diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp | 10479 |
1 files changed, 0 insertions, 10479 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp deleted file mode 100644 index 4120a401b696..000000000000 --- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp +++ /dev/null @@ -1,10479 +0,0 @@ -//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This implements routines for translating from LLVM IR into SelectionDAG IR. -// -//===----------------------------------------------------------------------===// - -#include "SelectionDAGBuilder.h" -#include "SDNodeDbgValue.h" -#include "llvm/ADT/APFloat.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/EHPersonalities.h" -#include "llvm/Analysis/Loads.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/CodeGen/Analysis.h" -#include "llvm/CodeGen/FunctionLoweringInfo.h" -#include "llvm/CodeGen/GCMetadata.h" -#include "llvm/CodeGen/ISDOpcodes.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineJumpTableInfo.h" -#include "llvm/CodeGen/MachineMemOperand.h" -#include "llvm/CodeGen/MachineModuleInfo.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/RuntimeLibcalls.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/SelectionDAGNodes.h" -#include "llvm/CodeGen/SelectionDAGTargetInfo.h" -#include "llvm/CodeGen/StackMaps.h" -#include "llvm/CodeGen/SwiftErrorValueTracking.h" -#include "llvm/CodeGen/TargetFrameLowering.h" -#include "llvm/CodeGen/TargetInstrInfo.h" -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/CodeGen/TargetOpcodes.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/CodeGen/ValueTypes.h" -#include "llvm/CodeGen/WinEHFuncInfo.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/ConstantRange.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Statepoint.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/MC/MCContext.h" -#include "llvm/MC/MCSymbol.h" -#include "llvm/Support/AtomicOrdering.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CodeGen.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MachineValueType.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetIntrinsicInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetOptions.h" -#include "llvm/Transforms/Utils/Local.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <cstring> -#include <iterator> -#include <limits> -#include <numeric> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace PatternMatch; -using namespace SwitchCG; - -#define DEBUG_TYPE "isel" - -/// LimitFloatPrecision - Generate low-precision inline sequences for -/// some float libcalls (6, 8 or 12 bits). -static unsigned LimitFloatPrecision; - -static cl::opt<unsigned, true> - LimitFPPrecision("limit-float-precision", - cl::desc("Generate low-precision inline sequences " - "for some float libcalls"), - cl::location(LimitFloatPrecision), cl::Hidden, - cl::init(0)); - -static cl::opt<unsigned> SwitchPeelThreshold( - "switch-peel-threshold", cl::Hidden, cl::init(66), - cl::desc("Set the case probability threshold for peeling the case from a " - "switch statement. A value greater than 100 will void this " - "optimization")); - -// Limit the width of DAG chains. This is important in general to prevent -// DAG-based analysis from blowing up. For example, alias analysis and -// load clustering may not complete in reasonable time. It is difficult to -// recognize and avoid this situation within each individual analysis, and -// future analyses are likely to have the same behavior. Limiting DAG width is -// the safe approach and will be especially important with global DAGs. -// -// MaxParallelChains default is arbitrarily high to avoid affecting -// optimization, but could be lowered to improve compile time. Any ld-ld-st-st -// sequence over this should have been converted to llvm.memcpy by the -// frontend. It is easy to induce this behavior with .ll code such as: -// %buffer = alloca [4096 x i8] -// %data = load [4096 x i8]* %argPtr -// store [4096 x i8] %data, [4096 x i8]* %buffer -static const unsigned MaxParallelChains = 64; - -// Return the calling convention if the Value passed requires ABI mangling as it -// is a parameter to a function or a return value from a function which is not -// an intrinsic. -static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { - if (auto *R = dyn_cast<ReturnInst>(V)) - return R->getParent()->getParent()->getCallingConv(); - - if (auto *CI = dyn_cast<CallInst>(V)) { - const bool IsInlineAsm = CI->isInlineAsm(); - const bool IsIndirectFunctionCall = - !IsInlineAsm && !CI->getCalledFunction(); - - // It is possible that the call instruction is an inline asm statement or an - // indirect function call in which case the return value of - // getCalledFunction() would be nullptr. - const bool IsInstrinsicCall = - !IsInlineAsm && !IsIndirectFunctionCall && - CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; - - if (!IsInlineAsm && !IsInstrinsicCall) - return CI->getCallingConv(); - } - - return None; -} - -static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, - const SDValue *Parts, unsigned NumParts, - MVT PartVT, EVT ValueVT, const Value *V, - Optional<CallingConv::ID> CC); - -/// getCopyFromParts - Create a value that contains the specified legal parts -/// combined into the value they represent. If the parts combine to a type -/// larger than ValueVT then AssertOp can be used to specify whether the extra -/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT -/// (ISD::AssertSext). -static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, - const SDValue *Parts, unsigned NumParts, - MVT PartVT, EVT ValueVT, const Value *V, - Optional<CallingConv::ID> CC = None, - Optional<ISD::NodeType> AssertOp = None) { - if (ValueVT.isVector()) - return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, - CC); - - assert(NumParts > 0 && "No parts to assemble!"); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue Val = Parts[0]; - - if (NumParts > 1) { - // Assemble the value from multiple parts. - if (ValueVT.isInteger()) { - unsigned PartBits = PartVT.getSizeInBits(); - unsigned ValueBits = ValueVT.getSizeInBits(); - - // Assemble the power of 2 part. - unsigned RoundParts = - (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; - unsigned RoundBits = PartBits * RoundParts; - EVT RoundVT = RoundBits == ValueBits ? - ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); - SDValue Lo, Hi; - - EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); - - if (RoundParts > 2) { - Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, - PartVT, HalfVT, V); - Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, - RoundParts / 2, PartVT, HalfVT, V); - } else { - Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); - Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); - } - - if (DAG.getDataLayout().isBigEndian()) - std::swap(Lo, Hi); - - Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); - - if (RoundParts < NumParts) { - // Assemble the trailing non-power-of-2 part. - unsigned OddParts = NumParts - RoundParts; - EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); - Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, - OddVT, V, CC); - - // Combine the round and odd parts. - Lo = Val; - if (DAG.getDataLayout().isBigEndian()) - std::swap(Lo, Hi); - EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); - Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); - Hi = - DAG.getNode(ISD::SHL, DL, TotalVT, Hi, - DAG.getConstant(Lo.getValueSizeInBits(), DL, - TLI.getPointerTy(DAG.getDataLayout()))); - Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); - Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); - } - } else if (PartVT.isFloatingPoint()) { - // FP split into multiple FP parts (for ppcf128) - assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && - "Unexpected split"); - SDValue Lo, Hi; - Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); - Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); - if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) - std::swap(Lo, Hi); - Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); - } else { - // FP split into integer parts (soft fp) - assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && - !PartVT.isVector() && "Unexpected split"); - EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); - Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); - } - } - - // There is now one part, held in Val. Correct it to match ValueVT. - // PartEVT is the type of the register class that holds the value. - // ValueVT is the type of the inline asm operation. - EVT PartEVT = Val.getValueType(); - - if (PartEVT == ValueVT) - return Val; - - if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && - ValueVT.bitsLT(PartEVT)) { - // For an FP value in an integer part, we need to truncate to the right - // width first. - PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); - Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); - } - - // Handle types that have the same size. - if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) - return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); - - // Handle types with different sizes. - if (PartEVT.isInteger() && ValueVT.isInteger()) { - if (ValueVT.bitsLT(PartEVT)) { - // For a truncate, see if we have any information to - // indicate whether the truncated bits will always be - // zero or sign-extension. - if (AssertOp.hasValue()) - Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, - DAG.getValueType(ValueVT)); - return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); - } - return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); - } - - if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { - // FP_ROUND's are always exact here. - if (ValueVT.bitsLT(Val.getValueType())) - return DAG.getNode( - ISD::FP_ROUND, DL, ValueVT, Val, - DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); - - return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); - } - - // Handle MMX to a narrower integer type by bitcasting MMX to integer and - // then truncating. - if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && - ValueVT.bitsLT(PartEVT)) { - Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); - return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); - } - - report_fatal_error("Unknown mismatch in getCopyFromParts!"); -} - -static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, - const Twine &ErrMsg) { - const Instruction *I = dyn_cast_or_null<Instruction>(V); - if (!V) - return Ctx.emitError(ErrMsg); - - const char *AsmError = ", possible invalid constraint for vector type"; - if (const CallInst *CI = dyn_cast<CallInst>(I)) - if (isa<InlineAsm>(CI->getCalledValue())) - return Ctx.emitError(I, ErrMsg + AsmError); - - return Ctx.emitError(I, ErrMsg); -} - -/// getCopyFromPartsVector - Create a value that contains the specified legal -/// parts combined into the value they represent. If the parts combine to a -/// type larger than ValueVT then AssertOp can be used to specify whether the -/// extra bits are known to be zero (ISD::AssertZext) or sign extended from -/// ValueVT (ISD::AssertSext). -static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, - const SDValue *Parts, unsigned NumParts, - MVT PartVT, EVT ValueVT, const Value *V, - Optional<CallingConv::ID> CallConv) { - assert(ValueVT.isVector() && "Not a vector value"); - assert(NumParts > 0 && "No parts to assemble!"); - const bool IsABIRegCopy = CallConv.hasValue(); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue Val = Parts[0]; - - // Handle a multi-element vector. - if (NumParts > 1) { - EVT IntermediateVT; - MVT RegisterVT; - unsigned NumIntermediates; - unsigned NumRegs; - - if (IsABIRegCopy) { - NumRegs = TLI.getVectorTypeBreakdownForCallingConv( - *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, - NumIntermediates, RegisterVT); - } else { - NumRegs = - TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, - NumIntermediates, RegisterVT); - } - - assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); - NumParts = NumRegs; // Silence a compiler warning. - assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); - assert(RegisterVT.getSizeInBits() == - Parts[0].getSimpleValueType().getSizeInBits() && - "Part type sizes don't match!"); - - // Assemble the parts into intermediate operands. - SmallVector<SDValue, 8> Ops(NumIntermediates); - if (NumIntermediates == NumParts) { - // If the register was not expanded, truncate or copy the value, - // as appropriate. - for (unsigned i = 0; i != NumParts; ++i) - Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, - PartVT, IntermediateVT, V); - } else if (NumParts > 0) { - // If the intermediate type was expanded, build the intermediate - // operands from the parts. - assert(NumParts % NumIntermediates == 0 && - "Must expand into a divisible number of parts!"); - unsigned Factor = NumParts / NumIntermediates; - for (unsigned i = 0; i != NumIntermediates; ++i) - Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, - PartVT, IntermediateVT, V); - } - - // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the - // intermediate operands. - EVT BuiltVectorTy = - EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), - (IntermediateVT.isVector() - ? IntermediateVT.getVectorNumElements() * NumParts - : NumIntermediates)); - Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS - : ISD::BUILD_VECTOR, - DL, BuiltVectorTy, Ops); - } - - // There is now one part, held in Val. Correct it to match ValueVT. - EVT PartEVT = Val.getValueType(); - - if (PartEVT == ValueVT) - return Val; - - if (PartEVT.isVector()) { - // If the element type of the source/dest vectors are the same, but the - // parts vector has more elements than the value vector, then we have a - // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the - // elements we want. - if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { - assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && - "Cannot narrow, it would be a lossy transformation"); - return DAG.getNode( - ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, - DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); - } - - // Vector/Vector bitcast. - if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) - return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); - - assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && - "Cannot handle this kind of promotion"); - // Promoted vector extract - return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); - - } - - // Trivial bitcast if the types are the same size and the destination - // vector type is legal. - if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && - TLI.isTypeLegal(ValueVT)) - return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); - - if (ValueVT.getVectorNumElements() != 1) { - // Certain ABIs require that vectors are passed as integers. For vectors - // are the same size, this is an obvious bitcast. - if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { - return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); - } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { - // Bitcast Val back the original type and extract the corresponding - // vector we want. - unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); - EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), - ValueVT.getVectorElementType(), Elts); - Val = DAG.getBitcast(WiderVecType, Val); - return DAG.getNode( - ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, - DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); - } - - diagnosePossiblyInvalidConstraint( - *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); - return DAG.getUNDEF(ValueVT); - } - - // Handle cases such as i8 -> <1 x i1> - EVT ValueSVT = ValueVT.getVectorElementType(); - if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) - Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) - : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); - - return DAG.getBuildVector(ValueVT, DL, Val); -} - -static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, - SDValue Val, SDValue *Parts, unsigned NumParts, - MVT PartVT, const Value *V, - Optional<CallingConv::ID> CallConv); - -/// getCopyToParts - Create a series of nodes that contain the specified value -/// split into legal parts. If the parts contain more bits than Val, then, for -/// integers, ExtendKind can be used to specify how to generate the extra bits. -static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, - SDValue *Parts, unsigned NumParts, MVT PartVT, - const Value *V, - Optional<CallingConv::ID> CallConv = None, - ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { - EVT ValueVT = Val.getValueType(); - - // Handle the vector case separately. - if (ValueVT.isVector()) - return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, - CallConv); - - unsigned PartBits = PartVT.getSizeInBits(); - unsigned OrigNumParts = NumParts; - assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && - "Copying to an illegal type!"); - - if (NumParts == 0) - return; - - assert(!ValueVT.isVector() && "Vector case handled elsewhere"); - EVT PartEVT = PartVT; - if (PartEVT == ValueVT) { - assert(NumParts == 1 && "No-op copy with multiple parts!"); - Parts[0] = Val; - return; - } - - if (NumParts * PartBits > ValueVT.getSizeInBits()) { - // If the parts cover more bits than the value has, promote the value. - if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { - assert(NumParts == 1 && "Do not know what to promote to!"); - Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); - } else { - if (ValueVT.isFloatingPoint()) { - // FP values need to be bitcast, then extended if they are being put - // into a larger container. - ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); - Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); - } - assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && - ValueVT.isInteger() && - "Unknown mismatch!"); - ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); - Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); - if (PartVT == MVT::x86mmx) - Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); - } - } else if (PartBits == ValueVT.getSizeInBits()) { - // Different types of the same size. - assert(NumParts == 1 && PartEVT != ValueVT); - Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); - } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { - // If the parts cover less bits than value has, truncate the value. - assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && - ValueVT.isInteger() && - "Unknown mismatch!"); - ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); - Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); - if (PartVT == MVT::x86mmx) - Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); - } - - // The value may have changed - recompute ValueVT. - ValueVT = Val.getValueType(); - assert(NumParts * PartBits == ValueVT.getSizeInBits() && - "Failed to tile the value with PartVT!"); - - if (NumParts == 1) { - if (PartEVT != ValueVT) { - diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, - "scalar-to-vector conversion failed"); - Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); - } - - Parts[0] = Val; - return; - } - - // Expand the value into multiple parts. - if (NumParts & (NumParts - 1)) { - // The number of parts is not a power of 2. Split off and copy the tail. - assert(PartVT.isInteger() && ValueVT.isInteger() && - "Do not know what to expand to!"); - unsigned RoundParts = 1 << Log2_32(NumParts); - unsigned RoundBits = RoundParts * PartBits; - unsigned OddParts = NumParts - RoundParts; - SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, - DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); - - getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, - CallConv); - - if (DAG.getDataLayout().isBigEndian()) - // The odd parts were reversed by getCopyToParts - unreverse them. - std::reverse(Parts + RoundParts, Parts + NumParts); - - NumParts = RoundParts; - ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); - Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); - } - - // The number of parts is a power of 2. Repeatedly bisect the value using - // EXTRACT_ELEMENT. - Parts[0] = DAG.getNode(ISD::BITCAST, DL, - EVT::getIntegerVT(*DAG.getContext(), - ValueVT.getSizeInBits()), - Val); - - for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { - for (unsigned i = 0; i < NumParts; i += StepSize) { - unsigned ThisBits = StepSize * PartBits / 2; - EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); - SDValue &Part0 = Parts[i]; - SDValue &Part1 = Parts[i+StepSize/2]; - - Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, - ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); - Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, - ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); - - if (ThisBits == PartBits && ThisVT != PartVT) { - Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); - Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); - } - } - } - - if (DAG.getDataLayout().isBigEndian()) - std::reverse(Parts, Parts + OrigNumParts); -} - -static SDValue widenVectorToPartType(SelectionDAG &DAG, - SDValue Val, const SDLoc &DL, EVT PartVT) { - if (!PartVT.isVector()) - return SDValue(); - - EVT ValueVT = Val.getValueType(); - unsigned PartNumElts = PartVT.getVectorNumElements(); - unsigned ValueNumElts = ValueVT.getVectorNumElements(); - if (PartNumElts > ValueNumElts && - PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { - EVT ElementVT = PartVT.getVectorElementType(); - // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in - // undef elements. - SmallVector<SDValue, 16> Ops; - DAG.ExtractVectorElements(Val, Ops); - SDValue EltUndef = DAG.getUNDEF(ElementVT); - for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) - Ops.push_back(EltUndef); - - // FIXME: Use CONCAT for 2x -> 4x. - return DAG.getBuildVector(PartVT, DL, Ops); - } - - return SDValue(); -} - -/// getCopyToPartsVector - Create a series of nodes that contain the specified -/// value split into legal parts. -static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, - SDValue Val, SDValue *Parts, unsigned NumParts, - MVT PartVT, const Value *V, - Optional<CallingConv::ID> CallConv) { - EVT ValueVT = Val.getValueType(); - assert(ValueVT.isVector() && "Not a vector"); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - const bool IsABIRegCopy = CallConv.hasValue(); - - if (NumParts == 1) { - EVT PartEVT = PartVT; - if (PartEVT == ValueVT) { - // Nothing to do. - } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { - // Bitconvert vector->vector case. - Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); - } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { - Val = Widened; - } else if (PartVT.isVector() && - PartEVT.getVectorElementType().bitsGE( - ValueVT.getVectorElementType()) && - PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { - - // Promoted vector extract - Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); - } else { - if (ValueVT.getVectorNumElements() == 1) { - Val = DAG.getNode( - ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, - DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); - } else { - assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && - "lossy conversion of vector to scalar type"); - EVT IntermediateType = - EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); - Val = DAG.getBitcast(IntermediateType, Val); - Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); - } - } - - assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); - Parts[0] = Val; - return; - } - - // Handle a multi-element vector. - EVT IntermediateVT; - MVT RegisterVT; - unsigned NumIntermediates; - unsigned NumRegs; - if (IsABIRegCopy) { - NumRegs = TLI.getVectorTypeBreakdownForCallingConv( - *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, - NumIntermediates, RegisterVT); - } else { - NumRegs = - TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, - NumIntermediates, RegisterVT); - } - - assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); - NumParts = NumRegs; // Silence a compiler warning. - assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); - - unsigned IntermediateNumElts = IntermediateVT.isVector() ? - IntermediateVT.getVectorNumElements() : 1; - - // Convert the vector to the appropiate type if necessary. - unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; - - EVT BuiltVectorTy = EVT::getVectorVT( - *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); - MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); - if (ValueVT != BuiltVectorTy) { - if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) - Val = Widened; - - Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); - } - - // Split the vector into intermediate operands. - SmallVector<SDValue, 8> Ops(NumIntermediates); - for (unsigned i = 0; i != NumIntermediates; ++i) { - if (IntermediateVT.isVector()) { - Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, - DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); - } else { - Ops[i] = DAG.getNode( - ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, - DAG.getConstant(i, DL, IdxVT)); - } - } - - // Split the intermediate operands into legal parts. - if (NumParts == NumIntermediates) { - // If the register was not expanded, promote or copy the value, - // as appropriate. - for (unsigned i = 0; i != NumParts; ++i) - getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); - } else if (NumParts > 0) { - // If the intermediate type was expanded, split each the value into - // legal parts. - assert(NumIntermediates != 0 && "division by zero"); - assert(NumParts % NumIntermediates == 0 && - "Must expand into a divisible number of parts!"); - unsigned Factor = NumParts / NumIntermediates; - for (unsigned i = 0; i != NumIntermediates; ++i) - getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, - CallConv); - } -} - -RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, - EVT valuevt, Optional<CallingConv::ID> CC) - : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), - RegCount(1, regs.size()), CallConv(CC) {} - -RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, - const DataLayout &DL, unsigned Reg, Type *Ty, - Optional<CallingConv::ID> CC) { - ComputeValueVTs(TLI, DL, Ty, ValueVTs); - - CallConv = CC; - - for (EVT ValueVT : ValueVTs) { - unsigned NumRegs = - isABIMangled() - ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) - : TLI.getNumRegisters(Context, ValueVT); - MVT RegisterVT = - isABIMangled() - ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) - : TLI.getRegisterType(Context, ValueVT); - for (unsigned i = 0; i != NumRegs; ++i) - Regs.push_back(Reg + i); - RegVTs.push_back(RegisterVT); - RegCount.push_back(NumRegs); - Reg += NumRegs; - } -} - -SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, - FunctionLoweringInfo &FuncInfo, - const SDLoc &dl, SDValue &Chain, - SDValue *Flag, const Value *V) const { - // A Value with type {} or [0 x %t] needs no registers. - if (ValueVTs.empty()) - return SDValue(); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - - // Assemble the legal parts into the final values. - SmallVector<SDValue, 4> Values(ValueVTs.size()); - SmallVector<SDValue, 8> Parts; - for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { - // Copy the legal parts from the registers. - EVT ValueVT = ValueVTs[Value]; - unsigned NumRegs = RegCount[Value]; - MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( - *DAG.getContext(), - CallConv.getValue(), RegVTs[Value]) - : RegVTs[Value]; - - Parts.resize(NumRegs); - for (unsigned i = 0; i != NumRegs; ++i) { - SDValue P; - if (!Flag) { - P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); - } else { - P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); - *Flag = P.getValue(2); - } - - Chain = P.getValue(1); - Parts[i] = P; - - // If the source register was virtual and if we know something about it, - // add an assert node. - if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || - !RegisterVT.isInteger()) - continue; - - const FunctionLoweringInfo::LiveOutInfo *LOI = - FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); - if (!LOI) - continue; - - unsigned RegSize = RegisterVT.getScalarSizeInBits(); - unsigned NumSignBits = LOI->NumSignBits; - unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); - - if (NumZeroBits == RegSize) { - // The current value is a zero. - // Explicitly express that as it would be easier for - // optimizations to kick in. - Parts[i] = DAG.getConstant(0, dl, RegisterVT); - continue; - } - - // FIXME: We capture more information than the dag can represent. For - // now, just use the tightest assertzext/assertsext possible. - bool isSExt; - EVT FromVT(MVT::Other); - if (NumZeroBits) { - FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); - isSExt = false; - } else if (NumSignBits > 1) { - FromVT = - EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); - isSExt = true; - } else { - continue; - } - // Add an assertion node. - assert(FromVT != MVT::Other); - Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, - RegisterVT, P, DAG.getValueType(FromVT)); - } - - Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, - RegisterVT, ValueVT, V, CallConv); - Part += NumRegs; - Parts.clear(); - } - - return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); -} - -void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, - const SDLoc &dl, SDValue &Chain, SDValue *Flag, - const Value *V, - ISD::NodeType PreferredExtendType) const { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - ISD::NodeType ExtendKind = PreferredExtendType; - - // Get the list of the values's legal parts. - unsigned NumRegs = Regs.size(); - SmallVector<SDValue, 8> Parts(NumRegs); - for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { - unsigned NumParts = RegCount[Value]; - - MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( - *DAG.getContext(), - CallConv.getValue(), RegVTs[Value]) - : RegVTs[Value]; - - if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) - ExtendKind = ISD::ZERO_EXTEND; - - getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], - NumParts, RegisterVT, V, CallConv, ExtendKind); - Part += NumParts; - } - - // Copy the parts into the registers. - SmallVector<SDValue, 8> Chains(NumRegs); - for (unsigned i = 0; i != NumRegs; ++i) { - SDValue Part; - if (!Flag) { - Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); - } else { - Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); - *Flag = Part.getValue(1); - } - - Chains[i] = Part.getValue(0); - } - - if (NumRegs == 1 || Flag) - // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is - // flagged to it. That is the CopyToReg nodes and the user are considered - // a single scheduling unit. If we create a TokenFactor and return it as - // chain, then the TokenFactor is both a predecessor (operand) of the - // user as well as a successor (the TF operands are flagged to the user). - // c1, f1 = CopyToReg - // c2, f2 = CopyToReg - // c3 = TokenFactor c1, c2 - // ... - // = op c3, ..., f2 - Chain = Chains[NumRegs-1]; - else - Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); -} - -void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, - unsigned MatchingIdx, const SDLoc &dl, - SelectionDAG &DAG, - std::vector<SDValue> &Ops) const { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - - unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); - if (HasMatching) - Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); - else if (!Regs.empty() && - TargetRegisterInfo::isVirtualRegister(Regs.front())) { - // Put the register class of the virtual registers in the flag word. That - // way, later passes can recompute register class constraints for inline - // assembly as well as normal instructions. - // Don't do this for tied operands that can use the regclass information - // from the def. - const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); - const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); - Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); - } - - SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); - Ops.push_back(Res); - - if (Code == InlineAsm::Kind_Clobber) { - // Clobbers should always have a 1:1 mapping with registers, and may - // reference registers that have illegal (e.g. vector) types. Hence, we - // shouldn't try to apply any sort of splitting logic to them. - assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && - "No 1:1 mapping from clobbers to regs?"); - unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); - (void)SP; - for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { - Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); - assert( - (Regs[I] != SP || - DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && - "If we clobbered the stack pointer, MFI should know about it."); - } - return; - } - - for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { - unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); - MVT RegisterVT = RegVTs[Value]; - for (unsigned i = 0; i != NumRegs; ++i) { - assert(Reg < Regs.size() && "Mismatch in # registers expected"); - unsigned TheReg = Regs[Reg++]; - Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); - } - } -} - -SmallVector<std::pair<unsigned, unsigned>, 4> -RegsForValue::getRegsAndSizes() const { - SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; - unsigned I = 0; - for (auto CountAndVT : zip_first(RegCount, RegVTs)) { - unsigned RegCount = std::get<0>(CountAndVT); - MVT RegisterVT = std::get<1>(CountAndVT); - unsigned RegisterSize = RegisterVT.getSizeInBits(); - for (unsigned E = I + RegCount; I != E; ++I) - OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); - } - return OutVec; -} - -void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, - const TargetLibraryInfo *li) { - AA = aa; - GFI = gfi; - LibInfo = li; - DL = &DAG.getDataLayout(); - Context = DAG.getContext(); - LPadToCallSiteMap.clear(); - SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); -} - -void SelectionDAGBuilder::clear() { - NodeMap.clear(); - UnusedArgNodeMap.clear(); - PendingLoads.clear(); - PendingExports.clear(); - CurInst = nullptr; - HasTailCall = false; - SDNodeOrder = LowestSDNodeOrder; - StatepointLowering.clear(); -} - -void SelectionDAGBuilder::clearDanglingDebugInfo() { - DanglingDebugInfoMap.clear(); -} - -SDValue SelectionDAGBuilder::getRoot() { - if (PendingLoads.empty()) - return DAG.getRoot(); - - if (PendingLoads.size() == 1) { - SDValue Root = PendingLoads[0]; - DAG.setRoot(Root); - PendingLoads.clear(); - return Root; - } - - // Otherwise, we have to make a token factor node. - SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); - PendingLoads.clear(); - DAG.setRoot(Root); - return Root; -} - -SDValue SelectionDAGBuilder::getControlRoot() { - SDValue Root = DAG.getRoot(); - - if (PendingExports.empty()) - return Root; - - // Turn all of the CopyToReg chains into one factored node. - if (Root.getOpcode() != ISD::EntryToken) { - unsigned i = 0, e = PendingExports.size(); - for (; i != e; ++i) { - assert(PendingExports[i].getNode()->getNumOperands() > 1); - if (PendingExports[i].getNode()->getOperand(0) == Root) - break; // Don't add the root if we already indirectly depend on it. - } - - if (i == e) - PendingExports.push_back(Root); - } - - Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, - PendingExports); - PendingExports.clear(); - DAG.setRoot(Root); - return Root; -} - -void SelectionDAGBuilder::visit(const Instruction &I) { - // Set up outgoing PHI node register values before emitting the terminator. - if (I.isTerminator()) { - HandlePHINodesInSuccessorBlocks(I.getParent()); - } - - // Increase the SDNodeOrder if dealing with a non-debug instruction. - if (!isa<DbgInfoIntrinsic>(I)) - ++SDNodeOrder; - - CurInst = &I; - - visit(I.getOpcode(), I); - - if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { - // Propagate the fast-math-flags of this IR instruction to the DAG node that - // maps to this instruction. - // TODO: We could handle all flags (nsw, etc) here. - // TODO: If an IR instruction maps to >1 node, only the final node will have - // flags set. - if (SDNode *Node = getNodeForIRValue(&I)) { - SDNodeFlags IncomingFlags; - IncomingFlags.copyFMF(*FPMO); - if (!Node->getFlags().isDefined()) - Node->setFlags(IncomingFlags); - else - Node->intersectFlagsWith(IncomingFlags); - } - } - - if (!I.isTerminator() && !HasTailCall && - !isStatepoint(&I)) // statepoints handle their exports internally - CopyToExportRegsIfNeeded(&I); - - CurInst = nullptr; -} - -void SelectionDAGBuilder::visitPHI(const PHINode &) { - llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); -} - -void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { - // Note: this doesn't use InstVisitor, because it has to work with - // ConstantExpr's in addition to instructions. - switch (Opcode) { - default: llvm_unreachable("Unknown instruction type encountered!"); - // Build the switch statement using the Instruction.def file. -#define HANDLE_INST(NUM, OPCODE, CLASS) \ - case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; -#include "llvm/IR/Instruction.def" - } -} - -void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, - const DIExpression *Expr) { - auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { - const DbgValueInst *DI = DDI.getDI(); - DIVariable *DanglingVariable = DI->getVariable(); - DIExpression *DanglingExpr = DI->getExpression(); - if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { - LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); - return true; - } - return false; - }; - - for (auto &DDIMI : DanglingDebugInfoMap) { - DanglingDebugInfoVector &DDIV = DDIMI.second; - - // If debug info is to be dropped, run it through final checks to see - // whether it can be salvaged. - for (auto &DDI : DDIV) - if (isMatchingDbgValue(DDI)) - salvageUnresolvedDbgValue(DDI); - - DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); - } -} - -// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, -// generate the debug data structures now that we've seen its definition. -void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, - SDValue Val) { - auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); - if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) - return; - - DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; - for (auto &DDI : DDIV) { - const DbgValueInst *DI = DDI.getDI(); - assert(DI && "Ill-formed DanglingDebugInfo"); - DebugLoc dl = DDI.getdl(); - unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); - unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); - DILocalVariable *Variable = DI->getVariable(); - DIExpression *Expr = DI->getExpression(); - assert(Variable->isValidLocationForIntrinsic(dl) && - "Expected inlined-at fields to agree"); - SDDbgValue *SDV; - if (Val.getNode()) { - // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a - // FuncArgumentDbgValue (it would be hoisted to the function entry, and if - // we couldn't resolve it directly when examining the DbgValue intrinsic - // in the first place we should not be more successful here). Unless we - // have some test case that prove this to be correct we should avoid - // calling EmitFuncArgumentDbgValue here. - if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { - LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" - << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); - LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); - // Increase the SDNodeOrder for the DbgValue here to make sure it is - // inserted after the definition of Val when emitting the instructions - // after ISel. An alternative could be to teach - // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. - LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() - << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " - << ValSDNodeOrder << "\n"); - SDV = getDbgValue(Val, Variable, Expr, dl, - std::max(DbgSDNodeOrder, ValSDNodeOrder)); - DAG.AddDbgValue(SDV, Val.getNode(), false); - } else - LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI - << "in EmitFuncArgumentDbgValue\n"); - } else { - LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); - auto Undef = - UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); - auto SDV = - DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); - DAG.AddDbgValue(SDV, nullptr, false); - } - } - DDIV.clear(); -} - -void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { - Value *V = DDI.getDI()->getValue(); - DILocalVariable *Var = DDI.getDI()->getVariable(); - DIExpression *Expr = DDI.getDI()->getExpression(); - DebugLoc DL = DDI.getdl(); - DebugLoc InstDL = DDI.getDI()->getDebugLoc(); - unsigned SDOrder = DDI.getSDNodeOrder(); - - // Currently we consider only dbg.value intrinsics -- we tell the salvager - // that DW_OP_stack_value is desired. - assert(isa<DbgValueInst>(DDI.getDI())); - bool StackValue = true; - - // Can this Value can be encoded without any further work? - if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) - return; - - // Attempt to salvage back through as many instructions as possible. Bail if - // a non-instruction is seen, such as a constant expression or global - // variable. FIXME: Further work could recover those too. - while (isa<Instruction>(V)) { - Instruction &VAsInst = *cast<Instruction>(V); - DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); - - // If we cannot salvage any further, and haven't yet found a suitable debug - // expression, bail out. - if (!NewExpr) - break; - - // New value and expr now represent this debuginfo. - V = VAsInst.getOperand(0); - Expr = NewExpr; - - // Some kind of simplification occurred: check whether the operand of the - // salvaged debug expression can be encoded in this DAG. - if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { - LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " - << DDI.getDI() << "\nBy stripping back to:\n " << V); - return; - } - } - - // This was the final opportunity to salvage this debug information, and it - // couldn't be done. Place an undef DBG_VALUE at this location to terminate - // any earlier variable location. - auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); - auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); - DAG.AddDbgValue(SDV, nullptr, false); - - LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() - << "\n"); - LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) - << "\n"); -} - -bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, - DIExpression *Expr, DebugLoc dl, - DebugLoc InstDL, unsigned Order) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDDbgValue *SDV; - if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || - isa<ConstantPointerNull>(V)) { - SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); - DAG.AddDbgValue(SDV, nullptr, false); - return true; - } - - // If the Value is a frame index, we can create a FrameIndex debug value - // without relying on the DAG at all. - if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { - auto SI = FuncInfo.StaticAllocaMap.find(AI); - if (SI != FuncInfo.StaticAllocaMap.end()) { - auto SDV = - DAG.getFrameIndexDbgValue(Var, Expr, SI->second, - /*IsIndirect*/ false, dl, SDNodeOrder); - // Do not attach the SDNodeDbgValue to an SDNode: this variable location - // is still available even if the SDNode gets optimized out. - DAG.AddDbgValue(SDV, nullptr, false); - return true; - } - } - - // Do not use getValue() in here; we don't want to generate code at - // this point if it hasn't been done yet. - SDValue N = NodeMap[V]; - if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. - N = UnusedArgNodeMap[V]; - if (N.getNode()) { - if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) - return true; - SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); - DAG.AddDbgValue(SDV, N.getNode(), false); - return true; - } - - // Special rules apply for the first dbg.values of parameter variables in a - // function. Identify them by the fact they reference Argument Values, that - // they're parameters, and they are parameters of the current function. We - // need to let them dangle until they get an SDNode. - bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && - !InstDL.getInlinedAt(); - if (!IsParamOfFunc) { - // The value is not used in this block yet (or it would have an SDNode). - // We still want the value to appear for the user if possible -- if it has - // an associated VReg, we can refer to that instead. - auto VMI = FuncInfo.ValueMap.find(V); - if (VMI != FuncInfo.ValueMap.end()) { - unsigned Reg = VMI->second; - // If this is a PHI node, it may be split up into several MI PHI nodes - // (in FunctionLoweringInfo::set). - RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, - V->getType(), None); - if (RFV.occupiesMultipleRegs()) { - unsigned Offset = 0; - unsigned BitsToDescribe = 0; - if (auto VarSize = Var->getSizeInBits()) - BitsToDescribe = *VarSize; - if (auto Fragment = Expr->getFragmentInfo()) - BitsToDescribe = Fragment->SizeInBits; - for (auto RegAndSize : RFV.getRegsAndSizes()) { - unsigned RegisterSize = RegAndSize.second; - // Bail out if all bits are described already. - if (Offset >= BitsToDescribe) - break; - unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) - ? BitsToDescribe - Offset - : RegisterSize; - auto FragmentExpr = DIExpression::createFragmentExpression( - Expr, Offset, FragmentSize); - if (!FragmentExpr) - continue; - SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, - false, dl, SDNodeOrder); - DAG.AddDbgValue(SDV, nullptr, false); - Offset += RegisterSize; - } - } else { - SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); - DAG.AddDbgValue(SDV, nullptr, false); - } - return true; - } - } - - return false; -} - -void SelectionDAGBuilder::resolveOrClearDbgInfo() { - // Try to fixup any remaining dangling debug info -- and drop it if we can't. - for (auto &Pair : DanglingDebugInfoMap) - for (auto &DDI : Pair.second) - salvageUnresolvedDbgValue(DDI); - clearDanglingDebugInfo(); -} - -/// getCopyFromRegs - If there was virtual register allocated for the value V -/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. -SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { - DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); - SDValue Result; - - if (It != FuncInfo.ValueMap.end()) { - unsigned InReg = It->second; - - RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), - DAG.getDataLayout(), InReg, Ty, - None); // This is not an ABI copy. - SDValue Chain = DAG.getEntryNode(); - Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, - V); - resolveDanglingDebugInfo(V, Result); - } - - return Result; -} - -/// getValue - Return an SDValue for the given Value. -SDValue SelectionDAGBuilder::getValue(const Value *V) { - // If we already have an SDValue for this value, use it. It's important - // to do this first, so that we don't create a CopyFromReg if we already - // have a regular SDValue. - SDValue &N = NodeMap[V]; - if (N.getNode()) return N; - - // If there's a virtual register allocated and initialized for this - // value, use it. - if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) - return copyFromReg; - - // Otherwise create a new SDValue and remember it. - SDValue Val = getValueImpl(V); - NodeMap[V] = Val; - resolveDanglingDebugInfo(V, Val); - return Val; -} - -// Return true if SDValue exists for the given Value -bool SelectionDAGBuilder::findValue(const Value *V) const { - return (NodeMap.find(V) != NodeMap.end()) || - (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); -} - -/// getNonRegisterValue - Return an SDValue for the given Value, but -/// don't look in FuncInfo.ValueMap for a virtual register. -SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { - // If we already have an SDValue for this value, use it. - SDValue &N = NodeMap[V]; - if (N.getNode()) { - if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { - // Remove the debug location from the node as the node is about to be used - // in a location which may differ from the original debug location. This - // is relevant to Constant and ConstantFP nodes because they can appear - // as constant expressions inside PHI nodes. - N->setDebugLoc(DebugLoc()); - } - return N; - } - - // Otherwise create a new SDValue and remember it. - SDValue Val = getValueImpl(V); - NodeMap[V] = Val; - resolveDanglingDebugInfo(V, Val); - return Val; -} - -/// getValueImpl - Helper function for getValue and getNonRegisterValue. -/// Create an SDValue for the given value. -SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - - if (const Constant *C = dyn_cast<Constant>(V)) { - EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); - - if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) - return DAG.getConstant(*CI, getCurSDLoc(), VT); - - if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) - return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); - - if (isa<ConstantPointerNull>(C)) { - unsigned AS = V->getType()->getPointerAddressSpace(); - return DAG.getConstant(0, getCurSDLoc(), - TLI.getPointerTy(DAG.getDataLayout(), AS)); - } - - if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) - return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); - - if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) - return DAG.getUNDEF(VT); - - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { - visit(CE->getOpcode(), *CE); - SDValue N1 = NodeMap[V]; - assert(N1.getNode() && "visit didn't populate the NodeMap!"); - return N1; - } - - if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { - SmallVector<SDValue, 4> Constants; - for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); - OI != OE; ++OI) { - SDNode *Val = getValue(*OI).getNode(); - // If the operand is an empty aggregate, there are no values. - if (!Val) continue; - // Add each leaf value from the operand to the Constants list - // to form a flattened list of all the values. - for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) - Constants.push_back(SDValue(Val, i)); - } - - return DAG.getMergeValues(Constants, getCurSDLoc()); - } - - if (const ConstantDataSequential *CDS = - dyn_cast<ConstantDataSequential>(C)) { - SmallVector<SDValue, 4> Ops; - for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { - SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); - // Add each leaf value from the operand to the Constants list - // to form a flattened list of all the values. - for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) - Ops.push_back(SDValue(Val, i)); - } - - if (isa<ArrayType>(CDS->getType())) - return DAG.getMergeValues(Ops, getCurSDLoc()); - return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); - } - - if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { - assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && - "Unknown struct or array constant!"); - - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); - unsigned NumElts = ValueVTs.size(); - if (NumElts == 0) - return SDValue(); // empty struct - SmallVector<SDValue, 4> Constants(NumElts); - for (unsigned i = 0; i != NumElts; ++i) { - EVT EltVT = ValueVTs[i]; - if (isa<UndefValue>(C)) - Constants[i] = DAG.getUNDEF(EltVT); - else if (EltVT.isFloatingPoint()) - Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); - else - Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); - } - - return DAG.getMergeValues(Constants, getCurSDLoc()); - } - - if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) - return DAG.getBlockAddress(BA, VT); - - VectorType *VecTy = cast<VectorType>(V->getType()); - unsigned NumElements = VecTy->getNumElements(); - - // Now that we know the number and type of the elements, get that number of - // elements into the Ops array based on what kind of constant it is. - SmallVector<SDValue, 16> Ops; - if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { - for (unsigned i = 0; i != NumElements; ++i) - Ops.push_back(getValue(CV->getOperand(i))); - } else { - assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); - EVT EltVT = - TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); - - SDValue Op; - if (EltVT.isFloatingPoint()) - Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); - else - Op = DAG.getConstant(0, getCurSDLoc(), EltVT); - Ops.assign(NumElements, Op); - } - - // Create a BUILD_VECTOR node. - return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); - } - - // If this is a static alloca, generate it as the frameindex instead of - // computation. - if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { - DenseMap<const AllocaInst*, int>::iterator SI = - FuncInfo.StaticAllocaMap.find(AI); - if (SI != FuncInfo.StaticAllocaMap.end()) - return DAG.getFrameIndex(SI->second, - TLI.getFrameIndexTy(DAG.getDataLayout())); - } - - // If this is an instruction which fast-isel has deferred, select it now. - if (const Instruction *Inst = dyn_cast<Instruction>(V)) { - unsigned InReg = FuncInfo.InitializeRegForValue(Inst); - - RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, - Inst->getType(), getABIRegCopyCC(V)); - SDValue Chain = DAG.getEntryNode(); - return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); - } - - llvm_unreachable("Can't get register for value!"); -} - -void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { - auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); - bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; - bool IsCoreCLR = Pers == EHPersonality::CoreCLR; - bool IsSEH = isAsynchronousEHPersonality(Pers); - bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; - MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; - if (!IsSEH) - CatchPadMBB->setIsEHScopeEntry(); - // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. - if (IsMSVCCXX || IsCoreCLR) - CatchPadMBB->setIsEHFuncletEntry(); - // Wasm does not need catchpads anymore - if (!IsWasmCXX) - DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, - getControlRoot())); -} - -void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { - // Update machine-CFG edge. - MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; - FuncInfo.MBB->addSuccessor(TargetMBB); - - auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); - bool IsSEH = isAsynchronousEHPersonality(Pers); - if (IsSEH) { - // If this is not a fall-through branch or optimizations are switched off, - // emit the branch. - if (TargetMBB != NextBlock(FuncInfo.MBB) || - TM.getOptLevel() == CodeGenOpt::None) - DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, - getControlRoot(), DAG.getBasicBlock(TargetMBB))); - return; - } - - // Figure out the funclet membership for the catchret's successor. - // This will be used by the FuncletLayout pass to determine how to order the - // BB's. - // A 'catchret' returns to the outer scope's color. - Value *ParentPad = I.getCatchSwitchParentPad(); - const BasicBlock *SuccessorColor; - if (isa<ConstantTokenNone>(ParentPad)) - SuccessorColor = &FuncInfo.Fn->getEntryBlock(); - else - SuccessorColor = cast<Instruction>(ParentPad)->getParent(); - assert(SuccessorColor && "No parent funclet for catchret!"); - MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; - assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); - - // Create the terminator node. - SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, - getControlRoot(), DAG.getBasicBlock(TargetMBB), - DAG.getBasicBlock(SuccessorColorMBB)); - DAG.setRoot(Ret); -} - -void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { - // Don't emit any special code for the cleanuppad instruction. It just marks - // the start of an EH scope/funclet. - FuncInfo.MBB->setIsEHScopeEntry(); - auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); - if (Pers != EHPersonality::Wasm_CXX) { - FuncInfo.MBB->setIsEHFuncletEntry(); - FuncInfo.MBB->setIsCleanupFuncletEntry(); - } -} - -// For wasm, there's alwyas a single catch pad attached to a catchswitch, and -// the control flow always stops at the single catch pad, as it does for a -// cleanup pad. In case the exception caught is not of the types the catch pad -// catches, it will be rethrown by a rethrow. -static void findWasmUnwindDestinations( - FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, - BranchProbability Prob, - SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> - &UnwindDests) { - while (EHPadBB) { - const Instruction *Pad = EHPadBB->getFirstNonPHI(); - if (isa<CleanupPadInst>(Pad)) { - // Stop on cleanup pads. - UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); - UnwindDests.back().first->setIsEHScopeEntry(); - break; - } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { - // Add the catchpad handlers to the possible destinations. We don't - // continue to the unwind destination of the catchswitch for wasm. - for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { - UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); - UnwindDests.back().first->setIsEHScopeEntry(); - } - break; - } else { - continue; - } - } -} - -/// When an invoke or a cleanupret unwinds to the next EH pad, there are -/// many places it could ultimately go. In the IR, we have a single unwind -/// destination, but in the machine CFG, we enumerate all the possible blocks. -/// This function skips over imaginary basic blocks that hold catchswitch -/// instructions, and finds all the "real" machine -/// basic block destinations. As those destinations may not be successors of -/// EHPadBB, here we also calculate the edge probability to those destinations. -/// The passed-in Prob is the edge probability to EHPadBB. -static void findUnwindDestinations( - FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, - BranchProbability Prob, - SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> - &UnwindDests) { - EHPersonality Personality = - classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); - bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; - bool IsCoreCLR = Personality == EHPersonality::CoreCLR; - bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; - bool IsSEH = isAsynchronousEHPersonality(Personality); - - if (IsWasmCXX) { - findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); - assert(UnwindDests.size() <= 1 && - "There should be at most one unwind destination for wasm"); - return; - } - - while (EHPadBB) { - const Instruction *Pad = EHPadBB->getFirstNonPHI(); - BasicBlock *NewEHPadBB = nullptr; - if (isa<LandingPadInst>(Pad)) { - // Stop on landingpads. They are not funclets. - UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); - break; - } else if (isa<CleanupPadInst>(Pad)) { - // Stop on cleanup pads. Cleanups are always funclet entries for all known - // personalities. - UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); - UnwindDests.back().first->setIsEHScopeEntry(); - UnwindDests.back().first->setIsEHFuncletEntry(); - break; - } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { - // Add the catchpad handlers to the possible destinations. - for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { - UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); - // For MSVC++ and the CLR, catchblocks are funclets and need prologues. - if (IsMSVCCXX || IsCoreCLR) - UnwindDests.back().first->setIsEHFuncletEntry(); - if (!IsSEH) - UnwindDests.back().first->setIsEHScopeEntry(); - } - NewEHPadBB = CatchSwitch->getUnwindDest(); - } else { - continue; - } - - BranchProbabilityInfo *BPI = FuncInfo.BPI; - if (BPI && NewEHPadBB) - Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); - EHPadBB = NewEHPadBB; - } -} - -void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { - // Update successor info. - SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; - auto UnwindDest = I.getUnwindDest(); - BranchProbabilityInfo *BPI = FuncInfo.BPI; - BranchProbability UnwindDestProb = - (BPI && UnwindDest) - ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) - : BranchProbability::getZero(); - findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); - for (auto &UnwindDest : UnwindDests) { - UnwindDest.first->setIsEHPad(); - addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); - } - FuncInfo.MBB->normalizeSuccProbs(); - - // Create the terminator node. - SDValue Ret = - DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); - DAG.setRoot(Ret); -} - -void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { - report_fatal_error("visitCatchSwitch not yet implemented!"); -} - -void SelectionDAGBuilder::visitRet(const ReturnInst &I) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - auto &DL = DAG.getDataLayout(); - SDValue Chain = getControlRoot(); - SmallVector<ISD::OutputArg, 8> Outs; - SmallVector<SDValue, 8> OutVals; - - // Calls to @llvm.experimental.deoptimize don't generate a return value, so - // lower - // - // %val = call <ty> @llvm.experimental.deoptimize() - // ret <ty> %val - // - // differently. - if (I.getParent()->getTerminatingDeoptimizeCall()) { - LowerDeoptimizingReturn(); - return; - } - - if (!FuncInfo.CanLowerReturn) { - unsigned DemoteReg = FuncInfo.DemoteRegister; - const Function *F = I.getParent()->getParent(); - - // Emit a store of the return value through the virtual register. - // Leave Outs empty so that LowerReturn won't try to load return - // registers the usual way. - SmallVector<EVT, 1> PtrValueVTs; - ComputeValueVTs(TLI, DL, - F->getReturnType()->getPointerTo( - DAG.getDataLayout().getAllocaAddrSpace()), - PtrValueVTs); - - SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), - DemoteReg, PtrValueVTs[0]); - SDValue RetOp = getValue(I.getOperand(0)); - - SmallVector<EVT, 4> ValueVTs, MemVTs; - SmallVector<uint64_t, 4> Offsets; - ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, - &Offsets); - unsigned NumValues = ValueVTs.size(); - - SmallVector<SDValue, 4> Chains(NumValues); - for (unsigned i = 0; i != NumValues; ++i) { - // An aggregate return value cannot wrap around the address space, so - // offsets to its parts don't wrap either. - SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); - - SDValue Val = RetOp.getValue(RetOp.getResNo() + i); - if (MemVTs[i] != ValueVTs[i]) - Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); - Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, - // FIXME: better loc info would be nice. - Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); - } - - Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), - MVT::Other, Chains); - } else if (I.getNumOperands() != 0) { - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); - unsigned NumValues = ValueVTs.size(); - if (NumValues) { - SDValue RetOp = getValue(I.getOperand(0)); - - const Function *F = I.getParent()->getParent(); - - bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( - I.getOperand(0)->getType(), F->getCallingConv(), - /*IsVarArg*/ false); - - ISD::NodeType ExtendKind = ISD::ANY_EXTEND; - if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, - Attribute::SExt)) - ExtendKind = ISD::SIGN_EXTEND; - else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, - Attribute::ZExt)) - ExtendKind = ISD::ZERO_EXTEND; - - LLVMContext &Context = F->getContext(); - bool RetInReg = F->getAttributes().hasAttribute( - AttributeList::ReturnIndex, Attribute::InReg); - - for (unsigned j = 0; j != NumValues; ++j) { - EVT VT = ValueVTs[j]; - - if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) - VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); - - CallingConv::ID CC = F->getCallingConv(); - - unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); - MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); - SmallVector<SDValue, 4> Parts(NumParts); - getCopyToParts(DAG, getCurSDLoc(), - SDValue(RetOp.getNode(), RetOp.getResNo() + j), - &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); - - // 'inreg' on function refers to return value - ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); - if (RetInReg) - Flags.setInReg(); - - if (I.getOperand(0)->getType()->isPointerTy()) { - Flags.setPointer(); - Flags.setPointerAddrSpace( - cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); - } - - if (NeedsRegBlock) { - Flags.setInConsecutiveRegs(); - if (j == NumValues - 1) - Flags.setInConsecutiveRegsLast(); - } - - // Propagate extension type if any - if (ExtendKind == ISD::SIGN_EXTEND) - Flags.setSExt(); - else if (ExtendKind == ISD::ZERO_EXTEND) - Flags.setZExt(); - - for (unsigned i = 0; i < NumParts; ++i) { - Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), - VT, /*isfixed=*/true, 0, 0)); - OutVals.push_back(Parts[i]); - } - } - } - } - - // Push in swifterror virtual register as the last element of Outs. This makes - // sure swifterror virtual register will be returned in the swifterror - // physical register. - const Function *F = I.getParent()->getParent(); - if (TLI.supportSwiftError() && - F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { - assert(SwiftError.getFunctionArg() && "Need a swift error argument"); - ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); - Flags.setSwiftError(); - Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, - EVT(TLI.getPointerTy(DL)) /*argvt*/, - true /*isfixed*/, 1 /*origidx*/, - 0 /*partOffs*/)); - // Create SDNode for the swifterror virtual register. - OutVals.push_back( - DAG.getRegister(SwiftError.getOrCreateVRegUseAt( - &I, FuncInfo.MBB, SwiftError.getFunctionArg()), - EVT(TLI.getPointerTy(DL)))); - } - - bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); - CallingConv::ID CallConv = - DAG.getMachineFunction().getFunction().getCallingConv(); - Chain = DAG.getTargetLoweringInfo().LowerReturn( - Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); - - // Verify that the target's LowerReturn behaved as expected. - assert(Chain.getNode() && Chain.getValueType() == MVT::Other && - "LowerReturn didn't return a valid chain!"); - - // Update the DAG with the new chain value resulting from return lowering. - DAG.setRoot(Chain); -} - -/// CopyToExportRegsIfNeeded - If the given value has virtual registers -/// created for it, emit nodes to copy the value into the virtual -/// registers. -void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { - // Skip empty types - if (V->getType()->isEmptyTy()) - return; - - DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); - if (VMI != FuncInfo.ValueMap.end()) { - assert(!V->use_empty() && "Unused value assigned virtual registers!"); - CopyValueToVirtualRegister(V, VMI->second); - } -} - -/// ExportFromCurrentBlock - If this condition isn't known to be exported from -/// the current basic block, add it to ValueMap now so that we'll get a -/// CopyTo/FromReg. -void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { - // No need to export constants. - if (!isa<Instruction>(V) && !isa<Argument>(V)) return; - - // Already exported? - if (FuncInfo.isExportedInst(V)) return; - - unsigned Reg = FuncInfo.InitializeRegForValue(V); - CopyValueToVirtualRegister(V, Reg); -} - -bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, - const BasicBlock *FromBB) { - // The operands of the setcc have to be in this block. We don't know - // how to export them from some other block. - if (const Instruction *VI = dyn_cast<Instruction>(V)) { - // Can export from current BB. - if (VI->getParent() == FromBB) - return true; - - // Is already exported, noop. - return FuncInfo.isExportedInst(V); - } - - // If this is an argument, we can export it if the BB is the entry block or - // if it is already exported. - if (isa<Argument>(V)) { - if (FromBB == &FromBB->getParent()->getEntryBlock()) - return true; - - // Otherwise, can only export this if it is already exported. - return FuncInfo.isExportedInst(V); - } - - // Otherwise, constants can always be exported. - return true; -} - -/// Return branch probability calculated by BranchProbabilityInfo for IR blocks. -BranchProbability -SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, - const MachineBasicBlock *Dst) const { - BranchProbabilityInfo *BPI = FuncInfo.BPI; - const BasicBlock *SrcBB = Src->getBasicBlock(); - const BasicBlock *DstBB = Dst->getBasicBlock(); - if (!BPI) { - // If BPI is not available, set the default probability as 1 / N, where N is - // the number of successors. - auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); - return BranchProbability(1, SuccSize); - } - return BPI->getEdgeProbability(SrcBB, DstBB); -} - -void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, - MachineBasicBlock *Dst, - BranchProbability Prob) { - if (!FuncInfo.BPI) - Src->addSuccessorWithoutProb(Dst); - else { - if (Prob.isUnknown()) - Prob = getEdgeProbability(Src, Dst); - Src->addSuccessor(Dst, Prob); - } -} - -static bool InBlock(const Value *V, const BasicBlock *BB) { - if (const Instruction *I = dyn_cast<Instruction>(V)) - return I->getParent() == BB; - return true; -} - -/// EmitBranchForMergedCondition - Helper method for FindMergedConditions. -/// This function emits a branch and is used at the leaves of an OR or an -/// AND operator tree. -void -SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, - MachineBasicBlock *TBB, - MachineBasicBlock *FBB, - MachineBasicBlock *CurBB, - MachineBasicBlock *SwitchBB, - BranchProbability TProb, - BranchProbability FProb, - bool InvertCond) { - const BasicBlock *BB = CurBB->getBasicBlock(); - - // If the leaf of the tree is a comparison, merge the condition into - // the caseblock. - if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { - // The operands of the cmp have to be in this block. We don't know - // how to export them from some other block. If this is the first block - // of the sequence, no exporting is needed. - if (CurBB == SwitchBB || - (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && - isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { - ISD::CondCode Condition; - if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { - ICmpInst::Predicate Pred = - InvertCond ? IC->getInversePredicate() : IC->getPredicate(); - Condition = getICmpCondCode(Pred); - } else { - const FCmpInst *FC = cast<FCmpInst>(Cond); - FCmpInst::Predicate Pred = - InvertCond ? FC->getInversePredicate() : FC->getPredicate(); - Condition = getFCmpCondCode(Pred); - if (TM.Options.NoNaNsFPMath) - Condition = getFCmpCodeWithoutNaN(Condition); - } - - CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, - TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); - SL->SwitchCases.push_back(CB); - return; - } - } - - // Create a CaseBlock record representing this branch. - ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; - CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), - nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); - SL->SwitchCases.push_back(CB); -} - -void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, - MachineBasicBlock *TBB, - MachineBasicBlock *FBB, - MachineBasicBlock *CurBB, - MachineBasicBlock *SwitchBB, - Instruction::BinaryOps Opc, - BranchProbability TProb, - BranchProbability FProb, - bool InvertCond) { - // Skip over not part of the tree and remember to invert op and operands at - // next level. - Value *NotCond; - if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && - InBlock(NotCond, CurBB->getBasicBlock())) { - FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, - !InvertCond); - return; - } - - const Instruction *BOp = dyn_cast<Instruction>(Cond); - // Compute the effective opcode for Cond, taking into account whether it needs - // to be inverted, e.g. - // and (not (or A, B)), C - // gets lowered as - // and (and (not A, not B), C) - unsigned BOpc = 0; - if (BOp) { - BOpc = BOp->getOpcode(); - if (InvertCond) { - if (BOpc == Instruction::And) - BOpc = Instruction::Or; - else if (BOpc == Instruction::Or) - BOpc = Instruction::And; - } - } - - // If this node is not part of the or/and tree, emit it as a branch. - if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || - BOpc != unsigned(Opc) || !BOp->hasOneUse() || - BOp->getParent() != CurBB->getBasicBlock() || - !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || - !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { - EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, - TProb, FProb, InvertCond); - return; - } - - // Create TmpBB after CurBB. - MachineFunction::iterator BBI(CurBB); - MachineFunction &MF = DAG.getMachineFunction(); - MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); - CurBB->getParent()->insert(++BBI, TmpBB); - - if (Opc == Instruction::Or) { - // Codegen X | Y as: - // BB1: - // jmp_if_X TBB - // jmp TmpBB - // TmpBB: - // jmp_if_Y TBB - // jmp FBB - // - - // We have flexibility in setting Prob for BB1 and Prob for TmpBB. - // The requirement is that - // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) - // = TrueProb for original BB. - // Assuming the original probabilities are A and B, one choice is to set - // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to - // A/(1+B) and 2B/(1+B). This choice assumes that - // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. - // Another choice is to assume TrueProb for BB1 equals to TrueProb for - // TmpBB, but the math is more complicated. - - auto NewTrueProb = TProb / 2; - auto NewFalseProb = TProb / 2 + FProb; - // Emit the LHS condition. - FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, - NewTrueProb, NewFalseProb, InvertCond); - - // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). - SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; - BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); - // Emit the RHS condition into TmpBB. - FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, - Probs[0], Probs[1], InvertCond); - } else { - assert(Opc == Instruction::And && "Unknown merge op!"); - // Codegen X & Y as: - // BB1: - // jmp_if_X TmpBB - // jmp FBB - // TmpBB: - // jmp_if_Y TBB - // jmp FBB - // - // This requires creation of TmpBB after CurBB. - - // We have flexibility in setting Prob for BB1 and Prob for TmpBB. - // The requirement is that - // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) - // = FalseProb for original BB. - // Assuming the original probabilities are A and B, one choice is to set - // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to - // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == - // TrueProb for BB1 * FalseProb for TmpBB. - - auto NewTrueProb = TProb + FProb / 2; - auto NewFalseProb = FProb / 2; - // Emit the LHS condition. - FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, - NewTrueProb, NewFalseProb, InvertCond); - - // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). - SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; - BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); - // Emit the RHS condition into TmpBB. - FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, - Probs[0], Probs[1], InvertCond); - } -} - -/// If the set of cases should be emitted as a series of branches, return true. -/// If we should emit this as a bunch of and/or'd together conditions, return -/// false. -bool -SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { - if (Cases.size() != 2) return true; - - // If this is two comparisons of the same values or'd or and'd together, they - // will get folded into a single comparison, so don't emit two blocks. - if ((Cases[0].CmpLHS == Cases[1].CmpLHS && - Cases[0].CmpRHS == Cases[1].CmpRHS) || - (Cases[0].CmpRHS == Cases[1].CmpLHS && - Cases[0].CmpLHS == Cases[1].CmpRHS)) { - return false; - } - - // Handle: (X != null) | (Y != null) --> (X|Y) != 0 - // Handle: (X == null) & (Y == null) --> (X|Y) == 0 - if (Cases[0].CmpRHS == Cases[1].CmpRHS && - Cases[0].CC == Cases[1].CC && - isa<Constant>(Cases[0].CmpRHS) && - cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { - if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) - return false; - if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) - return false; - } - - return true; -} - -void SelectionDAGBuilder::visitBr(const BranchInst &I) { - MachineBasicBlock *BrMBB = FuncInfo.MBB; - - // Update machine-CFG edges. - MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; - - if (I.isUnconditional()) { - // Update machine-CFG edges. - BrMBB->addSuccessor(Succ0MBB); - - // If this is not a fall-through branch or optimizations are switched off, - // emit the branch. - if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) - DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), - MVT::Other, getControlRoot(), - DAG.getBasicBlock(Succ0MBB))); - - return; - } - - // If this condition is one of the special cases we handle, do special stuff - // now. - const Value *CondVal = I.getCondition(); - MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; - - // If this is a series of conditions that are or'd or and'd together, emit - // this as a sequence of branches instead of setcc's with and/or operations. - // As long as jumps are not expensive, this should improve performance. - // For example, instead of something like: - // cmp A, B - // C = seteq - // cmp D, E - // F = setle - // or C, F - // jnz foo - // Emit: - // cmp A, B - // je foo - // cmp D, E - // jle foo - if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { - Instruction::BinaryOps Opcode = BOp->getOpcode(); - if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && - !I.getMetadata(LLVMContext::MD_unpredictable) && - (Opcode == Instruction::And || Opcode == Instruction::Or)) { - FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, - Opcode, - getEdgeProbability(BrMBB, Succ0MBB), - getEdgeProbability(BrMBB, Succ1MBB), - /*InvertCond=*/false); - // If the compares in later blocks need to use values not currently - // exported from this block, export them now. This block should always - // be the first entry. - assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); - - // Allow some cases to be rejected. - if (ShouldEmitAsBranches(SL->SwitchCases)) { - for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { - ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); - ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); - } - - // Emit the branch for this block. - visitSwitchCase(SL->SwitchCases[0], BrMBB); - SL->SwitchCases.erase(SL->SwitchCases.begin()); - return; - } - - // Okay, we decided not to do this, remove any inserted MBB's and clear - // SwitchCases. - for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) - FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); - - SL->SwitchCases.clear(); - } - } - - // Create a CaseBlock record representing this branch. - CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), - nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); - - // Use visitSwitchCase to actually insert the fast branch sequence for this - // cond branch. - visitSwitchCase(CB, BrMBB); -} - -/// visitSwitchCase - Emits the necessary code to represent a single node in -/// the binary search tree resulting from lowering a switch instruction. -void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, - MachineBasicBlock *SwitchBB) { - SDValue Cond; - SDValue CondLHS = getValue(CB.CmpLHS); - SDLoc dl = CB.DL; - - if (CB.CC == ISD::SETTRUE) { - // Branch or fall through to TrueBB. - addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); - SwitchBB->normalizeSuccProbs(); - if (CB.TrueBB != NextBlock(SwitchBB)) { - DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), - DAG.getBasicBlock(CB.TrueBB))); - } - return; - } - - auto &TLI = DAG.getTargetLoweringInfo(); - EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); - - // Build the setcc now. - if (!CB.CmpMHS) { - // Fold "(X == true)" to X and "(X == false)" to !X to - // handle common cases produced by branch lowering. - if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && - CB.CC == ISD::SETEQ) - Cond = CondLHS; - else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && - CB.CC == ISD::SETEQ) { - SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); - Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); - } else { - SDValue CondRHS = getValue(CB.CmpRHS); - - // If a pointer's DAG type is larger than its memory type then the DAG - // values are zero-extended. This breaks signed comparisons so truncate - // back to the underlying type before doing the compare. - if (CondLHS.getValueType() != MemVT) { - CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); - CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); - } - Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); - } - } else { - assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); - - const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); - const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); - - SDValue CmpOp = getValue(CB.CmpMHS); - EVT VT = CmpOp.getValueType(); - - if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { - Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), - ISD::SETLE); - } else { - SDValue SUB = DAG.getNode(ISD::SUB, dl, - VT, CmpOp, DAG.getConstant(Low, dl, VT)); - Cond = DAG.getSetCC(dl, MVT::i1, SUB, - DAG.getConstant(High-Low, dl, VT), ISD::SETULE); - } - } - - // Update successor info - addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); - // TrueBB and FalseBB are always different unless the incoming IR is - // degenerate. This only happens when running llc on weird IR. - if (CB.TrueBB != CB.FalseBB) - addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); - SwitchBB->normalizeSuccProbs(); - - // If the lhs block is the next block, invert the condition so that we can - // fall through to the lhs instead of the rhs block. - if (CB.TrueBB == NextBlock(SwitchBB)) { - std::swap(CB.TrueBB, CB.FalseBB); - SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); - Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); - } - - SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, - MVT::Other, getControlRoot(), Cond, - DAG.getBasicBlock(CB.TrueBB)); - - // Insert the false branch. Do this even if it's a fall through branch, - // this makes it easier to do DAG optimizations which require inverting - // the branch condition. - BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, - DAG.getBasicBlock(CB.FalseBB)); - - DAG.setRoot(BrCond); -} - -/// visitJumpTable - Emit JumpTable node in the current MBB -void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { - // Emit the code for the jump table - assert(JT.Reg != -1U && "Should lower JT Header first!"); - EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); - SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), - JT.Reg, PTy); - SDValue Table = DAG.getJumpTable(JT.JTI, PTy); - SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), - MVT::Other, Index.getValue(1), - Table, Index); - DAG.setRoot(BrJumpTable); -} - -/// visitJumpTableHeader - This function emits necessary code to produce index -/// in the JumpTable from switch case. -void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, - JumpTableHeader &JTH, - MachineBasicBlock *SwitchBB) { - SDLoc dl = getCurSDLoc(); - - // Subtract the lowest switch case value from the value being switched on. - SDValue SwitchOp = getValue(JTH.SValue); - EVT VT = SwitchOp.getValueType(); - SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, - DAG.getConstant(JTH.First, dl, VT)); - - // The SDNode we just created, which holds the value being switched on minus - // the smallest case value, needs to be copied to a virtual register so it - // can be used as an index into the jump table in a subsequent basic block. - // This value may be smaller or larger than the target's pointer type, and - // therefore require extension or truncating. - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); - - unsigned JumpTableReg = - FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); - SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, - JumpTableReg, SwitchOp); - JT.Reg = JumpTableReg; - - if (!JTH.OmitRangeCheck) { - // Emit the range check for the jump table, and branch to the default block - // for the switch statement if the value being switched on exceeds the - // largest case in the switch. - SDValue CMP = DAG.getSetCC( - dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), - Sub.getValueType()), - Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); - - SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, - MVT::Other, CopyTo, CMP, - DAG.getBasicBlock(JT.Default)); - - // Avoid emitting unnecessary branches to the next block. - if (JT.MBB != NextBlock(SwitchBB)) - BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, - DAG.getBasicBlock(JT.MBB)); - - DAG.setRoot(BrCond); - } else { - // Avoid emitting unnecessary branches to the next block. - if (JT.MBB != NextBlock(SwitchBB)) - DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, - DAG.getBasicBlock(JT.MBB))); - else - DAG.setRoot(CopyTo); - } -} - -/// Create a LOAD_STACK_GUARD node, and let it carry the target specific global -/// variable if there exists one. -static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, - SDValue &Chain) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); - EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); - MachineFunction &MF = DAG.getMachineFunction(); - Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); - MachineSDNode *Node = - DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); - if (Global) { - MachinePointerInfo MPInfo(Global); - auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | - MachineMemOperand::MODereferenceable; - MachineMemOperand *MemRef = MF.getMachineMemOperand( - MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); - DAG.setNodeMemRefs(Node, {MemRef}); - } - if (PtrTy != PtrMemTy) - return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); - return SDValue(Node, 0); -} - -/// Codegen a new tail for a stack protector check ParentMBB which has had its -/// tail spliced into a stack protector check success bb. -/// -/// For a high level explanation of how this fits into the stack protector -/// generation see the comment on the declaration of class -/// StackProtectorDescriptor. -void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, - MachineBasicBlock *ParentBB) { - - // First create the loads to the guard/stack slot for the comparison. - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); - EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); - - MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); - int FI = MFI.getStackProtectorIndex(); - - SDValue Guard; - SDLoc dl = getCurSDLoc(); - SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); - const Module &M = *ParentBB->getParent()->getFunction().getParent(); - unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); - - // Generate code to load the content of the guard slot. - SDValue GuardVal = DAG.getLoad( - PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, - MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, - MachineMemOperand::MOVolatile); - - if (TLI.useStackGuardXorFP()) - GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); - - // Retrieve guard check function, nullptr if instrumentation is inlined. - if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { - // The target provides a guard check function to validate the guard value. - // Generate a call to that function with the content of the guard slot as - // argument. - FunctionType *FnTy = GuardCheckFn->getFunctionType(); - assert(FnTy->getNumParams() == 1 && "Invalid function signature"); - - TargetLowering::ArgListTy Args; - TargetLowering::ArgListEntry Entry; - Entry.Node = GuardVal; - Entry.Ty = FnTy->getParamType(0); - if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) - Entry.IsInReg = true; - Args.push_back(Entry); - - TargetLowering::CallLoweringInfo CLI(DAG); - CLI.setDebugLoc(getCurSDLoc()) - .setChain(DAG.getEntryNode()) - .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), - getValue(GuardCheckFn), std::move(Args)); - - std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); - DAG.setRoot(Result.second); - return; - } - - // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. - // Otherwise, emit a volatile load to retrieve the stack guard value. - SDValue Chain = DAG.getEntryNode(); - if (TLI.useLoadStackGuardNode()) { - Guard = getLoadStackGuard(DAG, dl, Chain); - } else { - const Value *IRGuard = TLI.getSDagStackGuard(M); - SDValue GuardPtr = getValue(IRGuard); - - Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, - MachinePointerInfo(IRGuard, 0), Align, - MachineMemOperand::MOVolatile); - } - - // Perform the comparison via a subtract/getsetcc. - EVT VT = Guard.getValueType(); - SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); - - SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), - *DAG.getContext(), - Sub.getValueType()), - Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); - - // If the sub is not 0, then we know the guard/stackslot do not equal, so - // branch to failure MBB. - SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, - MVT::Other, GuardVal.getOperand(0), - Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); - // Otherwise branch to success MBB. - SDValue Br = DAG.getNode(ISD::BR, dl, - MVT::Other, BrCond, - DAG.getBasicBlock(SPD.getSuccessMBB())); - - DAG.setRoot(Br); -} - -/// Codegen the failure basic block for a stack protector check. -/// -/// A failure stack protector machine basic block consists simply of a call to -/// __stack_chk_fail(). -/// -/// For a high level explanation of how this fits into the stack protector -/// generation see the comment on the declaration of class -/// StackProtectorDescriptor. -void -SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue Chain = - TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, - None, false, getCurSDLoc(), false, false).second; - // On PS4, the "return address" must still be within the calling function, - // even if it's at the very end, so emit an explicit TRAP here. - // Passing 'true' for doesNotReturn above won't generate the trap for us. - if (TM.getTargetTriple().isPS4CPU()) - Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); - - DAG.setRoot(Chain); -} - -/// visitBitTestHeader - This function emits necessary code to produce value -/// suitable for "bit tests" -void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, - MachineBasicBlock *SwitchBB) { - SDLoc dl = getCurSDLoc(); - - // Subtract the minimum value - SDValue SwitchOp = getValue(B.SValue); - EVT VT = SwitchOp.getValueType(); - SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, - DAG.getConstant(B.First, dl, VT)); - - // Check range - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue RangeCmp = DAG.getSetCC( - dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), - Sub.getValueType()), - Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); - - // Determine the type of the test operands. - bool UsePtrType = false; - if (!TLI.isTypeLegal(VT)) - UsePtrType = true; - else { - for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) - if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { - // Switch table case range are encoded into series of masks. - // Just use pointer type, it's guaranteed to fit. - UsePtrType = true; - break; - } - } - if (UsePtrType) { - VT = TLI.getPointerTy(DAG.getDataLayout()); - Sub = DAG.getZExtOrTrunc(Sub, dl, VT); - } - - B.RegVT = VT.getSimpleVT(); - B.Reg = FuncInfo.CreateReg(B.RegVT); - SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); - - MachineBasicBlock* MBB = B.Cases[0].ThisBB; - - addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); - addSuccessorWithProb(SwitchBB, MBB, B.Prob); - SwitchBB->normalizeSuccProbs(); - - SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, - MVT::Other, CopyTo, RangeCmp, - DAG.getBasicBlock(B.Default)); - - // Avoid emitting unnecessary branches to the next block. - if (MBB != NextBlock(SwitchBB)) - BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, - DAG.getBasicBlock(MBB)); - - DAG.setRoot(BrRange); -} - -/// visitBitTestCase - this function produces one "bit test" -void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, - MachineBasicBlock* NextMBB, - BranchProbability BranchProbToNext, - unsigned Reg, - BitTestCase &B, - MachineBasicBlock *SwitchBB) { - SDLoc dl = getCurSDLoc(); - MVT VT = BB.RegVT; - SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); - SDValue Cmp; - unsigned PopCount = countPopulation(B.Mask); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (PopCount == 1) { - // Testing for a single bit; just compare the shift count with what it - // would need to be to shift a 1 bit in that position. - Cmp = DAG.getSetCC( - dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), - ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), - ISD::SETEQ); - } else if (PopCount == BB.Range) { - // There is only one zero bit in the range, test for it directly. - Cmp = DAG.getSetCC( - dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), - ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), - ISD::SETNE); - } else { - // Make desired shift - SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, - DAG.getConstant(1, dl, VT), ShiftOp); - - // Emit bit tests and jumps - SDValue AndOp = DAG.getNode(ISD::AND, dl, - VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); - Cmp = DAG.getSetCC( - dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), - AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); - } - - // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. - addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); - // The branch probability from SwitchBB to NextMBB is BranchProbToNext. - addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); - // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is - // one as they are relative probabilities (and thus work more like weights), - // and hence we need to normalize them to let the sum of them become one. - SwitchBB->normalizeSuccProbs(); - - SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, - MVT::Other, getControlRoot(), - Cmp, DAG.getBasicBlock(B.TargetBB)); - - // Avoid emitting unnecessary branches to the next block. - if (NextMBB != NextBlock(SwitchBB)) - BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, - DAG.getBasicBlock(NextMBB)); - - DAG.setRoot(BrAnd); -} - -void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { - MachineBasicBlock *InvokeMBB = FuncInfo.MBB; - - // Retrieve successors. Look through artificial IR level blocks like - // catchswitch for successors. - MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; - const BasicBlock *EHPadBB = I.getSuccessor(1); - - // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't - // have to do anything here to lower funclet bundles. - assert(!I.hasOperandBundlesOtherThan( - {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && - "Cannot lower invokes with arbitrary operand bundles yet!"); - - const Value *Callee(I.getCalledValue()); - const Function *Fn = dyn_cast<Function>(Callee); - if (isa<InlineAsm>(Callee)) - visitInlineAsm(&I); - else if (Fn && Fn->isIntrinsic()) { - switch (Fn->getIntrinsicID()) { - default: - llvm_unreachable("Cannot invoke this intrinsic"); - case Intrinsic::donothing: - // Ignore invokes to @llvm.donothing: jump directly to the next BB. - break; - case Intrinsic::experimental_patchpoint_void: - case Intrinsic::experimental_patchpoint_i64: - visitPatchpoint(&I, EHPadBB); - break; - case Intrinsic::experimental_gc_statepoint: - LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); - break; - case Intrinsic::wasm_rethrow_in_catch: { - // This is usually done in visitTargetIntrinsic, but this intrinsic is - // special because it can be invoked, so we manually lower it to a DAG - // node here. - SmallVector<SDValue, 8> Ops; - Ops.push_back(getRoot()); // inchain - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - Ops.push_back( - DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), - TLI.getPointerTy(DAG.getDataLayout()))); - SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain - DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); - break; - } - } - } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { - // Currently we do not lower any intrinsic calls with deopt operand bundles. - // Eventually we will support lowering the @llvm.experimental.deoptimize - // intrinsic, and right now there are no plans to support other intrinsics - // with deopt state. - LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); - } else { - LowerCallTo(&I, getValue(Callee), false, EHPadBB); - } - - // If the value of the invoke is used outside of its defining block, make it - // available as a virtual register. - // We already took care of the exported value for the statepoint instruction - // during call to the LowerStatepoint. - if (!isStatepoint(I)) { - CopyToExportRegsIfNeeded(&I); - } - - SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; - BranchProbabilityInfo *BPI = FuncInfo.BPI; - BranchProbability EHPadBBProb = - BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) - : BranchProbability::getZero(); - findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); - - // Update successor info. - addSuccessorWithProb(InvokeMBB, Return); - for (auto &UnwindDest : UnwindDests) { - UnwindDest.first->setIsEHPad(); - addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); - } - InvokeMBB->normalizeSuccProbs(); - - // Drop into normal successor. - DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), - DAG.getBasicBlock(Return))); -} - -void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { - MachineBasicBlock *CallBrMBB = FuncInfo.MBB; - - // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't - // have to do anything here to lower funclet bundles. - assert(!I.hasOperandBundlesOtherThan( - {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && - "Cannot lower callbrs with arbitrary operand bundles yet!"); - - assert(isa<InlineAsm>(I.getCalledValue()) && - "Only know how to handle inlineasm callbr"); - visitInlineAsm(&I); - - // Retrieve successors. - MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; - - // Update successor info. - addSuccessorWithProb(CallBrMBB, Return); - for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { - MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; - addSuccessorWithProb(CallBrMBB, Target); - } - CallBrMBB->normalizeSuccProbs(); - - // Drop into default successor. - DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), - MVT::Other, getControlRoot(), - DAG.getBasicBlock(Return))); -} - -void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { - llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); -} - -void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { - assert(FuncInfo.MBB->isEHPad() && - "Call to landingpad not in landing pad!"); - - // If there aren't registers to copy the values into (e.g., during SjLj - // exceptions), then don't bother to create these DAG nodes. - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); - if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && - TLI.getExceptionSelectorRegister(PersonalityFn) == 0) - return; - - // If landingpad's return type is token type, we don't create DAG nodes - // for its exception pointer and selector value. The extraction of exception - // pointer or selector value from token type landingpads is not currently - // supported. - if (LP.getType()->isTokenTy()) - return; - - SmallVector<EVT, 2> ValueVTs; - SDLoc dl = getCurSDLoc(); - ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); - assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); - - // Get the two live-in registers as SDValues. The physregs have already been - // copied into virtual registers. - SDValue Ops[2]; - if (FuncInfo.ExceptionPointerVirtReg) { - Ops[0] = DAG.getZExtOrTrunc( - DAG.getCopyFromReg(DAG.getEntryNode(), dl, - FuncInfo.ExceptionPointerVirtReg, - TLI.getPointerTy(DAG.getDataLayout())), - dl, ValueVTs[0]); - } else { - Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); - } - Ops[1] = DAG.getZExtOrTrunc( - DAG.getCopyFromReg(DAG.getEntryNode(), dl, - FuncInfo.ExceptionSelectorVirtReg, - TLI.getPointerTy(DAG.getDataLayout())), - dl, ValueVTs[1]); - - // Merge into one. - SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, - DAG.getVTList(ValueVTs), Ops); - setValue(&LP, Res); -} - -void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, - MachineBasicBlock *Last) { - // Update JTCases. - for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) - if (SL->JTCases[i].first.HeaderBB == First) - SL->JTCases[i].first.HeaderBB = Last; - - // Update BitTestCases. - for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) - if (SL->BitTestCases[i].Parent == First) - SL->BitTestCases[i].Parent = Last; -} - -void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { - MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; - - // Update machine-CFG edges with unique successors. - SmallSet<BasicBlock*, 32> Done; - for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { - BasicBlock *BB = I.getSuccessor(i); - bool Inserted = Done.insert(BB).second; - if (!Inserted) - continue; - - MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; - addSuccessorWithProb(IndirectBrMBB, Succ); - } - IndirectBrMBB->normalizeSuccProbs(); - - DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), - MVT::Other, getControlRoot(), - getValue(I.getAddress()))); -} - -void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { - if (!DAG.getTarget().Options.TrapUnreachable) - return; - - // We may be able to ignore unreachable behind a noreturn call. - if (DAG.getTarget().Options.NoTrapAfterNoreturn) { - const BasicBlock &BB = *I.getParent(); - if (&I != &BB.front()) { - BasicBlock::const_iterator PredI = - std::prev(BasicBlock::const_iterator(&I)); - if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { - if (Call->doesNotReturn()) - return; - } - } - } - - DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); -} - -void SelectionDAGBuilder::visitFSub(const User &I) { - // -0.0 - X --> fneg - Type *Ty = I.getType(); - if (isa<Constant>(I.getOperand(0)) && - I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { - SDValue Op2 = getValue(I.getOperand(1)); - setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), - Op2.getValueType(), Op2)); - return; - } - - visitBinary(I, ISD::FSUB); -} - -/// Checks if the given instruction performs a vector reduction, in which case -/// we have the freedom to alter the elements in the result as long as the -/// reduction of them stays unchanged. -static bool isVectorReductionOp(const User *I) { - const Instruction *Inst = dyn_cast<Instruction>(I); - if (!Inst || !Inst->getType()->isVectorTy()) - return false; - - auto OpCode = Inst->getOpcode(); - switch (OpCode) { - case Instruction::Add: - case Instruction::Mul: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - break; - case Instruction::FAdd: - case Instruction::FMul: - if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) - if (FPOp->getFastMathFlags().isFast()) - break; - LLVM_FALLTHROUGH; - default: - return false; - } - - unsigned ElemNum = Inst->getType()->getVectorNumElements(); - // Ensure the reduction size is a power of 2. - if (!isPowerOf2_32(ElemNum)) - return false; - - unsigned ElemNumToReduce = ElemNum; - - // Do DFS search on the def-use chain from the given instruction. We only - // allow four kinds of operations during the search until we reach the - // instruction that extracts the first element from the vector: - // - // 1. The reduction operation of the same opcode as the given instruction. - // - // 2. PHI node. - // - // 3. ShuffleVector instruction together with a reduction operation that - // does a partial reduction. - // - // 4. ExtractElement that extracts the first element from the vector, and we - // stop searching the def-use chain here. - // - // 3 & 4 above perform a reduction on all elements of the vector. We push defs - // from 1-3 to the stack to continue the DFS. The given instruction is not - // a reduction operation if we meet any other instructions other than those - // listed above. - - SmallVector<const User *, 16> UsersToVisit{Inst}; - SmallPtrSet<const User *, 16> Visited; - bool ReduxExtracted = false; - - while (!UsersToVisit.empty()) { - auto User = UsersToVisit.back(); - UsersToVisit.pop_back(); - if (!Visited.insert(User).second) - continue; - - for (const auto &U : User->users()) { - auto Inst = dyn_cast<Instruction>(U); - if (!Inst) - return false; - - if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { - if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) - if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) - return false; - UsersToVisit.push_back(U); - } else if (const ShuffleVectorInst *ShufInst = - dyn_cast<ShuffleVectorInst>(U)) { - // Detect the following pattern: A ShuffleVector instruction together - // with a reduction that do partial reduction on the first and second - // ElemNumToReduce / 2 elements, and store the result in - // ElemNumToReduce / 2 elements in another vector. - - unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); - if (ResultElements < ElemNum) - return false; - - if (ElemNumToReduce == 1) - return false; - if (!isa<UndefValue>(U->getOperand(1))) - return false; - for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) - if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) - return false; - for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) - if (ShufInst->getMaskValue(i) != -1) - return false; - - // There is only one user of this ShuffleVector instruction, which - // must be a reduction operation. - if (!U->hasOneUse()) - return false; - - auto U2 = dyn_cast<Instruction>(*U->user_begin()); - if (!U2 || U2->getOpcode() != OpCode) - return false; - - // Check operands of the reduction operation. - if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || - (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { - UsersToVisit.push_back(U2); - ElemNumToReduce /= 2; - } else - return false; - } else if (isa<ExtractElementInst>(U)) { - // At this moment we should have reduced all elements in the vector. - if (ElemNumToReduce != 1) - return false; - - const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); - if (!Val || !Val->isZero()) - return false; - - ReduxExtracted = true; - } else - return false; - } - } - return ReduxExtracted; -} - -void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { - SDNodeFlags Flags; - - SDValue Op = getValue(I.getOperand(0)); - SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), - Op, Flags); - setValue(&I, UnNodeValue); -} - -void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { - SDNodeFlags Flags; - if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { - Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); - Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); - } - if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { - Flags.setExact(ExactOp->isExact()); - } - if (isVectorReductionOp(&I)) { - Flags.setVectorReduction(true); - LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); - } - - SDValue Op1 = getValue(I.getOperand(0)); - SDValue Op2 = getValue(I.getOperand(1)); - SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), - Op1, Op2, Flags); - setValue(&I, BinNodeValue); -} - -void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { - SDValue Op1 = getValue(I.getOperand(0)); - SDValue Op2 = getValue(I.getOperand(1)); - - EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( - Op1.getValueType(), DAG.getDataLayout()); - - // Coerce the shift amount to the right type if we can. - if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { - unsigned ShiftSize = ShiftTy.getSizeInBits(); - unsigned Op2Size = Op2.getValueSizeInBits(); - SDLoc DL = getCurSDLoc(); - - // If the operand is smaller than the shift count type, promote it. - if (ShiftSize > Op2Size) - Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); - - // If the operand is larger than the shift count type but the shift - // count type has enough bits to represent any shift value, truncate - // it now. This is a common case and it exposes the truncate to - // optimization early. - else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) - Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); - // Otherwise we'll need to temporarily settle for some other convenient - // type. Type legalization will make adjustments once the shiftee is split. - else - Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); - } - - bool nuw = false; - bool nsw = false; - bool exact = false; - - if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { - - if (const OverflowingBinaryOperator *OFBinOp = - dyn_cast<const OverflowingBinaryOperator>(&I)) { - nuw = OFBinOp->hasNoUnsignedWrap(); - nsw = OFBinOp->hasNoSignedWrap(); - } - if (const PossiblyExactOperator *ExactOp = - dyn_cast<const PossiblyExactOperator>(&I)) - exact = ExactOp->isExact(); - } - SDNodeFlags Flags; - Flags.setExact(exact); - Flags.setNoSignedWrap(nsw); - Flags.setNoUnsignedWrap(nuw); - SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, - Flags); - setValue(&I, Res); -} - -void SelectionDAGBuilder::visitSDiv(const User &I) { - SDValue Op1 = getValue(I.getOperand(0)); - SDValue Op2 = getValue(I.getOperand(1)); - - SDNodeFlags Flags; - Flags.setExact(isa<PossiblyExactOperator>(&I) && - cast<PossiblyExactOperator>(&I)->isExact()); - setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, - Op2, Flags)); -} - -void SelectionDAGBuilder::visitICmp(const User &I) { - ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; - if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) - predicate = IC->getPredicate(); - else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) - predicate = ICmpInst::Predicate(IC->getPredicate()); - SDValue Op1 = getValue(I.getOperand(0)); - SDValue Op2 = getValue(I.getOperand(1)); - ISD::CondCode Opcode = getICmpCondCode(predicate); - - auto &TLI = DAG.getTargetLoweringInfo(); - EVT MemVT = - TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); - - // If a pointer's DAG type is larger than its memory type then the DAG values - // are zero-extended. This breaks signed comparisons so truncate back to the - // underlying type before doing the compare. - if (Op1.getValueType() != MemVT) { - Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); - Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); - } - - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); -} - -void SelectionDAGBuilder::visitFCmp(const User &I) { - FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; - if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) - predicate = FC->getPredicate(); - else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) - predicate = FCmpInst::Predicate(FC->getPredicate()); - SDValue Op1 = getValue(I.getOperand(0)); - SDValue Op2 = getValue(I.getOperand(1)); - - ISD::CondCode Condition = getFCmpCondCode(predicate); - auto *FPMO = dyn_cast<FPMathOperator>(&I); - if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) - Condition = getFCmpCodeWithoutNaN(Condition); - - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); -} - -// Check if the condition of the select has one use or two users that are both -// selects with the same condition. -static bool hasOnlySelectUsers(const Value *Cond) { - return llvm::all_of(Cond->users(), [](const Value *V) { - return isa<SelectInst>(V); - }); -} - -void SelectionDAGBuilder::visitSelect(const User &I) { - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), - ValueVTs); - unsigned NumValues = ValueVTs.size(); - if (NumValues == 0) return; - - SmallVector<SDValue, 4> Values(NumValues); - SDValue Cond = getValue(I.getOperand(0)); - SDValue LHSVal = getValue(I.getOperand(1)); - SDValue RHSVal = getValue(I.getOperand(2)); - auto BaseOps = {Cond}; - ISD::NodeType OpCode = Cond.getValueType().isVector() ? - ISD::VSELECT : ISD::SELECT; - - bool IsUnaryAbs = false; - - // Min/max matching is only viable if all output VTs are the same. - if (is_splat(ValueVTs)) { - EVT VT = ValueVTs[0]; - LLVMContext &Ctx = *DAG.getContext(); - auto &TLI = DAG.getTargetLoweringInfo(); - - // We care about the legality of the operation after it has been type - // legalized. - while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && - VT != TLI.getTypeToTransformTo(Ctx, VT)) - VT = TLI.getTypeToTransformTo(Ctx, VT); - - // If the vselect is legal, assume we want to leave this as a vector setcc + - // vselect. Otherwise, if this is going to be scalarized, we want to see if - // min/max is legal on the scalar type. - bool UseScalarMinMax = VT.isVector() && - !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); - - Value *LHS, *RHS; - auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); - ISD::NodeType Opc = ISD::DELETED_NODE; - switch (SPR.Flavor) { - case SPF_UMAX: Opc = ISD::UMAX; break; - case SPF_UMIN: Opc = ISD::UMIN; break; - case SPF_SMAX: Opc = ISD::SMAX; break; - case SPF_SMIN: Opc = ISD::SMIN; break; - case SPF_FMINNUM: - switch (SPR.NaNBehavior) { - case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); - case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; - case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; - case SPNB_RETURNS_ANY: { - if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) - Opc = ISD::FMINNUM; - else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) - Opc = ISD::FMINIMUM; - else if (UseScalarMinMax) - Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? - ISD::FMINNUM : ISD::FMINIMUM; - break; - } - } - break; - case SPF_FMAXNUM: - switch (SPR.NaNBehavior) { - case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); - case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; - case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; - case SPNB_RETURNS_ANY: - - if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) - Opc = ISD::FMAXNUM; - else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) - Opc = ISD::FMAXIMUM; - else if (UseScalarMinMax) - Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? - ISD::FMAXNUM : ISD::FMAXIMUM; - break; - } - break; - case SPF_ABS: - IsUnaryAbs = true; - Opc = ISD::ABS; - break; - case SPF_NABS: - // TODO: we need to produce sub(0, abs(X)). - default: break; - } - - if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && - (TLI.isOperationLegalOrCustom(Opc, VT) || - (UseScalarMinMax && - TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && - // If the underlying comparison instruction is used by any other - // instruction, the consumed instructions won't be destroyed, so it is - // not profitable to convert to a min/max. - hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { - OpCode = Opc; - LHSVal = getValue(LHS); - RHSVal = getValue(RHS); - BaseOps = {}; - } - - if (IsUnaryAbs) { - OpCode = Opc; - LHSVal = getValue(LHS); - BaseOps = {}; - } - } - - if (IsUnaryAbs) { - for (unsigned i = 0; i != NumValues; ++i) { - Values[i] = - DAG.getNode(OpCode, getCurSDLoc(), - LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), - SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); - } - } else { - for (unsigned i = 0; i != NumValues; ++i) { - SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); - Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); - Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); - Values[i] = DAG.getNode( - OpCode, getCurSDLoc(), - LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); - } - } - - setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), - DAG.getVTList(ValueVTs), Values)); -} - -void SelectionDAGBuilder::visitTrunc(const User &I) { - // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); -} - -void SelectionDAGBuilder::visitZExt(const User &I) { - // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). - // ZExt also can't be a cast to bool for same reason. So, nothing much to do - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); -} - -void SelectionDAGBuilder::visitSExt(const User &I) { - // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). - // SExt also can't be a cast to bool for same reason. So, nothing much to do - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); -} - -void SelectionDAGBuilder::visitFPTrunc(const User &I) { - // FPTrunc is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - SDLoc dl = getCurSDLoc(); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, - DAG.getTargetConstant( - 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); -} - -void SelectionDAGBuilder::visitFPExt(const User &I) { - // FPExt is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); -} - -void SelectionDAGBuilder::visitFPToUI(const User &I) { - // FPToUI is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); -} - -void SelectionDAGBuilder::visitFPToSI(const User &I) { - // FPToSI is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); -} - -void SelectionDAGBuilder::visitUIToFP(const User &I) { - // UIToFP is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); -} - -void SelectionDAGBuilder::visitSIToFP(const User &I) { - // SIToFP is never a no-op cast, no need to check - SDValue N = getValue(I.getOperand(0)); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); -} - -void SelectionDAGBuilder::visitPtrToInt(const User &I) { - // What to do depends on the size of the integer and the size of the pointer. - // We can either truncate, zero extend, or no-op, accordingly. - SDValue N = getValue(I.getOperand(0)); - auto &TLI = DAG.getTargetLoweringInfo(); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - EVT PtrMemVT = - TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); - N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); - N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); - setValue(&I, N); -} - -void SelectionDAGBuilder::visitIntToPtr(const User &I) { - // What to do depends on the size of the integer and the size of the pointer. - // We can either truncate, zero extend, or no-op, accordingly. - SDValue N = getValue(I.getOperand(0)); - auto &TLI = DAG.getTargetLoweringInfo(); - EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); - N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); - N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); - setValue(&I, N); -} - -void SelectionDAGBuilder::visitBitCast(const User &I) { - SDValue N = getValue(I.getOperand(0)); - SDLoc dl = getCurSDLoc(); - EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType()); - - // BitCast assures us that source and destination are the same size so this is - // either a BITCAST or a no-op. - if (DestVT != N.getValueType()) - setValue(&I, DAG.getNode(ISD::BITCAST, dl, - DestVT, N)); // convert types. - // Check if the original LLVM IR Operand was a ConstantInt, because getValue() - // might fold any kind of constant expression to an integer constant and that - // is not what we are looking for. Only recognize a bitcast of a genuine - // constant integer as an opaque constant. - else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) - setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, - /*isOpaque*/true)); - else - setValue(&I, N); // noop cast. -} - -void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - const Value *SV = I.getOperand(0); - SDValue N = getValue(SV); - EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - - unsigned SrcAS = SV->getType()->getPointerAddressSpace(); - unsigned DestAS = I.getType()->getPointerAddressSpace(); - - if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) - N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); - - setValue(&I, N); -} - -void SelectionDAGBuilder::visitInsertElement(const User &I) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue InVec = getValue(I.getOperand(0)); - SDValue InVal = getValue(I.getOperand(1)); - SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), - TLI.getVectorIdxTy(DAG.getDataLayout())); - setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), - TLI.getValueType(DAG.getDataLayout(), I.getType()), - InVec, InVal, InIdx)); -} - -void SelectionDAGBuilder::visitExtractElement(const User &I) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue InVec = getValue(I.getOperand(0)); - SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), - TLI.getVectorIdxTy(DAG.getDataLayout())); - setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), - TLI.getValueType(DAG.getDataLayout(), I.getType()), - InVec, InIdx)); -} - -void SelectionDAGBuilder::visitShuffleVector(const User &I) { - SDValue Src1 = getValue(I.getOperand(0)); - SDValue Src2 = getValue(I.getOperand(1)); - SDLoc DL = getCurSDLoc(); - - SmallVector<int, 8> Mask; - ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); - unsigned MaskNumElts = Mask.size(); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - EVT SrcVT = Src1.getValueType(); - unsigned SrcNumElts = SrcVT.getVectorNumElements(); - - if (SrcNumElts == MaskNumElts) { - setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); - return; - } - - // Normalize the shuffle vector since mask and vector length don't match. - if (SrcNumElts < MaskNumElts) { - // Mask is longer than the source vectors. We can use concatenate vector to - // make the mask and vectors lengths match. - - if (MaskNumElts % SrcNumElts == 0) { - // Mask length is a multiple of the source vector length. - // Check if the shuffle is some kind of concatenation of the input - // vectors. - unsigned NumConcat = MaskNumElts / SrcNumElts; - bool IsConcat = true; - SmallVector<int, 8> ConcatSrcs(NumConcat, -1); - for (unsigned i = 0; i != MaskNumElts; ++i) { - int Idx = Mask[i]; - if (Idx < 0) - continue; - // Ensure the indices in each SrcVT sized piece are sequential and that - // the same source is used for the whole piece. - if ((Idx % SrcNumElts != (i % SrcNumElts)) || - (ConcatSrcs[i / SrcNumElts] >= 0 && - ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { - IsConcat = false; - break; - } - // Remember which source this index came from. - ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; - } - - // The shuffle is concatenating multiple vectors together. Just emit - // a CONCAT_VECTORS operation. - if (IsConcat) { - SmallVector<SDValue, 8> ConcatOps; - for (auto Src : ConcatSrcs) { - if (Src < 0) - ConcatOps.push_back(DAG.getUNDEF(SrcVT)); - else if (Src == 0) - ConcatOps.push_back(Src1); - else - ConcatOps.push_back(Src2); - } - setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); - return; - } - } - - unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); - unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; - EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), - PaddedMaskNumElts); - - // Pad both vectors with undefs to make them the same length as the mask. - SDValue UndefVal = DAG.getUNDEF(SrcVT); - - SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); - SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); - MOps1[0] = Src1; - MOps2[0] = Src2; - - Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); - Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); - - // Readjust mask for new input vector length. - SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); - for (unsigned i = 0; i != MaskNumElts; ++i) { - int Idx = Mask[i]; - if (Idx >= (int)SrcNumElts) - Idx -= SrcNumElts - PaddedMaskNumElts; - MappedOps[i] = Idx; - } - - SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); - - // If the concatenated vector was padded, extract a subvector with the - // correct number of elements. - if (MaskNumElts != PaddedMaskNumElts) - Result = DAG.getNode( - ISD::EXTRACT_SUBVECTOR, DL, VT, Result, - DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); - - setValue(&I, Result); - return; - } - - if (SrcNumElts > MaskNumElts) { - // Analyze the access pattern of the vector to see if we can extract - // two subvectors and do the shuffle. - int StartIdx[2] = { -1, -1 }; // StartIdx to extract from - bool CanExtract = true; - for (int Idx : Mask) { - unsigned Input = 0; - if (Idx < 0) - continue; - - if (Idx >= (int)SrcNumElts) { - Input = 1; - Idx -= SrcNumElts; - } - - // If all the indices come from the same MaskNumElts sized portion of - // the sources we can use extract. Also make sure the extract wouldn't - // extract past the end of the source. - int NewStartIdx = alignDown(Idx, MaskNumElts); - if (NewStartIdx + MaskNumElts > SrcNumElts || - (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) - CanExtract = false; - // Make sure we always update StartIdx as we use it to track if all - // elements are undef. - StartIdx[Input] = NewStartIdx; - } - - if (StartIdx[0] < 0 && StartIdx[1] < 0) { - setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. - return; - } - if (CanExtract) { - // Extract appropriate subvector and generate a vector shuffle - for (unsigned Input = 0; Input < 2; ++Input) { - SDValue &Src = Input == 0 ? Src1 : Src2; - if (StartIdx[Input] < 0) - Src = DAG.getUNDEF(VT); - else { - Src = DAG.getNode( - ISD::EXTRACT_SUBVECTOR, DL, VT, Src, - DAG.getConstant(StartIdx[Input], DL, - TLI.getVectorIdxTy(DAG.getDataLayout()))); - } - } - - // Calculate new mask. - SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); - for (int &Idx : MappedOps) { - if (Idx >= (int)SrcNumElts) - Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; - else if (Idx >= 0) - Idx -= StartIdx[0]; - } - - setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); - return; - } - } - - // We can't use either concat vectors or extract subvectors so fall back to - // replacing the shuffle with extract and build vector. - // to insert and build vector. - EVT EltVT = VT.getVectorElementType(); - EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); - SmallVector<SDValue,8> Ops; - for (int Idx : Mask) { - SDValue Res; - - if (Idx < 0) { - Res = DAG.getUNDEF(EltVT); - } else { - SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; - if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; - - Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, - EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); - } - - Ops.push_back(Res); - } - - setValue(&I, DAG.getBuildVector(VT, DL, Ops)); -} - -void SelectionDAGBuilder::visitInsertValue(const User &I) { - ArrayRef<unsigned> Indices; - if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) - Indices = IV->getIndices(); - else - Indices = cast<ConstantExpr>(&I)->getIndices(); - - const Value *Op0 = I.getOperand(0); - const Value *Op1 = I.getOperand(1); - Type *AggTy = I.getType(); - Type *ValTy = Op1->getType(); - bool IntoUndef = isa<UndefValue>(Op0); - bool FromUndef = isa<UndefValue>(Op1); - - unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SmallVector<EVT, 4> AggValueVTs; - ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); - SmallVector<EVT, 4> ValValueVTs; - ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); - - unsigned NumAggValues = AggValueVTs.size(); - unsigned NumValValues = ValValueVTs.size(); - SmallVector<SDValue, 4> Values(NumAggValues); - - // Ignore an insertvalue that produces an empty object - if (!NumAggValues) { - setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); - return; - } - - SDValue Agg = getValue(Op0); - unsigned i = 0; - // Copy the beginning value(s) from the original aggregate. - for (; i != LinearIndex; ++i) - Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : - SDValue(Agg.getNode(), Agg.getResNo() + i); - // Copy values from the inserted value(s). - if (NumValValues) { - SDValue Val = getValue(Op1); - for (; i != LinearIndex + NumValValues; ++i) - Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : - SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); - } - // Copy remaining value(s) from the original aggregate. - for (; i != NumAggValues; ++i) - Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : - SDValue(Agg.getNode(), Agg.getResNo() + i); - - setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), - DAG.getVTList(AggValueVTs), Values)); -} - -void SelectionDAGBuilder::visitExtractValue(const User &I) { - ArrayRef<unsigned> Indices; - if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) - Indices = EV->getIndices(); - else - Indices = cast<ConstantExpr>(&I)->getIndices(); - - const Value *Op0 = I.getOperand(0); - Type *AggTy = Op0->getType(); - Type *ValTy = I.getType(); - bool OutOfUndef = isa<UndefValue>(Op0); - - unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SmallVector<EVT, 4> ValValueVTs; - ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); - - unsigned NumValValues = ValValueVTs.size(); - - // Ignore a extractvalue that produces an empty object - if (!NumValValues) { - setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); - return; - } - - SmallVector<SDValue, 4> Values(NumValValues); - - SDValue Agg = getValue(Op0); - // Copy out the selected value(s). - for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) - Values[i - LinearIndex] = - OutOfUndef ? - DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : - SDValue(Agg.getNode(), Agg.getResNo() + i); - - setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), - DAG.getVTList(ValValueVTs), Values)); -} - -void SelectionDAGBuilder::visitGetElementPtr(const User &I) { - Value *Op0 = I.getOperand(0); - // Note that the pointer operand may be a vector of pointers. Take the scalar - // element which holds a pointer. - unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); - SDValue N = getValue(Op0); - SDLoc dl = getCurSDLoc(); - auto &TLI = DAG.getTargetLoweringInfo(); - MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); - MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); - - // Normalize Vector GEP - all scalar operands should be converted to the - // splat vector. - unsigned VectorWidth = I.getType()->isVectorTy() ? - cast<VectorType>(I.getType())->getVectorNumElements() : 0; - - if (VectorWidth && !N.getValueType().isVector()) { - LLVMContext &Context = *DAG.getContext(); - EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); - N = DAG.getSplatBuildVector(VT, dl, N); - } - - for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); - GTI != E; ++GTI) { - const Value *Idx = GTI.getOperand(); - if (StructType *StTy = GTI.getStructTypeOrNull()) { - unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); - if (Field) { - // N = N + Offset - uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); - - // In an inbounds GEP with an offset that is nonnegative even when - // interpreted as signed, assume there is no unsigned overflow. - SDNodeFlags Flags; - if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) - Flags.setNoUnsignedWrap(true); - - N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, - DAG.getConstant(Offset, dl, N.getValueType()), Flags); - } - } else { - unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); - MVT IdxTy = MVT::getIntegerVT(IdxSize); - APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); - - // If this is a scalar constant or a splat vector of constants, - // handle it quickly. - const auto *CI = dyn_cast<ConstantInt>(Idx); - if (!CI && isa<ConstantDataVector>(Idx) && - cast<ConstantDataVector>(Idx)->getSplatValue()) - CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); - - if (CI) { - if (CI->isZero()) - continue; - APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); - LLVMContext &Context = *DAG.getContext(); - SDValue OffsVal = VectorWidth ? - DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : - DAG.getConstant(Offs, dl, IdxTy); - - // In an inbouds GEP with an offset that is nonnegative even when - // interpreted as signed, assume there is no unsigned overflow. - SDNodeFlags Flags; - if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) - Flags.setNoUnsignedWrap(true); - - OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); - - N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); - continue; - } - - // N = N + Idx * ElementSize; - SDValue IdxN = getValue(Idx); - - if (!IdxN.getValueType().isVector() && VectorWidth) { - EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); - IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); - } - - // If the index is smaller or larger than intptr_t, truncate or extend - // it. - IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); - - // If this is a multiply by a power of two, turn it into a shl - // immediately. This is a very common case. - if (ElementSize != 1) { - if (ElementSize.isPowerOf2()) { - unsigned Amt = ElementSize.logBase2(); - IdxN = DAG.getNode(ISD::SHL, dl, - N.getValueType(), IdxN, - DAG.getConstant(Amt, dl, IdxN.getValueType())); - } else { - SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, - IdxN.getValueType()); - IdxN = DAG.getNode(ISD::MUL, dl, - N.getValueType(), IdxN, Scale); - } - } - - N = DAG.getNode(ISD::ADD, dl, - N.getValueType(), N, IdxN); - } - } - - if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) - N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); - - setValue(&I, N); -} - -void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { - // If this is a fixed sized alloca in the entry block of the function, - // allocate it statically on the stack. - if (FuncInfo.StaticAllocaMap.count(&I)) - return; // getValue will auto-populate this. - - SDLoc dl = getCurSDLoc(); - Type *Ty = I.getAllocatedType(); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - auto &DL = DAG.getDataLayout(); - uint64_t TySize = DL.getTypeAllocSize(Ty); - unsigned Align = - std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); - - SDValue AllocSize = getValue(I.getArraySize()); - - EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); - if (AllocSize.getValueType() != IntPtr) - AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); - - AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, - AllocSize, - DAG.getConstant(TySize, dl, IntPtr)); - - // Handle alignment. If the requested alignment is less than or equal to - // the stack alignment, ignore it. If the size is greater than or equal to - // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. - unsigned StackAlign = - DAG.getSubtarget().getFrameLowering()->getStackAlignment(); - if (Align <= StackAlign) - Align = 0; - - // Round the size of the allocation up to the stack alignment size - // by add SA-1 to the size. This doesn't overflow because we're computing - // an address inside an alloca. - SDNodeFlags Flags; - Flags.setNoUnsignedWrap(true); - AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, - DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); - - // Mask out the low bits for alignment purposes. - AllocSize = - DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, - DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); - - SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; - SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); - SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); - setValue(&I, DSA); - DAG.setRoot(DSA.getValue(1)); - - assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); -} - -void SelectionDAGBuilder::visitLoad(const LoadInst &I) { - if (I.isAtomic()) - return visitAtomicLoad(I); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - const Value *SV = I.getOperand(0); - if (TLI.supportSwiftError()) { - // Swifterror values can come from either a function parameter with - // swifterror attribute or an alloca with swifterror attribute. - if (const Argument *Arg = dyn_cast<Argument>(SV)) { - if (Arg->hasSwiftErrorAttr()) - return visitLoadFromSwiftError(I); - } - - if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { - if (Alloca->isSwiftError()) - return visitLoadFromSwiftError(I); - } - } - - SDValue Ptr = getValue(SV); - - Type *Ty = I.getType(); - - bool isVolatile = I.isVolatile(); - bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; - bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; - bool isDereferenceable = - isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); - unsigned Alignment = I.getAlignment(); - - AAMDNodes AAInfo; - I.getAAMetadata(AAInfo); - const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); - - SmallVector<EVT, 4> ValueVTs, MemVTs; - SmallVector<uint64_t, 4> Offsets; - ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); - unsigned NumValues = ValueVTs.size(); - if (NumValues == 0) - return; - - SDValue Root; - bool ConstantMemory = false; - if (isVolatile || NumValues > MaxParallelChains) - // Serialize volatile loads with other side effects. - Root = getRoot(); - else if (AA && - AA->pointsToConstantMemory(MemoryLocation( - SV, - LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), - AAInfo))) { - // Do not serialize (non-volatile) loads of constant memory with anything. - Root = DAG.getEntryNode(); - ConstantMemory = true; - } else { - // Do not serialize non-volatile loads against each other. - Root = DAG.getRoot(); - } - - SDLoc dl = getCurSDLoc(); - - if (isVolatile) - Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); - - // An aggregate load cannot wrap around the address space, so offsets to its - // parts don't wrap either. - SDNodeFlags Flags; - Flags.setNoUnsignedWrap(true); - - SmallVector<SDValue, 4> Values(NumValues); - SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); - EVT PtrVT = Ptr.getValueType(); - unsigned ChainI = 0; - for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { - // Serializing loads here may result in excessive register pressure, and - // TokenFactor places arbitrary choke points on the scheduler. SD scheduling - // could recover a bit by hoisting nodes upward in the chain by recognizing - // they are side-effect free or do not alias. The optimizer should really - // avoid this case by converting large object/array copies to llvm.memcpy - // (MaxParallelChains should always remain as failsafe). - if (ChainI == MaxParallelChains) { - assert(PendingLoads.empty() && "PendingLoads must be serialized first"); - SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, - makeArrayRef(Chains.data(), ChainI)); - Root = Chain; - ChainI = 0; - } - SDValue A = DAG.getNode(ISD::ADD, dl, - PtrVT, Ptr, - DAG.getConstant(Offsets[i], dl, PtrVT), - Flags); - auto MMOFlags = MachineMemOperand::MONone; - if (isVolatile) - MMOFlags |= MachineMemOperand::MOVolatile; - if (isNonTemporal) - MMOFlags |= MachineMemOperand::MONonTemporal; - if (isInvariant) - MMOFlags |= MachineMemOperand::MOInvariant; - if (isDereferenceable) - MMOFlags |= MachineMemOperand::MODereferenceable; - MMOFlags |= TLI.getMMOFlags(I); - - SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, - MachinePointerInfo(SV, Offsets[i]), Alignment, - MMOFlags, AAInfo, Ranges); - Chains[ChainI] = L.getValue(1); - - if (MemVTs[i] != ValueVTs[i]) - L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); - - Values[i] = L; - } - - if (!ConstantMemory) { - SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, - makeArrayRef(Chains.data(), ChainI)); - if (isVolatile) - DAG.setRoot(Chain); - else - PendingLoads.push_back(Chain); - } - - setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, - DAG.getVTList(ValueVTs), Values)); -} - -void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { - assert(DAG.getTargetLoweringInfo().supportSwiftError() && - "call visitStoreToSwiftError when backend supports swifterror"); - - SmallVector<EVT, 4> ValueVTs; - SmallVector<uint64_t, 4> Offsets; - const Value *SrcV = I.getOperand(0); - ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), - SrcV->getType(), ValueVTs, &Offsets); - assert(ValueVTs.size() == 1 && Offsets[0] == 0 && - "expect a single EVT for swifterror"); - - SDValue Src = getValue(SrcV); - // Create a virtual register, then update the virtual register. - unsigned VReg = - SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); - // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue - // Chain can be getRoot or getControlRoot. - SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, - SDValue(Src.getNode(), Src.getResNo())); - DAG.setRoot(CopyNode); -} - -void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { - assert(DAG.getTargetLoweringInfo().supportSwiftError() && - "call visitLoadFromSwiftError when backend supports swifterror"); - - assert(!I.isVolatile() && - I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && - I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && - "Support volatile, non temporal, invariant for load_from_swift_error"); - - const Value *SV = I.getOperand(0); - Type *Ty = I.getType(); - AAMDNodes AAInfo; - I.getAAMetadata(AAInfo); - assert( - (!AA || - !AA->pointsToConstantMemory(MemoryLocation( - SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), - AAInfo))) && - "load_from_swift_error should not be constant memory"); - - SmallVector<EVT, 4> ValueVTs; - SmallVector<uint64_t, 4> Offsets; - ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, - ValueVTs, &Offsets); - assert(ValueVTs.size() == 1 && Offsets[0] == 0 && - "expect a single EVT for swifterror"); - - // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT - SDValue L = DAG.getCopyFromReg( - getRoot(), getCurSDLoc(), - SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); - - setValue(&I, L); -} - -void SelectionDAGBuilder::visitStore(const StoreInst &I) { - if (I.isAtomic()) - return visitAtomicStore(I); - - const Value *SrcV = I.getOperand(0); - const Value *PtrV = I.getOperand(1); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (TLI.supportSwiftError()) { - // Swifterror values can come from either a function parameter with - // swifterror attribute or an alloca with swifterror attribute. - if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { - if (Arg->hasSwiftErrorAttr()) - return visitStoreToSwiftError(I); - } - - if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { - if (Alloca->isSwiftError()) - return visitStoreToSwiftError(I); - } - } - - SmallVector<EVT, 4> ValueVTs, MemVTs; - SmallVector<uint64_t, 4> Offsets; - ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), - SrcV->getType(), ValueVTs, &MemVTs, &Offsets); - unsigned NumValues = ValueVTs.size(); - if (NumValues == 0) - return; - - // Get the lowered operands. Note that we do this after - // checking if NumResults is zero, because with zero results - // the operands won't have values in the map. - SDValue Src = getValue(SrcV); - SDValue Ptr = getValue(PtrV); - - SDValue Root = getRoot(); - SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); - SDLoc dl = getCurSDLoc(); - EVT PtrVT = Ptr.getValueType(); - unsigned Alignment = I.getAlignment(); - AAMDNodes AAInfo; - I.getAAMetadata(AAInfo); - - auto MMOFlags = MachineMemOperand::MONone; - if (I.isVolatile()) - MMOFlags |= MachineMemOperand::MOVolatile; - if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) - MMOFlags |= MachineMemOperand::MONonTemporal; - MMOFlags |= TLI.getMMOFlags(I); - - // An aggregate load cannot wrap around the address space, so offsets to its - // parts don't wrap either. - SDNodeFlags Flags; - Flags.setNoUnsignedWrap(true); - - unsigned ChainI = 0; - for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { - // See visitLoad comments. - if (ChainI == MaxParallelChains) { - SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, - makeArrayRef(Chains.data(), ChainI)); - Root = Chain; - ChainI = 0; - } - SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, - DAG.getConstant(Offsets[i], dl, PtrVT), Flags); - SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); - if (MemVTs[i] != ValueVTs[i]) - Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); - SDValue St = - DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), - Alignment, MMOFlags, AAInfo); - Chains[ChainI] = St; - } - - SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, - makeArrayRef(Chains.data(), ChainI)); - DAG.setRoot(StoreNode); -} - -void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, - bool IsCompressing) { - SDLoc sdl = getCurSDLoc(); - - auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, - unsigned& Alignment) { - // llvm.masked.store.*(Src0, Ptr, alignment, Mask) - Src0 = I.getArgOperand(0); - Ptr = I.getArgOperand(1); - Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); - Mask = I.getArgOperand(3); - }; - auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, - unsigned& Alignment) { - // llvm.masked.compressstore.*(Src0, Ptr, Mask) - Src0 = I.getArgOperand(0); - Ptr = I.getArgOperand(1); - Mask = I.getArgOperand(2); - Alignment = 0; - }; - - Value *PtrOperand, *MaskOperand, *Src0Operand; - unsigned Alignment; - if (IsCompressing) - getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); - else - getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); - - SDValue Ptr = getValue(PtrOperand); - SDValue Src0 = getValue(Src0Operand); - SDValue Mask = getValue(MaskOperand); - - EVT VT = Src0.getValueType(); - if (!Alignment) - Alignment = DAG.getEVTAlignment(VT); - - AAMDNodes AAInfo; - I.getAAMetadata(AAInfo); - - MachineMemOperand *MMO = - DAG.getMachineFunction(). - getMachineMemOperand(MachinePointerInfo(PtrOperand), - MachineMemOperand::MOStore, VT.getStoreSize(), - Alignment, AAInfo); - SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, - MMO, false /* Truncating */, - IsCompressing); - DAG.setRoot(StoreNode); - setValue(&I, StoreNode); -} - -// Get a uniform base for the Gather/Scatter intrinsic. -// The first argument of the Gather/Scatter intrinsic is a vector of pointers. -// We try to represent it as a base pointer + vector of indices. -// Usually, the vector of pointers comes from a 'getelementptr' instruction. -// The first operand of the GEP may be a single pointer or a vector of pointers -// Example: -// %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind -// or -// %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind -// %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. -// -// When the first GEP operand is a single pointer - it is the uniform base we -// are looking for. If first operand of the GEP is a splat vector - we -// extract the splat value and use it as a uniform base. -// In all other cases the function returns 'false'. -static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, - SDValue &Scale, SelectionDAGBuilder* SDB) { - SelectionDAG& DAG = SDB->DAG; - LLVMContext &Context = *DAG.getContext(); - - assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); - const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); - if (!GEP) - return false; - - const Value *GEPPtr = GEP->getPointerOperand(); - if (!GEPPtr->getType()->isVectorTy()) - Ptr = GEPPtr; - else if (!(Ptr = getSplatValue(GEPPtr))) - return false; - - unsigned FinalIndex = GEP->getNumOperands() - 1; - Value *IndexVal = GEP->getOperand(FinalIndex); - - // Ensure all the other indices are 0. - for (unsigned i = 1; i < FinalIndex; ++i) { - auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); - if (!C || !C->isZero()) - return false; - } - - // The operands of the GEP may be defined in another basic block. - // In this case we'll not find nodes for the operands. - if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) - return false; - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - const DataLayout &DL = DAG.getDataLayout(); - Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), - SDB->getCurSDLoc(), TLI.getPointerTy(DL)); - Base = SDB->getValue(Ptr); - Index = SDB->getValue(IndexVal); - - if (!Index.getValueType().isVector()) { - unsigned GEPWidth = GEP->getType()->getVectorNumElements(); - EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); - Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); - } - return true; -} - -void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { - SDLoc sdl = getCurSDLoc(); - - // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) - const Value *Ptr = I.getArgOperand(1); - SDValue Src0 = getValue(I.getArgOperand(0)); - SDValue Mask = getValue(I.getArgOperand(3)); - EVT VT = Src0.getValueType(); - unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); - if (!Alignment) - Alignment = DAG.getEVTAlignment(VT); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - - AAMDNodes AAInfo; - I.getAAMetadata(AAInfo); - - SDValue Base; - SDValue Index; - SDValue Scale; - const Value *BasePtr = Ptr; - bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); - - const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; - MachineMemOperand *MMO = DAG.getMachineFunction(). - getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), - MachineMemOperand::MOStore, VT.getStoreSize(), - Alignment, AAInfo); - if (!UniformBase) { - Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); - Index = getValue(Ptr); - Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); - } - SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; - SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, - Ops, MMO); - DAG.setRoot(Scatter); - setValue(&I, Scatter); -} - -void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { - SDLoc sdl = getCurSDLoc(); - - auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, - unsigned& Alignment) { - // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) - Ptr = I.getArgOperand(0); - Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); - Mask = I.getArgOperand(2); - Src0 = I.getArgOperand(3); - }; - auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, - unsigned& Alignment) { - // @llvm.masked.expandload.*(Ptr, Mask, Src0) - Ptr = I.getArgOperand(0); - Alignment = 0; - Mask = I.getArgOperand(1); - Src0 = I.getArgOperand(2); - }; - - Value *PtrOperand, *MaskOperand, *Src0Operand; - unsigned Alignment; - if (IsExpanding) - getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); - else - getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); - - SDValue Ptr = getValue(PtrOperand); - SDValue Src0 = getValue(Src0Operand); - SDValue Mask = getValue(MaskOperand); - - EVT VT = Src0.getValueType(); - if (!Alignment) - Alignment = DAG.getEVTAlignment(VT); - - AAMDNodes AAInfo; - I.getAAMetadata(AAInfo); - const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); - - // Do not serialize masked loads of constant memory with anything. - bool AddToChain = - !AA || !AA->pointsToConstantMemory(MemoryLocation( - PtrOperand, - LocationSize::precise( - DAG.getDataLayout().getTypeStoreSize(I.getType())), - AAInfo)); - SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); - - MachineMemOperand *MMO = - DAG.getMachineFunction(). - getMachineMemOperand(MachinePointerInfo(PtrOperand), - MachineMemOperand::MOLoad, VT.getStoreSize(), - Alignment, AAInfo, Ranges); - - SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, - ISD::NON_EXTLOAD, IsExpanding); - if (AddToChain) - PendingLoads.push_back(Load.getValue(1)); - setValue(&I, Load); -} - -void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { - SDLoc sdl = getCurSDLoc(); - - // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) - const Value *Ptr = I.getArgOperand(0); - SDValue Src0 = getValue(I.getArgOperand(3)); - SDValue Mask = getValue(I.getArgOperand(2)); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); - if (!Alignment) - Alignment = DAG.getEVTAlignment(VT); - - AAMDNodes AAInfo; - I.getAAMetadata(AAInfo); - const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); - - SDValue Root = DAG.getRoot(); - SDValue Base; - SDValue Index; - SDValue Scale; - const Value *BasePtr = Ptr; - bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); - bool ConstantMemory = false; - if (UniformBase && AA && - AA->pointsToConstantMemory( - MemoryLocation(BasePtr, - LocationSize::precise( - DAG.getDataLayout().getTypeStoreSize(I.getType())), - AAInfo))) { - // Do not serialize (non-volatile) loads of constant memory with anything. - Root = DAG.getEntryNode(); - ConstantMemory = true; - } - - MachineMemOperand *MMO = - DAG.getMachineFunction(). - getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), - MachineMemOperand::MOLoad, VT.getStoreSize(), - Alignment, AAInfo, Ranges); - - if (!UniformBase) { - Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); - Index = getValue(Ptr); - Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); - } - SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; - SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, - Ops, MMO); - - SDValue OutChain = Gather.getValue(1); - if (!ConstantMemory) - PendingLoads.push_back(OutChain); - setValue(&I, Gather); -} - -void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { - SDLoc dl = getCurSDLoc(); - AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); - AtomicOrdering FailureOrdering = I.getFailureOrdering(); - SyncScope::ID SSID = I.getSyncScopeID(); - - SDValue InChain = getRoot(); - - MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); - SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); - - auto Alignment = DAG.getEVTAlignment(MemVT); - - auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; - if (I.isVolatile()) - Flags |= MachineMemOperand::MOVolatile; - Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); - - MachineFunction &MF = DAG.getMachineFunction(); - MachineMemOperand *MMO = - MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), - Flags, MemVT.getStoreSize(), Alignment, - AAMDNodes(), nullptr, SSID, SuccessOrdering, - FailureOrdering); - - SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, - dl, MemVT, VTs, InChain, - getValue(I.getPointerOperand()), - getValue(I.getCompareOperand()), - getValue(I.getNewValOperand()), MMO); - - SDValue OutChain = L.getValue(2); - - setValue(&I, L); - DAG.setRoot(OutChain); -} - -void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { - SDLoc dl = getCurSDLoc(); - ISD::NodeType NT; - switch (I.getOperation()) { - default: llvm_unreachable("Unknown atomicrmw operation"); - case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; - case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; - case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; - case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; - case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; - case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; - case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; - case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; - case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; - case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; - case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; - case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; - case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; - } - AtomicOrdering Ordering = I.getOrdering(); - SyncScope::ID SSID = I.getSyncScopeID(); - - SDValue InChain = getRoot(); - - auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); - auto Alignment = DAG.getEVTAlignment(MemVT); - - auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; - if (I.isVolatile()) - Flags |= MachineMemOperand::MOVolatile; - Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); - - MachineFunction &MF = DAG.getMachineFunction(); - MachineMemOperand *MMO = - MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, - MemVT.getStoreSize(), Alignment, AAMDNodes(), - nullptr, SSID, Ordering); - - SDValue L = - DAG.getAtomic(NT, dl, MemVT, InChain, - getValue(I.getPointerOperand()), getValue(I.getValOperand()), - MMO); - - SDValue OutChain = L.getValue(1); - - setValue(&I, L); - DAG.setRoot(OutChain); -} - -void SelectionDAGBuilder::visitFence(const FenceInst &I) { - SDLoc dl = getCurSDLoc(); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue Ops[3]; - Ops[0] = getRoot(); - Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, - TLI.getFenceOperandTy(DAG.getDataLayout())); - Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, - TLI.getFenceOperandTy(DAG.getDataLayout())); - DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); -} - -void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { - SDLoc dl = getCurSDLoc(); - AtomicOrdering Order = I.getOrdering(); - SyncScope::ID SSID = I.getSyncScopeID(); - - SDValue InChain = getRoot(); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); - - if (!TLI.supportsUnalignedAtomics() && - I.getAlignment() < MemVT.getSizeInBits() / 8) - report_fatal_error("Cannot generate unaligned atomic load"); - - auto Flags = MachineMemOperand::MOLoad; - if (I.isVolatile()) - Flags |= MachineMemOperand::MOVolatile; - if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) - Flags |= MachineMemOperand::MOInvariant; - if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), - DAG.getDataLayout())) - Flags |= MachineMemOperand::MODereferenceable; - - Flags |= TLI.getMMOFlags(I); - - MachineMemOperand *MMO = - DAG.getMachineFunction(). - getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), - Flags, MemVT.getStoreSize(), - I.getAlignment() ? I.getAlignment() : - DAG.getEVTAlignment(MemVT), - AAMDNodes(), nullptr, SSID, Order); - - InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); - SDValue L = - DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, - getValue(I.getPointerOperand()), MMO); - - SDValue OutChain = L.getValue(1); - if (MemVT != VT) - L = DAG.getPtrExtOrTrunc(L, dl, VT); - - setValue(&I, L); - DAG.setRoot(OutChain); -} - -void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { - SDLoc dl = getCurSDLoc(); - - AtomicOrdering Ordering = I.getOrdering(); - SyncScope::ID SSID = I.getSyncScopeID(); - - SDValue InChain = getRoot(); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT MemVT = - TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); - - if (I.getAlignment() < MemVT.getSizeInBits() / 8) - report_fatal_error("Cannot generate unaligned atomic store"); - - auto Flags = MachineMemOperand::MOStore; - if (I.isVolatile()) - Flags |= MachineMemOperand::MOVolatile; - Flags |= TLI.getMMOFlags(I); - - MachineFunction &MF = DAG.getMachineFunction(); - MachineMemOperand *MMO = - MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, - MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), - nullptr, SSID, Ordering); - - SDValue Val = getValue(I.getValueOperand()); - if (Val.getValueType() != MemVT) - Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); - - SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, - getValue(I.getPointerOperand()), Val, MMO); - - - DAG.setRoot(OutChain); -} - -/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC -/// node. -void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, - unsigned Intrinsic) { - // Ignore the callsite's attributes. A specific call site may be marked with - // readnone, but the lowering code will expect the chain based on the - // definition. - const Function *F = I.getCalledFunction(); - bool HasChain = !F->doesNotAccessMemory(); - bool OnlyLoad = HasChain && F->onlyReadsMemory(); - - // Build the operand list. - SmallVector<SDValue, 8> Ops; - if (HasChain) { // If this intrinsic has side-effects, chainify it. - if (OnlyLoad) { - // We don't need to serialize loads against other loads. - Ops.push_back(DAG.getRoot()); - } else { - Ops.push_back(getRoot()); - } - } - - // Info is set by getTgtMemInstrinsic - TargetLowering::IntrinsicInfo Info; - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, - DAG.getMachineFunction(), - Intrinsic); - - // Add the intrinsic ID as an integer operand if it's not a target intrinsic. - if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || - Info.opc == ISD::INTRINSIC_W_CHAIN) - Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), - TLI.getPointerTy(DAG.getDataLayout()))); - - // Add all operands of the call to the operand list. - for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { - SDValue Op = getValue(I.getArgOperand(i)); - Ops.push_back(Op); - } - - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); - - if (HasChain) - ValueVTs.push_back(MVT::Other); - - SDVTList VTs = DAG.getVTList(ValueVTs); - - // Create the node. - SDValue Result; - if (IsTgtIntrinsic) { - // This is target intrinsic that touches memory - AAMDNodes AAInfo; - I.getAAMetadata(AAInfo); - Result = - DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, - MachinePointerInfo(Info.ptrVal, Info.offset), - Info.align, Info.flags, Info.size, AAInfo); - } else if (!HasChain) { - Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); - } else if (!I.getType()->isVoidTy()) { - Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); - } else { - Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); - } - - if (HasChain) { - SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); - if (OnlyLoad) - PendingLoads.push_back(Chain); - else - DAG.setRoot(Chain); - } - - if (!I.getType()->isVoidTy()) { - if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { - EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); - Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); - } else - Result = lowerRangeToAssertZExt(DAG, I, Result); - - setValue(&I, Result); - } -} - -/// GetSignificand - Get the significand and build it into a floating-point -/// number with exponent of 1: -/// -/// Op = (Op & 0x007fffff) | 0x3f800000; -/// -/// where Op is the hexadecimal representation of floating point value. -static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { - SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, - DAG.getConstant(0x007fffff, dl, MVT::i32)); - SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, - DAG.getConstant(0x3f800000, dl, MVT::i32)); - return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); -} - -/// GetExponent - Get the exponent: -/// -/// (float)(int)(((Op & 0x7f800000) >> 23) - 127); -/// -/// where Op is the hexadecimal representation of floating point value. -static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, - const TargetLowering &TLI, const SDLoc &dl) { - SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, - DAG.getConstant(0x7f800000, dl, MVT::i32)); - SDValue t1 = DAG.getNode( - ISD::SRL, dl, MVT::i32, t0, - DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); - SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, - DAG.getConstant(127, dl, MVT::i32)); - return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); -} - -/// getF32Constant - Get 32-bit floating point constant. -static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, - const SDLoc &dl) { - return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, - MVT::f32); -} - -static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, - SelectionDAG &DAG) { - // TODO: What fast-math-flags should be set on the floating-point nodes? - - // IntegerPartOfX = ((int32_t)(t0); - SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); - - // FractionalPartOfX = t0 - (float)IntegerPartOfX; - SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); - SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); - - // IntegerPartOfX <<= 23; - IntegerPartOfX = DAG.getNode( - ISD::SHL, dl, MVT::i32, IntegerPartOfX, - DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( - DAG.getDataLayout()))); - - SDValue TwoToFractionalPartOfX; - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // TwoToFractionalPartOfX = - // 0.997535578f + - // (0.735607626f + 0.252464424f * x) * x; - // - // error 0.0144103317, which is 6 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3e814304, dl)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f3c50c8, dl)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f7f5e7e, dl)); - } else if (LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // TwoToFractionalPartOfX = - // 0.999892986f + - // (0.696457318f + - // (0.224338339f + 0.792043434e-1f * x) * x) * x; - // - // error 0.000107046256, which is 13 to 14 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3da235e3, dl)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3e65b8f3, dl)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f324b07, dl)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3f7ff8fd, dl)); - } else { // LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // TwoToFractionalPartOfX = - // 0.999999982f + - // (0.693148872f + - // (0.240227044f + - // (0.554906021e-1f + - // (0.961591928e-2f + - // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; - // error 2.47208000*10^(-7), which is better than 18 bits - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3924b03e, dl)); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3ab24b87, dl)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3c1d8c17, dl)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3d634a1d, dl)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, - getF32Constant(DAG, 0x3e75fe14, dl)); - SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); - SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, - getF32Constant(DAG, 0x3f317234, dl)); - SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); - TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, - getF32Constant(DAG, 0x3f800000, dl)); - } - - // Add the exponent into the result in integer domain. - SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); - return DAG.getNode(ISD::BITCAST, dl, MVT::f32, - DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); -} - -/// expandExp - Lower an exp intrinsic. Handles the special sequences for -/// limited-precision mode. -static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, - const TargetLowering &TLI) { - if (Op.getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - - // Put the exponent in the right bit position for later addition to the - // final result: - // - // #define LOG2OFe 1.4426950f - // t0 = Op * LOG2OFe - - // TODO: What fast-math-flags should be set here? - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, - getF32Constant(DAG, 0x3fb8aa3b, dl)); - return getLimitedPrecisionExp2(t0, dl, DAG); - } - - // No special expansion. - return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); -} - -/// expandLog - Lower a log intrinsic. Handles the special sequences for -/// limited-precision mode. -static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, - const TargetLowering &TLI) { - // TODO: What fast-math-flags should be set on the floating-point nodes? - - if (Op.getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); - - // Scale the exponent by log(2) [0.69314718f]. - SDValue Exp = GetExponent(DAG, Op1, TLI, dl); - SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, - getF32Constant(DAG, 0x3f317218, dl)); - - // Get the significand and build it into a floating-point number with - // exponent of 1. - SDValue X = GetSignificand(DAG, Op1, dl); - - SDValue LogOfMantissa; - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // LogofMantissa = - // -1.1609546f + - // (1.4034025f - 0.23903021f * x) * x; - // - // error 0.0034276066, which is better than 8 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbe74c456, dl)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3fb3a2b1, dl)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f949a29, dl)); - } else if (LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // LogOfMantissa = - // -1.7417939f + - // (2.8212026f + - // (-1.4699568f + - // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; - // - // error 0.000061011436, which is 14 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbd67b6d6, dl)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3ee4f4b8, dl)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3fbc278b, dl)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x40348e95, dl)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3fdef31a, dl)); - } else { // LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // LogOfMantissa = - // -2.1072184f + - // (4.2372794f + - // (-3.7029485f + - // (2.2781945f + - // (-0.87823314f + - // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; - // - // error 0.0000023660568, which is better than 18 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbc91e5ac, dl)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3e4350aa, dl)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f60d3e3, dl)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x4011cdf0, dl)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, - getF32Constant(DAG, 0x406cfd1c, dl)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, - getF32Constant(DAG, 0x408797cb, dl)); - SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); - LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, - getF32Constant(DAG, 0x4006dcab, dl)); - } - - return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); - } - - // No special expansion. - return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); -} - -/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for -/// limited-precision mode. -static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, - const TargetLowering &TLI) { - // TODO: What fast-math-flags should be set on the floating-point nodes? - - if (Op.getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); - - // Get the exponent. - SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); - - // Get the significand and build it into a floating-point number with - // exponent of 1. - SDValue X = GetSignificand(DAG, Op1, dl); - - // Different possible minimax approximations of significand in - // floating-point for various degrees of accuracy over [1,2]. - SDValue Log2ofMantissa; - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; - // - // error 0.0049451742, which is more than 7 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbeb08fe0, dl)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x40019463, dl)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3fd6633d, dl)); - } else if (LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // Log2ofMantissa = - // -2.51285454f + - // (4.07009056f + - // (-2.12067489f + - // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; - // - // error 0.0000876136000, which is better than 13 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbda7262e, dl)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3f25280b, dl)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x4007b923, dl)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x40823e2f, dl)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, - getF32Constant(DAG, 0x4020d29c, dl)); - } else { // LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // Log2ofMantissa = - // -3.0400495f + - // (6.1129976f + - // (-5.3420409f + - // (3.2865683f + - // (-1.2669343f + - // (0.27515199f - - // 0.25691327e-1f * x) * x) * x) * x) * x) * x; - // - // error 0.0000018516, which is better than 18 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbcd2769e, dl)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3e8ce0b9, dl)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3fa22ae7, dl)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, - getF32Constant(DAG, 0x40525723, dl)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, - getF32Constant(DAG, 0x40aaf200, dl)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, - getF32Constant(DAG, 0x40c39dad, dl)); - SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); - Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, - getF32Constant(DAG, 0x4042902c, dl)); - } - - return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); - } - - // No special expansion. - return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); -} - -/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for -/// limited-precision mode. -static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, - const TargetLowering &TLI) { - // TODO: What fast-math-flags should be set on the floating-point nodes? - - if (Op.getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); - - // Scale the exponent by log10(2) [0.30102999f]. - SDValue Exp = GetExponent(DAG, Op1, TLI, dl); - SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, - getF32Constant(DAG, 0x3e9a209a, dl)); - - // Get the significand and build it into a floating-point number with - // exponent of 1. - SDValue X = GetSignificand(DAG, Op1, dl); - - SDValue Log10ofMantissa; - if (LimitFloatPrecision <= 6) { - // For floating-point precision of 6: - // - // Log10ofMantissa = - // -0.50419619f + - // (0.60948995f - 0.10380950f * x) * x; - // - // error 0.0014886165, which is 6 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0xbdd49a13, dl)); - SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3f1c0789, dl)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f011300, dl)); - } else if (LimitFloatPrecision <= 12) { - // For floating-point precision of 12: - // - // Log10ofMantissa = - // -0.64831180f + - // (0.91751397f + - // (-0.31664806f + 0.47637168e-1f * x) * x) * x; - // - // error 0.00019228036, which is better than 12 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3d431f31, dl)); - SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3ea21fb2, dl)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3f6ae232, dl)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f25f7c3, dl)); - } else { // LimitFloatPrecision <= 18 - // For floating-point precision of 18: - // - // Log10ofMantissa = - // -0.84299375f + - // (1.5327582f + - // (-1.0688956f + - // (0.49102474f + - // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; - // - // error 0.0000037995730, which is better than 18 bits - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, - getF32Constant(DAG, 0x3c5d51ce, dl)); - SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, - getF32Constant(DAG, 0x3e00685a, dl)); - SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); - SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, - getF32Constant(DAG, 0x3efb6798, dl)); - SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); - SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, - getF32Constant(DAG, 0x3f88d192, dl)); - SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); - SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, - getF32Constant(DAG, 0x3fc4316c, dl)); - SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); - Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, - getF32Constant(DAG, 0x3f57ce70, dl)); - } - - return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); - } - - // No special expansion. - return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); -} - -/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for -/// limited-precision mode. -static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, - const TargetLowering &TLI) { - if (Op.getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) - return getLimitedPrecisionExp2(Op, dl, DAG); - - // No special expansion. - return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); -} - -/// visitPow - Lower a pow intrinsic. Handles the special sequences for -/// limited-precision mode with x == 10.0f. -static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, - SelectionDAG &DAG, const TargetLowering &TLI) { - bool IsExp10 = false; - if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && - LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { - if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { - APFloat Ten(10.0f); - IsExp10 = LHSC->isExactlyValue(Ten); - } - } - - // TODO: What fast-math-flags should be set on the FMUL node? - if (IsExp10) { - // Put the exponent in the right bit position for later addition to the - // final result: - // - // #define LOG2OF10 3.3219281f - // t0 = Op * LOG2OF10; - SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, - getF32Constant(DAG, 0x40549a78, dl)); - return getLimitedPrecisionExp2(t0, dl, DAG); - } - - // No special expansion. - return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); -} - -/// ExpandPowI - Expand a llvm.powi intrinsic. -static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, - SelectionDAG &DAG) { - // If RHS is a constant, we can expand this out to a multiplication tree, - // otherwise we end up lowering to a call to __powidf2 (for example). When - // optimizing for size, we only want to do this if the expansion would produce - // a small number of multiplies, otherwise we do the full expansion. - if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { - // Get the exponent as a positive value. - unsigned Val = RHSC->getSExtValue(); - if ((int)Val < 0) Val = -Val; - - // powi(x, 0) -> 1.0 - if (Val == 0) - return DAG.getConstantFP(1.0, DL, LHS.getValueType()); - - const Function &F = DAG.getMachineFunction().getFunction(); - if (!F.hasOptSize() || - // If optimizing for size, don't insert too many multiplies. - // This inserts up to 5 multiplies. - countPopulation(Val) + Log2_32(Val) < 7) { - // We use the simple binary decomposition method to generate the multiply - // sequence. There are more optimal ways to do this (for example, - // powi(x,15) generates one more multiply than it should), but this has - // the benefit of being both really simple and much better than a libcall. - SDValue Res; // Logically starts equal to 1.0 - SDValue CurSquare = LHS; - // TODO: Intrinsics should have fast-math-flags that propagate to these - // nodes. - while (Val) { - if (Val & 1) { - if (Res.getNode()) - Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); - else - Res = CurSquare; // 1.0*CurSquare. - } - - CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), - CurSquare, CurSquare); - Val >>= 1; - } - - // If the original was negative, invert the result, producing 1/(x*x*x). - if (RHSC->getSExtValue() < 0) - Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), - DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); - return Res; - } - } - - // Otherwise, expand to a libcall. - return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); -} - -// getUnderlyingArgReg - Find underlying register used for a truncated or -// bitcasted argument. -static unsigned getUnderlyingArgReg(const SDValue &N) { - switch (N.getOpcode()) { - case ISD::CopyFromReg: - return cast<RegisterSDNode>(N.getOperand(1))->getReg(); - case ISD::BITCAST: - case ISD::AssertZext: - case ISD::AssertSext: - case ISD::TRUNCATE: - return getUnderlyingArgReg(N.getOperand(0)); - default: - return 0; - } -} - -/// If the DbgValueInst is a dbg_value of a function argument, create the -/// corresponding DBG_VALUE machine instruction for it now. At the end of -/// instruction selection, they will be inserted to the entry BB. -bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( - const Value *V, DILocalVariable *Variable, DIExpression *Expr, - DILocation *DL, bool IsDbgDeclare, const SDValue &N) { - const Argument *Arg = dyn_cast<Argument>(V); - if (!Arg) - return false; - - if (!IsDbgDeclare) { - // ArgDbgValues are hoisted to the beginning of the entry block. So we - // should only emit as ArgDbgValue if the dbg.value intrinsic is found in - // the entry block. - bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); - if (!IsInEntryBlock) - return false; - - // ArgDbgValues are hoisted to the beginning of the entry block. So we - // should only emit as ArgDbgValue if the dbg.value intrinsic describes a - // variable that also is a param. - // - // Although, if we are at the top of the entry block already, we can still - // emit using ArgDbgValue. This might catch some situations when the - // dbg.value refers to an argument that isn't used in the entry block, so - // any CopyToReg node would be optimized out and the only way to express - // this DBG_VALUE is by using the physical reg (or FI) as done in this - // method. ArgDbgValues are hoisted to the beginning of the entry block. So - // we should only emit as ArgDbgValue if the Variable is an argument to the - // current function, and the dbg.value intrinsic is found in the entry - // block. - bool VariableIsFunctionInputArg = Variable->isParameter() && - !DL->getInlinedAt(); - bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; - if (!IsInPrologue && !VariableIsFunctionInputArg) - return false; - - // Here we assume that a function argument on IR level only can be used to - // describe one input parameter on source level. If we for example have - // source code like this - // - // struct A { long x, y; }; - // void foo(struct A a, long b) { - // ... - // b = a.x; - // ... - // } - // - // and IR like this - // - // define void @foo(i32 %a1, i32 %a2, i32 %b) { - // entry: - // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment - // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment - // call void @llvm.dbg.value(metadata i32 %b, "b", - // ... - // call void @llvm.dbg.value(metadata i32 %a1, "b" - // ... - // - // then the last dbg.value is describing a parameter "b" using a value that - // is an argument. But since we already has used %a1 to describe a parameter - // we should not handle that last dbg.value here (that would result in an - // incorrect hoisting of the DBG_VALUE to the function entry). - // Notice that we allow one dbg.value per IR level argument, to accomodate - // for the situation with fragments above. - if (VariableIsFunctionInputArg) { - unsigned ArgNo = Arg->getArgNo(); - if (ArgNo >= FuncInfo.DescribedArgs.size()) - FuncInfo.DescribedArgs.resize(ArgNo + 1, false); - else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) - return false; - FuncInfo.DescribedArgs.set(ArgNo); - } - } - - MachineFunction &MF = DAG.getMachineFunction(); - const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); - - bool IsIndirect = false; - Optional<MachineOperand> Op; - // Some arguments' frame index is recorded during argument lowering. - int FI = FuncInfo.getArgumentFrameIndex(Arg); - if (FI != std::numeric_limits<int>::max()) - Op = MachineOperand::CreateFI(FI); - - if (!Op && N.getNode()) { - unsigned Reg = getUnderlyingArgReg(N); - if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { - MachineRegisterInfo &RegInfo = MF.getRegInfo(); - unsigned PR = RegInfo.getLiveInPhysReg(Reg); - if (PR) - Reg = PR; - } - if (Reg) { - Op = MachineOperand::CreateReg(Reg, false); - IsIndirect = IsDbgDeclare; - } - } - - if (!Op && N.getNode()) { - // Check if frame index is available. - SDValue LCandidate = peekThroughBitcasts(N); - if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) - if (FrameIndexSDNode *FINode = - dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) - Op = MachineOperand::CreateFI(FINode->getIndex()); - } - - if (!Op) { - // Check if ValueMap has reg number. - DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); - if (VMI != FuncInfo.ValueMap.end()) { - const auto &TLI = DAG.getTargetLoweringInfo(); - RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, - V->getType(), getABIRegCopyCC(V)); - if (RFV.occupiesMultipleRegs()) { - unsigned Offset = 0; - for (auto RegAndSize : RFV.getRegsAndSizes()) { - Op = MachineOperand::CreateReg(RegAndSize.first, false); - auto FragmentExpr = DIExpression::createFragmentExpression( - Expr, Offset, RegAndSize.second); - if (!FragmentExpr) - continue; - FuncInfo.ArgDbgValues.push_back( - BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, - Op->getReg(), Variable, *FragmentExpr)); - Offset += RegAndSize.second; - } - return true; - } - Op = MachineOperand::CreateReg(VMI->second, false); - IsIndirect = IsDbgDeclare; - } - } - - if (!Op) - return false; - - assert(Variable->isValidLocationForIntrinsic(DL) && - "Expected inlined-at fields to agree"); - IsIndirect = (Op->isReg()) ? IsIndirect : true; - FuncInfo.ArgDbgValues.push_back( - BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, - *Op, Variable, Expr)); - - return true; -} - -/// Return the appropriate SDDbgValue based on N. -SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, - DILocalVariable *Variable, - DIExpression *Expr, - const DebugLoc &dl, - unsigned DbgSDNodeOrder) { - if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { - // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe - // stack slot locations. - // - // Consider "int x = 0; int *px = &x;". There are two kinds of interesting - // debug values here after optimization: - // - // dbg.value(i32* %px, !"int *px", !DIExpression()), and - // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) - // - // Both describe the direct values of their associated variables. - return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), - /*IsIndirect*/ false, dl, DbgSDNodeOrder); - } - return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), - /*IsIndirect*/ false, dl, DbgSDNodeOrder); -} - -// VisualStudio defines setjmp as _setjmp -#if defined(_MSC_VER) && defined(setjmp) && \ - !defined(setjmp_undefined_for_msvc) -# pragma push_macro("setjmp") -# undef setjmp -# define setjmp_undefined_for_msvc -#endif - -static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { - switch (Intrinsic) { - case Intrinsic::smul_fix: - return ISD::SMULFIX; - case Intrinsic::umul_fix: - return ISD::UMULFIX; - default: - llvm_unreachable("Unhandled fixed point intrinsic"); - } -} - -void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, - const char *FunctionName) { - assert(FunctionName && "FunctionName must not be nullptr"); - SDValue Callee = DAG.getExternalSymbol( - FunctionName, - DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); - LowerCallTo(&I, Callee, I.isTailCall()); -} - -/// Lower the call to the specified intrinsic function. -void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, - unsigned Intrinsic) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDLoc sdl = getCurSDLoc(); - DebugLoc dl = getCurDebugLoc(); - SDValue Res; - - switch (Intrinsic) { - default: - // By default, turn this into a target intrinsic node. - visitTargetIntrinsic(I, Intrinsic); - return; - case Intrinsic::vastart: visitVAStart(I); return; - case Intrinsic::vaend: visitVAEnd(I); return; - case Intrinsic::vacopy: visitVACopy(I); return; - case Intrinsic::returnaddress: - setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, - TLI.getPointerTy(DAG.getDataLayout()), - getValue(I.getArgOperand(0)))); - return; - case Intrinsic::addressofreturnaddress: - setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, - TLI.getPointerTy(DAG.getDataLayout()))); - return; - case Intrinsic::sponentry: - setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, - TLI.getPointerTy(DAG.getDataLayout()))); - return; - case Intrinsic::frameaddress: - setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, - TLI.getPointerTy(DAG.getDataLayout()), - getValue(I.getArgOperand(0)))); - return; - case Intrinsic::read_register: { - Value *Reg = I.getArgOperand(0); - SDValue Chain = getRoot(); - SDValue RegName = - DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); - EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - Res = DAG.getNode(ISD::READ_REGISTER, sdl, - DAG.getVTList(VT, MVT::Other), Chain, RegName); - setValue(&I, Res); - DAG.setRoot(Res.getValue(1)); - return; - } - case Intrinsic::write_register: { - Value *Reg = I.getArgOperand(0); - Value *RegValue = I.getArgOperand(1); - SDValue Chain = getRoot(); - SDValue RegName = - DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); - DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, - RegName, getValue(RegValue))); - return; - } - case Intrinsic::setjmp: - lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); - return; - case Intrinsic::longjmp: - lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); - return; - case Intrinsic::memcpy: { - const auto &MCI = cast<MemCpyInst>(I); - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - SDValue Op3 = getValue(I.getArgOperand(2)); - // @llvm.memcpy defines 0 and 1 to both mean no alignment. - unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); - unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); - unsigned Align = MinAlign(DstAlign, SrcAlign); - bool isVol = MCI.isVolatile(); - bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); - // FIXME: Support passing different dest/src alignments to the memcpy DAG - // node. - SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, - false, isTC, - MachinePointerInfo(I.getArgOperand(0)), - MachinePointerInfo(I.getArgOperand(1))); - updateDAGForMaybeTailCall(MC); - return; - } - case Intrinsic::memset: { - const auto &MSI = cast<MemSetInst>(I); - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - SDValue Op3 = getValue(I.getArgOperand(2)); - // @llvm.memset defines 0 and 1 to both mean no alignment. - unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); - bool isVol = MSI.isVolatile(); - bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); - SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, - isTC, MachinePointerInfo(I.getArgOperand(0))); - updateDAGForMaybeTailCall(MS); - return; - } - case Intrinsic::memmove: { - const auto &MMI = cast<MemMoveInst>(I); - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - SDValue Op3 = getValue(I.getArgOperand(2)); - // @llvm.memmove defines 0 and 1 to both mean no alignment. - unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); - unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); - unsigned Align = MinAlign(DstAlign, SrcAlign); - bool isVol = MMI.isVolatile(); - bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); - // FIXME: Support passing different dest/src alignments to the memmove DAG - // node. - SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, - isTC, MachinePointerInfo(I.getArgOperand(0)), - MachinePointerInfo(I.getArgOperand(1))); - updateDAGForMaybeTailCall(MM); - return; - } - case Intrinsic::memcpy_element_unordered_atomic: { - const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); - SDValue Dst = getValue(MI.getRawDest()); - SDValue Src = getValue(MI.getRawSource()); - SDValue Length = getValue(MI.getLength()); - - unsigned DstAlign = MI.getDestAlignment(); - unsigned SrcAlign = MI.getSourceAlignment(); - Type *LengthTy = MI.getLength()->getType(); - unsigned ElemSz = MI.getElementSizeInBytes(); - bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); - SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, - SrcAlign, Length, LengthTy, ElemSz, isTC, - MachinePointerInfo(MI.getRawDest()), - MachinePointerInfo(MI.getRawSource())); - updateDAGForMaybeTailCall(MC); - return; - } - case Intrinsic::memmove_element_unordered_atomic: { - auto &MI = cast<AtomicMemMoveInst>(I); - SDValue Dst = getValue(MI.getRawDest()); - SDValue Src = getValue(MI.getRawSource()); - SDValue Length = getValue(MI.getLength()); - - unsigned DstAlign = MI.getDestAlignment(); - unsigned SrcAlign = MI.getSourceAlignment(); - Type *LengthTy = MI.getLength()->getType(); - unsigned ElemSz = MI.getElementSizeInBytes(); - bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); - SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, - SrcAlign, Length, LengthTy, ElemSz, isTC, - MachinePointerInfo(MI.getRawDest()), - MachinePointerInfo(MI.getRawSource())); - updateDAGForMaybeTailCall(MC); - return; - } - case Intrinsic::memset_element_unordered_atomic: { - auto &MI = cast<AtomicMemSetInst>(I); - SDValue Dst = getValue(MI.getRawDest()); - SDValue Val = getValue(MI.getValue()); - SDValue Length = getValue(MI.getLength()); - - unsigned DstAlign = MI.getDestAlignment(); - Type *LengthTy = MI.getLength()->getType(); - unsigned ElemSz = MI.getElementSizeInBytes(); - bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); - SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, - LengthTy, ElemSz, isTC, - MachinePointerInfo(MI.getRawDest())); - updateDAGForMaybeTailCall(MC); - return; - } - case Intrinsic::dbg_addr: - case Intrinsic::dbg_declare: { - const auto &DI = cast<DbgVariableIntrinsic>(I); - DILocalVariable *Variable = DI.getVariable(); - DIExpression *Expression = DI.getExpression(); - dropDanglingDebugInfo(Variable, Expression); - assert(Variable && "Missing variable"); - - // Check if address has undef value. - const Value *Address = DI.getVariableLocation(); - if (!Address || isa<UndefValue>(Address) || - (Address->use_empty() && !isa<Argument>(Address))) { - LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); - return; - } - - bool isParameter = Variable->isParameter() || isa<Argument>(Address); - - // Check if this variable can be described by a frame index, typically - // either as a static alloca or a byval parameter. - int FI = std::numeric_limits<int>::max(); - if (const auto *AI = - dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { - if (AI->isStaticAlloca()) { - auto I = FuncInfo.StaticAllocaMap.find(AI); - if (I != FuncInfo.StaticAllocaMap.end()) - FI = I->second; - } - } else if (const auto *Arg = dyn_cast<Argument>( - Address->stripInBoundsConstantOffsets())) { - FI = FuncInfo.getArgumentFrameIndex(Arg); - } - - // llvm.dbg.addr is control dependent and always generates indirect - // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in - // the MachineFunction variable table. - if (FI != std::numeric_limits<int>::max()) { - if (Intrinsic == Intrinsic::dbg_addr) { - SDDbgValue *SDV = DAG.getFrameIndexDbgValue( - Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); - DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); - } - return; - } - - SDValue &N = NodeMap[Address]; - if (!N.getNode() && isa<Argument>(Address)) - // Check unused arguments map. - N = UnusedArgNodeMap[Address]; - SDDbgValue *SDV; - if (N.getNode()) { - if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) - Address = BCI->getOperand(0); - // Parameters are handled specially. - auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); - if (isParameter && FINode) { - // Byval parameter. We have a frame index at this point. - SDV = - DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), - /*IsIndirect*/ true, dl, SDNodeOrder); - } else if (isa<Argument>(Address)) { - // Address is an argument, so try to emit its dbg value using - // virtual register info from the FuncInfo.ValueMap. - EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); - return; - } else { - SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), - true, dl, SDNodeOrder); - } - DAG.AddDbgValue(SDV, N.getNode(), isParameter); - } else { - // If Address is an argument then try to emit its dbg value using - // virtual register info from the FuncInfo.ValueMap. - if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, - N)) { - LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); - } - } - return; - } - case Intrinsic::dbg_label: { - const DbgLabelInst &DI = cast<DbgLabelInst>(I); - DILabel *Label = DI.getLabel(); - assert(Label && "Missing label"); - - SDDbgLabel *SDV; - SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); - DAG.AddDbgLabel(SDV); - return; - } - case Intrinsic::dbg_value: { - const DbgValueInst &DI = cast<DbgValueInst>(I); - assert(DI.getVariable() && "Missing variable"); - - DILocalVariable *Variable = DI.getVariable(); - DIExpression *Expression = DI.getExpression(); - dropDanglingDebugInfo(Variable, Expression); - const Value *V = DI.getValue(); - if (!V) - return; - - if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), - SDNodeOrder)) - return; - - // TODO: Dangling debug info will eventually either be resolved or produce - // an Undef DBG_VALUE. However in the resolution case, a gap may appear - // between the original dbg.value location and its resolved DBG_VALUE, which - // we should ideally fill with an extra Undef DBG_VALUE. - - DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); - return; - } - - case Intrinsic::eh_typeid_for: { - // Find the type id for the given typeinfo. - GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); - unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); - Res = DAG.getConstant(TypeID, sdl, MVT::i32); - setValue(&I, Res); - return; - } - - case Intrinsic::eh_return_i32: - case Intrinsic::eh_return_i64: - DAG.getMachineFunction().setCallsEHReturn(true); - DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, - MVT::Other, - getControlRoot(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)))); - return; - case Intrinsic::eh_unwind_init: - DAG.getMachineFunction().setCallsUnwindInit(true); - return; - case Intrinsic::eh_dwarf_cfa: - setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, - TLI.getPointerTy(DAG.getDataLayout()), - getValue(I.getArgOperand(0)))); - return; - case Intrinsic::eh_sjlj_callsite: { - MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); - ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); - assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); - assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); - - MMI.setCurrentCallSite(CI->getZExtValue()); - return; - } - case Intrinsic::eh_sjlj_functioncontext: { - // Get and store the index of the function context. - MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); - AllocaInst *FnCtx = - cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); - int FI = FuncInfo.StaticAllocaMap[FnCtx]; - MFI.setFunctionContextIndex(FI); - return; - } - case Intrinsic::eh_sjlj_setjmp: { - SDValue Ops[2]; - Ops[0] = getRoot(); - Ops[1] = getValue(I.getArgOperand(0)); - SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, - DAG.getVTList(MVT::i32, MVT::Other), Ops); - setValue(&I, Op.getValue(0)); - DAG.setRoot(Op.getValue(1)); - return; - } - case Intrinsic::eh_sjlj_longjmp: - DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, - getRoot(), getValue(I.getArgOperand(0)))); - return; - case Intrinsic::eh_sjlj_setup_dispatch: - DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, - getRoot())); - return; - case Intrinsic::masked_gather: - visitMaskedGather(I); - return; - case Intrinsic::masked_load: - visitMaskedLoad(I); - return; - case Intrinsic::masked_scatter: - visitMaskedScatter(I); - return; - case Intrinsic::masked_store: - visitMaskedStore(I); - return; - case Intrinsic::masked_expandload: - visitMaskedLoad(I, true /* IsExpanding */); - return; - case Intrinsic::masked_compressstore: - visitMaskedStore(I, true /* IsCompressing */); - return; - case Intrinsic::x86_mmx_pslli_w: - case Intrinsic::x86_mmx_pslli_d: - case Intrinsic::x86_mmx_pslli_q: - case Intrinsic::x86_mmx_psrli_w: - case Intrinsic::x86_mmx_psrli_d: - case Intrinsic::x86_mmx_psrli_q: - case Intrinsic::x86_mmx_psrai_w: - case Intrinsic::x86_mmx_psrai_d: { - SDValue ShAmt = getValue(I.getArgOperand(1)); - if (isa<ConstantSDNode>(ShAmt)) { - visitTargetIntrinsic(I, Intrinsic); - return; - } - unsigned NewIntrinsic = 0; - EVT ShAmtVT = MVT::v2i32; - switch (Intrinsic) { - case Intrinsic::x86_mmx_pslli_w: - NewIntrinsic = Intrinsic::x86_mmx_psll_w; - break; - case Intrinsic::x86_mmx_pslli_d: - NewIntrinsic = Intrinsic::x86_mmx_psll_d; - break; - case Intrinsic::x86_mmx_pslli_q: - NewIntrinsic = Intrinsic::x86_mmx_psll_q; - break; - case Intrinsic::x86_mmx_psrli_w: - NewIntrinsic = Intrinsic::x86_mmx_psrl_w; - break; - case Intrinsic::x86_mmx_psrli_d: - NewIntrinsic = Intrinsic::x86_mmx_psrl_d; - break; - case Intrinsic::x86_mmx_psrli_q: - NewIntrinsic = Intrinsic::x86_mmx_psrl_q; - break; - case Intrinsic::x86_mmx_psrai_w: - NewIntrinsic = Intrinsic::x86_mmx_psra_w; - break; - case Intrinsic::x86_mmx_psrai_d: - NewIntrinsic = Intrinsic::x86_mmx_psra_d; - break; - default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. - } - - // The vector shift intrinsics with scalars uses 32b shift amounts but - // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits - // to be zero. - // We must do this early because v2i32 is not a legal type. - SDValue ShOps[2]; - ShOps[0] = ShAmt; - ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); - ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); - EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); - Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, - DAG.getConstant(NewIntrinsic, sdl, MVT::i32), - getValue(I.getArgOperand(0)), ShAmt); - setValue(&I, Res); - return; - } - case Intrinsic::powi: - setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)), DAG)); - return; - case Intrinsic::log: - setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); - return; - case Intrinsic::log2: - setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); - return; - case Intrinsic::log10: - setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); - return; - case Intrinsic::exp: - setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); - return; - case Intrinsic::exp2: - setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); - return; - case Intrinsic::pow: - setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)), DAG, TLI)); - return; - case Intrinsic::sqrt: - case Intrinsic::fabs: - case Intrinsic::sin: - case Intrinsic::cos: - case Intrinsic::floor: - case Intrinsic::ceil: - case Intrinsic::trunc: - case Intrinsic::rint: - case Intrinsic::nearbyint: - case Intrinsic::round: - case Intrinsic::canonicalize: { - unsigned Opcode; - switch (Intrinsic) { - default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. - case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; - case Intrinsic::fabs: Opcode = ISD::FABS; break; - case Intrinsic::sin: Opcode = ISD::FSIN; break; - case Intrinsic::cos: Opcode = ISD::FCOS; break; - case Intrinsic::floor: Opcode = ISD::FFLOOR; break; - case Intrinsic::ceil: Opcode = ISD::FCEIL; break; - case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; - case Intrinsic::rint: Opcode = ISD::FRINT; break; - case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; - case Intrinsic::round: Opcode = ISD::FROUND; break; - case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; - } - - setValue(&I, DAG.getNode(Opcode, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)))); - return; - } - case Intrinsic::lround: - case Intrinsic::llround: - case Intrinsic::lrint: - case Intrinsic::llrint: { - unsigned Opcode; - switch (Intrinsic) { - default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. - case Intrinsic::lround: Opcode = ISD::LROUND; break; - case Intrinsic::llround: Opcode = ISD::LLROUND; break; - case Intrinsic::lrint: Opcode = ISD::LRINT; break; - case Intrinsic::llrint: Opcode = ISD::LLRINT; break; - } - - EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - setValue(&I, DAG.getNode(Opcode, sdl, RetVT, - getValue(I.getArgOperand(0)))); - return; - } - case Intrinsic::minnum: - setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)))); - return; - case Intrinsic::maxnum: - setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)))); - return; - case Intrinsic::minimum: - setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)))); - return; - case Intrinsic::maximum: - setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)))); - return; - case Intrinsic::copysign: - setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)))); - return; - case Intrinsic::fma: - setValue(&I, DAG.getNode(ISD::FMA, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)), - getValue(I.getArgOperand(2)))); - return; - case Intrinsic::experimental_constrained_fadd: - case Intrinsic::experimental_constrained_fsub: - case Intrinsic::experimental_constrained_fmul: - case Intrinsic::experimental_constrained_fdiv: - case Intrinsic::experimental_constrained_frem: - case Intrinsic::experimental_constrained_fma: - case Intrinsic::experimental_constrained_fptrunc: - case Intrinsic::experimental_constrained_fpext: - case Intrinsic::experimental_constrained_sqrt: - case Intrinsic::experimental_constrained_pow: - case Intrinsic::experimental_constrained_powi: - case Intrinsic::experimental_constrained_sin: - case Intrinsic::experimental_constrained_cos: - case Intrinsic::experimental_constrained_exp: - case Intrinsic::experimental_constrained_exp2: - case Intrinsic::experimental_constrained_log: - case Intrinsic::experimental_constrained_log10: - case Intrinsic::experimental_constrained_log2: - case Intrinsic::experimental_constrained_rint: - case Intrinsic::experimental_constrained_nearbyint: - case Intrinsic::experimental_constrained_maxnum: - case Intrinsic::experimental_constrained_minnum: - case Intrinsic::experimental_constrained_ceil: - case Intrinsic::experimental_constrained_floor: - case Intrinsic::experimental_constrained_round: - case Intrinsic::experimental_constrained_trunc: - visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); - return; - case Intrinsic::fmuladd: { - EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && - TLI.isFMAFasterThanFMulAndFAdd(VT)) { - setValue(&I, DAG.getNode(ISD::FMA, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)), - getValue(I.getArgOperand(2)))); - } else { - // TODO: Intrinsic calls should have fast-math-flags. - SDValue Mul = DAG.getNode(ISD::FMUL, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1))); - SDValue Add = DAG.getNode(ISD::FADD, sdl, - getValue(I.getArgOperand(0)).getValueType(), - Mul, - getValue(I.getArgOperand(2))); - setValue(&I, Add); - } - return; - } - case Intrinsic::convert_to_fp16: - setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, - DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, - getValue(I.getArgOperand(0)), - DAG.getTargetConstant(0, sdl, - MVT::i32)))); - return; - case Intrinsic::convert_from_fp16: - setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, - TLI.getValueType(DAG.getDataLayout(), I.getType()), - DAG.getNode(ISD::BITCAST, sdl, MVT::f16, - getValue(I.getArgOperand(0))))); - return; - case Intrinsic::pcmarker: { - SDValue Tmp = getValue(I.getArgOperand(0)); - DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); - return; - } - case Intrinsic::readcyclecounter: { - SDValue Op = getRoot(); - Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, - DAG.getVTList(MVT::i64, MVT::Other), Op); - setValue(&I, Res); - DAG.setRoot(Res.getValue(1)); - return; - } - case Intrinsic::bitreverse: - setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)))); - return; - case Intrinsic::bswap: - setValue(&I, DAG.getNode(ISD::BSWAP, sdl, - getValue(I.getArgOperand(0)).getValueType(), - getValue(I.getArgOperand(0)))); - return; - case Intrinsic::cttz: { - SDValue Arg = getValue(I.getArgOperand(0)); - ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); - EVT Ty = Arg.getValueType(); - setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, - sdl, Ty, Arg)); - return; - } - case Intrinsic::ctlz: { - SDValue Arg = getValue(I.getArgOperand(0)); - ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); - EVT Ty = Arg.getValueType(); - setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, - sdl, Ty, Arg)); - return; - } - case Intrinsic::ctpop: { - SDValue Arg = getValue(I.getArgOperand(0)); - EVT Ty = Arg.getValueType(); - setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); - return; - } - case Intrinsic::fshl: - case Intrinsic::fshr: { - bool IsFSHL = Intrinsic == Intrinsic::fshl; - SDValue X = getValue(I.getArgOperand(0)); - SDValue Y = getValue(I.getArgOperand(1)); - SDValue Z = getValue(I.getArgOperand(2)); - EVT VT = X.getValueType(); - SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); - SDValue Zero = DAG.getConstant(0, sdl, VT); - SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); - - auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; - if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { - setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); - return; - } - - // When X == Y, this is rotate. If the data type has a power-of-2 size, we - // avoid the select that is necessary in the general case to filter out - // the 0-shift possibility that leads to UB. - if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { - auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; - if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { - setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); - return; - } - - // Some targets only rotate one way. Try the opposite direction. - RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; - if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { - // Negate the shift amount because it is safe to ignore the high bits. - SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); - setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); - return; - } - - // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) - // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) - SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); - SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); - SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); - SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); - setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); - return; - } - - // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) - // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) - SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); - SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); - SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); - SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); - - // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, - // and that is undefined. We must compare and select to avoid UB. - EVT CCVT = MVT::i1; - if (VT.isVector()) - CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); - - // For fshl, 0-shift returns the 1st arg (X). - // For fshr, 0-shift returns the 2nd arg (Y). - SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); - setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); - return; - } - case Intrinsic::sadd_sat: { - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); - return; - } - case Intrinsic::uadd_sat: { - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); - return; - } - case Intrinsic::ssub_sat: { - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); - return; - } - case Intrinsic::usub_sat: { - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); - return; - } - case Intrinsic::smul_fix: - case Intrinsic::umul_fix: { - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - SDValue Op3 = getValue(I.getArgOperand(2)); - setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, - Op1.getValueType(), Op1, Op2, Op3)); - return; - } - case Intrinsic::smul_fix_sat: { - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - SDValue Op3 = getValue(I.getArgOperand(2)); - setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, - Op3)); - return; - } - case Intrinsic::stacksave: { - SDValue Op = getRoot(); - Res = DAG.getNode( - ISD::STACKSAVE, sdl, - DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); - setValue(&I, Res); - DAG.setRoot(Res.getValue(1)); - return; - } - case Intrinsic::stackrestore: - Res = getValue(I.getArgOperand(0)); - DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); - return; - case Intrinsic::get_dynamic_area_offset: { - SDValue Op = getRoot(); - EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); - EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); - // Result type for @llvm.get.dynamic.area.offset should match PtrTy for - // target. - if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) - report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" - " intrinsic!"); - Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), - Op); - DAG.setRoot(Op); - setValue(&I, Res); - return; - } - case Intrinsic::stackguard: { - EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); - MachineFunction &MF = DAG.getMachineFunction(); - const Module &M = *MF.getFunction().getParent(); - SDValue Chain = getRoot(); - if (TLI.useLoadStackGuardNode()) { - Res = getLoadStackGuard(DAG, sdl, Chain); - } else { - const Value *Global = TLI.getSDagStackGuard(M); - unsigned Align = DL->getPrefTypeAlignment(Global->getType()); - Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), - MachinePointerInfo(Global, 0), Align, - MachineMemOperand::MOVolatile); - } - if (TLI.useStackGuardXorFP()) - Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); - DAG.setRoot(Chain); - setValue(&I, Res); - return; - } - case Intrinsic::stackprotector: { - // Emit code into the DAG to store the stack guard onto the stack. - MachineFunction &MF = DAG.getMachineFunction(); - MachineFrameInfo &MFI = MF.getFrameInfo(); - EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); - SDValue Src, Chain = getRoot(); - - if (TLI.useLoadStackGuardNode()) - Src = getLoadStackGuard(DAG, sdl, Chain); - else - Src = getValue(I.getArgOperand(0)); // The guard's value. - - AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); - - int FI = FuncInfo.StaticAllocaMap[Slot]; - MFI.setStackProtectorIndex(FI); - - SDValue FIN = DAG.getFrameIndex(FI, PtrTy); - - // Store the stack protector onto the stack. - Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( - DAG.getMachineFunction(), FI), - /* Alignment = */ 0, MachineMemOperand::MOVolatile); - setValue(&I, Res); - DAG.setRoot(Res); - return; - } - case Intrinsic::objectsize: { - // If we don't know by now, we're never going to know. - ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); - - assert(CI && "Non-constant type in __builtin_object_size?"); - - SDValue Arg = getValue(I.getCalledValue()); - EVT Ty = Arg.getValueType(); - - if (CI->isZero()) - Res = DAG.getConstant(-1ULL, sdl, Ty); - else - Res = DAG.getConstant(0, sdl, Ty); - - setValue(&I, Res); - return; - } - - case Intrinsic::is_constant: - // If this wasn't constant-folded away by now, then it's not a - // constant. - setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); - return; - - case Intrinsic::annotation: - case Intrinsic::ptr_annotation: - case Intrinsic::launder_invariant_group: - case Intrinsic::strip_invariant_group: - // Drop the intrinsic, but forward the value - setValue(&I, getValue(I.getOperand(0))); - return; - case Intrinsic::assume: - case Intrinsic::var_annotation: - case Intrinsic::sideeffect: - // Discard annotate attributes, assumptions, and artificial side-effects. - return; - - case Intrinsic::codeview_annotation: { - // Emit a label associated with this metadata. - MachineFunction &MF = DAG.getMachineFunction(); - MCSymbol *Label = - MF.getMMI().getContext().createTempSymbol("annotation", true); - Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); - MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); - Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); - DAG.setRoot(Res); - return; - } - - case Intrinsic::init_trampoline: { - const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); - - SDValue Ops[6]; - Ops[0] = getRoot(); - Ops[1] = getValue(I.getArgOperand(0)); - Ops[2] = getValue(I.getArgOperand(1)); - Ops[3] = getValue(I.getArgOperand(2)); - Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); - Ops[5] = DAG.getSrcValue(F); - - Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); - - DAG.setRoot(Res); - return; - } - case Intrinsic::adjust_trampoline: - setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, - TLI.getPointerTy(DAG.getDataLayout()), - getValue(I.getArgOperand(0)))); - return; - case Intrinsic::gcroot: { - assert(DAG.getMachineFunction().getFunction().hasGC() && - "only valid in functions with gc specified, enforced by Verifier"); - assert(GFI && "implied by previous"); - const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); - const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); - - FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); - GFI->addStackRoot(FI->getIndex(), TypeMap); - return; - } - case Intrinsic::gcread: - case Intrinsic::gcwrite: - llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); - case Intrinsic::flt_rounds: - setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); - return; - - case Intrinsic::expect: - // Just replace __builtin_expect(exp, c) with EXP. - setValue(&I, getValue(I.getArgOperand(0))); - return; - - case Intrinsic::debugtrap: - case Intrinsic::trap: { - StringRef TrapFuncName = - I.getAttributes() - .getAttribute(AttributeList::FunctionIndex, "trap-func-name") - .getValueAsString(); - if (TrapFuncName.empty()) { - ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? - ISD::TRAP : ISD::DEBUGTRAP; - DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); - return; - } - TargetLowering::ArgListTy Args; - - TargetLowering::CallLoweringInfo CLI(DAG); - CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( - CallingConv::C, I.getType(), - DAG.getExternalSymbol(TrapFuncName.data(), - TLI.getPointerTy(DAG.getDataLayout())), - std::move(Args)); - - std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); - DAG.setRoot(Result.second); - return; - } - - case Intrinsic::uadd_with_overflow: - case Intrinsic::sadd_with_overflow: - case Intrinsic::usub_with_overflow: - case Intrinsic::ssub_with_overflow: - case Intrinsic::umul_with_overflow: - case Intrinsic::smul_with_overflow: { - ISD::NodeType Op; - switch (Intrinsic) { - default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. - case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; - case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; - case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; - case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; - case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; - case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; - } - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2 = getValue(I.getArgOperand(1)); - - EVT ResultVT = Op1.getValueType(); - EVT OverflowVT = MVT::i1; - if (ResultVT.isVector()) - OverflowVT = EVT::getVectorVT( - *Context, OverflowVT, ResultVT.getVectorNumElements()); - - SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); - setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); - return; - } - case Intrinsic::prefetch: { - SDValue Ops[5]; - unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); - auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; - Ops[0] = DAG.getRoot(); - Ops[1] = getValue(I.getArgOperand(0)); - Ops[2] = getValue(I.getArgOperand(1)); - Ops[3] = getValue(I.getArgOperand(2)); - Ops[4] = getValue(I.getArgOperand(3)); - SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, - DAG.getVTList(MVT::Other), Ops, - EVT::getIntegerVT(*Context, 8), - MachinePointerInfo(I.getArgOperand(0)), - 0, /* align */ - Flags); - - // Chain the prefetch in parallell with any pending loads, to stay out of - // the way of later optimizations. - PendingLoads.push_back(Result); - Result = getRoot(); - DAG.setRoot(Result); - return; - } - case Intrinsic::lifetime_start: - case Intrinsic::lifetime_end: { - bool IsStart = (Intrinsic == Intrinsic::lifetime_start); - // Stack coloring is not enabled in O0, discard region information. - if (TM.getOptLevel() == CodeGenOpt::None) - return; - - const int64_t ObjectSize = - cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); - Value *const ObjectPtr = I.getArgOperand(1); - SmallVector<const Value *, 4> Allocas; - GetUnderlyingObjects(ObjectPtr, Allocas, *DL); - - for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), - E = Allocas.end(); Object != E; ++Object) { - const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); - - // Could not find an Alloca. - if (!LifetimeObject) - continue; - - // First check that the Alloca is static, otherwise it won't have a - // valid frame index. - auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); - if (SI == FuncInfo.StaticAllocaMap.end()) - return; - - const int FrameIndex = SI->second; - int64_t Offset; - if (GetPointerBaseWithConstantOffset( - ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) - Offset = -1; // Cannot determine offset from alloca to lifetime object. - Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, - Offset); - DAG.setRoot(Res); - } - return; - } - case Intrinsic::invariant_start: - // Discard region information. - setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); - return; - case Intrinsic::invariant_end: - // Discard region information. - return; - case Intrinsic::clear_cache: - /// FunctionName may be null. - if (const char *FunctionName = TLI.getClearCacheBuiltinName()) - lowerCallToExternalSymbol(I, FunctionName); - return; - case Intrinsic::donothing: - // ignore - return; - case Intrinsic::experimental_stackmap: - visitStackmap(I); - return; - case Intrinsic::experimental_patchpoint_void: - case Intrinsic::experimental_patchpoint_i64: - visitPatchpoint(&I); - return; - case Intrinsic::experimental_gc_statepoint: - LowerStatepoint(ImmutableStatepoint(&I)); - return; - case Intrinsic::experimental_gc_result: - visitGCResult(cast<GCResultInst>(I)); - return; - case Intrinsic::experimental_gc_relocate: - visitGCRelocate(cast<GCRelocateInst>(I)); - return; - case Intrinsic::instrprof_increment: - llvm_unreachable("instrprof failed to lower an increment"); - case Intrinsic::instrprof_value_profile: - llvm_unreachable("instrprof failed to lower a value profiling call"); - case Intrinsic::localescape: { - MachineFunction &MF = DAG.getMachineFunction(); - const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); - - // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission - // is the same on all targets. - for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { - Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); - if (isa<ConstantPointerNull>(Arg)) - continue; // Skip null pointers. They represent a hole in index space. - AllocaInst *Slot = cast<AllocaInst>(Arg); - assert(FuncInfo.StaticAllocaMap.count(Slot) && - "can only escape static allocas"); - int FI = FuncInfo.StaticAllocaMap[Slot]; - MCSymbol *FrameAllocSym = - MF.getMMI().getContext().getOrCreateFrameAllocSymbol( - GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, - TII->get(TargetOpcode::LOCAL_ESCAPE)) - .addSym(FrameAllocSym) - .addFrameIndex(FI); - } - - return; - } - - case Intrinsic::localrecover: { - // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) - MachineFunction &MF = DAG.getMachineFunction(); - MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); - - // Get the symbol that defines the frame offset. - auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); - auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); - unsigned IdxVal = - unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); - MCSymbol *FrameAllocSym = - MF.getMMI().getContext().getOrCreateFrameAllocSymbol( - GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); - - // Create a MCSymbol for the label to avoid any target lowering - // that would make this PC relative. - SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); - SDValue OffsetVal = - DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); - - // Add the offset to the FP. - Value *FP = I.getArgOperand(1); - SDValue FPVal = getValue(FP); - SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); - setValue(&I, Add); - - return; - } - - case Intrinsic::eh_exceptionpointer: - case Intrinsic::eh_exceptioncode: { - // Get the exception pointer vreg, copy from it, and resize it to fit. - const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); - MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); - const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); - unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); - SDValue N = - DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); - if (Intrinsic == Intrinsic::eh_exceptioncode) - N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); - setValue(&I, N); - return; - } - case Intrinsic::xray_customevent: { - // Here we want to make sure that the intrinsic behaves as if it has a - // specific calling convention, and only for x86_64. - // FIXME: Support other platforms later. - const auto &Triple = DAG.getTarget().getTargetTriple(); - if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) - return; - - SDLoc DL = getCurSDLoc(); - SmallVector<SDValue, 8> Ops; - - // We want to say that we always want the arguments in registers. - SDValue LogEntryVal = getValue(I.getArgOperand(0)); - SDValue StrSizeVal = getValue(I.getArgOperand(1)); - SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); - SDValue Chain = getRoot(); - Ops.push_back(LogEntryVal); - Ops.push_back(StrSizeVal); - Ops.push_back(Chain); - - // We need to enforce the calling convention for the callsite, so that - // argument ordering is enforced correctly, and that register allocation can - // see that some registers may be assumed clobbered and have to preserve - // them across calls to the intrinsic. - MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, - DL, NodeTys, Ops); - SDValue patchableNode = SDValue(MN, 0); - DAG.setRoot(patchableNode); - setValue(&I, patchableNode); - return; - } - case Intrinsic::xray_typedevent: { - // Here we want to make sure that the intrinsic behaves as if it has a - // specific calling convention, and only for x86_64. - // FIXME: Support other platforms later. - const auto &Triple = DAG.getTarget().getTargetTriple(); - if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) - return; - - SDLoc DL = getCurSDLoc(); - SmallVector<SDValue, 8> Ops; - - // We want to say that we always want the arguments in registers. - // It's unclear to me how manipulating the selection DAG here forces callers - // to provide arguments in registers instead of on the stack. - SDValue LogTypeId = getValue(I.getArgOperand(0)); - SDValue LogEntryVal = getValue(I.getArgOperand(1)); - SDValue StrSizeVal = getValue(I.getArgOperand(2)); - SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); - SDValue Chain = getRoot(); - Ops.push_back(LogTypeId); - Ops.push_back(LogEntryVal); - Ops.push_back(StrSizeVal); - Ops.push_back(Chain); - - // We need to enforce the calling convention for the callsite, so that - // argument ordering is enforced correctly, and that register allocation can - // see that some registers may be assumed clobbered and have to preserve - // them across calls to the intrinsic. - MachineSDNode *MN = DAG.getMachineNode( - TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); - SDValue patchableNode = SDValue(MN, 0); - DAG.setRoot(patchableNode); - setValue(&I, patchableNode); - return; - } - case Intrinsic::experimental_deoptimize: - LowerDeoptimizeCall(&I); - return; - - case Intrinsic::experimental_vector_reduce_v2_fadd: - case Intrinsic::experimental_vector_reduce_v2_fmul: - case Intrinsic::experimental_vector_reduce_add: - case Intrinsic::experimental_vector_reduce_mul: - case Intrinsic::experimental_vector_reduce_and: - case Intrinsic::experimental_vector_reduce_or: - case Intrinsic::experimental_vector_reduce_xor: - case Intrinsic::experimental_vector_reduce_smax: - case Intrinsic::experimental_vector_reduce_smin: - case Intrinsic::experimental_vector_reduce_umax: - case Intrinsic::experimental_vector_reduce_umin: - case Intrinsic::experimental_vector_reduce_fmax: - case Intrinsic::experimental_vector_reduce_fmin: - visitVectorReduce(I, Intrinsic); - return; - - case Intrinsic::icall_branch_funnel: { - SmallVector<SDValue, 16> Ops; - Ops.push_back(getValue(I.getArgOperand(0))); - - int64_t Offset; - auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( - I.getArgOperand(1), Offset, DAG.getDataLayout())); - if (!Base) - report_fatal_error( - "llvm.icall.branch.funnel operand must be a GlobalValue"); - Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); - - struct BranchFunnelTarget { - int64_t Offset; - SDValue Target; - }; - SmallVector<BranchFunnelTarget, 8> Targets; - - for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { - auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( - I.getArgOperand(Op), Offset, DAG.getDataLayout())); - if (ElemBase != Base) - report_fatal_error("all llvm.icall.branch.funnel operands must refer " - "to the same GlobalValue"); - - SDValue Val = getValue(I.getArgOperand(Op + 1)); - auto *GA = dyn_cast<GlobalAddressSDNode>(Val); - if (!GA) - report_fatal_error( - "llvm.icall.branch.funnel operand must be a GlobalValue"); - Targets.push_back({Offset, DAG.getTargetGlobalAddress( - GA->getGlobal(), getCurSDLoc(), - Val.getValueType(), GA->getOffset())}); - } - llvm::sort(Targets, - [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { - return T1.Offset < T2.Offset; - }); - - for (auto &T : Targets) { - Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); - Ops.push_back(T.Target); - } - - Ops.push_back(DAG.getRoot()); // Chain - SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, - getCurSDLoc(), MVT::Other, Ops), - 0); - DAG.setRoot(N); - setValue(&I, N); - HasTailCall = true; - return; - } - - case Intrinsic::wasm_landingpad_index: - // Information this intrinsic contained has been transferred to - // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely - // delete it now. - return; - - case Intrinsic::aarch64_settag: - case Intrinsic::aarch64_settag_zero: { - const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); - bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; - SDValue Val = TSI.EmitTargetCodeForSetTag( - DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), - ZeroMemory); - DAG.setRoot(Val); - setValue(&I, Val); - return; - } - } -} - -void SelectionDAGBuilder::visitConstrainedFPIntrinsic( - const ConstrainedFPIntrinsic &FPI) { - SDLoc sdl = getCurSDLoc(); - unsigned Opcode; - switch (FPI.getIntrinsicID()) { - default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. - case Intrinsic::experimental_constrained_fadd: - Opcode = ISD::STRICT_FADD; - break; - case Intrinsic::experimental_constrained_fsub: - Opcode = ISD::STRICT_FSUB; - break; - case Intrinsic::experimental_constrained_fmul: - Opcode = ISD::STRICT_FMUL; - break; - case Intrinsic::experimental_constrained_fdiv: - Opcode = ISD::STRICT_FDIV; - break; - case Intrinsic::experimental_constrained_frem: - Opcode = ISD::STRICT_FREM; - break; - case Intrinsic::experimental_constrained_fma: - Opcode = ISD::STRICT_FMA; - break; - case Intrinsic::experimental_constrained_fptrunc: - Opcode = ISD::STRICT_FP_ROUND; - break; - case Intrinsic::experimental_constrained_fpext: - Opcode = ISD::STRICT_FP_EXTEND; - break; - case Intrinsic::experimental_constrained_sqrt: - Opcode = ISD::STRICT_FSQRT; - break; - case Intrinsic::experimental_constrained_pow: - Opcode = ISD::STRICT_FPOW; - break; - case Intrinsic::experimental_constrained_powi: - Opcode = ISD::STRICT_FPOWI; - break; - case Intrinsic::experimental_constrained_sin: - Opcode = ISD::STRICT_FSIN; - break; - case Intrinsic::experimental_constrained_cos: - Opcode = ISD::STRICT_FCOS; - break; - case Intrinsic::experimental_constrained_exp: - Opcode = ISD::STRICT_FEXP; - break; - case Intrinsic::experimental_constrained_exp2: - Opcode = ISD::STRICT_FEXP2; - break; - case Intrinsic::experimental_constrained_log: - Opcode = ISD::STRICT_FLOG; - break; - case Intrinsic::experimental_constrained_log10: - Opcode = ISD::STRICT_FLOG10; - break; - case Intrinsic::experimental_constrained_log2: - Opcode = ISD::STRICT_FLOG2; - break; - case Intrinsic::experimental_constrained_rint: - Opcode = ISD::STRICT_FRINT; - break; - case Intrinsic::experimental_constrained_nearbyint: - Opcode = ISD::STRICT_FNEARBYINT; - break; - case Intrinsic::experimental_constrained_maxnum: - Opcode = ISD::STRICT_FMAXNUM; - break; - case Intrinsic::experimental_constrained_minnum: - Opcode = ISD::STRICT_FMINNUM; - break; - case Intrinsic::experimental_constrained_ceil: - Opcode = ISD::STRICT_FCEIL; - break; - case Intrinsic::experimental_constrained_floor: - Opcode = ISD::STRICT_FFLOOR; - break; - case Intrinsic::experimental_constrained_round: - Opcode = ISD::STRICT_FROUND; - break; - case Intrinsic::experimental_constrained_trunc: - Opcode = ISD::STRICT_FTRUNC; - break; - } - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue Chain = getRoot(); - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); - ValueVTs.push_back(MVT::Other); // Out chain - - SDVTList VTs = DAG.getVTList(ValueVTs); - SDValue Result; - if (Opcode == ISD::STRICT_FP_ROUND) - Result = DAG.getNode(Opcode, sdl, VTs, - { Chain, getValue(FPI.getArgOperand(0)), - DAG.getTargetConstant(0, sdl, - TLI.getPointerTy(DAG.getDataLayout())) }); - else if (FPI.isUnaryOp()) - Result = DAG.getNode(Opcode, sdl, VTs, - { Chain, getValue(FPI.getArgOperand(0)) }); - else if (FPI.isTernaryOp()) - Result = DAG.getNode(Opcode, sdl, VTs, - { Chain, getValue(FPI.getArgOperand(0)), - getValue(FPI.getArgOperand(1)), - getValue(FPI.getArgOperand(2)) }); - else - Result = DAG.getNode(Opcode, sdl, VTs, - { Chain, getValue(FPI.getArgOperand(0)), - getValue(FPI.getArgOperand(1)) }); - - if (FPI.getExceptionBehavior() != - ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) { - SDNodeFlags Flags; - Flags.setFPExcept(true); - Result->setFlags(Flags); - } - - assert(Result.getNode()->getNumValues() == 2); - SDValue OutChain = Result.getValue(1); - DAG.setRoot(OutChain); - SDValue FPResult = Result.getValue(0); - setValue(&FPI, FPResult); -} - -std::pair<SDValue, SDValue> -SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, - const BasicBlock *EHPadBB) { - MachineFunction &MF = DAG.getMachineFunction(); - MachineModuleInfo &MMI = MF.getMMI(); - MCSymbol *BeginLabel = nullptr; - - if (EHPadBB) { - // Insert a label before the invoke call to mark the try range. This can be - // used to detect deletion of the invoke via the MachineModuleInfo. - BeginLabel = MMI.getContext().createTempSymbol(); - - // For SjLj, keep track of which landing pads go with which invokes - // so as to maintain the ordering of pads in the LSDA. - unsigned CallSiteIndex = MMI.getCurrentCallSite(); - if (CallSiteIndex) { - MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); - LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); - - // Now that the call site is handled, stop tracking it. - MMI.setCurrentCallSite(0); - } - - // Both PendingLoads and PendingExports must be flushed here; - // this call might not return. - (void)getRoot(); - DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); - - CLI.setChain(getRoot()); - } - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); - - assert((CLI.IsTailCall || Result.second.getNode()) && - "Non-null chain expected with non-tail call!"); - assert((Result.second.getNode() || !Result.first.getNode()) && - "Null value expected with tail call!"); - - if (!Result.second.getNode()) { - // As a special case, a null chain means that a tail call has been emitted - // and the DAG root is already updated. - HasTailCall = true; - - // Since there's no actual continuation from this block, nothing can be - // relying on us setting vregs for them. - PendingExports.clear(); - } else { - DAG.setRoot(Result.second); - } - - if (EHPadBB) { - // Insert a label at the end of the invoke call to mark the try range. This - // can be used to detect deletion of the invoke via the MachineModuleInfo. - MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); - DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); - - // Inform MachineModuleInfo of range. - auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); - // There is a platform (e.g. wasm) that uses funclet style IR but does not - // actually use outlined funclets and their LSDA info style. - if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { - assert(CLI.CS); - WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); - EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), - BeginLabel, EndLabel); - } else if (!isScopedEHPersonality(Pers)) { - MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); - } - } - - return Result; -} - -void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, - bool isTailCall, - const BasicBlock *EHPadBB) { - auto &DL = DAG.getDataLayout(); - FunctionType *FTy = CS.getFunctionType(); - Type *RetTy = CS.getType(); - - TargetLowering::ArgListTy Args; - Args.reserve(CS.arg_size()); - - const Value *SwiftErrorVal = nullptr; - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - - // We can't tail call inside a function with a swifterror argument. Lowering - // does not support this yet. It would have to move into the swifterror - // register before the call. - auto *Caller = CS.getInstruction()->getParent()->getParent(); - if (TLI.supportSwiftError() && - Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) - isTailCall = false; - - for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); - i != e; ++i) { - TargetLowering::ArgListEntry Entry; - const Value *V = *i; - - // Skip empty types - if (V->getType()->isEmptyTy()) - continue; - - SDValue ArgNode = getValue(V); - Entry.Node = ArgNode; Entry.Ty = V->getType(); - - Entry.setAttributes(&CS, i - CS.arg_begin()); - - // Use swifterror virtual register as input to the call. - if (Entry.IsSwiftError && TLI.supportSwiftError()) { - SwiftErrorVal = V; - // We find the virtual register for the actual swifterror argument. - // Instead of using the Value, we use the virtual register instead. - Entry.Node = DAG.getRegister( - SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), - EVT(TLI.getPointerTy(DL))); - } - - Args.push_back(Entry); - - // If we have an explicit sret argument that is an Instruction, (i.e., it - // might point to function-local memory), we can't meaningfully tail-call. - if (Entry.IsSRet && isa<Instruction>(V)) - isTailCall = false; - } - - // Check if target-independent constraints permit a tail call here. - // Target-dependent constraints are checked within TLI->LowerCallTo. - if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) - isTailCall = false; - - // Disable tail calls if there is an swifterror argument. Targets have not - // been updated to support tail calls. - if (TLI.supportSwiftError() && SwiftErrorVal) - isTailCall = false; - - TargetLowering::CallLoweringInfo CLI(DAG); - CLI.setDebugLoc(getCurSDLoc()) - .setChain(getRoot()) - .setCallee(RetTy, FTy, Callee, std::move(Args), CS) - .setTailCall(isTailCall) - .setConvergent(CS.isConvergent()); - std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); - - if (Result.first.getNode()) { - const Instruction *Inst = CS.getInstruction(); - Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); - setValue(Inst, Result.first); - } - - // The last element of CLI.InVals has the SDValue for swifterror return. - // Here we copy it to a virtual register and update SwiftErrorMap for - // book-keeping. - if (SwiftErrorVal && TLI.supportSwiftError()) { - // Get the last element of InVals. - SDValue Src = CLI.InVals.back(); - unsigned VReg = SwiftError.getOrCreateVRegDefAt( - CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); - SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); - DAG.setRoot(CopyNode); - } -} - -static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, - SelectionDAGBuilder &Builder) { - // Check to see if this load can be trivially constant folded, e.g. if the - // input is from a string literal. - if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { - // Cast pointer to the type we really want to load. - Type *LoadTy = - Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); - if (LoadVT.isVector()) - LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); - - LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), - PointerType::getUnqual(LoadTy)); - - if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( - const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) - return Builder.getValue(LoadCst); - } - - // Otherwise, we have to emit the load. If the pointer is to unfoldable but - // still constant memory, the input chain can be the entry node. - SDValue Root; - bool ConstantMemory = false; - - // Do not serialize (non-volatile) loads of constant memory with anything. - if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { - Root = Builder.DAG.getEntryNode(); - ConstantMemory = true; - } else { - // Do not serialize non-volatile loads against each other. - Root = Builder.DAG.getRoot(); - } - - SDValue Ptr = Builder.getValue(PtrVal); - SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, - Ptr, MachinePointerInfo(PtrVal), - /* Alignment = */ 1); - - if (!ConstantMemory) - Builder.PendingLoads.push_back(LoadVal.getValue(1)); - return LoadVal; -} - -/// Record the value for an instruction that produces an integer result, -/// converting the type where necessary. -void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, - SDValue Value, - bool IsSigned) { - EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType(), true); - if (IsSigned) - Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); - else - Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); - setValue(&I, Value); -} - -/// See if we can lower a memcmp call into an optimized form. If so, return -/// true and lower it. Otherwise return false, and it will be lowered like a -/// normal call. -/// The caller already checked that \p I calls the appropriate LibFunc with a -/// correct prototype. -bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { - const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); - const Value *Size = I.getArgOperand(2); - const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); - if (CSize && CSize->getZExtValue() == 0) { - EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), - I.getType(), true); - setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); - return true; - } - - const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); - std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( - DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), - getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); - if (Res.first.getNode()) { - processIntegerCallValue(I, Res.first, true); - PendingLoads.push_back(Res.second); - return true; - } - - // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 - // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 - if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) - return false; - - // If the target has a fast compare for the given size, it will return a - // preferred load type for that size. Require that the load VT is legal and - // that the target supports unaligned loads of that type. Otherwise, return - // INVALID. - auto hasFastLoadsAndCompare = [&](unsigned NumBits) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - MVT LVT = TLI.hasFastEqualityCompare(NumBits); - if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { - // TODO: Handle 5 byte compare as 4-byte + 1 byte. - // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. - // TODO: Check alignment of src and dest ptrs. - unsigned DstAS = LHS->getType()->getPointerAddressSpace(); - unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); - if (!TLI.isTypeLegal(LVT) || - !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || - !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) - LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; - } - - return LVT; - }; - - // This turns into unaligned loads. We only do this if the target natively - // supports the MVT we'll be loading or if it is small enough (<= 4) that - // we'll only produce a small number of byte loads. - MVT LoadVT; - unsigned NumBitsToCompare = CSize->getZExtValue() * 8; - switch (NumBitsToCompare) { - default: - return false; - case 16: - LoadVT = MVT::i16; - break; - case 32: - LoadVT = MVT::i32; - break; - case 64: - case 128: - case 256: - LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); - break; - } - - if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) - return false; - - SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); - SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); - - // Bitcast to a wide integer type if the loads are vectors. - if (LoadVT.isVector()) { - EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); - LoadL = DAG.getBitcast(CmpVT, LoadL); - LoadR = DAG.getBitcast(CmpVT, LoadR); - } - - SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); - processIntegerCallValue(I, Cmp, false); - return true; -} - -/// See if we can lower a memchr call into an optimized form. If so, return -/// true and lower it. Otherwise return false, and it will be lowered like a -/// normal call. -/// The caller already checked that \p I calls the appropriate LibFunc with a -/// correct prototype. -bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { - const Value *Src = I.getArgOperand(0); - const Value *Char = I.getArgOperand(1); - const Value *Length = I.getArgOperand(2); - - const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); - std::pair<SDValue, SDValue> Res = - TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), - getValue(Src), getValue(Char), getValue(Length), - MachinePointerInfo(Src)); - if (Res.first.getNode()) { - setValue(&I, Res.first); - PendingLoads.push_back(Res.second); - return true; - } - - return false; -} - -/// See if we can lower a mempcpy call into an optimized form. If so, return -/// true and lower it. Otherwise return false, and it will be lowered like a -/// normal call. -/// The caller already checked that \p I calls the appropriate LibFunc with a -/// correct prototype. -bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { - SDValue Dst = getValue(I.getArgOperand(0)); - SDValue Src = getValue(I.getArgOperand(1)); - SDValue Size = getValue(I.getArgOperand(2)); - - unsigned DstAlign = DAG.InferPtrAlignment(Dst); - unsigned SrcAlign = DAG.InferPtrAlignment(Src); - unsigned Align = std::min(DstAlign, SrcAlign); - if (Align == 0) // Alignment of one or both could not be inferred. - Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. - - bool isVol = false; - SDLoc sdl = getCurSDLoc(); - - // In the mempcpy context we need to pass in a false value for isTailCall - // because the return pointer needs to be adjusted by the size of - // the copied memory. - SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, - false, /*isTailCall=*/false, - MachinePointerInfo(I.getArgOperand(0)), - MachinePointerInfo(I.getArgOperand(1))); - assert(MC.getNode() != nullptr && - "** memcpy should not be lowered as TailCall in mempcpy context **"); - DAG.setRoot(MC); - - // Check if Size needs to be truncated or extended. - Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); - - // Adjust return pointer to point just past the last dst byte. - SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), - Dst, Size); - setValue(&I, DstPlusSize); - return true; -} - -/// See if we can lower a strcpy call into an optimized form. If so, return -/// true and lower it, otherwise return false and it will be lowered like a -/// normal call. -/// The caller already checked that \p I calls the appropriate LibFunc with a -/// correct prototype. -bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { - const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); - - const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); - std::pair<SDValue, SDValue> Res = - TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), - getValue(Arg0), getValue(Arg1), - MachinePointerInfo(Arg0), - MachinePointerInfo(Arg1), isStpcpy); - if (Res.first.getNode()) { - setValue(&I, Res.first); - DAG.setRoot(Res.second); - return true; - } - - return false; -} - -/// See if we can lower a strcmp call into an optimized form. If so, return -/// true and lower it, otherwise return false and it will be lowered like a -/// normal call. -/// The caller already checked that \p I calls the appropriate LibFunc with a -/// correct prototype. -bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { - const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); - - const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); - std::pair<SDValue, SDValue> Res = - TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), - getValue(Arg0), getValue(Arg1), - MachinePointerInfo(Arg0), - MachinePointerInfo(Arg1)); - if (Res.first.getNode()) { - processIntegerCallValue(I, Res.first, true); - PendingLoads.push_back(Res.second); - return true; - } - - return false; -} - -/// See if we can lower a strlen call into an optimized form. If so, return -/// true and lower it, otherwise return false and it will be lowered like a -/// normal call. -/// The caller already checked that \p I calls the appropriate LibFunc with a -/// correct prototype. -bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { - const Value *Arg0 = I.getArgOperand(0); - - const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); - std::pair<SDValue, SDValue> Res = - TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), - getValue(Arg0), MachinePointerInfo(Arg0)); - if (Res.first.getNode()) { - processIntegerCallValue(I, Res.first, false); - PendingLoads.push_back(Res.second); - return true; - } - - return false; -} - -/// See if we can lower a strnlen call into an optimized form. If so, return -/// true and lower it, otherwise return false and it will be lowered like a -/// normal call. -/// The caller already checked that \p I calls the appropriate LibFunc with a -/// correct prototype. -bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { - const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); - - const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); - std::pair<SDValue, SDValue> Res = - TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), - getValue(Arg0), getValue(Arg1), - MachinePointerInfo(Arg0)); - if (Res.first.getNode()) { - processIntegerCallValue(I, Res.first, false); - PendingLoads.push_back(Res.second); - return true; - } - - return false; -} - -/// See if we can lower a unary floating-point operation into an SDNode with -/// the specified Opcode. If so, return true and lower it, otherwise return -/// false and it will be lowered like a normal call. -/// The caller already checked that \p I calls the appropriate LibFunc with a -/// correct prototype. -bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, - unsigned Opcode) { - // We already checked this call's prototype; verify it doesn't modify errno. - if (!I.onlyReadsMemory()) - return false; - - SDValue Tmp = getValue(I.getArgOperand(0)); - setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); - return true; -} - -/// See if we can lower a binary floating-point operation into an SDNode with -/// the specified Opcode. If so, return true and lower it. Otherwise return -/// false, and it will be lowered like a normal call. -/// The caller already checked that \p I calls the appropriate LibFunc with a -/// correct prototype. -bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, - unsigned Opcode) { - // We already checked this call's prototype; verify it doesn't modify errno. - if (!I.onlyReadsMemory()) - return false; - - SDValue Tmp0 = getValue(I.getArgOperand(0)); - SDValue Tmp1 = getValue(I.getArgOperand(1)); - EVT VT = Tmp0.getValueType(); - setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); - return true; -} - -void SelectionDAGBuilder::visitCall(const CallInst &I) { - // Handle inline assembly differently. - if (isa<InlineAsm>(I.getCalledValue())) { - visitInlineAsm(&I); - return; - } - - if (Function *F = I.getCalledFunction()) { - if (F->isDeclaration()) { - // Is this an LLVM intrinsic or a target-specific intrinsic? - unsigned IID = F->getIntrinsicID(); - if (!IID) - if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) - IID = II->getIntrinsicID(F); - - if (IID) { - visitIntrinsicCall(I, IID); - return; - } - } - - // Check for well-known libc/libm calls. If the function is internal, it - // can't be a library call. Don't do the check if marked as nobuiltin for - // some reason or the call site requires strict floating point semantics. - LibFunc Func; - if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && - F->hasName() && LibInfo->getLibFunc(*F, Func) && - LibInfo->hasOptimizedCodeGen(Func)) { - switch (Func) { - default: break; - case LibFunc_copysign: - case LibFunc_copysignf: - case LibFunc_copysignl: - // We already checked this call's prototype; verify it doesn't modify - // errno. - if (I.onlyReadsMemory()) { - SDValue LHS = getValue(I.getArgOperand(0)); - SDValue RHS = getValue(I.getArgOperand(1)); - setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), - LHS.getValueType(), LHS, RHS)); - return; - } - break; - case LibFunc_fabs: - case LibFunc_fabsf: - case LibFunc_fabsl: - if (visitUnaryFloatCall(I, ISD::FABS)) - return; - break; - case LibFunc_fmin: - case LibFunc_fminf: - case LibFunc_fminl: - if (visitBinaryFloatCall(I, ISD::FMINNUM)) - return; - break; - case LibFunc_fmax: - case LibFunc_fmaxf: - case LibFunc_fmaxl: - if (visitBinaryFloatCall(I, ISD::FMAXNUM)) - return; - break; - case LibFunc_sin: - case LibFunc_sinf: - case LibFunc_sinl: - if (visitUnaryFloatCall(I, ISD::FSIN)) - return; - break; - case LibFunc_cos: - case LibFunc_cosf: - case LibFunc_cosl: - if (visitUnaryFloatCall(I, ISD::FCOS)) - return; - break; - case LibFunc_sqrt: - case LibFunc_sqrtf: - case LibFunc_sqrtl: - case LibFunc_sqrt_finite: - case LibFunc_sqrtf_finite: - case LibFunc_sqrtl_finite: - if (visitUnaryFloatCall(I, ISD::FSQRT)) - return; - break; - case LibFunc_floor: - case LibFunc_floorf: - case LibFunc_floorl: - if (visitUnaryFloatCall(I, ISD::FFLOOR)) - return; - break; - case LibFunc_nearbyint: - case LibFunc_nearbyintf: - case LibFunc_nearbyintl: - if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) - return; - break; - case LibFunc_ceil: - case LibFunc_ceilf: - case LibFunc_ceill: - if (visitUnaryFloatCall(I, ISD::FCEIL)) - return; - break; - case LibFunc_rint: - case LibFunc_rintf: - case LibFunc_rintl: - if (visitUnaryFloatCall(I, ISD::FRINT)) - return; - break; - case LibFunc_round: - case LibFunc_roundf: - case LibFunc_roundl: - if (visitUnaryFloatCall(I, ISD::FROUND)) - return; - break; - case LibFunc_trunc: - case LibFunc_truncf: - case LibFunc_truncl: - if (visitUnaryFloatCall(I, ISD::FTRUNC)) - return; - break; - case LibFunc_log2: - case LibFunc_log2f: - case LibFunc_log2l: - if (visitUnaryFloatCall(I, ISD::FLOG2)) - return; - break; - case LibFunc_exp2: - case LibFunc_exp2f: - case LibFunc_exp2l: - if (visitUnaryFloatCall(I, ISD::FEXP2)) - return; - break; - case LibFunc_memcmp: - if (visitMemCmpCall(I)) - return; - break; - case LibFunc_mempcpy: - if (visitMemPCpyCall(I)) - return; - break; - case LibFunc_memchr: - if (visitMemChrCall(I)) - return; - break; - case LibFunc_strcpy: - if (visitStrCpyCall(I, false)) - return; - break; - case LibFunc_stpcpy: - if (visitStrCpyCall(I, true)) - return; - break; - case LibFunc_strcmp: - if (visitStrCmpCall(I)) - return; - break; - case LibFunc_strlen: - if (visitStrLenCall(I)) - return; - break; - case LibFunc_strnlen: - if (visitStrNLenCall(I)) - return; - break; - } - } - } - - // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't - // have to do anything here to lower funclet bundles. - assert(!I.hasOperandBundlesOtherThan( - {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && - "Cannot lower calls with arbitrary operand bundles!"); - - SDValue Callee = getValue(I.getCalledValue()); - - if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) - LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); - else - // Check if we can potentially perform a tail call. More detailed checking - // is be done within LowerCallTo, after more information about the call is - // known. - LowerCallTo(&I, Callee, I.isTailCall()); -} - -namespace { - -/// AsmOperandInfo - This contains information for each constraint that we are -/// lowering. -class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { -public: - /// CallOperand - If this is the result output operand or a clobber - /// this is null, otherwise it is the incoming operand to the CallInst. - /// This gets modified as the asm is processed. - SDValue CallOperand; - - /// AssignedRegs - If this is a register or register class operand, this - /// contains the set of register corresponding to the operand. - RegsForValue AssignedRegs; - - explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) - : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { - } - - /// Whether or not this operand accesses memory - bool hasMemory(const TargetLowering &TLI) const { - // Indirect operand accesses access memory. - if (isIndirect) - return true; - - for (const auto &Code : Codes) - if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) - return true; - - return false; - } - - /// getCallOperandValEVT - Return the EVT of the Value* that this operand - /// corresponds to. If there is no Value* for this operand, it returns - /// MVT::Other. - EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, - const DataLayout &DL) const { - if (!CallOperandVal) return MVT::Other; - - if (isa<BasicBlock>(CallOperandVal)) - return TLI.getPointerTy(DL); - - llvm::Type *OpTy = CallOperandVal->getType(); - - // FIXME: code duplicated from TargetLowering::ParseConstraints(). - // If this is an indirect operand, the operand is a pointer to the - // accessed type. - if (isIndirect) { - PointerType *PtrTy = dyn_cast<PointerType>(OpTy); - if (!PtrTy) - report_fatal_error("Indirect operand for inline asm not a pointer!"); - OpTy = PtrTy->getElementType(); - } - - // Look for vector wrapped in a struct. e.g. { <16 x i8> }. - if (StructType *STy = dyn_cast<StructType>(OpTy)) - if (STy->getNumElements() == 1) - OpTy = STy->getElementType(0); - - // If OpTy is not a single value, it may be a struct/union that we - // can tile with integers. - if (!OpTy->isSingleValueType() && OpTy->isSized()) { - unsigned BitSize = DL.getTypeSizeInBits(OpTy); - switch (BitSize) { - default: break; - case 1: - case 8: - case 16: - case 32: - case 64: - case 128: - OpTy = IntegerType::get(Context, BitSize); - break; - } - } - - return TLI.getValueType(DL, OpTy, true); - } -}; - -using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; - -} // end anonymous namespace - -/// Make sure that the output operand \p OpInfo and its corresponding input -/// operand \p MatchingOpInfo have compatible constraint types (otherwise error -/// out). -static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, - SDISelAsmOperandInfo &MatchingOpInfo, - SelectionDAG &DAG) { - if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) - return; - - const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); - const auto &TLI = DAG.getTargetLoweringInfo(); - - std::pair<unsigned, const TargetRegisterClass *> MatchRC = - TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, - OpInfo.ConstraintVT); - std::pair<unsigned, const TargetRegisterClass *> InputRC = - TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, - MatchingOpInfo.ConstraintVT); - if ((OpInfo.ConstraintVT.isInteger() != - MatchingOpInfo.ConstraintVT.isInteger()) || - (MatchRC.second != InputRC.second)) { - // FIXME: error out in a more elegant fashion - report_fatal_error("Unsupported asm: input constraint" - " with a matching output constraint of" - " incompatible type!"); - } - MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; -} - -/// Get a direct memory input to behave well as an indirect operand. -/// This may introduce stores, hence the need for a \p Chain. -/// \return The (possibly updated) chain. -static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, - SDISelAsmOperandInfo &OpInfo, - SelectionDAG &DAG) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - - // If we don't have an indirect input, put it in the constpool if we can, - // otherwise spill it to a stack slot. - // TODO: This isn't quite right. We need to handle these according to - // the addressing mode that the constraint wants. Also, this may take - // an additional register for the computation and we don't want that - // either. - - // If the operand is a float, integer, or vector constant, spill to a - // constant pool entry to get its address. - const Value *OpVal = OpInfo.CallOperandVal; - if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || - isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { - OpInfo.CallOperand = DAG.getConstantPool( - cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); - return Chain; - } - - // Otherwise, create a stack slot and emit a store to it before the asm. - Type *Ty = OpVal->getType(); - auto &DL = DAG.getDataLayout(); - uint64_t TySize = DL.getTypeAllocSize(Ty); - unsigned Align = DL.getPrefTypeAlignment(Ty); - MachineFunction &MF = DAG.getMachineFunction(); - int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); - SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); - Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, - MachinePointerInfo::getFixedStack(MF, SSFI), - TLI.getMemValueType(DL, Ty)); - OpInfo.CallOperand = StackSlot; - - return Chain; -} - -/// GetRegistersForValue - Assign registers (virtual or physical) for the -/// specified operand. We prefer to assign virtual registers, to allow the -/// register allocator to handle the assignment process. However, if the asm -/// uses features that we can't model on machineinstrs, we have SDISel do the -/// allocation. This produces generally horrible, but correct, code. -/// -/// OpInfo describes the operand -/// RefOpInfo describes the matching operand if any, the operand otherwise -static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, - SDISelAsmOperandInfo &OpInfo, - SDISelAsmOperandInfo &RefOpInfo) { - LLVMContext &Context = *DAG.getContext(); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - - MachineFunction &MF = DAG.getMachineFunction(); - SmallVector<unsigned, 4> Regs; - const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); - - // No work to do for memory operations. - if (OpInfo.ConstraintType == TargetLowering::C_Memory) - return; - - // If this is a constraint for a single physreg, or a constraint for a - // register class, find it. - unsigned AssignedReg; - const TargetRegisterClass *RC; - std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( - &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); - // RC is unset only on failure. Return immediately. - if (!RC) - return; - - // Get the actual register value type. This is important, because the user - // may have asked for (e.g.) the AX register in i32 type. We need to - // remember that AX is actually i16 to get the right extension. - const MVT RegVT = *TRI.legalclasstypes_begin(*RC); - - if (OpInfo.ConstraintVT != MVT::Other) { - // If this is an FP operand in an integer register (or visa versa), or more - // generally if the operand value disagrees with the register class we plan - // to stick it in, fix the operand type. - // - // If this is an input value, the bitcast to the new type is done now. - // Bitcast for output value is done at the end of visitInlineAsm(). - if ((OpInfo.Type == InlineAsm::isOutput || - OpInfo.Type == InlineAsm::isInput) && - !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { - // Try to convert to the first EVT that the reg class contains. If the - // types are identical size, use a bitcast to convert (e.g. two differing - // vector types). Note: output bitcast is done at the end of - // visitInlineAsm(). - if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { - // Exclude indirect inputs while they are unsupported because the code - // to perform the load is missing and thus OpInfo.CallOperand still - // refers to the input address rather than the pointed-to value. - if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) - OpInfo.CallOperand = - DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); - OpInfo.ConstraintVT = RegVT; - // If the operand is an FP value and we want it in integer registers, - // use the corresponding integer type. This turns an f64 value into - // i64, which can be passed with two i32 values on a 32-bit machine. - } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { - MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); - if (OpInfo.Type == InlineAsm::isInput) - OpInfo.CallOperand = - DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); - OpInfo.ConstraintVT = VT; - } - } - } - - // No need to allocate a matching input constraint since the constraint it's - // matching to has already been allocated. - if (OpInfo.isMatchingInputConstraint()) - return; - - EVT ValueVT = OpInfo.ConstraintVT; - if (OpInfo.ConstraintVT == MVT::Other) - ValueVT = RegVT; - - // Initialize NumRegs. - unsigned NumRegs = 1; - if (OpInfo.ConstraintVT != MVT::Other) - NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); - - // If this is a constraint for a specific physical register, like {r17}, - // assign it now. - - // If this associated to a specific register, initialize iterator to correct - // place. If virtual, make sure we have enough registers - - // Initialize iterator if necessary - TargetRegisterClass::iterator I = RC->begin(); - MachineRegisterInfo &RegInfo = MF.getRegInfo(); - - // Do not check for single registers. - if (AssignedReg) { - for (; *I != AssignedReg; ++I) - assert(I != RC->end() && "AssignedReg should be member of RC"); - } - - for (; NumRegs; --NumRegs, ++I) { - assert(I != RC->end() && "Ran out of registers to allocate!"); - Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); - Regs.push_back(R); - } - - OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); -} - -static unsigned -findMatchingInlineAsmOperand(unsigned OperandNo, - const std::vector<SDValue> &AsmNodeOperands) { - // Scan until we find the definition we already emitted of this operand. - unsigned CurOp = InlineAsm::Op_FirstOperand; - for (; OperandNo; --OperandNo) { - // Advance to the next operand. - unsigned OpFlag = - cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); - assert((InlineAsm::isRegDefKind(OpFlag) || - InlineAsm::isRegDefEarlyClobberKind(OpFlag) || - InlineAsm::isMemKind(OpFlag)) && - "Skipped past definitions?"); - CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; - } - return CurOp; -} - -namespace { - -class ExtraFlags { - unsigned Flags = 0; - -public: - explicit ExtraFlags(ImmutableCallSite CS) { - const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); - if (IA->hasSideEffects()) - Flags |= InlineAsm::Extra_HasSideEffects; - if (IA->isAlignStack()) - Flags |= InlineAsm::Extra_IsAlignStack; - if (CS.isConvergent()) - Flags |= InlineAsm::Extra_IsConvergent; - Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; - } - - void update(const TargetLowering::AsmOperandInfo &OpInfo) { - // Ideally, we would only check against memory constraints. However, the - // meaning of an Other constraint can be target-specific and we can't easily - // reason about it. Therefore, be conservative and set MayLoad/MayStore - // for Other constraints as well. - if (OpInfo.ConstraintType == TargetLowering::C_Memory || - OpInfo.ConstraintType == TargetLowering::C_Other) { - if (OpInfo.Type == InlineAsm::isInput) - Flags |= InlineAsm::Extra_MayLoad; - else if (OpInfo.Type == InlineAsm::isOutput) - Flags |= InlineAsm::Extra_MayStore; - else if (OpInfo.Type == InlineAsm::isClobber) - Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); - } - } - - unsigned get() const { return Flags; } -}; - -} // end anonymous namespace - -/// visitInlineAsm - Handle a call to an InlineAsm object. -void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { - const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); - - /// ConstraintOperands - Information about all of the constraints. - SDISelAsmOperandInfoVector ConstraintOperands; - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( - DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); - - // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, - // AsmDialect, MayLoad, MayStore). - bool HasSideEffect = IA->hasSideEffects(); - ExtraFlags ExtraInfo(CS); - - unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. - unsigned ResNo = 0; // ResNo - The result number of the next output. - for (auto &T : TargetConstraints) { - ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); - SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); - - // Compute the value type for each operand. - if (OpInfo.Type == InlineAsm::isInput || - (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { - OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); - - // Process the call argument. BasicBlocks are labels, currently appearing - // only in asm's. - const Instruction *I = CS.getInstruction(); - if (isa<CallBrInst>(I) && - (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - - cast<CallBrInst>(I)->getNumIndirectDests())) { - const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); - EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); - OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); - } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { - OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); - } else { - OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); - } - - OpInfo.ConstraintVT = - OpInfo - .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) - .getSimpleVT(); - } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { - // The return value of the call is this value. As such, there is no - // corresponding argument. - assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); - if (StructType *STy = dyn_cast<StructType>(CS.getType())) { - OpInfo.ConstraintVT = TLI.getSimpleValueType( - DAG.getDataLayout(), STy->getElementType(ResNo)); - } else { - assert(ResNo == 0 && "Asm only has one result!"); - OpInfo.ConstraintVT = - TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); - } - ++ResNo; - } else { - OpInfo.ConstraintVT = MVT::Other; - } - - if (!HasSideEffect) - HasSideEffect = OpInfo.hasMemory(TLI); - - // Determine if this InlineAsm MayLoad or MayStore based on the constraints. - // FIXME: Could we compute this on OpInfo rather than T? - - // Compute the constraint code and ConstraintType to use. - TLI.ComputeConstraintToUse(T, SDValue()); - - if (T.ConstraintType == TargetLowering::C_Immediate && - OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) - // We've delayed emitting a diagnostic like the "n" constraint because - // inlining could cause an integer showing up. - return emitInlineAsmError( - CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " - "integer constant expression"); - - ExtraInfo.update(T); - } - - - // We won't need to flush pending loads if this asm doesn't touch - // memory and is nonvolatile. - SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); - - bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); - if (IsCallBr) { - // If this is a callbr we need to flush pending exports since inlineasm_br - // is a terminator. We need to do this before nodes are glued to - // the inlineasm_br node. - Chain = getControlRoot(); - } - - // Second pass over the constraints: compute which constraint option to use. - for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { - // If this is an output operand with a matching input operand, look up the - // matching input. If their types mismatch, e.g. one is an integer, the - // other is floating point, or their sizes are different, flag it as an - // error. - if (OpInfo.hasMatchingInput()) { - SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; - patchMatchingInput(OpInfo, Input, DAG); - } - - // Compute the constraint code and ConstraintType to use. - TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); - - if (OpInfo.ConstraintType == TargetLowering::C_Memory && - OpInfo.Type == InlineAsm::isClobber) - continue; - - // If this is a memory input, and if the operand is not indirect, do what we - // need to provide an address for the memory input. - if (OpInfo.ConstraintType == TargetLowering::C_Memory && - !OpInfo.isIndirect) { - assert((OpInfo.isMultipleAlternative || - (OpInfo.Type == InlineAsm::isInput)) && - "Can only indirectify direct input operands!"); - - // Memory operands really want the address of the value. - Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); - - // There is no longer a Value* corresponding to this operand. - OpInfo.CallOperandVal = nullptr; - - // It is now an indirect operand. - OpInfo.isIndirect = true; - } - - } - - // AsmNodeOperands - The operands for the ISD::INLINEASM node. - std::vector<SDValue> AsmNodeOperands; - AsmNodeOperands.push_back(SDValue()); // reserve space for input chain - AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( - IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); - - // If we have a !srcloc metadata node associated with it, we want to attach - // this to the ultimately generated inline asm machineinstr. To do this, we - // pass in the third operand as this (potentially null) inline asm MDNode. - const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); - AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); - - // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore - // bits as operand 3. - AsmNodeOperands.push_back(DAG.getTargetConstant( - ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); - - // Third pass: Loop over operands to prepare DAG-level operands.. As part of - // this, assign virtual and physical registers for inputs and otput. - for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { - // Assign Registers. - SDISelAsmOperandInfo &RefOpInfo = - OpInfo.isMatchingInputConstraint() - ? ConstraintOperands[OpInfo.getMatchedOperand()] - : OpInfo; - GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); - - switch (OpInfo.Type) { - case InlineAsm::isOutput: - if (OpInfo.ConstraintType == TargetLowering::C_Memory || - ((OpInfo.ConstraintType == TargetLowering::C_Immediate || - OpInfo.ConstraintType == TargetLowering::C_Other) && - OpInfo.isIndirect)) { - unsigned ConstraintID = - TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); - assert(ConstraintID != InlineAsm::Constraint_Unknown && - "Failed to convert memory constraint code to constraint id."); - - // Add information to the INLINEASM node to know about this output. - unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); - OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); - AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), - MVT::i32)); - AsmNodeOperands.push_back(OpInfo.CallOperand); - break; - } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || - OpInfo.ConstraintType == TargetLowering::C_Other) && - !OpInfo.isIndirect) || - OpInfo.ConstraintType == TargetLowering::C_Register || - OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { - // Otherwise, this outputs to a register (directly for C_Register / - // C_RegisterClass, and a target-defined fashion for - // C_Immediate/C_Other). Find a register that we can use. - if (OpInfo.AssignedRegs.Regs.empty()) { - emitInlineAsmError( - CS, "couldn't allocate output register for constraint '" + - Twine(OpInfo.ConstraintCode) + "'"); - return; - } - - // Add information to the INLINEASM node to know that this register is - // set. - OpInfo.AssignedRegs.AddInlineAsmOperands( - OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber - : InlineAsm::Kind_RegDef, - false, 0, getCurSDLoc(), DAG, AsmNodeOperands); - } - break; - - case InlineAsm::isInput: { - SDValue InOperandVal = OpInfo.CallOperand; - - if (OpInfo.isMatchingInputConstraint()) { - // If this is required to match an output register we have already set, - // just use its register. - auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), - AsmNodeOperands); - unsigned OpFlag = - cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); - if (InlineAsm::isRegDefKind(OpFlag) || - InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { - // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. - if (OpInfo.isIndirect) { - // This happens on gcc/testsuite/gcc.dg/pr8788-1.c - emitInlineAsmError(CS, "inline asm not supported yet:" - " don't know how to handle tied " - "indirect register inputs"); - return; - } - - MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); - SmallVector<unsigned, 4> Regs; - - if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { - unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); - MachineRegisterInfo &RegInfo = - DAG.getMachineFunction().getRegInfo(); - for (unsigned i = 0; i != NumRegs; ++i) - Regs.push_back(RegInfo.createVirtualRegister(RC)); - } else { - emitInlineAsmError(CS, "inline asm error: This value type register " - "class is not natively supported!"); - return; - } - - RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); - - SDLoc dl = getCurSDLoc(); - // Use the produced MatchedRegs object to - MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, - CS.getInstruction()); - MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, - true, OpInfo.getMatchedOperand(), dl, - DAG, AsmNodeOperands); - break; - } - - assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); - assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && - "Unexpected number of operands"); - // Add information to the INLINEASM node to know about this input. - // See InlineAsm.h isUseOperandTiedToDef. - OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); - OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, - OpInfo.getMatchedOperand()); - AsmNodeOperands.push_back(DAG.getTargetConstant( - OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); - AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); - break; - } - - // Treat indirect 'X' constraint as memory. - if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || - OpInfo.ConstraintType == TargetLowering::C_Other) && - OpInfo.isIndirect) - OpInfo.ConstraintType = TargetLowering::C_Memory; - - if (OpInfo.ConstraintType == TargetLowering::C_Immediate || - OpInfo.ConstraintType == TargetLowering::C_Other) { - std::vector<SDValue> Ops; - TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, - Ops, DAG); - if (Ops.empty()) { - if (OpInfo.ConstraintType == TargetLowering::C_Immediate) - if (isa<ConstantSDNode>(InOperandVal)) { - emitInlineAsmError(CS, "value out of range for constraint '" + - Twine(OpInfo.ConstraintCode) + "'"); - return; - } - - emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + - Twine(OpInfo.ConstraintCode) + "'"); - return; - } - - // Add information to the INLINEASM node to know about this input. - unsigned ResOpType = - InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); - AsmNodeOperands.push_back(DAG.getTargetConstant( - ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); - AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); - break; - } - - if (OpInfo.ConstraintType == TargetLowering::C_Memory) { - assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); - assert(InOperandVal.getValueType() == - TLI.getPointerTy(DAG.getDataLayout()) && - "Memory operands expect pointer values"); - - unsigned ConstraintID = - TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); - assert(ConstraintID != InlineAsm::Constraint_Unknown && - "Failed to convert memory constraint code to constraint id."); - - // Add information to the INLINEASM node to know about this input. - unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); - ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); - AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, - getCurSDLoc(), - MVT::i32)); - AsmNodeOperands.push_back(InOperandVal); - break; - } - - assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || - OpInfo.ConstraintType == TargetLowering::C_Register || - OpInfo.ConstraintType == TargetLowering::C_Immediate) && - "Unknown constraint type!"); - - // TODO: Support this. - if (OpInfo.isIndirect) { - emitInlineAsmError( - CS, "Don't know how to handle indirect register inputs yet " - "for constraint '" + - Twine(OpInfo.ConstraintCode) + "'"); - return; - } - - // Copy the input into the appropriate registers. - if (OpInfo.AssignedRegs.Regs.empty()) { - emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + - Twine(OpInfo.ConstraintCode) + "'"); - return; - } - - SDLoc dl = getCurSDLoc(); - - OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, - Chain, &Flag, CS.getInstruction()); - - OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, - dl, DAG, AsmNodeOperands); - break; - } - case InlineAsm::isClobber: - // Add the clobbered value to the operand list, so that the register - // allocator is aware that the physreg got clobbered. - if (!OpInfo.AssignedRegs.Regs.empty()) - OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, - false, 0, getCurSDLoc(), DAG, - AsmNodeOperands); - break; - } - } - - // Finish up input operands. Set the input chain and add the flag last. - AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; - if (Flag.getNode()) AsmNodeOperands.push_back(Flag); - - unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; - Chain = DAG.getNode(ISDOpc, getCurSDLoc(), - DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); - Flag = Chain.getValue(1); - - // Do additional work to generate outputs. - - SmallVector<EVT, 1> ResultVTs; - SmallVector<SDValue, 1> ResultValues; - SmallVector<SDValue, 8> OutChains; - - llvm::Type *CSResultType = CS.getType(); - ArrayRef<Type *> ResultTypes; - if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) - ResultTypes = StructResult->elements(); - else if (!CSResultType->isVoidTy()) - ResultTypes = makeArrayRef(CSResultType); - - auto CurResultType = ResultTypes.begin(); - auto handleRegAssign = [&](SDValue V) { - assert(CurResultType != ResultTypes.end() && "Unexpected value"); - assert((*CurResultType)->isSized() && "Unexpected unsized type"); - EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); - ++CurResultType; - // If the type of the inline asm call site return value is different but has - // same size as the type of the asm output bitcast it. One example of this - // is for vectors with different width / number of elements. This can - // happen for register classes that can contain multiple different value - // types. The preg or vreg allocated may not have the same VT as was - // expected. - // - // This can also happen for a return value that disagrees with the register - // class it is put in, eg. a double in a general-purpose register on a - // 32-bit machine. - if (ResultVT != V.getValueType() && - ResultVT.getSizeInBits() == V.getValueSizeInBits()) - V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); - else if (ResultVT != V.getValueType() && ResultVT.isInteger() && - V.getValueType().isInteger()) { - // If a result value was tied to an input value, the computed result - // may have a wider width than the expected result. Extract the - // relevant portion. - V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); - } - assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); - ResultVTs.push_back(ResultVT); - ResultValues.push_back(V); - }; - - // Deal with output operands. - for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { - if (OpInfo.Type == InlineAsm::isOutput) { - SDValue Val; - // Skip trivial output operands. - if (OpInfo.AssignedRegs.Regs.empty()) - continue; - - switch (OpInfo.ConstraintType) { - case TargetLowering::C_Register: - case TargetLowering::C_RegisterClass: - Val = OpInfo.AssignedRegs.getCopyFromRegs( - DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); - break; - case TargetLowering::C_Immediate: - case TargetLowering::C_Other: - Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), - OpInfo, DAG); - break; - case TargetLowering::C_Memory: - break; // Already handled. - case TargetLowering::C_Unknown: - assert(false && "Unexpected unknown constraint"); - } - - // Indirect output manifest as stores. Record output chains. - if (OpInfo.isIndirect) { - const Value *Ptr = OpInfo.CallOperandVal; - assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); - SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), - MachinePointerInfo(Ptr)); - OutChains.push_back(Store); - } else { - // generate CopyFromRegs to associated registers. - assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); - if (Val.getOpcode() == ISD::MERGE_VALUES) { - for (const SDValue &V : Val->op_values()) - handleRegAssign(V); - } else - handleRegAssign(Val); - } - } - } - - // Set results. - if (!ResultValues.empty()) { - assert(CurResultType == ResultTypes.end() && - "Mismatch in number of ResultTypes"); - assert(ResultValues.size() == ResultTypes.size() && - "Mismatch in number of output operands in asm result"); - - SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), - DAG.getVTList(ResultVTs), ResultValues); - setValue(CS.getInstruction(), V); - } - - // Collect store chains. - if (!OutChains.empty()) - Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); - - // Only Update Root if inline assembly has a memory effect. - if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) - DAG.setRoot(Chain); -} - -void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, - const Twine &Message) { - LLVMContext &Ctx = *DAG.getContext(); - Ctx.emitError(CS.getInstruction(), Message); - - // Make sure we leave the DAG in a valid state - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SmallVector<EVT, 1> ValueVTs; - ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); - - if (ValueVTs.empty()) - return; - - SmallVector<SDValue, 1> Ops; - for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) - Ops.push_back(DAG.getUNDEF(ValueVTs[i])); - - setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); -} - -void SelectionDAGBuilder::visitVAStart(const CallInst &I) { - DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), - MVT::Other, getRoot(), - getValue(I.getArgOperand(0)), - DAG.getSrcValue(I.getArgOperand(0)))); -} - -void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - const DataLayout &DL = DAG.getDataLayout(); - SDValue V = DAG.getVAArg( - TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), - getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), - DL.getABITypeAlignment(I.getType())); - DAG.setRoot(V.getValue(1)); - - if (I.getType()->isPointerTy()) - V = DAG.getPtrExtOrTrunc( - V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); - setValue(&I, V); -} - -void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { - DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), - MVT::Other, getRoot(), - getValue(I.getArgOperand(0)), - DAG.getSrcValue(I.getArgOperand(0)))); -} - -void SelectionDAGBuilder::visitVACopy(const CallInst &I) { - DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), - MVT::Other, getRoot(), - getValue(I.getArgOperand(0)), - getValue(I.getArgOperand(1)), - DAG.getSrcValue(I.getArgOperand(0)), - DAG.getSrcValue(I.getArgOperand(1)))); -} - -SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, - const Instruction &I, - SDValue Op) { - const MDNode *Range = I.getMetadata(LLVMContext::MD_range); - if (!Range) - return Op; - - ConstantRange CR = getConstantRangeFromMetadata(*Range); - if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) - return Op; - - APInt Lo = CR.getUnsignedMin(); - if (!Lo.isMinValue()) - return Op; - - APInt Hi = CR.getUnsignedMax(); - unsigned Bits = std::max(Hi.getActiveBits(), - static_cast<unsigned>(IntegerType::MIN_INT_BITS)); - - EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); - - SDLoc SL = getCurSDLoc(); - - SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, - DAG.getValueType(SmallVT)); - unsigned NumVals = Op.getNode()->getNumValues(); - if (NumVals == 1) - return ZExt; - - SmallVector<SDValue, 4> Ops; - - Ops.push_back(ZExt); - for (unsigned I = 1; I != NumVals; ++I) - Ops.push_back(Op.getValue(I)); - - return DAG.getMergeValues(Ops, SL); -} - -/// Populate a CallLowerinInfo (into \p CLI) based on the properties of -/// the call being lowered. -/// -/// This is a helper for lowering intrinsics that follow a target calling -/// convention or require stack pointer adjustment. Only a subset of the -/// intrinsic's operands need to participate in the calling convention. -void SelectionDAGBuilder::populateCallLoweringInfo( - TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, - unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, - bool IsPatchPoint) { - TargetLowering::ArgListTy Args; - Args.reserve(NumArgs); - - // Populate the argument list. - // Attributes for args start at offset 1, after the return attribute. - for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; - ArgI != ArgE; ++ArgI) { - const Value *V = Call->getOperand(ArgI); - - assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); - - TargetLowering::ArgListEntry Entry; - Entry.Node = getValue(V); - Entry.Ty = V->getType(); - Entry.setAttributes(Call, ArgI); - Args.push_back(Entry); - } - - CLI.setDebugLoc(getCurSDLoc()) - .setChain(getRoot()) - .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) - .setDiscardResult(Call->use_empty()) - .setIsPatchPoint(IsPatchPoint); -} - -/// Add a stack map intrinsic call's live variable operands to a stackmap -/// or patchpoint target node's operand list. -/// -/// Constants are converted to TargetConstants purely as an optimization to -/// avoid constant materialization and register allocation. -/// -/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not -/// generate addess computation nodes, and so FinalizeISel can convert the -/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids -/// address materialization and register allocation, but may also be required -/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an -/// alloca in the entry block, then the runtime may assume that the alloca's -/// StackMap location can be read immediately after compilation and that the -/// location is valid at any point during execution (this is similar to the -/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were -/// only available in a register, then the runtime would need to trap when -/// execution reaches the StackMap in order to read the alloca's location. -static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, - const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, - SelectionDAGBuilder &Builder) { - for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { - SDValue OpVal = Builder.getValue(CS.getArgument(i)); - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { - Ops.push_back( - Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); - Ops.push_back( - Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); - } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { - const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); - Ops.push_back(Builder.DAG.getTargetFrameIndex( - FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); - } else - Ops.push_back(OpVal); - } -} - -/// Lower llvm.experimental.stackmap directly to its target opcode. -void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { - // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, - // [live variables...]) - - assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); - - SDValue Chain, InFlag, Callee, NullPtr; - SmallVector<SDValue, 32> Ops; - - SDLoc DL = getCurSDLoc(); - Callee = getValue(CI.getCalledValue()); - NullPtr = DAG.getIntPtrConstant(0, DL, true); - - // The stackmap intrinsic only records the live variables (the arguemnts - // passed to it) and emits NOPS (if requested). Unlike the patchpoint - // intrinsic, this won't be lowered to a function call. This means we don't - // have to worry about calling conventions and target specific lowering code. - // Instead we perform the call lowering right here. - // - // chain, flag = CALLSEQ_START(chain, 0, 0) - // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) - // chain, flag = CALLSEQ_END(chain, 0, 0, flag) - // - Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); - InFlag = Chain.getValue(1); - - // Add the <id> and <numBytes> constants. - SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); - Ops.push_back(DAG.getTargetConstant( - cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); - SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); - Ops.push_back(DAG.getTargetConstant( - cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, - MVT::i32)); - - // Push live variables for the stack map. - addStackMapLiveVars(&CI, 2, DL, Ops, *this); - - // We are not pushing any register mask info here on the operands list, - // because the stackmap doesn't clobber anything. - - // Push the chain and the glue flag. - Ops.push_back(Chain); - Ops.push_back(InFlag); - - // Create the STACKMAP node. - SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); - SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); - Chain = SDValue(SM, 0); - InFlag = Chain.getValue(1); - - Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); - - // Stackmaps don't generate values, so nothing goes into the NodeMap. - - // Set the root to the target-lowered call chain. - DAG.setRoot(Chain); - - // Inform the Frame Information that we have a stackmap in this function. - FuncInfo.MF->getFrameInfo().setHasStackMap(); -} - -/// Lower llvm.experimental.patchpoint directly to its target opcode. -void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, - const BasicBlock *EHPadBB) { - // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, - // i32 <numBytes>, - // i8* <target>, - // i32 <numArgs>, - // [Args...], - // [live variables...]) - - CallingConv::ID CC = CS.getCallingConv(); - bool IsAnyRegCC = CC == CallingConv::AnyReg; - bool HasDef = !CS->getType()->isVoidTy(); - SDLoc dl = getCurSDLoc(); - SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); - - // Handle immediate and symbolic callees. - if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) - Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, - /*isTarget=*/true); - else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) - Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), - SDLoc(SymbolicCallee), - SymbolicCallee->getValueType(0)); - - // Get the real number of arguments participating in the call <numArgs> - SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); - unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); - - // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> - // Intrinsics include all meta-operands up to but not including CC. - unsigned NumMetaOpers = PatchPointOpers::CCPos; - assert(CS.arg_size() >= NumMetaOpers + NumArgs && - "Not enough arguments provided to the patchpoint intrinsic"); - - // For AnyRegCC the arguments are lowered later on manually. - unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; - Type *ReturnTy = - IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); - - TargetLowering::CallLoweringInfo CLI(DAG); - populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), - NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); - std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); - - SDNode *CallEnd = Result.second.getNode(); - if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) - CallEnd = CallEnd->getOperand(0).getNode(); - - /// Get a call instruction from the call sequence chain. - /// Tail calls are not allowed. - assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && - "Expected a callseq node."); - SDNode *Call = CallEnd->getOperand(0).getNode(); - bool HasGlue = Call->getGluedNode(); - - // Replace the target specific call node with the patchable intrinsic. - SmallVector<SDValue, 8> Ops; - - // Add the <id> and <numBytes> constants. - SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); - Ops.push_back(DAG.getTargetConstant( - cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); - SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); - Ops.push_back(DAG.getTargetConstant( - cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, - MVT::i32)); - - // Add the callee. - Ops.push_back(Callee); - - // Adjust <numArgs> to account for any arguments that have been passed on the - // stack instead. - // Call Node: Chain, Target, {Args}, RegMask, [Glue] - unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); - NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; - Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); - - // Add the calling convention - Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); - - // Add the arguments we omitted previously. The register allocator should - // place these in any free register. - if (IsAnyRegCC) - for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) - Ops.push_back(getValue(CS.getArgument(i))); - - // Push the arguments from the call instruction up to the register mask. - SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; - Ops.append(Call->op_begin() + 2, e); - - // Push live variables for the stack map. - addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); - - // Push the register mask info. - if (HasGlue) - Ops.push_back(*(Call->op_end()-2)); - else - Ops.push_back(*(Call->op_end()-1)); - - // Push the chain (this is originally the first operand of the call, but - // becomes now the last or second to last operand). - Ops.push_back(*(Call->op_begin())); - - // Push the glue flag (last operand). - if (HasGlue) - Ops.push_back(*(Call->op_end()-1)); - - SDVTList NodeTys; - if (IsAnyRegCC && HasDef) { - // Create the return types based on the intrinsic definition - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SmallVector<EVT, 3> ValueVTs; - ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); - assert(ValueVTs.size() == 1 && "Expected only one return value type."); - - // There is always a chain and a glue type at the end - ValueVTs.push_back(MVT::Other); - ValueVTs.push_back(MVT::Glue); - NodeTys = DAG.getVTList(ValueVTs); - } else - NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); - - // Replace the target specific call node with a PATCHPOINT node. - MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, - dl, NodeTys, Ops); - - // Update the NodeMap. - if (HasDef) { - if (IsAnyRegCC) - setValue(CS.getInstruction(), SDValue(MN, 0)); - else - setValue(CS.getInstruction(), Result.first); - } - - // Fixup the consumers of the intrinsic. The chain and glue may be used in the - // call sequence. Furthermore the location of the chain and glue can change - // when the AnyReg calling convention is used and the intrinsic returns a - // value. - if (IsAnyRegCC && HasDef) { - SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; - SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; - DAG.ReplaceAllUsesOfValuesWith(From, To, 2); - } else - DAG.ReplaceAllUsesWith(Call, MN); - DAG.DeleteNode(Call); - - // Inform the Frame Information that we have a patchpoint in this function. - FuncInfo.MF->getFrameInfo().setHasPatchPoint(); -} - -void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, - unsigned Intrinsic) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue Op1 = getValue(I.getArgOperand(0)); - SDValue Op2; - if (I.getNumArgOperands() > 1) - Op2 = getValue(I.getArgOperand(1)); - SDLoc dl = getCurSDLoc(); - EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); - SDValue Res; - FastMathFlags FMF; - if (isa<FPMathOperator>(I)) - FMF = I.getFastMathFlags(); - - switch (Intrinsic) { - case Intrinsic::experimental_vector_reduce_v2_fadd: - if (FMF.allowReassoc()) - Res = DAG.getNode(ISD::FADD, dl, VT, Op1, - DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); - else - Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); - break; - case Intrinsic::experimental_vector_reduce_v2_fmul: - if (FMF.allowReassoc()) - Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, - DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); - else - Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); - break; - case Intrinsic::experimental_vector_reduce_add: - Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_mul: - Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_and: - Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_or: - Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_xor: - Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_smax: - Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_smin: - Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_umax: - Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_umin: - Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_fmax: - Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); - break; - case Intrinsic::experimental_vector_reduce_fmin: - Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); - break; - default: - llvm_unreachable("Unhandled vector reduce intrinsic"); - } - setValue(&I, Res); -} - -/// Returns an AttributeList representing the attributes applied to the return -/// value of the given call. -static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { - SmallVector<Attribute::AttrKind, 2> Attrs; - if (CLI.RetSExt) - Attrs.push_back(Attribute::SExt); - if (CLI.RetZExt) - Attrs.push_back(Attribute::ZExt); - if (CLI.IsInReg) - Attrs.push_back(Attribute::InReg); - - return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, - Attrs); -} - -/// TargetLowering::LowerCallTo - This is the default LowerCallTo -/// implementation, which just calls LowerCall. -/// FIXME: When all targets are -/// migrated to using LowerCall, this hook should be integrated into SDISel. -std::pair<SDValue, SDValue> -TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { - // Handle the incoming return values from the call. - CLI.Ins.clear(); - Type *OrigRetTy = CLI.RetTy; - SmallVector<EVT, 4> RetTys; - SmallVector<uint64_t, 4> Offsets; - auto &DL = CLI.DAG.getDataLayout(); - ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); - - if (CLI.IsPostTypeLegalization) { - // If we are lowering a libcall after legalization, split the return type. - SmallVector<EVT, 4> OldRetTys; - SmallVector<uint64_t, 4> OldOffsets; - RetTys.swap(OldRetTys); - Offsets.swap(OldOffsets); - - for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { - EVT RetVT = OldRetTys[i]; - uint64_t Offset = OldOffsets[i]; - MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); - unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); - unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; - RetTys.append(NumRegs, RegisterVT); - for (unsigned j = 0; j != NumRegs; ++j) - Offsets.push_back(Offset + j * RegisterVTByteSZ); - } - } - - SmallVector<ISD::OutputArg, 4> Outs; - GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); - - bool CanLowerReturn = - this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), - CLI.IsVarArg, Outs, CLI.RetTy->getContext()); - - SDValue DemoteStackSlot; - int DemoteStackIdx = -100; - if (!CanLowerReturn) { - // FIXME: equivalent assert? - // assert(!CS.hasInAllocaArgument() && - // "sret demotion is incompatible with inalloca"); - uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); - unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); - MachineFunction &MF = CLI.DAG.getMachineFunction(); - DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); - Type *StackSlotPtrType = PointerType::get(CLI.RetTy, - DL.getAllocaAddrSpace()); - - DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); - ArgListEntry Entry; - Entry.Node = DemoteStackSlot; - Entry.Ty = StackSlotPtrType; - Entry.IsSExt = false; - Entry.IsZExt = false; - Entry.IsInReg = false; - Entry.IsSRet = true; - Entry.IsNest = false; - Entry.IsByVal = false; - Entry.IsReturned = false; - Entry.IsSwiftSelf = false; - Entry.IsSwiftError = false; - Entry.Alignment = Align; - CLI.getArgs().insert(CLI.getArgs().begin(), Entry); - CLI.NumFixedArgs += 1; - CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); - - // sret demotion isn't compatible with tail-calls, since the sret argument - // points into the callers stack frame. - CLI.IsTailCall = false; - } else { - bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( - CLI.RetTy, CLI.CallConv, CLI.IsVarArg); - for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { - ISD::ArgFlagsTy Flags; - if (NeedsRegBlock) { - Flags.setInConsecutiveRegs(); - if (I == RetTys.size() - 1) - Flags.setInConsecutiveRegsLast(); - } - EVT VT = RetTys[I]; - MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), - CLI.CallConv, VT); - unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), - CLI.CallConv, VT); - for (unsigned i = 0; i != NumRegs; ++i) { - ISD::InputArg MyFlags; - MyFlags.Flags = Flags; - MyFlags.VT = RegisterVT; - MyFlags.ArgVT = VT; - MyFlags.Used = CLI.IsReturnValueUsed; - if (CLI.RetTy->isPointerTy()) { - MyFlags.Flags.setPointer(); - MyFlags.Flags.setPointerAddrSpace( - cast<PointerType>(CLI.RetTy)->getAddressSpace()); - } - if (CLI.RetSExt) - MyFlags.Flags.setSExt(); - if (CLI.RetZExt) - MyFlags.Flags.setZExt(); - if (CLI.IsInReg) - MyFlags.Flags.setInReg(); - CLI.Ins.push_back(MyFlags); - } - } - } - - // We push in swifterror return as the last element of CLI.Ins. - ArgListTy &Args = CLI.getArgs(); - if (supportSwiftError()) { - for (unsigned i = 0, e = Args.size(); i != e; ++i) { - if (Args[i].IsSwiftError) { - ISD::InputArg MyFlags; - MyFlags.VT = getPointerTy(DL); - MyFlags.ArgVT = EVT(getPointerTy(DL)); - MyFlags.Flags.setSwiftError(); - CLI.Ins.push_back(MyFlags); - } - } - } - - // Handle all of the outgoing arguments. - CLI.Outs.clear(); - CLI.OutVals.clear(); - for (unsigned i = 0, e = Args.size(); i != e; ++i) { - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); - // FIXME: Split arguments if CLI.IsPostTypeLegalization - Type *FinalType = Args[i].Ty; - if (Args[i].IsByVal) - FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); - bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( - FinalType, CLI.CallConv, CLI.IsVarArg); - for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; - ++Value) { - EVT VT = ValueVTs[Value]; - Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); - SDValue Op = SDValue(Args[i].Node.getNode(), - Args[i].Node.getResNo() + Value); - ISD::ArgFlagsTy Flags; - - // Certain targets (such as MIPS), may have a different ABI alignment - // for a type depending on the context. Give the target a chance to - // specify the alignment it wants. - unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); - - if (Args[i].Ty->isPointerTy()) { - Flags.setPointer(); - Flags.setPointerAddrSpace( - cast<PointerType>(Args[i].Ty)->getAddressSpace()); - } - if (Args[i].IsZExt) - Flags.setZExt(); - if (Args[i].IsSExt) - Flags.setSExt(); - if (Args[i].IsInReg) { - // If we are using vectorcall calling convention, a structure that is - // passed InReg - is surely an HVA - if (CLI.CallConv == CallingConv::X86_VectorCall && - isa<StructType>(FinalType)) { - // The first value of a structure is marked - if (0 == Value) - Flags.setHvaStart(); - Flags.setHva(); - } - // Set InReg Flag - Flags.setInReg(); - } - if (Args[i].IsSRet) - Flags.setSRet(); - if (Args[i].IsSwiftSelf) - Flags.setSwiftSelf(); - if (Args[i].IsSwiftError) - Flags.setSwiftError(); - if (Args[i].IsByVal) - Flags.setByVal(); - if (Args[i].IsInAlloca) { - Flags.setInAlloca(); - // Set the byval flag for CCAssignFn callbacks that don't know about - // inalloca. This way we can know how many bytes we should've allocated - // and how many bytes a callee cleanup function will pop. If we port - // inalloca to more targets, we'll have to add custom inalloca handling - // in the various CC lowering callbacks. - Flags.setByVal(); - } - if (Args[i].IsByVal || Args[i].IsInAlloca) { - PointerType *Ty = cast<PointerType>(Args[i].Ty); - Type *ElementTy = Ty->getElementType(); - - unsigned FrameSize = DL.getTypeAllocSize( - Args[i].ByValType ? Args[i].ByValType : ElementTy); - Flags.setByValSize(FrameSize); - - // info is not there but there are cases it cannot get right. - unsigned FrameAlign; - if (Args[i].Alignment) - FrameAlign = Args[i].Alignment; - else - FrameAlign = getByValTypeAlignment(ElementTy, DL); - Flags.setByValAlign(FrameAlign); - } - if (Args[i].IsNest) - Flags.setNest(); - if (NeedsRegBlock) - Flags.setInConsecutiveRegs(); - Flags.setOrigAlign(OriginalAlignment); - - MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), - CLI.CallConv, VT); - unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), - CLI.CallConv, VT); - SmallVector<SDValue, 4> Parts(NumParts); - ISD::NodeType ExtendKind = ISD::ANY_EXTEND; - - if (Args[i].IsSExt) - ExtendKind = ISD::SIGN_EXTEND; - else if (Args[i].IsZExt) - ExtendKind = ISD::ZERO_EXTEND; - - // Conservatively only handle 'returned' on non-vectors that can be lowered, - // for now. - if (Args[i].IsReturned && !Op.getValueType().isVector() && - CanLowerReturn) { - assert((CLI.RetTy == Args[i].Ty || - (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && - CLI.RetTy->getPointerAddressSpace() == - Args[i].Ty->getPointerAddressSpace())) && - RetTys.size() == NumValues && "unexpected use of 'returned'"); - // Before passing 'returned' to the target lowering code, ensure that - // either the register MVT and the actual EVT are the same size or that - // the return value and argument are extended in the same way; in these - // cases it's safe to pass the argument register value unchanged as the - // return register value (although it's at the target's option whether - // to do so) - // TODO: allow code generation to take advantage of partially preserved - // registers rather than clobbering the entire register when the - // parameter extension method is not compatible with the return - // extension method - if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || - (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && - CLI.RetZExt == Args[i].IsZExt)) - Flags.setReturned(); - } - - getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, - CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); - - for (unsigned j = 0; j != NumParts; ++j) { - // if it isn't first piece, alignment must be 1 - ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, - i < CLI.NumFixedArgs, - i, j*Parts[j].getValueType().getStoreSize()); - if (NumParts > 1 && j == 0) - MyFlags.Flags.setSplit(); - else if (j != 0) { - MyFlags.Flags.setOrigAlign(1); - if (j == NumParts - 1) - MyFlags.Flags.setSplitEnd(); - } - - CLI.Outs.push_back(MyFlags); - CLI.OutVals.push_back(Parts[j]); - } - - if (NeedsRegBlock && Value == NumValues - 1) - CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); - } - } - - SmallVector<SDValue, 4> InVals; - CLI.Chain = LowerCall(CLI, InVals); - - // Update CLI.InVals to use outside of this function. - CLI.InVals = InVals; - - // Verify that the target's LowerCall behaved as expected. - assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && - "LowerCall didn't return a valid chain!"); - assert((!CLI.IsTailCall || InVals.empty()) && - "LowerCall emitted a return value for a tail call!"); - assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && - "LowerCall didn't emit the correct number of values!"); - - // For a tail call, the return value is merely live-out and there aren't - // any nodes in the DAG representing it. Return a special value to - // indicate that a tail call has been emitted and no more Instructions - // should be processed in the current block. - if (CLI.IsTailCall) { - CLI.DAG.setRoot(CLI.Chain); - return std::make_pair(SDValue(), SDValue()); - } - -#ifndef NDEBUG - for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { - assert(InVals[i].getNode() && "LowerCall emitted a null value!"); - assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && - "LowerCall emitted a value with the wrong type!"); - } -#endif - - SmallVector<SDValue, 4> ReturnValues; - if (!CanLowerReturn) { - // The instruction result is the result of loading from the - // hidden sret parameter. - SmallVector<EVT, 1> PVTs; - Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); - - ComputeValueVTs(*this, DL, PtrRetTy, PVTs); - assert(PVTs.size() == 1 && "Pointers should fit in one register"); - EVT PtrVT = PVTs[0]; - - unsigned NumValues = RetTys.size(); - ReturnValues.resize(NumValues); - SmallVector<SDValue, 4> Chains(NumValues); - - // An aggregate return value cannot wrap around the address space, so - // offsets to its parts don't wrap either. - SDNodeFlags Flags; - Flags.setNoUnsignedWrap(true); - - for (unsigned i = 0; i < NumValues; ++i) { - SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, - CLI.DAG.getConstant(Offsets[i], CLI.DL, - PtrVT), Flags); - SDValue L = CLI.DAG.getLoad( - RetTys[i], CLI.DL, CLI.Chain, Add, - MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), - DemoteStackIdx, Offsets[i]), - /* Alignment = */ 1); - ReturnValues[i] = L; - Chains[i] = L.getValue(1); - } - - CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); - } else { - // Collect the legal value parts into potentially illegal values - // that correspond to the original function's return values. - Optional<ISD::NodeType> AssertOp; - if (CLI.RetSExt) - AssertOp = ISD::AssertSext; - else if (CLI.RetZExt) - AssertOp = ISD::AssertZext; - unsigned CurReg = 0; - for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { - EVT VT = RetTys[I]; - MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), - CLI.CallConv, VT); - unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), - CLI.CallConv, VT); - - ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], - NumRegs, RegisterVT, VT, nullptr, - CLI.CallConv, AssertOp)); - CurReg += NumRegs; - } - - // For a function returning void, there is no return value. We can't create - // such a node, so we just return a null return value in that case. In - // that case, nothing will actually look at the value. - if (ReturnValues.empty()) - return std::make_pair(SDValue(), CLI.Chain); - } - - SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, - CLI.DAG.getVTList(RetTys), ReturnValues); - return std::make_pair(Res, CLI.Chain); -} - -void TargetLowering::LowerOperationWrapper(SDNode *N, - SmallVectorImpl<SDValue> &Results, - SelectionDAG &DAG) const { - if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) - Results.push_back(Res); -} - -SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { - llvm_unreachable("LowerOperation not implemented for this target!"); -} - -void -SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { - SDValue Op = getNonRegisterValue(V); - assert((Op.getOpcode() != ISD::CopyFromReg || - cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && - "Copy from a reg to the same reg!"); - assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - // If this is an InlineAsm we have to match the registers required, not the - // notional registers required by the type. - - RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), - None); // This is not an ABI copy. - SDValue Chain = DAG.getEntryNode(); - - ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == - FuncInfo.PreferredExtendType.end()) - ? ISD::ANY_EXTEND - : FuncInfo.PreferredExtendType[V]; - RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); - PendingExports.push_back(Chain); -} - -#include "llvm/CodeGen/SelectionDAGISel.h" - -/// isOnlyUsedInEntryBlock - If the specified argument is only used in the -/// entry block, return true. This includes arguments used by switches, since -/// the switch may expand into multiple basic blocks. -static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { - // With FastISel active, we may be splitting blocks, so force creation - // of virtual registers for all non-dead arguments. - if (FastISel) - return A->use_empty(); - - const BasicBlock &Entry = A->getParent()->front(); - for (const User *U : A->users()) - if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) - return false; // Use not in entry block. - - return true; -} - -using ArgCopyElisionMapTy = - DenseMap<const Argument *, - std::pair<const AllocaInst *, const StoreInst *>>; - -/// Scan the entry block of the function in FuncInfo for arguments that look -/// like copies into a local alloca. Record any copied arguments in -/// ArgCopyElisionCandidates. -static void -findArgumentCopyElisionCandidates(const DataLayout &DL, - FunctionLoweringInfo *FuncInfo, - ArgCopyElisionMapTy &ArgCopyElisionCandidates) { - // Record the state of every static alloca used in the entry block. Argument - // allocas are all used in the entry block, so we need approximately as many - // entries as we have arguments. - enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; - SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; - unsigned NumArgs = FuncInfo->Fn->arg_size(); - StaticAllocas.reserve(NumArgs * 2); - - auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { - if (!V) - return nullptr; - V = V->stripPointerCasts(); - const auto *AI = dyn_cast<AllocaInst>(V); - if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) - return nullptr; - auto Iter = StaticAllocas.insert({AI, Unknown}); - return &Iter.first->second; - }; - - // Look for stores of arguments to static allocas. Look through bitcasts and - // GEPs to handle type coercions, as long as the alloca is fully initialized - // by the store. Any non-store use of an alloca escapes it and any subsequent - // unanalyzed store might write it. - // FIXME: Handle structs initialized with multiple stores. - for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { - // Look for stores, and handle non-store uses conservatively. - const auto *SI = dyn_cast<StoreInst>(&I); - if (!SI) { - // We will look through cast uses, so ignore them completely. - if (I.isCast()) - continue; - // Ignore debug info intrinsics, they don't escape or store to allocas. - if (isa<DbgInfoIntrinsic>(I)) - continue; - // This is an unknown instruction. Assume it escapes or writes to all - // static alloca operands. - for (const Use &U : I.operands()) { - if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) - *Info = StaticAllocaInfo::Clobbered; - } - continue; - } - - // If the stored value is a static alloca, mark it as escaped. - if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) - *Info = StaticAllocaInfo::Clobbered; - - // Check if the destination is a static alloca. - const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); - StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); - if (!Info) - continue; - const AllocaInst *AI = cast<AllocaInst>(Dst); - - // Skip allocas that have been initialized or clobbered. - if (*Info != StaticAllocaInfo::Unknown) - continue; - - // Check if the stored value is an argument, and that this store fully - // initializes the alloca. Don't elide copies from the same argument twice. - const Value *Val = SI->getValueOperand()->stripPointerCasts(); - const auto *Arg = dyn_cast<Argument>(Val); - if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || - Arg->getType()->isEmptyTy() || - DL.getTypeStoreSize(Arg->getType()) != - DL.getTypeAllocSize(AI->getAllocatedType()) || - ArgCopyElisionCandidates.count(Arg)) { - *Info = StaticAllocaInfo::Clobbered; - continue; - } - - LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI - << '\n'); - - // Mark this alloca and store for argument copy elision. - *Info = StaticAllocaInfo::Elidable; - ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); - - // Stop scanning if we've seen all arguments. This will happen early in -O0 - // builds, which is useful, because -O0 builds have large entry blocks and - // many allocas. - if (ArgCopyElisionCandidates.size() == NumArgs) - break; - } -} - -/// Try to elide argument copies from memory into a local alloca. Succeeds if -/// ArgVal is a load from a suitable fixed stack object. -static void tryToElideArgumentCopy( - FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, - DenseMap<int, int> &ArgCopyElisionFrameIndexMap, - SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, - ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, - SDValue ArgVal, bool &ArgHasUses) { - // Check if this is a load from a fixed stack object. - auto *LNode = dyn_cast<LoadSDNode>(ArgVal); - if (!LNode) - return; - auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); - if (!FINode) - return; - - // Check that the fixed stack object is the right size and alignment. - // Look at the alignment that the user wrote on the alloca instead of looking - // at the stack object. - auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); - assert(ArgCopyIter != ArgCopyElisionCandidates.end()); - const AllocaInst *AI = ArgCopyIter->second.first; - int FixedIndex = FINode->getIndex(); - int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; - int OldIndex = AllocaIndex; - MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); - if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { - LLVM_DEBUG( - dbgs() << " argument copy elision failed due to bad fixed stack " - "object size\n"); - return; - } - unsigned RequiredAlignment = AI->getAlignment(); - if (!RequiredAlignment) { - RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( - AI->getAllocatedType()); - } - if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { - LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " - "greater than stack argument alignment (" - << RequiredAlignment << " vs " - << MFI.getObjectAlignment(FixedIndex) << ")\n"); - return; - } - - // Perform the elision. Delete the old stack object and replace its only use - // in the variable info map. Mark the stack object as mutable. - LLVM_DEBUG({ - dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' - << " Replacing frame index " << OldIndex << " with " << FixedIndex - << '\n'; - }); - MFI.RemoveStackObject(OldIndex); - MFI.setIsImmutableObjectIndex(FixedIndex, false); - AllocaIndex = FixedIndex; - ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); - Chains.push_back(ArgVal.getValue(1)); - - // Avoid emitting code for the store implementing the copy. - const StoreInst *SI = ArgCopyIter->second.second; - ElidedArgCopyInstrs.insert(SI); - - // Check for uses of the argument again so that we can avoid exporting ArgVal - // if it is't used by anything other than the store. - for (const Value *U : Arg.users()) { - if (U != SI) { - ArgHasUses = true; - break; - } - } -} - -void SelectionDAGISel::LowerArguments(const Function &F) { - SelectionDAG &DAG = SDB->DAG; - SDLoc dl = SDB->getCurSDLoc(); - const DataLayout &DL = DAG.getDataLayout(); - SmallVector<ISD::InputArg, 16> Ins; - - if (!FuncInfo->CanLowerReturn) { - // Put in an sret pointer parameter before all the other parameters. - SmallVector<EVT, 1> ValueVTs; - ComputeValueVTs(*TLI, DAG.getDataLayout(), - F.getReturnType()->getPointerTo( - DAG.getDataLayout().getAllocaAddrSpace()), - ValueVTs); - - // NOTE: Assuming that a pointer will never break down to more than one VT - // or one register. - ISD::ArgFlagsTy Flags; - Flags.setSRet(); - MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); - ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, - ISD::InputArg::NoArgIndex, 0); - Ins.push_back(RetArg); - } - - // Look for stores of arguments to static allocas. Mark such arguments with a - // flag to ask the target to give us the memory location of that argument if - // available. - ArgCopyElisionMapTy ArgCopyElisionCandidates; - findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); - - // Set up the incoming argument description vector. - for (const Argument &Arg : F.args()) { - unsigned ArgNo = Arg.getArgNo(); - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); - bool isArgValueUsed = !Arg.use_empty(); - unsigned PartBase = 0; - Type *FinalType = Arg.getType(); - if (Arg.hasAttribute(Attribute::ByVal)) - FinalType = Arg.getParamByValType(); - bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( - FinalType, F.getCallingConv(), F.isVarArg()); - for (unsigned Value = 0, NumValues = ValueVTs.size(); - Value != NumValues; ++Value) { - EVT VT = ValueVTs[Value]; - Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); - ISD::ArgFlagsTy Flags; - - // Certain targets (such as MIPS), may have a different ABI alignment - // for a type depending on the context. Give the target a chance to - // specify the alignment it wants. - unsigned OriginalAlignment = - TLI->getABIAlignmentForCallingConv(ArgTy, DL); - - if (Arg.getType()->isPointerTy()) { - Flags.setPointer(); - Flags.setPointerAddrSpace( - cast<PointerType>(Arg.getType())->getAddressSpace()); - } - if (Arg.hasAttribute(Attribute::ZExt)) - Flags.setZExt(); - if (Arg.hasAttribute(Attribute::SExt)) - Flags.setSExt(); - if (Arg.hasAttribute(Attribute::InReg)) { - // If we are using vectorcall calling convention, a structure that is - // passed InReg - is surely an HVA - if (F.getCallingConv() == CallingConv::X86_VectorCall && - isa<StructType>(Arg.getType())) { - // The first value of a structure is marked - if (0 == Value) - Flags.setHvaStart(); - Flags.setHva(); - } - // Set InReg Flag - Flags.setInReg(); - } - if (Arg.hasAttribute(Attribute::StructRet)) - Flags.setSRet(); - if (Arg.hasAttribute(Attribute::SwiftSelf)) - Flags.setSwiftSelf(); - if (Arg.hasAttribute(Attribute::SwiftError)) - Flags.setSwiftError(); - if (Arg.hasAttribute(Attribute::ByVal)) - Flags.setByVal(); - if (Arg.hasAttribute(Attribute::InAlloca)) { - Flags.setInAlloca(); - // Set the byval flag for CCAssignFn callbacks that don't know about - // inalloca. This way we can know how many bytes we should've allocated - // and how many bytes a callee cleanup function will pop. If we port - // inalloca to more targets, we'll have to add custom inalloca handling - // in the various CC lowering callbacks. - Flags.setByVal(); - } - if (F.getCallingConv() == CallingConv::X86_INTR) { - // IA Interrupt passes frame (1st parameter) by value in the stack. - if (ArgNo == 0) - Flags.setByVal(); - } - if (Flags.isByVal() || Flags.isInAlloca()) { - Type *ElementTy = Arg.getParamByValType(); - - // For ByVal, size and alignment should be passed from FE. BE will - // guess if this info is not there but there are cases it cannot get - // right. - unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); - Flags.setByValSize(FrameSize); - - unsigned FrameAlign; - if (Arg.getParamAlignment()) - FrameAlign = Arg.getParamAlignment(); - else - FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); - Flags.setByValAlign(FrameAlign); - } - if (Arg.hasAttribute(Attribute::Nest)) - Flags.setNest(); - if (NeedsRegBlock) - Flags.setInConsecutiveRegs(); - Flags.setOrigAlign(OriginalAlignment); - if (ArgCopyElisionCandidates.count(&Arg)) - Flags.setCopyElisionCandidate(); - - MVT RegisterVT = TLI->getRegisterTypeForCallingConv( - *CurDAG->getContext(), F.getCallingConv(), VT); - unsigned NumRegs = TLI->getNumRegistersForCallingConv( - *CurDAG->getContext(), F.getCallingConv(), VT); - for (unsigned i = 0; i != NumRegs; ++i) { - ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, - ArgNo, PartBase+i*RegisterVT.getStoreSize()); - if (NumRegs > 1 && i == 0) - MyFlags.Flags.setSplit(); - // if it isn't first piece, alignment must be 1 - else if (i > 0) { - MyFlags.Flags.setOrigAlign(1); - if (i == NumRegs - 1) - MyFlags.Flags.setSplitEnd(); - } - Ins.push_back(MyFlags); - } - if (NeedsRegBlock && Value == NumValues - 1) - Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); - PartBase += VT.getStoreSize(); - } - } - - // Call the target to set up the argument values. - SmallVector<SDValue, 8> InVals; - SDValue NewRoot = TLI->LowerFormalArguments( - DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); - - // Verify that the target's LowerFormalArguments behaved as expected. - assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && - "LowerFormalArguments didn't return a valid chain!"); - assert(InVals.size() == Ins.size() && - "LowerFormalArguments didn't emit the correct number of values!"); - LLVM_DEBUG({ - for (unsigned i = 0, e = Ins.size(); i != e; ++i) { - assert(InVals[i].getNode() && - "LowerFormalArguments emitted a null value!"); - assert(EVT(Ins[i].VT) == InVals[i].getValueType() && - "LowerFormalArguments emitted a value with the wrong type!"); - } - }); - - // Update the DAG with the new chain value resulting from argument lowering. - DAG.setRoot(NewRoot); - - // Set up the argument values. - unsigned i = 0; - if (!FuncInfo->CanLowerReturn) { - // Create a virtual register for the sret pointer, and put in a copy - // from the sret argument into it. - SmallVector<EVT, 1> ValueVTs; - ComputeValueVTs(*TLI, DAG.getDataLayout(), - F.getReturnType()->getPointerTo( - DAG.getDataLayout().getAllocaAddrSpace()), - ValueVTs); - MVT VT = ValueVTs[0].getSimpleVT(); - MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); - Optional<ISD::NodeType> AssertOp = None; - SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, - nullptr, F.getCallingConv(), AssertOp); - - MachineFunction& MF = SDB->DAG.getMachineFunction(); - MachineRegisterInfo& RegInfo = MF.getRegInfo(); - unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); - FuncInfo->DemoteRegister = SRetReg; - NewRoot = - SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); - DAG.setRoot(NewRoot); - - // i indexes lowered arguments. Bump it past the hidden sret argument. - ++i; - } - - SmallVector<SDValue, 4> Chains; - DenseMap<int, int> ArgCopyElisionFrameIndexMap; - for (const Argument &Arg : F.args()) { - SmallVector<SDValue, 4> ArgValues; - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); - unsigned NumValues = ValueVTs.size(); - if (NumValues == 0) - continue; - - bool ArgHasUses = !Arg.use_empty(); - - // Elide the copying store if the target loaded this argument from a - // suitable fixed stack object. - if (Ins[i].Flags.isCopyElisionCandidate()) { - tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, - ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, - InVals[i], ArgHasUses); - } - - // If this argument is unused then remember its value. It is used to generate - // debugging information. - bool isSwiftErrorArg = - TLI->supportSwiftError() && - Arg.hasAttribute(Attribute::SwiftError); - if (!ArgHasUses && !isSwiftErrorArg) { - SDB->setUnusedArgValue(&Arg, InVals[i]); - - // Also remember any frame index for use in FastISel. - if (FrameIndexSDNode *FI = - dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) - FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); - } - - for (unsigned Val = 0; Val != NumValues; ++Val) { - EVT VT = ValueVTs[Val]; - MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), - F.getCallingConv(), VT); - unsigned NumParts = TLI->getNumRegistersForCallingConv( - *CurDAG->getContext(), F.getCallingConv(), VT); - - // Even an apparant 'unused' swifterror argument needs to be returned. So - // we do generate a copy for it that can be used on return from the - // function. - if (ArgHasUses || isSwiftErrorArg) { - Optional<ISD::NodeType> AssertOp; - if (Arg.hasAttribute(Attribute::SExt)) - AssertOp = ISD::AssertSext; - else if (Arg.hasAttribute(Attribute::ZExt)) - AssertOp = ISD::AssertZext; - - ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, - PartVT, VT, nullptr, - F.getCallingConv(), AssertOp)); - } - - i += NumParts; - } - - // We don't need to do anything else for unused arguments. - if (ArgValues.empty()) - continue; - - // Note down frame index. - if (FrameIndexSDNode *FI = - dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) - FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); - - SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), - SDB->getCurSDLoc()); - - SDB->setValue(&Arg, Res); - if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { - // We want to associate the argument with the frame index, among - // involved operands, that correspond to the lowest address. The - // getCopyFromParts function, called earlier, is swapping the order of - // the operands to BUILD_PAIR depending on endianness. The result of - // that swapping is that the least significant bits of the argument will - // be in the first operand of the BUILD_PAIR node, and the most - // significant bits will be in the second operand. - unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; - if (LoadSDNode *LNode = - dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) - if (FrameIndexSDNode *FI = - dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) - FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); - } - - // Update the SwiftErrorVRegDefMap. - if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { - unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); - if (TargetRegisterInfo::isVirtualRegister(Reg)) - SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), - Reg); - } - - // If this argument is live outside of the entry block, insert a copy from - // wherever we got it to the vreg that other BB's will reference it as. - if (Res.getOpcode() == ISD::CopyFromReg) { - // If we can, though, try to skip creating an unnecessary vreg. - // FIXME: This isn't very clean... it would be nice to make this more - // general. - unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); - if (TargetRegisterInfo::isVirtualRegister(Reg)) { - FuncInfo->ValueMap[&Arg] = Reg; - continue; - } - } - if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { - FuncInfo->InitializeRegForValue(&Arg); - SDB->CopyToExportRegsIfNeeded(&Arg); - } - } - - if (!Chains.empty()) { - Chains.push_back(NewRoot); - NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); - } - - DAG.setRoot(NewRoot); - - assert(i == InVals.size() && "Argument register count mismatch!"); - - // If any argument copy elisions occurred and we have debug info, update the - // stale frame indices used in the dbg.declare variable info table. - MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); - if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { - for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { - auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); - if (I != ArgCopyElisionFrameIndexMap.end()) - VI.Slot = I->second; - } - } - - // Finally, if the target has anything special to do, allow it to do so. - EmitFunctionEntryCode(); -} - -/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to -/// ensure constants are generated when needed. Remember the virtual registers -/// that need to be added to the Machine PHI nodes as input. We cannot just -/// directly add them, because expansion might result in multiple MBB's for one -/// BB. As such, the start of the BB might correspond to a different MBB than -/// the end. -void -SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { - const Instruction *TI = LLVMBB->getTerminator(); - - SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; - - // Check PHI nodes in successors that expect a value to be available from this - // block. - for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { - const BasicBlock *SuccBB = TI->getSuccessor(succ); - if (!isa<PHINode>(SuccBB->begin())) continue; - MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; - - // If this terminator has multiple identical successors (common for - // switches), only handle each succ once. - if (!SuccsHandled.insert(SuccMBB).second) - continue; - - MachineBasicBlock::iterator MBBI = SuccMBB->begin(); - - // At this point we know that there is a 1-1 correspondence between LLVM PHI - // nodes and Machine PHI nodes, but the incoming operands have not been - // emitted yet. - for (const PHINode &PN : SuccBB->phis()) { - // Ignore dead phi's. - if (PN.use_empty()) - continue; - - // Skip empty types - if (PN.getType()->isEmptyTy()) - continue; - - unsigned Reg; - const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); - - if (const Constant *C = dyn_cast<Constant>(PHIOp)) { - unsigned &RegOut = ConstantsOut[C]; - if (RegOut == 0) { - RegOut = FuncInfo.CreateRegs(C); - CopyValueToVirtualRegister(C, RegOut); - } - Reg = RegOut; - } else { - DenseMap<const Value *, unsigned>::iterator I = - FuncInfo.ValueMap.find(PHIOp); - if (I != FuncInfo.ValueMap.end()) - Reg = I->second; - else { - assert(isa<AllocaInst>(PHIOp) && - FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && - "Didn't codegen value into a register!??"); - Reg = FuncInfo.CreateRegs(PHIOp); - CopyValueToVirtualRegister(PHIOp, Reg); - } - } - - // Remember that this register needs to added to the machine PHI node as - // the input for this MBB. - SmallVector<EVT, 4> ValueVTs; - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); - for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { - EVT VT = ValueVTs[vti]; - unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); - for (unsigned i = 0, e = NumRegisters; i != e; ++i) - FuncInfo.PHINodesToUpdate.push_back( - std::make_pair(&*MBBI++, Reg + i)); - Reg += NumRegisters; - } - } - } - - ConstantsOut.clear(); -} - -/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB -/// is 0. -MachineBasicBlock * -SelectionDAGBuilder::StackProtectorDescriptor:: -AddSuccessorMBB(const BasicBlock *BB, - MachineBasicBlock *ParentMBB, - bool IsLikely, - MachineBasicBlock *SuccMBB) { - // If SuccBB has not been created yet, create it. - if (!SuccMBB) { - MachineFunction *MF = ParentMBB->getParent(); - MachineFunction::iterator BBI(ParentMBB); - SuccMBB = MF->CreateMachineBasicBlock(BB); - MF->insert(++BBI, SuccMBB); - } - // Add it as a successor of ParentMBB. - ParentMBB->addSuccessor( - SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); - return SuccMBB; -} - -MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { - MachineFunction::iterator I(MBB); - if (++I == FuncInfo.MF->end()) - return nullptr; - return &*I; -} - -/// During lowering new call nodes can be created (such as memset, etc.). -/// Those will become new roots of the current DAG, but complications arise -/// when they are tail calls. In such cases, the call lowering will update -/// the root, but the builder still needs to know that a tail call has been -/// lowered in order to avoid generating an additional return. -void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { - // If the node is null, we do have a tail call. - if (MaybeTC.getNode() != nullptr) - DAG.setRoot(MaybeTC); - else - HasTailCall = true; -} - -void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, - MachineBasicBlock *SwitchMBB, - MachineBasicBlock *DefaultMBB) { - MachineFunction *CurMF = FuncInfo.MF; - MachineBasicBlock *NextMBB = nullptr; - MachineFunction::iterator BBI(W.MBB); - if (++BBI != FuncInfo.MF->end()) - NextMBB = &*BBI; - - unsigned Size = W.LastCluster - W.FirstCluster + 1; - - BranchProbabilityInfo *BPI = FuncInfo.BPI; - - if (Size == 2 && W.MBB == SwitchMBB) { - // If any two of the cases has the same destination, and if one value - // is the same as the other, but has one bit unset that the other has set, - // use bit manipulation to do two compares at once. For example: - // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" - // TODO: This could be extended to merge any 2 cases in switches with 3 - // cases. - // TODO: Handle cases where W.CaseBB != SwitchBB. - CaseCluster &Small = *W.FirstCluster; - CaseCluster &Big = *W.LastCluster; - - if (Small.Low == Small.High && Big.Low == Big.High && - Small.MBB == Big.MBB) { - const APInt &SmallValue = Small.Low->getValue(); - const APInt &BigValue = Big.Low->getValue(); - - // Check that there is only one bit different. - APInt CommonBit = BigValue ^ SmallValue; - if (CommonBit.isPowerOf2()) { - SDValue CondLHS = getValue(Cond); - EVT VT = CondLHS.getValueType(); - SDLoc DL = getCurSDLoc(); - - SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, - DAG.getConstant(CommonBit, DL, VT)); - SDValue Cond = DAG.getSetCC( - DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), - ISD::SETEQ); - - // Update successor info. - // Both Small and Big will jump to Small.BB, so we sum up the - // probabilities. - addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); - if (BPI) - addSuccessorWithProb( - SwitchMBB, DefaultMBB, - // The default destination is the first successor in IR. - BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); - else - addSuccessorWithProb(SwitchMBB, DefaultMBB); - - // Insert the true branch. - SDValue BrCond = - DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, - DAG.getBasicBlock(Small.MBB)); - // Insert the false branch. - BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, - DAG.getBasicBlock(DefaultMBB)); - - DAG.setRoot(BrCond); - return; - } - } - } - - if (TM.getOptLevel() != CodeGenOpt::None) { - // Here, we order cases by probability so the most likely case will be - // checked first. However, two clusters can have the same probability in - // which case their relative ordering is non-deterministic. So we use Low - // as a tie-breaker as clusters are guaranteed to never overlap. - llvm::sort(W.FirstCluster, W.LastCluster + 1, - [](const CaseCluster &a, const CaseCluster &b) { - return a.Prob != b.Prob ? - a.Prob > b.Prob : - a.Low->getValue().slt(b.Low->getValue()); - }); - - // Rearrange the case blocks so that the last one falls through if possible - // without changing the order of probabilities. - for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { - --I; - if (I->Prob > W.LastCluster->Prob) - break; - if (I->Kind == CC_Range && I->MBB == NextMBB) { - std::swap(*I, *W.LastCluster); - break; - } - } - } - - // Compute total probability. - BranchProbability DefaultProb = W.DefaultProb; - BranchProbability UnhandledProbs = DefaultProb; - for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) - UnhandledProbs += I->Prob; - - MachineBasicBlock *CurMBB = W.MBB; - for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { - bool FallthroughUnreachable = false; - MachineBasicBlock *Fallthrough; - if (I == W.LastCluster) { - // For the last cluster, fall through to the default destination. - Fallthrough = DefaultMBB; - FallthroughUnreachable = isa<UnreachableInst>( - DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); - } else { - Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); - CurMF->insert(BBI, Fallthrough); - // Put Cond in a virtual register to make it available from the new blocks. - ExportFromCurrentBlock(Cond); - } - UnhandledProbs -= I->Prob; - - switch (I->Kind) { - case CC_JumpTable: { - // FIXME: Optimize away range check based on pivot comparisons. - JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; - SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; - - // The jump block hasn't been inserted yet; insert it here. - MachineBasicBlock *JumpMBB = JT->MBB; - CurMF->insert(BBI, JumpMBB); - - auto JumpProb = I->Prob; - auto FallthroughProb = UnhandledProbs; - - // If the default statement is a target of the jump table, we evenly - // distribute the default probability to successors of CurMBB. Also - // update the probability on the edge from JumpMBB to Fallthrough. - for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), - SE = JumpMBB->succ_end(); - SI != SE; ++SI) { - if (*SI == DefaultMBB) { - JumpProb += DefaultProb / 2; - FallthroughProb -= DefaultProb / 2; - JumpMBB->setSuccProbability(SI, DefaultProb / 2); - JumpMBB->normalizeSuccProbs(); - break; - } - } - - if (FallthroughUnreachable) { - // Skip the range check if the fallthrough block is unreachable. - JTH->OmitRangeCheck = true; - } - - if (!JTH->OmitRangeCheck) - addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); - addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); - CurMBB->normalizeSuccProbs(); - - // The jump table header will be inserted in our current block, do the - // range check, and fall through to our fallthrough block. - JTH->HeaderBB = CurMBB; - JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. - - // If we're in the right place, emit the jump table header right now. - if (CurMBB == SwitchMBB) { - visitJumpTableHeader(*JT, *JTH, SwitchMBB); - JTH->Emitted = true; - } - break; - } - case CC_BitTests: { - // FIXME: If Fallthrough is unreachable, skip the range check. - - // FIXME: Optimize away range check based on pivot comparisons. - BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; - - // The bit test blocks haven't been inserted yet; insert them here. - for (BitTestCase &BTC : BTB->Cases) - CurMF->insert(BBI, BTC.ThisBB); - - // Fill in fields of the BitTestBlock. - BTB->Parent = CurMBB; - BTB->Default = Fallthrough; - - BTB->DefaultProb = UnhandledProbs; - // If the cases in bit test don't form a contiguous range, we evenly - // distribute the probability on the edge to Fallthrough to two - // successors of CurMBB. - if (!BTB->ContiguousRange) { - BTB->Prob += DefaultProb / 2; - BTB->DefaultProb -= DefaultProb / 2; - } - - // If we're in the right place, emit the bit test header right now. - if (CurMBB == SwitchMBB) { - visitBitTestHeader(*BTB, SwitchMBB); - BTB->Emitted = true; - } - break; - } - case CC_Range: { - const Value *RHS, *LHS, *MHS; - ISD::CondCode CC; - if (I->Low == I->High) { - // Check Cond == I->Low. - CC = ISD::SETEQ; - LHS = Cond; - RHS=I->Low; - MHS = nullptr; - } else { - // Check I->Low <= Cond <= I->High. - CC = ISD::SETLE; - LHS = I->Low; - MHS = Cond; - RHS = I->High; - } - - // If Fallthrough is unreachable, fold away the comparison. - if (FallthroughUnreachable) - CC = ISD::SETTRUE; - - // The false probability is the sum of all unhandled cases. - CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, - getCurSDLoc(), I->Prob, UnhandledProbs); - - if (CurMBB == SwitchMBB) - visitSwitchCase(CB, SwitchMBB); - else - SL->SwitchCases.push_back(CB); - - break; - } - } - CurMBB = Fallthrough; - } -} - -unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, - CaseClusterIt First, - CaseClusterIt Last) { - return std::count_if(First, Last + 1, [&](const CaseCluster &X) { - if (X.Prob != CC.Prob) - return X.Prob > CC.Prob; - - // Ties are broken by comparing the case value. - return X.Low->getValue().slt(CC.Low->getValue()); - }); -} - -void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, - const SwitchWorkListItem &W, - Value *Cond, - MachineBasicBlock *SwitchMBB) { - assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && - "Clusters not sorted?"); - - assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); - - // Balance the tree based on branch probabilities to create a near-optimal (in - // terms of search time given key frequency) binary search tree. See e.g. Kurt - // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). - CaseClusterIt LastLeft = W.FirstCluster; - CaseClusterIt FirstRight = W.LastCluster; - auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; - auto RightProb = FirstRight->Prob + W.DefaultProb / 2; - - // Move LastLeft and FirstRight towards each other from opposite directions to - // find a partitioning of the clusters which balances the probability on both - // sides. If LeftProb and RightProb are equal, alternate which side is - // taken to ensure 0-probability nodes are distributed evenly. - unsigned I = 0; - while (LastLeft + 1 < FirstRight) { - if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) - LeftProb += (++LastLeft)->Prob; - else - RightProb += (--FirstRight)->Prob; - I++; - } - - while (true) { - // Our binary search tree differs from a typical BST in that ours can have up - // to three values in each leaf. The pivot selection above doesn't take that - // into account, which means the tree might require more nodes and be less - // efficient. We compensate for this here. - - unsigned NumLeft = LastLeft - W.FirstCluster + 1; - unsigned NumRight = W.LastCluster - FirstRight + 1; - - if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { - // If one side has less than 3 clusters, and the other has more than 3, - // consider taking a cluster from the other side. - - if (NumLeft < NumRight) { - // Consider moving the first cluster on the right to the left side. - CaseCluster &CC = *FirstRight; - unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); - unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); - if (LeftSideRank <= RightSideRank) { - // Moving the cluster to the left does not demote it. - ++LastLeft; - ++FirstRight; - continue; - } - } else { - assert(NumRight < NumLeft); - // Consider moving the last element on the left to the right side. - CaseCluster &CC = *LastLeft; - unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); - unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); - if (RightSideRank <= LeftSideRank) { - // Moving the cluster to the right does not demot it. - --LastLeft; - --FirstRight; - continue; - } - } - } - break; - } - - assert(LastLeft + 1 == FirstRight); - assert(LastLeft >= W.FirstCluster); - assert(FirstRight <= W.LastCluster); - - // Use the first element on the right as pivot since we will make less-than - // comparisons against it. - CaseClusterIt PivotCluster = FirstRight; - assert(PivotCluster > W.FirstCluster); - assert(PivotCluster <= W.LastCluster); - - CaseClusterIt FirstLeft = W.FirstCluster; - CaseClusterIt LastRight = W.LastCluster; - - const ConstantInt *Pivot = PivotCluster->Low; - - // New blocks will be inserted immediately after the current one. - MachineFunction::iterator BBI(W.MBB); - ++BBI; - - // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, - // we can branch to its destination directly if it's squeezed exactly in - // between the known lower bound and Pivot - 1. - MachineBasicBlock *LeftMBB; - if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && - FirstLeft->Low == W.GE && - (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { - LeftMBB = FirstLeft->MBB; - } else { - LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); - FuncInfo.MF->insert(BBI, LeftMBB); - WorkList.push_back( - {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); - // Put Cond in a virtual register to make it available from the new blocks. - ExportFromCurrentBlock(Cond); - } - - // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a - // single cluster, RHS.Low == Pivot, and we can branch to its destination - // directly if RHS.High equals the current upper bound. - MachineBasicBlock *RightMBB; - if (FirstRight == LastRight && FirstRight->Kind == CC_Range && - W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { - RightMBB = FirstRight->MBB; - } else { - RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); - FuncInfo.MF->insert(BBI, RightMBB); - WorkList.push_back( - {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); - // Put Cond in a virtual register to make it available from the new blocks. - ExportFromCurrentBlock(Cond); - } - - // Create the CaseBlock record that will be used to lower the branch. - CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, - getCurSDLoc(), LeftProb, RightProb); - - if (W.MBB == SwitchMBB) - visitSwitchCase(CB, SwitchMBB); - else - SL->SwitchCases.push_back(CB); -} - -// Scale CaseProb after peeling a case with the probablity of PeeledCaseProb -// from the swith statement. -static BranchProbability scaleCaseProbality(BranchProbability CaseProb, - BranchProbability PeeledCaseProb) { - if (PeeledCaseProb == BranchProbability::getOne()) - return BranchProbability::getZero(); - BranchProbability SwitchProb = PeeledCaseProb.getCompl(); - - uint32_t Numerator = CaseProb.getNumerator(); - uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); - return BranchProbability(Numerator, std::max(Numerator, Denominator)); -} - -// Try to peel the top probability case if it exceeds the threshold. -// Return current MachineBasicBlock for the switch statement if the peeling -// does not occur. -// If the peeling is performed, return the newly created MachineBasicBlock -// for the peeled switch statement. Also update Clusters to remove the peeled -// case. PeeledCaseProb is the BranchProbability for the peeled case. -MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( - const SwitchInst &SI, CaseClusterVector &Clusters, - BranchProbability &PeeledCaseProb) { - MachineBasicBlock *SwitchMBB = FuncInfo.MBB; - // Don't perform if there is only one cluster or optimizing for size. - if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || - TM.getOptLevel() == CodeGenOpt::None || - SwitchMBB->getParent()->getFunction().hasMinSize()) - return SwitchMBB; - - BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); - unsigned PeeledCaseIndex = 0; - bool SwitchPeeled = false; - for (unsigned Index = 0; Index < Clusters.size(); ++Index) { - CaseCluster &CC = Clusters[Index]; - if (CC.Prob < TopCaseProb) - continue; - TopCaseProb = CC.Prob; - PeeledCaseIndex = Index; - SwitchPeeled = true; - } - if (!SwitchPeeled) - return SwitchMBB; - - LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " - << TopCaseProb << "\n"); - - // Record the MBB for the peeled switch statement. - MachineFunction::iterator BBI(SwitchMBB); - ++BBI; - MachineBasicBlock *PeeledSwitchMBB = - FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); - FuncInfo.MF->insert(BBI, PeeledSwitchMBB); - - ExportFromCurrentBlock(SI.getCondition()); - auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; - SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, - nullptr, nullptr, TopCaseProb.getCompl()}; - lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); - - Clusters.erase(PeeledCaseIt); - for (CaseCluster &CC : Clusters) { - LLVM_DEBUG( - dbgs() << "Scale the probablity for one cluster, before scaling: " - << CC.Prob << "\n"); - CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); - LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); - } - PeeledCaseProb = TopCaseProb; - return PeeledSwitchMBB; -} - -void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { - // Extract cases from the switch. - BranchProbabilityInfo *BPI = FuncInfo.BPI; - CaseClusterVector Clusters; - Clusters.reserve(SI.getNumCases()); - for (auto I : SI.cases()) { - MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; - const ConstantInt *CaseVal = I.getCaseValue(); - BranchProbability Prob = - BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) - : BranchProbability(1, SI.getNumCases() + 1); - Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); - } - - MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; - - // Cluster adjacent cases with the same destination. We do this at all - // optimization levels because it's cheap to do and will make codegen faster - // if there are many clusters. - sortAndRangeify(Clusters); - - // The branch probablity of the peeled case. - BranchProbability PeeledCaseProb = BranchProbability::getZero(); - MachineBasicBlock *PeeledSwitchMBB = - peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); - - // If there is only the default destination, jump there directly. - MachineBasicBlock *SwitchMBB = FuncInfo.MBB; - if (Clusters.empty()) { - assert(PeeledSwitchMBB == SwitchMBB); - SwitchMBB->addSuccessor(DefaultMBB); - if (DefaultMBB != NextBlock(SwitchMBB)) { - DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, - getControlRoot(), DAG.getBasicBlock(DefaultMBB))); - } - return; - } - - SL->findJumpTables(Clusters, &SI, DefaultMBB); - SL->findBitTestClusters(Clusters, &SI); - - LLVM_DEBUG({ - dbgs() << "Case clusters: "; - for (const CaseCluster &C : Clusters) { - if (C.Kind == CC_JumpTable) - dbgs() << "JT:"; - if (C.Kind == CC_BitTests) - dbgs() << "BT:"; - - C.Low->getValue().print(dbgs(), true); - if (C.Low != C.High) { - dbgs() << '-'; - C.High->getValue().print(dbgs(), true); - } - dbgs() << ' '; - } - dbgs() << '\n'; - }); - - assert(!Clusters.empty()); - SwitchWorkList WorkList; - CaseClusterIt First = Clusters.begin(); - CaseClusterIt Last = Clusters.end() - 1; - auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); - // Scale the branchprobability for DefaultMBB if the peel occurs and - // DefaultMBB is not replaced. - if (PeeledCaseProb != BranchProbability::getZero() && - DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) - DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); - WorkList.push_back( - {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); - - while (!WorkList.empty()) { - SwitchWorkListItem W = WorkList.back(); - WorkList.pop_back(); - unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; - - if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && - !DefaultMBB->getParent()->getFunction().hasMinSize()) { - // For optimized builds, lower large range as a balanced binary tree. - splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); - continue; - } - - lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); - } -} |
