summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp')
-rw-r--r--contrib/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp1278
1 files changed, 1278 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp b/contrib/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp
new file mode 100644
index 000000000000..fda6252f46e3
--- /dev/null
+++ b/contrib/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp
@@ -0,0 +1,1278 @@
+//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+///
+/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
+/// code. When passed an MCAsmStreamer it prints assembly and when passed
+/// an MCObjectStreamer it outputs binary code.
+//
+//===----------------------------------------------------------------------===//
+//
+
+#include "AMDGPUAsmPrinter.h"
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "AMDGPUTargetMachine.h"
+#include "InstPrinter/AMDGPUInstPrinter.h"
+#include "MCTargetDesc/AMDGPUTargetStreamer.h"
+#include "R600Defines.h"
+#include "R600MachineFunctionInfo.h"
+#include "R600RegisterInfo.h"
+#include "SIDefines.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "SIRegisterInfo.h"
+#include "Utils/AMDGPUBaseInfo.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/TargetLoweringObjectFile.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/AMDGPUMetadata.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+using namespace llvm::AMDGPU;
+
+// TODO: This should get the default rounding mode from the kernel. We just set
+// the default here, but this could change if the OpenCL rounding mode pragmas
+// are used.
+//
+// The denormal mode here should match what is reported by the OpenCL runtime
+// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
+// can also be override to flush with the -cl-denorms-are-zero compiler flag.
+//
+// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
+// precision, and leaves single precision to flush all and does not report
+// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
+// CL_FP_DENORM for both.
+//
+// FIXME: It seems some instructions do not support single precision denormals
+// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
+// and sin_f32, cos_f32 on most parts).
+
+// We want to use these instructions, and using fp32 denormals also causes
+// instructions to run at the double precision rate for the device so it's
+// probably best to just report no single precision denormals.
+static uint32_t getFPMode(const MachineFunction &F) {
+ const SISubtarget& ST = F.getSubtarget<SISubtarget>();
+ // TODO: Is there any real use for the flush in only / flush out only modes?
+
+ uint32_t FP32Denormals =
+ ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
+
+ uint32_t FP64Denormals =
+ ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
+
+ return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
+ FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
+ FP_DENORM_MODE_SP(FP32Denormals) |
+ FP_DENORM_MODE_DP(FP64Denormals);
+}
+
+static AsmPrinter *
+createAMDGPUAsmPrinterPass(TargetMachine &tm,
+ std::unique_ptr<MCStreamer> &&Streamer) {
+ return new AMDGPUAsmPrinter(tm, std::move(Streamer));
+}
+
+extern "C" void LLVMInitializeAMDGPUAsmPrinter() {
+ TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(),
+ createAMDGPUAsmPrinterPass);
+ TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(),
+ createAMDGPUAsmPrinterPass);
+}
+
+AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
+ std::unique_ptr<MCStreamer> Streamer)
+ : AsmPrinter(TM, std::move(Streamer)) {
+ AMDGPUASI = static_cast<AMDGPUTargetMachine*>(&TM)->getAMDGPUAS();
+ }
+
+StringRef AMDGPUAsmPrinter::getPassName() const {
+ return "AMDGPU Assembly Printer";
+}
+
+const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const {
+ return TM.getMCSubtargetInfo();
+}
+
+AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const {
+ if (!OutStreamer)
+ return nullptr;
+ return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer());
+}
+
+void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) {
+ if (TM.getTargetTriple().getArch() != Triple::amdgcn)
+ return;
+
+ if (TM.getTargetTriple().getOS() != Triple::AMDHSA &&
+ TM.getTargetTriple().getOS() != Triple::AMDPAL)
+ return;
+
+ if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
+ HSAMetadataStream.begin(M);
+
+ if (TM.getTargetTriple().getOS() == Triple::AMDPAL)
+ readPALMetadata(M);
+
+ // Deprecated notes are not emitted for code object v3.
+ if (IsaInfo::hasCodeObjectV3(getSTI()->getFeatureBits()))
+ return;
+
+ // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2.
+ if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
+ getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1);
+
+ // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2.
+ IsaInfo::IsaVersion ISA = IsaInfo::getIsaVersion(getSTI()->getFeatureBits());
+ getTargetStreamer()->EmitDirectiveHSACodeObjectISA(
+ ISA.Major, ISA.Minor, ISA.Stepping, "AMD", "AMDGPU");
+}
+
+void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {
+ if (TM.getTargetTriple().getArch() != Triple::amdgcn)
+ return;
+
+ // Following code requires TargetStreamer to be present.
+ if (!getTargetStreamer())
+ return;
+
+ // Emit ISA Version (NT_AMD_AMDGPU_ISA).
+ std::string ISAVersionString;
+ raw_string_ostream ISAVersionStream(ISAVersionString);
+ IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream);
+ getTargetStreamer()->EmitISAVersion(ISAVersionStream.str());
+
+ // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA).
+ if (TM.getTargetTriple().getOS() == Triple::AMDHSA) {
+ HSAMetadataStream.end();
+ getTargetStreamer()->EmitHSAMetadata(HSAMetadataStream.getHSAMetadata());
+ }
+
+ // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA).
+ if (TM.getTargetTriple().getOS() == Triple::AMDPAL) {
+ // Copy the PAL metadata from the map where we collected it into a vector,
+ // then write it as a .note.
+ PALMD::Metadata PALMetadataVector;
+ for (auto i : PALMetadataMap) {
+ PALMetadataVector.push_back(i.first);
+ PALMetadataVector.push_back(i.second);
+ }
+ getTargetStreamer()->EmitPALMetadata(PALMetadataVector);
+ }
+}
+
+bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough(
+ const MachineBasicBlock *MBB) const {
+ if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB))
+ return false;
+
+ if (MBB->empty())
+ return true;
+
+ // If this is a block implementing a long branch, an expression relative to
+ // the start of the block is needed. to the start of the block.
+ // XXX - Is there a smarter way to check this?
+ return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64);
+}
+
+void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
+ const AMDGPUMachineFunction *MFI = MF->getInfo<AMDGPUMachineFunction>();
+ if (!MFI->isEntryFunction())
+ return;
+
+ const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
+ amd_kernel_code_t KernelCode;
+ if (STM.isAmdCodeObjectV2(*MF)) {
+ getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF);
+
+ OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
+ getTargetStreamer()->EmitAMDKernelCodeT(KernelCode);
+ }
+
+ if (TM.getTargetTriple().getOS() != Triple::AMDHSA)
+ return;
+
+ HSAMetadataStream.emitKernel(MF->getFunction(),
+ getHSACodeProps(*MF, CurrentProgramInfo),
+ getHSADebugProps(*MF, CurrentProgramInfo));
+}
+
+void AMDGPUAsmPrinter::EmitFunctionEntryLabel() {
+ const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
+ const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
+ if (MFI->isEntryFunction() && STM.isAmdCodeObjectV2(*MF)) {
+ SmallString<128> SymbolName;
+ getNameWithPrefix(SymbolName, &MF->getFunction()),
+ getTargetStreamer()->EmitAMDGPUSymbolType(
+ SymbolName, ELF::STT_AMDGPU_HSA_KERNEL);
+ }
+ const AMDGPUSubtarget &STI = MF->getSubtarget<AMDGPUSubtarget>();
+ if (STI.dumpCode()) {
+ // Disassemble function name label to text.
+ DisasmLines.push_back(MF->getName().str() + ":");
+ DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
+ HexLines.push_back("");
+ }
+
+ AsmPrinter::EmitFunctionEntryLabel();
+}
+
+void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
+ const AMDGPUSubtarget &STI = MBB.getParent()->getSubtarget<AMDGPUSubtarget>();
+ if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) {
+ // Write a line for the basic block label if it is not only fallthrough.
+ DisasmLines.push_back(
+ (Twine("BB") + Twine(getFunctionNumber())
+ + "_" + Twine(MBB.getNumber()) + ":").str());
+ DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
+ HexLines.push_back("");
+ }
+ AsmPrinter::EmitBasicBlockStart(MBB);
+}
+
+void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
+
+ // Group segment variables aren't emitted in HSA.
+ if (AMDGPU::isGroupSegment(GV))
+ return;
+
+ AsmPrinter::EmitGlobalVariable(GV);
+}
+
+bool AMDGPUAsmPrinter::doFinalization(Module &M) {
+ CallGraphResourceInfo.clear();
+ return AsmPrinter::doFinalization(M);
+}
+
+// For the amdpal OS type, read the amdgpu.pal.metadata supplied by the
+// frontend into our PALMetadataMap, ready for per-function modification. It
+// is a NamedMD containing an MDTuple containing a number of MDNodes each of
+// which is an integer value, and each two integer values forms a key=value
+// pair that we store as PALMetadataMap[key]=value in the map.
+void AMDGPUAsmPrinter::readPALMetadata(Module &M) {
+ auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata");
+ if (!NamedMD || !NamedMD->getNumOperands())
+ return;
+ auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0));
+ if (!Tuple)
+ return;
+ for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) {
+ auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I));
+ auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1));
+ if (!Key || !Val)
+ continue;
+ PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue();
+ }
+}
+
+// Print comments that apply to both callable functions and entry points.
+void AMDGPUAsmPrinter::emitCommonFunctionComments(
+ uint32_t NumVGPR,
+ uint32_t NumSGPR,
+ uint64_t ScratchSize,
+ uint64_t CodeSize) {
+ OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false);
+ OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false);
+ OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false);
+ OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false);
+}
+
+bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
+ CurrentProgramInfo = SIProgramInfo();
+
+ const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
+
+ // The starting address of all shader programs must be 256 bytes aligned.
+ // Regular functions just need the basic required instruction alignment.
+ MF.setAlignment(MFI->isEntryFunction() ? 8 : 2);
+
+ SetupMachineFunction(MF);
+
+ const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>();
+ MCContext &Context = getObjFileLowering().getContext();
+ if (!STM.isAmdHsaOS()) {
+ MCSectionELF *ConfigSection =
+ Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
+ OutStreamer->SwitchSection(ConfigSection);
+ }
+
+ if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ if (MFI->isEntryFunction()) {
+ getSIProgramInfo(CurrentProgramInfo, MF);
+ } else {
+ auto I = CallGraphResourceInfo.insert(
+ std::make_pair(&MF.getFunction(), SIFunctionResourceInfo()));
+ SIFunctionResourceInfo &Info = I.first->second;
+ assert(I.second && "should only be called once per function");
+ Info = analyzeResourceUsage(MF);
+ }
+
+ if (STM.isAmdPalOS())
+ EmitPALMetadata(MF, CurrentProgramInfo);
+ if (!STM.isAmdHsaOS()) {
+ EmitProgramInfoSI(MF, CurrentProgramInfo);
+ }
+ } else {
+ EmitProgramInfoR600(MF);
+ }
+
+ DisasmLines.clear();
+ HexLines.clear();
+ DisasmLineMaxLen = 0;
+
+ EmitFunctionBody();
+
+ if (isVerbose()) {
+ MCSectionELF *CommentSection =
+ Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
+ OutStreamer->SwitchSection(CommentSection);
+
+ if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ if (!MFI->isEntryFunction()) {
+ OutStreamer->emitRawComment(" Function info:", false);
+ SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()];
+ emitCommonFunctionComments(
+ Info.NumVGPR,
+ Info.getTotalNumSGPRs(MF.getSubtarget<SISubtarget>()),
+ Info.PrivateSegmentSize,
+ getFunctionCodeSize(MF));
+ return false;
+ }
+
+ OutStreamer->emitRawComment(" Kernel info:", false);
+ emitCommonFunctionComments(CurrentProgramInfo.NumVGPR,
+ CurrentProgramInfo.NumSGPR,
+ CurrentProgramInfo.ScratchSize,
+ getFunctionCodeSize(MF));
+
+ OutStreamer->emitRawComment(
+ " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false);
+ OutStreamer->emitRawComment(
+ " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false);
+ OutStreamer->emitRawComment(
+ " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) +
+ " bytes/workgroup (compile time only)", false);
+
+ OutStreamer->emitRawComment(
+ " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false);
+ OutStreamer->emitRawComment(
+ " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false);
+
+ OutStreamer->emitRawComment(
+ " NumSGPRsForWavesPerEU: " +
+ Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false);
+ OutStreamer->emitRawComment(
+ " NumVGPRsForWavesPerEU: " +
+ Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false);
+
+ OutStreamer->emitRawComment(
+ " ReservedVGPRFirst: " + Twine(CurrentProgramInfo.ReservedVGPRFirst),
+ false);
+ OutStreamer->emitRawComment(
+ " ReservedVGPRCount: " + Twine(CurrentProgramInfo.ReservedVGPRCount),
+ false);
+
+ if (MF.getSubtarget<SISubtarget>().debuggerEmitPrologue()) {
+ OutStreamer->emitRawComment(
+ " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" +
+ Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false);
+ OutStreamer->emitRawComment(
+ " DebuggerPrivateSegmentBufferSGPR: s" +
+ Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false);
+ }
+
+ OutStreamer->emitRawComment(
+ " COMPUTE_PGM_RSRC2:USER_SGPR: " +
+ Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false);
+ OutStreamer->emitRawComment(
+ " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " +
+ Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false);
+ OutStreamer->emitRawComment(
+ " COMPUTE_PGM_RSRC2:TGID_X_EN: " +
+ Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
+ OutStreamer->emitRawComment(
+ " COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
+ Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
+ OutStreamer->emitRawComment(
+ " COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
+ Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
+ OutStreamer->emitRawComment(
+ " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
+ Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)),
+ false);
+ } else {
+ R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
+ OutStreamer->emitRawComment(
+ Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->CFStackSize)));
+ }
+ }
+
+ if (STM.dumpCode()) {
+
+ OutStreamer->SwitchSection(
+ Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0));
+
+ for (size_t i = 0; i < DisasmLines.size(); ++i) {
+ std::string Comment = "\n";
+ if (!HexLines[i].empty()) {
+ Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
+ Comment += " ; " + HexLines[i] + "\n";
+ }
+
+ OutStreamer->EmitBytes(StringRef(DisasmLines[i]));
+ OutStreamer->EmitBytes(StringRef(Comment));
+ }
+ }
+
+ return false;
+}
+
+void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
+ unsigned MaxGPR = 0;
+ bool killPixel = false;
+ const R600Subtarget &STM = MF.getSubtarget<R600Subtarget>();
+ const R600RegisterInfo *RI = STM.getRegisterInfo();
+ const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
+
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ if (MI.getOpcode() == AMDGPU::KILLGT)
+ killPixel = true;
+ unsigned numOperands = MI.getNumOperands();
+ for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
+ const MachineOperand &MO = MI.getOperand(op_idx);
+ if (!MO.isReg())
+ continue;
+ unsigned HWReg = RI->getHWRegIndex(MO.getReg());
+
+ // Register with value > 127 aren't GPR
+ if (HWReg > 127)
+ continue;
+ MaxGPR = std::max(MaxGPR, HWReg);
+ }
+ }
+ }
+
+ unsigned RsrcReg;
+ if (STM.getGeneration() >= R600Subtarget::EVERGREEN) {
+ // Evergreen / Northern Islands
+ switch (MF.getFunction().getCallingConv()) {
+ default: LLVM_FALLTHROUGH;
+ case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
+ case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
+ case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
+ case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
+ }
+ } else {
+ // R600 / R700
+ switch (MF.getFunction().getCallingConv()) {
+ default: LLVM_FALLTHROUGH;
+ case CallingConv::AMDGPU_GS: LLVM_FALLTHROUGH;
+ case CallingConv::AMDGPU_CS: LLVM_FALLTHROUGH;
+ case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
+ case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
+ }
+ }
+
+ OutStreamer->EmitIntValue(RsrcReg, 4);
+ OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
+ S_STACK_SIZE(MFI->CFStackSize), 4);
+ OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
+ OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);
+
+ if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
+ OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
+ OutStreamer->EmitIntValue(alignTo(MFI->getLDSSize(), 4) >> 2, 4);
+ }
+}
+
+uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const {
+ const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
+ const SIInstrInfo *TII = STM.getInstrInfo();
+
+ uint64_t CodeSize = 0;
+
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ // TODO: CodeSize should account for multiple functions.
+
+ // TODO: Should we count size of debug info?
+ if (MI.isDebugValue())
+ continue;
+
+ CodeSize += TII->getInstSizeInBytes(MI);
+ }
+ }
+
+ return CodeSize;
+}
+
+static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI,
+ const SIInstrInfo &TII,
+ unsigned Reg) {
+ for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) {
+ if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent()))
+ return true;
+ }
+
+ return false;
+}
+
+static unsigned getNumExtraSGPRs(const SISubtarget &ST,
+ bool VCCUsed,
+ bool FlatScrUsed) {
+ unsigned ExtraSGPRs = 0;
+ if (VCCUsed)
+ ExtraSGPRs = 2;
+
+ if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) {
+ if (FlatScrUsed)
+ ExtraSGPRs = 4;
+ } else {
+ if (ST.isXNACKEnabled())
+ ExtraSGPRs = 4;
+
+ if (FlatScrUsed)
+ ExtraSGPRs = 6;
+ }
+
+ return ExtraSGPRs;
+}
+
+int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs(
+ const SISubtarget &ST) const {
+ return NumExplicitSGPR + getNumExtraSGPRs(ST, UsesVCC, UsesFlatScratch);
+}
+
+AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage(
+ const MachineFunction &MF) const {
+ SIFunctionResourceInfo Info;
+
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
+ const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ const SIInstrInfo *TII = ST.getInstrInfo();
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+
+ Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) ||
+ MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI);
+
+ // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat
+ // instructions aren't used to access the scratch buffer. Inline assembly may
+ // need it though.
+ //
+ // If we only have implicit uses of flat_scr on flat instructions, it is not
+ // really needed.
+ if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() &&
+ (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) &&
+ !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) &&
+ !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) {
+ Info.UsesFlatScratch = false;
+ }
+
+ Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects();
+ Info.PrivateSegmentSize = FrameInfo.getStackSize();
+
+
+ Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) ||
+ MRI.isPhysRegUsed(AMDGPU::VCC_HI);
+
+ // If there are no calls, MachineRegisterInfo can tell us the used register
+ // count easily.
+ // A tail call isn't considered a call for MachineFrameInfo's purposes.
+ if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) {
+ MCPhysReg HighestVGPRReg = AMDGPU::NoRegister;
+ for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) {
+ if (MRI.isPhysRegUsed(Reg)) {
+ HighestVGPRReg = Reg;
+ break;
+ }
+ }
+
+ MCPhysReg HighestSGPRReg = AMDGPU::NoRegister;
+ for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) {
+ if (MRI.isPhysRegUsed(Reg)) {
+ HighestSGPRReg = Reg;
+ break;
+ }
+ }
+
+ // We found the maximum register index. They start at 0, so add one to get the
+ // number of registers.
+ Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 :
+ TRI.getHWRegIndex(HighestVGPRReg) + 1;
+ Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 :
+ TRI.getHWRegIndex(HighestSGPRReg) + 1;
+
+ return Info;
+ }
+
+ int32_t MaxVGPR = -1;
+ int32_t MaxSGPR = -1;
+ uint64_t CalleeFrameSize = 0;
+
+ for (const MachineBasicBlock &MBB : MF) {
+ for (const MachineInstr &MI : MBB) {
+ // TODO: Check regmasks? Do they occur anywhere except calls?
+ for (const MachineOperand &MO : MI.operands()) {
+ unsigned Width = 0;
+ bool IsSGPR = false;
+
+ if (!MO.isReg())
+ continue;
+
+ unsigned Reg = MO.getReg();
+ switch (Reg) {
+ case AMDGPU::EXEC:
+ case AMDGPU::EXEC_LO:
+ case AMDGPU::EXEC_HI:
+ case AMDGPU::SCC:
+ case AMDGPU::M0:
+ case AMDGPU::SRC_SHARED_BASE:
+ case AMDGPU::SRC_SHARED_LIMIT:
+ case AMDGPU::SRC_PRIVATE_BASE:
+ case AMDGPU::SRC_PRIVATE_LIMIT:
+ continue;
+
+ case AMDGPU::NoRegister:
+ assert(MI.isDebugValue());
+ continue;
+
+ case AMDGPU::VCC:
+ case AMDGPU::VCC_LO:
+ case AMDGPU::VCC_HI:
+ Info.UsesVCC = true;
+ continue;
+
+ case AMDGPU::FLAT_SCR:
+ case AMDGPU::FLAT_SCR_LO:
+ case AMDGPU::FLAT_SCR_HI:
+ continue;
+
+ case AMDGPU::TBA:
+ case AMDGPU::TBA_LO:
+ case AMDGPU::TBA_HI:
+ case AMDGPU::TMA:
+ case AMDGPU::TMA_LO:
+ case AMDGPU::TMA_HI:
+ llvm_unreachable("trap handler registers should not be used");
+
+ default:
+ break;
+ }
+
+ if (AMDGPU::SReg_32RegClass.contains(Reg)) {
+ assert(!AMDGPU::TTMP_32RegClass.contains(Reg) &&
+ "trap handler registers should not be used");
+ IsSGPR = true;
+ Width = 1;
+ } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) {
+ IsSGPR = false;
+ Width = 1;
+ } else if (AMDGPU::SReg_64RegClass.contains(Reg)) {
+ assert(!AMDGPU::TTMP_64RegClass.contains(Reg) &&
+ "trap handler registers should not be used");
+ IsSGPR = true;
+ Width = 2;
+ } else if (AMDGPU::VReg_64RegClass.contains(Reg)) {
+ IsSGPR = false;
+ Width = 2;
+ } else if (AMDGPU::VReg_96RegClass.contains(Reg)) {
+ IsSGPR = false;
+ Width = 3;
+ } else if (AMDGPU::SReg_128RegClass.contains(Reg)) {
+ assert(!AMDGPU::TTMP_128RegClass.contains(Reg) &&
+ "trap handler registers should not be used");
+ IsSGPR = true;
+ Width = 4;
+ } else if (AMDGPU::VReg_128RegClass.contains(Reg)) {
+ IsSGPR = false;
+ Width = 4;
+ } else if (AMDGPU::SReg_256RegClass.contains(Reg)) {
+ assert(!AMDGPU::TTMP_256RegClass.contains(Reg) &&
+ "trap handler registers should not be used");
+ IsSGPR = true;
+ Width = 8;
+ } else if (AMDGPU::VReg_256RegClass.contains(Reg)) {
+ IsSGPR = false;
+ Width = 8;
+ } else if (AMDGPU::SReg_512RegClass.contains(Reg)) {
+ assert(!AMDGPU::TTMP_512RegClass.contains(Reg) &&
+ "trap handler registers should not be used");
+ IsSGPR = true;
+ Width = 16;
+ } else if (AMDGPU::VReg_512RegClass.contains(Reg)) {
+ IsSGPR = false;
+ Width = 16;
+ } else {
+ llvm_unreachable("Unknown register class");
+ }
+ unsigned HWReg = TRI.getHWRegIndex(Reg);
+ int MaxUsed = HWReg + Width - 1;
+ if (IsSGPR) {
+ MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR;
+ } else {
+ MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR;
+ }
+ }
+
+ if (MI.isCall()) {
+ // Pseudo used just to encode the underlying global. Is there a better
+ // way to track this?
+
+ const MachineOperand *CalleeOp
+ = TII->getNamedOperand(MI, AMDGPU::OpName::callee);
+ const Function *Callee = cast<Function>(CalleeOp->getGlobal());
+ if (Callee->isDeclaration()) {
+ // If this is a call to an external function, we can't do much. Make
+ // conservative guesses.
+
+ // 48 SGPRs - vcc, - flat_scr, -xnack
+ int MaxSGPRGuess = 47 - getNumExtraSGPRs(ST, true,
+ ST.hasFlatAddressSpace());
+ MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess);
+ MaxVGPR = std::max(MaxVGPR, 23);
+
+ CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384));
+ Info.UsesVCC = true;
+ Info.UsesFlatScratch = ST.hasFlatAddressSpace();
+ Info.HasDynamicallySizedStack = true;
+ } else {
+ // We force CodeGen to run in SCC order, so the callee's register
+ // usage etc. should be the cumulative usage of all callees.
+ auto I = CallGraphResourceInfo.find(Callee);
+ assert(I != CallGraphResourceInfo.end() &&
+ "callee should have been handled before caller");
+
+ MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR);
+ MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR);
+ CalleeFrameSize
+ = std::max(I->second.PrivateSegmentSize, CalleeFrameSize);
+ Info.UsesVCC |= I->second.UsesVCC;
+ Info.UsesFlatScratch |= I->second.UsesFlatScratch;
+ Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack;
+ Info.HasRecursion |= I->second.HasRecursion;
+ }
+
+ if (!Callee->doesNotRecurse())
+ Info.HasRecursion = true;
+ }
+ }
+ }
+
+ Info.NumExplicitSGPR = MaxSGPR + 1;
+ Info.NumVGPR = MaxVGPR + 1;
+ Info.PrivateSegmentSize += CalleeFrameSize;
+
+ return Info;
+}
+
+void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
+ const MachineFunction &MF) {
+ SIFunctionResourceInfo Info = analyzeResourceUsage(MF);
+
+ ProgInfo.NumVGPR = Info.NumVGPR;
+ ProgInfo.NumSGPR = Info.NumExplicitSGPR;
+ ProgInfo.ScratchSize = Info.PrivateSegmentSize;
+ ProgInfo.VCCUsed = Info.UsesVCC;
+ ProgInfo.FlatUsed = Info.UsesFlatScratch;
+ ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion;
+
+ if (!isUInt<32>(ProgInfo.ScratchSize)) {
+ DiagnosticInfoStackSize DiagStackSize(MF.getFunction(),
+ ProgInfo.ScratchSize, DS_Error);
+ MF.getFunction().getContext().diagnose(DiagStackSize);
+ }
+
+ const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ const SIInstrInfo *TII = STM.getInstrInfo();
+ const SIRegisterInfo *RI = &TII->getRegisterInfo();
+
+ unsigned ExtraSGPRs = getNumExtraSGPRs(STM,
+ ProgInfo.VCCUsed,
+ ProgInfo.FlatUsed);
+ unsigned ExtraVGPRs = STM.getReservedNumVGPRs(MF);
+
+ // Check the addressable register limit before we add ExtraSGPRs.
+ if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
+ !STM.hasSGPRInitBug()) {
+ unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
+ if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
+ // This can happen due to a compiler bug or when using inline asm.
+ LLVMContext &Ctx = MF.getFunction().getContext();
+ DiagnosticInfoResourceLimit Diag(MF.getFunction(),
+ "addressable scalar registers",
+ ProgInfo.NumSGPR, DS_Error,
+ DK_ResourceLimit,
+ MaxAddressableNumSGPRs);
+ Ctx.diagnose(Diag);
+ ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1;
+ }
+ }
+
+ // Account for extra SGPRs and VGPRs reserved for debugger use.
+ ProgInfo.NumSGPR += ExtraSGPRs;
+ ProgInfo.NumVGPR += ExtraVGPRs;
+
+ // Adjust number of registers used to meet default/requested minimum/maximum
+ // number of waves per execution unit request.
+ ProgInfo.NumSGPRsForWavesPerEU = std::max(
+ std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU()));
+ ProgInfo.NumVGPRsForWavesPerEU = std::max(
+ std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU()));
+
+ if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ||
+ STM.hasSGPRInitBug()) {
+ unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
+ if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
+ // This can happen due to a compiler bug or when using inline asm to use
+ // the registers which are usually reserved for vcc etc.
+ LLVMContext &Ctx = MF.getFunction().getContext();
+ DiagnosticInfoResourceLimit Diag(MF.getFunction(),
+ "scalar registers",
+ ProgInfo.NumSGPR, DS_Error,
+ DK_ResourceLimit,
+ MaxAddressableNumSGPRs);
+ Ctx.diagnose(Diag);
+ ProgInfo.NumSGPR = MaxAddressableNumSGPRs;
+ ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs;
+ }
+ }
+
+ if (STM.hasSGPRInitBug()) {
+ ProgInfo.NumSGPR =
+ AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
+ ProgInfo.NumSGPRsForWavesPerEU =
+ AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
+ }
+
+ if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) {
+ LLVMContext &Ctx = MF.getFunction().getContext();
+ DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs",
+ MFI->getNumUserSGPRs(), DS_Error);
+ Ctx.diagnose(Diag);
+ }
+
+ if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
+ LLVMContext &Ctx = MF.getFunction().getContext();
+ DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory",
+ MFI->getLDSSize(), DS_Error);
+ Ctx.diagnose(Diag);
+ }
+
+ // SGPRBlocks is actual number of SGPR blocks minus 1.
+ ProgInfo.SGPRBlocks = alignTo(ProgInfo.NumSGPRsForWavesPerEU,
+ STM.getSGPREncodingGranule());
+ ProgInfo.SGPRBlocks = ProgInfo.SGPRBlocks / STM.getSGPREncodingGranule() - 1;
+
+ // VGPRBlocks is actual number of VGPR blocks minus 1.
+ ProgInfo.VGPRBlocks = alignTo(ProgInfo.NumVGPRsForWavesPerEU,
+ STM.getVGPREncodingGranule());
+ ProgInfo.VGPRBlocks = ProgInfo.VGPRBlocks / STM.getVGPREncodingGranule() - 1;
+
+ // Record first reserved VGPR and number of reserved VGPRs.
+ ProgInfo.ReservedVGPRFirst = STM.debuggerReserveRegs() ? ProgInfo.NumVGPR : 0;
+ ProgInfo.ReservedVGPRCount = STM.getReservedNumVGPRs(MF);
+
+ // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and
+ // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue"
+ // attribute was requested.
+ if (STM.debuggerEmitPrologue()) {
+ ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR =
+ RI->getHWRegIndex(MFI->getScratchWaveOffsetReg());
+ ProgInfo.DebuggerPrivateSegmentBufferSGPR =
+ RI->getHWRegIndex(MFI->getScratchRSrcReg());
+ }
+
+ // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
+ // register.
+ ProgInfo.FloatMode = getFPMode(MF);
+
+ ProgInfo.IEEEMode = STM.enableIEEEBit(MF);
+
+ // Make clamp modifier on NaN input returns 0.
+ ProgInfo.DX10Clamp = STM.enableDX10Clamp();
+
+ unsigned LDSAlignShift;
+ if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) {
+ // LDS is allocated in 64 dword blocks.
+ LDSAlignShift = 8;
+ } else {
+ // LDS is allocated in 128 dword blocks.
+ LDSAlignShift = 9;
+ }
+
+ unsigned LDSSpillSize =
+ MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize();
+
+ ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
+ ProgInfo.LDSBlocks =
+ alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
+
+ // Scratch is allocated in 256 dword blocks.
+ unsigned ScratchAlignShift = 10;
+ // We need to program the hardware with the amount of scratch memory that
+ // is used by the entire wave. ProgInfo.ScratchSize is the amount of
+ // scratch memory used per thread.
+ ProgInfo.ScratchBlocks =
+ alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
+ 1ULL << ScratchAlignShift) >>
+ ScratchAlignShift;
+
+ ProgInfo.ComputePGMRSrc1 =
+ S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
+ S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
+ S_00B848_PRIORITY(ProgInfo.Priority) |
+ S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
+ S_00B848_PRIV(ProgInfo.Priv) |
+ S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
+ S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
+ S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
+
+ // 0 = X, 1 = XY, 2 = XYZ
+ unsigned TIDIGCompCnt = 0;
+ if (MFI->hasWorkItemIDZ())
+ TIDIGCompCnt = 2;
+ else if (MFI->hasWorkItemIDY())
+ TIDIGCompCnt = 1;
+
+ ProgInfo.ComputePGMRSrc2 =
+ S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
+ S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
+ S_00B84C_TRAP_HANDLER(STM.isTrapHandlerEnabled()) |
+ S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
+ S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
+ S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
+ S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
+ S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
+ S_00B84C_EXCP_EN_MSB(0) |
+ // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP.
+ S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) |
+ S_00B84C_EXCP_EN(0);
+}
+
+static unsigned getRsrcReg(CallingConv::ID CallConv) {
+ switch (CallConv) {
+ default: LLVM_FALLTHROUGH;
+ case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
+ case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS;
+ case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS;
+ case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES;
+ case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
+ case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
+ case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
+ }
+}
+
+void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
+ const SIProgramInfo &CurrentProgramInfo) {
+ const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv());
+
+ if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
+ OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
+
+ OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4);
+
+ OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
+ OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4);
+
+ OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
+ OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
+
+ // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
+ // 0" comment but I don't see a corresponding field in the register spec.
+ } else {
+ OutStreamer->EmitIntValue(RsrcReg, 4);
+ OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
+ S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4);
+ unsigned Rsrc2Val = 0;
+ if (STM.isVGPRSpillingEnabled(MF.getFunction())) {
+ OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
+ OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
+ if (TM.getTargetTriple().getOS() == Triple::AMDPAL)
+ Rsrc2Val = S_00B84C_SCRATCH_EN(CurrentProgramInfo.ScratchBlocks > 0);
+ }
+ if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
+ OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
+ OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4);
+ OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4);
+ OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4);
+ Rsrc2Val |= S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks);
+ }
+ if (Rsrc2Val) {
+ OutStreamer->EmitIntValue(RsrcReg + 4 /*rsrc2*/, 4);
+ OutStreamer->EmitIntValue(Rsrc2Val, 4);
+ }
+ }
+
+ OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4);
+ OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4);
+ OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4);
+ OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4);
+}
+
+// This is the equivalent of EmitProgramInfoSI above, but for when the OS type
+// is AMDPAL. It stores each compute/SPI register setting and other PAL
+// metadata items into the PALMetadataMap, combining with any provided by the
+// frontend as LLVM metadata. Once all functions are written, PALMetadataMap is
+// then written as a single block in the .note section.
+void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF,
+ const SIProgramInfo &CurrentProgramInfo) {
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ // Given the calling convention, calculate the register number for rsrc1. In
+ // principle the register number could change in future hardware, but we know
+ // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so
+ // we can use the same fixed value that .AMDGPU.config has for Mesa. Note
+ // that we use a register number rather than a byte offset, so we need to
+ // divide by 4.
+ unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4;
+ unsigned Rsrc2Reg = Rsrc1Reg + 1;
+ // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used
+ // with a constant offset to access any non-register shader-specific PAL
+ // metadata key.
+ unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE;
+ switch (MF.getFunction().getCallingConv()) {
+ case CallingConv::AMDGPU_PS:
+ ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE;
+ break;
+ case CallingConv::AMDGPU_VS:
+ ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE;
+ break;
+ case CallingConv::AMDGPU_GS:
+ ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE;
+ break;
+ case CallingConv::AMDGPU_ES:
+ ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE;
+ break;
+ case CallingConv::AMDGPU_HS:
+ ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE;
+ break;
+ case CallingConv::AMDGPU_LS:
+ ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE;
+ break;
+ }
+ unsigned NumUsedVgprsKey = ScratchSizeKey +
+ PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE;
+ unsigned NumUsedSgprsKey = ScratchSizeKey +
+ PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE;
+ PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU;
+ PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU;
+ if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
+ PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1;
+ PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2;
+ // ScratchSize is in bytes, 16 aligned.
+ PALMetadataMap[ScratchSizeKey] |=
+ alignTo(CurrentProgramInfo.ScratchSize, 16);
+ } else {
+ PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
+ S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks);
+ if (CurrentProgramInfo.ScratchBlocks > 0)
+ PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1);
+ // ScratchSize is in bytes, 16 aligned.
+ PALMetadataMap[ScratchSizeKey] |=
+ alignTo(CurrentProgramInfo.ScratchSize, 16);
+ }
+ if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
+ PALMetadataMap[Rsrc2Reg] |=
+ S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks);
+ PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable();
+ PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr();
+ }
+}
+
+// This is supposed to be log2(Size)
+static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
+ switch (Size) {
+ case 4:
+ return AMD_ELEMENT_4_BYTES;
+ case 8:
+ return AMD_ELEMENT_8_BYTES;
+ case 16:
+ return AMD_ELEMENT_16_BYTES;
+ default:
+ llvm_unreachable("invalid private_element_size");
+ }
+}
+
+void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
+ const SIProgramInfo &CurrentProgramInfo,
+ const MachineFunction &MF) const {
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
+
+ AMDGPU::initDefaultAMDKernelCodeT(Out, STM.getFeatureBits());
+
+ Out.compute_pgm_resource_registers =
+ CurrentProgramInfo.ComputePGMRSrc1 |
+ (CurrentProgramInfo.ComputePGMRSrc2 << 32);
+ Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64;
+
+ if (CurrentProgramInfo.DynamicCallStack)
+ Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK;
+
+ AMD_HSA_BITS_SET(Out.code_properties,
+ AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
+ getElementByteSizeValue(STM.getMaxPrivateElementSize()));
+
+ if (MFI->hasPrivateSegmentBuffer()) {
+ Out.code_properties |=
+ AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
+ }
+
+ if (MFI->hasDispatchPtr())
+ Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
+
+ if (MFI->hasQueuePtr())
+ Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
+
+ if (MFI->hasKernargSegmentPtr())
+ Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
+
+ if (MFI->hasDispatchID())
+ Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
+
+ if (MFI->hasFlatScratchInit())
+ Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
+
+ if (MFI->hasGridWorkgroupCountX()) {
+ Out.code_properties |=
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X;
+ }
+
+ if (MFI->hasGridWorkgroupCountY()) {
+ Out.code_properties |=
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y;
+ }
+
+ if (MFI->hasGridWorkgroupCountZ()) {
+ Out.code_properties |=
+ AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z;
+ }
+
+ if (MFI->hasDispatchPtr())
+ Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
+
+ if (STM.debuggerSupported())
+ Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED;
+
+ if (STM.isXNACKEnabled())
+ Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
+
+ // FIXME: Should use getKernArgSize
+ Out.kernarg_segment_byte_size =
+ STM.getKernArgSegmentSize(MF, MFI->getABIArgOffset());
+ Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR;
+ Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR;
+ Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize;
+ Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize;
+ Out.reserved_vgpr_first = CurrentProgramInfo.ReservedVGPRFirst;
+ Out.reserved_vgpr_count = CurrentProgramInfo.ReservedVGPRCount;
+
+ // These alignment values are specified in powers of two, so alignment =
+ // 2^n. The minimum alignment is 2^4 = 16.
+ Out.kernarg_segment_alignment = std::max((size_t)4,
+ countTrailingZeros(MFI->getMaxKernArgAlign()));
+
+ if (STM.debuggerEmitPrologue()) {
+ Out.debug_wavefront_private_segment_offset_sgpr =
+ CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
+ Out.debug_private_segment_buffer_sgpr =
+ CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR;
+ }
+}
+
+AMDGPU::HSAMD::Kernel::CodeProps::Metadata AMDGPUAsmPrinter::getHSACodeProps(
+ const MachineFunction &MF,
+ const SIProgramInfo &ProgramInfo) const {
+ const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
+ const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
+ HSAMD::Kernel::CodeProps::Metadata HSACodeProps;
+
+ HSACodeProps.mKernargSegmentSize =
+ STM.getKernArgSegmentSize(MF, MFI.getABIArgOffset());
+ HSACodeProps.mGroupSegmentFixedSize = ProgramInfo.LDSSize;
+ HSACodeProps.mPrivateSegmentFixedSize = ProgramInfo.ScratchSize;
+ HSACodeProps.mKernargSegmentAlign =
+ std::max(uint32_t(4), MFI.getMaxKernArgAlign());
+ HSACodeProps.mWavefrontSize = STM.getWavefrontSize();
+ HSACodeProps.mNumSGPRs = CurrentProgramInfo.NumSGPR;
+ HSACodeProps.mNumVGPRs = CurrentProgramInfo.NumVGPR;
+ HSACodeProps.mMaxFlatWorkGroupSize = MFI.getMaxFlatWorkGroupSize();
+ HSACodeProps.mIsDynamicCallStack = ProgramInfo.DynamicCallStack;
+ HSACodeProps.mIsXNACKEnabled = STM.isXNACKEnabled();
+ HSACodeProps.mNumSpilledSGPRs = MFI.getNumSpilledSGPRs();
+ HSACodeProps.mNumSpilledVGPRs = MFI.getNumSpilledVGPRs();
+
+ return HSACodeProps;
+}
+
+AMDGPU::HSAMD::Kernel::DebugProps::Metadata AMDGPUAsmPrinter::getHSADebugProps(
+ const MachineFunction &MF,
+ const SIProgramInfo &ProgramInfo) const {
+ const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
+ HSAMD::Kernel::DebugProps::Metadata HSADebugProps;
+
+ if (!STM.debuggerSupported())
+ return HSADebugProps;
+
+ HSADebugProps.mDebuggerABIVersion.push_back(1);
+ HSADebugProps.mDebuggerABIVersion.push_back(0);
+ HSADebugProps.mReservedNumVGPRs = ProgramInfo.ReservedVGPRCount;
+ HSADebugProps.mReservedFirstVGPR = ProgramInfo.ReservedVGPRFirst;
+
+ if (STM.debuggerEmitPrologue()) {
+ HSADebugProps.mPrivateSegmentBufferSGPR =
+ ProgramInfo.DebuggerPrivateSegmentBufferSGPR;
+ HSADebugProps.mWavefrontPrivateSegmentOffsetSGPR =
+ ProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
+ }
+
+ return HSADebugProps;
+}
+
+bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
+ unsigned AsmVariant,
+ const char *ExtraCode, raw_ostream &O) {
+ // First try the generic code, which knows about modifiers like 'c' and 'n'.
+ if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O))
+ return false;
+
+ if (ExtraCode && ExtraCode[0]) {
+ if (ExtraCode[1] != 0)
+ return true; // Unknown modifier.
+
+ switch (ExtraCode[0]) {
+ case 'r':
+ break;
+ default:
+ return true;
+ }
+ }
+
+ // TODO: Should be able to support other operand types like globals.
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ if (MO.isReg()) {
+ AMDGPUInstPrinter::printRegOperand(MO.getReg(), O,
+ *MF->getSubtarget().getRegisterInfo());
+ return false;
+ }
+
+ return true;
+}