.getConstant(0, VT); +    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0), +                       DAG.getConstant(c1 + c2, N1.getValueType())); +  } +  // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or +  //                               (srl (and x, (shl -1, c1)), (sub c1, c2)) +  if (N1C && N0.getOpcode() == ISD::SRL && +      N0.getOperand(1).getOpcode() == ISD::Constant) { +    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue(); +    if (c1 < VT.getSizeInBits()) { +      uint64_t c2 = N1C->getZExtValue(); +      SDValue HiBitsMask = +        DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(), +                                              VT.getSizeInBits() - c1), +                        VT); +      SDValue Mask = DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, +                                 N0.getOperand(0), +                                 HiBitsMask); +      if (c2 > c1) +        return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, Mask, +                           DAG.getConstant(c2-c1, N1.getValueType())); +      else +        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Mask, +                           DAG.getConstant(c1-c2, N1.getValueType())); +    } +  } +  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) +  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) { +    SDValue HiBitsMask = +      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(), +                                            VT.getSizeInBits() - +                                              N1C->getZExtValue()), +                      VT); +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0), +                       HiBitsMask); +  } + +  if (N1C) { +    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue()); +    if (NewSHL.getNode()) +      return NewSHL; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSRA(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N0.getValueType(); +  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); + +  // fold (sra c1, c2) -> (sra c1, c2) +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C); +  // fold (sra 0, x) -> 0 +  if (N0C && N0C->isNullValue()) +    return N0; +  // fold (sra -1, x) -> -1 +  if (N0C && N0C->isAllOnesValue()) +    return N0; +  // fold (sra x, (setge c, size(x))) -> undef +  if (N1C && N1C->getZExtValue() >= OpSizeInBits) +    return DAG.getUNDEF(VT); +  // fold (sra x, 0) -> x +  if (N1C && N1C->isNullValue()) +    return N0; +  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports +  // sext_inreg. +  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { +    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); +    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); +    if (VT.isVector()) +      ExtVT = EVT::getVectorVT(*DAG.getContext(), +                               ExtVT, VT.getVectorNumElements()); +    if ((!LegalOperations || +         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT))) +      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, +                         N0.getOperand(0), DAG.getValueType(ExtVT)); +  } + +  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) +  if (N1C && N0.getOpcode() == ISD::SRA) { +    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { +      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue(); +      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1; +      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0), +                         DAG.getConstant(Sum, N1C->getValueType(0))); +    } +  } + +  // fold (sra (shl X, m), (sub result_size, n)) +  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for +  // result_size - n != m. +  // If truncate is free for the target sext(shl) is likely to result in better +  // code. +  if (N0.getOpcode() == ISD::SHL) { +    // Get the two constanst of the shifts, CN0 = m, CN = n. +    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +    if (N01C && N1C) { +      // Determine what the truncate's result bitsize and type would be. +      EVT TruncVT = +        EVT::getIntegerVT(*DAG.getContext(), OpSizeInBits - N1C->getZExtValue()); +      // Determine the residual right-shift amount. +      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); + +      // If the shift is not a no-op (in which case this should be just a sign +      // extend already), the truncated to type is legal, sign_extend is legal +      // on that type, and the truncate to that type is both legal and free, +      // perform the transform. +      if ((ShiftAmt > 0) && +          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && +          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && +          TLI.isTruncateFree(VT, TruncVT)) { + +          SDValue Amt = DAG.getConstant(ShiftAmt, getShiftAmountTy()); +          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, +                                      N0.getOperand(0), Amt); +          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT, +                                      Shift); +          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), +                             N->getValueType(0), Trunc); +      } +    } +  } + +  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). +  if (N1.getOpcode() == ISD::TRUNCATE && +      N1.getOperand(0).getOpcode() == ISD::AND && +      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) { +    SDValue N101 = N1.getOperand(0).getOperand(1); +    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) { +      EVT TruncVT = N1.getValueType(); +      SDValue N100 = N1.getOperand(0).getOperand(0); +      APInt TruncC = N101C->getAPIntValue(); +      TruncC.trunc(TruncVT.getScalarType().getSizeInBits()); +      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0, +                         DAG.getNode(ISD::AND, N->getDebugLoc(), +                                     TruncVT, +                                     DAG.getNode(ISD::TRUNCATE, +                                                 N->getDebugLoc(), +                                                 TruncVT, N100), +                                     DAG.getConstant(TruncC, TruncVT))); +    } +  } + +  // Simplify, based on bits shifted out of the LHS. +  if (N1C && SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + + +  // If the sign bit is known to be zero, switch this to a SRL. +  if (DAG.SignBitIsZero(N0)) +    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1); + +  if (N1C) { +    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue()); +    if (NewSRA.getNode()) +      return NewSRA; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSRL(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  EVT VT = N0.getValueType(); +  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits(); + +  // fold (srl c1, c2) -> c1 >>u c2 +  if (N0C && N1C) +    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C); +  // fold (srl 0, x) -> 0 +  if (N0C && N0C->isNullValue()) +    return N0; +  // fold (srl x, c >= size(x)) -> undef +  if (N1C && N1C->getZExtValue() >= OpSizeInBits) +    return DAG.getUNDEF(VT); +  // fold (srl x, 0) -> x +  if (N1C && N1C->isNullValue()) +    return N0; +  // if (srl x, c) is known to be zero, return 0 +  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), +                                   APInt::getAllOnesValue(OpSizeInBits))) +    return DAG.getConstant(0, VT); + +  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) +  if (N1C && N0.getOpcode() == ISD::SRL && +      N0.getOperand(1).getOpcode() == ISD::Constant) { +    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue(); +    uint64_t c2 = N1C->getZExtValue(); +    if (c1 + c2 > OpSizeInBits) +      return DAG.getConstant(0, VT); +    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), +                       DAG.getConstant(c1 + c2, N1.getValueType())); +  } +   +  // fold (srl (shl x, c), c) -> (and x, cst2) +  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && +      N0.getValueSizeInBits() <= 64) { +    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits(); +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0), +                       DAG.getConstant(~0ULL >> ShAmt, VT)); +  } +   + +  // fold (srl (anyextend x), c) -> (anyextend (srl x, c)) +  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { +    // Shifting in all undef bits? +    EVT SmallVT = N0.getOperand(0).getValueType(); +    if (N1C->getZExtValue() >= SmallVT.getSizeInBits()) +      return DAG.getUNDEF(VT); + +    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { +      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT, +                                       N0.getOperand(0), N1); +      AddToWorkList(SmallShift.getNode()); +      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift); +    } +  } + +  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign +  // bit, which is unmodified by sra. +  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) { +    if (N0.getOpcode() == ISD::SRA) +      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1); +  } + +  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit). +  if (N1C && N0.getOpcode() == ISD::CTLZ && +      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) { +    APInt KnownZero, KnownOne; +    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()); +    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne); + +    // If any of the input bits are KnownOne, then the input couldn't be all +    // zeros, thus the result of the srl will always be zero. +    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT); + +    // If all of the bits input the to ctlz node are known to be zero, then +    // the result of the ctlz is "32" and the result of the shift is one. +    APInt UnknownBits = ~KnownZero & Mask; +    if (UnknownBits == 0) return DAG.getConstant(1, VT); + +    // Otherwise, check to see if there is exactly one bit input to the ctlz. +    if ((UnknownBits & (UnknownBits - 1)) == 0) { +      // Okay, we know that only that the single bit specified by UnknownBits +      // could be set on input to the CTLZ node. If this bit is set, the SRL +      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair +      // to an SRL/XOR pair, which is likely to simplify more. +      unsigned ShAmt = UnknownBits.countTrailingZeros(); +      SDValue Op = N0.getOperand(0); + +      if (ShAmt) { +        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op, +                         DAG.getConstant(ShAmt, getShiftAmountTy())); +        AddToWorkList(Op.getNode()); +      } + +      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, +                         Op, DAG.getConstant(1, VT)); +    } +  } + +  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). +  if (N1.getOpcode() == ISD::TRUNCATE && +      N1.getOperand(0).getOpcode() == ISD::AND && +      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) { +    SDValue N101 = N1.getOperand(0).getOperand(1); +    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) { +      EVT TruncVT = N1.getValueType(); +      SDValue N100 = N1.getOperand(0).getOperand(0); +      APInt TruncC = N101C->getAPIntValue(); +      TruncC.trunc(TruncVT.getSizeInBits()); +      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, +                         DAG.getNode(ISD::AND, N->getDebugLoc(), +                                     TruncVT, +                                     DAG.getNode(ISD::TRUNCATE, +                                                 N->getDebugLoc(), +                                                 TruncVT, N100), +                                     DAG.getConstant(TruncC, TruncVT))); +    } +  } + +  // fold operands of srl based on knowledge that the low bits are not +  // demanded. +  if (N1C && SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  if (N1C) { +    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue()); +    if (NewSRL.getNode()) +      return NewSRL; +  } + +  // Attempt to convert a srl of a load into a narrower zero-extending load. +  SDValue NarrowLoad = ReduceLoadWidth(N); +  if (NarrowLoad.getNode()) +    return NarrowLoad; + +  // Here is a common situation. We want to optimize: +  // +  //   %a = ... +  //   %b = and i32 %a, 2 +  //   %c = srl i32 %b, 1 +  //   brcond i32 %c ... +  // +  // into +  //  +  //   %a = ... +  //   %b = and %a, 2 +  //   %c = setcc eq %b, 0 +  //   brcond %c ... +  // +  // However when after the source operand of SRL is optimized into AND, the SRL +  // itself may not be optimized further. Look for it and add the BRCOND into +  // the worklist. +  if (N->hasOneUse()) { +    SDNode *Use = *N->use_begin(); +    if (Use->getOpcode() == ISD::BRCOND) +      AddToWorkList(Use); +    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { +      // Also look pass the truncate. +      Use = *Use->use_begin(); +      if (Use->getOpcode() == ISD::BRCOND) +        AddToWorkList(Use); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitCTLZ(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (ctlz c1) -> c2 +  if (isa<ConstantSDNode>(N0)) +    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0); +  return SDValue(); +} + +SDValue DAGCombiner::visitCTTZ(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (cttz c1) -> c2 +  if (isa<ConstantSDNode>(N0)) +    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0); +  return SDValue(); +} + +SDValue DAGCombiner::visitCTPOP(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (ctpop c1) -> c2 +  if (isa<ConstantSDNode>(N0)) +    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0); +  return SDValue(); +} + +SDValue DAGCombiner::visitSELECT(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); +  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); +  EVT VT = N->getValueType(0); +  EVT VT0 = N0.getValueType(); + +  // fold (select C, X, X) -> X +  if (N1 == N2) +    return N1; +  // fold (select true, X, Y) -> X +  if (N0C && !N0C->isNullValue()) +    return N1; +  // fold (select false, X, Y) -> Y +  if (N0C && N0C->isNullValue()) +    return N2; +  // fold (select C, 1, X) -> (or C, X) +  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1) +    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2); +  // fold (select C, 0, 1) -> (xor C, 1) +  if (VT.isInteger() && +      (VT0 == MVT::i1 || +       (VT0.isInteger() && +        TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent)) && +      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) { +    SDValue XORNode; +    if (VT == VT0) +      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0, +                         N0, DAG.getConstant(1, VT0)); +    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0, +                          N0, DAG.getConstant(1, VT0)); +    AddToWorkList(XORNode.getNode()); +    if (VT.bitsGT(VT0)) +      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode); +    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode); +  } +  // fold (select C, 0, X) -> (and (not C), X) +  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) { +    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT); +    AddToWorkList(NOTNode.getNode()); +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2); +  } +  // fold (select C, X, 1) -> (or (not C), X) +  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) { +    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT); +    AddToWorkList(NOTNode.getNode()); +    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1); +  } +  // fold (select C, X, 0) -> (and C, X) +  if (VT == MVT::i1 && N2C && N2C->isNullValue()) +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1); +  // fold (select X, X, Y) -> (or X, Y) +  // fold (select X, 1, Y) -> (or X, Y) +  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1))) +    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2); +  // fold (select X, Y, X) -> (and X, Y) +  // fold (select X, Y, 0) -> (and X, Y) +  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0))) +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1); + +  // If we can fold this based on the true/false value, do so. +  if (SimplifySelectOps(N, N1, N2)) +    return SDValue(N, 0);  // Don't revisit N. + +  // fold selects based on a setcc into other things, such as min/max/abs +  if (N0.getOpcode() == ISD::SETCC) { +    // FIXME: +    // Check against MVT::Other for SELECT_CC, which is a workaround for targets +    // having to say they don't support SELECT_CC on every type the DAG knows +    // about, since there is no way to mark an opcode illegal at all value types +    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) && +        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) +      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, +                         N0.getOperand(0), N0.getOperand(1), +                         N1, N2, N0.getOperand(2)); +    return SimplifySelect(N->getDebugLoc(), N0, N1, N2); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); +  SDValue N3 = N->getOperand(3); +  SDValue N4 = N->getOperand(4); +  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); + +  // fold select_cc lhs, rhs, x, x, cc -> x +  if (N2 == N3) +    return N2; + +  // Determine if the condition we're dealing with is constant +  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()), +                              N0, N1, CC, N->getDebugLoc(), false); +  if (SCC.getNode()) AddToWorkList(SCC.getNode()); + +  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) { +    if (!SCCC->isNullValue()) +      return N2;    // cond always true -> true val +    else +      return N3;    // cond always false -> false val +  } + +  // Fold to a simpler select_cc +  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC) +    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(), +                       SCC.getOperand(0), SCC.getOperand(1), N2, N3, +                       SCC.getOperand(2)); + +  // If we can fold this based on the true/false value, do so. +  if (SimplifySelectOps(N, N2, N3)) +    return SDValue(N, 0);  // Don't revisit N. + +  // fold select_cc into other things, such as min/max/abs +  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC); +} + +SDValue DAGCombiner::visitSETCC(SDNode *N) { +  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), +                       cast<CondCodeSDNode>(N->getOperand(2))->get(), +                       N->getDebugLoc()); +} + +// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: +// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" +// transformation. Returns true if extension are possible and the above +// mentioned transformation is profitable. +static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0, +                                    unsigned ExtOpc, +                                    SmallVector<SDNode*, 4> &ExtendNodes, +                                    const TargetLowering &TLI) { +  bool HasCopyToRegUses = false; +  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType()); +  for (SDNode::use_iterator UI = N0.getNode()->use_begin(), +                            UE = N0.getNode()->use_end(); +       UI != UE; ++UI) { +    SDNode *User = *UI; +    if (User == N) +      continue; +    if (UI.getUse().getResNo() != N0.getResNo()) +      continue; +    // FIXME: Only extend SETCC N, N and SETCC N, c for now. +    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { +      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); +      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) +        // Sign bits will be lost after a zext. +        return false; +      bool Add = false; +      for (unsigned i = 0; i != 2; ++i) { +        SDValue UseOp = User->getOperand(i); +        if (UseOp == N0) +          continue; +        if (!isa<ConstantSDNode>(UseOp)) +          return false; +        Add = true; +      } +      if (Add) +        ExtendNodes.push_back(User); +      continue; +    } +    // If truncates aren't free and there are users we can't +    // extend, it isn't worthwhile. +    if (!isTruncFree) +      return false; +    // Remember if this value is live-out. +    if (User->getOpcode() == ISD::CopyToReg) +      HasCopyToRegUses = true; +  } + +  if (HasCopyToRegUses) { +    bool BothLiveOut = false; +    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); +         UI != UE; ++UI) { +      SDUse &Use = UI.getUse(); +      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { +        BothLiveOut = true; +        break; +      } +    } +    if (BothLiveOut) +      // Both unextended and extended values are live out. There had better be +      // good a reason for the transformation. +      return ExtendNodes.size(); +  } +  return true; +} + +SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (sext c1) -> c1 +  if (isa<ConstantSDNode>(N0)) +    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0); + +  // fold (sext (sext x)) -> (sext x) +  // fold (sext (aext x)) -> (sext x) +  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) +    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, +                       N0.getOperand(0)); + +  if (N0.getOpcode() == ISD::TRUNCATE) { +    // fold (sext (truncate (load x))) -> (sext (smaller load x)) +    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) +    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); +    if (NarrowLoad.getNode()) { +      SDNode* oye = N0.getNode()->getOperand(0).getNode(); +      if (NarrowLoad.getNode() != N0.getNode()) { +        CombineTo(N0.getNode(), NarrowLoad); +        // CombineTo deleted the truncate, if needed, but not what's under it. +        AddToWorkList(oye); +      } +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } + +    // See if the value being truncated is already sign extended.  If so, just +    // eliminate the trunc/sext pair. +    SDValue Op = N0.getOperand(0); +    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits(); +    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits(); +    unsigned DestBits = VT.getScalarType().getSizeInBits(); +    unsigned NumSignBits = DAG.ComputeNumSignBits(Op); + +    if (OpBits == DestBits) { +      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign +      // bits, it is already ready. +      if (NumSignBits > DestBits-MidBits) +        return Op; +    } else if (OpBits < DestBits) { +      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign +      // bits, just sext from i32. +      if (NumSignBits > OpBits-MidBits) +        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op); +    } else { +      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign +      // bits, just truncate to i32. +      if (NumSignBits > OpBits-MidBits) +        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op); +    } + +    // fold (sext (truncate x)) -> (sextinreg x). +    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, +                                                 N0.getValueType())) { +      if (OpBits < DestBits) +        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op); +      else if (OpBits > DestBits) +        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op); +      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op, +                         DAG.getValueType(N0.getValueType())); +    } +  } + +  // fold (sext (load x)) -> (sext (truncate (sextload x))) +  if (ISD::isNON_EXTLoad(N0.getNode()) && +      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || +       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) { +    bool DoXform = true; +    SmallVector<SDNode*, 4> SetCCs; +    if (!N0.hasOneUse()) +      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI); +    if (DoXform) { +      LoadSDNode *LN0 = cast<LoadSDNode>(N0); +      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N->getDebugLoc(), +                                       LN0->getChain(), +                                       LN0->getBasePtr(), LN0->getSrcValue(), +                                       LN0->getSrcValueOffset(), +                                       N0.getValueType(), +                                       LN0->isVolatile(), LN0->isNonTemporal(), +                                       LN0->getAlignment()); +      CombineTo(N, ExtLoad); +      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), +                                  N0.getValueType(), ExtLoad); +      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); + +      // Extend SetCC uses if necessary. +      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { +        SDNode *SetCC = SetCCs[i]; +        SmallVector<SDValue, 4> Ops; + +        for (unsigned j = 0; j != 2; ++j) { +          SDValue SOp = SetCC->getOperand(j); +          if (SOp == Trunc) +            Ops.push_back(ExtLoad); +          else +            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, +                                      N->getDebugLoc(), VT, SOp)); +        } + +        Ops.push_back(SetCC->getOperand(2)); +        CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(), +                                     SetCC->getValueType(0), +                                     &Ops[0], Ops.size())); +      } + +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } + +  // fold (sext (sextload x)) -> (sext (truncate (sextload x))) +  // fold (sext ( extload x)) -> (sext (truncate (sextload x))) +  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && +      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    EVT MemVT = LN0->getMemoryVT(); +    if ((!LegalOperations && !LN0->isVolatile()) || +        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) { +      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N->getDebugLoc(), +                                       LN0->getChain(), +                                       LN0->getBasePtr(), LN0->getSrcValue(), +                                       LN0->getSrcValueOffset(), MemVT, +                                       LN0->isVolatile(), LN0->isNonTemporal(), +                                       LN0->getAlignment()); +      CombineTo(N, ExtLoad); +      CombineTo(N0.getNode(), +                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), +                            N0.getValueType(), ExtLoad), +                ExtLoad.getValue(1)); +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } + +  if (N0.getOpcode() == ISD::SETCC) { +    // sext(setcc) -> sext_in_reg(vsetcc) for vectors. +    // Only do this before legalize for now. +    if (VT.isVector() && !LegalOperations) { +      EVT N0VT = N0.getOperand(0).getValueType(); +        // We know that the # elements of the results is the same as the +        // # elements of the compare (and the # elements of the compare result +        // for that matter).  Check to see that they are the same size.  If so, +        // we know that the element size of the sext'd result matches the +        // element size of the compare operands. +      if (VT.getSizeInBits() == N0VT.getSizeInBits()) +        return DAG.getVSetCC(N->getDebugLoc(), VT, N0.getOperand(0), +                             N0.getOperand(1), +                             cast<CondCodeSDNode>(N0.getOperand(2))->get()); +      // If the desired elements are smaller or larger than the source +      // elements we can use a matching integer vector type and then +      // truncate/sign extend +      else { +        EVT MatchingElementType = +          EVT::getIntegerVT(*DAG.getContext(), +                            N0VT.getScalarType().getSizeInBits()); +        EVT MatchingVectorType = +          EVT::getVectorVT(*DAG.getContext(), MatchingElementType, +                           N0VT.getVectorNumElements()); +        SDValue VsetCC = +          DAG.getVSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0), +                        N0.getOperand(1), +                        cast<CondCodeSDNode>(N0.getOperand(2))->get()); +        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT); +      } +    } + +    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc) +    unsigned ElementWidth = VT.getScalarType().getSizeInBits(); +    SDValue NegOne = +      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT); +    SDValue SCC = +      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1), +                       NegOne, DAG.getConstant(0, VT), +                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); +    if (SCC.getNode()) return SCC; +    if (!LegalOperations || +        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT))) +      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT, +                         DAG.getSetCC(N->getDebugLoc(), +                                      TLI.getSetCCResultType(VT), +                                      N0.getOperand(0), N0.getOperand(1), +                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()), +                         NegOne, DAG.getConstant(0, VT)); +  }   + +  // fold (sext x) -> (zext x) if the sign bit is known zero. +  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && +      DAG.SignBitIsZero(N0)) +    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (zext c1) -> c1 +  if (isa<ConstantSDNode>(N0)) +    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0); +  // fold (zext (zext x)) -> (zext x) +  // fold (zext (aext x)) -> (zext x) +  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) +    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, +                       N0.getOperand(0)); + +  // fold (zext (truncate (load x))) -> (zext (smaller load x)) +  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n))) +  if (N0.getOpcode() == ISD::TRUNCATE) { +    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); +    if (NarrowLoad.getNode()) { +      SDNode* oye = N0.getNode()->getOperand(0).getNode(); +      if (NarrowLoad.getNode() != N0.getNode()) { +        CombineTo(N0.getNode(), NarrowLoad); +        // CombineTo deleted the truncate, if needed, but not what's under it. +        AddToWorkList(oye); +      } +      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, NarrowLoad); +    } +  } + +  // fold (zext (truncate x)) -> (and x, mask) +  if (N0.getOpcode() == ISD::TRUNCATE && +      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) { +    SDValue Op = N0.getOperand(0); +    if (Op.getValueType().bitsLT(VT)) { +      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op); +    } else if (Op.getValueType().bitsGT(VT)) { +      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op); +    } +    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(), +                                  N0.getValueType().getScalarType()); +  } + +  // Fold (zext (and (trunc x), cst)) -> (and x, cst), +  // if either of the casts is not free. +  if (N0.getOpcode() == ISD::AND && +      N0.getOperand(0).getOpcode() == ISD::TRUNCATE && +      N0.getOperand(1).getOpcode() == ISD::Constant && +      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), +                           N0.getValueType()) || +       !TLI.isZExtFree(N0.getValueType(), VT))) { +    SDValue X = N0.getOperand(0).getOperand(0); +    if (X.getValueType().bitsLT(VT)) { +      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X); +    } else if (X.getValueType().bitsGT(VT)) { +      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X); +    } +    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); +    Mask.zext(VT.getSizeInBits()); +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, +                       X, DAG.getConstant(Mask, VT)); +  } + +  // fold (zext (load x)) -> (zext (truncate (zextload x))) +  if (ISD::isNON_EXTLoad(N0.getNode()) && +      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || +       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) { +    bool DoXform = true; +    SmallVector<SDNode*, 4> SetCCs; +    if (!N0.hasOneUse()) +      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI); +    if (DoXform) { +      LoadSDNode *LN0 = cast<LoadSDNode>(N0); +      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N->getDebugLoc(), +                                       LN0->getChain(), +                                       LN0->getBasePtr(), LN0->getSrcValue(), +                                       LN0->getSrcValueOffset(), +                                       N0.getValueType(), +                                       LN0->isVolatile(), LN0->isNonTemporal(), +                                       LN0->getAlignment()); +      CombineTo(N, ExtLoad); +      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), +                                  N0.getValueType(), ExtLoad); +      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); + +      // Extend SetCC uses if necessary. +      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { +        SDNode *SetCC = SetCCs[i]; +        SmallVector<SDValue, 4> Ops; + +        for (unsigned j = 0; j != 2; ++j) { +          SDValue SOp = SetCC->getOperand(j); +          if (SOp == Trunc) +            Ops.push_back(ExtLoad); +          else +            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, +                                      N->getDebugLoc(), VT, SOp)); +        } + +        Ops.push_back(SetCC->getOperand(2)); +        CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(), +                                     SetCC->getValueType(0), +                                     &Ops[0], Ops.size())); +      } + +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } + +  // fold (zext (zextload x)) -> (zext (truncate (zextload x))) +  // fold (zext ( extload x)) -> (zext (truncate (zextload x))) +  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) && +      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    EVT MemVT = LN0->getMemoryVT(); +    if ((!LegalOperations && !LN0->isVolatile()) || +        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) { +      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N->getDebugLoc(), +                                       LN0->getChain(), +                                       LN0->getBasePtr(), LN0->getSrcValue(), +                                       LN0->getSrcValueOffset(), MemVT, +                                       LN0->isVolatile(), LN0->isNonTemporal(), +                                       LN0->getAlignment()); +      CombineTo(N, ExtLoad); +      CombineTo(N0.getNode(), +                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(), +                            ExtLoad), +                ExtLoad.getValue(1)); +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } + +  if (N0.getOpcode() == ISD::SETCC) { +    if (!LegalOperations && VT.isVector()) { +      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors. +      // Only do this before legalize for now. +      EVT N0VT = N0.getOperand(0).getValueType(); +      EVT EltVT = VT.getVectorElementType(); +      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(), +                                    DAG.getConstant(1, EltVT)); +      if (VT.getSizeInBits() == N0VT.getSizeInBits()) { +        // We know that the # elements of the results is the same as the +        // # elements of the compare (and the # elements of the compare result +        // for that matter).  Check to see that they are the same size.  If so, +        // we know that the element size of the sext'd result matches the +        // element size of the compare operands. +        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, +                           DAG.getVSetCC(N->getDebugLoc(), VT, N0.getOperand(0), +                                         N0.getOperand(1), +                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()), +                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, +                                       &OneOps[0], OneOps.size())); +      } else { +        // If the desired elements are smaller or larger than the source +        // elements we can use a matching integer vector type and then +        // truncate/sign extend +        EVT MatchingElementType = +          EVT::getIntegerVT(*DAG.getContext(), +                            N0VT.getScalarType().getSizeInBits()); +        EVT MatchingVectorType = +          EVT::getVectorVT(*DAG.getContext(), MatchingElementType, +                           N0VT.getVectorNumElements()); +        SDValue VsetCC = +          DAG.getVSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0), +                        N0.getOperand(1), +                        cast<CondCodeSDNode>(N0.getOperand(2))->get()); +        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, +                           DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT), +                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, +                                       &OneOps[0], OneOps.size())); +      } +    } + +    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc +    SDValue SCC = +      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1), +                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), +                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); +    if (SCC.getNode()) return SCC; +  } + +  // (zext (shl (zext x), cst)) -> (shl (zext x), cst) +  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && +      isa<ConstantSDNode>(N0.getOperand(1)) && +      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && +      N0.hasOneUse()) { +    if (N0.getOpcode() == ISD::SHL) { +      // If the original shl may be shifting out bits, do not perform this +      // transformation. +      unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue(); +      unsigned KnownZeroBits = N0.getOperand(0).getValueType().getSizeInBits() - +        N0.getOperand(0).getOperand(0).getValueType().getSizeInBits(); +      if (ShAmt > KnownZeroBits) +        return SDValue(); +    } +    DebugLoc dl = N->getDebugLoc(); +    return DAG.getNode(N0.getOpcode(), dl, VT, +                       DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0.getOperand(0)), +                       DAG.getNode(ISD::ZERO_EXTEND, dl, +                                   N0.getOperand(1).getValueType(), +                                   N0.getOperand(1))); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // fold (aext c1) -> c1 +  if (isa<ConstantSDNode>(N0)) +    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0); +  // fold (aext (aext x)) -> (aext x) +  // fold (aext (zext x)) -> (zext x) +  // fold (aext (sext x)) -> (sext x) +  if (N0.getOpcode() == ISD::ANY_EXTEND  || +      N0.getOpcode() == ISD::ZERO_EXTEND || +      N0.getOpcode() == ISD::SIGN_EXTEND) +    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0)); + +  // fold (aext (truncate (load x))) -> (aext (smaller load x)) +  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) +  if (N0.getOpcode() == ISD::TRUNCATE) { +    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode()); +    if (NarrowLoad.getNode()) { +      SDNode* oye = N0.getNode()->getOperand(0).getNode(); +      if (NarrowLoad.getNode() != N0.getNode()) { +        CombineTo(N0.getNode(), NarrowLoad); +        // CombineTo deleted the truncate, if needed, but not what's under it. +        AddToWorkList(oye); +      } +      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, NarrowLoad); +    } +  } + +  // fold (aext (truncate x)) +  if (N0.getOpcode() == ISD::TRUNCATE) { +    SDValue TruncOp = N0.getOperand(0); +    if (TruncOp.getValueType() == VT) +      return TruncOp; // x iff x size == zext size. +    if (TruncOp.getValueType().bitsGT(VT)) +      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp); +    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp); +  } + +  // Fold (aext (and (trunc x), cst)) -> (and x, cst) +  // if the trunc is not free. +  if (N0.getOpcode() == ISD::AND && +      N0.getOperand(0).getOpcode() == ISD::TRUNCATE && +      N0.getOperand(1).getOpcode() == ISD::Constant && +      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), +                          N0.getValueType())) { +    SDValue X = N0.getOperand(0).getOperand(0); +    if (X.getValueType().bitsLT(VT)) { +      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X); +    } else if (X.getValueType().bitsGT(VT)) { +      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X); +    } +    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); +    Mask.zext(VT.getSizeInBits()); +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, +                       X, DAG.getConstant(Mask, VT)); +  } + +  // fold (aext (load x)) -> (aext (truncate (extload x))) +  if (ISD::isNON_EXTLoad(N0.getNode()) && +      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || +       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) { +    bool DoXform = true; +    SmallVector<SDNode*, 4> SetCCs; +    if (!N0.hasOneUse()) +      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI); +    if (DoXform) { +      LoadSDNode *LN0 = cast<LoadSDNode>(N0); +      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, N->getDebugLoc(), +                                       LN0->getChain(), +                                       LN0->getBasePtr(), LN0->getSrcValue(), +                                       LN0->getSrcValueOffset(), +                                       N0.getValueType(), +                                       LN0->isVolatile(), LN0->isNonTemporal(), +                                       LN0->getAlignment()); +      CombineTo(N, ExtLoad); +      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), +                                  N0.getValueType(), ExtLoad); +      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1)); + +      // Extend SetCC uses if necessary. +      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) { +        SDNode *SetCC = SetCCs[i]; +        SmallVector<SDValue, 4> Ops; + +        for (unsigned j = 0; j != 2; ++j) { +          SDValue SOp = SetCC->getOperand(j); +          if (SOp == Trunc) +            Ops.push_back(ExtLoad); +          else +            Ops.push_back(DAG.getNode(ISD::ANY_EXTEND, +                                      N->getDebugLoc(), VT, SOp)); +        } + +        Ops.push_back(SetCC->getOperand(2)); +        CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(), +                                     SetCC->getValueType(0), +                                     &Ops[0], Ops.size())); +      } + +      return SDValue(N, 0);   // Return N so it doesn't get rechecked! +    } +  } + +  // fold (aext (zextload x)) -> (aext (truncate (zextload x))) +  // fold (aext (sextload x)) -> (aext (truncate (sextload x))) +  // fold (aext ( extload x)) -> (aext (truncate (extload  x))) +  if (N0.getOpcode() == ISD::LOAD && +      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && +      N0.hasOneUse()) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    EVT MemVT = LN0->getMemoryVT(); +    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT, +                                     N->getDebugLoc(), +                                     LN0->getChain(), LN0->getBasePtr(), +                                     LN0->getSrcValue(), +                                     LN0->getSrcValueOffset(), MemVT, +                                     LN0->isVolatile(), LN0->isNonTemporal(), +                                     LN0->getAlignment()); +    CombineTo(N, ExtLoad); +    CombineTo(N0.getNode(), +              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), +                          N0.getValueType(), ExtLoad), +              ExtLoad.getValue(1)); +    return SDValue(N, 0);   // Return N so it doesn't get rechecked! +  } + +  if (N0.getOpcode() == ISD::SETCC) { +    // aext(setcc) -> sext_in_reg(vsetcc) for vectors. +    // Only do this before legalize for now. +    if (VT.isVector() && !LegalOperations) { +      EVT N0VT = N0.getOperand(0).getValueType(); +        // We know that the # elements of the results is the same as the +        // # elements of the compare (and the # elements of the compare result +        // for that matter).  Check to see that they are the same size.  If so, +        // we know that the element size of the sext'd result matches the +        // element size of the compare operands. +      if (VT.getSizeInBits() == N0VT.getSizeInBits()) +        return DAG.getVSetCC(N->getDebugLoc(), VT, N0.getOperand(0), +                             N0.getOperand(1), +                             cast<CondCodeSDNode>(N0.getOperand(2))->get()); +      // If the desired elements are smaller or larger than the source +      // elements we can use a matching integer vector type and then +      // truncate/sign extend +      else { +        EVT MatchingElementType = +          EVT::getIntegerVT(*DAG.getContext(), +                            N0VT.getScalarType().getSizeInBits()); +        EVT MatchingVectorType = +          EVT::getVectorVT(*DAG.getContext(), MatchingElementType, +                           N0VT.getVectorNumElements()); +        SDValue VsetCC = +          DAG.getVSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0), +                        N0.getOperand(1), +                        cast<CondCodeSDNode>(N0.getOperand(2))->get()); +        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT); +      } +    } + +    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc +    SDValue SCC = +      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1), +                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), +                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true); +    if (SCC.getNode()) +      return SCC; +  } + +  return SDValue(); +} + +/// GetDemandedBits - See if the specified operand can be simplified with the +/// knowledge that only the bits specified by Mask are used.  If so, return the +/// simpler operand, otherwise return a null SDValue. +SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) { +  switch (V.getOpcode()) { +  default: break; +  case ISD::OR: +  case ISD::XOR: +    // If the LHS or RHS don't contribute bits to the or, drop them. +    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask)) +      return V.getOperand(1); +    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask)) +      return V.getOperand(0); +    break; +  case ISD::SRL: +    // Only look at single-use SRLs. +    if (!V.getNode()->hasOneUse()) +      break; +    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { +      // See if we can recursively simplify the LHS. +      unsigned Amt = RHSC->getZExtValue(); + +      // Watch out for shift count overflow though. +      if (Amt >= Mask.getBitWidth()) break; +      APInt NewMask = Mask << Amt; +      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask); +      if (SimplifyLHS.getNode()) +        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(), +                           SimplifyLHS, V.getOperand(1)); +    } +  } +  return SDValue(); +} + +/// ReduceLoadWidth - If the result of a wider load is shifted to right of N +/// bits and then truncated to a narrower type and where N is a multiple +/// of number of bits of the narrower type, transform it to a narrower load +/// from address + N / num of bits of new type. If the result is to be +/// extended, also fold the extension to form a extending load. +SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { +  unsigned Opc = N->getOpcode(); + +  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); +  EVT ExtVT = VT; + +  // This transformation isn't valid for vector loads. +  if (VT.isVector()) +    return SDValue(); + +  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then +  // extended to VT. +  if (Opc == ISD::SIGN_EXTEND_INREG) { +    ExtType = ISD::SEXTLOAD; +    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); +    if (LegalOperations && !TLI.isLoadExtLegal(ISD::SEXTLOAD, ExtVT)) +      return SDValue(); +  } else if (Opc == ISD::SRL) { +    // Annother special-case: SRL is basically zero-extending a narrower +    // value. +    ExtType = ISD::ZEXTLOAD; +    N0 = SDValue(N, 0); +    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); +    if (!N01) return SDValue(); +    ExtVT = EVT::getIntegerVT(*DAG.getContext(), +                              VT.getSizeInBits() - N01->getZExtValue()); +  } + +  unsigned EVTBits = ExtVT.getSizeInBits(); +  unsigned ShAmt = 0; +  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse() && ExtVT.isRound()) { +    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { +      ShAmt = N01->getZExtValue(); +      // Is the shift amount a multiple of size of VT? +      if ((ShAmt & (EVTBits-1)) == 0) { +        N0 = N0.getOperand(0); +        // Is the load width a multiple of size of VT? +        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0) +          return SDValue(); +      } +    } +  } + +  // Do not generate loads of non-round integer types since these can +  // be expensive (and would be wrong if the type is not byte sized). +  if (isa<LoadSDNode>(N0) && N0.hasOneUse() && ExtVT.isRound() && +      cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() >= EVTBits && +      // Do not change the width of a volatile load. +      !cast<LoadSDNode>(N0)->isVolatile()) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    EVT PtrType = N0.getOperand(1).getValueType(); + +    // For big endian targets, we need to adjust the offset to the pointer to +    // load the correct bytes. +    if (TLI.isBigEndian()) { +      unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits(); +      unsigned EVTStoreBits = ExtVT.getStoreSizeInBits(); +      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt; +    } + +    uint64_t PtrOff =  ShAmt / 8; +    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff); +    SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), +                                 PtrType, LN0->getBasePtr(), +                                 DAG.getConstant(PtrOff, PtrType)); +    AddToWorkList(NewPtr.getNode()); + +    SDValue Load = (ExtType == ISD::NON_EXTLOAD) +      ? DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr, +                    LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff, +                    LN0->isVolatile(), LN0->isNonTemporal(), NewAlign) +      : DAG.getExtLoad(ExtType, VT, N0.getDebugLoc(), LN0->getChain(), NewPtr, +                       LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff, +                       ExtVT, LN0->isVolatile(), LN0->isNonTemporal(), +                       NewAlign); + +    // Replace the old load's chain with the new load's chain. +    WorkListRemover DeadNodes(*this); +    DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), +                                  &DeadNodes); + +    // Return the new loaded value. +    return Load; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  EVT VT = N->getValueType(0); +  EVT EVT = cast<VTSDNode>(N1)->getVT(); +  unsigned VTBits = VT.getScalarType().getSizeInBits(); +  unsigned EVTBits = EVT.getScalarType().getSizeInBits(); + +  // fold (sext_in_reg c1) -> c1 +  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF) +    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1); + +  // If the input is already sign extended, just drop the extension. +  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1) +    return N0; + +  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 +  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && +      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) { +    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, +                       N0.getOperand(0), N1); +  } + +  // fold (sext_in_reg (sext x)) -> (sext x) +  // fold (sext_in_reg (aext x)) -> (sext x) +  // if x is small enough. +  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { +    SDValue N00 = N0.getOperand(0); +    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits && +        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) +      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1); +  } + +  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. +  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits))) +    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT); + +  // fold operands of sext_in_reg based on knowledge that the top bits are not +  // demanded. +  if (SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  // fold (sext_in_reg (load x)) -> (smaller sextload x) +  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) +  SDValue NarrowLoad = ReduceLoadWidth(N); +  if (NarrowLoad.getNode()) +    return NarrowLoad; + +  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) +  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. +  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. +  if (N0.getOpcode() == ISD::SRL) { +    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) +      if (ShAmt->getZExtValue()+EVTBits <= VTBits) { +        // We can turn this into an SRA iff the input to the SRL is already sign +        // extended enough. +        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); +        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits) +          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, +                             N0.getOperand(0), N0.getOperand(1)); +      } +  } + +  // fold (sext_inreg (extload x)) -> (sextload x) +  if (ISD::isEXTLoad(N0.getNode()) && +      ISD::isUNINDEXEDLoad(N0.getNode()) && +      EVT == cast<LoadSDNode>(N0)->getMemoryVT() && +      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || +       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N->getDebugLoc(), +                                     LN0->getChain(), +                                     LN0->getBasePtr(), LN0->getSrcValue(), +                                     LN0->getSrcValueOffset(), EVT, +                                     LN0->isVolatile(), LN0->isNonTemporal(), +                                     LN0->getAlignment()); +    CombineTo(N, ExtLoad); +    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); +    return SDValue(N, 0);   // Return N so it doesn't get rechecked! +  } +  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use +  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && +      N0.hasOneUse() && +      EVT == cast<LoadSDNode>(N0)->getMemoryVT() && +      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || +       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N->getDebugLoc(), +                                     LN0->getChain(), +                                     LN0->getBasePtr(), LN0->getSrcValue(), +                                     LN0->getSrcValueOffset(), EVT, +                                     LN0->isVolatile(), LN0->isNonTemporal(), +                                     LN0->getAlignment()); +    CombineTo(N, ExtLoad); +    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); +    return SDValue(N, 0);   // Return N so it doesn't get rechecked! +  } +  return SDValue(); +} + +SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // noop truncate +  if (N0.getValueType() == N->getValueType(0)) +    return N0; +  // fold (truncate c1) -> c1 +  if (isa<ConstantSDNode>(N0)) +    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0); +  // fold (truncate (truncate x)) -> (truncate x) +  if (N0.getOpcode() == ISD::TRUNCATE) +    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0)); +  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x +  if (N0.getOpcode() == ISD::ZERO_EXTEND || +      N0.getOpcode() == ISD::SIGN_EXTEND || +      N0.getOpcode() == ISD::ANY_EXTEND) { +    if (N0.getOperand(0).getValueType().bitsLT(VT)) +      // if the source is smaller than the dest, we still need an extend +      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, +                         N0.getOperand(0)); +    else if (N0.getOperand(0).getValueType().bitsGT(VT)) +      // if the source is larger than the dest, than we just need the truncate +      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0)); +    else +      // if the source and dest are the same type, we can drop both the extend +      // and the truncate. +      return N0.getOperand(0); +  } + +  // See if we can simplify the input to this truncate through knowledge that +  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)" +  // -> trunc y +  SDValue Shorter = +    GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(), +                                             VT.getSizeInBits())); +  if (Shorter.getNode()) +    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter); + +  // fold (truncate (load x)) -> (smaller load x) +  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) +  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { +    SDValue Reduced = ReduceLoadWidth(N); +    if (Reduced.getNode()) +      return Reduced; +  } + +  // Simplify the operands using demanded-bits information. +  if (!VT.isVector() && +      SimplifyDemandedBits(SDValue(N, 0))) +    return SDValue(N, 0); + +  return SDValue(); +} + +static SDNode *getBuildPairElt(SDNode *N, unsigned i) { +  SDValue Elt = N->getOperand(i); +  if (Elt.getOpcode() != ISD::MERGE_VALUES) +    return Elt.getNode(); +  return Elt.getOperand(Elt.getResNo()).getNode(); +} + +/// CombineConsecutiveLoads - build_pair (load, load) -> load +/// if load locations are consecutive. +SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { +  assert(N->getOpcode() == ISD::BUILD_PAIR); + +  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); +  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); +  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse()) +    return SDValue(); +  EVT LD1VT = LD1->getValueType(0); + +  if (ISD::isNON_EXTLoad(LD2) && +      LD2->hasOneUse() && +      // If both are volatile this would reduce the number of volatile loads. +      // If one is volatile it might be ok, but play conservative and bail out. +      !LD1->isVolatile() && +      !LD2->isVolatile() && +      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) { +    unsigned Align = LD1->getAlignment(); +    unsigned NewAlign = TLI.getTargetData()-> +      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); + +    if (NewAlign <= Align && +        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) +      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(), +                         LD1->getBasePtr(), LD1->getSrcValue(), +                         LD1->getSrcValueOffset(), false, false, Align); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  // If the input is a BUILD_VECTOR with all constant elements, fold this now. +  // Only do this before legalize, since afterward the target may be depending +  // on the bitconvert. +  // First check to see if this is all constant. +  if (!LegalTypes && +      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && +      VT.isVector()) { +    bool isSimple = true; +    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) +      if (N0.getOperand(i).getOpcode() != ISD::UNDEF && +          N0.getOperand(i).getOpcode() != ISD::Constant && +          N0.getOperand(i).getOpcode() != ISD::ConstantFP) { +        isSimple = false; +        break; +      } + +    EVT DestEltVT = N->getValueType(0).getVectorElementType(); +    assert(!DestEltVT.isVector() && +           "Element type of vector ValueType must not be vector!"); +    if (isSimple) +      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.getNode(), DestEltVT); +  } + +  // If the input is a constant, let getNode fold it. +  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { +    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, N0); +    if (Res.getNode() != N) { +      if (!LegalOperations || +          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT)) +        return Res; + +      // Folding it resulted in an illegal node, and it's too late to +      // do that. Clean up the old node and forego the transformation. +      // Ideally this won't happen very often, because instcombine +      // and the earlier dagcombine runs (where illegal nodes are +      // permitted) should have folded most of them already. +      DAG.DeleteNode(Res.getNode()); +    } +  } + +  // (conv (conv x, t1), t2) -> (conv x, t2) +  if (N0.getOpcode() == ISD::BIT_CONVERT) +    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, +                       N0.getOperand(0)); + +  // fold (conv (load x)) -> (load (conv*)x) +  // If the resultant load doesn't need a higher alignment than the original! +  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && +      // Do not change the width of a volatile load. +      !cast<LoadSDNode>(N0)->isVolatile() && +      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    unsigned Align = TLI.getTargetData()-> +      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); +    unsigned OrigAlign = LN0->getAlignment(); + +    if (Align <= OrigAlign) { +      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(), +                                 LN0->getBasePtr(), +                                 LN0->getSrcValue(), LN0->getSrcValueOffset(), +                                 LN0->isVolatile(), LN0->isNonTemporal(), +                                 OrigAlign); +      AddToWorkList(N); +      CombineTo(N0.getNode(), +                DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), +                            N0.getValueType(), Load), +                Load.getValue(1)); +      return Load; +    } +  } + +  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) +  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) +  // This often reduces constant pool loads. +  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) && +      N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) { +    SDValue NewConv = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), VT, +                                  N0.getOperand(0)); +    AddToWorkList(NewConv.getNode()); + +    APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); +    if (N0.getOpcode() == ISD::FNEG) +      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, +                         NewConv, DAG.getConstant(SignBit, VT)); +    assert(N0.getOpcode() == ISD::FABS); +    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, +                       NewConv, DAG.getConstant(~SignBit, VT)); +  } + +  // fold (bitconvert (fcopysign cst, x)) -> +  //         (or (and (bitconvert x), sign), (and cst, (not sign))) +  // Note that we don't handle (copysign x, cst) because this can always be +  // folded to an fneg or fabs. +  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && +      isa<ConstantFPSDNode>(N0.getOperand(0)) && +      VT.isInteger() && !VT.isVector()) { +    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits(); +    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); +    if (isTypeLegal(IntXVT)) { +      SDValue X = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), +                              IntXVT, N0.getOperand(1)); +      AddToWorkList(X.getNode()); + +      // If X has a different width than the result/lhs, sext it or truncate it. +      unsigned VTWidth = VT.getSizeInBits(); +      if (OrigXWidth < VTWidth) { +        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X); +        AddToWorkList(X.getNode()); +      } else if (OrigXWidth > VTWidth) { +        // To get the sign bit in the right place, we have to shift it right +        // before truncating. +        X = DAG.getNode(ISD::SRL, X.getDebugLoc(), +                        X.getValueType(), X, +                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType())); +        AddToWorkList(X.getNode()); +        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X); +        AddToWorkList(X.getNode()); +      } + +      APInt SignBit = APInt::getSignBit(VT.getSizeInBits()); +      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT, +                      X, DAG.getConstant(SignBit, VT)); +      AddToWorkList(X.getNode()); + +      SDValue Cst = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), +                                VT, N0.getOperand(0)); +      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT, +                        Cst, DAG.getConstant(~SignBit, VT)); +      AddToWorkList(Cst.getNode()); + +      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst); +    } +  } + +  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. +  if (N0.getOpcode() == ISD::BUILD_PAIR) { +    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT); +    if (CombineLD.getNode()) +      return CombineLD; +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { +  EVT VT = N->getValueType(0); +  return CombineConsecutiveLoads(N, VT); +} + +/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector +/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the +/// destination element value type. +SDValue DAGCombiner:: +ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { +  EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); + +  // If this is already the right type, we're done. +  if (SrcEltVT == DstEltVT) return SDValue(BV, 0); + +  unsigned SrcBitSize = SrcEltVT.getSizeInBits(); +  unsigned DstBitSize = DstEltVT.getSizeInBits(); + +  // If this is a conversion of N elements of one type to N elements of another +  // type, convert each element.  This handles FP<->INT cases. +  if (SrcBitSize == DstBitSize) { +    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, +                              BV->getValueType(0).getVectorNumElements()); + +    // Due to the FP element handling below calling this routine recursively, +    // we can end up with a scalar-to-vector node here. +    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR) +      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,  +                         DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(), +                                     DstEltVT, BV->getOperand(0))); +       +    SmallVector<SDValue, 8> Ops; +    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { +      SDValue Op = BV->getOperand(i); +      // If the vector element type is not legal, the BUILD_VECTOR operands +      // are promoted and implicitly truncated.  Make that explicit here. +      if (Op.getValueType() != SrcEltVT) +        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op); +      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(), +                                DstEltVT, Op)); +      AddToWorkList(Ops.back().getNode()); +    } +    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT, +                       &Ops[0], Ops.size()); +  } + +  // Otherwise, we're growing or shrinking the elements.  To avoid having to +  // handle annoying details of growing/shrinking FP values, we convert them to +  // int first. +  if (SrcEltVT.isFloatingPoint()) { +    // Convert the input float vector to a int vector where the elements are the +    // same sizes. +    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!"); +    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); +    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).getNode(); +    SrcEltVT = IntVT; +  } + +  // Now we know the input is an integer vector.  If the output is a FP type, +  // convert to integer first, then to FP of the right size. +  if (DstEltVT.isFloatingPoint()) { +    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!"); +    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); +    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).getNode(); + +    // Next, convert to FP elements of the same size. +    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT); +  } + +  // Okay, we know the src/dst types are both integers of differing types. +  // Handling growing first. +  assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); +  if (SrcBitSize < DstBitSize) { +    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; + +    SmallVector<SDValue, 8> Ops; +    for (unsigned i = 0, e = BV->getNumOperands(); i != e; +         i += NumInputsPerOutput) { +      bool isLE = TLI.isLittleEndian(); +      APInt NewBits = APInt(DstBitSize, 0); +      bool EltIsUndef = true; +      for (unsigned j = 0; j != NumInputsPerOutput; ++j) { +        // Shift the previously computed bits over. +        NewBits <<= SrcBitSize; +        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); +        if (Op.getOpcode() == ISD::UNDEF) continue; +        EltIsUndef = false; + +        NewBits |= APInt(cast<ConstantSDNode>(Op)->getAPIntValue()). +                   zextOrTrunc(SrcBitSize).zext(DstBitSize); +      } + +      if (EltIsUndef) +        Ops.push_back(DAG.getUNDEF(DstEltVT)); +      else +        Ops.push_back(DAG.getConstant(NewBits, DstEltVT)); +    } + +    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); +    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT, +                       &Ops[0], Ops.size()); +  } + +  // Finally, this must be the case where we are shrinking elements: each input +  // turns into multiple outputs. +  bool isS2V = ISD::isScalarToVector(BV); +  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; +  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, +                            NumOutputsPerInput*BV->getNumOperands()); +  SmallVector<SDValue, 8> Ops; + +  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { +    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) { +      for (unsigned j = 0; j != NumOutputsPerInput; ++j) +        Ops.push_back(DAG.getUNDEF(DstEltVT)); +      continue; +    } + +    APInt OpVal = APInt(cast<ConstantSDNode>(BV->getOperand(i))-> +                        getAPIntValue()).zextOrTrunc(SrcBitSize); + +    for (unsigned j = 0; j != NumOutputsPerInput; ++j) { +      APInt ThisVal = APInt(OpVal).trunc(DstBitSize); +      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT)); +      if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal) +        // Simply turn this into a SCALAR_TO_VECTOR of the new type. +        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT, +                           Ops[0]); +      OpVal = OpVal.lshr(DstBitSize); +    } + +    // For big endian targets, swap the order of the pieces of each element. +    if (TLI.isBigEndian()) +      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); +  } + +  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT, +                     &Ops[0], Ops.size()); +} + +SDValue DAGCombiner::visitFADD(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (fadd c1, c2) -> (fadd c1, c2) +  if (N0CFP && N1CFP && VT != MVT::ppcf128) +    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1); +  // canonicalize constant to RHS +  if (N0CFP && !N1CFP) +    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0); +  // fold (fadd A, 0) -> A +  if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero()) +    return N0; +  // fold (fadd A, (fneg B)) -> (fsub A, B) +  if (isNegatibleForFree(N1, LegalOperations) == 2) +    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, +                       GetNegatedExpression(N1, DAG, LegalOperations)); +  // fold (fadd (fneg A), B) -> (fsub B, A) +  if (isNegatibleForFree(N0, LegalOperations) == 2) +    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1, +                       GetNegatedExpression(N0, DAG, LegalOperations)); + +  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2)) +  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD && +      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1))) +    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0), +                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, +                                   N0.getOperand(1), N1)); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFSUB(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (fsub c1, c2) -> c1-c2 +  if (N0CFP && N1CFP && VT != MVT::ppcf128) +    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1); +  // fold (fsub A, 0) -> A +  if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero()) +    return N0; +  // fold (fsub 0, B) -> -B +  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) { +    if (isNegatibleForFree(N1, LegalOperations)) +      return GetNegatedExpression(N1, DAG, LegalOperations); +    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) +      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1); +  } +  // fold (fsub A, (fneg B)) -> (fadd A, B) +  if (isNegatibleForFree(N1, LegalOperations)) +    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, +                       GetNegatedExpression(N1, DAG, LegalOperations)); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFMUL(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (fmul c1, c2) -> c1*c2 +  if (N0CFP && N1CFP && VT != MVT::ppcf128) +    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1); +  // canonicalize constant to RHS +  if (N0CFP && !N1CFP) +    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0); +  // fold (fmul A, 0) -> 0 +  if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero()) +    return N1; +  // fold (fmul A, 0) -> 0, vector edition. +  if (UnsafeFPMath && ISD::isBuildVectorAllZeros(N1.getNode())) +    return N1; +  // fold (fmul X, 2.0) -> (fadd X, X) +  if (N1CFP && N1CFP->isExactlyValue(+2.0)) +    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0); +  // fold (fmul X, -1.0) -> (fneg X) +  if (N1CFP && N1CFP->isExactlyValue(-1.0)) +    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) +      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0); + +  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y) +  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) { +    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) { +      // Both can be negated for free, check to see if at least one is cheaper +      // negated. +      if (LHSNeg == 2 || RHSNeg == 2) +        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, +                           GetNegatedExpression(N0, DAG, LegalOperations), +                           GetNegatedExpression(N1, DAG, LegalOperations)); +    } +  } + +  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2)) +  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL && +      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1))) +    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0), +                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, +                                   N0.getOperand(1), N1)); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFDIV(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold vector ops +  if (VT.isVector()) { +    SDValue FoldedVOp = SimplifyVBinOp(N); +    if (FoldedVOp.getNode()) return FoldedVOp; +  } + +  // fold (fdiv c1, c2) -> c1/c2 +  if (N0CFP && N1CFP && VT != MVT::ppcf128) +    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1); + + +  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) +  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) { +    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) { +      // Both can be negated for free, check to see if at least one is cheaper +      // negated. +      if (LHSNeg == 2 || RHSNeg == 2) +        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, +                           GetNegatedExpression(N0, DAG, LegalOperations), +                           GetNegatedExpression(N1, DAG, LegalOperations)); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitFREM(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); +  EVT VT = N->getValueType(0); + +  // fold (frem c1, c2) -> fmod(c1,c2) +  if (N0CFP && N1CFP && VT != MVT::ppcf128) +    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); +  EVT VT = N->getValueType(0); + +  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold +    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1); + +  if (N1CFP) { +    const APFloat& V = N1CFP->getValueAPF(); +    // copysign(x, c1) -> fabs(x)       iff ispos(c1) +    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) +    if (!V.isNegative()) { +      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) +        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0); +    } else { +      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) +        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, +                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0)); +    } +  } + +  // copysign(fabs(x), y) -> copysign(x, y) +  // copysign(fneg(x), y) -> copysign(x, y) +  // copysign(copysign(x,z), y) -> copysign(x, y) +  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || +      N0.getOpcode() == ISD::FCOPYSIGN) +    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, +                       N0.getOperand(0), N1); + +  // copysign(x, abs(y)) -> abs(x) +  if (N1.getOpcode() == ISD::FABS) +    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0); + +  // copysign(x, copysign(y,z)) -> copysign(x, z) +  if (N1.getOpcode() == ISD::FCOPYSIGN) +    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, +                       N0, N1.getOperand(1)); + +  // copysign(x, fp_extend(y)) -> copysign(x, y) +  // copysign(x, fp_round(y)) -> copysign(x, y) +  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND) +    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, +                       N0, N1.getOperand(0)); + +  return SDValue(); +} + +SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  EVT VT = N->getValueType(0); +  EVT OpVT = N0.getValueType(); + +  // fold (sint_to_fp c1) -> c1fp +  if (N0C && OpVT != MVT::ppcf128) +    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0); + +  // If the input is a legal type, and SINT_TO_FP is not legal on this target, +  // but UINT_TO_FP is legal on this target, try to convert. +  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) && +      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) { +    // If the sign bit is known to be zero, we can change this to UINT_TO_FP. +    if (DAG.SignBitIsZero(N0)) +      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); +  EVT VT = N->getValueType(0); +  EVT OpVT = N0.getValueType(); + +  // fold (uint_to_fp c1) -> c1fp +  if (N0C && OpVT != MVT::ppcf128) +    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0); + +  // If the input is a legal type, and UINT_TO_FP is not legal on this target, +  // but SINT_TO_FP is legal on this target, try to convert. +  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) && +      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) { +    // If the sign bit is known to be zero, we can change this to SINT_TO_FP. +    if (DAG.SignBitIsZero(N0)) +      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  EVT VT = N->getValueType(0); + +  // fold (fp_to_sint c1fp) -> c1 +  if (N0CFP) +    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  EVT VT = N->getValueType(0); + +  // fold (fp_to_uint c1fp) -> c1 +  if (N0CFP && VT != MVT::ppcf128) +    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  EVT VT = N->getValueType(0); + +  // fold (fp_round c1fp) -> c1fp +  if (N0CFP && N0.getValueType() != MVT::ppcf128) +    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1); + +  // fold (fp_round (fp_extend x)) -> x +  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) +    return N0.getOperand(0); + +  // fold (fp_round (fp_round x)) -> (fp_round x) +  if (N0.getOpcode() == ISD::FP_ROUND) { +    // This is a value preserving truncation if both round's are. +    bool IsTrunc = N->getConstantOperandVal(1) == 1 && +                   N0.getNode()->getConstantOperandVal(1) == 1; +    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0), +                       DAG.getIntPtrConstant(IsTrunc)); +  } + +  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) +  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { +    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT, +                              N0.getOperand(0), N1); +    AddToWorkList(Tmp.getNode()); +    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, +                       Tmp, N0.getOperand(1)); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); +  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); + +  // fold (fp_round_inreg c1fp) -> c1fp +  if (N0CFP && isTypeLegal(EVT)) { +    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT); +    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  EVT VT = N->getValueType(0); + +  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. +  if (N->hasOneUse() && +      N->use_begin()->getOpcode() == ISD::FP_ROUND) +    return SDValue(); + +  // fold (fp_extend c1fp) -> c1fp +  if (N0CFP && VT != MVT::ppcf128) +    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0); + +  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the +  // value of X. +  if (N0.getOpcode() == ISD::FP_ROUND +      && N0.getNode()->getConstantOperandVal(1) == 1) { +    SDValue In = N0.getOperand(0); +    if (In.getValueType() == VT) return In; +    if (VT.bitsLT(In.getValueType())) +      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, +                         In, N0.getOperand(1)); +    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In); +  } + +  // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) +  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() && +      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) || +       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) { +    LoadSDNode *LN0 = cast<LoadSDNode>(N0); +    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, N->getDebugLoc(), +                                     LN0->getChain(), +                                     LN0->getBasePtr(), LN0->getSrcValue(), +                                     LN0->getSrcValueOffset(), +                                     N0.getValueType(), +                                     LN0->isVolatile(), LN0->isNonTemporal(), +                                     LN0->getAlignment()); +    CombineTo(N, ExtLoad); +    CombineTo(N0.getNode(), +              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), +                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)), +              ExtLoad.getValue(1)); +    return SDValue(N, 0);   // Return N so it doesn't get rechecked! +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitFNEG(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  EVT VT = N->getValueType(0); + +  if (isNegatibleForFree(N0, LegalOperations)) +    return GetNegatedExpression(N0, DAG, LegalOperations); + +  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading +  // constant pool values. +  if (N0.getOpcode() == ISD::BIT_CONVERT &&  +      !VT.isVector() && +      N0.getNode()->hasOneUse() && +      N0.getOperand(0).getValueType().isInteger()) { +    SDValue Int = N0.getOperand(0); +    EVT IntVT = Int.getValueType(); +    if (IntVT.isInteger() && !IntVT.isVector()) { +      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int, +              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT)); +      AddToWorkList(Int.getNode()); +      return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), +                         VT, Int); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitFABS(SDNode *N) { +  SDValue N0 = N->getOperand(0); +  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); +  EVT VT = N->getValueType(0); + +  // fold (fabs c1) -> fabs(c1) +  if (N0CFP && VT != MVT::ppcf128) +    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0); +  // fold (fabs (fabs x)) -> (fabs x) +  if (N0.getOpcode() == ISD::FABS) +    return N->getOperand(0); +  // fold (fabs (fneg x)) -> (fabs x) +  // fold (fabs (fcopysign x, y)) -> (fabs x) +  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) +    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0)); + +  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading +  // constant pool values. +  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() && +      N0.getOperand(0).getValueType().isInteger() && +      !N0.getOperand(0).getValueType().isVector()) { +    SDValue Int = N0.getOperand(0); +    EVT IntVT = Int.getValueType(); +    if (IntVT.isInteger() && !IntVT.isVector()) { +      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int, +             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT)); +      AddToWorkList(Int.getNode()); +      return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), +                         N->getValueType(0), Int); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitBRCOND(SDNode *N) { +  SDValue Chain = N->getOperand(0); +  SDValue N1 = N->getOperand(1); +  SDValue N2 = N->getOperand(2); + +  // If N is a constant we could fold this into a fallthrough or unconditional +  // branch. However that doesn't happen very often in normal code, because +  // Instcombine/SimplifyCFG should have handled the available opportunities. +  // If we did this folding here, it would be necessary to update the +  // MachineBasicBlock CFG, which is awkward. + +  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal +  // on the target. +  if (N1.getOpcode() == ISD::SETCC && +      TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) { +    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other, +                       Chain, N1.getOperand(2), +                       N1.getOperand(0), N1.getOperand(1), N2); +  } + +  SDNode *Trunc = 0; +  if (N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) { +    // Look past truncate. +    Trunc = N1.getNode(); +    N1 = N1.getOperand(0); +  } + +  if (N1.hasOneUse() && N1.getOpcode() == ISD::SRL) { +    // Match this pattern so that we can generate simpler code: +    // +    //   %a = ... +    //   %b = and i32 %a, 2 +    //   %c = srl i32 %b, 1 +    //   brcond i32 %c ... +    // +    // into +    //  +    //   %a = ... +    //   %b = and i32 %a, 2 +    //   %c = setcc eq %b, 0 +    //   brcond %c ... +    // +    // This applies only when the AND constant value has one bit set and the +    // SRL constant is equal to the log2 of the AND constant. The back-end is +    // smart enough to convert the result into a TEST/JMP sequence. +    SDValue Op0 = N1.getOperand(0); +    SDValue Op1 = N1.getOperand(1); + +    if (Op0.getOpcode() == ISD::AND && +        Op1.getOpcode() == ISD::Constant) { +      SDValue AndOp1 = Op0.getOperand(1); + +      if (AndOp1.getOpcode() == ISD::Constant) { +        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); + +        if (AndConst.isPowerOf2() && +            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) { +          SDValue SetCC = +            DAG.getSetCC(N->getDebugLoc(), +                         TLI.getSetCCResultType(Op0.getValueType()), +                         Op0, DAG.getConstant(0, Op0.getValueType()), +                         ISD::SETNE); + +          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(), +                                          MVT::Other, Chain, SetCC, N2); +          // Don't add the new BRCond into the worklist or else SimplifySelectCC +          // will convert it back to (X & C1) >> C2. +          CombineTo(N, NewBRCond, false); +          // Truncate is dead. +          if (Trunc) { +            removeFromWorkList(Trunc); +            DAG.DeleteNode(Trunc); +          } +          // Replace the uses of SRL with SETCC +          WorkListRemover DeadNodes(*this); +          DAG.ReplaceAllUsesOfValueWith(N1, SetCC, &DeadNodes); +          removeFromWorkList(N1.getNode()); +          DAG.DeleteNode(N1.getNode()); +          return SDValue(N, 0);   // Return N so it doesn't get rechecked! +        } +      } +    } +  } +   +  // Transform br(xor(x, y)) -> br(x != y) +  // Transform br(xor(xor(x,y), 1)) -> br (x == y) +  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) { +    SDNode *TheXor = N1.getNode(); +    SDValue Op0 = TheXor->getOperand(0); +    SDValue Op1 = TheXor->getOperand(1); +    if (Op0.getOpcode() == Op1.getOpcode()) { +      // Avoid missing important xor optimizations. +      SDValue Tmp = visitXOR(TheXor); +      if (Tmp.getNode() && Tmp.getNode() != TheXor) { +        DEBUG(dbgs() << "\nReplacing.8 "; +              TheXor->dump(&DAG); +              dbgs() << "\nWith: "; +              Tmp.getNode()->dump(&DAG); +              dbgs() << '\n'); +        WorkListRemover DeadNodes(*this); +        DAG.ReplaceAllUsesOfValueWith(N1, Tmp, &DeadNodes); +        removeFromWorkList(TheXor); +        DAG.DeleteNode(TheXor); +        return DAG.getNode(ISD::BRCOND, N->getDebugLoc(), +                           MVT::Other, Chain, Tmp, N2); +      } +    } + +    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { +      bool Equal = false; +      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0)) +        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() && +            Op0.getOpcode() == ISD::XOR) { +          TheXor = Op0.getNode(); +          Equal = true; +        } + +      SDValue NodeToReplace = Trunc ? SDValue(Trunc, 0) : N1; +       +      EVT SetCCVT = NodeToReplace.getValueType(); +      if (LegalTypes) +        SetCCVT = TLI.getSetCCResultType(SetCCVT); +      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(), +                                   SetCCVT, +                                   Op0, Op1, +                                   Equal ? ISD::SETEQ : ISD::SETNE); +      // Replace the uses of XOR with SETCC +      WorkListRemover DeadNodes(*this); +      DAG.ReplaceAllUsesOfValueWith(NodeToReplace, SetCC, &DeadNodes); +      removeFromWorkList(NodeToReplace.getNode()); +      DAG.DeleteNode(NodeToReplace.getNode()); +      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(), +                         MVT::Other, Chain, SetCC, N2); +    } +  } + +  return SDValue(); +} + +// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. +// +SDValue DAGCombiner::visitBR_CC(SDNode *N) { +  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); +  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); + +  // If N is a constant we could fold this into a fallthrough or unconditional +  // branch. However that doesn't happen very often in normal code, because +  // Instcombine/SimplifyCFG should have handled the available opportunities. +  // If we did this folding here, it would be necessary to update the +  // MachineBasicBlock CFG, which is awkward. + +  // Use SimplifySetCC to simplify SETCC's. +  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()), +                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(), +                               false); +  if (Simp.getNode()) AddToWorkList(Simp.getNode()); + +  // fold to a simpler setcc +  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) +    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other, +                       N->getOperand(0), Simp.getOperand(2), +                       Simp.getOperand(0), Simp.getOperand(1), +                       N->getOperand(4)); + +  return SDValue(); +} + +/// CombineToPreIndexedLoadStore - Try turning a load / store into a +/// pre-indexed load / store when the base pointer is an add or subtract +/// and it has other uses besides the load / store. After the +/// transformation, the new indexed load / store has effectively folded +/// the add / subtract in and all of its other uses are redirected to the +/// new load / store. +bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { +  if (!LegalOperations) +    return false; + +  bool isLoad = true; +  SDValue Ptr; +  EVT VT; +  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { +    if (LD->isIndexed()) +      return false; +    VT = LD->getMemoryVT(); +    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) && +        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT)) +      return false; +    Ptr = LD->getBasePtr(); +  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { +    if (ST->isIndexed()) +      return false; +    VT = ST->getMemoryVT(); +    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) && +        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT)) +      return false; +    Ptr = ST->getBasePtr(); +    isLoad = false; +  } else { +    return false; +  } + +  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail +  // out.  There is no reason to make this a preinc/predec. +  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || +      Ptr.getNode()->hasOneUse()) +    return false; + +  // Ask the target to do addressing mode selection. +  SDValue BasePtr; +  SDValue Offset; +  ISD::MemIndexedMode AM = ISD::UNINDEXED; +  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) +    return false; +  // Don't create a indexed load / store with zero offset. +  if (isa<ConstantSDNode>(Offset) && +      cast<ConstantSDNode>(Offset)->isNullValue()) +    return false; + +  // Try turning it into a pre-indexed load / store except when: +  // 1) The new base ptr is a frame index. +  // 2) If N is a store and the new base ptr is either the same as or is a +  //    predecessor of the value being stored. +  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded +  //    that would create a cycle. +  // 4) All uses are load / store ops that use it as old base ptr. + +  // Check #1.  Preinc'ing a frame index would require copying the stack pointer +  // (plus the implicit offset) to a register to preinc anyway. +  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) +    return false; + +  // Check #2. +  if (!isLoad) { +    SDValue Val = cast<StoreSDNode>(N)->getValue(); +    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode())) +      return false; +  } + +  // Now check for #3 and #4. +  bool RealUse = false; +  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(), +         E = Ptr.getNode()->use_end(); I != E; ++I) { +    SDNode *Use = *I; +    if (Use == N) +      continue; +    if (Use->isPredecessorOf(N)) +      return false; + +    if (!((Use->getOpcode() == ISD::LOAD && +           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) || +          (Use->getOpcode() == ISD::STORE && +           cast<StoreSDNode>(Use)->getBasePtr() == Ptr))) +      RealUse = true; +  } + +  if (!RealUse) +    return false; + +  SDValue Result; +  if (isLoad) +    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(), +                                BasePtr, Offset, AM); +  else +    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(), +                                 BasePtr, Offset, AM); +  ++PreIndexedNodes; +  ++NodesCombined; +  DEBUG(dbgs() << "\nReplacing.4 "; +        N->dump(&DAG); +        dbgs() << "\nWith: "; +        Result.getNode()->dump(&DAG); +        dbgs() << '\n'); +  WorkListRemover DeadNodes(*this); +  if (isLoad) { +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0), +                                  &DeadNodes); +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2), +                                  &DeadNodes); +  } else { +    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1), +                                  &DeadNodes); +  } + +  // Finally, since the node is now dead, remove it from the graph. +  DAG.DeleteNode(N); + +  // Replace the uses of Ptr with uses of the updated base value. +  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0), +                                &DeadNodes); +  removeFromWorkList(Ptr.getNode()); +  DAG.DeleteNode(Ptr.getNode()); + +  return true; +} + +/// CombineToPostIndexedLoadStore - Try to combine a load / store with a +/// add / sub of the base pointer node into a post-indexed load / store. +/// The transformation folded the add / subtract into the new indexed +/// load / store effectively and all of its uses are redirected to the +/// new load / store. +bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { +  if (!LegalOperations) +    return false; + +  bool isLoad = true; +  SDValue Ptr; +  EVT VT; +  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) { +    if (LD->isIndexed()) +      return false; +    VT = LD->getMemoryVT(); +    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) && +        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT)) +      return false; +    Ptr = LD->getBasePtr(); +  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) { +    if (ST->isIndexed()) +      return false; +    VT = ST->getMemoryVT(); +    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) && +        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT)) +      return false; +    Ptr = ST->getBasePtr(); +    isLoad = false; +  } else { +    return false; +  } + +  if (Ptr.getNode()->hasOneUse()) +    return false; + +  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(), +         E = Ptr.getNode()->use_end(); I != E; ++I) { +    SDNode *Op = *I; +    if (Op == N || +        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)) +      continue; + +    SDValue BasePtr; +    SDValue Offset; +    ISD::MemIndexedMode AM = ISD::UNINDEXED; +    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) { +      // Don't create a indexed load / store with zero offset. +      if (isa<ConstantSDNode>(Offset) && +          cast<ConstantSDNode>(Offset)->isNullValue()) +        continue; + +      // Try turning it into a post-indexed load / store except when +      // 1) All uses are load / store ops that use it as base ptr. +      // 2) Op must be independent of N, i.e. Op is neither a predecessor +      //    nor a successor of N. Otherwise, if Op is folded that would +      //    create a cycle. + +      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) +        continue; + +      // Check for #1. +      bool TryNext = false; +      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(), +             EE = BasePtr.getNode()->use_end(); II != EE; ++II) { +        SDNode *Use = *II; +        if (Use == Ptr.getNode()) +          continue; + +        // If all the uses are load / store addresses, then don't do the +        // transformation. +        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){ +          bool RealUse = false; +          for (SDNode::use_iterator III = Use->use_begin(), +                 EEE = Use->use_end(); III != EEE; ++III) { +            SDNode *UseUse = *III; +            if (!((UseUse->getOpcode() == ISD::LOAD && +                   cast<LoadSDNode>(UseUse)->getBasePtr().getNode() == Use) || +                  (UseUse->getOpcode() == ISD::STORE && +                   cast<StoreSDNode>(UseUse)->getBasePtr().getNode() == Use))) +              RealUse = true; +          } + +          if (!RealUse) { +            TryNext = true; +            break; +          } +        } +      } + +      if (TryNext) +        continue; + +      // Check for #2 +      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) { +        SDValue Result = isLoad +          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(), +                               BasePtr, Offset, AM) +          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(), +                                BasePtr, Offset, AM); +        ++PostIndexedNodes; +        ++NodesCombined; +        DEBUG(dbgs() << "\nReplacing.5 "; +              N->dump(&DAG); +              dbgs() << "\nWith: "; +              Result.getNode()->dump(&DAG); +              dbgs() << '\n'); +        WorkListRemover DeadNodes(*this); +        if (isLoad) { +          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0), +                                        &DeadNodes); +          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2), +                                        &DeadNodes); +        } else { +          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1), +                                        &DeadNodes); +        } + +        // Finally, since the node is now dead, remove it from the graph. +        DAG.DeleteNode(N); + +        // Replace the uses of Use with uses of the updated base value. +        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), +                                      Result.getValue(isLoad ? 1 : 0), +                                      &DeadNodes); +        removeFromWorkList(Op); +        DAG.DeleteNode(Op); +        return true; +      } +    } +  } + +  return false; +} + +SDValue DAGCombiner::visitLOAD(SDNode *N) { +  LoadSDNode *LD  = cast<LoadSDNode>(N); +  SDValue Chain = LD->getChain(); +  SDValue Ptr   = LD->getBasePtr(); + +  // If load is not volatile and there are no uses of the loaded value (and +  // the updated indexed value in case of indexed loads), change uses of the +  // chain value into uses of the chain input (i.e. delete the dead load). +  if (!LD->isVolatile()) { +    if (N->getValueType(1) == MVT::Other) { +      // Unindexed loads. +      if (N->hasNUsesOfValue(0, 0)) { +        // It's not safe to use the two value CombineTo variant here. e.g. +        // v1, chain2 = load chain1, loc +        // v2, chain3 = load chain2, loc +        // v3         = add v2, c +        // Now we replace use of chain2 with chain1.  This makes the second load +        // isomorphic to the one we are deleting, and thus makes this load live. +        DEBUG(dbgs() << "\nReplacing.6 "; +              N->dump(&DAG); +              dbgs() << "\nWith chain: "; +              Chain.getNode()->dump(&DAG); +              dbgs() << "\n"); +        WorkListRemover DeadNodes(*this); +        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes); + +        if (N->use_empty()) { +          removeFromWorkList(N); +          DAG.DeleteNode(N); +        } + +        return SDValue(N, 0);   // Return N so it doesn't get rechecked! +      } +    } else { +      // Indexed loads. +      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); +      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) { +        SDValue Undef = DAG.getUNDEF(N->getValueType(0)); +        DEBUG(dbgs() << "\nReplacing.7 "; +              N->dump(&DAG); +              dbgs() << "\nWith: "; +              Undef.getNode()->dump(&DAG); +              dbgs() << " and 2 other values\n"); +        WorkListRemover DeadNodes(*this); +        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes); +        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), +                                      DAG.getUNDEF(N->getValueType(1)), +                                      &DeadNodes); +        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain, &DeadNodes); +        removeFromWorkList(N); +        DAG.DeleteNode(N); +        return SDValue(N, 0);   // Return N so it doesn't get rechecked! +      } +    } +  } + +  // If this load is directly stored, replace the load value with the stored +  // value. +  // TODO: Handle store large -> read small portion. +  // TODO: Handle TRUNCSTORE/LOADEXT +  if (LD->getExtensionType() == ISD::NON_EXTLOAD && +      !LD->isVolatile()) { +    if (ISD::isNON_TRUNCStore(Chain.getNode())) { +      StoreSDNode *PrevST = cast<StoreSDNode>(Chain); +      if (PrevST->getBasePtr() == Ptr && +          PrevST->getValue().getValueType() == N->getValueType(0)) +      return CombineTo(N, Chain.getOperand(1), Chain); +    } +  } + +  // Try to infer better alignment information than the load already has. +  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) { +    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { +      if (Align > LD->getAlignment()) +        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0), +                              N->getDebugLoc(), +                              Chain, Ptr, LD->getSrcValue(), +                              LD->getSrcValueOffset(), LD->getMemoryVT(), +                              LD->isVolatile(), LD->isNonTemporal(), Align); +    } +  } + +  if (CombinerAA) { +    // Walk up chain skipping non-aliasing memory nodes. +    SDValue BetterChain = FindBetterChain(N, Chain); + +    // If there is a better chain. +    if (Chain != BetterChain) { +      SDValue ReplLoad; + +      // Replace the chain to void dependency. +      if (LD->getExtensionType() == ISD::NON_EXTLOAD) { +        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(), +                               BetterChain, Ptr, +                               LD->getSrcValue(), LD->getSrcValueOffset(), +                               LD->isVolatile(), LD->isNonTemporal(), +                               LD->getAlignment()); +      } else { +        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0), +                                  LD->getDebugLoc(), +                                  BetterChain, Ptr, LD->getSrcValue(), +                                  LD->getSrcValueOffset(), +                                  LD->getMemoryVT(), +                                  LD->isVolatile(), +                                  LD->isNonTemporal(), +                                  LD->getAlignment()); +      } + +      // Create token factor to keep old chain connected. +      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), +                                  MVT::Other, Chain, ReplLoad.getValue(1)); +       +      // Make sure the new and old chains are cleaned up. +      AddToWorkList(Token.getNode()); +       +      // Replace uses with load result and token factor. Don't add users +      // to work list. +      return CombineTo(N, ReplLoad.getValue(0), Token, false); +    } +  } + +  // Try transforming N to an indexed load. +  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) +    return SDValue(N, 0); + +  return SDValue(); +} + +/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the +/// load is having specific bytes cleared out.  If so, return the byte size +/// being masked out and the shift amount. +static std::pair<unsigned, unsigned> +CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { +  std::pair<unsigned, unsigned> Result(0, 0); +   +  // Check for the structure we're looking for. +  if (V->getOpcode() != ISD::AND || +      !isa<ConstantSDNode>(V->getOperand(1)) || +      !ISD::isNormalLoad(V->getOperand(0).getNode())) +    return Result; +   +  // Check the chain and pointer. +  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); +  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer. +   +  // The store should be chained directly to the load or be an operand of a +  // tokenfactor. +  if (LD == Chain.getNode()) +    ; // ok. +  else if (Chain->getOpcode() != ISD::TokenFactor) +    return Result; // Fail. +  else { +    bool isOk = false; +    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i) +      if (Chain->getOperand(i).getNode() == LD) { +        isOk = true; +        break; +      } +    if (!isOk) return Result; +  } +   +  // This only handles simple types. +  if (V.getValueType() != MVT::i16 && +      V.getValueType() != MVT::i32 && +      V.getValueType() != MVT::i64) +    return Result; + +  // Check the constant mask.  Invert it so that the bits being masked out are +  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits +  // follow the sign bit for uniformity. +  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); +  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask); +  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte. +  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask); +  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte. +  if (NotMaskLZ == 64) return Result;  // All zero mask. +   +  // See if we have a continuous run of bits.  If so, we have 0*1+0* +  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64) +    return Result; + +  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. +  if (V.getValueType() != MVT::i64 && NotMaskLZ) +    NotMaskLZ -= 64-V.getValueSizeInBits(); +   +  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; +  switch (MaskedBytes) { +  case 1:  +  case 2:  +  case 4: break; +  default: return Result; // All one mask, or 5-byte mask. +  } +   +  // Verify that the first bit starts at a multiple of mask so that the access +  // is aligned the same as the access width. +  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; +   +  Result.first = MaskedBytes; +  Result.second = NotMaskTZ/8; +  return Result; +} + + +/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that +/// provides a value as specified by MaskInfo.  If so, replace the specified +/// store with a narrower store of truncated IVal. +static SDNode * +ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, +                                SDValue IVal, StoreSDNode *St, +                                DAGCombiner *DC) { +  unsigned NumBytes = MaskInfo.first; +  unsigned ByteShift = MaskInfo.second; +  SelectionDAG &DAG = DC->getDAG(); +   +  // Check to see if IVal is all zeros in the part being masked in by the 'or' +  // that uses this.  If not, this is not a replacement. +  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), +                                  ByteShift*8, (ByteShift+NumBytes)*8); +  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0; +   +  // Check that it is legal on the target to do this.  It is legal if the new +  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type +  // legalization. +  MVT VT = MVT::getIntegerVT(NumBytes*8); +  if (!DC->isTypeLegal(VT)) +    return 0; +   +  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is +  // shifted by ByteShift and truncated down to NumBytes. +  if (ByteShift) +    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal, +                       DAG.getConstant(ByteShift*8, DC->getShiftAmountTy())); + +  // Figure out the offset for the store and the alignment of the access. +  unsigned StOffset; +  unsigned NewAlign = St->getAlignment(); + +  if (DAG.getTargetLoweringInfo().isLittleEndian()) +    StOffset = ByteShift; +  else +    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; +   +  SDValue Ptr = St->getBasePtr(); +  if (StOffset) { +    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(), +                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType())); +    NewAlign = MinAlign(NewAlign, StOffset); +  } +   +  // Truncate down to the new size. +  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal); +   +  ++OpsNarrowed; +  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,  +                      St->getSrcValue(), St->getSrcValueOffset()+StOffset, +                      false, false, NewAlign).getNode(); +} + + +/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is +/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some +/// of the loaded bits, try narrowing the load and store if it would end up +/// being a win for performance or code size. +SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { +  StoreSDNode *ST  = cast<StoreSDNode>(N); +  if (ST->isVolatile()) +    return SDValue(); + +  SDValue Chain = ST->getChain(); +  SDValue Value = ST->getValue(); +  SDValue Ptr   = ST->getBasePtr(); +  EVT VT = Value.getValueType(); + +  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) +    return SDValue(); + +  unsigned Opc = Value.getOpcode(); +   +  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst +  // is a byte mask indicating a consecutive number of bytes, check to see if +  // Y is known to provide just those bytes.  If so, we try to replace the +  // load + replace + store sequence with a single (narrower) store, which makes +  // the load dead. +  if (Opc == ISD::OR) { +    std::pair<unsigned, unsigned> MaskedLoad; +    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); +    if (MaskedLoad.first) +      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, +                                                  Value.getOperand(1), ST,this)) +        return SDValue(NewST, 0); +                                            +    // Or is commutative, so try swapping X and Y. +    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); +    if (MaskedLoad.first) +      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, +                                                  Value.getOperand(0), ST,this)) +        return SDValue(NewST, 0); +  } +   +  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || +      Value.getOperand(1).getOpcode() != ISD::Constant) +    return SDValue(); + +  SDValue N0 = Value.getOperand(0); +  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && +      Chain == SDValue(N0.getNode(), 1)) { +    LoadSDNode *LD = cast<LoadSDNode>(N0); +    if (LD->getBasePtr() != Ptr) +      return SDValue(); + +    // Find the type to narrow it the load / op / store to. +    SDValue N1 = Value.getOperand(1); +    unsigned BitWidth = N1.getValueSizeInBits(); +    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); +    if (Opc == ISD::AND) +      Imm ^= APInt::getAllOnesValue(BitWidth); +    if (Imm == 0 || Imm.isAllOnesValue()) +      return SDValue(); +    unsigned ShAmt = Imm.countTrailingZeros(); +    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; +    unsigned NewBW = NextPowerOf2(MSB - ShAmt); +    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); +    while (NewBW < BitWidth && +           !(TLI.isOperationLegalOrCustom(Opc, NewVT) && +             TLI.isNarrowingProfitable(VT, NewVT))) { +      NewBW = NextPowerOf2(NewBW); +      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); +    } +    if (NewBW >= BitWidth) +      return SDValue(); + +    // If the lsb changed does not start at the type bitwidth boundary, +    // start at the previous one. +    if (ShAmt % NewBW) +      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; +    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW); +    if ((Imm & Mask) == Imm) { +      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); +      if (Opc == ISD::AND) +        NewImm ^= APInt::getAllOnesValue(NewBW); +      uint64_t PtrOff = ShAmt / 8; +      // For big endian targets, we need to adjust the offset to the pointer to +      // load the correct bytes. +      if (TLI.isBigEndian()) +        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; + +      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff); +      const Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); +      if (NewAlign < TLI.getTargetData()->getABITypeAlignment(NewVTTy)) +        return SDValue(); + +      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(), +                                   Ptr.getValueType(), Ptr, +                                   DAG.getConstant(PtrOff, Ptr.getValueType())); +      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(), +                                  LD->getChain(), NewPtr, +                                  LD->getSrcValue(), LD->getSrcValueOffset(), +                                  LD->isVolatile(), LD->isNonTemporal(), +                                  NewAlign); +      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD, +                                   DAG.getConstant(NewImm, NewVT)); +      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(), +                                   NewVal, NewPtr, +                                   ST->getSrcValue(), ST->getSrcValueOffset(), +                                   false, false, NewAlign); + +      AddToWorkList(NewPtr.getNode()); +      AddToWorkList(NewLD.getNode()); +      AddToWorkList(NewVal.getNode()); +      WorkListRemover DeadNodes(*this); +      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1), +                                    &DeadNodes); +      ++OpsNarrowed; +      return NewST; +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitSTORE(SDNode *N) { +  StoreSDNode *ST  = cast<StoreSDNode>(N); +  SDValue Chain = ST->getChain(); +  SDValue Value = ST->getValue(); +  SDValue Ptr   = ST->getBasePtr(); + +  // If this is a store of a bit convert, store the input value if the +  // resultant store does not need a higher alignment than the original. +  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() && +      ST->isUnindexed()) { +    unsigned OrigAlign = ST->getAlignment(); +    EVT SVT = Value.getOperand(0).getValueType(); +    unsigned Align = TLI.getTargetData()-> +      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext())); +    if (Align <= OrigAlign && +        ((!LegalOperations && !ST->isVolatile()) || +         TLI.isOperationLegalOrCustom(ISD::STORE, SVT))) +      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0), +                          Ptr, ST->getSrcValue(), +                          ST->getSrcValueOffset(), ST->isVolatile(), +                          ST->isNonTemporal(), OrigAlign); +  } + +  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' +  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { +    // NOTE: If the original store is volatile, this transform must not increase +    // the number of stores.  For example, on x86-32 an f64 can be stored in one +    // processor operation but an i64 (which is not legal) requires two.  So the +    // transform should not be done in this case. +    if (Value.getOpcode() != ISD::TargetConstantFP) { +      SDValue Tmp; +      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) { +      default: llvm_unreachable("Unknown FP type"); +      case MVT::f80:    // We don't do this for these yet. +      case MVT::f128: +      case MVT::ppcf128: +        break; +      case MVT::f32: +        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) || +            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { +          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). +                              bitcastToAPInt().getZExtValue(), MVT::i32); +          return DAG.getStore(Chain, N->getDebugLoc(), Tmp, +                              Ptr, ST->getSrcValue(), +                              ST->getSrcValueOffset(), ST->isVolatile(), +                              ST->isNonTemporal(), ST->getAlignment()); +        } +        break; +      case MVT::f64: +        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && +             !ST->isVolatile()) || +            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { +          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). +                                getZExtValue(), MVT::i64); +          return DAG.getStore(Chain, N->getDebugLoc(), Tmp, +                              Ptr, ST->getSrcValue(), +                              ST->getSrcValueOffset(), ST->isVolatile(), +                              ST->isNonTemporal(), ST->getAlignment()); +        } else if (!ST->isVolatile() && +                   TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { +          // Many FP stores are not made apparent until after legalize, e.g. for +          // argument passing.  Since this is so common, custom legalize the +          // 64-bit integer store into two 32-bit stores. +          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); +          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32); +          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32); +          if (TLI.isBigEndian()) std::swap(Lo, Hi); + +          int SVOffset = ST->getSrcValueOffset(); +          unsigned Alignment = ST->getAlignment(); +          bool isVolatile = ST->isVolatile(); +          bool isNonTemporal = ST->isNonTemporal(); + +          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo, +                                     Ptr, ST->getSrcValue(), +                                     ST->getSrcValueOffset(), +                                     isVolatile, isNonTemporal, +                                     ST->getAlignment()); +          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr, +                            DAG.getConstant(4, Ptr.getValueType())); +          SVOffset += 4; +          Alignment = MinAlign(Alignment, 4U); +          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi, +                                     Ptr, ST->getSrcValue(), +                                     SVOffset, isVolatile, isNonTemporal, +                                     Alignment); +          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other, +                             St0, St1); +        } + +        break; +      } +    } +  } + +  // Try to infer better alignment information than the store already has. +  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) { +    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) { +      if (Align > ST->getAlignment()) +        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value, +                                 Ptr, ST->getSrcValue(), +                                 ST->getSrcValueOffset(), ST->getMemoryVT(), +                                 ST->isVolatile(), ST->isNonTemporal(), Align); +    } +  } + +  if (CombinerAA) { +    // Walk up chain skipping non-aliasing memory nodes. +    SDValue BetterChain = FindBetterChain(N, Chain); + +    // If there is a better chain. +    if (Chain != BetterChain) { +      SDValue ReplStore; + +      // Replace the chain to avoid dependency. +      if (ST->isTruncatingStore()) { +        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr, +                                      ST->getSrcValue(),ST->getSrcValueOffset(), +                                      ST->getMemoryVT(), ST->isVolatile(), +                                      ST->isNonTemporal(), ST->getAlignment()); +      } else { +        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr, +                                 ST->getSrcValue(), ST->getSrcValueOffset(), +                                 ST->isVolatile(), ST->isNonTemporal(), +                                 ST->getAlignment()); +      } + +      // Create token to keep both nodes around. +      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), +                                  MVT::Other, Chain, ReplStore); + +      // Make sure the new and old chains are cleaned up. +      AddToWorkList(Token.getNode()); + +      // Don't add users to work list. +      return CombineTo(N, Token, false); +    } +  } + +  // Try transforming N to an indexed store. +  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) +    return SDValue(N, 0); + +  // FIXME: is there such a thing as a truncating indexed store? +  if (ST->isTruncatingStore() && ST->isUnindexed() && +      Value.getValueType().isInteger()) { +    // See if we can simplify the input to this truncstore with knowledge that +    // only the low bits are being used.  For example: +    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8" +    SDValue Shorter = +      GetDemandedBits(Value, +                      APInt::getLowBitsSet(Value.getValueSizeInBits(), +                                           ST->getMemoryVT().getSizeInBits())); +    AddToWorkList(Value.getNode()); +    if (Shorter.getNode()) +      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter, +                               Ptr, ST->getSrcValue(), +                               ST->getSrcValueOffset(), ST->getMemoryVT(), +                               ST->isVolatile(), ST->isNonTemporal(), +                               ST->getAlignment()); + +    // Otherwise, see if we can simplify the operation with +    // SimplifyDemandedBits, which only works if the value has a single use. +    if (SimplifyDemandedBits(Value, +                             APInt::getLowBitsSet( +                               Value.getValueType().getScalarType().getSizeInBits(), +                               ST->getMemoryVT().getScalarType().getSizeInBits()))) +      return SDValue(N, 0); +  } + +  // If this is a load followed by a store to the same location, then the store +  // is dead/noop. +  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { +    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && +        ST->isUnindexed() && !ST->isVolatile() && +        // There can't be any side effects between the load and store, such as +        // a call or store. +        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { +      // The store is dead, remove it. +      return Chain; +    } +  } + +  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a +  // truncating store.  We can do this even if this is already a truncstore. +  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) +      && Value.getNode()->hasOneUse() && ST->isUnindexed() && +      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), +                            ST->getMemoryVT())) { +    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0), +                             Ptr, ST->getSrcValue(), +                             ST->getSrcValueOffset(), ST->getMemoryVT(), +                             ST->isVolatile(), ST->isNonTemporal(), +                             ST->getAlignment()); +  } + +  return ReduceLoadOpStoreWidth(N); +} + +SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { +  SDValue InVec = N->getOperand(0); +  SDValue InVal = N->getOperand(1); +  SDValue EltNo = N->getOperand(2); + +  // If the inserted element is an UNDEF, just use the input vector. +  if (InVal.getOpcode() == ISD::UNDEF) +    return InVec; + +  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new +  // vector with the inserted element. +  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) { +    unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); +    SmallVector<SDValue, 8> Ops(InVec.getNode()->op_begin(), +                                InVec.getNode()->op_end()); +    if (Elt < Ops.size()) +      Ops[Elt] = InVal; +    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), +                       InVec.getValueType(), &Ops[0], Ops.size()); +  } +  // If the invec is an UNDEF and if EltNo is a constant, create a new  +  // BUILD_VECTOR with undef elements and the inserted element. +  if (!LegalOperations && InVec.getOpcode() == ISD::UNDEF &&  +      isa<ConstantSDNode>(EltNo)) { +    EVT VT = InVec.getValueType(); +    EVT EltVT = VT.getVectorElementType(); +    unsigned NElts = VT.getVectorNumElements(); +    SmallVector<SDValue, 8> Ops(NElts, DAG.getUNDEF(EltVT)); + +    unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); +    if (Elt < Ops.size()) +      Ops[Elt] = InVal; +    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), +                       InVec.getValueType(), &Ops[0], Ops.size()); +  } +  return SDValue(); +} + +SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { +  // (vextract (scalar_to_vector val, 0) -> val +  SDValue InVec = N->getOperand(0); + + if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { +   // Check if the result type doesn't match the inserted element type. A +   // SCALAR_TO_VECTOR may truncate the inserted element and the +   // EXTRACT_VECTOR_ELT may widen the extracted vector. +   SDValue InOp = InVec.getOperand(0); +   EVT NVT = N->getValueType(0); +   if (InOp.getValueType() != NVT) { +     assert(InOp.getValueType().isInteger() && NVT.isInteger()); +     return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT); +   } +   return InOp; + } + +  // Perform only after legalization to ensure build_vector / vector_shuffle +  // optimizations have already been done. +  if (!LegalOperations) return SDValue(); + +  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) +  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) +  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) +  SDValue EltNo = N->getOperand(1); + +  if (isa<ConstantSDNode>(EltNo)) { +    unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); +    bool NewLoad = false; +    bool BCNumEltsChanged = false; +    EVT VT = InVec.getValueType(); +    EVT ExtVT = VT.getVectorElementType(); +    EVT LVT = ExtVT; + +    if (InVec.getOpcode() == ISD::BIT_CONVERT) { +      EVT BCVT = InVec.getOperand(0).getValueType(); +      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) +        return SDValue(); +      if (VT.getVectorNumElements() != BCVT.getVectorNumElements()) +        BCNumEltsChanged = true; +      InVec = InVec.getOperand(0); +      ExtVT = BCVT.getVectorElementType(); +      NewLoad = true; +    } + +    LoadSDNode *LN0 = NULL; +    const ShuffleVectorSDNode *SVN = NULL; +    if (ISD::isNormalLoad(InVec.getNode())) { +      LN0 = cast<LoadSDNode>(InVec); +    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR && +               InVec.getOperand(0).getValueType() == ExtVT && +               ISD::isNormalLoad(InVec.getOperand(0).getNode())) { +      LN0 = cast<LoadSDNode>(InVec.getOperand(0)); +    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) { +      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) +      // => +      // (load $addr+1*size) + +      // If the bit convert changed the number of elements, it is unsafe +      // to examine the mask. +      if (BCNumEltsChanged) +        return SDValue(); + +      // Select the input vector, guarding against out of range extract vector. +      unsigned NumElems = VT.getVectorNumElements(); +      int Idx = (Elt > NumElems) ? -1 : SVN->getMaskElt(Elt); +      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1); + +      if (InVec.getOpcode() == ISD::BIT_CONVERT) +        InVec = InVec.getOperand(0); +      if (ISD::isNormalLoad(InVec.getNode())) { +        LN0 = cast<LoadSDNode>(InVec); +        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems; +      } +    } + +    if (!LN0 || !LN0->hasOneUse() || LN0->isVolatile()) +      return SDValue(); + +    unsigned Align = LN0->getAlignment(); +    if (NewLoad) { +      // Check the resultant load doesn't need a higher alignment than the +      // original load. +      unsigned NewAlign = +        TLI.getTargetData()->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext())); + +      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT)) +        return SDValue(); + +      Align = NewAlign; +    } + +    SDValue NewPtr = LN0->getBasePtr(); +    if (Elt) { +      unsigned PtrOff = LVT.getSizeInBits() * Elt / 8; +      EVT PtrType = NewPtr.getValueType(); +      if (TLI.isBigEndian()) +        PtrOff = VT.getSizeInBits() / 8 - PtrOff; +      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr, +                           DAG.getConstant(PtrOff, PtrType)); +    } + +    return DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr, +                       LN0->getSrcValue(), LN0->getSrcValueOffset(), +                       LN0->isVolatile(), LN0->isNonTemporal(), Align); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { +  unsigned NumInScalars = N->getNumOperands(); +  EVT VT = N->getValueType(0); + +  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT +  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from +  // at most two distinct vectors, turn this into a shuffle node. +  SDValue VecIn1, VecIn2; +  for (unsigned i = 0; i != NumInScalars; ++i) { +    // Ignore undef inputs. +    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; + +    // If this input is something other than a EXTRACT_VECTOR_ELT with a +    // constant index, bail out. +    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT || +        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) { +      VecIn1 = VecIn2 = SDValue(0, 0); +      break; +    } + +    // If the input vector type disagrees with the result of the build_vector, +    // we can't make a shuffle. +    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0); +    if (ExtractedFromVec.getValueType() != VT) { +      VecIn1 = VecIn2 = SDValue(0, 0); +      break; +    } + +    // Otherwise, remember this.  We allow up to two distinct input vectors. +    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2) +      continue; + +    if (VecIn1.getNode() == 0) { +      VecIn1 = ExtractedFromVec; +    } else if (VecIn2.getNode() == 0) { +      VecIn2 = ExtractedFromVec; +    } else { +      // Too many inputs. +      VecIn1 = VecIn2 = SDValue(0, 0); +      break; +    } +  } + +  // If everything is good, we can make a shuffle operation. +  if (VecIn1.getNode()) { +    SmallVector<int, 8> Mask; +    for (unsigned i = 0; i != NumInScalars; ++i) { +      if (N->getOperand(i).getOpcode() == ISD::UNDEF) { +        Mask.push_back(-1); +        continue; +      } + +      // If extracting from the first vector, just use the index directly. +      SDValue Extract = N->getOperand(i); +      SDValue ExtVal = Extract.getOperand(1); +      if (Extract.getOperand(0) == VecIn1) { +        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue(); +        if (ExtIndex > VT.getVectorNumElements()) +          return SDValue(); +         +        Mask.push_back(ExtIndex); +        continue; +      } + +      // Otherwise, use InIdx + VecSize +      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue(); +      Mask.push_back(Idx+NumInScalars); +    } + +    // Add count and size info. +    if (!isTypeLegal(VT)) +      return SDValue(); + +    // Return the new VECTOR_SHUFFLE node. +    SDValue Ops[2]; +    Ops[0] = VecIn1; +    Ops[1] = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); +    return DAG.getVectorShuffle(VT, N->getDebugLoc(), Ops[0], Ops[1], &Mask[0]); +  } + +  return SDValue(); +} + +SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { +  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of +  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector +  // inputs come from at most two distinct vectors, turn this into a shuffle +  // node. + +  // If we only have one input vector, we don't need to do any concatenation. +  if (N->getNumOperands() == 1) +    return N->getOperand(0); + +  return SDValue(); +} + +SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { +  EVT VT = N->getValueType(0); +  unsigned NumElts = VT.getVectorNumElements(); + +  SDValue N0 = N->getOperand(0); + +  assert(N0.getValueType().getVectorNumElements() == NumElts && +        "Vector shuffle must be normalized in DAG"); + +  // FIXME: implement canonicalizations from DAG.getVectorShuffle() + +  // If it is a splat, check if the argument vector is a build_vector with +  // all scalar elements the same. +  if (cast<ShuffleVectorSDNode>(N)->isSplat()) { +    SDNode *V = N0.getNode(); + +    // If this is a bit convert that changes the element type of the vector but +    // not the number of vector elements, look through it.  Be careful not to +    // look though conversions that change things like v4f32 to v2f64. +    if (V->getOpcode() == ISD::BIT_CONVERT) { +      SDValue ConvInput = V->getOperand(0); +      if (ConvInput.getValueType().isVector() && +          ConvInput.getValueType().getVectorNumElements() == NumElts) +        V = ConvInput.getNode(); +    } + +    if (V->getOpcode() == ISD::BUILD_VECTOR) { +      unsigned NumElems = V->getNumOperands(); +      unsigned BaseIdx = cast<ShuffleVectorSDNode>(N)->getSplatIndex(); +      if (NumElems > BaseIdx) { +        SDValue Base; +        bool AllSame = true; +        for (unsigned i = 0; i != NumElems; ++i) { +          if (V->getOperand(i).getOpcode() != ISD::UNDEF) { +            Base = V->getOperand(i); +            break; +          } +        } +        // Splat of <u, u, u, u>, return <u, u, u, u> +        if (!Base.getNode()) +          return N0; +        for (unsigned i = 0; i != NumElems; ++i) { +          if (V->getOperand(i) != Base) { +            AllSame = false; +            break; +          } +        } +        // Splat of <x, x, x, x>, return <x, x, x, x> +        if (AllSame) +          return N0; +      } +    } +  } +  return SDValue(); +} + +SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) { +  if (!TLI.getShouldFoldAtomicFences()) +    return SDValue(); + +  SDValue atomic = N->getOperand(0); +  switch (atomic.getOpcode()) { +    case ISD::ATOMIC_CMP_SWAP: +    case ISD::ATOMIC_SWAP: +    case ISD::ATOMIC_LOAD_ADD: +    case ISD::ATOMIC_LOAD_SUB: +    case ISD::ATOMIC_LOAD_AND: +    case ISD::ATOMIC_LOAD_OR: +    case ISD::ATOMIC_LOAD_XOR: +    case ISD::ATOMIC_LOAD_NAND: +    case ISD::ATOMIC_LOAD_MIN: +    case ISD::ATOMIC_LOAD_MAX: +    case ISD::ATOMIC_LOAD_UMIN: +    case ISD::ATOMIC_LOAD_UMAX: +      break; +    default: +      return SDValue(); +  } + +  SDValue fence = atomic.getOperand(0); +  if (fence.getOpcode() != ISD::MEMBARRIER) +    return SDValue(); + +  switch (atomic.getOpcode()) { +    case ISD::ATOMIC_CMP_SWAP: +      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(), +                                    fence.getOperand(0), +                                    atomic.getOperand(1), atomic.getOperand(2), +                                    atomic.getOperand(3)), atomic.getResNo()); +    case ISD::ATOMIC_SWAP: +    case ISD::ATOMIC_LOAD_ADD: +    case ISD::ATOMIC_LOAD_SUB: +    case ISD::ATOMIC_LOAD_AND: +    case ISD::ATOMIC_LOAD_OR: +    case ISD::ATOMIC_LOAD_XOR: +    case ISD::ATOMIC_LOAD_NAND: +    case ISD::ATOMIC_LOAD_MIN: +    case ISD::ATOMIC_LOAD_MAX: +    case ISD::ATOMIC_LOAD_UMIN: +    case ISD::ATOMIC_LOAD_UMAX: +      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(), +                                    fence.getOperand(0), +                                    atomic.getOperand(1), atomic.getOperand(2)), +                     atomic.getResNo()); +    default: +      return SDValue(); +  } +} + +/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform +/// an AND to a vector_shuffle with the destination vector and a zero vector. +/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> +///      vector_shuffle V, Zero, <0, 4, 2, 4> +SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { +  EVT VT = N->getValueType(0); +  DebugLoc dl = N->getDebugLoc(); +  SDValue LHS = N->getOperand(0); +  SDValue RHS = N->getOperand(1); +  if (N->getOpcode() == ISD::AND) { +    if (RHS.getOpcode() == ISD::BIT_CONVERT) +      RHS = RHS.getOperand(0); +    if (RHS.getOpcode() == ISD::BUILD_VECTOR) { +      SmallVector<int, 8> Indices; +      unsigned NumElts = RHS.getNumOperands(); +      for (unsigned i = 0; i != NumElts; ++i) { +        SDValue Elt = RHS.getOperand(i); +        if (!isa<ConstantSDNode>(Elt)) +          return SDValue(); +        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue()) +          Indices.push_back(i); +        else if (cast<ConstantSDNode>(Elt)->isNullValue()) +          Indices.push_back(NumElts); +        else +          return SDValue(); +      } + +      // Let's see if the target supports this vector_shuffle. +      EVT RVT = RHS.getValueType(); +      if (!TLI.isVectorClearMaskLegal(Indices, RVT)) +        return SDValue(); + +      // Return the new VECTOR_SHUFFLE node. +      EVT EltVT = RVT.getVectorElementType(); +      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(), +                                     DAG.getConstant(0, EltVT)); +      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), +                                 RVT, &ZeroOps[0], ZeroOps.size()); +      LHS = DAG.getNode(ISD::BIT_CONVERT, dl, RVT, LHS); +      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]); +      return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuf); +    } +  } + +  return SDValue(); +} + +/// SimplifyVBinOp - Visit a binary vector operation, like ADD. +SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { +  // After legalize, the target may be depending on adds and other +  // binary ops to provide legal ways to construct constants or other +  // things. Simplifying them may result in a loss of legality. +  if (LegalOperations) return SDValue(); + +  EVT VT = N->getValueType(0); +  assert(VT.isVector() && "SimplifyVBinOp only works on vectors!"); + +  EVT EltType = VT.getVectorElementType(); +  SDValue LHS = N->getOperand(0); +  SDValue RHS = N->getOperand(1); +  SDValue Shuffle = XformToShuffleWithZero(N); +  if (Shuffle.getNode()) return Shuffle; + +  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold +  // this operation. +  if (LHS.getOpcode() == ISD::BUILD_VECTOR && +      RHS.getOpcode() == ISD::BUILD_VECTOR) { +    SmallVector<SDValue, 8> Ops; +    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { +      SDValue LHSOp = LHS.getOperand(i); +      SDValue RHSOp = RHS.getOperand(i); +      // If these two elements can't be folded, bail out. +      if ((LHSOp.getOpcode() != ISD::UNDEF && +           LHSOp.getOpcode() != ISD::Constant && +           LHSOp.getOpcode() != ISD::ConstantFP) || +          (RHSOp.getOpcode() != ISD::UNDEF && +           RHSOp.getOpcode() != ISD::Constant && +           RHSOp.getOpcode() != ISD::ConstantFP)) +        break; + +      // Can't fold divide by zero. +      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV || +          N->getOpcode() == ISD::FDIV) { +        if ((RHSOp.getOpcode() == ISD::Constant && +             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) || +            (RHSOp.getOpcode() == ISD::ConstantFP && +             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero())) +          break; +      } + +      // If the vector element type is not legal, the BUILD_VECTOR operands +      // are promoted and implicitly truncated.  Make that explicit here. +      if (LHSOp.getValueType() != EltType) +        LHSOp = DAG.getNode(ISD::TRUNCATE, LHS.getDebugLoc(), EltType, LHSOp); +      if (RHSOp.getValueType() != EltType) +        RHSOp = DAG.getNode(ISD::TRUNCATE, RHS.getDebugLoc(), EltType, RHSOp); + +      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), EltType, +                                   LHSOp, RHSOp); +      if (FoldOp.getOpcode() != ISD::UNDEF && +          FoldOp.getOpcode() != ISD::Constant && +          FoldOp.getOpcode() != ISD::ConstantFP) +        break; +      Ops.push_back(FoldOp); +      AddToWorkList(FoldOp.getNode()); +    } + +    if (Ops.size() == LHS.getNumOperands()) { +      EVT VT = LHS.getValueType(); +      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, +                         &Ops[0], Ops.size()); +    } +  } + +  return SDValue(); +} + +SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0, +                                    SDValue N1, SDValue N2){ +  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); + +  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, +                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()); + +  // If we got a simplified select_cc node back from SimplifySelectCC, then +  // break it down into a new SETCC node, and a new SELECT node, and then return +  // the SELECT node, since we were called with a SELECT node. +  if (SCC.getNode()) { +    // Check to see if we got a select_cc back (to turn into setcc/select). +    // Otherwise, just return whatever node we got back, like fabs. +    if (SCC.getOpcode() == ISD::SELECT_CC) { +      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(), +                                  N0.getValueType(), +                                  SCC.getOperand(0), SCC.getOperand(1), +                                  SCC.getOperand(4)); +      AddToWorkList(SETCC.getNode()); +      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(), +                         SCC.getOperand(2), SCC.getOperand(3), SETCC); +    } + +    return SCC; +  } +  return SDValue(); +} + +/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS +/// are the two values being selected between, see if we can simplify the +/// select.  Callers of this should assume that TheSelect is deleted if this +/// returns true.  As such, they should return the appropriate thing (e.g. the +/// node) back to the top-level of the DAG combiner loop to avoid it being +/// looked at. +bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, +                                    SDValue RHS) { + +  // If this is a select from two identical things, try to pull the operation +  // through the select. +  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){ +    // If this is a load and the token chain is identical, replace the select +    // of two loads with a load through a select of the address to load from. +    // This triggers in things like "select bool X, 10.0, 123.0" after the FP +    // constants have been dropped into the constant pool. +    if (LHS.getOpcode() == ISD::LOAD && +        // Do not let this transformation reduce the number of volatile loads. +        !cast<LoadSDNode>(LHS)->isVolatile() && +        !cast<LoadSDNode>(RHS)->isVolatile() && +        // Token chains must be identical. +        LHS.getOperand(0) == RHS.getOperand(0)) { +      LoadSDNode *LLD = cast<LoadSDNode>(LHS); +      LoadSDNode *RLD = cast<LoadSDNode>(RHS); + +      // If this is an EXTLOAD, the VT's must match. +      if (LLD->getMemoryVT() == RLD->getMemoryVT()) { +        // FIXME: this discards src value information.  This is +        // over-conservative. It would be beneficial to be able to remember +        // both potential memory locations.  Since we are discarding +        // src value info, don't do the transformation if the memory +        // locations are not in the default address space. +        unsigned LLDAddrSpace = 0, RLDAddrSpace = 0; +        if (const Value *LLDVal = LLD->getMemOperand()->getValue()) { +          if (const PointerType *PT = dyn_cast<PointerType>(LLDVal->getType())) +            LLDAddrSpace = PT->getAddressSpace(); +        } +        if (const Value *RLDVal = RLD->getMemOperand()->getValue()) { +          if (const PointerType *PT = dyn_cast<PointerType>(RLDVal->getType())) +            RLDAddrSpace = PT->getAddressSpace(); +        } +        SDValue Addr; +        if (LLDAddrSpace == 0 && RLDAddrSpace == 0) { +          if (TheSelect->getOpcode() == ISD::SELECT) { +            // Check that the condition doesn't reach either load.  If so, folding +            // this will induce a cycle into the DAG. +            if ((!LLD->hasAnyUseOfValue(1) || +                 !LLD->isPredecessorOf(TheSelect->getOperand(0).getNode())) && +                (!RLD->hasAnyUseOfValue(1) || +                 !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()))) { +              Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(), +                                 LLD->getBasePtr().getValueType(), +                                 TheSelect->getOperand(0), LLD->getBasePtr(), +                                 RLD->getBasePtr()); +            } +          } else { +            // Check that the condition doesn't reach either load.  If so, folding +            // this will induce a cycle into the DAG. +            if ((!LLD->hasAnyUseOfValue(1) || +                 (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) && +                  !LLD->isPredecessorOf(TheSelect->getOperand(1).getNode()))) && +                (!RLD->hasAnyUseOfValue(1) || +                 (!RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) && +                  !RLD->isPredecessorOf(TheSelect->getOperand(1).getNode())))) { +              Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(), +                                 LLD->getBasePtr().getValueType(), +                                 TheSelect->getOperand(0), +                                 TheSelect->getOperand(1), +                                 LLD->getBasePtr(), RLD->getBasePtr(), +                                 TheSelect->getOperand(4)); +            } +          } +        } + +        if (Addr.getNode()) { +          SDValue Load; +          if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { +            Load = DAG.getLoad(TheSelect->getValueType(0), +                               TheSelect->getDebugLoc(), +                               LLD->getChain(), +                               Addr, 0, 0, +                               LLD->isVolatile(), +                               LLD->isNonTemporal(), +                               LLD->getAlignment()); +          } else { +            Load = DAG.getExtLoad(LLD->getExtensionType(), +                                  TheSelect->getValueType(0), +                                  TheSelect->getDebugLoc(), +                                  LLD->getChain(), Addr, 0, 0, +                                  LLD->getMemoryVT(), +                                  LLD->isVolatile(), +                                  LLD->isNonTemporal(), +                                  LLD->getAlignment()); +          } + +          // Users of the select now use the result of the load. +          CombineTo(TheSelect, Load); + +          // Users of the old loads now use the new load's chain.  We know the +          // old-load value is dead now. +          CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); +          CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); +          return true; +        } +      } +    } +  } + +  return false; +} + +/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3 +/// where 'cond' is the comparison specified by CC. +SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, +                                      SDValue N2, SDValue N3, +                                      ISD::CondCode CC, bool NotExtCompare) { +  // (x ? y : y) -> y. +  if (N2 == N3) return N2; +   +  EVT VT = N2.getValueType(); +  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); +  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); +  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); + +  // Determine if the condition we're dealing with is constant +  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()), +                              N0, N1, CC, DL, false); +  if (SCC.getNode()) AddToWorkList(SCC.getNode()); +  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode()); + +  // fold select_cc true, x, y -> x +  if (SCCC && !SCCC->isNullValue()) +    return N2; +  // fold select_cc false, x, y -> y +  if (SCCC && SCCC->isNullValue()) +    return N3; + +  // Check to see if we can simplify the select into an fabs node +  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { +    // Allow either -0.0 or 0.0 +    if (CFP->getValueAPF().isZero()) { +      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs +      if ((CC == ISD::SETGE || CC == ISD::SETGT) && +          N0 == N2 && N3.getOpcode() == ISD::FNEG && +          N2 == N3.getOperand(0)) +        return DAG.getNode(ISD::FABS, DL, VT, N0); + +      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs +      if ((CC == ISD::SETLT || CC == ISD::SETLE) && +          N0 == N3 && N2.getOpcode() == ISD::FNEG && +          N2.getOperand(0) == N3) +        return DAG.getNode(ISD::FABS, DL, VT, N3); +    } +  } +   +  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" +  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 +  // in it.  This is a win when the constant is not otherwise available because +  // it replaces two constant pool loads with one.  We only do this if the FP +  // type is known to be legal, because if it isn't, then we are before legalize +  // types an we want the other legalization to happen first (e.g. to avoid +  // messing with soft float) and if the ConstantFP is not legal, because if +  // it is legal, we may not need to store the FP constant in a constant pool. +  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2)) +    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) { +      if (TLI.isTypeLegal(N2.getValueType()) && +          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) != +           TargetLowering::Legal) && +          // If both constants have multiple uses, then we won't need to do an +          // extra load, they are likely around in registers for other users. +          (TV->hasOneUse() || FV->hasOneUse())) { +        Constant *Elts[] = { +          const_cast<ConstantFP*>(FV->getConstantFPValue()), +          const_cast<ConstantFP*>(TV->getConstantFPValue()) +        }; +        const Type *FPTy = Elts[0]->getType(); +        const TargetData &TD = *TLI.getTargetData(); +         +        // Create a ConstantArray of the two constants. +        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts, 2); +        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(), +                                            TD.getPrefTypeAlignment(FPTy)); +        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + +        // Get the offsets to the 0 and 1 element of the array so that we can +        // select between them. +        SDValue Zero = DAG.getIntPtrConstant(0); +        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); +        SDValue One = DAG.getIntPtrConstant(EltSize); +         +        SDValue Cond = DAG.getSetCC(DL, +                                    TLI.getSetCCResultType(N0.getValueType()), +                                    N0, N1, CC); +        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(), +                                        Cond, One, Zero); +        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx, +                            CstOffset); +        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, +                           PseudoSourceValue::getConstantPool(), 0, false, +                           false, Alignment); + +      } +    }   + +  // Check to see if we can perform the "gzip trick", transforming +  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A) +  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT && +      N0.getValueType().isInteger() && +      N2.getValueType().isInteger() && +      (N1C->isNullValue() ||                         // (a < 0) ? b : 0 +       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0 +    EVT XType = N0.getValueType(); +    EVT AType = N2.getValueType(); +    if (XType.bitsGE(AType)) { +      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a +      // single-bit constant. +      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) { +        unsigned ShCtV = N2C->getAPIntValue().logBase2(); +        ShCtV = XType.getSizeInBits()-ShCtV-1; +        SDValue ShCt = DAG.getConstant(ShCtV, getShiftAmountTy()); +        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), +                                    XType, N0, ShCt); +        AddToWorkList(Shift.getNode()); + +        if (XType.bitsGT(AType)) { +          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); +          AddToWorkList(Shift.getNode()); +        } + +        return DAG.getNode(ISD::AND, DL, AType, Shift, N2); +      } + +      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), +                                  XType, N0, +                                  DAG.getConstant(XType.getSizeInBits()-1, +                                                  getShiftAmountTy())); +      AddToWorkList(Shift.getNode()); + +      if (XType.bitsGT(AType)) { +        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); +        AddToWorkList(Shift.getNode()); +      } + +      return DAG.getNode(ISD::AND, DL, AType, Shift, N2); +    } +  } + +  // fold select C, 16, 0 -> shl C, 4 +  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() && +      TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent) { + +    // If the caller doesn't want us to simplify this into a zext of a compare, +    // don't do it. +    if (NotExtCompare && N2C->getAPIntValue() == 1) +      return SDValue(); + +    // Get a SetCC of the condition +    // FIXME: Should probably make sure that setcc is legal if we ever have a +    // target where it isn't. +    SDValue Temp, SCC; +    // cast from setcc result type to select result type +    if (LegalTypes) { +      SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()), +                          N0, N1, CC); +      if (N2.getValueType().bitsLT(SCC.getValueType())) +        Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType()); +      else +        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(), +                           N2.getValueType(), SCC); +    } else { +      SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC); +      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(), +                         N2.getValueType(), SCC); +    } + +    AddToWorkList(SCC.getNode()); +    AddToWorkList(Temp.getNode()); + +    if (N2C->getAPIntValue() == 1) +      return Temp; + +    // shl setcc result by log2 n2c +    return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, +                       DAG.getConstant(N2C->getAPIntValue().logBase2(), +                                       getShiftAmountTy())); +  } + +  // Check to see if this is the equivalent of setcc +  // FIXME: Turn all of these into setcc if setcc if setcc is legal +  // otherwise, go ahead with the folds. +  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) { +    EVT XType = N0.getValueType(); +    if (!LegalOperations || +        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) { +      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC); +      if (Res.getValueType() != VT) +        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res); +      return Res; +    } + +    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X)))) +    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && +        (!LegalOperations || +         TLI.isOperationLegal(ISD::CTLZ, XType))) { +      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0); +      return DAG.getNode(ISD::SRL, DL, XType, Ctlz, +                         DAG.getConstant(Log2_32(XType.getSizeInBits()), +                                         getShiftAmountTy())); +    } +    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1)) +    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { +      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(), +                                  XType, DAG.getConstant(0, XType), N0); +      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType); +      return DAG.getNode(ISD::SRL, DL, XType, +                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0), +                         DAG.getConstant(XType.getSizeInBits()-1, +                                         getShiftAmountTy())); +    } +    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1)) +    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) { +      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0, +                                 DAG.getConstant(XType.getSizeInBits()-1, +                                                 getShiftAmountTy())); +      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType)); +    } +  } + +  // Check to see if this is an integer abs. +  // select_cc setg[te] X,  0,  X, -X -> +  // select_cc setgt    X, -1,  X, -X -> +  // select_cc setl[te] X,  0, -X,  X -> +  // select_cc setlt    X,  1, -X,  X -> +  // Y = sra (X, size(X)-1); xor (add (X, Y), Y) +  if (N1C) { +    ConstantSDNode *SubC = NULL; +    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) || +         (N1C->isAllOnesValue() && CC == ISD::SETGT)) && +        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) +      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0)); +    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) || +              (N1C->isOne() && CC == ISD::SETLT)) && +             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) +      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0)); + +    EVT XType = N0.getValueType(); +    if (SubC && SubC->isNullValue() && XType.isInteger()) { +      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType, +                                  N0, +                                  DAG.getConstant(XType.getSizeInBits()-1, +                                                  getShiftAmountTy())); +      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(), +                                XType, N0, Shift); +      AddToWorkList(Shift.getNode()); +      AddToWorkList(Add.getNode()); +      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift); +    } +  } + +  return SDValue(); +} + +/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC. +SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, +                                   SDValue N1, ISD::CondCode Cond, +                                   DebugLoc DL, bool foldBooleans) { +  TargetLowering::DAGCombinerInfo +    DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this); +  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); +} + +/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number.  See: +/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> +SDValue DAGCombiner::BuildSDIV(SDNode *N) { +  std::vector<SDNode*> Built; +  SDValue S = TLI.BuildSDIV(N, DAG, &Built); + +  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end(); +       ii != ee; ++ii) +    AddToWorkList(*ii); +  return S; +} + +/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, +/// return a DAG expression to select that will generate the same value by +/// multiplying by a magic number.  See: +/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> +SDValue DAGCombiner::BuildUDIV(SDNode *N) { +  std::vector<SDNode*> Built; +  SDValue S = TLI.BuildUDIV(N, DAG, &Built); + +  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end(); +       ii != ee; ++ii) +    AddToWorkList(*ii); +  return S; +} + +/// FindBaseOffset - Return true if base is a frame index, which is known not +// to alias with anything but itself.  Provides base object and offset as results. +static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset, +                           const GlobalValue *&GV, void *&CV) { +  // Assume it is a primitive operation. +  Base = Ptr; Offset = 0; GV = 0; CV = 0; + +  // If it's an adding a simple constant then integrate the offset. +  if (Base.getOpcode() == ISD::ADD) { +    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) { +      Base = Base.getOperand(0); +      Offset += C->getZExtValue(); +    } +  } +   +  // Return the underlying GlobalValue, and update the Offset.  Return false +  // for GlobalAddressSDNode since the same GlobalAddress may be represented +  // by multiple nodes with different offsets. +  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) { +    GV = G->getGlobal(); +    Offset += G->getOffset(); +    return false; +  } + +  // Return the underlying Constant value, and update the Offset.  Return false +  // for ConstantSDNodes since the same constant pool entry may be represented +  // by multiple nodes with different offsets. +  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) { +    CV = C->isMachineConstantPoolEntry() ? (void *)C->getMachineCPVal() +                                         : (void *)C->getConstVal(); +    Offset += C->getOffset(); +    return false; +  } +  // If it's any of the following then it can't alias with anything but itself. +  return isa<FrameIndexSDNode>(Base); +} + +/// isAlias - Return true if there is any possibility that the two addresses +/// overlap. +bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1, +                          const Value *SrcValue1, int SrcValueOffset1, +                          unsigned SrcValueAlign1, +                          SDValue Ptr2, int64_t Size2, +                          const Value *SrcValue2, int SrcValueOffset2, +                          unsigned SrcValueAlign2) const { +  // If they are the same then they must be aliases. +  if (Ptr1 == Ptr2) return true; + +  // Gather base node and offset information. +  SDValue Base1, Base2; +  int64_t Offset1, Offset2; +  const GlobalValue *GV1, *GV2; +  void *CV1, *CV2; +  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1); +  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2); + +  // If they have a same base address then check to see if they overlap. +  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2))) +    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1); + +  // If we know what the bases are, and they aren't identical, then we know they +  // cannot alias. +  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2)) +    return false; + +  // If we know required SrcValue1 and SrcValue2 have relatively large alignment +  // compared to the size and offset of the access, we may be able to prove they +  // do not alias.  This check is conservative for now to catch cases created by +  // splitting vector types. +  if ((SrcValueAlign1 == SrcValueAlign2) && +      (SrcValueOffset1 != SrcValueOffset2) && +      (Size1 == Size2) && (SrcValueAlign1 > Size1)) { +    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1; +    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1; +     +    // There is no overlap between these relatively aligned accesses of similar +    // size, return no alias. +    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1) +      return false; +  } +   +  if (CombinerGlobalAA) { +    // Use alias analysis information. +    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2); +    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset; +    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset; +    AliasAnalysis::AliasResult AAResult = +                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2); +    if (AAResult == AliasAnalysis::NoAlias) +      return false; +  } + +  // Otherwise we have to assume they alias. +  return true; +} + +/// FindAliasInfo - Extracts the relevant alias information from the memory +/// node.  Returns true if the operand was a load. +bool DAGCombiner::FindAliasInfo(SDNode *N, +                        SDValue &Ptr, int64_t &Size, +                        const Value *&SrcValue,  +                        int &SrcValueOffset, +                        unsigned &SrcValueAlign) const { +  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { +    Ptr = LD->getBasePtr(); +    Size = LD->getMemoryVT().getSizeInBits() >> 3; +    SrcValue = LD->getSrcValue(); +    SrcValueOffset = LD->getSrcValueOffset(); +    SrcValueAlign = LD->getOriginalAlignment(); +    return true; +  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { +    Ptr = ST->getBasePtr(); +    Size = ST->getMemoryVT().getSizeInBits() >> 3; +    SrcValue = ST->getSrcValue(); +    SrcValueOffset = ST->getSrcValueOffset(); +    SrcValueAlign = ST->getOriginalAlignment(); +  } else { +    llvm_unreachable("FindAliasInfo expected a memory operand"); +  } + +  return false; +} + +/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes, +/// looking for aliasing nodes and adding them to the Aliases vector. +void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, +                                   SmallVector<SDValue, 8> &Aliases) { +  SmallVector<SDValue, 8> Chains;     // List of chains to visit. +  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set. + +  // Get alias information for node. +  SDValue Ptr; +  int64_t Size; +  const Value *SrcValue; +  int SrcValueOffset; +  unsigned SrcValueAlign; +  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,  +                              SrcValueAlign); + +  // Starting off. +  Chains.push_back(OriginalChain); +  unsigned Depth = 0; +   +  // Look at each chain and determine if it is an alias.  If so, add it to the +  // aliases list.  If not, then continue up the chain looking for the next +  // candidate. +  while (!Chains.empty()) { +    SDValue Chain = Chains.back(); +    Chains.pop_back(); +     +    // For TokenFactor nodes, look at each operand and only continue up the  +    // chain until we find two aliases.  If we've seen two aliases, assume we'll  +    // find more and revert to original chain since the xform is unlikely to be +    // profitable. +    //  +    // FIXME: The depth check could be made to return the last non-aliasing  +    // chain we found before we hit a tokenfactor rather than the original +    // chain. +    if (Depth > 6 || Aliases.size() == 2) { +      Aliases.clear(); +      Aliases.push_back(OriginalChain); +      break; +    } + +    // Don't bother if we've been before. +    if (!Visited.insert(Chain.getNode())) +      continue; + +    switch (Chain.getOpcode()) { +    case ISD::EntryToken: +      // Entry token is ideal chain operand, but handled in FindBetterChain. +      break; + +    case ISD::LOAD: +    case ISD::STORE: { +      // Get alias information for Chain. +      SDValue OpPtr; +      int64_t OpSize; +      const Value *OpSrcValue; +      int OpSrcValueOffset; +      unsigned OpSrcValueAlign; +      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize, +                                    OpSrcValue, OpSrcValueOffset, +                                    OpSrcValueAlign); + +      // If chain is alias then stop here. +      if (!(IsLoad && IsOpLoad) && +          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign, +                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset, +                  OpSrcValueAlign)) { +        Aliases.push_back(Chain); +      } else { +        // Look further up the chain. +        Chains.push_back(Chain.getOperand(0)); +        ++Depth; +      } +      break; +    } + +    case ISD::TokenFactor: +      // We have to check each of the operands of the token factor for "small" +      // token factors, so we queue them up.  Adding the operands to the queue +      // (stack) in reverse order maintains the original order and increases the +      // likelihood that getNode will find a matching token factor (CSE.) +      if (Chain.getNumOperands() > 16) { +        Aliases.push_back(Chain); +        break; +      } +      for (unsigned n = Chain.getNumOperands(); n;) +        Chains.push_back(Chain.getOperand(--n)); +      ++Depth; +      break; + +    default: +      // For all other instructions we will just have to take what we can get. +      Aliases.push_back(Chain); +      break; +    } +  } +} + +/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking +/// for a better chain (aliasing node.) +SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { +  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor. + +  // Accumulate all the aliases to this node. +  GatherAllAliases(N, OldChain, Aliases); + +  if (Aliases.size() == 0) { +    // If no operands then chain to entry token. +    return DAG.getEntryNode(); +  } else if (Aliases.size() == 1) { +    // If a single operand then chain to it.  We don't need to revisit it. +    return Aliases[0]; +  } +   +  // Construct a custom tailored token factor. +  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,  +                     &Aliases[0], Aliases.size()); +} + +// SelectionDAG::Combine - This is the entry point for the file. +// +void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA, +                           CodeGenOpt::Level OptLevel) { +  /// run - This is the main entry point to this class. +  /// +  DAGCombiner(*this, AA, OptLevel).Run(Level); +}  | 
