diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp | 2126 |
1 files changed, 2126 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp b/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp new file mode 100644 index 000000000000..581cfaf60755 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp @@ -0,0 +1,2126 @@ +//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the TargetLoweringBase class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/Triple.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Mangler.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include <cctype> +using namespace llvm; + +static cl::opt<bool> JumpIsExpensiveOverride( + "jump-is-expensive", cl::init(false), + cl::desc("Do not create extra branches to split comparison logic."), + cl::Hidden); + +static cl::opt<unsigned> MinimumJumpTableEntries + ("min-jump-table-entries", cl::init(4), cl::Hidden, + cl::desc("Set minimum number of entries to use a jump table.")); + +static cl::opt<unsigned> MaximumJumpTableSize + ("max-jump-table-size", cl::init(0), cl::Hidden, + cl::desc("Set maximum size of jump tables; zero for no limit.")); + +/// Minimum jump table density for normal functions. +static cl::opt<unsigned> + JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, + cl::desc("Minimum density for building a jump table in " + "a normal function")); + +/// Minimum jump table density for -Os or -Oz functions. +static cl::opt<unsigned> OptsizeJumpTableDensity( + "optsize-jump-table-density", cl::init(40), cl::Hidden, + cl::desc("Minimum density for building a jump table in " + "an optsize function")); + +// Although this default value is arbitrary, it is not random. It is assumed +// that a condition that evaluates the same way by a higher percentage than this +// is best represented as control flow. Therefore, the default value N should be +// set such that the win from N% correct executions is greater than the loss +// from (100 - N)% mispredicted executions for the majority of intended targets. +static cl::opt<int> MinPercentageForPredictableBranch( + "min-predictable-branch", cl::init(99), + cl::desc("Minimum percentage (0-100) that a condition must be either true " + "or false to assume that the condition is predictable"), + cl::Hidden); + +/// InitLibcallNames - Set default libcall names. +/// +static void InitLibcallNames(const char **Names, const Triple &TT) { + Names[RTLIB::SHL_I16] = "__ashlhi3"; + Names[RTLIB::SHL_I32] = "__ashlsi3"; + Names[RTLIB::SHL_I64] = "__ashldi3"; + Names[RTLIB::SHL_I128] = "__ashlti3"; + Names[RTLIB::SRL_I16] = "__lshrhi3"; + Names[RTLIB::SRL_I32] = "__lshrsi3"; + Names[RTLIB::SRL_I64] = "__lshrdi3"; + Names[RTLIB::SRL_I128] = "__lshrti3"; + Names[RTLIB::SRA_I16] = "__ashrhi3"; + Names[RTLIB::SRA_I32] = "__ashrsi3"; + Names[RTLIB::SRA_I64] = "__ashrdi3"; + Names[RTLIB::SRA_I128] = "__ashrti3"; + Names[RTLIB::MUL_I8] = "__mulqi3"; + Names[RTLIB::MUL_I16] = "__mulhi3"; + Names[RTLIB::MUL_I32] = "__mulsi3"; + Names[RTLIB::MUL_I64] = "__muldi3"; + Names[RTLIB::MUL_I128] = "__multi3"; + Names[RTLIB::MULO_I32] = "__mulosi4"; + Names[RTLIB::MULO_I64] = "__mulodi4"; + Names[RTLIB::MULO_I128] = "__muloti4"; + Names[RTLIB::SDIV_I8] = "__divqi3"; + Names[RTLIB::SDIV_I16] = "__divhi3"; + Names[RTLIB::SDIV_I32] = "__divsi3"; + Names[RTLIB::SDIV_I64] = "__divdi3"; + Names[RTLIB::SDIV_I128] = "__divti3"; + Names[RTLIB::UDIV_I8] = "__udivqi3"; + Names[RTLIB::UDIV_I16] = "__udivhi3"; + Names[RTLIB::UDIV_I32] = "__udivsi3"; + Names[RTLIB::UDIV_I64] = "__udivdi3"; + Names[RTLIB::UDIV_I128] = "__udivti3"; + Names[RTLIB::SREM_I8] = "__modqi3"; + Names[RTLIB::SREM_I16] = "__modhi3"; + Names[RTLIB::SREM_I32] = "__modsi3"; + Names[RTLIB::SREM_I64] = "__moddi3"; + Names[RTLIB::SREM_I128] = "__modti3"; + Names[RTLIB::UREM_I8] = "__umodqi3"; + Names[RTLIB::UREM_I16] = "__umodhi3"; + Names[RTLIB::UREM_I32] = "__umodsi3"; + Names[RTLIB::UREM_I64] = "__umoddi3"; + Names[RTLIB::UREM_I128] = "__umodti3"; + + Names[RTLIB::NEG_I32] = "__negsi2"; + Names[RTLIB::NEG_I64] = "__negdi2"; + Names[RTLIB::ADD_F32] = "__addsf3"; + Names[RTLIB::ADD_F64] = "__adddf3"; + Names[RTLIB::ADD_F80] = "__addxf3"; + Names[RTLIB::ADD_F128] = "__addtf3"; + Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; + Names[RTLIB::SUB_F32] = "__subsf3"; + Names[RTLIB::SUB_F64] = "__subdf3"; + Names[RTLIB::SUB_F80] = "__subxf3"; + Names[RTLIB::SUB_F128] = "__subtf3"; + Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; + Names[RTLIB::MUL_F32] = "__mulsf3"; + Names[RTLIB::MUL_F64] = "__muldf3"; + Names[RTLIB::MUL_F80] = "__mulxf3"; + Names[RTLIB::MUL_F128] = "__multf3"; + Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; + Names[RTLIB::DIV_F32] = "__divsf3"; + Names[RTLIB::DIV_F64] = "__divdf3"; + Names[RTLIB::DIV_F80] = "__divxf3"; + Names[RTLIB::DIV_F128] = "__divtf3"; + Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; + Names[RTLIB::REM_F32] = "fmodf"; + Names[RTLIB::REM_F64] = "fmod"; + Names[RTLIB::REM_F80] = "fmodl"; + Names[RTLIB::REM_F128] = "fmodl"; + Names[RTLIB::REM_PPCF128] = "fmodl"; + Names[RTLIB::FMA_F32] = "fmaf"; + Names[RTLIB::FMA_F64] = "fma"; + Names[RTLIB::FMA_F80] = "fmal"; + Names[RTLIB::FMA_F128] = "fmal"; + Names[RTLIB::FMA_PPCF128] = "fmal"; + Names[RTLIB::POWI_F32] = "__powisf2"; + Names[RTLIB::POWI_F64] = "__powidf2"; + Names[RTLIB::POWI_F80] = "__powixf2"; + Names[RTLIB::POWI_F128] = "__powitf2"; + Names[RTLIB::POWI_PPCF128] = "__powitf2"; + Names[RTLIB::SQRT_F32] = "sqrtf"; + Names[RTLIB::SQRT_F64] = "sqrt"; + Names[RTLIB::SQRT_F80] = "sqrtl"; + Names[RTLIB::SQRT_F128] = "sqrtl"; + Names[RTLIB::SQRT_PPCF128] = "sqrtl"; + Names[RTLIB::LOG_F32] = "logf"; + Names[RTLIB::LOG_F64] = "log"; + Names[RTLIB::LOG_F80] = "logl"; + Names[RTLIB::LOG_F128] = "logl"; + Names[RTLIB::LOG_PPCF128] = "logl"; + Names[RTLIB::LOG2_F32] = "log2f"; + Names[RTLIB::LOG2_F64] = "log2"; + Names[RTLIB::LOG2_F80] = "log2l"; + Names[RTLIB::LOG2_F128] = "log2l"; + Names[RTLIB::LOG2_PPCF128] = "log2l"; + Names[RTLIB::LOG10_F32] = "log10f"; + Names[RTLIB::LOG10_F64] = "log10"; + Names[RTLIB::LOG10_F80] = "log10l"; + Names[RTLIB::LOG10_F128] = "log10l"; + Names[RTLIB::LOG10_PPCF128] = "log10l"; + Names[RTLIB::EXP_F32] = "expf"; + Names[RTLIB::EXP_F64] = "exp"; + Names[RTLIB::EXP_F80] = "expl"; + Names[RTLIB::EXP_F128] = "expl"; + Names[RTLIB::EXP_PPCF128] = "expl"; + Names[RTLIB::EXP2_F32] = "exp2f"; + Names[RTLIB::EXP2_F64] = "exp2"; + Names[RTLIB::EXP2_F80] = "exp2l"; + Names[RTLIB::EXP2_F128] = "exp2l"; + Names[RTLIB::EXP2_PPCF128] = "exp2l"; + Names[RTLIB::SIN_F32] = "sinf"; + Names[RTLIB::SIN_F64] = "sin"; + Names[RTLIB::SIN_F80] = "sinl"; + Names[RTLIB::SIN_F128] = "sinl"; + Names[RTLIB::SIN_PPCF128] = "sinl"; + Names[RTLIB::COS_F32] = "cosf"; + Names[RTLIB::COS_F64] = "cos"; + Names[RTLIB::COS_F80] = "cosl"; + Names[RTLIB::COS_F128] = "cosl"; + Names[RTLIB::COS_PPCF128] = "cosl"; + Names[RTLIB::POW_F32] = "powf"; + Names[RTLIB::POW_F64] = "pow"; + Names[RTLIB::POW_F80] = "powl"; + Names[RTLIB::POW_F128] = "powl"; + Names[RTLIB::POW_PPCF128] = "powl"; + Names[RTLIB::CEIL_F32] = "ceilf"; + Names[RTLIB::CEIL_F64] = "ceil"; + Names[RTLIB::CEIL_F80] = "ceill"; + Names[RTLIB::CEIL_F128] = "ceill"; + Names[RTLIB::CEIL_PPCF128] = "ceill"; + Names[RTLIB::TRUNC_F32] = "truncf"; + Names[RTLIB::TRUNC_F64] = "trunc"; + Names[RTLIB::TRUNC_F80] = "truncl"; + Names[RTLIB::TRUNC_F128] = "truncl"; + Names[RTLIB::TRUNC_PPCF128] = "truncl"; + Names[RTLIB::RINT_F32] = "rintf"; + Names[RTLIB::RINT_F64] = "rint"; + Names[RTLIB::RINT_F80] = "rintl"; + Names[RTLIB::RINT_F128] = "rintl"; + Names[RTLIB::RINT_PPCF128] = "rintl"; + Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; + Names[RTLIB::NEARBYINT_F64] = "nearbyint"; + Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; + Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; + Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; + Names[RTLIB::ROUND_F32] = "roundf"; + Names[RTLIB::ROUND_F64] = "round"; + Names[RTLIB::ROUND_F80] = "roundl"; + Names[RTLIB::ROUND_F128] = "roundl"; + Names[RTLIB::ROUND_PPCF128] = "roundl"; + Names[RTLIB::FLOOR_F32] = "floorf"; + Names[RTLIB::FLOOR_F64] = "floor"; + Names[RTLIB::FLOOR_F80] = "floorl"; + Names[RTLIB::FLOOR_F128] = "floorl"; + Names[RTLIB::FLOOR_PPCF128] = "floorl"; + Names[RTLIB::FMIN_F32] = "fminf"; + Names[RTLIB::FMIN_F64] = "fmin"; + Names[RTLIB::FMIN_F80] = "fminl"; + Names[RTLIB::FMIN_F128] = "fminl"; + Names[RTLIB::FMIN_PPCF128] = "fminl"; + Names[RTLIB::FMAX_F32] = "fmaxf"; + Names[RTLIB::FMAX_F64] = "fmax"; + Names[RTLIB::FMAX_F80] = "fmaxl"; + Names[RTLIB::FMAX_F128] = "fmaxl"; + Names[RTLIB::FMAX_PPCF128] = "fmaxl"; + Names[RTLIB::ROUND_F32] = "roundf"; + Names[RTLIB::ROUND_F64] = "round"; + Names[RTLIB::ROUND_F80] = "roundl"; + Names[RTLIB::ROUND_F128] = "roundl"; + Names[RTLIB::ROUND_PPCF128] = "roundl"; + Names[RTLIB::COPYSIGN_F32] = "copysignf"; + Names[RTLIB::COPYSIGN_F64] = "copysign"; + Names[RTLIB::COPYSIGN_F80] = "copysignl"; + Names[RTLIB::COPYSIGN_F128] = "copysignl"; + Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; + Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq"; + Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq"; + Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; + Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; + Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; + if (TT.isOSDarwin()) { + // For f16/f32 conversions, Darwin uses the standard naming scheme, instead + // of the gnueabi-style __gnu_*_ieee. + // FIXME: What about other targets? + Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2"; + Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2"; + } else { + Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; + Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; + } + Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2"; + Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2"; + Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2"; + Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2"; + Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; + Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; + Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; + Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos"; + Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; + Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; + Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod"; + Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; + Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; + Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; + Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; + Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; + Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; + Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; + Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; + Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; + Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; + Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; + Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; + Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou"; + Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; + Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; + Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; + Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; + Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; + Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; + Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; + Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; + Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; + Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; + Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; + Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; + Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; + Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; + Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; + Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; + Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; + Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; + Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; + Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; + Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; + Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq"; + Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; + Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; + Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; + Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; + Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; + Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; + Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; + Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; + Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; + Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; + Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; + Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; + Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; + Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; + Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq"; + Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; + Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; + Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; + Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; + Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; + Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; + Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; + Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; + Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; + Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; + Names[RTLIB::OEQ_F32] = "__eqsf2"; + Names[RTLIB::OEQ_F64] = "__eqdf2"; + Names[RTLIB::OEQ_F128] = "__eqtf2"; + Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq"; + Names[RTLIB::UNE_F32] = "__nesf2"; + Names[RTLIB::UNE_F64] = "__nedf2"; + Names[RTLIB::UNE_F128] = "__netf2"; + Names[RTLIB::UNE_PPCF128] = "__gcc_qne"; + Names[RTLIB::OGE_F32] = "__gesf2"; + Names[RTLIB::OGE_F64] = "__gedf2"; + Names[RTLIB::OGE_F128] = "__getf2"; + Names[RTLIB::OGE_PPCF128] = "__gcc_qge"; + Names[RTLIB::OLT_F32] = "__ltsf2"; + Names[RTLIB::OLT_F64] = "__ltdf2"; + Names[RTLIB::OLT_F128] = "__lttf2"; + Names[RTLIB::OLT_PPCF128] = "__gcc_qlt"; + Names[RTLIB::OLE_F32] = "__lesf2"; + Names[RTLIB::OLE_F64] = "__ledf2"; + Names[RTLIB::OLE_F128] = "__letf2"; + Names[RTLIB::OLE_PPCF128] = "__gcc_qle"; + Names[RTLIB::OGT_F32] = "__gtsf2"; + Names[RTLIB::OGT_F64] = "__gtdf2"; + Names[RTLIB::OGT_F128] = "__gttf2"; + Names[RTLIB::OGT_PPCF128] = "__gcc_qgt"; + Names[RTLIB::UO_F32] = "__unordsf2"; + Names[RTLIB::UO_F64] = "__unorddf2"; + Names[RTLIB::UO_F128] = "__unordtf2"; + Names[RTLIB::UO_PPCF128] = "__gcc_qunord"; + Names[RTLIB::O_F32] = "__unordsf2"; + Names[RTLIB::O_F64] = "__unorddf2"; + Names[RTLIB::O_F128] = "__unordtf2"; + Names[RTLIB::O_PPCF128] = "__gcc_qunord"; + Names[RTLIB::MEMCPY] = "memcpy"; + Names[RTLIB::MEMMOVE] = "memmove"; + Names[RTLIB::MEMSET] = "memset"; + Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_1] = "__llvm_memcpy_element_atomic_1"; + Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_2] = "__llvm_memcpy_element_atomic_2"; + Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_4] = "__llvm_memcpy_element_atomic_4"; + Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_8] = "__llvm_memcpy_element_atomic_8"; + Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_16] = "__llvm_memcpy_element_atomic_16"; + Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; + Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; + Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; + Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; + Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; + Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16"; + Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; + Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; + Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; + Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; + Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16"; + Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; + Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; + Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; + Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; + Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16"; + Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; + Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; + Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; + Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; + Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16"; + Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; + Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; + Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; + Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; + Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16"; + Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; + Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; + Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; + Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; + Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16"; + Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; + Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; + Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; + Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; + Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16"; + Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; + Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; + Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; + Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; + Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16"; + Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1"; + Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2"; + Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4"; + Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8"; + Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16"; + Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1"; + Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2"; + Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4"; + Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8"; + Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16"; + Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1"; + Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2"; + Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4"; + Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8"; + Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16"; + Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1"; + Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2"; + Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4"; + Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8"; + Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16"; + + Names[RTLIB::ATOMIC_LOAD] = "__atomic_load"; + Names[RTLIB::ATOMIC_LOAD_1] = "__atomic_load_1"; + Names[RTLIB::ATOMIC_LOAD_2] = "__atomic_load_2"; + Names[RTLIB::ATOMIC_LOAD_4] = "__atomic_load_4"; + Names[RTLIB::ATOMIC_LOAD_8] = "__atomic_load_8"; + Names[RTLIB::ATOMIC_LOAD_16] = "__atomic_load_16"; + + Names[RTLIB::ATOMIC_STORE] = "__atomic_store"; + Names[RTLIB::ATOMIC_STORE_1] = "__atomic_store_1"; + Names[RTLIB::ATOMIC_STORE_2] = "__atomic_store_2"; + Names[RTLIB::ATOMIC_STORE_4] = "__atomic_store_4"; + Names[RTLIB::ATOMIC_STORE_8] = "__atomic_store_8"; + Names[RTLIB::ATOMIC_STORE_16] = "__atomic_store_16"; + + Names[RTLIB::ATOMIC_EXCHANGE] = "__atomic_exchange"; + Names[RTLIB::ATOMIC_EXCHANGE_1] = "__atomic_exchange_1"; + Names[RTLIB::ATOMIC_EXCHANGE_2] = "__atomic_exchange_2"; + Names[RTLIB::ATOMIC_EXCHANGE_4] = "__atomic_exchange_4"; + Names[RTLIB::ATOMIC_EXCHANGE_8] = "__atomic_exchange_8"; + Names[RTLIB::ATOMIC_EXCHANGE_16] = "__atomic_exchange_16"; + + Names[RTLIB::ATOMIC_COMPARE_EXCHANGE] = "__atomic_compare_exchange"; + Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_1] = "__atomic_compare_exchange_1"; + Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_2] = "__atomic_compare_exchange_2"; + Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_4] = "__atomic_compare_exchange_4"; + Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_8] = "__atomic_compare_exchange_8"; + Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_16] = "__atomic_compare_exchange_16"; + + Names[RTLIB::ATOMIC_FETCH_ADD_1] = "__atomic_fetch_add_1"; + Names[RTLIB::ATOMIC_FETCH_ADD_2] = "__atomic_fetch_add_2"; + Names[RTLIB::ATOMIC_FETCH_ADD_4] = "__atomic_fetch_add_4"; + Names[RTLIB::ATOMIC_FETCH_ADD_8] = "__atomic_fetch_add_8"; + Names[RTLIB::ATOMIC_FETCH_ADD_16] = "__atomic_fetch_add_16"; + Names[RTLIB::ATOMIC_FETCH_SUB_1] = "__atomic_fetch_sub_1"; + Names[RTLIB::ATOMIC_FETCH_SUB_2] = "__atomic_fetch_sub_2"; + Names[RTLIB::ATOMIC_FETCH_SUB_4] = "__atomic_fetch_sub_4"; + Names[RTLIB::ATOMIC_FETCH_SUB_8] = "__atomic_fetch_sub_8"; + Names[RTLIB::ATOMIC_FETCH_SUB_16] = "__atomic_fetch_sub_16"; + Names[RTLIB::ATOMIC_FETCH_AND_1] = "__atomic_fetch_and_1"; + Names[RTLIB::ATOMIC_FETCH_AND_2] = "__atomic_fetch_and_2"; + Names[RTLIB::ATOMIC_FETCH_AND_4] = "__atomic_fetch_and_4"; + Names[RTLIB::ATOMIC_FETCH_AND_8] = "__atomic_fetch_and_8"; + Names[RTLIB::ATOMIC_FETCH_AND_16] = "__atomic_fetch_and_16"; + Names[RTLIB::ATOMIC_FETCH_OR_1] = "__atomic_fetch_or_1"; + Names[RTLIB::ATOMIC_FETCH_OR_2] = "__atomic_fetch_or_2"; + Names[RTLIB::ATOMIC_FETCH_OR_4] = "__atomic_fetch_or_4"; + Names[RTLIB::ATOMIC_FETCH_OR_8] = "__atomic_fetch_or_8"; + Names[RTLIB::ATOMIC_FETCH_OR_16] = "__atomic_fetch_or_16"; + Names[RTLIB::ATOMIC_FETCH_XOR_1] = "__atomic_fetch_xor_1"; + Names[RTLIB::ATOMIC_FETCH_XOR_2] = "__atomic_fetch_xor_2"; + Names[RTLIB::ATOMIC_FETCH_XOR_4] = "__atomic_fetch_xor_4"; + Names[RTLIB::ATOMIC_FETCH_XOR_8] = "__atomic_fetch_xor_8"; + Names[RTLIB::ATOMIC_FETCH_XOR_16] = "__atomic_fetch_xor_16"; + Names[RTLIB::ATOMIC_FETCH_NAND_1] = "__atomic_fetch_nand_1"; + Names[RTLIB::ATOMIC_FETCH_NAND_2] = "__atomic_fetch_nand_2"; + Names[RTLIB::ATOMIC_FETCH_NAND_4] = "__atomic_fetch_nand_4"; + Names[RTLIB::ATOMIC_FETCH_NAND_8] = "__atomic_fetch_nand_8"; + Names[RTLIB::ATOMIC_FETCH_NAND_16] = "__atomic_fetch_nand_16"; + + if (TT.isGNUEnvironment()) { + Names[RTLIB::SINCOS_F32] = "sincosf"; + Names[RTLIB::SINCOS_F64] = "sincos"; + Names[RTLIB::SINCOS_F80] = "sincosl"; + Names[RTLIB::SINCOS_F128] = "sincosl"; + Names[RTLIB::SINCOS_PPCF128] = "sincosl"; + } + + if (!TT.isOSOpenBSD()) { + Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail"; + } + + Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize"; +} + +/// Set default libcall CallingConvs. +static void InitLibcallCallingConvs(CallingConv::ID *CCs) { + for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) + CCs[LC] = CallingConv::C; +} + +/// getFPEXT - Return the FPEXT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::f16) { + if (RetVT == MVT::f32) + return FPEXT_F16_F32; + } else if (OpVT == MVT::f32) { + if (RetVT == MVT::f64) + return FPEXT_F32_F64; + if (RetVT == MVT::f128) + return FPEXT_F32_F128; + if (RetVT == MVT::ppcf128) + return FPEXT_F32_PPCF128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::f128) + return FPEXT_F64_F128; + else if (RetVT == MVT::ppcf128) + return FPEXT_F64_PPCF128; + } + + return UNKNOWN_LIBCALL; +} + +/// getFPROUND - Return the FPROUND_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { + if (RetVT == MVT::f16) { + if (OpVT == MVT::f32) + return FPROUND_F32_F16; + if (OpVT == MVT::f64) + return FPROUND_F64_F16; + if (OpVT == MVT::f80) + return FPROUND_F80_F16; + if (OpVT == MVT::f128) + return FPROUND_F128_F16; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F16; + } else if (RetVT == MVT::f32) { + if (OpVT == MVT::f64) + return FPROUND_F64_F32; + if (OpVT == MVT::f80) + return FPROUND_F80_F32; + if (OpVT == MVT::f128) + return FPROUND_F128_F32; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F32; + } else if (RetVT == MVT::f64) { + if (OpVT == MVT::f80) + return FPROUND_F80_F64; + if (OpVT == MVT::f128) + return FPROUND_F128_F64; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F64; + } + + return UNKNOWN_LIBCALL; +} + +/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::f32) { + if (RetVT == MVT::i32) + return FPTOSINT_F32_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F32_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F32_I128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::i32) + return FPTOSINT_F64_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F64_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F64_I128; + } else if (OpVT == MVT::f80) { + if (RetVT == MVT::i32) + return FPTOSINT_F80_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F80_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F80_I128; + } else if (OpVT == MVT::f128) { + if (RetVT == MVT::i32) + return FPTOSINT_F128_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F128_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F128_I128; + } else if (OpVT == MVT::ppcf128) { + if (RetVT == MVT::i32) + return FPTOSINT_PPCF128_I32; + if (RetVT == MVT::i64) + return FPTOSINT_PPCF128_I64; + if (RetVT == MVT::i128) + return FPTOSINT_PPCF128_I128; + } + return UNKNOWN_LIBCALL; +} + +/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::f32) { + if (RetVT == MVT::i32) + return FPTOUINT_F32_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F32_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F32_I128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::i32) + return FPTOUINT_F64_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F64_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F64_I128; + } else if (OpVT == MVT::f80) { + if (RetVT == MVT::i32) + return FPTOUINT_F80_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F80_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F80_I128; + } else if (OpVT == MVT::f128) { + if (RetVT == MVT::i32) + return FPTOUINT_F128_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F128_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F128_I128; + } else if (OpVT == MVT::ppcf128) { + if (RetVT == MVT::i32) + return FPTOUINT_PPCF128_I32; + if (RetVT == MVT::i64) + return FPTOUINT_PPCF128_I64; + if (RetVT == MVT::i128) + return FPTOUINT_PPCF128_I128; + } + return UNKNOWN_LIBCALL; +} + +/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::i32) { + if (RetVT == MVT::f32) + return SINTTOFP_I32_F32; + if (RetVT == MVT::f64) + return SINTTOFP_I32_F64; + if (RetVT == MVT::f80) + return SINTTOFP_I32_F80; + if (RetVT == MVT::f128) + return SINTTOFP_I32_F128; + if (RetVT == MVT::ppcf128) + return SINTTOFP_I32_PPCF128; + } else if (OpVT == MVT::i64) { + if (RetVT == MVT::f32) + return SINTTOFP_I64_F32; + if (RetVT == MVT::f64) + return SINTTOFP_I64_F64; + if (RetVT == MVT::f80) + return SINTTOFP_I64_F80; + if (RetVT == MVT::f128) + return SINTTOFP_I64_F128; + if (RetVT == MVT::ppcf128) + return SINTTOFP_I64_PPCF128; + } else if (OpVT == MVT::i128) { + if (RetVT == MVT::f32) + return SINTTOFP_I128_F32; + if (RetVT == MVT::f64) + return SINTTOFP_I128_F64; + if (RetVT == MVT::f80) + return SINTTOFP_I128_F80; + if (RetVT == MVT::f128) + return SINTTOFP_I128_F128; + if (RetVT == MVT::ppcf128) + return SINTTOFP_I128_PPCF128; + } + return UNKNOWN_LIBCALL; +} + +/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::i32) { + if (RetVT == MVT::f32) + return UINTTOFP_I32_F32; + if (RetVT == MVT::f64) + return UINTTOFP_I32_F64; + if (RetVT == MVT::f80) + return UINTTOFP_I32_F80; + if (RetVT == MVT::f128) + return UINTTOFP_I32_F128; + if (RetVT == MVT::ppcf128) + return UINTTOFP_I32_PPCF128; + } else if (OpVT == MVT::i64) { + if (RetVT == MVT::f32) + return UINTTOFP_I64_F32; + if (RetVT == MVT::f64) + return UINTTOFP_I64_F64; + if (RetVT == MVT::f80) + return UINTTOFP_I64_F80; + if (RetVT == MVT::f128) + return UINTTOFP_I64_F128; + if (RetVT == MVT::ppcf128) + return UINTTOFP_I64_PPCF128; + } else if (OpVT == MVT::i128) { + if (RetVT == MVT::f32) + return UINTTOFP_I128_F32; + if (RetVT == MVT::f64) + return UINTTOFP_I128_F64; + if (RetVT == MVT::f80) + return UINTTOFP_I128_F80; + if (RetVT == MVT::f128) + return UINTTOFP_I128_F128; + if (RetVT == MVT::ppcf128) + return UINTTOFP_I128_PPCF128; + } + return UNKNOWN_LIBCALL; +} + +RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { +#define OP_TO_LIBCALL(Name, Enum) \ + case Name: \ + switch (VT.SimpleTy) { \ + default: \ + return UNKNOWN_LIBCALL; \ + case MVT::i8: \ + return Enum##_1; \ + case MVT::i16: \ + return Enum##_2; \ + case MVT::i32: \ + return Enum##_4; \ + case MVT::i64: \ + return Enum##_8; \ + case MVT::i128: \ + return Enum##_16; \ + } + + switch (Opc) { + OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) + OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) + OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) + } + +#undef OP_TO_LIBCALL + + return UNKNOWN_LIBCALL; +} + +RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_ATOMIC(uint64_t ElementSize) { + switch (ElementSize) { + case 1: + return MEMCPY_ELEMENT_ATOMIC_1; + case 2: + return MEMCPY_ELEMENT_ATOMIC_2; + case 4: + return MEMCPY_ELEMENT_ATOMIC_4; + case 8: + return MEMCPY_ELEMENT_ATOMIC_8; + case 16: + return MEMCPY_ELEMENT_ATOMIC_16; + default: + return UNKNOWN_LIBCALL; + } + +} + +/// InitCmpLibcallCCs - Set default comparison libcall CC. +/// +static void InitCmpLibcallCCs(ISD::CondCode *CCs) { + memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); + CCs[RTLIB::OEQ_F32] = ISD::SETEQ; + CCs[RTLIB::OEQ_F64] = ISD::SETEQ; + CCs[RTLIB::OEQ_F128] = ISD::SETEQ; + CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; + CCs[RTLIB::UNE_F32] = ISD::SETNE; + CCs[RTLIB::UNE_F64] = ISD::SETNE; + CCs[RTLIB::UNE_F128] = ISD::SETNE; + CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; + CCs[RTLIB::OGE_F32] = ISD::SETGE; + CCs[RTLIB::OGE_F64] = ISD::SETGE; + CCs[RTLIB::OGE_F128] = ISD::SETGE; + CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; + CCs[RTLIB::OLT_F32] = ISD::SETLT; + CCs[RTLIB::OLT_F64] = ISD::SETLT; + CCs[RTLIB::OLT_F128] = ISD::SETLT; + CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; + CCs[RTLIB::OLE_F32] = ISD::SETLE; + CCs[RTLIB::OLE_F64] = ISD::SETLE; + CCs[RTLIB::OLE_F128] = ISD::SETLE; + CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; + CCs[RTLIB::OGT_F32] = ISD::SETGT; + CCs[RTLIB::OGT_F64] = ISD::SETGT; + CCs[RTLIB::OGT_F128] = ISD::SETGT; + CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; + CCs[RTLIB::UO_F32] = ISD::SETNE; + CCs[RTLIB::UO_F64] = ISD::SETNE; + CCs[RTLIB::UO_F128] = ISD::SETNE; + CCs[RTLIB::UO_PPCF128] = ISD::SETNE; + CCs[RTLIB::O_F32] = ISD::SETEQ; + CCs[RTLIB::O_F64] = ISD::SETEQ; + CCs[RTLIB::O_F128] = ISD::SETEQ; + CCs[RTLIB::O_PPCF128] = ISD::SETEQ; +} + +/// NOTE: The TargetMachine owns TLOF. +TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { + initActions(); + + // Perform these initializations only once. + MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = + MaxLoadsPerMemcmp = 8; + MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = + MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; + UseUnderscoreSetJmp = false; + UseUnderscoreLongJmp = false; + HasMultipleConditionRegisters = false; + HasExtractBitsInsn = false; + JumpIsExpensive = JumpIsExpensiveOverride; + PredictableSelectIsExpensive = false; + EnableExtLdPromotion = false; + HasFloatingPointExceptions = true; + StackPointerRegisterToSaveRestore = 0; + BooleanContents = UndefinedBooleanContent; + BooleanFloatContents = UndefinedBooleanContent; + BooleanVectorContents = UndefinedBooleanContent; + SchedPreferenceInfo = Sched::ILP; + JumpBufSize = 0; + JumpBufAlignment = 0; + MinFunctionAlignment = 0; + PrefFunctionAlignment = 0; + PrefLoopAlignment = 0; + GatherAllAliasesMaxDepth = 18; + MinStackArgumentAlignment = 1; + // TODO: the default will be switched to 0 in the next commit, along + // with the Target-specific changes necessary. + MaxAtomicSizeInBitsSupported = 1024; + + MinCmpXchgSizeInBits = 0; + + std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); + + InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple()); + InitCmpLibcallCCs(CmpLibcallCCs); + InitLibcallCallingConvs(LibcallCallingConvs); +} + +void TargetLoweringBase::initActions() { + // All operations default to being supported. + memset(OpActions, 0, sizeof(OpActions)); + memset(LoadExtActions, 0, sizeof(LoadExtActions)); + memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); + memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); + memset(CondCodeActions, 0, sizeof(CondCodeActions)); + std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); + std::fill(std::begin(TargetDAGCombineArray), + std::end(TargetDAGCombineArray), 0); + + // Set default actions for various operations. + for (MVT VT : MVT::all_valuetypes()) { + // Default all indexed load / store to expand. + for (unsigned IM = (unsigned)ISD::PRE_INC; + IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { + setIndexedLoadAction(IM, VT, Expand); + setIndexedStoreAction(IM, VT, Expand); + } + + // Most backends expect to see the node which just returns the value loaded. + setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); + + // These operations default to expand. + setOperationAction(ISD::FGETSIGN, VT, Expand); + setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); + setOperationAction(ISD::FMINNUM, VT, Expand); + setOperationAction(ISD::FMAXNUM, VT, Expand); + setOperationAction(ISD::FMINNAN, VT, Expand); + setOperationAction(ISD::FMAXNAN, VT, Expand); + setOperationAction(ISD::FMAD, VT, Expand); + setOperationAction(ISD::SMIN, VT, Expand); + setOperationAction(ISD::SMAX, VT, Expand); + setOperationAction(ISD::UMIN, VT, Expand); + setOperationAction(ISD::UMAX, VT, Expand); + setOperationAction(ISD::ABS, VT, Expand); + + // Overflow operations default to expand + setOperationAction(ISD::SADDO, VT, Expand); + setOperationAction(ISD::SSUBO, VT, Expand); + setOperationAction(ISD::UADDO, VT, Expand); + setOperationAction(ISD::USUBO, VT, Expand); + setOperationAction(ISD::SMULO, VT, Expand); + setOperationAction(ISD::UMULO, VT, Expand); + + // ADDCARRY operations default to expand + setOperationAction(ISD::ADDCARRY, VT, Expand); + setOperationAction(ISD::SUBCARRY, VT, Expand); + setOperationAction(ISD::SETCCCARRY, VT, Expand); + + // These default to Expand so they will be expanded to CTLZ/CTTZ by default. + setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); + + setOperationAction(ISD::BITREVERSE, VT, Expand); + + // These library functions default to expand. + setOperationAction(ISD::FROUND, VT, Expand); + setOperationAction(ISD::FPOWI, VT, Expand); + + // These operations default to expand for vector types. + if (VT.isVector()) { + setOperationAction(ISD::FCOPYSIGN, VT, Expand); + setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); + setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); + } + + // For most targets @llvm.get.dynamic.area.offset just returns 0. + setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); + } + + // Most targets ignore the @llvm.prefetch intrinsic. + setOperationAction(ISD::PREFETCH, MVT::Other, Expand); + + // Most targets also ignore the @llvm.readcyclecounter intrinsic. + setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); + + // ConstantFP nodes default to expand. Targets can either change this to + // Legal, in which case all fp constants are legal, or use isFPImmLegal() + // to optimize expansions for certain constants. + setOperationAction(ISD::ConstantFP, MVT::f16, Expand); + setOperationAction(ISD::ConstantFP, MVT::f32, Expand); + setOperationAction(ISD::ConstantFP, MVT::f64, Expand); + setOperationAction(ISD::ConstantFP, MVT::f80, Expand); + setOperationAction(ISD::ConstantFP, MVT::f128, Expand); + + // These library functions default to expand. + for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { + setOperationAction(ISD::FLOG , VT, Expand); + setOperationAction(ISD::FLOG2, VT, Expand); + setOperationAction(ISD::FLOG10, VT, Expand); + setOperationAction(ISD::FEXP , VT, Expand); + setOperationAction(ISD::FEXP2, VT, Expand); + setOperationAction(ISD::FFLOOR, VT, Expand); + setOperationAction(ISD::FNEARBYINT, VT, Expand); + setOperationAction(ISD::FCEIL, VT, Expand); + setOperationAction(ISD::FRINT, VT, Expand); + setOperationAction(ISD::FTRUNC, VT, Expand); + setOperationAction(ISD::FROUND, VT, Expand); + } + + // Default ISD::TRAP to expand (which turns it into abort). + setOperationAction(ISD::TRAP, MVT::Other, Expand); + + // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" + // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. + // + setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); +} + +MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, + EVT) const { + return MVT::getIntegerVT(8 * DL.getPointerSize(0)); +} + +EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, + const DataLayout &DL) const { + assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); + if (LHSTy.isVector()) + return LHSTy; + return getScalarShiftAmountTy(DL, LHSTy); +} + +bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { + assert(isTypeLegal(VT)); + switch (Op) { + default: + return false; + case ISD::SDIV: + case ISD::UDIV: + case ISD::SREM: + case ISD::UREM: + return true; + } +} + +void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { + // If the command-line option was specified, ignore this request. + if (!JumpIsExpensiveOverride.getNumOccurrences()) + JumpIsExpensive = isExpensive; +} + +TargetLoweringBase::LegalizeKind +TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { + // If this is a simple type, use the ComputeRegisterProp mechanism. + if (VT.isSimple()) { + MVT SVT = VT.getSimpleVT(); + assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); + MVT NVT = TransformToType[SVT.SimpleTy]; + LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); + + assert((LA == TypeLegal || LA == TypeSoftenFloat || + ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && + "Promote may not follow Expand or Promote"); + + if (LA == TypeSplitVector) + return LegalizeKind(LA, + EVT::getVectorVT(Context, SVT.getVectorElementType(), + SVT.getVectorNumElements() / 2)); + if (LA == TypeScalarizeVector) + return LegalizeKind(LA, SVT.getVectorElementType()); + return LegalizeKind(LA, NVT); + } + + // Handle Extended Scalar Types. + if (!VT.isVector()) { + assert(VT.isInteger() && "Float types must be simple"); + unsigned BitSize = VT.getSizeInBits(); + // First promote to a power-of-two size, then expand if necessary. + if (BitSize < 8 || !isPowerOf2_32(BitSize)) { + EVT NVT = VT.getRoundIntegerType(Context); + assert(NVT != VT && "Unable to round integer VT"); + LegalizeKind NextStep = getTypeConversion(Context, NVT); + // Avoid multi-step promotion. + if (NextStep.first == TypePromoteInteger) + return NextStep; + // Return rounded integer type. + return LegalizeKind(TypePromoteInteger, NVT); + } + + return LegalizeKind(TypeExpandInteger, + EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); + } + + // Handle vector types. + unsigned NumElts = VT.getVectorNumElements(); + EVT EltVT = VT.getVectorElementType(); + + // Vectors with only one element are always scalarized. + if (NumElts == 1) + return LegalizeKind(TypeScalarizeVector, EltVT); + + // Try to widen vector elements until the element type is a power of two and + // promote it to a legal type later on, for example: + // <3 x i8> -> <4 x i8> -> <4 x i32> + if (EltVT.isInteger()) { + // Vectors with a number of elements that is not a power of two are always + // widened, for example <3 x i8> -> <4 x i8>. + if (!VT.isPow2VectorType()) { + NumElts = (unsigned)NextPowerOf2(NumElts); + EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); + return LegalizeKind(TypeWidenVector, NVT); + } + + // Examine the element type. + LegalizeKind LK = getTypeConversion(Context, EltVT); + + // If type is to be expanded, split the vector. + // <4 x i140> -> <2 x i140> + if (LK.first == TypeExpandInteger) + return LegalizeKind(TypeSplitVector, + EVT::getVectorVT(Context, EltVT, NumElts / 2)); + + // Promote the integer element types until a legal vector type is found + // or until the element integer type is too big. If a legal type was not + // found, fallback to the usual mechanism of widening/splitting the + // vector. + EVT OldEltVT = EltVT; + while (1) { + // Increase the bitwidth of the element to the next pow-of-two + // (which is greater than 8 bits). + EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) + .getRoundIntegerType(Context); + + // Stop trying when getting a non-simple element type. + // Note that vector elements may be greater than legal vector element + // types. Example: X86 XMM registers hold 64bit element on 32bit + // systems. + if (!EltVT.isSimple()) + break; + + // Build a new vector type and check if it is legal. + MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); + // Found a legal promoted vector type. + if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) + return LegalizeKind(TypePromoteInteger, + EVT::getVectorVT(Context, EltVT, NumElts)); + } + + // Reset the type to the unexpanded type if we did not find a legal vector + // type with a promoted vector element type. + EltVT = OldEltVT; + } + + // Try to widen the vector until a legal type is found. + // If there is no wider legal type, split the vector. + while (1) { + // Round up to the next power of 2. + NumElts = (unsigned)NextPowerOf2(NumElts); + + // If there is no simple vector type with this many elements then there + // cannot be a larger legal vector type. Note that this assumes that + // there are no skipped intermediate vector types in the simple types. + if (!EltVT.isSimple()) + break; + MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); + if (LargerVector == MVT()) + break; + + // If this type is legal then widen the vector. + if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) + return LegalizeKind(TypeWidenVector, LargerVector); + } + + // Widen odd vectors to next power of two. + if (!VT.isPow2VectorType()) { + EVT NVT = VT.getPow2VectorType(Context); + return LegalizeKind(TypeWidenVector, NVT); + } + + // Vectors with illegal element types are expanded. + EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); + return LegalizeKind(TypeSplitVector, NVT); +} + +static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, + unsigned &NumIntermediates, + MVT &RegisterVT, + TargetLoweringBase *TLI) { + // Figure out the right, legal destination reg to copy into. + unsigned NumElts = VT.getVectorNumElements(); + MVT EltTy = VT.getVectorElementType(); + + unsigned NumVectorRegs = 1; + + // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we + // could break down into LHS/RHS like LegalizeDAG does. + if (!isPowerOf2_32(NumElts)) { + NumVectorRegs = NumElts; + NumElts = 1; + } + + // Divide the input until we get to a supported size. This will always + // end with a scalar if the target doesn't support vectors. + while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { + NumElts >>= 1; + NumVectorRegs <<= 1; + } + + NumIntermediates = NumVectorRegs; + + MVT NewVT = MVT::getVectorVT(EltTy, NumElts); + if (!TLI->isTypeLegal(NewVT)) + NewVT = EltTy; + IntermediateVT = NewVT; + + unsigned NewVTSize = NewVT.getSizeInBits(); + + // Convert sizes such as i33 to i64. + if (!isPowerOf2_32(NewVTSize)) + NewVTSize = NextPowerOf2(NewVTSize); + + MVT DestVT = TLI->getRegisterType(NewVT); + RegisterVT = DestVT; + if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. + return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); + + // Otherwise, promotion or legal types use the same number of registers as + // the vector decimated to the appropriate level. + return NumVectorRegs; +} + +/// isLegalRC - Return true if the value types that can be represented by the +/// specified register class are all legal. +bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, + const TargetRegisterClass &RC) const { + for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) + if (isTypeLegal(*I)) + return true; + return false; +} + +/// Replace/modify any TargetFrameIndex operands with a targte-dependent +/// sequence of memory operands that is recognized by PrologEpilogInserter. +MachineBasicBlock * +TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, + MachineBasicBlock *MBB) const { + MachineInstr *MI = &InitialMI; + MachineFunction &MF = *MI->getParent()->getParent(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + + // We're handling multiple types of operands here: + // PATCHPOINT MetaArgs - live-in, read only, direct + // STATEPOINT Deopt Spill - live-through, read only, indirect + // STATEPOINT Deopt Alloca - live-through, read only, direct + // (We're currently conservative and mark the deopt slots read/write in + // practice.) + // STATEPOINT GC Spill - live-through, read/write, indirect + // STATEPOINT GC Alloca - live-through, read/write, direct + // The live-in vs live-through is handled already (the live through ones are + // all stack slots), but we need to handle the different type of stackmap + // operands and memory effects here. + + // MI changes inside this loop as we grow operands. + for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { + MachineOperand &MO = MI->getOperand(OperIdx); + if (!MO.isFI()) + continue; + + // foldMemoryOperand builds a new MI after replacing a single FI operand + // with the canonical set of five x86 addressing-mode operands. + int FI = MO.getIndex(); + MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); + + // Copy operands before the frame-index. + for (unsigned i = 0; i < OperIdx; ++i) + MIB.add(MI->getOperand(i)); + // Add frame index operands recognized by stackmaps.cpp + if (MFI.isStatepointSpillSlotObjectIndex(FI)) { + // indirect-mem-ref tag, size, #FI, offset. + // Used for spills inserted by StatepointLowering. This codepath is not + // used for patchpoints/stackmaps at all, for these spilling is done via + // foldMemoryOperand callback only. + assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); + MIB.addImm(StackMaps::IndirectMemRefOp); + MIB.addImm(MFI.getObjectSize(FI)); + MIB.add(MI->getOperand(OperIdx)); + MIB.addImm(0); + } else { + // direct-mem-ref tag, #FI, offset. + // Used by patchpoint, and direct alloca arguments to statepoints + MIB.addImm(StackMaps::DirectMemRefOp); + MIB.add(MI->getOperand(OperIdx)); + MIB.addImm(0); + } + // Copy the operands after the frame index. + for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) + MIB.add(MI->getOperand(i)); + + // Inherit previous memory operands. + MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); + assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); + + // Add a new memory operand for this FI. + assert(MFI.getObjectOffset(FI) != -1); + + auto Flags = MachineMemOperand::MOLoad; + if (MI->getOpcode() == TargetOpcode::STATEPOINT) { + Flags |= MachineMemOperand::MOStore; + Flags |= MachineMemOperand::MOVolatile; + } + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo::getFixedStack(MF, FI), Flags, + MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); + MIB->addMemOperand(MF, MMO); + + // Replace the instruction and update the operand index. + MBB->insert(MachineBasicBlock::iterator(MI), MIB); + OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; + MI->eraseFromParent(); + MI = MIB; + } + return MBB; +} + +/// findRepresentativeClass - Return the largest legal super-reg register class +/// of the register class for the specified type and its associated "cost". +// This function is in TargetLowering because it uses RegClassForVT which would +// need to be moved to TargetRegisterInfo and would necessitate moving +// isTypeLegal over as well - a massive change that would just require +// TargetLowering having a TargetRegisterInfo class member that it would use. +std::pair<const TargetRegisterClass *, uint8_t> +TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, + MVT VT) const { + const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; + if (!RC) + return std::make_pair(RC, 0); + + // Compute the set of all super-register classes. + BitVector SuperRegRC(TRI->getNumRegClasses()); + for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) + SuperRegRC.setBitsInMask(RCI.getMask()); + + // Find the first legal register class with the largest spill size. + const TargetRegisterClass *BestRC = RC; + for (unsigned i : SuperRegRC.set_bits()) { + const TargetRegisterClass *SuperRC = TRI->getRegClass(i); + // We want the largest possible spill size. + if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) + continue; + if (!isLegalRC(*TRI, *SuperRC)) + continue; + BestRC = SuperRC; + } + return std::make_pair(BestRC, 1); +} + +/// computeRegisterProperties - Once all of the register classes are added, +/// this allows us to compute derived properties we expose. +void TargetLoweringBase::computeRegisterProperties( + const TargetRegisterInfo *TRI) { + static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, + "Too many value types for ValueTypeActions to hold!"); + + // Everything defaults to needing one register. + for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { + NumRegistersForVT[i] = 1; + RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; + } + // ...except isVoid, which doesn't need any registers. + NumRegistersForVT[MVT::isVoid] = 0; + + // Find the largest integer register class. + unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; + for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) + assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); + + // Every integer value type larger than this largest register takes twice as + // many registers to represent as the previous ValueType. + for (unsigned ExpandedReg = LargestIntReg + 1; + ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { + NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; + RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; + TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); + ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, + TypeExpandInteger); + } + + // Inspect all of the ValueType's smaller than the largest integer + // register to see which ones need promotion. + unsigned LegalIntReg = LargestIntReg; + for (unsigned IntReg = LargestIntReg - 1; + IntReg >= (unsigned)MVT::i1; --IntReg) { + MVT IVT = (MVT::SimpleValueType)IntReg; + if (isTypeLegal(IVT)) { + LegalIntReg = IntReg; + } else { + RegisterTypeForVT[IntReg] = TransformToType[IntReg] = + (const MVT::SimpleValueType)LegalIntReg; + ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); + } + } + + // ppcf128 type is really two f64's. + if (!isTypeLegal(MVT::ppcf128)) { + if (isTypeLegal(MVT::f64)) { + NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; + RegisterTypeForVT[MVT::ppcf128] = MVT::f64; + TransformToType[MVT::ppcf128] = MVT::f64; + ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); + } else { + NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; + RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; + TransformToType[MVT::ppcf128] = MVT::i128; + ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); + } + } + + // Decide how to handle f128. If the target does not have native f128 support, + // expand it to i128 and we will be generating soft float library calls. + if (!isTypeLegal(MVT::f128)) { + NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; + RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; + TransformToType[MVT::f128] = MVT::i128; + ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); + } + + // Decide how to handle f64. If the target does not have native f64 support, + // expand it to i64 and we will be generating soft float library calls. + if (!isTypeLegal(MVT::f64)) { + NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; + RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; + TransformToType[MVT::f64] = MVT::i64; + ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); + } + + // Decide how to handle f32. If the target does not have native f32 support, + // expand it to i32 and we will be generating soft float library calls. + if (!isTypeLegal(MVT::f32)) { + NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; + RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; + TransformToType[MVT::f32] = MVT::i32; + ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); + } + + // Decide how to handle f16. If the target does not have native f16 support, + // promote it to f32, because there are no f16 library calls (except for + // conversions). + if (!isTypeLegal(MVT::f16)) { + NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; + RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; + TransformToType[MVT::f16] = MVT::f32; + ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); + } + + // Loop over all of the vector value types to see which need transformations. + for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; + i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { + MVT VT = (MVT::SimpleValueType) i; + if (isTypeLegal(VT)) + continue; + + MVT EltVT = VT.getVectorElementType(); + unsigned NElts = VT.getVectorNumElements(); + bool IsLegalWiderType = false; + LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); + switch (PreferredAction) { + case TypePromoteInteger: { + // Try to promote the elements of integer vectors. If no legal + // promotion was found, fall through to the widen-vector method. + for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) { + MVT SVT = (MVT::SimpleValueType) nVT; + // Promote vectors of integers to vectors with the same number + // of elements, with a wider element type. + if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && + SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) { + TransformToType[i] = SVT; + RegisterTypeForVT[i] = SVT; + NumRegistersForVT[i] = 1; + ValueTypeActions.setTypeAction(VT, TypePromoteInteger); + IsLegalWiderType = true; + break; + } + } + if (IsLegalWiderType) + break; + LLVM_FALLTHROUGH; + } + case TypeWidenVector: { + // Try to widen the vector. + for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { + MVT SVT = (MVT::SimpleValueType) nVT; + if (SVT.getVectorElementType() == EltVT + && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { + TransformToType[i] = SVT; + RegisterTypeForVT[i] = SVT; + NumRegistersForVT[i] = 1; + ValueTypeActions.setTypeAction(VT, TypeWidenVector); + IsLegalWiderType = true; + break; + } + } + if (IsLegalWiderType) + break; + LLVM_FALLTHROUGH; + } + case TypeSplitVector: + case TypeScalarizeVector: { + MVT IntermediateVT; + MVT RegisterVT; + unsigned NumIntermediates; + NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, + NumIntermediates, RegisterVT, this); + RegisterTypeForVT[i] = RegisterVT; + + MVT NVT = VT.getPow2VectorType(); + if (NVT == VT) { + // Type is already a power of 2. The default action is to split. + TransformToType[i] = MVT::Other; + if (PreferredAction == TypeScalarizeVector) + ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); + else if (PreferredAction == TypeSplitVector) + ValueTypeActions.setTypeAction(VT, TypeSplitVector); + else + // Set type action according to the number of elements. + ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector + : TypeSplitVector); + } else { + TransformToType[i] = NVT; + ValueTypeActions.setTypeAction(VT, TypeWidenVector); + } + break; + } + default: + llvm_unreachable("Unknown vector legalization action!"); + } + } + + // Determine the 'representative' register class for each value type. + // An representative register class is the largest (meaning one which is + // not a sub-register class / subreg register class) legal register class for + // a group of value types. For example, on i386, i8, i16, and i32 + // representative would be GR32; while on x86_64 it's GR64. + for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { + const TargetRegisterClass* RRC; + uint8_t Cost; + std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); + RepRegClassForVT[i] = RRC; + RepRegClassCostForVT[i] = Cost; + } +} + +EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, + EVT VT) const { + assert(!VT.isVector() && "No default SetCC type for vectors!"); + return getPointerTy(DL).SimpleTy; +} + +MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { + return MVT::i32; // return the default value +} + +/// getVectorTypeBreakdown - Vector types are broken down into some number of +/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 +/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. +/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. +/// +/// This method returns the number of registers needed, and the VT for each +/// register. It also returns the VT and quantity of the intermediate values +/// before they are promoted/expanded. +/// +unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, + EVT &IntermediateVT, + unsigned &NumIntermediates, + MVT &RegisterVT) const { + unsigned NumElts = VT.getVectorNumElements(); + + // If there is a wider vector type with the same element type as this one, + // or a promoted vector type that has the same number of elements which + // are wider, then we should convert to that legal vector type. + // This handles things like <2 x float> -> <4 x float> and + // <4 x i1> -> <4 x i32>. + LegalizeTypeAction TA = getTypeAction(Context, VT); + if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { + EVT RegisterEVT = getTypeToTransformTo(Context, VT); + if (isTypeLegal(RegisterEVT)) { + IntermediateVT = RegisterEVT; + RegisterVT = RegisterEVT.getSimpleVT(); + NumIntermediates = 1; + return 1; + } + } + + // Figure out the right, legal destination reg to copy into. + EVT EltTy = VT.getVectorElementType(); + + unsigned NumVectorRegs = 1; + + // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we + // could break down into LHS/RHS like LegalizeDAG does. + if (!isPowerOf2_32(NumElts)) { + NumVectorRegs = NumElts; + NumElts = 1; + } + + // Divide the input until we get to a supported size. This will always + // end with a scalar if the target doesn't support vectors. + while (NumElts > 1 && !isTypeLegal( + EVT::getVectorVT(Context, EltTy, NumElts))) { + NumElts >>= 1; + NumVectorRegs <<= 1; + } + + NumIntermediates = NumVectorRegs; + + EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); + if (!isTypeLegal(NewVT)) + NewVT = EltTy; + IntermediateVT = NewVT; + + MVT DestVT = getRegisterType(Context, NewVT); + RegisterVT = DestVT; + unsigned NewVTSize = NewVT.getSizeInBits(); + + // Convert sizes such as i33 to i64. + if (!isPowerOf2_32(NewVTSize)) + NewVTSize = NextPowerOf2(NewVTSize); + + if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. + return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); + + // Otherwise, promotion or legal types use the same number of registers as + // the vector decimated to the appropriate level. + return NumVectorRegs; +} + +/// Get the EVTs and ArgFlags collections that represent the legalized return +/// type of the given function. This does not require a DAG or a return value, +/// and is suitable for use before any DAGs for the function are constructed. +/// TODO: Move this out of TargetLowering.cpp. +void llvm::GetReturnInfo(Type *ReturnType, AttributeList attr, + SmallVectorImpl<ISD::OutputArg> &Outs, + const TargetLowering &TLI, const DataLayout &DL) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) return; + + for (unsigned j = 0, f = NumValues; j != f; ++j) { + EVT VT = ValueVTs[j]; + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) + ExtendKind = ISD::SIGN_EXTEND; + else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) + ExtendKind = ISD::ZERO_EXTEND; + + // FIXME: C calling convention requires the return type to be promoted to + // at least 32-bit. But this is not necessary for non-C calling + // conventions. The frontend should mark functions whose return values + // require promoting with signext or zeroext attributes. + if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { + MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); + if (VT.bitsLT(MinVT)) + VT = MinVT; + } + + unsigned NumParts = + TLI.getNumRegistersForCallingConv(ReturnType->getContext(), VT); + MVT PartVT = + TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), VT); + + // 'inreg' on function refers to return value + ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); + if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) + Flags.setInReg(); + + // Propagate extension type if any + if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) + Flags.setSExt(); + else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) + Flags.setZExt(); + + for (unsigned i = 0; i < NumParts; ++i) + Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); + } +} + +/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate +/// function arguments in the caller parameter area. This is the actual +/// alignment, not its logarithm. +unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, + const DataLayout &DL) const { + return DL.getABITypeAlignment(Ty); +} + +bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, + const DataLayout &DL, EVT VT, + unsigned AddrSpace, + unsigned Alignment, + bool *Fast) const { + // Check if the specified alignment is sufficient based on the data layout. + // TODO: While using the data layout works in practice, a better solution + // would be to implement this check directly (make this a virtual function). + // For example, the ABI alignment may change based on software platform while + // this function should only be affected by hardware implementation. + Type *Ty = VT.getTypeForEVT(Context); + if (Alignment >= DL.getABITypeAlignment(Ty)) { + // Assume that an access that meets the ABI-specified alignment is fast. + if (Fast != nullptr) + *Fast = true; + return true; + } + + // This is a misaligned access. + return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast); +} + +BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { + return BranchProbability(MinPercentageForPredictableBranch, 100); +} + +//===----------------------------------------------------------------------===// +// TargetTransformInfo Helpers +//===----------------------------------------------------------------------===// + +int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { + enum InstructionOpcodes { +#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, +#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM +#include "llvm/IR/Instruction.def" + }; + switch (static_cast<InstructionOpcodes>(Opcode)) { + case Ret: return 0; + case Br: return 0; + case Switch: return 0; + case IndirectBr: return 0; + case Invoke: return 0; + case Resume: return 0; + case Unreachable: return 0; + case CleanupRet: return 0; + case CatchRet: return 0; + case CatchPad: return 0; + case CatchSwitch: return 0; + case CleanupPad: return 0; + case Add: return ISD::ADD; + case FAdd: return ISD::FADD; + case Sub: return ISD::SUB; + case FSub: return ISD::FSUB; + case Mul: return ISD::MUL; + case FMul: return ISD::FMUL; + case UDiv: return ISD::UDIV; + case SDiv: return ISD::SDIV; + case FDiv: return ISD::FDIV; + case URem: return ISD::UREM; + case SRem: return ISD::SREM; + case FRem: return ISD::FREM; + case Shl: return ISD::SHL; + case LShr: return ISD::SRL; + case AShr: return ISD::SRA; + case And: return ISD::AND; + case Or: return ISD::OR; + case Xor: return ISD::XOR; + case Alloca: return 0; + case Load: return ISD::LOAD; + case Store: return ISD::STORE; + case GetElementPtr: return 0; + case Fence: return 0; + case AtomicCmpXchg: return 0; + case AtomicRMW: return 0; + case Trunc: return ISD::TRUNCATE; + case ZExt: return ISD::ZERO_EXTEND; + case SExt: return ISD::SIGN_EXTEND; + case FPToUI: return ISD::FP_TO_UINT; + case FPToSI: return ISD::FP_TO_SINT; + case UIToFP: return ISD::UINT_TO_FP; + case SIToFP: return ISD::SINT_TO_FP; + case FPTrunc: return ISD::FP_ROUND; + case FPExt: return ISD::FP_EXTEND; + case PtrToInt: return ISD::BITCAST; + case IntToPtr: return ISD::BITCAST; + case BitCast: return ISD::BITCAST; + case AddrSpaceCast: return ISD::ADDRSPACECAST; + case ICmp: return ISD::SETCC; + case FCmp: return ISD::SETCC; + case PHI: return 0; + case Call: return 0; + case Select: return ISD::SELECT; + case UserOp1: return 0; + case UserOp2: return 0; + case VAArg: return 0; + case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; + case InsertElement: return ISD::INSERT_VECTOR_ELT; + case ShuffleVector: return ISD::VECTOR_SHUFFLE; + case ExtractValue: return ISD::MERGE_VALUES; + case InsertValue: return ISD::MERGE_VALUES; + case LandingPad: return 0; + } + + llvm_unreachable("Unknown instruction type encountered!"); +} + +std::pair<int, MVT> +TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, + Type *Ty) const { + LLVMContext &C = Ty->getContext(); + EVT MTy = getValueType(DL, Ty); + + int Cost = 1; + // We keep legalizing the type until we find a legal kind. We assume that + // the only operation that costs anything is the split. After splitting + // we need to handle two types. + while (true) { + LegalizeKind LK = getTypeConversion(C, MTy); + + if (LK.first == TypeLegal) + return std::make_pair(Cost, MTy.getSimpleVT()); + + if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) + Cost *= 2; + + // Do not loop with f128 type. + if (MTy == LK.second) + return std::make_pair(Cost, MTy.getSimpleVT()); + + // Keep legalizing the type. + MTy = LK.second; + } +} + +Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, + bool UseTLS) const { + // compiler-rt provides a variable with a magic name. Targets that do not + // link with compiler-rt may also provide such a variable. + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; + auto UnsafeStackPtr = + dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); + + Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); + + if (!UnsafeStackPtr) { + auto TLSModel = UseTLS ? + GlobalValue::InitialExecTLSModel : + GlobalValue::NotThreadLocal; + // The global variable is not defined yet, define it ourselves. + // We use the initial-exec TLS model because we do not support the + // variable living anywhere other than in the main executable. + UnsafeStackPtr = new GlobalVariable( + *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, + UnsafeStackPtrVar, nullptr, TLSModel); + } else { + // The variable exists, check its type and attributes. + if (UnsafeStackPtr->getValueType() != StackPtrTy) + report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); + if (UseTLS != UnsafeStackPtr->isThreadLocal()) + report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + + (UseTLS ? "" : "not ") + "be thread-local"); + } + return UnsafeStackPtr; +} + +Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { + if (!TM.getTargetTriple().isAndroid()) + return getDefaultSafeStackPointerLocation(IRB, true); + + // Android provides a libc function to retrieve the address of the current + // thread's unsafe stack pointer. + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); + Value *Fn = M->getOrInsertFunction("__safestack_pointer_address", + StackPtrTy->getPointerTo(0)); + return IRB.CreateCall(Fn); +} + +//===----------------------------------------------------------------------===// +// Loop Strength Reduction hooks +//===----------------------------------------------------------------------===// + +/// isLegalAddressingMode - Return true if the addressing mode represented +/// by AM is legal for this target, for a load/store of the specified type. +bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // The default implementation of this implements a conservative RISCy, r+r and + // r+i addr mode. + + // Allows a sign-extended 16-bit immediate field. + if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) + return false; + + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + // Only support r+r, + switch (AM.Scale) { + case 0: // "r+i" or just "i", depending on HasBaseReg. + break; + case 1: + if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. + return false; + // Otherwise we have r+r or r+i. + break; + case 2: + if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. + return false; + // Allow 2*r as r+r. + break; + default: // Don't allow n * r + return false; + } + + return true; +} + +//===----------------------------------------------------------------------===// +// Stack Protector +//===----------------------------------------------------------------------===// + +// For OpenBSD return its special guard variable. Otherwise return nullptr, +// so that SelectionDAG handle SSP. +Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { + if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { + Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); + PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); + return M.getOrInsertGlobal("__guard_local", PtrTy); + } + return nullptr; +} + +// Currently only support "standard" __stack_chk_guard. +// TODO: add LOAD_STACK_GUARD support. +void TargetLoweringBase::insertSSPDeclarations(Module &M) const { + M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext())); +} + +// Currently only support "standard" __stack_chk_guard. +// TODO: add LOAD_STACK_GUARD support. +Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { + return M.getGlobalVariable("__stack_chk_guard", true); +} + +Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { + return nullptr; +} + +unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { + return MinimumJumpTableEntries; +} + +void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { + MinimumJumpTableEntries = Val; +} + +unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { + return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; +} + +unsigned TargetLoweringBase::getMaximumJumpTableSize() const { + return MaximumJumpTableSize; +} + +void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { + MaximumJumpTableSize = Val; +} + +//===----------------------------------------------------------------------===// +// Reciprocal Estimates +//===----------------------------------------------------------------------===// + +/// Get the reciprocal estimate attribute string for a function that will +/// override the target defaults. +static StringRef getRecipEstimateForFunc(MachineFunction &MF) { + const Function *F = MF.getFunction(); + return F->getFnAttribute("reciprocal-estimates").getValueAsString(); +} + +/// Construct a string for the given reciprocal operation of the given type. +/// This string should match the corresponding option to the front-end's +/// "-mrecip" flag assuming those strings have been passed through in an +/// attribute string. For example, "vec-divf" for a division of a vXf32. +static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { + std::string Name = VT.isVector() ? "vec-" : ""; + + Name += IsSqrt ? "sqrt" : "div"; + + // TODO: Handle "half" or other float types? + if (VT.getScalarType() == MVT::f64) { + Name += "d"; + } else { + assert(VT.getScalarType() == MVT::f32 && + "Unexpected FP type for reciprocal estimate"); + Name += "f"; + } + + return Name; +} + +/// Return the character position and value (a single numeric character) of a +/// customized refinement operation in the input string if it exists. Return +/// false if there is no customized refinement step count. +static bool parseRefinementStep(StringRef In, size_t &Position, + uint8_t &Value) { + const char RefStepToken = ':'; + Position = In.find(RefStepToken); + if (Position == StringRef::npos) + return false; + + StringRef RefStepString = In.substr(Position + 1); + // Allow exactly one numeric character for the additional refinement + // step parameter. + if (RefStepString.size() == 1) { + char RefStepChar = RefStepString[0]; + if (RefStepChar >= '0' && RefStepChar <= '9') { + Value = RefStepChar - '0'; + return true; + } + } + report_fatal_error("Invalid refinement step for -recip."); +} + +/// For the input attribute string, return one of the ReciprocalEstimate enum +/// status values (enabled, disabled, or not specified) for this operation on +/// the specified data type. +static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { + if (Override.empty()) + return TargetLoweringBase::ReciprocalEstimate::Unspecified; + + SmallVector<StringRef, 4> OverrideVector; + SplitString(Override, OverrideVector, ","); + unsigned NumArgs = OverrideVector.size(); + + // Check if "all", "none", or "default" was specified. + if (NumArgs == 1) { + // Look for an optional setting of the number of refinement steps needed + // for this type of reciprocal operation. + size_t RefPos; + uint8_t RefSteps; + if (parseRefinementStep(Override, RefPos, RefSteps)) { + // Split the string for further processing. + Override = Override.substr(0, RefPos); + } + + // All reciprocal types are enabled. + if (Override == "all") + return TargetLoweringBase::ReciprocalEstimate::Enabled; + + // All reciprocal types are disabled. + if (Override == "none") + return TargetLoweringBase::ReciprocalEstimate::Disabled; + + // Target defaults for enablement are used. + if (Override == "default") + return TargetLoweringBase::ReciprocalEstimate::Unspecified; + } + + // The attribute string may omit the size suffix ('f'/'d'). + std::string VTName = getReciprocalOpName(IsSqrt, VT); + std::string VTNameNoSize = VTName; + VTNameNoSize.pop_back(); + static const char DisabledPrefix = '!'; + + for (StringRef RecipType : OverrideVector) { + size_t RefPos; + uint8_t RefSteps; + if (parseRefinementStep(RecipType, RefPos, RefSteps)) + RecipType = RecipType.substr(0, RefPos); + + // Ignore the disablement token for string matching. + bool IsDisabled = RecipType[0] == DisabledPrefix; + if (IsDisabled) + RecipType = RecipType.substr(1); + + if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) + return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled + : TargetLoweringBase::ReciprocalEstimate::Enabled; + } + + return TargetLoweringBase::ReciprocalEstimate::Unspecified; +} + +/// For the input attribute string, return the customized refinement step count +/// for this operation on the specified data type. If the step count does not +/// exist, return the ReciprocalEstimate enum value for unspecified. +static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { + if (Override.empty()) + return TargetLoweringBase::ReciprocalEstimate::Unspecified; + + SmallVector<StringRef, 4> OverrideVector; + SplitString(Override, OverrideVector, ","); + unsigned NumArgs = OverrideVector.size(); + + // Check if "all", "default", or "none" was specified. + if (NumArgs == 1) { + // Look for an optional setting of the number of refinement steps needed + // for this type of reciprocal operation. + size_t RefPos; + uint8_t RefSteps; + if (!parseRefinementStep(Override, RefPos, RefSteps)) + return TargetLoweringBase::ReciprocalEstimate::Unspecified; + + // Split the string for further processing. + Override = Override.substr(0, RefPos); + assert(Override != "none" && + "Disabled reciprocals, but specifed refinement steps?"); + + // If this is a general override, return the specified number of steps. + if (Override == "all" || Override == "default") + return RefSteps; + } + + // The attribute string may omit the size suffix ('f'/'d'). + std::string VTName = getReciprocalOpName(IsSqrt, VT); + std::string VTNameNoSize = VTName; + VTNameNoSize.pop_back(); + + for (StringRef RecipType : OverrideVector) { + size_t RefPos; + uint8_t RefSteps; + if (!parseRefinementStep(RecipType, RefPos, RefSteps)) + continue; + + RecipType = RecipType.substr(0, RefPos); + if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) + return RefSteps; + } + + return TargetLoweringBase::ReciprocalEstimate::Unspecified; +} + +int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, + MachineFunction &MF) const { + return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); +} + +int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, + MachineFunction &MF) const { + return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); +} + +int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, + MachineFunction &MF) const { + return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); +} + +int TargetLoweringBase::getDivRefinementSteps(EVT VT, + MachineFunction &MF) const { + return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); +} + +void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { + MF.getRegInfo().freezeReservedRegs(MF); +} |
