diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/BitTracker.cpp')
| -rw-r--r-- | contrib/llvm/lib/Target/Hexagon/BitTracker.cpp | 1110 | 
1 files changed, 1110 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp b/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp new file mode 100644 index 000000000000..5b02aa3ca3ae --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/BitTracker.cpp @@ -0,0 +1,1110 @@ +//===--- BitTracker.cpp ---------------------------------------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +// SSA-based bit propagation. +// +// The purpose of this code is, for a given virtual register, to provide +// information about the value of each bit in the register. The values +// of bits are represented by the class BitValue, and take one of four +// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the +// "ref" value means that the bit is a copy of another bit (which itself +// cannot be a copy of yet another bit---such chains are not allowed). +// A "ref" value is associated with a BitRef structure, which indicates +// which virtual register, and which bit in that register is the origin +// of the value. For example, given an instruction +//   vreg2 = ASL vreg1, 1 +// assuming that nothing is known about bits of vreg1, bit 1 of vreg2 +// will be a "ref" to (vreg1, 0). If there is a subsequent instruction +//   vreg3 = ASL vreg2, 2 +// then bit 3 of vreg3 will be a "ref" to (vreg1, 0) as well. +// The "bottom" case means that the bit's value cannot be determined, +// and that this virtual register actually defines it. The "bottom" case +// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref +// to self", so for the vreg1 above, the bit 0 of it will be a "ref" to +// (vreg1, 0), bit 1 will be a "ref" to (vreg1, 1), etc. +// +// The tracker implements the Wegman-Zadeck algorithm, originally developed +// for SSA-based constant propagation. Each register is represented as +// a sequence of bits, with the convention that bit 0 is the least signi- +// ficant bit. Each bit is propagated individually. The class RegisterCell +// implements the register's representation, and is also the subject of +// the lattice operations in the tracker. +// +// The intended usage of the bit tracker is to create a target-specific +// machine instruction evaluator, pass the evaluator to the BitTracker +// object, and run the tracker. The tracker will then collect the bit +// value information for a given machine function. After that, it can be +// queried for the cells for each virtual register. +// Sample code: +//   const TargetSpecificEvaluator TSE(TRI, MRI); +//   BitTracker BT(TSE, MF); +//   BT.run(); +//   ... +//   unsigned Reg = interestingRegister(); +//   RegisterCell RC = BT.get(Reg); +//   if (RC[3].is(1)) +//      Reg0bit3 = 1; +// +// The code below is intended to be fully target-independent. + +#include "BitTracker.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/Constants.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include <cassert> +#include <cstdint> +#include <iterator> + +using namespace llvm; + +typedef BitTracker BT; + +namespace { + +  // Local trickery to pretty print a register (without the whole "%vreg" +  // business). +  struct printv { +    printv(unsigned r) : R(r) {} + +    unsigned R; +  }; + +  raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { +    if (PV.R) +      OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R); +    else +      OS << 's'; +    return OS; +  } + +} // end anonymous namespace + +namespace llvm { + +  raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { +    switch (BV.Type) { +      case BT::BitValue::Top: +        OS << 'T'; +        break; +      case BT::BitValue::Zero: +        OS << '0'; +        break; +      case BT::BitValue::One: +        OS << '1'; +        break; +      case BT::BitValue::Ref: +        OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; +        break; +    } +    return OS; +  } + +  raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { +    unsigned n = RC.Bits.size(); +    OS << "{ w:" << n; +    // Instead of printing each bit value individually, try to group them +    // into logical segments, such as sequences of 0 or 1 bits or references +    // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). +    // "Start" will be the index of the beginning of the most recent segment. +    unsigned Start = 0; +    bool SeqRef = false;    // A sequence of refs to consecutive bits. +    bool ConstRef = false;  // A sequence of refs to the same bit. + +    for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { +      const BT::BitValue &V = RC[i]; +      const BT::BitValue &SV = RC[Start]; +      bool IsRef = (V.Type == BT::BitValue::Ref); +      // If the current value is the same as Start, skip to the next one. +      if (!IsRef && V == SV) +        continue; +      if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { +        if (Start+1 == i) { +          SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); +          ConstRef = (V.RefI.Pos == SV.RefI.Pos); +        } +        if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) +          continue; +        if (ConstRef && V.RefI.Pos == SV.RefI.Pos) +          continue; +      } + +      // The current value is different. Print the previous one and reset +      // the Start. +      OS << " [" << Start; +      unsigned Count = i - Start; +      if (Count == 1) { +        OS << "]:" << SV; +      } else { +        OS << '-' << i-1 << "]:"; +        if (SV.Type == BT::BitValue::Ref && SeqRef) +          OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' +             << SV.RefI.Pos+(Count-1) << ']'; +        else +          OS << SV; +      } +      Start = i; +      SeqRef = ConstRef = false; +    } + +    OS << " [" << Start; +    unsigned Count = n - Start; +    if (n-Start == 1) { +      OS << "]:" << RC[Start]; +    } else { +      OS << '-' << n-1 << "]:"; +      const BT::BitValue &SV = RC[Start]; +      if (SV.Type == BT::BitValue::Ref && SeqRef) +        OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' +           << SV.RefI.Pos+(Count-1) << ']'; +      else +        OS << SV; +    } +    OS << " }"; + +    return OS; +  } + +} // end namespace llvm + +void BitTracker::print_cells(raw_ostream &OS) const { +  for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) +    dbgs() << PrintReg(I->first, &ME.TRI) << " -> " << I->second << "\n"; +} + +BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) +    : Trace(false), ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType) {} + +BitTracker::~BitTracker() { +  delete ⤅ +} + +// If we were allowed to update a cell for a part of a register, the meet +// operation would need to be parametrized by the register number and the +// exact part of the register, so that the computer BitRefs correspond to +// the actual bits of the "self" register. +// While this cannot happen in the current implementation, I'm not sure +// if this should be ruled out in the future. +bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) { +  // An example when "meet" can be invoked with SelfR == 0 is a phi node +  // with a physical register as an operand. +  assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR)); +  bool Changed = false; +  for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { +    const BitValue &RCV = RC[i]; +    Changed |= Bits[i].meet(RCV, BitRef(SelfR, i)); +  } +  return Changed; +} + +// Insert the entire cell RC into the current cell at position given by M. +BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, +      const BitMask &M) { +  uint16_t B = M.first(), E = M.last(), W = width(); +  // Sanity: M must be a valid mask for *this. +  assert(B < W && E < W); +  // Sanity: the masked part of *this must have the same number of bits +  // as the source. +  assert(B > E || E-B+1 == RC.width());      // B <= E  =>  E-B+1 = |RC|. +  assert(B <= E || E+(W-B)+1 == RC.width()); // E < B   =>  E+(W-B)+1 = |RC|. +  if (B <= E) { +    for (uint16_t i = 0; i <= E-B; ++i) +      Bits[i+B] = RC[i]; +  } else { +    for (uint16_t i = 0; i < W-B; ++i) +      Bits[i+B] = RC[i]; +    for (uint16_t i = 0; i <= E; ++i) +      Bits[i] = RC[i+(W-B)]; +  } +  return *this; +} + +BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const { +  uint16_t B = M.first(), E = M.last(), W = width(); +  assert(B < W && E < W); +  if (B <= E) { +    RegisterCell RC(E-B+1); +    for (uint16_t i = B; i <= E; ++i) +      RC.Bits[i-B] = Bits[i]; +    return RC; +  } + +  RegisterCell RC(E+(W-B)+1); +  for (uint16_t i = 0; i < W-B; ++i) +    RC.Bits[i] = Bits[i+B]; +  for (uint16_t i = 0; i <= E; ++i) +    RC.Bits[i+(W-B)] = Bits[i]; +  return RC; +} + +BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { +  // Rotate left (i.e. towards increasing bit indices). +  // Swap the two parts:  [0..W-Sh-1] [W-Sh..W-1] +  uint16_t W = width(); +  Sh = Sh % W; +  if (Sh == 0) +    return *this; + +  RegisterCell Tmp(W-Sh); +  // Tmp = [0..W-Sh-1]. +  for (uint16_t i = 0; i < W-Sh; ++i) +    Tmp[i] = Bits[i]; +  // Shift [W-Sh..W-1] to [0..Sh-1]. +  for (uint16_t i = 0; i < Sh; ++i) +    Bits[i] = Bits[W-Sh+i]; +  // Copy Tmp to [Sh..W-1]. +  for (uint16_t i = 0; i < W-Sh; ++i) +    Bits[i+Sh] = Tmp.Bits[i]; +  return *this; +} + +BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, +      const BitValue &V) { +  assert(B <= E); +  while (B < E) +    Bits[B++] = V; +  return *this; +} + +BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { +  // Append the cell given as the argument to the "this" cell. +  // Bit 0 of RC becomes bit W of the result, where W is this->width(). +  uint16_t W = width(), WRC = RC.width(); +  Bits.resize(W+WRC); +  for (uint16_t i = 0; i < WRC; ++i) +    Bits[i+W] = RC.Bits[i]; +  return *this; +} + +uint16_t BT::RegisterCell::ct(bool B) const { +  uint16_t W = width(); +  uint16_t C = 0; +  BitValue V = B; +  while (C < W && Bits[C] == V) +    C++; +  return C; +} + +uint16_t BT::RegisterCell::cl(bool B) const { +  uint16_t W = width(); +  uint16_t C = 0; +  BitValue V = B; +  while (C < W && Bits[W-(C+1)] == V) +    C++; +  return C; +} + +bool BT::RegisterCell::operator== (const RegisterCell &RC) const { +  uint16_t W = Bits.size(); +  if (RC.Bits.size() != W) +    return false; +  for (uint16_t i = 0; i < W; ++i) +    if (Bits[i] != RC[i]) +      return false; +  return true; +} + +BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { +  for (unsigned i = 0, n = width(); i < n; ++i) { +    const BitValue &V = Bits[i]; +    if (V.Type == BitValue::Ref && V.RefI.Reg == 0) +      Bits[i].RefI = BitRef(R, i); +  } +  return *this; +} + +uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { +  // The general problem is with finding a register class that corresponds +  // to a given reference reg:sub. There can be several such classes, and +  // since we only care about the register size, it does not matter which +  // such class we would find. +  // The easiest way to accomplish what we want is to +  // 1. find a physical register PhysR from the same class as RR.Reg, +  // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, +  // 3. find a register class that contains PhysS. +  unsigned PhysR; +  if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { +    const TargetRegisterClass *VC = MRI.getRegClass(RR.Reg); +    assert(VC->begin() != VC->end() && "Empty register class"); +    PhysR = *VC->begin(); +  } else { +    assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); +    PhysR = RR.Reg; +  } + +  unsigned PhysS = (RR.Sub == 0) ? PhysR : TRI.getSubReg(PhysR, RR.Sub); +  const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(PhysS); +  uint16_t BW = TRI.getRegSizeInBits(*RC); +  return BW; +} + +BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, +      const CellMapType &M) const { +  uint16_t BW = getRegBitWidth(RR); + +  // Physical registers are assumed to be present in the map with an unknown +  // value. Don't actually insert anything in the map, just return the cell. +  if (TargetRegisterInfo::isPhysicalRegister(RR.Reg)) +    return RegisterCell::self(0, BW); + +  assert(TargetRegisterInfo::isVirtualRegister(RR.Reg)); +  // For virtual registers that belong to a class that is not tracked, +  // generate an "unknown" value as well. +  const TargetRegisterClass *C = MRI.getRegClass(RR.Reg); +  if (!track(C)) +    return RegisterCell::self(0, BW); + +  CellMapType::const_iterator F = M.find(RR.Reg); +  if (F != M.end()) { +    if (!RR.Sub) +      return F->second; +    BitMask M = mask(RR.Reg, RR.Sub); +    return F->second.extract(M); +  } +  // If not found, create a "top" entry, but do not insert it in the map. +  return RegisterCell::top(BW); +} + +void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, +      CellMapType &M) const { +  // While updating the cell map can be done in a meaningful way for +  // a part of a register, it makes little sense to implement it as the +  // SSA representation would never contain such "partial definitions". +  if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) +    return; +  assert(RR.Sub == 0 && "Unexpected sub-register in definition"); +  // Eliminate all ref-to-reg-0 bit values: replace them with "self". +  M[RR.Reg] = RC.regify(RR.Reg); +} + +// Check if the cell represents a compile-time integer value. +bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { +  uint16_t W = A.width(); +  for (uint16_t i = 0; i < W; ++i) +    if (!A[i].is(0) && !A[i].is(1)) +      return false; +  return true; +} + +// Convert a cell to the integer value. The result must fit in uint64_t. +uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { +  assert(isInt(A)); +  uint64_t Val = 0; +  uint16_t W = A.width(); +  for (uint16_t i = 0; i < W; ++i) { +    Val <<= 1; +    Val |= A[i].is(1); +  } +  return Val; +} + +// Evaluator helper functions. These implement some common operation on +// register cells that can be used to implement target-specific instructions +// in a target-specific evaluator. + +BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { +  RegisterCell Res(W); +  // For bits beyond the 63rd, this will generate the sign bit of V. +  for (uint16_t i = 0; i < W; ++i) { +    Res[i] = BitValue(V & 1); +    V >>= 1; +  } +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { +  const APInt &A = CI->getValue(); +  uint16_t BW = A.getBitWidth(); +  assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow"); +  RegisterCell Res(BW); +  for (uint16_t i = 0; i < BW; ++i) +    Res[i] = A[i]; +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, +      const RegisterCell &A2) const { +  uint16_t W = A1.width(); +  assert(W == A2.width()); +  RegisterCell Res(W); +  bool Carry = false; +  uint16_t I; +  for (I = 0; I < W; ++I) { +    const BitValue &V1 = A1[I]; +    const BitValue &V2 = A2[I]; +    if (!V1.num() || !V2.num()) +      break; +    unsigned S = bool(V1) + bool(V2) + Carry; +    Res[I] = BitValue(S & 1); +    Carry = (S > 1); +  } +  for (; I < W; ++I) { +    const BitValue &V1 = A1[I]; +    const BitValue &V2 = A2[I]; +    // If the next bit is same as Carry, the result will be 0 plus the +    // other bit. The Carry bit will remain unchanged. +    if (V1.is(Carry)) +      Res[I] = BitValue::ref(V2); +    else if (V2.is(Carry)) +      Res[I] = BitValue::ref(V1); +    else +      break; +  } +  for (; I < W; ++I) +    Res[I] = BitValue::self(); +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, +      const RegisterCell &A2) const { +  uint16_t W = A1.width(); +  assert(W == A2.width()); +  RegisterCell Res(W); +  bool Borrow = false; +  uint16_t I; +  for (I = 0; I < W; ++I) { +    const BitValue &V1 = A1[I]; +    const BitValue &V2 = A2[I]; +    if (!V1.num() || !V2.num()) +      break; +    unsigned S = bool(V1) - bool(V2) - Borrow; +    Res[I] = BitValue(S & 1); +    Borrow = (S > 1); +  } +  for (; I < W; ++I) { +    const BitValue &V1 = A1[I]; +    const BitValue &V2 = A2[I]; +    if (V1.is(Borrow)) { +      Res[I] = BitValue::ref(V2); +      break; +    } +    if (V2.is(Borrow)) +      Res[I] = BitValue::ref(V1); +    else +      break; +  } +  for (; I < W; ++I) +    Res[I] = BitValue::self(); +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, +      const RegisterCell &A2) const { +  uint16_t W = A1.width() + A2.width(); +  uint16_t Z = A1.ct(false) + A2.ct(false); +  RegisterCell Res(W); +  Res.fill(0, Z, BitValue::Zero); +  Res.fill(Z, W, BitValue::self()); +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, +      const RegisterCell &A2) const { +  uint16_t W = A1.width() + A2.width(); +  uint16_t Z = A1.ct(false) + A2.ct(false); +  RegisterCell Res(W); +  Res.fill(0, Z, BitValue::Zero); +  Res.fill(Z, W, BitValue::self()); +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, +      uint16_t Sh) const { +  assert(Sh <= A1.width()); +  RegisterCell Res = RegisterCell::ref(A1); +  Res.rol(Sh); +  Res.fill(0, Sh, BitValue::Zero); +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, +      uint16_t Sh) const { +  uint16_t W = A1.width(); +  assert(Sh <= W); +  RegisterCell Res = RegisterCell::ref(A1); +  Res.rol(W-Sh); +  Res.fill(W-Sh, W, BitValue::Zero); +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, +      uint16_t Sh) const { +  uint16_t W = A1.width(); +  assert(Sh <= W); +  RegisterCell Res = RegisterCell::ref(A1); +  BitValue Sign = Res[W-1]; +  Res.rol(W-Sh); +  Res.fill(W-Sh, W, Sign); +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, +      const RegisterCell &A2) const { +  uint16_t W = A1.width(); +  assert(W == A2.width()); +  RegisterCell Res(W); +  for (uint16_t i = 0; i < W; ++i) { +    const BitValue &V1 = A1[i]; +    const BitValue &V2 = A2[i]; +    if (V1.is(1)) +      Res[i] = BitValue::ref(V2); +    else if (V2.is(1)) +      Res[i] = BitValue::ref(V1); +    else if (V1.is(0) || V2.is(0)) +      Res[i] = BitValue::Zero; +    else if (V1 == V2) +      Res[i] = V1; +    else +      Res[i] = BitValue::self(); +  } +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, +      const RegisterCell &A2) const { +  uint16_t W = A1.width(); +  assert(W == A2.width()); +  RegisterCell Res(W); +  for (uint16_t i = 0; i < W; ++i) { +    const BitValue &V1 = A1[i]; +    const BitValue &V2 = A2[i]; +    if (V1.is(1) || V2.is(1)) +      Res[i] = BitValue::One; +    else if (V1.is(0)) +      Res[i] = BitValue::ref(V2); +    else if (V2.is(0)) +      Res[i] = BitValue::ref(V1); +    else if (V1 == V2) +      Res[i] = V1; +    else +      Res[i] = BitValue::self(); +  } +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, +      const RegisterCell &A2) const { +  uint16_t W = A1.width(); +  assert(W == A2.width()); +  RegisterCell Res(W); +  for (uint16_t i = 0; i < W; ++i) { +    const BitValue &V1 = A1[i]; +    const BitValue &V2 = A2[i]; +    if (V1.is(0)) +      Res[i] = BitValue::ref(V2); +    else if (V2.is(0)) +      Res[i] = BitValue::ref(V1); +    else if (V1 == V2) +      Res[i] = BitValue::Zero; +    else +      Res[i] = BitValue::self(); +  } +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { +  uint16_t W = A1.width(); +  RegisterCell Res(W); +  for (uint16_t i = 0; i < W; ++i) { +    const BitValue &V = A1[i]; +    if (V.is(0)) +      Res[i] = BitValue::One; +    else if (V.is(1)) +      Res[i] = BitValue::Zero; +    else +      Res[i] = BitValue::self(); +  } +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, +      uint16_t BitN) const { +  assert(BitN < A1.width()); +  RegisterCell Res = RegisterCell::ref(A1); +  Res[BitN] = BitValue::One; +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, +      uint16_t BitN) const { +  assert(BitN < A1.width()); +  RegisterCell Res = RegisterCell::ref(A1); +  Res[BitN] = BitValue::Zero; +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, +      uint16_t W) const { +  uint16_t C = A1.cl(B), AW = A1.width(); +  // If the last leading non-B bit is not a constant, then we don't know +  // the real count. +  if ((C < AW && A1[AW-1-C].num()) || C == AW) +    return eIMM(C, W); +  return RegisterCell::self(0, W); +} + +BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, +      uint16_t W) const { +  uint16_t C = A1.ct(B), AW = A1.width(); +  // If the last trailing non-B bit is not a constant, then we don't know +  // the real count. +  if ((C < AW && A1[C].num()) || C == AW) +    return eIMM(C, W); +  return RegisterCell::self(0, W); +} + +BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, +      uint16_t FromN) const { +  uint16_t W = A1.width(); +  assert(FromN <= W); +  RegisterCell Res = RegisterCell::ref(A1); +  BitValue Sign = Res[FromN-1]; +  // Sign-extend "inreg". +  Res.fill(FromN, W, Sign); +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, +      uint16_t FromN) const { +  uint16_t W = A1.width(); +  assert(FromN <= W); +  RegisterCell Res = RegisterCell::ref(A1); +  Res.fill(FromN, W, BitValue::Zero); +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, +      uint16_t B, uint16_t E) const { +  uint16_t W = A1.width(); +  assert(B < W && E <= W); +  if (B == E) +    return RegisterCell(0); +  uint16_t Last = (E > 0) ? E-1 : W-1; +  RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last)); +  // Return shorter cell. +  return Res; +} + +BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, +      const RegisterCell &A2, uint16_t AtN) const { +  uint16_t W1 = A1.width(), W2 = A2.width(); +  (void)W1; +  assert(AtN < W1 && AtN+W2 <= W1); +  // Copy bits from A1, insert A2 at position AtN. +  RegisterCell Res = RegisterCell::ref(A1); +  if (W2 > 0) +    Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1)); +  return Res; +} + +BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const { +  assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0"); +  uint16_t W = getRegBitWidth(Reg); +  assert(W > 0 && "Cannot generate mask for empty register"); +  return BitMask(0, W-1); +} + +bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, +                                    const CellMapType &Inputs, +                                    CellMapType &Outputs) const { +  unsigned Opc = MI.getOpcode(); +  switch (Opc) { +    case TargetOpcode::REG_SEQUENCE: { +      RegisterRef RD = MI.getOperand(0); +      assert(RD.Sub == 0); +      RegisterRef RS = MI.getOperand(1); +      unsigned SS = MI.getOperand(2).getImm(); +      RegisterRef RT = MI.getOperand(3); +      unsigned ST = MI.getOperand(4).getImm(); +      assert(SS != ST); + +      uint16_t W = getRegBitWidth(RD); +      RegisterCell Res(W); +      Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS)); +      Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST)); +      putCell(RD, Res, Outputs); +      break; +    } + +    case TargetOpcode::COPY: { +      // COPY can transfer a smaller register into a wider one. +      // If that is the case, fill the remaining high bits with 0. +      RegisterRef RD = MI.getOperand(0); +      RegisterRef RS = MI.getOperand(1); +      assert(RD.Sub == 0); +      uint16_t WD = getRegBitWidth(RD); +      uint16_t WS = getRegBitWidth(RS); +      assert(WD >= WS); +      RegisterCell Src = getCell(RS, Inputs); +      RegisterCell Res(WD); +      Res.insert(Src, BitMask(0, WS-1)); +      Res.fill(WS, WD, BitValue::Zero); +      putCell(RD, Res, Outputs); +      break; +    } + +    default: +      return false; +  } + +  return true; +} + +// Main W-Z implementation. + +void BT::visitPHI(const MachineInstr &PI) { +  int ThisN = PI.getParent()->getNumber(); +  if (Trace) +    dbgs() << "Visit FI(BB#" << ThisN << "): " << PI; + +  const MachineOperand &MD = PI.getOperand(0); +  assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition"); +  RegisterRef DefRR(MD); +  uint16_t DefBW = ME.getRegBitWidth(DefRR); + +  RegisterCell DefC = ME.getCell(DefRR, Map); +  if (DefC == RegisterCell::self(DefRR.Reg, DefBW))    // XXX slow +    return; + +  bool Changed = false; + +  for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { +    const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB(); +    int PredN = PB->getNumber(); +    if (Trace) +      dbgs() << "  edge BB#" << PredN << "->BB#" << ThisN; +    if (!EdgeExec.count(CFGEdge(PredN, ThisN))) { +      if (Trace) +        dbgs() << " not executable\n"; +      continue; +    } + +    RegisterRef RU = PI.getOperand(i); +    RegisterCell ResC = ME.getCell(RU, Map); +    if (Trace) +      dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub) +             << " cell: " << ResC << "\n"; +    Changed |= DefC.meet(ResC, DefRR.Reg); +  } + +  if (Changed) { +    if (Trace) +      dbgs() << "Output: " << PrintReg(DefRR.Reg, &ME.TRI, DefRR.Sub) +             << " cell: " << DefC << "\n"; +    ME.putCell(DefRR, DefC, Map); +    visitUsesOf(DefRR.Reg); +  } +} + +void BT::visitNonBranch(const MachineInstr &MI) { +  if (Trace) { +    int ThisN = MI.getParent()->getNumber(); +    dbgs() << "Visit MI(BB#" << ThisN << "): " << MI; +  } +  if (MI.isDebugValue()) +    return; +  assert(!MI.isBranch() && "Unexpected branch instruction"); + +  CellMapType ResMap; +  bool Eval = ME.evaluate(MI, Map, ResMap); + +  if (Trace && Eval) { +    for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { +      const MachineOperand &MO = MI.getOperand(i); +      if (!MO.isReg() || !MO.isUse()) +        continue; +      RegisterRef RU(MO); +      dbgs() << "  input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub) +             << " cell: " << ME.getCell(RU, Map) << "\n"; +    } +    dbgs() << "Outputs:\n"; +    for (CellMapType::iterator I = ResMap.begin(), E = ResMap.end(); +         I != E; ++I) { +      RegisterRef RD(I->first); +      dbgs() << "  " << PrintReg(I->first, &ME.TRI) << " cell: " +             << ME.getCell(RD, ResMap) << "\n"; +    } +  } + +  // Iterate over all definitions of the instruction, and update the +  // cells accordingly. +  for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { +    const MachineOperand &MO = MI.getOperand(i); +    // Visit register defs only. +    if (!MO.isReg() || !MO.isDef()) +      continue; +    RegisterRef RD(MO); +    assert(RD.Sub == 0 && "Unexpected sub-register in definition"); +    if (!TargetRegisterInfo::isVirtualRegister(RD.Reg)) +      continue; + +    bool Changed = false; +    if (!Eval || ResMap.count(RD.Reg) == 0) { +      // Set to "ref" (aka "bottom"). +      uint16_t DefBW = ME.getRegBitWidth(RD); +      RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW); +      if (RefC != ME.getCell(RD, Map)) { +        ME.putCell(RD, RefC, Map); +        Changed = true; +      } +    } else { +      RegisterCell DefC = ME.getCell(RD, Map); +      RegisterCell ResC = ME.getCell(RD, ResMap); +      // This is a non-phi instruction, so the values of the inputs come +      // from the same registers each time this instruction is evaluated. +      // During the propagation, the values of the inputs can become lowered +      // in the sense of the lattice operation, which may cause different +      // results to be calculated in subsequent evaluations. This should +      // not cause the bottoming of the result in the map, since the new +      // result is already reflecting the lowered inputs. +      for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { +        BitValue &V = DefC[i]; +        // Bits that are already "bottom" should not be updated. +        if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) +          continue; +        // Same for those that are identical in DefC and ResC. +        if (V == ResC[i]) +          continue; +        V = ResC[i]; +        Changed = true; +      } +      if (Changed) +        ME.putCell(RD, DefC, Map); +    } +    if (Changed) +      visitUsesOf(RD.Reg); +  } +} + +void BT::visitBranchesFrom(const MachineInstr &BI) { +  const MachineBasicBlock &B = *BI.getParent(); +  MachineBasicBlock::const_iterator It = BI, End = B.end(); +  BranchTargetList Targets, BTs; +  bool FallsThrough = true, DefaultToAll = false; +  int ThisN = B.getNumber(); + +  do { +    BTs.clear(); +    const MachineInstr &MI = *It; +    if (Trace) +      dbgs() << "Visit BR(BB#" << ThisN << "): " << MI; +    assert(MI.isBranch() && "Expecting branch instruction"); +    InstrExec.insert(&MI); +    bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough); +    if (!Eval) { +      // If the evaluation failed, we will add all targets. Keep going in +      // the loop to mark all executable branches as such. +      DefaultToAll = true; +      FallsThrough = true; +      if (Trace) +        dbgs() << "  failed to evaluate: will add all CFG successors\n"; +    } else if (!DefaultToAll) { +      // If evaluated successfully add the targets to the cumulative list. +      if (Trace) { +        dbgs() << "  adding targets:"; +        for (unsigned i = 0, n = BTs.size(); i < n; ++i) +          dbgs() << " BB#" << BTs[i]->getNumber(); +        if (FallsThrough) +          dbgs() << "\n  falls through\n"; +        else +          dbgs() << "\n  does not fall through\n"; +      } +      Targets.insert(BTs.begin(), BTs.end()); +    } +    ++It; +  } while (FallsThrough && It != End); + +  typedef MachineBasicBlock::const_succ_iterator succ_iterator; +  if (!DefaultToAll) { +    // Need to add all CFG successors that lead to EH landing pads. +    // There won't be explicit branches to these blocks, but they must +    // be processed. +    for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) { +      const MachineBasicBlock *SB = *I; +      if (SB->isEHPad()) +        Targets.insert(SB); +    } +    if (FallsThrough) { +      MachineFunction::const_iterator BIt = B.getIterator(); +      MachineFunction::const_iterator Next = std::next(BIt); +      if (Next != MF.end()) +        Targets.insert(&*Next); +    } +  } else { +    for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) +      Targets.insert(*I); +  } + +  for (unsigned i = 0, n = Targets.size(); i < n; ++i) { +    int TargetN = Targets[i]->getNumber(); +    FlowQ.push(CFGEdge(ThisN, TargetN)); +  } +} + +void BT::visitUsesOf(unsigned Reg) { +  if (Trace) +    dbgs() << "visiting uses of " << PrintReg(Reg, &ME.TRI) << "\n"; + +  typedef MachineRegisterInfo::use_nodbg_iterator use_iterator; +  use_iterator End = MRI.use_nodbg_end(); +  for (use_iterator I = MRI.use_nodbg_begin(Reg); I != End; ++I) { +    MachineInstr *UseI = I->getParent(); +    if (!InstrExec.count(UseI)) +      continue; +    if (UseI->isPHI()) +      visitPHI(*UseI); +    else if (!UseI->isBranch()) +      visitNonBranch(*UseI); +    else +      visitBranchesFrom(*UseI); +  } +} + +BT::RegisterCell BT::get(RegisterRef RR) const { +  return ME.getCell(RR, Map); +} + +void BT::put(RegisterRef RR, const RegisterCell &RC) { +  ME.putCell(RR, RC, Map); +} + +// Replace all references to bits from OldRR with the corresponding bits +// in NewRR. +void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { +  assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map"); +  BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub); +  BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub); +  uint16_t OMB = OM.first(), OME = OM.last(); +  uint16_t NMB = NM.first(), NME = NM.last(); +  (void)NME; +  assert((OME-OMB == NME-NMB) && +         "Substituting registers of different lengths"); +  for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) { +    RegisterCell &RC = I->second; +    for (uint16_t i = 0, w = RC.width(); i < w; ++i) { +      BitValue &V = RC[i]; +      if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) +        continue; +      if (V.RefI.Pos < OMB || V.RefI.Pos > OME) +        continue; +      V.RefI.Reg = NewRR.Reg; +      V.RefI.Pos += NMB-OMB; +    } +  } +} + +// Check if the block has been "executed" during propagation. (If not, the +// block is dead, but it may still appear to be reachable.) +bool BT::reached(const MachineBasicBlock *B) const { +  int BN = B->getNumber(); +  assert(BN >= 0); +  return ReachedBB.count(BN); +} + +// Visit an individual instruction. This could be a newly added instruction, +// or one that has been modified by an optimization. +void BT::visit(const MachineInstr &MI) { +  assert(!MI.isBranch() && "Only non-branches are allowed"); +  InstrExec.insert(&MI); +  visitNonBranch(MI); +  // The call to visitNonBranch could propagate the changes until a branch +  // is actually visited. This could result in adding CFG edges to the flow +  // queue. Since the queue won't be processed, clear it. +  while (!FlowQ.empty()) +    FlowQ.pop(); +} + +void BT::reset() { +  EdgeExec.clear(); +  InstrExec.clear(); +  Map.clear(); +  ReachedBB.clear(); +  ReachedBB.reserve(MF.size()); +} + +void BT::run() { +  reset(); +  assert(FlowQ.empty()); + +  typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits; +  const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF); + +  unsigned MaxBN = 0; +  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); +       I != E; ++I) { +    assert(I->getNumber() >= 0 && "Disconnected block"); +    unsigned BN = I->getNumber(); +    if (BN > MaxBN) +      MaxBN = BN; +  } + +  // Keep track of visited blocks. +  BitVector BlockScanned(MaxBN+1); + +  int EntryN = Entry->getNumber(); +  // Generate a fake edge to get something to start with. +  FlowQ.push(CFGEdge(-1, EntryN)); + +  while (!FlowQ.empty()) { +    CFGEdge Edge = FlowQ.front(); +    FlowQ.pop(); + +    if (EdgeExec.count(Edge)) +      continue; +    EdgeExec.insert(Edge); +    ReachedBB.insert(Edge.second); + +    const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); +    MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); +    // Visit PHI nodes first. +    while (It != End && It->isPHI()) { +      const MachineInstr &PI = *It++; +      InstrExec.insert(&PI); +      visitPHI(PI); +    } + +    // If this block has already been visited through a flow graph edge, +    // then the instructions have already been processed. Any updates to +    // the cells would now only happen through visitUsesOf... +    if (BlockScanned[Edge.second]) +      continue; +    BlockScanned[Edge.second] = true; + +    // Visit non-branch instructions. +    while (It != End && !It->isBranch()) { +      const MachineInstr &MI = *It++; +      InstrExec.insert(&MI); +      visitNonBranch(MI); +    } +    // If block end has been reached, add the fall-through edge to the queue. +    if (It == End) { +      MachineFunction::const_iterator BIt = B.getIterator(); +      MachineFunction::const_iterator Next = std::next(BIt); +      if (Next != MF.end() && B.isSuccessor(&*Next)) { +        int ThisN = B.getNumber(); +        int NextN = Next->getNumber(); +        FlowQ.push(CFGEdge(ThisN, NextN)); +      } +    } else { +      // Handle the remaining sequence of branches. This function will update +      // the work queue. +      visitBranchesFrom(*It); +    } +  } // while (!FlowQ->empty()) + +  if (Trace) +    print_cells(dbgs() << "Cells after propagation:\n"); +}  | 
