diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp | 1229 |
1 files changed, 0 insertions, 1229 deletions
diff --git a/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp b/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp deleted file mode 100644 index 868617ffe14d..000000000000 --- a/contrib/llvm/lib/CodeGen/TargetInstrInfo.cpp +++ /dev/null @@ -1,1229 +0,0 @@ -//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements the TargetInstrInfo class. -// -//===----------------------------------------------------------------------===// - -#include "llvm/CodeGen/TargetInstrInfo.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineMemOperand.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/PseudoSourceValue.h" -#include "llvm/CodeGen/ScoreboardHazardRecognizer.h" -#include "llvm/CodeGen/StackMaps.h" -#include "llvm/CodeGen/TargetFrameLowering.h" -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSchedule.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/MC/MCAsmInfo.h" -#include "llvm/MC/MCInstrItineraries.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetMachine.h" -#include <cctype> - -using namespace llvm; - -static cl::opt<bool> DisableHazardRecognizer( - "disable-sched-hazard", cl::Hidden, cl::init(false), - cl::desc("Disable hazard detection during preRA scheduling")); - -TargetInstrInfo::~TargetInstrInfo() { -} - -const TargetRegisterClass* -TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, - const TargetRegisterInfo *TRI, - const MachineFunction &MF) const { - if (OpNum >= MCID.getNumOperands()) - return nullptr; - - short RegClass = MCID.OpInfo[OpNum].RegClass; - if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) - return TRI->getPointerRegClass(MF, RegClass); - - // Instructions like INSERT_SUBREG do not have fixed register classes. - if (RegClass < 0) - return nullptr; - - // Otherwise just look it up normally. - return TRI->getRegClass(RegClass); -} - -/// insertNoop - Insert a noop into the instruction stream at the specified -/// point. -void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI) const { - llvm_unreachable("Target didn't implement insertNoop!"); -} - -static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { - return strncmp(Str, MAI.getCommentString().data(), - MAI.getCommentString().size()) == 0; -} - -/// Measure the specified inline asm to determine an approximation of its -/// length. -/// Comments (which run till the next SeparatorString or newline) do not -/// count as an instruction. -/// Any other non-whitespace text is considered an instruction, with -/// multiple instructions separated by SeparatorString or newlines. -/// Variable-length instructions are not handled here; this function -/// may be overloaded in the target code to do that. -/// We implement a special case of the .space directive which takes only a -/// single integer argument in base 10 that is the size in bytes. This is a -/// restricted form of the GAS directive in that we only interpret -/// simple--i.e. not a logical or arithmetic expression--size values without -/// the optional fill value. This is primarily used for creating arbitrary -/// sized inline asm blocks for testing purposes. -unsigned TargetInstrInfo::getInlineAsmLength( - const char *Str, - const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { - // Count the number of instructions in the asm. - bool AtInsnStart = true; - unsigned Length = 0; - const unsigned MaxInstLength = MAI.getMaxInstLength(STI); - for (; *Str; ++Str) { - if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), - strlen(MAI.getSeparatorString())) == 0) { - AtInsnStart = true; - } else if (isAsmComment(Str, MAI)) { - // Stop counting as an instruction after a comment until the next - // separator. - AtInsnStart = false; - } - - if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { - unsigned AddLength = MaxInstLength; - if (strncmp(Str, ".space", 6) == 0) { - char *EStr; - int SpaceSize; - SpaceSize = strtol(Str + 6, &EStr, 10); - SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; - while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr))) - ++EStr; - if (*EStr == '\0' || *EStr == '\n' || - isAsmComment(EStr, MAI)) // Successfully parsed .space argument - AddLength = SpaceSize; - } - Length += AddLength; - AtInsnStart = false; - } - } - - return Length; -} - -/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything -/// after it, replacing it with an unconditional branch to NewDest. -void -TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, - MachineBasicBlock *NewDest) const { - MachineBasicBlock *MBB = Tail->getParent(); - - // Remove all the old successors of MBB from the CFG. - while (!MBB->succ_empty()) - MBB->removeSuccessor(MBB->succ_begin()); - - // Save off the debug loc before erasing the instruction. - DebugLoc DL = Tail->getDebugLoc(); - - // Update call site info and remove all the dead instructions - // from the end of MBB. - while (Tail != MBB->end()) { - auto MI = Tail++; - if (MI->isCall()) - MBB->getParent()->updateCallSiteInfo(&*MI); - MBB->erase(MI); - } - - // If MBB isn't immediately before MBB, insert a branch to it. - if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) - insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); - MBB->addSuccessor(NewDest); -} - -MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, - bool NewMI, unsigned Idx1, - unsigned Idx2) const { - const MCInstrDesc &MCID = MI.getDesc(); - bool HasDef = MCID.getNumDefs(); - if (HasDef && !MI.getOperand(0).isReg()) - // No idea how to commute this instruction. Target should implement its own. - return nullptr; - - unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; - unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; - assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && - CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && - "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); - assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && - "This only knows how to commute register operands so far"); - - Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); - Register Reg1 = MI.getOperand(Idx1).getReg(); - Register Reg2 = MI.getOperand(Idx2).getReg(); - unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; - unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); - unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); - bool Reg1IsKill = MI.getOperand(Idx1).isKill(); - bool Reg2IsKill = MI.getOperand(Idx2).isKill(); - bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); - bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); - bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); - bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); - // Avoid calling isRenamable for virtual registers since we assert that - // renamable property is only queried/set for physical registers. - bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1) - ? MI.getOperand(Idx1).isRenamable() - : false; - bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2) - ? MI.getOperand(Idx2).isRenamable() - : false; - // If destination is tied to either of the commuted source register, then - // it must be updated. - if (HasDef && Reg0 == Reg1 && - MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { - Reg2IsKill = false; - Reg0 = Reg2; - SubReg0 = SubReg2; - } else if (HasDef && Reg0 == Reg2 && - MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { - Reg1IsKill = false; - Reg0 = Reg1; - SubReg0 = SubReg1; - } - - MachineInstr *CommutedMI = nullptr; - if (NewMI) { - // Create a new instruction. - MachineFunction &MF = *MI.getMF(); - CommutedMI = MF.CloneMachineInstr(&MI); - } else { - CommutedMI = &MI; - } - - if (HasDef) { - CommutedMI->getOperand(0).setReg(Reg0); - CommutedMI->getOperand(0).setSubReg(SubReg0); - } - CommutedMI->getOperand(Idx2).setReg(Reg1); - CommutedMI->getOperand(Idx1).setReg(Reg2); - CommutedMI->getOperand(Idx2).setSubReg(SubReg1); - CommutedMI->getOperand(Idx1).setSubReg(SubReg2); - CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); - CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); - CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); - CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); - CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); - CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); - // Avoid calling setIsRenamable for virtual registers since we assert that - // renamable property is only queried/set for physical registers. - if (TargetRegisterInfo::isPhysicalRegister(Reg1)) - CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); - if (TargetRegisterInfo::isPhysicalRegister(Reg2)) - CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); - return CommutedMI; -} - -MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, - unsigned OpIdx1, - unsigned OpIdx2) const { - // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose - // any commutable operand, which is done in findCommutedOpIndices() method - // called below. - if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && - !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { - assert(MI.isCommutable() && - "Precondition violation: MI must be commutable."); - return nullptr; - } - return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); -} - -bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, - unsigned &ResultIdx2, - unsigned CommutableOpIdx1, - unsigned CommutableOpIdx2) { - if (ResultIdx1 == CommuteAnyOperandIndex && - ResultIdx2 == CommuteAnyOperandIndex) { - ResultIdx1 = CommutableOpIdx1; - ResultIdx2 = CommutableOpIdx2; - } else if (ResultIdx1 == CommuteAnyOperandIndex) { - if (ResultIdx2 == CommutableOpIdx1) - ResultIdx1 = CommutableOpIdx2; - else if (ResultIdx2 == CommutableOpIdx2) - ResultIdx1 = CommutableOpIdx1; - else - return false; - } else if (ResultIdx2 == CommuteAnyOperandIndex) { - if (ResultIdx1 == CommutableOpIdx1) - ResultIdx2 = CommutableOpIdx2; - else if (ResultIdx1 == CommutableOpIdx2) - ResultIdx2 = CommutableOpIdx1; - else - return false; - } else - // Check that the result operand indices match the given commutable - // operand indices. - return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || - (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); - - return true; -} - -bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI, - unsigned &SrcOpIdx1, - unsigned &SrcOpIdx2) const { - assert(!MI.isBundle() && - "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); - - const MCInstrDesc &MCID = MI.getDesc(); - if (!MCID.isCommutable()) - return false; - - // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this - // is not true, then the target must implement this. - unsigned CommutableOpIdx1 = MCID.getNumDefs(); - unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; - if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, - CommutableOpIdx1, CommutableOpIdx2)) - return false; - - if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) - // No idea. - return false; - return true; -} - -bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { - if (!MI.isTerminator()) return false; - - // Conditional branch is a special case. - if (MI.isBranch() && !MI.isBarrier()) - return true; - if (!MI.isPredicable()) - return true; - return !isPredicated(MI); -} - -bool TargetInstrInfo::PredicateInstruction( - MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { - bool MadeChange = false; - - assert(!MI.isBundle() && - "TargetInstrInfo::PredicateInstruction() can't handle bundles"); - - const MCInstrDesc &MCID = MI.getDesc(); - if (!MI.isPredicable()) - return false; - - for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { - if (MCID.OpInfo[i].isPredicate()) { - MachineOperand &MO = MI.getOperand(i); - if (MO.isReg()) { - MO.setReg(Pred[j].getReg()); - MadeChange = true; - } else if (MO.isImm()) { - MO.setImm(Pred[j].getImm()); - MadeChange = true; - } else if (MO.isMBB()) { - MO.setMBB(Pred[j].getMBB()); - MadeChange = true; - } - ++j; - } - } - return MadeChange; -} - -bool TargetInstrInfo::hasLoadFromStackSlot( - const MachineInstr &MI, - SmallVectorImpl<const MachineMemOperand *> &Accesses) const { - size_t StartSize = Accesses.size(); - for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), - oe = MI.memoperands_end(); - o != oe; ++o) { - if ((*o)->isLoad() && - dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) - Accesses.push_back(*o); - } - return Accesses.size() != StartSize; -} - -bool TargetInstrInfo::hasStoreToStackSlot( - const MachineInstr &MI, - SmallVectorImpl<const MachineMemOperand *> &Accesses) const { - size_t StartSize = Accesses.size(); - for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), - oe = MI.memoperands_end(); - o != oe; ++o) { - if ((*o)->isStore() && - dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) - Accesses.push_back(*o); - } - return Accesses.size() != StartSize; -} - -bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, - unsigned SubIdx, unsigned &Size, - unsigned &Offset, - const MachineFunction &MF) const { - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - if (!SubIdx) { - Size = TRI->getSpillSize(*RC); - Offset = 0; - return true; - } - unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); - // Convert bit size to byte size. - if (BitSize % 8) - return false; - - int BitOffset = TRI->getSubRegIdxOffset(SubIdx); - if (BitOffset < 0 || BitOffset % 8) - return false; - - Size = BitSize /= 8; - Offset = (unsigned)BitOffset / 8; - - assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); - - if (!MF.getDataLayout().isLittleEndian()) { - Offset = TRI->getSpillSize(*RC) - (Offset + Size); - } - return true; -} - -void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, - MachineBasicBlock::iterator I, - unsigned DestReg, unsigned SubIdx, - const MachineInstr &Orig, - const TargetRegisterInfo &TRI) const { - MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); - MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); - MBB.insert(I, MI); -} - -bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, - const MachineInstr &MI1, - const MachineRegisterInfo *MRI) const { - return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); -} - -MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, - MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { - assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); - MachineFunction &MF = *MBB.getParent(); - return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig); -} - -// If the COPY instruction in MI can be folded to a stack operation, return -// the register class to use. -static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, - unsigned FoldIdx) { - assert(MI.isCopy() && "MI must be a COPY instruction"); - if (MI.getNumOperands() != 2) - return nullptr; - assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); - - const MachineOperand &FoldOp = MI.getOperand(FoldIdx); - const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); - - if (FoldOp.getSubReg() || LiveOp.getSubReg()) - return nullptr; - - unsigned FoldReg = FoldOp.getReg(); - unsigned LiveReg = LiveOp.getReg(); - - assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && - "Cannot fold physregs"); - - const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); - const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); - - if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) - return RC->contains(LiveOp.getReg()) ? RC : nullptr; - - if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) - return RC; - - // FIXME: Allow folding when register classes are memory compatible. - return nullptr; -} - -void TargetInstrInfo::getNoop(MCInst &NopInst) const { - llvm_unreachable("Not implemented"); -} - -static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, - ArrayRef<unsigned> Ops, int FrameIndex, - const TargetInstrInfo &TII) { - unsigned StartIdx = 0; - switch (MI.getOpcode()) { - case TargetOpcode::STACKMAP: { - // StackMapLiveValues are foldable - StartIdx = StackMapOpers(&MI).getVarIdx(); - break; - } - case TargetOpcode::PATCHPOINT: { - // For PatchPoint, the call args are not foldable (even if reported in the - // stackmap e.g. via anyregcc). - StartIdx = PatchPointOpers(&MI).getVarIdx(); - break; - } - case TargetOpcode::STATEPOINT: { - // For statepoints, fold deopt and gc arguments, but not call arguments. - StartIdx = StatepointOpers(&MI).getVarIdx(); - break; - } - default: - llvm_unreachable("unexpected stackmap opcode"); - } - - // Return false if any operands requested for folding are not foldable (not - // part of the stackmap's live values). - for (unsigned Op : Ops) { - if (Op < StartIdx) - return nullptr; - } - - MachineInstr *NewMI = - MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); - MachineInstrBuilder MIB(MF, NewMI); - - // No need to fold return, the meta data, and function arguments - for (unsigned i = 0; i < StartIdx; ++i) - MIB.add(MI.getOperand(i)); - - for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { - MachineOperand &MO = MI.getOperand(i); - if (is_contained(Ops, i)) { - unsigned SpillSize; - unsigned SpillOffset; - // Compute the spill slot size and offset. - const TargetRegisterClass *RC = - MF.getRegInfo().getRegClass(MO.getReg()); - bool Valid = - TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); - if (!Valid) - report_fatal_error("cannot spill patchpoint subregister operand"); - MIB.addImm(StackMaps::IndirectMemRefOp); - MIB.addImm(SpillSize); - MIB.addFrameIndex(FrameIndex); - MIB.addImm(SpillOffset); - } - else - MIB.add(MO); - } - return NewMI; -} - -MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, - ArrayRef<unsigned> Ops, int FI, - LiveIntervals *LIS, - VirtRegMap *VRM) const { - auto Flags = MachineMemOperand::MONone; - for (unsigned OpIdx : Ops) - Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore - : MachineMemOperand::MOLoad; - - MachineBasicBlock *MBB = MI.getParent(); - assert(MBB && "foldMemoryOperand needs an inserted instruction"); - MachineFunction &MF = *MBB->getParent(); - - // If we're not folding a load into a subreg, the size of the load is the - // size of the spill slot. But if we are, we need to figure out what the - // actual load size is. - int64_t MemSize = 0; - const MachineFrameInfo &MFI = MF.getFrameInfo(); - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - - if (Flags & MachineMemOperand::MOStore) { - MemSize = MFI.getObjectSize(FI); - } else { - for (unsigned OpIdx : Ops) { - int64_t OpSize = MFI.getObjectSize(FI); - - if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { - unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); - if (SubRegSize > 0 && !(SubRegSize % 8)) - OpSize = SubRegSize / 8; - } - - MemSize = std::max(MemSize, OpSize); - } - } - - assert(MemSize && "Did not expect a zero-sized stack slot"); - - MachineInstr *NewMI = nullptr; - - if (MI.getOpcode() == TargetOpcode::STACKMAP || - MI.getOpcode() == TargetOpcode::PATCHPOINT || - MI.getOpcode() == TargetOpcode::STATEPOINT) { - // Fold stackmap/patchpoint. - NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); - if (NewMI) - MBB->insert(MI, NewMI); - } else { - // Ask the target to do the actual folding. - NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); - } - - if (NewMI) { - NewMI->setMemRefs(MF, MI.memoperands()); - // Add a memory operand, foldMemoryOperandImpl doesn't do that. - assert((!(Flags & MachineMemOperand::MOStore) || - NewMI->mayStore()) && - "Folded a def to a non-store!"); - assert((!(Flags & MachineMemOperand::MOLoad) || - NewMI->mayLoad()) && - "Folded a use to a non-load!"); - assert(MFI.getObjectOffset(FI) != -1); - MachineMemOperand *MMO = MF.getMachineMemOperand( - MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize, - MFI.getObjectAlignment(FI)); - NewMI->addMemOperand(MF, MMO); - - return NewMI; - } - - // Straight COPY may fold as load/store. - if (!MI.isCopy() || Ops.size() != 1) - return nullptr; - - const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); - if (!RC) - return nullptr; - - const MachineOperand &MO = MI.getOperand(1 - Ops[0]); - MachineBasicBlock::iterator Pos = MI; - - if (Flags == MachineMemOperand::MOStore) - storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); - else - loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); - return &*--Pos; -} - -MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, - ArrayRef<unsigned> Ops, - MachineInstr &LoadMI, - LiveIntervals *LIS) const { - assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); -#ifndef NDEBUG - for (unsigned OpIdx : Ops) - assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); -#endif - - MachineBasicBlock &MBB = *MI.getParent(); - MachineFunction &MF = *MBB.getParent(); - - // Ask the target to do the actual folding. - MachineInstr *NewMI = nullptr; - int FrameIndex = 0; - - if ((MI.getOpcode() == TargetOpcode::STACKMAP || - MI.getOpcode() == TargetOpcode::PATCHPOINT || - MI.getOpcode() == TargetOpcode::STATEPOINT) && - isLoadFromStackSlot(LoadMI, FrameIndex)) { - // Fold stackmap/patchpoint. - NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); - if (NewMI) - NewMI = &*MBB.insert(MI, NewMI); - } else { - // Ask the target to do the actual folding. - NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); - } - - if (!NewMI) - return nullptr; - - // Copy the memoperands from the load to the folded instruction. - if (MI.memoperands_empty()) { - NewMI->setMemRefs(MF, LoadMI.memoperands()); - } else { - // Handle the rare case of folding multiple loads. - NewMI->setMemRefs(MF, MI.memoperands()); - for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), - E = LoadMI.memoperands_end(); - I != E; ++I) { - NewMI->addMemOperand(MF, *I); - } - } - return NewMI; -} - -bool TargetInstrInfo::hasReassociableOperands( - const MachineInstr &Inst, const MachineBasicBlock *MBB) const { - const MachineOperand &Op1 = Inst.getOperand(1); - const MachineOperand &Op2 = Inst.getOperand(2); - const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); - - // We need virtual register definitions for the operands that we will - // reassociate. - MachineInstr *MI1 = nullptr; - MachineInstr *MI2 = nullptr; - if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) - MI1 = MRI.getUniqueVRegDef(Op1.getReg()); - if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) - MI2 = MRI.getUniqueVRegDef(Op2.getReg()); - - // And they need to be in the trace (otherwise, they won't have a depth). - return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; -} - -bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, - bool &Commuted) const { - const MachineBasicBlock *MBB = Inst.getParent(); - const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); - MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); - MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); - unsigned AssocOpcode = Inst.getOpcode(); - - // If only one operand has the same opcode and it's the second source operand, - // the operands must be commuted. - Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; - if (Commuted) - std::swap(MI1, MI2); - - // 1. The previous instruction must be the same type as Inst. - // 2. The previous instruction must have virtual register definitions for its - // operands in the same basic block as Inst. - // 3. The previous instruction's result must only be used by Inst. - return MI1->getOpcode() == AssocOpcode && - hasReassociableOperands(*MI1, MBB) && - MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); -} - -// 1. The operation must be associative and commutative. -// 2. The instruction must have virtual register definitions for its -// operands in the same basic block. -// 3. The instruction must have a reassociable sibling. -bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, - bool &Commuted) const { - return isAssociativeAndCommutative(Inst) && - hasReassociableOperands(Inst, Inst.getParent()) && - hasReassociableSibling(Inst, Commuted); -} - -// The concept of the reassociation pass is that these operations can benefit -// from this kind of transformation: -// -// A = ? op ? -// B = A op X (Prev) -// C = B op Y (Root) -// --> -// A = ? op ? -// B = X op Y -// C = A op B -// -// breaking the dependency between A and B, allowing them to be executed in -// parallel (or back-to-back in a pipeline) instead of depending on each other. - -// FIXME: This has the potential to be expensive (compile time) while not -// improving the code at all. Some ways to limit the overhead: -// 1. Track successful transforms; bail out if hit rate gets too low. -// 2. Only enable at -O3 or some other non-default optimization level. -// 3. Pre-screen pattern candidates here: if an operand of the previous -// instruction is known to not increase the critical path, then don't match -// that pattern. -bool TargetInstrInfo::getMachineCombinerPatterns( - MachineInstr &Root, - SmallVectorImpl<MachineCombinerPattern> &Patterns) const { - bool Commute; - if (isReassociationCandidate(Root, Commute)) { - // We found a sequence of instructions that may be suitable for a - // reassociation of operands to increase ILP. Specify each commutation - // possibility for the Prev instruction in the sequence and let the - // machine combiner decide if changing the operands is worthwhile. - if (Commute) { - Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); - Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); - } else { - Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); - Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); - } - return true; - } - - return false; -} - -/// Return true when a code sequence can improve loop throughput. -bool -TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { - return false; -} - -/// Attempt the reassociation transformation to reduce critical path length. -/// See the above comments before getMachineCombinerPatterns(). -void TargetInstrInfo::reassociateOps( - MachineInstr &Root, MachineInstr &Prev, - MachineCombinerPattern Pattern, - SmallVectorImpl<MachineInstr *> &InsInstrs, - SmallVectorImpl<MachineInstr *> &DelInstrs, - DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { - MachineFunction *MF = Root.getMF(); - MachineRegisterInfo &MRI = MF->getRegInfo(); - const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); - const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); - const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); - - // This array encodes the operand index for each parameter because the - // operands may be commuted. Each row corresponds to a pattern value, - // and each column specifies the index of A, B, X, Y. - unsigned OpIdx[4][4] = { - { 1, 1, 2, 2 }, - { 1, 2, 2, 1 }, - { 2, 1, 1, 2 }, - { 2, 2, 1, 1 } - }; - - int Row; - switch (Pattern) { - case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; - case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; - case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; - case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; - default: llvm_unreachable("unexpected MachineCombinerPattern"); - } - - MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); - MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); - MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); - MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); - MachineOperand &OpC = Root.getOperand(0); - - unsigned RegA = OpA.getReg(); - unsigned RegB = OpB.getReg(); - unsigned RegX = OpX.getReg(); - unsigned RegY = OpY.getReg(); - unsigned RegC = OpC.getReg(); - - if (TargetRegisterInfo::isVirtualRegister(RegA)) - MRI.constrainRegClass(RegA, RC); - if (TargetRegisterInfo::isVirtualRegister(RegB)) - MRI.constrainRegClass(RegB, RC); - if (TargetRegisterInfo::isVirtualRegister(RegX)) - MRI.constrainRegClass(RegX, RC); - if (TargetRegisterInfo::isVirtualRegister(RegY)) - MRI.constrainRegClass(RegY, RC); - if (TargetRegisterInfo::isVirtualRegister(RegC)) - MRI.constrainRegClass(RegC, RC); - - // Create a new virtual register for the result of (X op Y) instead of - // recycling RegB because the MachineCombiner's computation of the critical - // path requires a new register definition rather than an existing one. - unsigned NewVR = MRI.createVirtualRegister(RC); - InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); - - unsigned Opcode = Root.getOpcode(); - bool KillA = OpA.isKill(); - bool KillX = OpX.isKill(); - bool KillY = OpY.isKill(); - - // Create new instructions for insertion. - MachineInstrBuilder MIB1 = - BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) - .addReg(RegX, getKillRegState(KillX)) - .addReg(RegY, getKillRegState(KillY)); - MachineInstrBuilder MIB2 = - BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) - .addReg(RegA, getKillRegState(KillA)) - .addReg(NewVR, getKillRegState(true)); - - setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); - - // Record new instructions for insertion and old instructions for deletion. - InsInstrs.push_back(MIB1); - InsInstrs.push_back(MIB2); - DelInstrs.push_back(&Prev); - DelInstrs.push_back(&Root); -} - -void TargetInstrInfo::genAlternativeCodeSequence( - MachineInstr &Root, MachineCombinerPattern Pattern, - SmallVectorImpl<MachineInstr *> &InsInstrs, - SmallVectorImpl<MachineInstr *> &DelInstrs, - DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { - MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); - - // Select the previous instruction in the sequence based on the input pattern. - MachineInstr *Prev = nullptr; - switch (Pattern) { - case MachineCombinerPattern::REASSOC_AX_BY: - case MachineCombinerPattern::REASSOC_XA_BY: - Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); - break; - case MachineCombinerPattern::REASSOC_AX_YB: - case MachineCombinerPattern::REASSOC_XA_YB: - Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); - break; - default: - break; - } - - assert(Prev && "Unknown pattern for machine combiner"); - - reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); -} - -bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( - const MachineInstr &MI, AliasAnalysis *AA) const { - const MachineFunction &MF = *MI.getMF(); - const MachineRegisterInfo &MRI = MF.getRegInfo(); - - // Remat clients assume operand 0 is the defined register. - if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) - return false; - unsigned DefReg = MI.getOperand(0).getReg(); - - // A sub-register definition can only be rematerialized if the instruction - // doesn't read the other parts of the register. Otherwise it is really a - // read-modify-write operation on the full virtual register which cannot be - // moved safely. - if (TargetRegisterInfo::isVirtualRegister(DefReg) && - MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) - return false; - - // A load from a fixed stack slot can be rematerialized. This may be - // redundant with subsequent checks, but it's target-independent, - // simple, and a common case. - int FrameIdx = 0; - if (isLoadFromStackSlot(MI, FrameIdx) && - MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) - return true; - - // Avoid instructions obviously unsafe for remat. - if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || - MI.hasUnmodeledSideEffects()) - return false; - - // Don't remat inline asm. We have no idea how expensive it is - // even if it's side effect free. - if (MI.isInlineAsm()) - return false; - - // Avoid instructions which load from potentially varying memory. - if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) - return false; - - // If any of the registers accessed are non-constant, conservatively assume - // the instruction is not rematerializable. - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - const MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg()) continue; - unsigned Reg = MO.getReg(); - if (Reg == 0) - continue; - - // Check for a well-behaved physical register. - if (TargetRegisterInfo::isPhysicalRegister(Reg)) { - if (MO.isUse()) { - // If the physreg has no defs anywhere, it's just an ambient register - // and we can freely move its uses. Alternatively, if it's allocatable, - // it could get allocated to something with a def during allocation. - if (!MRI.isConstantPhysReg(Reg)) - return false; - } else { - // A physreg def. We can't remat it. - return false; - } - continue; - } - - // Only allow one virtual-register def. There may be multiple defs of the - // same virtual register, though. - if (MO.isDef() && Reg != DefReg) - return false; - - // Don't allow any virtual-register uses. Rematting an instruction with - // virtual register uses would length the live ranges of the uses, which - // is not necessarily a good idea, certainly not "trivial". - if (MO.isUse()) - return false; - } - - // Everything checked out. - return true; -} - -int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { - const MachineFunction *MF = MI.getMF(); - const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); - bool StackGrowsDown = - TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; - - unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); - unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); - - if (!isFrameInstr(MI)) - return 0; - - int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); - - if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || - (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) - SPAdj = -SPAdj; - - return SPAdj; -} - -/// isSchedulingBoundary - Test if the given instruction should be -/// considered a scheduling boundary. This primarily includes labels -/// and terminators. -bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, - const MachineBasicBlock *MBB, - const MachineFunction &MF) const { - // Terminators and labels can't be scheduled around. - if (MI.isTerminator() || MI.isPosition()) - return true; - - // Don't attempt to schedule around any instruction that defines - // a stack-oriented pointer, as it's unlikely to be profitable. This - // saves compile time, because it doesn't require every single - // stack slot reference to depend on the instruction that does the - // modification. - const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); -} - -// Provide a global flag for disabling the PreRA hazard recognizer that targets -// may choose to honor. -bool TargetInstrInfo::usePreRAHazardRecognizer() const { - return !DisableHazardRecognizer; -} - -// Default implementation of CreateTargetRAHazardRecognizer. -ScheduleHazardRecognizer *TargetInstrInfo:: -CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, - const ScheduleDAG *DAG) const { - // Dummy hazard recognizer allows all instructions to issue. - return new ScheduleHazardRecognizer(); -} - -// Default implementation of CreateTargetMIHazardRecognizer. -ScheduleHazardRecognizer *TargetInstrInfo:: -CreateTargetMIHazardRecognizer(const InstrItineraryData *II, - const ScheduleDAG *DAG) const { - return (ScheduleHazardRecognizer *) - new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); -} - -// Default implementation of CreateTargetPostRAHazardRecognizer. -ScheduleHazardRecognizer *TargetInstrInfo:: -CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, - const ScheduleDAG *DAG) const { - return (ScheduleHazardRecognizer *) - new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); -} - -//===----------------------------------------------------------------------===// -// SelectionDAG latency interface. -//===----------------------------------------------------------------------===// - -int -TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, - SDNode *DefNode, unsigned DefIdx, - SDNode *UseNode, unsigned UseIdx) const { - if (!ItinData || ItinData->isEmpty()) - return -1; - - if (!DefNode->isMachineOpcode()) - return -1; - - unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); - if (!UseNode->isMachineOpcode()) - return ItinData->getOperandCycle(DefClass, DefIdx); - unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); - return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); -} - -int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, - SDNode *N) const { - if (!ItinData || ItinData->isEmpty()) - return 1; - - if (!N->isMachineOpcode()) - return 1; - - return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); -} - -//===----------------------------------------------------------------------===// -// MachineInstr latency interface. -//===----------------------------------------------------------------------===// - -unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, - const MachineInstr &MI) const { - if (!ItinData || ItinData->isEmpty()) - return 1; - - unsigned Class = MI.getDesc().getSchedClass(); - int UOps = ItinData->Itineraries[Class].NumMicroOps; - if (UOps >= 0) - return UOps; - - // The # of u-ops is dynamically determined. The specific target should - // override this function to return the right number. - return 1; -} - -/// Return the default expected latency for a def based on it's opcode. -unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, - const MachineInstr &DefMI) const { - if (DefMI.isTransient()) - return 0; - if (DefMI.mayLoad()) - return SchedModel.LoadLatency; - if (isHighLatencyDef(DefMI.getOpcode())) - return SchedModel.HighLatency; - return 1; -} - -unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { - return 0; -} - -unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, - const MachineInstr &MI, - unsigned *PredCost) const { - // Default to one cycle for no itinerary. However, an "empty" itinerary may - // still have a MinLatency property, which getStageLatency checks. - if (!ItinData) - return MI.mayLoad() ? 2 : 1; - - return ItinData->getStageLatency(MI.getDesc().getSchedClass()); -} - -bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, - const MachineInstr &DefMI, - unsigned DefIdx) const { - const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); - if (!ItinData || ItinData->isEmpty()) - return false; - - unsigned DefClass = DefMI.getDesc().getSchedClass(); - int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); - return (DefCycle != -1 && DefCycle <= 1); -} - -/// Both DefMI and UseMI must be valid. By default, call directly to the -/// itinerary. This may be overriden by the target. -int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, - const MachineInstr &DefMI, - unsigned DefIdx, - const MachineInstr &UseMI, - unsigned UseIdx) const { - unsigned DefClass = DefMI.getDesc().getSchedClass(); - unsigned UseClass = UseMI.getDesc().getSchedClass(); - return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); -} - -/// If we can determine the operand latency from the def only, without itinerary -/// lookup, do so. Otherwise return -1. -int TargetInstrInfo::computeDefOperandLatency( - const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { - - // Let the target hook getInstrLatency handle missing itineraries. - if (!ItinData) - return getInstrLatency(ItinData, DefMI); - - if(ItinData->isEmpty()) - return defaultDefLatency(ItinData->SchedModel, DefMI); - - // ...operand lookup required - return -1; -} - -bool TargetInstrInfo::getRegSequenceInputs( - const MachineInstr &MI, unsigned DefIdx, - SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { - assert((MI.isRegSequence() || - MI.isRegSequenceLike()) && "Instruction do not have the proper type"); - - if (!MI.isRegSequence()) - return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); - - // We are looking at: - // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... - assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); - for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; - OpIdx += 2) { - const MachineOperand &MOReg = MI.getOperand(OpIdx); - if (MOReg.isUndef()) - continue; - const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); - assert(MOSubIdx.isImm() && - "One of the subindex of the reg_sequence is not an immediate"); - // Record Reg:SubReg, SubIdx. - InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), - (unsigned)MOSubIdx.getImm())); - } - return true; -} - -bool TargetInstrInfo::getExtractSubregInputs( - const MachineInstr &MI, unsigned DefIdx, - RegSubRegPairAndIdx &InputReg) const { - assert((MI.isExtractSubreg() || - MI.isExtractSubregLike()) && "Instruction do not have the proper type"); - - if (!MI.isExtractSubreg()) - return getExtractSubregLikeInputs(MI, DefIdx, InputReg); - - // We are looking at: - // Def = EXTRACT_SUBREG v0.sub1, sub0. - assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); - const MachineOperand &MOReg = MI.getOperand(1); - if (MOReg.isUndef()) - return false; - const MachineOperand &MOSubIdx = MI.getOperand(2); - assert(MOSubIdx.isImm() && - "The subindex of the extract_subreg is not an immediate"); - - InputReg.Reg = MOReg.getReg(); - InputReg.SubReg = MOReg.getSubReg(); - InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); - return true; -} - -bool TargetInstrInfo::getInsertSubregInputs( - const MachineInstr &MI, unsigned DefIdx, - RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { - assert((MI.isInsertSubreg() || - MI.isInsertSubregLike()) && "Instruction do not have the proper type"); - - if (!MI.isInsertSubreg()) - return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); - - // We are looking at: - // Def = INSERT_SEQUENCE v0, v1, sub0. - assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); - const MachineOperand &MOBaseReg = MI.getOperand(1); - const MachineOperand &MOInsertedReg = MI.getOperand(2); - if (MOInsertedReg.isUndef()) - return false; - const MachineOperand &MOSubIdx = MI.getOperand(3); - assert(MOSubIdx.isImm() && - "One of the subindex of the reg_sequence is not an immediate"); - BaseReg.Reg = MOBaseReg.getReg(); - BaseReg.SubReg = MOBaseReg.getSubReg(); - - InsertedReg.Reg = MOInsertedReg.getReg(); - InsertedReg.SubReg = MOInsertedReg.getSubReg(); - InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); - return true; -} |
