diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp | 1962 |
1 files changed, 0 insertions, 1962 deletions
diff --git a/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp b/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp deleted file mode 100644 index 9b28c1a6c450..000000000000 --- a/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp +++ /dev/null @@ -1,1962 +0,0 @@ -//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This implements the TargetLoweringBase class. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/ADT/Twine.h" -#include "llvm/CodeGen/Analysis.h" -#include "llvm/CodeGen/ISDOpcodes.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineMemOperand.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/RuntimeLibcalls.h" -#include "llvm/CodeGen/StackMaps.h" -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/CodeGen/TargetOpcodes.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/ValueTypes.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MachineValueType.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Target/TargetMachine.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <cstring> -#include <iterator> -#include <string> -#include <tuple> -#include <utility> - -using namespace llvm; - -static cl::opt<bool> JumpIsExpensiveOverride( - "jump-is-expensive", cl::init(false), - cl::desc("Do not create extra branches to split comparison logic."), - cl::Hidden); - -static cl::opt<unsigned> MinimumJumpTableEntries - ("min-jump-table-entries", cl::init(4), cl::Hidden, - cl::desc("Set minimum number of entries to use a jump table.")); - -static cl::opt<unsigned> MaximumJumpTableSize - ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, - cl::desc("Set maximum size of jump tables.")); - -/// Minimum jump table density for normal functions. -static cl::opt<unsigned> - JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, - cl::desc("Minimum density for building a jump table in " - "a normal function")); - -/// Minimum jump table density for -Os or -Oz functions. -static cl::opt<unsigned> OptsizeJumpTableDensity( - "optsize-jump-table-density", cl::init(40), cl::Hidden, - cl::desc("Minimum density for building a jump table in " - "an optsize function")); - -static bool darwinHasSinCos(const Triple &TT) { - assert(TT.isOSDarwin() && "should be called with darwin triple"); - // Don't bother with 32 bit x86. - if (TT.getArch() == Triple::x86) - return false; - // Macos < 10.9 has no sincos_stret. - if (TT.isMacOSX()) - return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); - // iOS < 7.0 has no sincos_stret. - if (TT.isiOS()) - return !TT.isOSVersionLT(7, 0); - // Any other darwin such as WatchOS/TvOS is new enough. - return true; -} - -// Although this default value is arbitrary, it is not random. It is assumed -// that a condition that evaluates the same way by a higher percentage than this -// is best represented as control flow. Therefore, the default value N should be -// set such that the win from N% correct executions is greater than the loss -// from (100 - N)% mispredicted executions for the majority of intended targets. -static cl::opt<int> MinPercentageForPredictableBranch( - "min-predictable-branch", cl::init(99), - cl::desc("Minimum percentage (0-100) that a condition must be either true " - "or false to assume that the condition is predictable"), - cl::Hidden); - -void TargetLoweringBase::InitLibcalls(const Triple &TT) { -#define HANDLE_LIBCALL(code, name) \ - setLibcallName(RTLIB::code, name); -#include "llvm/IR/RuntimeLibcalls.def" -#undef HANDLE_LIBCALL - // Initialize calling conventions to their default. - for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) - setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); - - // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". - if (TT.getArch() == Triple::ppc || TT.isPPC64()) { - setLibcallName(RTLIB::ADD_F128, "__addkf3"); - setLibcallName(RTLIB::SUB_F128, "__subkf3"); - setLibcallName(RTLIB::MUL_F128, "__mulkf3"); - setLibcallName(RTLIB::DIV_F128, "__divkf3"); - setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); - setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); - setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); - setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); - setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); - setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); - setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); - setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); - setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); - setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); - setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); - setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); - setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); - setLibcallName(RTLIB::UNE_F128, "__nekf2"); - setLibcallName(RTLIB::OGE_F128, "__gekf2"); - setLibcallName(RTLIB::OLT_F128, "__ltkf2"); - setLibcallName(RTLIB::OLE_F128, "__lekf2"); - setLibcallName(RTLIB::OGT_F128, "__gtkf2"); - setLibcallName(RTLIB::UO_F128, "__unordkf2"); - setLibcallName(RTLIB::O_F128, "__unordkf2"); - } - - // A few names are different on particular architectures or environments. - if (TT.isOSDarwin()) { - // For f16/f32 conversions, Darwin uses the standard naming scheme, instead - // of the gnueabi-style __gnu_*_ieee. - // FIXME: What about other targets? - setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); - setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); - - // Some darwins have an optimized __bzero/bzero function. - switch (TT.getArch()) { - case Triple::x86: - case Triple::x86_64: - if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) - setLibcallName(RTLIB::BZERO, "__bzero"); - break; - case Triple::aarch64: - setLibcallName(RTLIB::BZERO, "bzero"); - break; - default: - break; - } - - if (darwinHasSinCos(TT)) { - setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); - setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); - if (TT.isWatchABI()) { - setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, - CallingConv::ARM_AAPCS_VFP); - setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, - CallingConv::ARM_AAPCS_VFP); - } - } - } else { - setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); - setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); - } - - if (TT.isGNUEnvironment() || TT.isOSFuchsia() || - (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { - setLibcallName(RTLIB::SINCOS_F32, "sincosf"); - setLibcallName(RTLIB::SINCOS_F64, "sincos"); - setLibcallName(RTLIB::SINCOS_F80, "sincosl"); - setLibcallName(RTLIB::SINCOS_F128, "sincosl"); - setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); - } - - if (TT.isOSOpenBSD()) { - setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); - } -} - -/// getFPEXT - Return the FPEXT_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::f16) { - if (RetVT == MVT::f32) - return FPEXT_F16_F32; - } else if (OpVT == MVT::f32) { - if (RetVT == MVT::f64) - return FPEXT_F32_F64; - if (RetVT == MVT::f128) - return FPEXT_F32_F128; - if (RetVT == MVT::ppcf128) - return FPEXT_F32_PPCF128; - } else if (OpVT == MVT::f64) { - if (RetVT == MVT::f128) - return FPEXT_F64_F128; - else if (RetVT == MVT::ppcf128) - return FPEXT_F64_PPCF128; - } else if (OpVT == MVT::f80) { - if (RetVT == MVT::f128) - return FPEXT_F80_F128; - } - - return UNKNOWN_LIBCALL; -} - -/// getFPROUND - Return the FPROUND_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { - if (RetVT == MVT::f16) { - if (OpVT == MVT::f32) - return FPROUND_F32_F16; - if (OpVT == MVT::f64) - return FPROUND_F64_F16; - if (OpVT == MVT::f80) - return FPROUND_F80_F16; - if (OpVT == MVT::f128) - return FPROUND_F128_F16; - if (OpVT == MVT::ppcf128) - return FPROUND_PPCF128_F16; - } else if (RetVT == MVT::f32) { - if (OpVT == MVT::f64) - return FPROUND_F64_F32; - if (OpVT == MVT::f80) - return FPROUND_F80_F32; - if (OpVT == MVT::f128) - return FPROUND_F128_F32; - if (OpVT == MVT::ppcf128) - return FPROUND_PPCF128_F32; - } else if (RetVT == MVT::f64) { - if (OpVT == MVT::f80) - return FPROUND_F80_F64; - if (OpVT == MVT::f128) - return FPROUND_F128_F64; - if (OpVT == MVT::ppcf128) - return FPROUND_PPCF128_F64; - } else if (RetVT == MVT::f80) { - if (OpVT == MVT::f128) - return FPROUND_F128_F80; - } - - return UNKNOWN_LIBCALL; -} - -/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::f32) { - if (RetVT == MVT::i32) - return FPTOSINT_F32_I32; - if (RetVT == MVT::i64) - return FPTOSINT_F32_I64; - if (RetVT == MVT::i128) - return FPTOSINT_F32_I128; - } else if (OpVT == MVT::f64) { - if (RetVT == MVT::i32) - return FPTOSINT_F64_I32; - if (RetVT == MVT::i64) - return FPTOSINT_F64_I64; - if (RetVT == MVT::i128) - return FPTOSINT_F64_I128; - } else if (OpVT == MVT::f80) { - if (RetVT == MVT::i32) - return FPTOSINT_F80_I32; - if (RetVT == MVT::i64) - return FPTOSINT_F80_I64; - if (RetVT == MVT::i128) - return FPTOSINT_F80_I128; - } else if (OpVT == MVT::f128) { - if (RetVT == MVT::i32) - return FPTOSINT_F128_I32; - if (RetVT == MVT::i64) - return FPTOSINT_F128_I64; - if (RetVT == MVT::i128) - return FPTOSINT_F128_I128; - } else if (OpVT == MVT::ppcf128) { - if (RetVT == MVT::i32) - return FPTOSINT_PPCF128_I32; - if (RetVT == MVT::i64) - return FPTOSINT_PPCF128_I64; - if (RetVT == MVT::i128) - return FPTOSINT_PPCF128_I128; - } - return UNKNOWN_LIBCALL; -} - -/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::f32) { - if (RetVT == MVT::i32) - return FPTOUINT_F32_I32; - if (RetVT == MVT::i64) - return FPTOUINT_F32_I64; - if (RetVT == MVT::i128) - return FPTOUINT_F32_I128; - } else if (OpVT == MVT::f64) { - if (RetVT == MVT::i32) - return FPTOUINT_F64_I32; - if (RetVT == MVT::i64) - return FPTOUINT_F64_I64; - if (RetVT == MVT::i128) - return FPTOUINT_F64_I128; - } else if (OpVT == MVT::f80) { - if (RetVT == MVT::i32) - return FPTOUINT_F80_I32; - if (RetVT == MVT::i64) - return FPTOUINT_F80_I64; - if (RetVT == MVT::i128) - return FPTOUINT_F80_I128; - } else if (OpVT == MVT::f128) { - if (RetVT == MVT::i32) - return FPTOUINT_F128_I32; - if (RetVT == MVT::i64) - return FPTOUINT_F128_I64; - if (RetVT == MVT::i128) - return FPTOUINT_F128_I128; - } else if (OpVT == MVT::ppcf128) { - if (RetVT == MVT::i32) - return FPTOUINT_PPCF128_I32; - if (RetVT == MVT::i64) - return FPTOUINT_PPCF128_I64; - if (RetVT == MVT::i128) - return FPTOUINT_PPCF128_I128; - } - return UNKNOWN_LIBCALL; -} - -/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::i32) { - if (RetVT == MVT::f32) - return SINTTOFP_I32_F32; - if (RetVT == MVT::f64) - return SINTTOFP_I32_F64; - if (RetVT == MVT::f80) - return SINTTOFP_I32_F80; - if (RetVT == MVT::f128) - return SINTTOFP_I32_F128; - if (RetVT == MVT::ppcf128) - return SINTTOFP_I32_PPCF128; - } else if (OpVT == MVT::i64) { - if (RetVT == MVT::f32) - return SINTTOFP_I64_F32; - if (RetVT == MVT::f64) - return SINTTOFP_I64_F64; - if (RetVT == MVT::f80) - return SINTTOFP_I64_F80; - if (RetVT == MVT::f128) - return SINTTOFP_I64_F128; - if (RetVT == MVT::ppcf128) - return SINTTOFP_I64_PPCF128; - } else if (OpVT == MVT::i128) { - if (RetVT == MVT::f32) - return SINTTOFP_I128_F32; - if (RetVT == MVT::f64) - return SINTTOFP_I128_F64; - if (RetVT == MVT::f80) - return SINTTOFP_I128_F80; - if (RetVT == MVT::f128) - return SINTTOFP_I128_F128; - if (RetVT == MVT::ppcf128) - return SINTTOFP_I128_PPCF128; - } - return UNKNOWN_LIBCALL; -} - -/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or -/// UNKNOWN_LIBCALL if there is none. -RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { - if (OpVT == MVT::i32) { - if (RetVT == MVT::f32) - return UINTTOFP_I32_F32; - if (RetVT == MVT::f64) - return UINTTOFP_I32_F64; - if (RetVT == MVT::f80) - return UINTTOFP_I32_F80; - if (RetVT == MVT::f128) - return UINTTOFP_I32_F128; - if (RetVT == MVT::ppcf128) - return UINTTOFP_I32_PPCF128; - } else if (OpVT == MVT::i64) { - if (RetVT == MVT::f32) - return UINTTOFP_I64_F32; - if (RetVT == MVT::f64) - return UINTTOFP_I64_F64; - if (RetVT == MVT::f80) - return UINTTOFP_I64_F80; - if (RetVT == MVT::f128) - return UINTTOFP_I64_F128; - if (RetVT == MVT::ppcf128) - return UINTTOFP_I64_PPCF128; - } else if (OpVT == MVT::i128) { - if (RetVT == MVT::f32) - return UINTTOFP_I128_F32; - if (RetVT == MVT::f64) - return UINTTOFP_I128_F64; - if (RetVT == MVT::f80) - return UINTTOFP_I128_F80; - if (RetVT == MVT::f128) - return UINTTOFP_I128_F128; - if (RetVT == MVT::ppcf128) - return UINTTOFP_I128_PPCF128; - } - return UNKNOWN_LIBCALL; -} - -RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { -#define OP_TO_LIBCALL(Name, Enum) \ - case Name: \ - switch (VT.SimpleTy) { \ - default: \ - return UNKNOWN_LIBCALL; \ - case MVT::i8: \ - return Enum##_1; \ - case MVT::i16: \ - return Enum##_2; \ - case MVT::i32: \ - return Enum##_4; \ - case MVT::i64: \ - return Enum##_8; \ - case MVT::i128: \ - return Enum##_16; \ - } - - switch (Opc) { - OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) - OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) - OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) - } - -#undef OP_TO_LIBCALL - - return UNKNOWN_LIBCALL; -} - -RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { - switch (ElementSize) { - case 1: - return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; - case 2: - return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; - case 4: - return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; - case 8: - return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; - case 16: - return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; - default: - return UNKNOWN_LIBCALL; - } -} - -RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { - switch (ElementSize) { - case 1: - return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; - case 2: - return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; - case 4: - return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; - case 8: - return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; - case 16: - return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; - default: - return UNKNOWN_LIBCALL; - } -} - -RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { - switch (ElementSize) { - case 1: - return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; - case 2: - return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; - case 4: - return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; - case 8: - return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; - case 16: - return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; - default: - return UNKNOWN_LIBCALL; - } -} - -/// InitCmpLibcallCCs - Set default comparison libcall CC. -static void InitCmpLibcallCCs(ISD::CondCode *CCs) { - memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); - CCs[RTLIB::OEQ_F32] = ISD::SETEQ; - CCs[RTLIB::OEQ_F64] = ISD::SETEQ; - CCs[RTLIB::OEQ_F128] = ISD::SETEQ; - CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; - CCs[RTLIB::UNE_F32] = ISD::SETNE; - CCs[RTLIB::UNE_F64] = ISD::SETNE; - CCs[RTLIB::UNE_F128] = ISD::SETNE; - CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; - CCs[RTLIB::OGE_F32] = ISD::SETGE; - CCs[RTLIB::OGE_F64] = ISD::SETGE; - CCs[RTLIB::OGE_F128] = ISD::SETGE; - CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; - CCs[RTLIB::OLT_F32] = ISD::SETLT; - CCs[RTLIB::OLT_F64] = ISD::SETLT; - CCs[RTLIB::OLT_F128] = ISD::SETLT; - CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; - CCs[RTLIB::OLE_F32] = ISD::SETLE; - CCs[RTLIB::OLE_F64] = ISD::SETLE; - CCs[RTLIB::OLE_F128] = ISD::SETLE; - CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; - CCs[RTLIB::OGT_F32] = ISD::SETGT; - CCs[RTLIB::OGT_F64] = ISD::SETGT; - CCs[RTLIB::OGT_F128] = ISD::SETGT; - CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; - CCs[RTLIB::UO_F32] = ISD::SETNE; - CCs[RTLIB::UO_F64] = ISD::SETNE; - CCs[RTLIB::UO_F128] = ISD::SETNE; - CCs[RTLIB::UO_PPCF128] = ISD::SETNE; - CCs[RTLIB::O_F32] = ISD::SETEQ; - CCs[RTLIB::O_F64] = ISD::SETEQ; - CCs[RTLIB::O_F128] = ISD::SETEQ; - CCs[RTLIB::O_PPCF128] = ISD::SETEQ; -} - -/// NOTE: The TargetMachine owns TLOF. -TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { - initActions(); - - // Perform these initializations only once. - MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = - MaxLoadsPerMemcmp = 8; - MaxGluedStoresPerMemcpy = 0; - MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = - MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; - UseUnderscoreSetJmp = false; - UseUnderscoreLongJmp = false; - HasMultipleConditionRegisters = false; - HasExtractBitsInsn = false; - JumpIsExpensive = JumpIsExpensiveOverride; - PredictableSelectIsExpensive = false; - EnableExtLdPromotion = false; - StackPointerRegisterToSaveRestore = 0; - BooleanContents = UndefinedBooleanContent; - BooleanFloatContents = UndefinedBooleanContent; - BooleanVectorContents = UndefinedBooleanContent; - SchedPreferenceInfo = Sched::ILP; - JumpBufSize = 0; - JumpBufAlignment = 0; - MinFunctionAlignment = 0; - PrefFunctionAlignment = 0; - PrefLoopAlignment = 0; - GatherAllAliasesMaxDepth = 18; - MinStackArgumentAlignment = 1; - // TODO: the default will be switched to 0 in the next commit, along - // with the Target-specific changes necessary. - MaxAtomicSizeInBitsSupported = 1024; - - MinCmpXchgSizeInBits = 0; - SupportsUnalignedAtomics = false; - - std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); - - InitLibcalls(TM.getTargetTriple()); - InitCmpLibcallCCs(CmpLibcallCCs); -} - -void TargetLoweringBase::initActions() { - // All operations default to being supported. - memset(OpActions, 0, sizeof(OpActions)); - memset(LoadExtActions, 0, sizeof(LoadExtActions)); - memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); - memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); - memset(CondCodeActions, 0, sizeof(CondCodeActions)); - std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); - std::fill(std::begin(TargetDAGCombineArray), - std::end(TargetDAGCombineArray), 0); - - for (MVT VT : MVT::fp_valuetypes()) { - MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); - if (IntVT.isValid()) { - setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); - AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); - } - } - - // Set default actions for various operations. - for (MVT VT : MVT::all_valuetypes()) { - // Default all indexed load / store to expand. - for (unsigned IM = (unsigned)ISD::PRE_INC; - IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { - setIndexedLoadAction(IM, VT, Expand); - setIndexedStoreAction(IM, VT, Expand); - } - - // Most backends expect to see the node which just returns the value loaded. - setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); - - // These operations default to expand. - setOperationAction(ISD::FGETSIGN, VT, Expand); - setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); - setOperationAction(ISD::FMINNUM, VT, Expand); - setOperationAction(ISD::FMAXNUM, VT, Expand); - setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); - setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); - setOperationAction(ISD::FMINIMUM, VT, Expand); - setOperationAction(ISD::FMAXIMUM, VT, Expand); - setOperationAction(ISD::FMAD, VT, Expand); - setOperationAction(ISD::SMIN, VT, Expand); - setOperationAction(ISD::SMAX, VT, Expand); - setOperationAction(ISD::UMIN, VT, Expand); - setOperationAction(ISD::UMAX, VT, Expand); - setOperationAction(ISD::ABS, VT, Expand); - setOperationAction(ISD::FSHL, VT, Expand); - setOperationAction(ISD::FSHR, VT, Expand); - setOperationAction(ISD::SADDSAT, VT, Expand); - setOperationAction(ISD::UADDSAT, VT, Expand); - setOperationAction(ISD::SSUBSAT, VT, Expand); - setOperationAction(ISD::USUBSAT, VT, Expand); - setOperationAction(ISD::SMULFIX, VT, Expand); - setOperationAction(ISD::SMULFIXSAT, VT, Expand); - setOperationAction(ISD::UMULFIX, VT, Expand); - - // Overflow operations default to expand - setOperationAction(ISD::SADDO, VT, Expand); - setOperationAction(ISD::SSUBO, VT, Expand); - setOperationAction(ISD::UADDO, VT, Expand); - setOperationAction(ISD::USUBO, VT, Expand); - setOperationAction(ISD::SMULO, VT, Expand); - setOperationAction(ISD::UMULO, VT, Expand); - - // ADDCARRY operations default to expand - setOperationAction(ISD::ADDCARRY, VT, Expand); - setOperationAction(ISD::SUBCARRY, VT, Expand); - setOperationAction(ISD::SETCCCARRY, VT, Expand); - - // ADDC/ADDE/SUBC/SUBE default to expand. - setOperationAction(ISD::ADDC, VT, Expand); - setOperationAction(ISD::ADDE, VT, Expand); - setOperationAction(ISD::SUBC, VT, Expand); - setOperationAction(ISD::SUBE, VT, Expand); - - // These default to Expand so they will be expanded to CTLZ/CTTZ by default. - setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); - setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); - - setOperationAction(ISD::BITREVERSE, VT, Expand); - - // These library functions default to expand. - setOperationAction(ISD::FROUND, VT, Expand); - setOperationAction(ISD::FPOWI, VT, Expand); - - // These operations default to expand for vector types. - if (VT.isVector()) { - setOperationAction(ISD::FCOPYSIGN, VT, Expand); - setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); - setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); - setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); - } - - // Constrained floating-point operations default to expand. - setOperationAction(ISD::STRICT_FADD, VT, Expand); - setOperationAction(ISD::STRICT_FSUB, VT, Expand); - setOperationAction(ISD::STRICT_FMUL, VT, Expand); - setOperationAction(ISD::STRICT_FDIV, VT, Expand); - setOperationAction(ISD::STRICT_FREM, VT, Expand); - setOperationAction(ISD::STRICT_FMA, VT, Expand); - setOperationAction(ISD::STRICT_FSQRT, VT, Expand); - setOperationAction(ISD::STRICT_FPOW, VT, Expand); - setOperationAction(ISD::STRICT_FPOWI, VT, Expand); - setOperationAction(ISD::STRICT_FSIN, VT, Expand); - setOperationAction(ISD::STRICT_FCOS, VT, Expand); - setOperationAction(ISD::STRICT_FEXP, VT, Expand); - setOperationAction(ISD::STRICT_FEXP2, VT, Expand); - setOperationAction(ISD::STRICT_FLOG, VT, Expand); - setOperationAction(ISD::STRICT_FLOG10, VT, Expand); - setOperationAction(ISD::STRICT_FLOG2, VT, Expand); - setOperationAction(ISD::STRICT_FRINT, VT, Expand); - setOperationAction(ISD::STRICT_FNEARBYINT, VT, Expand); - setOperationAction(ISD::STRICT_FCEIL, VT, Expand); - setOperationAction(ISD::STRICT_FFLOOR, VT, Expand); - setOperationAction(ISD::STRICT_FROUND, VT, Expand); - setOperationAction(ISD::STRICT_FTRUNC, VT, Expand); - setOperationAction(ISD::STRICT_FMAXNUM, VT, Expand); - setOperationAction(ISD::STRICT_FMINNUM, VT, Expand); - setOperationAction(ISD::STRICT_FP_ROUND, VT, Expand); - setOperationAction(ISD::STRICT_FP_EXTEND, VT, Expand); - - // For most targets @llvm.get.dynamic.area.offset just returns 0. - setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); - - // Vector reduction default to expand. - setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); - setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); - setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); - setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); - setOperationAction(ISD::VECREDUCE_AND, VT, Expand); - setOperationAction(ISD::VECREDUCE_OR, VT, Expand); - setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); - setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); - setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); - setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); - setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); - setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); - setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); - } - - // Most targets ignore the @llvm.prefetch intrinsic. - setOperationAction(ISD::PREFETCH, MVT::Other, Expand); - - // Most targets also ignore the @llvm.readcyclecounter intrinsic. - setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); - - // ConstantFP nodes default to expand. Targets can either change this to - // Legal, in which case all fp constants are legal, or use isFPImmLegal() - // to optimize expansions for certain constants. - setOperationAction(ISD::ConstantFP, MVT::f16, Expand); - setOperationAction(ISD::ConstantFP, MVT::f32, Expand); - setOperationAction(ISD::ConstantFP, MVT::f64, Expand); - setOperationAction(ISD::ConstantFP, MVT::f80, Expand); - setOperationAction(ISD::ConstantFP, MVT::f128, Expand); - - // These library functions default to expand. - for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { - setOperationAction(ISD::FCBRT, VT, Expand); - setOperationAction(ISD::FLOG , VT, Expand); - setOperationAction(ISD::FLOG2, VT, Expand); - setOperationAction(ISD::FLOG10, VT, Expand); - setOperationAction(ISD::FEXP , VT, Expand); - setOperationAction(ISD::FEXP2, VT, Expand); - setOperationAction(ISD::FFLOOR, VT, Expand); - setOperationAction(ISD::FNEARBYINT, VT, Expand); - setOperationAction(ISD::FCEIL, VT, Expand); - setOperationAction(ISD::FRINT, VT, Expand); - setOperationAction(ISD::FTRUNC, VT, Expand); - setOperationAction(ISD::FROUND, VT, Expand); - setOperationAction(ISD::LROUND, VT, Expand); - setOperationAction(ISD::LLROUND, VT, Expand); - setOperationAction(ISD::LRINT, VT, Expand); - setOperationAction(ISD::LLRINT, VT, Expand); - } - - // Default ISD::TRAP to expand (which turns it into abort). - setOperationAction(ISD::TRAP, MVT::Other, Expand); - - // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" - // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. - setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); -} - -MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, - EVT) const { - return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); -} - -EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, - bool LegalTypes) const { - assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); - if (LHSTy.isVector()) - return LHSTy; - return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) - : getPointerTy(DL); -} - -bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { - assert(isTypeLegal(VT)); - switch (Op) { - default: - return false; - case ISD::SDIV: - case ISD::UDIV: - case ISD::SREM: - case ISD::UREM: - return true; - } -} - -void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { - // If the command-line option was specified, ignore this request. - if (!JumpIsExpensiveOverride.getNumOccurrences()) - JumpIsExpensive = isExpensive; -} - -TargetLoweringBase::LegalizeKind -TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { - // If this is a simple type, use the ComputeRegisterProp mechanism. - if (VT.isSimple()) { - MVT SVT = VT.getSimpleVT(); - assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); - MVT NVT = TransformToType[SVT.SimpleTy]; - LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); - - assert((LA == TypeLegal || LA == TypeSoftenFloat || - ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && - "Promote may not follow Expand or Promote"); - - if (LA == TypeSplitVector) - return LegalizeKind(LA, - EVT::getVectorVT(Context, SVT.getVectorElementType(), - SVT.getVectorNumElements() / 2)); - if (LA == TypeScalarizeVector) - return LegalizeKind(LA, SVT.getVectorElementType()); - return LegalizeKind(LA, NVT); - } - - // Handle Extended Scalar Types. - if (!VT.isVector()) { - assert(VT.isInteger() && "Float types must be simple"); - unsigned BitSize = VT.getSizeInBits(); - // First promote to a power-of-two size, then expand if necessary. - if (BitSize < 8 || !isPowerOf2_32(BitSize)) { - EVT NVT = VT.getRoundIntegerType(Context); - assert(NVT != VT && "Unable to round integer VT"); - LegalizeKind NextStep = getTypeConversion(Context, NVT); - // Avoid multi-step promotion. - if (NextStep.first == TypePromoteInteger) - return NextStep; - // Return rounded integer type. - return LegalizeKind(TypePromoteInteger, NVT); - } - - return LegalizeKind(TypeExpandInteger, - EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); - } - - // Handle vector types. - unsigned NumElts = VT.getVectorNumElements(); - EVT EltVT = VT.getVectorElementType(); - - // Vectors with only one element are always scalarized. - if (NumElts == 1) - return LegalizeKind(TypeScalarizeVector, EltVT); - - // Try to widen vector elements until the element type is a power of two and - // promote it to a legal type later on, for example: - // <3 x i8> -> <4 x i8> -> <4 x i32> - if (EltVT.isInteger()) { - // Vectors with a number of elements that is not a power of two are always - // widened, for example <3 x i8> -> <4 x i8>. - if (!VT.isPow2VectorType()) { - NumElts = (unsigned)NextPowerOf2(NumElts); - EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); - return LegalizeKind(TypeWidenVector, NVT); - } - - // Examine the element type. - LegalizeKind LK = getTypeConversion(Context, EltVT); - - // If type is to be expanded, split the vector. - // <4 x i140> -> <2 x i140> - if (LK.first == TypeExpandInteger) - return LegalizeKind(TypeSplitVector, - EVT::getVectorVT(Context, EltVT, NumElts / 2)); - - // Promote the integer element types until a legal vector type is found - // or until the element integer type is too big. If a legal type was not - // found, fallback to the usual mechanism of widening/splitting the - // vector. - EVT OldEltVT = EltVT; - while (true) { - // Increase the bitwidth of the element to the next pow-of-two - // (which is greater than 8 bits). - EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) - .getRoundIntegerType(Context); - - // Stop trying when getting a non-simple element type. - // Note that vector elements may be greater than legal vector element - // types. Example: X86 XMM registers hold 64bit element on 32bit - // systems. - if (!EltVT.isSimple()) - break; - - // Build a new vector type and check if it is legal. - MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); - // Found a legal promoted vector type. - if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) - return LegalizeKind(TypePromoteInteger, - EVT::getVectorVT(Context, EltVT, NumElts)); - } - - // Reset the type to the unexpanded type if we did not find a legal vector - // type with a promoted vector element type. - EltVT = OldEltVT; - } - - // Try to widen the vector until a legal type is found. - // If there is no wider legal type, split the vector. - while (true) { - // Round up to the next power of 2. - NumElts = (unsigned)NextPowerOf2(NumElts); - - // If there is no simple vector type with this many elements then there - // cannot be a larger legal vector type. Note that this assumes that - // there are no skipped intermediate vector types in the simple types. - if (!EltVT.isSimple()) - break; - MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); - if (LargerVector == MVT()) - break; - - // If this type is legal then widen the vector. - if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) - return LegalizeKind(TypeWidenVector, LargerVector); - } - - // Widen odd vectors to next power of two. - if (!VT.isPow2VectorType()) { - EVT NVT = VT.getPow2VectorType(Context); - return LegalizeKind(TypeWidenVector, NVT); - } - - // Vectors with illegal element types are expanded. - EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); - return LegalizeKind(TypeSplitVector, NVT); -} - -static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, - unsigned &NumIntermediates, - MVT &RegisterVT, - TargetLoweringBase *TLI) { - // Figure out the right, legal destination reg to copy into. - unsigned NumElts = VT.getVectorNumElements(); - MVT EltTy = VT.getVectorElementType(); - - unsigned NumVectorRegs = 1; - - // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we - // could break down into LHS/RHS like LegalizeDAG does. - if (!isPowerOf2_32(NumElts)) { - NumVectorRegs = NumElts; - NumElts = 1; - } - - // Divide the input until we get to a supported size. This will always - // end with a scalar if the target doesn't support vectors. - while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { - NumElts >>= 1; - NumVectorRegs <<= 1; - } - - NumIntermediates = NumVectorRegs; - - MVT NewVT = MVT::getVectorVT(EltTy, NumElts); - if (!TLI->isTypeLegal(NewVT)) - NewVT = EltTy; - IntermediateVT = NewVT; - - unsigned NewVTSize = NewVT.getSizeInBits(); - - // Convert sizes such as i33 to i64. - if (!isPowerOf2_32(NewVTSize)) - NewVTSize = NextPowerOf2(NewVTSize); - - MVT DestVT = TLI->getRegisterType(NewVT); - RegisterVT = DestVT; - if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. - return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); - - // Otherwise, promotion or legal types use the same number of registers as - // the vector decimated to the appropriate level. - return NumVectorRegs; -} - -/// isLegalRC - Return true if the value types that can be represented by the -/// specified register class are all legal. -bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, - const TargetRegisterClass &RC) const { - for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) - if (isTypeLegal(*I)) - return true; - return false; -} - -/// Replace/modify any TargetFrameIndex operands with a targte-dependent -/// sequence of memory operands that is recognized by PrologEpilogInserter. -MachineBasicBlock * -TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, - MachineBasicBlock *MBB) const { - MachineInstr *MI = &InitialMI; - MachineFunction &MF = *MI->getMF(); - MachineFrameInfo &MFI = MF.getFrameInfo(); - - // We're handling multiple types of operands here: - // PATCHPOINT MetaArgs - live-in, read only, direct - // STATEPOINT Deopt Spill - live-through, read only, indirect - // STATEPOINT Deopt Alloca - live-through, read only, direct - // (We're currently conservative and mark the deopt slots read/write in - // practice.) - // STATEPOINT GC Spill - live-through, read/write, indirect - // STATEPOINT GC Alloca - live-through, read/write, direct - // The live-in vs live-through is handled already (the live through ones are - // all stack slots), but we need to handle the different type of stackmap - // operands and memory effects here. - - // MI changes inside this loop as we grow operands. - for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { - MachineOperand &MO = MI->getOperand(OperIdx); - if (!MO.isFI()) - continue; - - // foldMemoryOperand builds a new MI after replacing a single FI operand - // with the canonical set of five x86 addressing-mode operands. - int FI = MO.getIndex(); - MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); - - // Copy operands before the frame-index. - for (unsigned i = 0; i < OperIdx; ++i) - MIB.add(MI->getOperand(i)); - // Add frame index operands recognized by stackmaps.cpp - if (MFI.isStatepointSpillSlotObjectIndex(FI)) { - // indirect-mem-ref tag, size, #FI, offset. - // Used for spills inserted by StatepointLowering. This codepath is not - // used for patchpoints/stackmaps at all, for these spilling is done via - // foldMemoryOperand callback only. - assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); - MIB.addImm(StackMaps::IndirectMemRefOp); - MIB.addImm(MFI.getObjectSize(FI)); - MIB.add(MI->getOperand(OperIdx)); - MIB.addImm(0); - } else { - // direct-mem-ref tag, #FI, offset. - // Used by patchpoint, and direct alloca arguments to statepoints - MIB.addImm(StackMaps::DirectMemRefOp); - MIB.add(MI->getOperand(OperIdx)); - MIB.addImm(0); - } - // Copy the operands after the frame index. - for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) - MIB.add(MI->getOperand(i)); - - // Inherit previous memory operands. - MIB.cloneMemRefs(*MI); - assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); - - // Add a new memory operand for this FI. - assert(MFI.getObjectOffset(FI) != -1); - - // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and - // PATCHPOINT should be updated to do the same. (TODO) - if (MI->getOpcode() != TargetOpcode::STATEPOINT) { - auto Flags = MachineMemOperand::MOLoad; - MachineMemOperand *MMO = MF.getMachineMemOperand( - MachinePointerInfo::getFixedStack(MF, FI), Flags, - MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); - MIB->addMemOperand(MF, MMO); - } - - // Replace the instruction and update the operand index. - MBB->insert(MachineBasicBlock::iterator(MI), MIB); - OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; - MI->eraseFromParent(); - MI = MIB; - } - return MBB; -} - -MachineBasicBlock * -TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI, - MachineBasicBlock *MBB) const { - assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL && - "Called emitXRayCustomEvent on the wrong MI!"); - auto &MF = *MI.getMF(); - auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); - for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) - MIB.add(MI.getOperand(OpIdx)); - - MBB->insert(MachineBasicBlock::iterator(MI), MIB); - MI.eraseFromParent(); - return MBB; -} - -MachineBasicBlock * -TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI, - MachineBasicBlock *MBB) const { - assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL && - "Called emitXRayTypedEvent on the wrong MI!"); - auto &MF = *MI.getMF(); - auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); - for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) - MIB.add(MI.getOperand(OpIdx)); - - MBB->insert(MachineBasicBlock::iterator(MI), MIB); - MI.eraseFromParent(); - return MBB; -} - -/// findRepresentativeClass - Return the largest legal super-reg register class -/// of the register class for the specified type and its associated "cost". -// This function is in TargetLowering because it uses RegClassForVT which would -// need to be moved to TargetRegisterInfo and would necessitate moving -// isTypeLegal over as well - a massive change that would just require -// TargetLowering having a TargetRegisterInfo class member that it would use. -std::pair<const TargetRegisterClass *, uint8_t> -TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, - MVT VT) const { - const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; - if (!RC) - return std::make_pair(RC, 0); - - // Compute the set of all super-register classes. - BitVector SuperRegRC(TRI->getNumRegClasses()); - for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) - SuperRegRC.setBitsInMask(RCI.getMask()); - - // Find the first legal register class with the largest spill size. - const TargetRegisterClass *BestRC = RC; - for (unsigned i : SuperRegRC.set_bits()) { - const TargetRegisterClass *SuperRC = TRI->getRegClass(i); - // We want the largest possible spill size. - if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) - continue; - if (!isLegalRC(*TRI, *SuperRC)) - continue; - BestRC = SuperRC; - } - return std::make_pair(BestRC, 1); -} - -/// computeRegisterProperties - Once all of the register classes are added, -/// this allows us to compute derived properties we expose. -void TargetLoweringBase::computeRegisterProperties( - const TargetRegisterInfo *TRI) { - static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, - "Too many value types for ValueTypeActions to hold!"); - - // Everything defaults to needing one register. - for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { - NumRegistersForVT[i] = 1; - RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; - } - // ...except isVoid, which doesn't need any registers. - NumRegistersForVT[MVT::isVoid] = 0; - - // Find the largest integer register class. - unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; - for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) - assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); - - // Every integer value type larger than this largest register takes twice as - // many registers to represent as the previous ValueType. - for (unsigned ExpandedReg = LargestIntReg + 1; - ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { - NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; - RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; - TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); - ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, - TypeExpandInteger); - } - - // Inspect all of the ValueType's smaller than the largest integer - // register to see which ones need promotion. - unsigned LegalIntReg = LargestIntReg; - for (unsigned IntReg = LargestIntReg - 1; - IntReg >= (unsigned)MVT::i1; --IntReg) { - MVT IVT = (MVT::SimpleValueType)IntReg; - if (isTypeLegal(IVT)) { - LegalIntReg = IntReg; - } else { - RegisterTypeForVT[IntReg] = TransformToType[IntReg] = - (MVT::SimpleValueType)LegalIntReg; - ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); - } - } - - // ppcf128 type is really two f64's. - if (!isTypeLegal(MVT::ppcf128)) { - if (isTypeLegal(MVT::f64)) { - NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; - RegisterTypeForVT[MVT::ppcf128] = MVT::f64; - TransformToType[MVT::ppcf128] = MVT::f64; - ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); - } else { - NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; - RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; - TransformToType[MVT::ppcf128] = MVT::i128; - ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); - } - } - - // Decide how to handle f128. If the target does not have native f128 support, - // expand it to i128 and we will be generating soft float library calls. - if (!isTypeLegal(MVT::f128)) { - NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; - RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; - TransformToType[MVT::f128] = MVT::i128; - ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); - } - - // Decide how to handle f64. If the target does not have native f64 support, - // expand it to i64 and we will be generating soft float library calls. - if (!isTypeLegal(MVT::f64)) { - NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; - RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; - TransformToType[MVT::f64] = MVT::i64; - ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); - } - - // Decide how to handle f32. If the target does not have native f32 support, - // expand it to i32 and we will be generating soft float library calls. - if (!isTypeLegal(MVT::f32)) { - NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; - RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; - TransformToType[MVT::f32] = MVT::i32; - ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); - } - - // Decide how to handle f16. If the target does not have native f16 support, - // promote it to f32, because there are no f16 library calls (except for - // conversions). - if (!isTypeLegal(MVT::f16)) { - NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; - RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; - TransformToType[MVT::f16] = MVT::f32; - ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); - } - - // Loop over all of the vector value types to see which need transformations. - for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; - i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { - MVT VT = (MVT::SimpleValueType) i; - if (isTypeLegal(VT)) - continue; - - MVT EltVT = VT.getVectorElementType(); - unsigned NElts = VT.getVectorNumElements(); - bool IsLegalWiderType = false; - LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); - switch (PreferredAction) { - case TypePromoteInteger: - // Try to promote the elements of integer vectors. If no legal - // promotion was found, fall through to the widen-vector method. - for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) { - MVT SVT = (MVT::SimpleValueType) nVT; - // Promote vectors of integers to vectors with the same number - // of elements, with a wider element type. - if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && - SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) { - TransformToType[i] = SVT; - RegisterTypeForVT[i] = SVT; - NumRegistersForVT[i] = 1; - ValueTypeActions.setTypeAction(VT, TypePromoteInteger); - IsLegalWiderType = true; - break; - } - } - if (IsLegalWiderType) - break; - LLVM_FALLTHROUGH; - - case TypeWidenVector: - // Try to widen the vector. - for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { - MVT SVT = (MVT::SimpleValueType) nVT; - if (SVT.getVectorElementType() == EltVT - && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { - TransformToType[i] = SVT; - RegisterTypeForVT[i] = SVT; - NumRegistersForVT[i] = 1; - ValueTypeActions.setTypeAction(VT, TypeWidenVector); - IsLegalWiderType = true; - break; - } - } - if (IsLegalWiderType) - break; - LLVM_FALLTHROUGH; - - case TypeSplitVector: - case TypeScalarizeVector: { - MVT IntermediateVT; - MVT RegisterVT; - unsigned NumIntermediates; - NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, - NumIntermediates, RegisterVT, this); - RegisterTypeForVT[i] = RegisterVT; - - MVT NVT = VT.getPow2VectorType(); - if (NVT == VT) { - // Type is already a power of 2. The default action is to split. - TransformToType[i] = MVT::Other; - if (PreferredAction == TypeScalarizeVector) - ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); - else if (PreferredAction == TypeSplitVector) - ValueTypeActions.setTypeAction(VT, TypeSplitVector); - else - // Set type action according to the number of elements. - ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector - : TypeSplitVector); - } else { - TransformToType[i] = NVT; - ValueTypeActions.setTypeAction(VT, TypeWidenVector); - } - break; - } - default: - llvm_unreachable("Unknown vector legalization action!"); - } - } - - // Determine the 'representative' register class for each value type. - // An representative register class is the largest (meaning one which is - // not a sub-register class / subreg register class) legal register class for - // a group of value types. For example, on i386, i8, i16, and i32 - // representative would be GR32; while on x86_64 it's GR64. - for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { - const TargetRegisterClass* RRC; - uint8_t Cost; - std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); - RepRegClassForVT[i] = RRC; - RepRegClassCostForVT[i] = Cost; - } -} - -EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, - EVT VT) const { - assert(!VT.isVector() && "No default SetCC type for vectors!"); - return getPointerTy(DL).SimpleTy; -} - -MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { - return MVT::i32; // return the default value -} - -/// getVectorTypeBreakdown - Vector types are broken down into some number of -/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 -/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. -/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. -/// -/// This method returns the number of registers needed, and the VT for each -/// register. It also returns the VT and quantity of the intermediate values -/// before they are promoted/expanded. -unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, - EVT &IntermediateVT, - unsigned &NumIntermediates, - MVT &RegisterVT) const { - unsigned NumElts = VT.getVectorNumElements(); - - // If there is a wider vector type with the same element type as this one, - // or a promoted vector type that has the same number of elements which - // are wider, then we should convert to that legal vector type. - // This handles things like <2 x float> -> <4 x float> and - // <4 x i1> -> <4 x i32>. - LegalizeTypeAction TA = getTypeAction(Context, VT); - if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { - EVT RegisterEVT = getTypeToTransformTo(Context, VT); - if (isTypeLegal(RegisterEVT)) { - IntermediateVT = RegisterEVT; - RegisterVT = RegisterEVT.getSimpleVT(); - NumIntermediates = 1; - return 1; - } - } - - // Figure out the right, legal destination reg to copy into. - EVT EltTy = VT.getVectorElementType(); - - unsigned NumVectorRegs = 1; - - // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we - // could break down into LHS/RHS like LegalizeDAG does. - if (!isPowerOf2_32(NumElts)) { - NumVectorRegs = NumElts; - NumElts = 1; - } - - // Divide the input until we get to a supported size. This will always - // end with a scalar if the target doesn't support vectors. - while (NumElts > 1 && !isTypeLegal( - EVT::getVectorVT(Context, EltTy, NumElts))) { - NumElts >>= 1; - NumVectorRegs <<= 1; - } - - NumIntermediates = NumVectorRegs; - - EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); - if (!isTypeLegal(NewVT)) - NewVT = EltTy; - IntermediateVT = NewVT; - - MVT DestVT = getRegisterType(Context, NewVT); - RegisterVT = DestVT; - unsigned NewVTSize = NewVT.getSizeInBits(); - - // Convert sizes such as i33 to i64. - if (!isPowerOf2_32(NewVTSize)) - NewVTSize = NextPowerOf2(NewVTSize); - - if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. - return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); - - // Otherwise, promotion or legal types use the same number of registers as - // the vector decimated to the appropriate level. - return NumVectorRegs; -} - -/// Get the EVTs and ArgFlags collections that represent the legalized return -/// type of the given function. This does not require a DAG or a return value, -/// and is suitable for use before any DAGs for the function are constructed. -/// TODO: Move this out of TargetLowering.cpp. -void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, - AttributeList attr, - SmallVectorImpl<ISD::OutputArg> &Outs, - const TargetLowering &TLI, const DataLayout &DL) { - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); - unsigned NumValues = ValueVTs.size(); - if (NumValues == 0) return; - - for (unsigned j = 0, f = NumValues; j != f; ++j) { - EVT VT = ValueVTs[j]; - ISD::NodeType ExtendKind = ISD::ANY_EXTEND; - - if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) - ExtendKind = ISD::SIGN_EXTEND; - else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) - ExtendKind = ISD::ZERO_EXTEND; - - // FIXME: C calling convention requires the return type to be promoted to - // at least 32-bit. But this is not necessary for non-C calling - // conventions. The frontend should mark functions whose return values - // require promoting with signext or zeroext attributes. - if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { - MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); - if (VT.bitsLT(MinVT)) - VT = MinVT; - } - - unsigned NumParts = - TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); - MVT PartVT = - TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); - - // 'inreg' on function refers to return value - ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); - if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) - Flags.setInReg(); - - // Propagate extension type if any - if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) - Flags.setSExt(); - else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) - Flags.setZExt(); - - for (unsigned i = 0; i < NumParts; ++i) - Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); - } -} - -/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate -/// function arguments in the caller parameter area. This is the actual -/// alignment, not its logarithm. -unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, - const DataLayout &DL) const { - return DL.getABITypeAlignment(Ty); -} - -bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, - const DataLayout &DL, EVT VT, - unsigned AddrSpace, - unsigned Alignment, - MachineMemOperand::Flags Flags, - bool *Fast) const { - // Check if the specified alignment is sufficient based on the data layout. - // TODO: While using the data layout works in practice, a better solution - // would be to implement this check directly (make this a virtual function). - // For example, the ABI alignment may change based on software platform while - // this function should only be affected by hardware implementation. - Type *Ty = VT.getTypeForEVT(Context); - if (Alignment >= DL.getABITypeAlignment(Ty)) { - // Assume that an access that meets the ABI-specified alignment is fast. - if (Fast != nullptr) - *Fast = true; - return true; - } - - // This is a misaligned access. - return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); -} - -bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, - const DataLayout &DL, EVT VT, - const MachineMemOperand &MMO, - bool *Fast) const { - return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), - MMO.getAlignment(), MMO.getFlags(), Fast); -} - -BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { - return BranchProbability(MinPercentageForPredictableBranch, 100); -} - -//===----------------------------------------------------------------------===// -// TargetTransformInfo Helpers -//===----------------------------------------------------------------------===// - -int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { - enum InstructionOpcodes { -#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, -#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM -#include "llvm/IR/Instruction.def" - }; - switch (static_cast<InstructionOpcodes>(Opcode)) { - case Ret: return 0; - case Br: return 0; - case Switch: return 0; - case IndirectBr: return 0; - case Invoke: return 0; - case CallBr: return 0; - case Resume: return 0; - case Unreachable: return 0; - case CleanupRet: return 0; - case CatchRet: return 0; - case CatchPad: return 0; - case CatchSwitch: return 0; - case CleanupPad: return 0; - case FNeg: return ISD::FNEG; - case Add: return ISD::ADD; - case FAdd: return ISD::FADD; - case Sub: return ISD::SUB; - case FSub: return ISD::FSUB; - case Mul: return ISD::MUL; - case FMul: return ISD::FMUL; - case UDiv: return ISD::UDIV; - case SDiv: return ISD::SDIV; - case FDiv: return ISD::FDIV; - case URem: return ISD::UREM; - case SRem: return ISD::SREM; - case FRem: return ISD::FREM; - case Shl: return ISD::SHL; - case LShr: return ISD::SRL; - case AShr: return ISD::SRA; - case And: return ISD::AND; - case Or: return ISD::OR; - case Xor: return ISD::XOR; - case Alloca: return 0; - case Load: return ISD::LOAD; - case Store: return ISD::STORE; - case GetElementPtr: return 0; - case Fence: return 0; - case AtomicCmpXchg: return 0; - case AtomicRMW: return 0; - case Trunc: return ISD::TRUNCATE; - case ZExt: return ISD::ZERO_EXTEND; - case SExt: return ISD::SIGN_EXTEND; - case FPToUI: return ISD::FP_TO_UINT; - case FPToSI: return ISD::FP_TO_SINT; - case UIToFP: return ISD::UINT_TO_FP; - case SIToFP: return ISD::SINT_TO_FP; - case FPTrunc: return ISD::FP_ROUND; - case FPExt: return ISD::FP_EXTEND; - case PtrToInt: return ISD::BITCAST; - case IntToPtr: return ISD::BITCAST; - case BitCast: return ISD::BITCAST; - case AddrSpaceCast: return ISD::ADDRSPACECAST; - case ICmp: return ISD::SETCC; - case FCmp: return ISD::SETCC; - case PHI: return 0; - case Call: return 0; - case Select: return ISD::SELECT; - case UserOp1: return 0; - case UserOp2: return 0; - case VAArg: return 0; - case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; - case InsertElement: return ISD::INSERT_VECTOR_ELT; - case ShuffleVector: return ISD::VECTOR_SHUFFLE; - case ExtractValue: return ISD::MERGE_VALUES; - case InsertValue: return ISD::MERGE_VALUES; - case LandingPad: return 0; - } - - llvm_unreachable("Unknown instruction type encountered!"); -} - -std::pair<int, MVT> -TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, - Type *Ty) const { - LLVMContext &C = Ty->getContext(); - EVT MTy = getValueType(DL, Ty); - - int Cost = 1; - // We keep legalizing the type until we find a legal kind. We assume that - // the only operation that costs anything is the split. After splitting - // we need to handle two types. - while (true) { - LegalizeKind LK = getTypeConversion(C, MTy); - - if (LK.first == TypeLegal) - return std::make_pair(Cost, MTy.getSimpleVT()); - - if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) - Cost *= 2; - - // Do not loop with f128 type. - if (MTy == LK.second) - return std::make_pair(Cost, MTy.getSimpleVT()); - - // Keep legalizing the type. - MTy = LK.second; - } -} - -Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, - bool UseTLS) const { - // compiler-rt provides a variable with a magic name. Targets that do not - // link with compiler-rt may also provide such a variable. - Module *M = IRB.GetInsertBlock()->getParent()->getParent(); - const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; - auto UnsafeStackPtr = - dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); - - Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); - - if (!UnsafeStackPtr) { - auto TLSModel = UseTLS ? - GlobalValue::InitialExecTLSModel : - GlobalValue::NotThreadLocal; - // The global variable is not defined yet, define it ourselves. - // We use the initial-exec TLS model because we do not support the - // variable living anywhere other than in the main executable. - UnsafeStackPtr = new GlobalVariable( - *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, - UnsafeStackPtrVar, nullptr, TLSModel); - } else { - // The variable exists, check its type and attributes. - if (UnsafeStackPtr->getValueType() != StackPtrTy) - report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); - if (UseTLS != UnsafeStackPtr->isThreadLocal()) - report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + - (UseTLS ? "" : "not ") + "be thread-local"); - } - return UnsafeStackPtr; -} - -Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { - if (!TM.getTargetTriple().isAndroid()) - return getDefaultSafeStackPointerLocation(IRB, true); - - // Android provides a libc function to retrieve the address of the current - // thread's unsafe stack pointer. - Module *M = IRB.GetInsertBlock()->getParent()->getParent(); - Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); - FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", - StackPtrTy->getPointerTo(0)); - return IRB.CreateCall(Fn); -} - -//===----------------------------------------------------------------------===// -// Loop Strength Reduction hooks -//===----------------------------------------------------------------------===// - -/// isLegalAddressingMode - Return true if the addressing mode represented -/// by AM is legal for this target, for a load/store of the specified type. -bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, - const AddrMode &AM, Type *Ty, - unsigned AS, Instruction *I) const { - // The default implementation of this implements a conservative RISCy, r+r and - // r+i addr mode. - - // Allows a sign-extended 16-bit immediate field. - if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) - return false; - - // No global is ever allowed as a base. - if (AM.BaseGV) - return false; - - // Only support r+r, - switch (AM.Scale) { - case 0: // "r+i" or just "i", depending on HasBaseReg. - break; - case 1: - if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. - return false; - // Otherwise we have r+r or r+i. - break; - case 2: - if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. - return false; - // Allow 2*r as r+r. - break; - default: // Don't allow n * r - return false; - } - - return true; -} - -//===----------------------------------------------------------------------===// -// Stack Protector -//===----------------------------------------------------------------------===// - -// For OpenBSD return its special guard variable. Otherwise return nullptr, -// so that SelectionDAG handle SSP. -Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { - if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { - Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); - PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); - return M.getOrInsertGlobal("__guard_local", PtrTy); - } - return nullptr; -} - -// Currently only support "standard" __stack_chk_guard. -// TODO: add LOAD_STACK_GUARD support. -void TargetLoweringBase::insertSSPDeclarations(Module &M) const { - if (!M.getNamedValue("__stack_chk_guard")) - new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, - GlobalVariable::ExternalLinkage, - nullptr, "__stack_chk_guard"); -} - -// Currently only support "standard" __stack_chk_guard. -// TODO: add LOAD_STACK_GUARD support. -Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { - return M.getNamedValue("__stack_chk_guard"); -} - -Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { - return nullptr; -} - -unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { - return MinimumJumpTableEntries; -} - -void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { - MinimumJumpTableEntries = Val; -} - -unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { - return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; -} - -unsigned TargetLoweringBase::getMaximumJumpTableSize() const { - return MaximumJumpTableSize; -} - -void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { - MaximumJumpTableSize = Val; -} - -//===----------------------------------------------------------------------===// -// Reciprocal Estimates -//===----------------------------------------------------------------------===// - -/// Get the reciprocal estimate attribute string for a function that will -/// override the target defaults. -static StringRef getRecipEstimateForFunc(MachineFunction &MF) { - const Function &F = MF.getFunction(); - return F.getFnAttribute("reciprocal-estimates").getValueAsString(); -} - -/// Construct a string for the given reciprocal operation of the given type. -/// This string should match the corresponding option to the front-end's -/// "-mrecip" flag assuming those strings have been passed through in an -/// attribute string. For example, "vec-divf" for a division of a vXf32. -static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { - std::string Name = VT.isVector() ? "vec-" : ""; - - Name += IsSqrt ? "sqrt" : "div"; - - // TODO: Handle "half" or other float types? - if (VT.getScalarType() == MVT::f64) { - Name += "d"; - } else { - assert(VT.getScalarType() == MVT::f32 && - "Unexpected FP type for reciprocal estimate"); - Name += "f"; - } - - return Name; -} - -/// Return the character position and value (a single numeric character) of a -/// customized refinement operation in the input string if it exists. Return -/// false if there is no customized refinement step count. -static bool parseRefinementStep(StringRef In, size_t &Position, - uint8_t &Value) { - const char RefStepToken = ':'; - Position = In.find(RefStepToken); - if (Position == StringRef::npos) - return false; - - StringRef RefStepString = In.substr(Position + 1); - // Allow exactly one numeric character for the additional refinement - // step parameter. - if (RefStepString.size() == 1) { - char RefStepChar = RefStepString[0]; - if (RefStepChar >= '0' && RefStepChar <= '9') { - Value = RefStepChar - '0'; - return true; - } - } - report_fatal_error("Invalid refinement step for -recip."); -} - -/// For the input attribute string, return one of the ReciprocalEstimate enum -/// status values (enabled, disabled, or not specified) for this operation on -/// the specified data type. -static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { - if (Override.empty()) - return TargetLoweringBase::ReciprocalEstimate::Unspecified; - - SmallVector<StringRef, 4> OverrideVector; - Override.split(OverrideVector, ','); - unsigned NumArgs = OverrideVector.size(); - - // Check if "all", "none", or "default" was specified. - if (NumArgs == 1) { - // Look for an optional setting of the number of refinement steps needed - // for this type of reciprocal operation. - size_t RefPos; - uint8_t RefSteps; - if (parseRefinementStep(Override, RefPos, RefSteps)) { - // Split the string for further processing. - Override = Override.substr(0, RefPos); - } - - // All reciprocal types are enabled. - if (Override == "all") - return TargetLoweringBase::ReciprocalEstimate::Enabled; - - // All reciprocal types are disabled. - if (Override == "none") - return TargetLoweringBase::ReciprocalEstimate::Disabled; - - // Target defaults for enablement are used. - if (Override == "default") - return TargetLoweringBase::ReciprocalEstimate::Unspecified; - } - - // The attribute string may omit the size suffix ('f'/'d'). - std::string VTName = getReciprocalOpName(IsSqrt, VT); - std::string VTNameNoSize = VTName; - VTNameNoSize.pop_back(); - static const char DisabledPrefix = '!'; - - for (StringRef RecipType : OverrideVector) { - size_t RefPos; - uint8_t RefSteps; - if (parseRefinementStep(RecipType, RefPos, RefSteps)) - RecipType = RecipType.substr(0, RefPos); - - // Ignore the disablement token for string matching. - bool IsDisabled = RecipType[0] == DisabledPrefix; - if (IsDisabled) - RecipType = RecipType.substr(1); - - if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) - return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled - : TargetLoweringBase::ReciprocalEstimate::Enabled; - } - - return TargetLoweringBase::ReciprocalEstimate::Unspecified; -} - -/// For the input attribute string, return the customized refinement step count -/// for this operation on the specified data type. If the step count does not -/// exist, return the ReciprocalEstimate enum value for unspecified. -static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { - if (Override.empty()) - return TargetLoweringBase::ReciprocalEstimate::Unspecified; - - SmallVector<StringRef, 4> OverrideVector; - Override.split(OverrideVector, ','); - unsigned NumArgs = OverrideVector.size(); - - // Check if "all", "default", or "none" was specified. - if (NumArgs == 1) { - // Look for an optional setting of the number of refinement steps needed - // for this type of reciprocal operation. - size_t RefPos; - uint8_t RefSteps; - if (!parseRefinementStep(Override, RefPos, RefSteps)) - return TargetLoweringBase::ReciprocalEstimate::Unspecified; - - // Split the string for further processing. - Override = Override.substr(0, RefPos); - assert(Override != "none" && - "Disabled reciprocals, but specifed refinement steps?"); - - // If this is a general override, return the specified number of steps. - if (Override == "all" || Override == "default") - return RefSteps; - } - - // The attribute string may omit the size suffix ('f'/'d'). - std::string VTName = getReciprocalOpName(IsSqrt, VT); - std::string VTNameNoSize = VTName; - VTNameNoSize.pop_back(); - - for (StringRef RecipType : OverrideVector) { - size_t RefPos; - uint8_t RefSteps; - if (!parseRefinementStep(RecipType, RefPos, RefSteps)) - continue; - - RecipType = RecipType.substr(0, RefPos); - if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) - return RefSteps; - } - - return TargetLoweringBase::ReciprocalEstimate::Unspecified; -} - -int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, - MachineFunction &MF) const { - return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); -} - -int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, - MachineFunction &MF) const { - return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); -} - -int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, - MachineFunction &MF) const { - return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); -} - -int TargetLoweringBase::getDivRefinementSteps(EVT VT, - MachineFunction &MF) const { - return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); -} - -void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { - MF.getRegInfo().freezeReservedRegs(MF); -} |
