diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp | 999 | 
1 files changed, 999 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp new file mode 100644 index 000000000000..5d78bba86d73 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp @@ -0,0 +1,999 @@ +//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file includes support code use by SelectionDAGBuilder when lowering a +// statepoint sequence in SelectionDAG IR. +// +//===----------------------------------------------------------------------===// + +#include "StatepointLowering.h" +#include "SelectionDAGBuilder.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/GCMetadata.h" +#include "llvm/CodeGen/GCStrategy.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/Target/TargetLowering.h" +#include <algorithm> +using namespace llvm; + +#define DEBUG_TYPE "statepoint-lowering" + +STATISTIC(NumSlotsAllocatedForStatepoints, +          "Number of stack slots allocated for statepoints"); +STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); +STATISTIC(StatepointMaxSlotsRequired, +          "Maximum number of stack slots required for a singe statepoint"); + +static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, +                                 SelectionDAGBuilder &Builder, uint64_t Value) { +  SDLoc L = Builder.getCurSDLoc(); +  Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, +                                              MVT::i64)); +  Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); +} + +void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { +  // Consistency check +  assert(PendingGCRelocateCalls.empty() && +         "Trying to visit statepoint before finished processing previous one"); +  Locations.clear(); +  NextSlotToAllocate = 0; +  // Need to resize this on each safepoint - we need the two to stay in sync and +  // the clear patterns of a SelectionDAGBuilder have no relation to +  // FunctionLoweringInfo.  Also need to ensure used bits get cleared. +  AllocatedStackSlots.clear(); +  AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); +} + +void StatepointLoweringState::clear() { +  Locations.clear(); +  AllocatedStackSlots.clear(); +  assert(PendingGCRelocateCalls.empty() && +         "cleared before statepoint sequence completed"); +} + +SDValue +StatepointLoweringState::allocateStackSlot(EVT ValueType, +                                           SelectionDAGBuilder &Builder) { +  NumSlotsAllocatedForStatepoints++; +  MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); + +  unsigned SpillSize = ValueType.getSizeInBits() / 8; +  assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); + +  // First look for a previously created stack slot which is not in +  // use (accounting for the fact arbitrary slots may already be +  // reserved), or to create a new stack slot and use it. + +  const size_t NumSlots = AllocatedStackSlots.size(); +  assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); + +  assert(AllocatedStackSlots.size() == +         Builder.FuncInfo.StatepointStackSlots.size() && +         "Broken invariant"); + +  for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { +    if (!AllocatedStackSlots.test(NextSlotToAllocate)) { +      const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; +      if (MFI.getObjectSize(FI) == SpillSize) { +        AllocatedStackSlots.set(NextSlotToAllocate); +        // TODO: Is ValueType the right thing to use here? +        return Builder.DAG.getFrameIndex(FI, ValueType); +      } +    } +  } + +  // Couldn't find a free slot, so create a new one: + +  SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); +  const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); +  MFI.markAsStatepointSpillSlotObjectIndex(FI); + +  Builder.FuncInfo.StatepointStackSlots.push_back(FI); +  AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); +  assert(AllocatedStackSlots.size() == +         Builder.FuncInfo.StatepointStackSlots.size() && +         "Broken invariant"); + +  StatepointMaxSlotsRequired.updateMax( +      Builder.FuncInfo.StatepointStackSlots.size()); + +  return SpillSlot; +} + +/// Utility function for reservePreviousStackSlotForValue. Tries to find +/// stack slot index to which we have spilled value for previous statepoints. +/// LookUpDepth specifies maximum DFS depth this function is allowed to look. +static Optional<int> findPreviousSpillSlot(const Value *Val, +                                           SelectionDAGBuilder &Builder, +                                           int LookUpDepth) { +  // Can not look any further - give up now +  if (LookUpDepth <= 0) +    return None; + +  // Spill location is known for gc relocates +  if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { +    const auto &SpillMap = +        Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; + +    auto It = SpillMap.find(Relocate->getDerivedPtr()); +    if (It == SpillMap.end()) +      return None; + +    return It->second; +  } + +  // Look through bitcast instructions. +  if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) +    return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); + +  // Look through phi nodes +  // All incoming values should have same known stack slot, otherwise result +  // is unknown. +  if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { +    Optional<int> MergedResult = None; + +    for (auto &IncomingValue : Phi->incoming_values()) { +      Optional<int> SpillSlot = +          findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); +      if (!SpillSlot.hasValue()) +        return None; + +      if (MergedResult.hasValue() && *MergedResult != *SpillSlot) +        return None; + +      MergedResult = SpillSlot; +    } +    return MergedResult; +  } + +  // TODO: We can do better for PHI nodes. In cases like this: +  //   ptr = phi(relocated_pointer, not_relocated_pointer) +  //   statepoint(ptr) +  // We will return that stack slot for ptr is unknown. And later we might +  // assign different stack slots for ptr and relocated_pointer. This limits +  // llvm's ability to remove redundant stores. +  // Unfortunately it's hard to accomplish in current infrastructure. +  // We use this function to eliminate spill store completely, while +  // in example we still need to emit store, but instead of any location +  // we need to use special "preferred" location. + +  // TODO: handle simple updates.  If a value is modified and the original +  // value is no longer live, it would be nice to put the modified value in the +  // same slot.  This allows folding of the memory accesses for some +  // instructions types (like an increment). +  //   statepoint (i) +  //   i1 = i+1 +  //   statepoint (i1) +  // However we need to be careful for cases like this: +  //   statepoint(i) +  //   i1 = i+1 +  //   statepoint(i, i1) +  // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just +  // put handling of simple modifications in this function like it's done +  // for bitcasts we might end up reserving i's slot for 'i+1' because order in +  // which we visit values is unspecified. + +  // Don't know any information about this instruction +  return None; +} + +/// Try to find existing copies of the incoming values in stack slots used for +/// statepoint spilling.  If we can find a spill slot for the incoming value, +/// mark that slot as allocated, and reuse the same slot for this safepoint. +/// This helps to avoid series of loads and stores that only serve to reshuffle +/// values on the stack between calls. +static void reservePreviousStackSlotForValue(const Value *IncomingValue, +                                             SelectionDAGBuilder &Builder) { + +  SDValue Incoming = Builder.getValue(IncomingValue); + +  if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { +    // We won't need to spill this, so no need to check for previously +    // allocated stack slots +    return; +  } + +  SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); +  if (OldLocation.getNode()) +    // Duplicates in input +    return; + +  const int LookUpDepth = 6; +  Optional<int> Index = +      findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); +  if (!Index.hasValue()) +    return; + +  const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; + +  auto SlotIt = find(StatepointSlots, *Index); +  assert(SlotIt != StatepointSlots.end() && +         "Value spilled to the unknown stack slot"); + +  // This is one of our dedicated lowering slots +  const int Offset = std::distance(StatepointSlots.begin(), SlotIt); +  if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { +    // stack slot already assigned to someone else, can't use it! +    // TODO: currently we reserve space for gc arguments after doing +    // normal allocation for deopt arguments.  We should reserve for +    // _all_ deopt and gc arguments, then start allocating.  This +    // will prevent some moves being inserted when vm state changes, +    // but gc state doesn't between two calls. +    return; +  } +  // Reserve this stack slot +  Builder.StatepointLowering.reserveStackSlot(Offset); + +  // Cache this slot so we find it when going through the normal +  // assignment loop. +  SDValue Loc = +      Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); +  Builder.StatepointLowering.setLocation(Incoming, Loc); +} + +/// Remove any duplicate (as SDValues) from the derived pointer pairs.  This +/// is not required for correctness.  It's purpose is to reduce the size of +/// StackMap section.  It has no effect on the number of spill slots required +/// or the actual lowering. +static void +removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, +                      SmallVectorImpl<const Value *> &Ptrs, +                      SmallVectorImpl<const GCRelocateInst *> &Relocs, +                      SelectionDAGBuilder &Builder, +                      FunctionLoweringInfo::StatepointSpillMap &SSM) { +  DenseMap<SDValue, const Value *> Seen; + +  SmallVector<const Value *, 64> NewBases, NewPtrs; +  SmallVector<const GCRelocateInst *, 64> NewRelocs; +  for (size_t i = 0, e = Ptrs.size(); i < e; i++) { +    SDValue SD = Builder.getValue(Ptrs[i]); +    auto SeenIt = Seen.find(SD); + +    if (SeenIt == Seen.end()) { +      // Only add non-duplicates +      NewBases.push_back(Bases[i]); +      NewPtrs.push_back(Ptrs[i]); +      NewRelocs.push_back(Relocs[i]); +      Seen[SD] = Ptrs[i]; +    } else { +      // Duplicate pointer found, note in SSM and move on: +      SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; +    } +  } +  assert(Bases.size() >= NewBases.size()); +  assert(Ptrs.size() >= NewPtrs.size()); +  assert(Relocs.size() >= NewRelocs.size()); +  Bases = NewBases; +  Ptrs = NewPtrs; +  Relocs = NewRelocs; +  assert(Ptrs.size() == Bases.size()); +  assert(Ptrs.size() == Relocs.size()); +} + +/// Extract call from statepoint, lower it and return pointer to the +/// call node. Also update NodeMap so that getValue(statepoint) will +/// reference lowered call result +static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( +    SelectionDAGBuilder::StatepointLoweringInfo &SI, +    SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { + +  SDValue ReturnValue, CallEndVal; +  std::tie(ReturnValue, CallEndVal) = +      Builder.lowerInvokable(SI.CLI, SI.EHPadBB); +  SDNode *CallEnd = CallEndVal.getNode(); + +  // Get a call instruction from the call sequence chain.  Tail calls are not +  // allowed.  The following code is essentially reverse engineering X86's +  // LowerCallTo. +  // +  // We are expecting DAG to have the following form: +  // +  // ch = eh_label (only in case of invoke statepoint) +  //   ch, glue = callseq_start ch +  //   ch, glue = X86::Call ch, glue +  //   ch, glue = callseq_end ch, glue +  //   get_return_value ch, glue +  // +  // get_return_value can either be a sequence of CopyFromReg instructions +  // to grab the return value from the return register(s), or it can be a LOAD +  // to load a value returned by reference via a stack slot. + +  bool HasDef = !SI.CLI.RetTy->isVoidTy(); +  if (HasDef) { +    if (CallEnd->getOpcode() == ISD::LOAD) +      CallEnd = CallEnd->getOperand(0).getNode(); +    else +      while (CallEnd->getOpcode() == ISD::CopyFromReg) +        CallEnd = CallEnd->getOperand(0).getNode(); +  } + +  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); +  return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); +} + +/// Spill a value incoming to the statepoint. It might be either part of +/// vmstate +/// or gcstate. In both cases unconditionally spill it on the stack unless it +/// is a null constant. Return pair with first element being frame index +/// containing saved value and second element with outgoing chain from the +/// emitted store +static std::pair<SDValue, SDValue> +spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, +                             SelectionDAGBuilder &Builder) { +  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); + +  // Emit new store if we didn't do it for this ptr before +  if (!Loc.getNode()) { +    Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), +                                                       Builder); +    int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); +    // We use TargetFrameIndex so that isel will not select it into LEA +    Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); + +    // TODO: We can create TokenFactor node instead of +    //       chaining stores one after another, this may allow +    //       a bit more optimal scheduling for them + +#ifndef NDEBUG +    // Right now we always allocate spill slots that are of the same +    // size as the value we're about to spill (the size of spillee can +    // vary since we spill vectors of pointers too).  At some point we +    // can consider allowing spills of smaller values to larger slots +    // (i.e. change the '==' in the assert below to a '>='). +    MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); +    assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && +           "Bad spill:  stack slot does not match!"); +#endif + +    Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, +                                 MachinePointerInfo::getFixedStack( +                                     Builder.DAG.getMachineFunction(), Index)); + +    Builder.StatepointLowering.setLocation(Incoming, Loc); +  } + +  assert(Loc.getNode()); +  return std::make_pair(Loc, Chain); +} + +/// Lower a single value incoming to a statepoint node.  This value can be +/// either a deopt value or a gc value, the handling is the same.  We special +/// case constants and allocas, then fall back to spilling if required. +static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, +                                         SmallVectorImpl<SDValue> &Ops, +                                         SelectionDAGBuilder &Builder) { +  SDValue Chain = Builder.getRoot(); + +  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { +    // If the original value was a constant, make sure it gets recorded as +    // such in the stackmap.  This is required so that the consumer can +    // parse any internal format to the deopt state.  It also handles null +    // pointers and other constant pointers in GC states.  Note the constant +    // vectors do not appear to actually hit this path and that anything larger +    // than an i64 value (not type!) will fail asserts here. +    pushStackMapConstant(Ops, Builder, C->getSExtValue()); +  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { +    // This handles allocas as arguments to the statepoint (this is only +    // really meaningful for a deopt value.  For GC, we'd be trying to +    // relocate the address of the alloca itself?) +    assert(Incoming.getValueType() == Builder.getFrameIndexTy() && +           "Incoming value is a frame index!"); +    Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), +                                                  Builder.getFrameIndexTy())); +  } else if (LiveInOnly) { +    // If this value is live in (not live-on-return, or live-through), we can +    // treat it the same way patchpoint treats it's "live in" values.  We'll  +    // end up folding some of these into stack references, but they'll be  +    // handled by the register allocator.  Note that we do not have the notion +    // of a late use so these values might be placed in registers which are  +    // clobbered by the call.  This is fine for live-in. +    Ops.push_back(Incoming); +  } else { +    // Otherwise, locate a spill slot and explicitly spill it so it +    // can be found by the runtime later.  We currently do not support +    // tracking values through callee saved registers to their eventual +    // spill location.  This would be a useful optimization, but would +    // need to be optional since it requires a lot of complexity on the +    // runtime side which not all would support. +    auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); +    Ops.push_back(Res.first); +    Chain = Res.second; +  } + +  Builder.DAG.setRoot(Chain); +} + +/// Lower deopt state and gc pointer arguments of the statepoint.  The actual +/// lowering is described in lowerIncomingStatepointValue.  This function is +/// responsible for lowering everything in the right position and playing some +/// tricks to avoid redundant stack manipulation where possible.  On +/// completion, 'Ops' will contain ready to use operands for machine code +/// statepoint. The chain nodes will have already been created and the DAG root +/// will be set to the last value spilled (if any were). +static void +lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, +                        SelectionDAGBuilder::StatepointLoweringInfo &SI, +                        SelectionDAGBuilder &Builder) { +  // Lower the deopt and gc arguments for this statepoint.  Layout will be: +  // deopt argument length, deopt arguments.., gc arguments... +#ifndef NDEBUG +  if (auto *GFI = Builder.GFI) { +    // Check that each of the gc pointer and bases we've gotten out of the +    // safepoint is something the strategy thinks might be a pointer (or vector +    // of pointers) into the GC heap.  This is basically just here to help catch +    // errors during statepoint insertion. TODO: This should actually be in the +    // Verifier, but we can't get to the GCStrategy from there (yet). +    GCStrategy &S = GFI->getStrategy(); +    for (const Value *V : SI.Bases) { +      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); +      if (Opt.hasValue()) { +        assert(Opt.getValue() && +               "non gc managed base pointer found in statepoint"); +      } +    } +    for (const Value *V : SI.Ptrs) { +      auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); +      if (Opt.hasValue()) { +        assert(Opt.getValue() && +               "non gc managed derived pointer found in statepoint"); +      } +    } +    assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); +  } else { +    assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); +    assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); +  } +#endif + +  // Figure out what lowering strategy we're going to use for each part +  // Note: Is is conservatively correct to lower both "live-in" and "live-out" +  // as "live-through". A "live-through" variable is one which is "live-in", +  // "live-out", and live throughout the lifetime of the call (i.e. we can find +  // it from any PC within the transitive callee of the statepoint).  In +  // particular, if the callee spills callee preserved registers we may not +  // be able to find a value placed in that register during the call.  This is +  // fine for live-out, but not for live-through.  If we were willing to make +  // assumptions about the code generator producing the callee, we could +  // potentially allow live-through values in callee saved registers. +  const bool LiveInDeopt = +    SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; + +  auto isGCValue =[&](const Value *V) { +    return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); +  }; +   +  // Before we actually start lowering (and allocating spill slots for values), +  // reserve any stack slots which we judge to be profitable to reuse for a +  // particular value.  This is purely an optimization over the code below and +  // doesn't change semantics at all.  It is important for performance that we +  // reserve slots for both deopt and gc values before lowering either. +  for (const Value *V : SI.DeoptState) { +    if (!LiveInDeopt || isGCValue(V)) +      reservePreviousStackSlotForValue(V, Builder); +  } +  for (unsigned i = 0; i < SI.Bases.size(); ++i) { +    reservePreviousStackSlotForValue(SI.Bases[i], Builder); +    reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); +  } + +  // First, prefix the list with the number of unique values to be +  // lowered.  Note that this is the number of *Values* not the +  // number of SDValues required to lower them. +  const int NumVMSArgs = SI.DeoptState.size(); +  pushStackMapConstant(Ops, Builder, NumVMSArgs); + +  // The vm state arguments are lowered in an opaque manner.  We do not know +  // what type of values are contained within. +  for (const Value *V : SI.DeoptState) { +    SDValue Incoming = Builder.getValue(V); +    const bool LiveInValue = LiveInDeopt && !isGCValue(V); +    lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder); +  } + +  // Finally, go ahead and lower all the gc arguments.  There's no prefixed +  // length for this one.  After lowering, we'll have the base and pointer +  // arrays interwoven with each (lowered) base pointer immediately followed by +  // it's (lowered) derived pointer.  i.e +  // (base[0], ptr[0], base[1], ptr[1], ...) +  for (unsigned i = 0; i < SI.Bases.size(); ++i) { +    const Value *Base = SI.Bases[i]; +    lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, +                                 Ops, Builder); + +    const Value *Ptr = SI.Ptrs[i]; +    lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, +                                 Ops, Builder); +  } + +  // If there are any explicit spill slots passed to the statepoint, record +  // them, but otherwise do not do anything special.  These are user provided +  // allocas and give control over placement to the consumer.  In this case, +  // it is the contents of the slot which may get updated, not the pointer to +  // the alloca +  for (Value *V : SI.GCArgs) { +    SDValue Incoming = Builder.getValue(V); +    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { +      // This handles allocas as arguments to the statepoint +      assert(Incoming.getValueType() == Builder.getFrameIndexTy() && +             "Incoming value is a frame index!"); +      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), +                                                    Builder.getFrameIndexTy())); +    } +  } + +  // Record computed locations for all lowered values. +  // This can not be embedded in lowering loops as we need to record *all* +  // values, while previous loops account only values with unique SDValues. +  const Instruction *StatepointInstr = SI.StatepointInstr; +  auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; + +  for (const GCRelocateInst *Relocate : SI.GCRelocates) { +    const Value *V = Relocate->getDerivedPtr(); +    SDValue SDV = Builder.getValue(V); +    SDValue Loc = Builder.StatepointLowering.getLocation(SDV); + +    if (Loc.getNode()) { +      SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); +    } else { +      // Record value as visited, but not spilled. This is case for allocas +      // and constants. For this values we can avoid emitting spill load while +      // visiting corresponding gc_relocate. +      // Actually we do not need to record them in this map at all. +      // We do this only to check that we are not relocating any unvisited +      // value. +      SpillMap.SlotMap[V] = None; + +      // Default llvm mechanisms for exporting values which are used in +      // different basic blocks does not work for gc relocates. +      // Note that it would be incorrect to teach llvm that all relocates are +      // uses of the corresponding values so that it would automatically +      // export them. Relocates of the spilled values does not use original +      // value. +      if (Relocate->getParent() != StatepointInstr->getParent()) +        Builder.ExportFromCurrentBlock(V); +    } +  } +} + +SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( +    SelectionDAGBuilder::StatepointLoweringInfo &SI) { +  // The basic scheme here is that information about both the original call and +  // the safepoint is encoded in the CallInst.  We create a temporary call and +  // lower it, then reverse engineer the calling sequence. + +  NumOfStatepoints++; +  // Clear state +  StatepointLowering.startNewStatepoint(*this); + +#ifndef NDEBUG +  // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ +  // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. +  for (auto *Reloc : SI.GCRelocates) +    if (Reloc->getParent() == SI.StatepointInstr->getParent()) +      StatepointLowering.scheduleRelocCall(*Reloc); +#endif + +  // Remove any redundant llvm::Values which map to the same SDValue as another +  // input.  Also has the effect of removing duplicates in the original +  // llvm::Value input list as well.  This is a useful optimization for +  // reducing the size of the StackMap section.  It has no other impact. +  removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, +                        FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); +  assert(SI.Bases.size() == SI.Ptrs.size() && +         SI.Ptrs.size() == SI.GCRelocates.size()); + +  // Lower statepoint vmstate and gcstate arguments +  SmallVector<SDValue, 10> LoweredMetaArgs; +  lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); + +  // Now that we've emitted the spills, we need to update the root so that the +  // call sequence is ordered correctly. +  SI.CLI.setChain(getRoot()); + +  // Get call node, we will replace it later with statepoint +  SDValue ReturnVal; +  SDNode *CallNode; +  std::tie(ReturnVal, CallNode) = +      lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); + +  // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END +  // nodes with all the appropriate arguments and return values. + +  // Call Node: Chain, Target, {Args}, RegMask, [Glue] +  SDValue Chain = CallNode->getOperand(0); + +  SDValue Glue; +  bool CallHasIncomingGlue = CallNode->getGluedNode(); +  if (CallHasIncomingGlue) { +    // Glue is always last operand +    Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); +  } + +  // Build the GC_TRANSITION_START node if necessary. +  // +  // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the +  // order in which they appear in the call to the statepoint intrinsic. If +  // any of the operands is a pointer-typed, that operand is immediately +  // followed by a SRCVALUE for the pointer that may be used during lowering +  // (e.g. to form MachinePointerInfo values for loads/stores). +  const bool IsGCTransition = +      (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == +      (uint64_t)StatepointFlags::GCTransition; +  if (IsGCTransition) { +    SmallVector<SDValue, 8> TSOps; + +    // Add chain +    TSOps.push_back(Chain); + +    // Add GC transition arguments +    for (const Value *V : SI.GCTransitionArgs) { +      TSOps.push_back(getValue(V)); +      if (V->getType()->isPointerTy()) +        TSOps.push_back(DAG.getSrcValue(V)); +    } + +    // Add glue if necessary +    if (CallHasIncomingGlue) +      TSOps.push_back(Glue); + +    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + +    SDValue GCTransitionStart = +        DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); + +    Chain = GCTransitionStart.getValue(0); +    Glue = GCTransitionStart.getValue(1); +  } + +  // TODO: Currently, all of these operands are being marked as read/write in +  // PrologEpilougeInserter.cpp, we should special case the VMState arguments +  // and flags to be read-only. +  SmallVector<SDValue, 40> Ops; + +  // Add the <id> and <numBytes> constants. +  Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); +  Ops.push_back( +      DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); + +  // Calculate and push starting position of vmstate arguments +  // Get number of arguments incoming directly into call node +  unsigned NumCallRegArgs = +      CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); +  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); + +  // Add call target +  SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); +  Ops.push_back(CallTarget); + +  // Add call arguments +  // Get position of register mask in the call +  SDNode::op_iterator RegMaskIt; +  if (CallHasIncomingGlue) +    RegMaskIt = CallNode->op_end() - 2; +  else +    RegMaskIt = CallNode->op_end() - 1; +  Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); + +  // Add a constant argument for the calling convention +  pushStackMapConstant(Ops, *this, SI.CLI.CallConv); + +  // Add a constant argument for the flags +  uint64_t Flags = SI.StatepointFlags; +  assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && +         "Unknown flag used"); +  pushStackMapConstant(Ops, *this, Flags); + +  // Insert all vmstate and gcstate arguments +  Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); + +  // Add register mask from call node +  Ops.push_back(*RegMaskIt); + +  // Add chain +  Ops.push_back(Chain); + +  // Same for the glue, but we add it only if original call had it +  if (Glue.getNode()) +    Ops.push_back(Glue); + +  // Compute return values.  Provide a glue output since we consume one as +  // input.  This allows someone else to chain off us as needed. +  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + +  SDNode *StatepointMCNode = +      DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); + +  SDNode *SinkNode = StatepointMCNode; + +  // Build the GC_TRANSITION_END node if necessary. +  // +  // See the comment above regarding GC_TRANSITION_START for the layout of +  // the operands to the GC_TRANSITION_END node. +  if (IsGCTransition) { +    SmallVector<SDValue, 8> TEOps; + +    // Add chain +    TEOps.push_back(SDValue(StatepointMCNode, 0)); + +    // Add GC transition arguments +    for (const Value *V : SI.GCTransitionArgs) { +      TEOps.push_back(getValue(V)); +      if (V->getType()->isPointerTy()) +        TEOps.push_back(DAG.getSrcValue(V)); +    } + +    // Add glue +    TEOps.push_back(SDValue(StatepointMCNode, 1)); + +    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + +    SDValue GCTransitionStart = +        DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); + +    SinkNode = GCTransitionStart.getNode(); +  } + +  // Replace original call +  DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root +  // Remove original call node +  DAG.DeleteNode(CallNode); + +  // DON'T set the root - under the assumption that it's already set past the +  // inserted node we created. + +  // TODO: A better future implementation would be to emit a single variable +  // argument, variable return value STATEPOINT node here and then hookup the +  // return value of each gc.relocate to the respective output of the +  // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear +  // to actually be possible today. + +  return ReturnVal; +} + +void +SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, +                                     const BasicBlock *EHPadBB /*= nullptr*/) { +  assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && +         "anyregcc is not supported on statepoints!"); + +#ifndef NDEBUG +  // If this is a malformed statepoint, report it early to simplify debugging. +  // This should catch any IR level mistake that's made when constructing or +  // transforming statepoints. +  ISP.verify(); + +  // Check that the associated GCStrategy expects to encounter statepoints. +  assert(GFI->getStrategy().useStatepoints() && +         "GCStrategy does not expect to encounter statepoints"); +#endif + +  SDValue ActualCallee; + +  if (ISP.getNumPatchBytes() > 0) { +    // If we've been asked to emit a nop sequence instead of a call instruction +    // for this statepoint then don't lower the call target, but use a constant +    // `null` instead.  Not lowering the call target lets statepoint clients get +    // away without providing a physical address for the symbolic call target at +    // link time. + +    const auto &TLI = DAG.getTargetLoweringInfo(); +    const auto &DL = DAG.getDataLayout(); + +    unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); +    ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); +  } else { +    ActualCallee = getValue(ISP.getCalledValue()); +  } + +  StatepointLoweringInfo SI(DAG); +  populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), +                           ImmutableStatepoint::CallArgsBeginPos, +                           ISP.getNumCallArgs(), ActualCallee, +                           ISP.getActualReturnType(), false /* IsPatchPoint */); + +  for (const GCRelocateInst *Relocate : ISP.getRelocates()) { +    SI.GCRelocates.push_back(Relocate); +    SI.Bases.push_back(Relocate->getBasePtr()); +    SI.Ptrs.push_back(Relocate->getDerivedPtr()); +  } + +  SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); +  SI.StatepointInstr = ISP.getInstruction(); +  SI.GCTransitionArgs = +      ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); +  SI.ID = ISP.getID(); +  SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); +  SI.StatepointFlags = ISP.getFlags(); +  SI.NumPatchBytes = ISP.getNumPatchBytes(); +  SI.EHPadBB = EHPadBB; + +  SDValue ReturnValue = LowerAsSTATEPOINT(SI); + +  // Export the result value if needed +  const GCResultInst *GCResult = ISP.getGCResult(); +  Type *RetTy = ISP.getActualReturnType(); +  if (!RetTy->isVoidTy() && GCResult) { +    if (GCResult->getParent() != ISP.getCallSite().getParent()) { +      // Result value will be used in a different basic block so we need to +      // export it now.  Default exporting mechanism will not work here because +      // statepoint call has a different type than the actual call. It means +      // that by default llvm will create export register of the wrong type +      // (always i32 in our case). So instead we need to create export register +      // with correct type manually. +      // TODO: To eliminate this problem we can remove gc.result intrinsics +      //       completely and make statepoint call to return a tuple. +      unsigned Reg = FuncInfo.CreateRegs(RetTy); +      RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), +                       DAG.getDataLayout(), Reg, RetTy, true); +      SDValue Chain = DAG.getEntryNode(); + +      RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); +      PendingExports.push_back(Chain); +      FuncInfo.ValueMap[ISP.getInstruction()] = Reg; +    } else { +      // Result value will be used in a same basic block. Don't export it or +      // perform any explicit register copies. +      // We'll replace the actuall call node shortly. gc_result will grab +      // this value. +      setValue(ISP.getInstruction(), ReturnValue); +    } +  } else { +    // The token value is never used from here on, just generate a poison value +    setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); +  } +} + +void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( +    ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, +    bool VarArgDisallowed, bool ForceVoidReturnTy) { +  StatepointLoweringInfo SI(DAG); +  unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); +  populateCallLoweringInfo( +      SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, +      ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), +      false); +  if (!VarArgDisallowed) +    SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); + +  auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); + +  unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; + +  auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); +  SI.ID = SD.StatepointID.getValueOr(DefaultID); +  SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); + +  SI.DeoptState = +      ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); +  SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); +  SI.EHPadBB = EHPadBB; + +  // NB! The GC arguments are deliberately left empty. + +  if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { +    const Instruction *Inst = CS.getInstruction(); +    ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); +    setValue(Inst, ReturnVal); +  } +} + +void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( +    ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { +  LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, +                                   /* VarArgDisallowed = */ false, +                                   /* ForceVoidReturnTy  = */ false); +} + +void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { +  // The result value of the gc_result is simply the result of the actual +  // call.  We've already emitted this, so just grab the value. +  const Instruction *I = CI.getStatepoint(); + +  if (I->getParent() != CI.getParent()) { +    // Statepoint is in different basic block so we should have stored call +    // result in a virtual register. +    // We can not use default getValue() functionality to copy value from this +    // register because statepoint and actual call return types can be +    // different, and getValue() will use CopyFromReg of the wrong type, +    // which is always i32 in our case. +    PointerType *CalleeType = cast<PointerType>( +        ImmutableStatepoint(I).getCalledValue()->getType()); +    Type *RetTy = +        cast<FunctionType>(CalleeType->getElementType())->getReturnType(); +    SDValue CopyFromReg = getCopyFromRegs(I, RetTy); + +    assert(CopyFromReg.getNode()); +    setValue(&CI, CopyFromReg); +  } else { +    setValue(&CI, getValue(I)); +  } +} + +void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { +#ifndef NDEBUG +  // Consistency check +  // We skip this check for relocates not in the same basic block as their +  // statepoint. It would be too expensive to preserve validation info through +  // different basic blocks. +  if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) +    StatepointLowering.relocCallVisited(Relocate); + +  auto *Ty = Relocate.getType()->getScalarType(); +  if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) +    assert(*IsManaged && "Non gc managed pointer relocated!"); +#endif + +  const Value *DerivedPtr = Relocate.getDerivedPtr(); +  SDValue SD = getValue(DerivedPtr); + +  auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; +  auto SlotIt = SpillMap.find(DerivedPtr); +  assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); +  Optional<int> DerivedPtrLocation = SlotIt->second; + +  // We didn't need to spill these special cases (constants and allocas). +  // See the handling in spillIncomingValueForStatepoint for detail. +  if (!DerivedPtrLocation) { +    setValue(&Relocate, SD); +    return; +  } + +  SDValue SpillSlot = +      DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy()); + +  // Be conservative: flush all pending loads +  // TODO: Probably we can be less restrictive on this, +  // it may allow more scheduling opportunities. +  SDValue Chain = getRoot(); + +  SDValue SpillLoad = +      DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), +                                                           Relocate.getType()), +                  getCurSDLoc(), Chain, SpillSlot, +                  MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), +                                                    *DerivedPtrLocation)); + +  // Again, be conservative, don't emit pending loads +  DAG.setRoot(SpillLoad.getValue(1)); + +  assert(SpillLoad.getNode()); +  setValue(&Relocate, SpillLoad); +} + +void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { +  const auto &TLI = DAG.getTargetLoweringInfo(); +  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), +                                         TLI.getPointerTy(DAG.getDataLayout())); + +  // We don't lower calls to __llvm_deoptimize as varargs, but as a regular +  // call.  We also do not lower the return value to any virtual register, and +  // change the immediately following return to a trap instruction. +  LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, +                                   /* VarArgDisallowed = */ true, +                                   /* ForceVoidReturnTy = */ true); +} + +void SelectionDAGBuilder::LowerDeoptimizingReturn() { +  // We do not lower the return value from llvm.deoptimize to any virtual +  // register, and change the immediately following return to a trap +  // instruction. +  if (DAG.getTarget().Options.TrapUnreachable) +    DAG.setRoot( +        DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); +}  | 
