summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp3244
1 files changed, 3244 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp
new file mode 100644
index 000000000000..14c682c6df4b
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp
@@ -0,0 +1,3244 @@
+//===--- HexagonBitSimplify.cpp -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "hexbit"
+
+#include "HexagonBitTracker.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <limits>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
+ cl::init(true), cl::desc("Preserve subregisters in tied operands"));
+static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
+ cl::init(true), cl::desc("Generate extract instructions"));
+static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
+ cl::init(true), cl::desc("Generate bitsplit instructions"));
+
+static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
+ cl::init(UINT_MAX));
+static unsigned CountExtract = 0;
+static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
+ cl::init(UINT_MAX));
+static unsigned CountBitSplit = 0;
+
+namespace llvm {
+
+ void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
+ FunctionPass *createHexagonBitSimplify();
+
+} // end namespace llvm
+
+namespace {
+
+ // Set of virtual registers, based on BitVector.
+ struct RegisterSet : private BitVector {
+ RegisterSet() = default;
+ explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
+ RegisterSet(const RegisterSet &RS) = default;
+
+ using BitVector::clear;
+ using BitVector::count;
+
+ unsigned find_first() const {
+ int First = BitVector::find_first();
+ if (First < 0)
+ return 0;
+ return x2v(First);
+ }
+
+ unsigned find_next(unsigned Prev) const {
+ int Next = BitVector::find_next(v2x(Prev));
+ if (Next < 0)
+ return 0;
+ return x2v(Next);
+ }
+
+ RegisterSet &insert(unsigned R) {
+ unsigned Idx = v2x(R);
+ ensure(Idx);
+ return static_cast<RegisterSet&>(BitVector::set(Idx));
+ }
+ RegisterSet &remove(unsigned R) {
+ unsigned Idx = v2x(R);
+ if (Idx >= size())
+ return *this;
+ return static_cast<RegisterSet&>(BitVector::reset(Idx));
+ }
+
+ RegisterSet &insert(const RegisterSet &Rs) {
+ return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
+ }
+ RegisterSet &remove(const RegisterSet &Rs) {
+ return static_cast<RegisterSet&>(BitVector::reset(Rs));
+ }
+
+ reference operator[](unsigned R) {
+ unsigned Idx = v2x(R);
+ ensure(Idx);
+ return BitVector::operator[](Idx);
+ }
+ bool operator[](unsigned R) const {
+ unsigned Idx = v2x(R);
+ assert(Idx < size());
+ return BitVector::operator[](Idx);
+ }
+ bool has(unsigned R) const {
+ unsigned Idx = v2x(R);
+ if (Idx >= size())
+ return false;
+ return BitVector::test(Idx);
+ }
+
+ bool empty() const {
+ return !BitVector::any();
+ }
+ bool includes(const RegisterSet &Rs) const {
+ // A.BitVector::test(B) <=> A-B != {}
+ return !Rs.BitVector::test(*this);
+ }
+ bool intersects(const RegisterSet &Rs) const {
+ return BitVector::anyCommon(Rs);
+ }
+
+ private:
+ void ensure(unsigned Idx) {
+ if (size() <= Idx)
+ resize(std::max(Idx+1, 32U));
+ }
+
+ static inline unsigned v2x(unsigned v) {
+ return TargetRegisterInfo::virtReg2Index(v);
+ }
+
+ static inline unsigned x2v(unsigned x) {
+ return TargetRegisterInfo::index2VirtReg(x);
+ }
+ };
+
+ struct PrintRegSet {
+ PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
+ : RS(S), TRI(RI) {}
+
+ friend raw_ostream &operator<< (raw_ostream &OS,
+ const PrintRegSet &P);
+
+ private:
+ const RegisterSet &RS;
+ const TargetRegisterInfo *TRI;
+ };
+
+ raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
+ LLVM_ATTRIBUTE_UNUSED;
+ raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
+ OS << '{';
+ for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
+ OS << ' ' << PrintReg(R, P.TRI);
+ OS << " }";
+ return OS;
+ }
+
+ class Transformation;
+
+ class HexagonBitSimplify : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ HexagonBitSimplify() : MachineFunctionPass(ID), MDT(nullptr) {
+ initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override {
+ return "Hexagon bit simplification";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
+ static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
+ static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
+ const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
+ static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
+ uint16_t W);
+ static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
+ uint16_t W, uint64_t &U);
+ static bool replaceReg(unsigned OldR, unsigned NewR,
+ MachineRegisterInfo &MRI);
+ static bool getSubregMask(const BitTracker::RegisterRef &RR,
+ unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
+ static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
+ unsigned NewSR, MachineRegisterInfo &MRI);
+ static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
+ unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
+ static bool parseRegSequence(const MachineInstr &I,
+ BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
+ const MachineRegisterInfo &MRI);
+
+ static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
+ uint16_t Begin);
+ static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
+ uint16_t Begin, const HexagonInstrInfo &HII);
+
+ static const TargetRegisterClass *getFinalVRegClass(
+ const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
+ static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
+ const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
+
+ private:
+ MachineDominatorTree *MDT;
+
+ bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
+ static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
+ unsigned NewSub = Hexagon::NoSubRegister);
+ };
+
+ char HexagonBitSimplify::ID = 0;
+ typedef HexagonBitSimplify HBS;
+
+ // The purpose of this class is to provide a common facility to traverse
+ // the function top-down or bottom-up via the dominator tree, and keep
+ // track of the available registers.
+ class Transformation {
+ public:
+ bool TopDown;
+
+ Transformation(bool TD) : TopDown(TD) {}
+ virtual ~Transformation() = default;
+
+ virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
+ };
+
+} // end anonymous namespace
+
+INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
+ "Hexagon bit simplification", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
+ "Hexagon bit simplification", false, false)
+
+bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
+ RegisterSet &AVs) {
+ bool Changed = false;
+
+ if (T.TopDown)
+ Changed = T.processBlock(B, AVs);
+
+ RegisterSet Defs;
+ for (auto &I : B)
+ getInstrDefs(I, Defs);
+ RegisterSet NewAVs = AVs;
+ NewAVs.insert(Defs);
+
+ for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
+ Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
+
+ if (!T.TopDown)
+ Changed |= T.processBlock(B, AVs);
+
+ return Changed;
+}
+
+//
+// Utility functions:
+//
+void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
+ RegisterSet &Defs) {
+ for (auto &Op : MI.operands()) {
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+ unsigned R = Op.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R))
+ continue;
+ Defs.insert(R);
+ }
+}
+
+void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
+ RegisterSet &Uses) {
+ for (auto &Op : MI.operands()) {
+ if (!Op.isReg() || !Op.isUse())
+ continue;
+ unsigned R = Op.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R))
+ continue;
+ Uses.insert(R);
+ }
+}
+
+// Check if all the bits in range [B, E) in both cells are equal.
+bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
+ uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
+ uint16_t W) {
+ for (uint16_t i = 0; i < W; ++i) {
+ // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
+ if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
+ return false;
+ // Same for RC2[i].
+ if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
+ return false;
+ if (RC1[B1+i] != RC2[B2+i])
+ return false;
+ }
+ return true;
+}
+
+bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
+ uint16_t B, uint16_t W) {
+ assert(B < RC.width() && B+W <= RC.width());
+ for (uint16_t i = B; i < B+W; ++i)
+ if (!RC[i].is(0))
+ return false;
+ return true;
+}
+
+bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
+ uint16_t B, uint16_t W, uint64_t &U) {
+ assert(B < RC.width() && B+W <= RC.width());
+ int64_t T = 0;
+ for (uint16_t i = B+W; i > B; --i) {
+ const BitTracker::BitValue &BV = RC[i-1];
+ T <<= 1;
+ if (BV.is(1))
+ T |= 1;
+ else if (!BV.is(0))
+ return false;
+ }
+ U = T;
+ return true;
+}
+
+bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
+ MachineRegisterInfo &MRI) {
+ if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
+ !TargetRegisterInfo::isVirtualRegister(NewR))
+ return false;
+ auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
+ decltype(End) NextI;
+ for (auto I = Begin; I != End; I = NextI) {
+ NextI = std::next(I);
+ I->setReg(NewR);
+ }
+ return Begin != End;
+}
+
+bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
+ unsigned NewSR, MachineRegisterInfo &MRI) {
+ if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
+ !TargetRegisterInfo::isVirtualRegister(NewR))
+ return false;
+ if (hasTiedUse(OldR, MRI, NewSR))
+ return false;
+ auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
+ decltype(End) NextI;
+ for (auto I = Begin; I != End; I = NextI) {
+ NextI = std::next(I);
+ I->setReg(NewR);
+ I->setSubReg(NewSR);
+ }
+ return Begin != End;
+}
+
+bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
+ unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
+ if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
+ !TargetRegisterInfo::isVirtualRegister(NewR))
+ return false;
+ if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
+ return false;
+ auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
+ decltype(End) NextI;
+ for (auto I = Begin; I != End; I = NextI) {
+ NextI = std::next(I);
+ if (I->getSubReg() != OldSR)
+ continue;
+ I->setReg(NewR);
+ I->setSubReg(NewSR);
+ }
+ return Begin != End;
+}
+
+// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
+// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
+// if this succeeded, otherwise return false.
+bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
+ unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
+ const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
+ if (RR.Sub == 0) {
+ Begin = 0;
+ Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
+ return true;
+ }
+
+ Begin = 0;
+
+ switch (RC->getID()) {
+ case Hexagon::DoubleRegsRegClassID:
+ case Hexagon::VecDblRegsRegClassID:
+ case Hexagon::VecDblRegs128BRegClassID:
+ Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
+ if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
+ Begin = Width;
+ break;
+ default:
+ return false;
+ }
+ return true;
+}
+
+
+// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
+// subregister.
+bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
+ BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
+ const MachineRegisterInfo &MRI) {
+ assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
+ unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
+ auto *DstRC = MRI.getRegClass(I.getOperand(0).getReg());
+ auto &HRI = static_cast<const HexagonRegisterInfo&>(
+ *MRI.getTargetRegisterInfo());
+ unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
+ unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
+ assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
+ if (Sub1 == SubLo && Sub2 == SubHi) {
+ SL = I.getOperand(1);
+ SH = I.getOperand(3);
+ return true;
+ }
+ if (Sub1 == SubHi && Sub2 == SubLo) {
+ SH = I.getOperand(1);
+ SL = I.getOperand(3);
+ return true;
+ }
+ return false;
+}
+
+// All stores (except 64-bit stores) take a 32-bit register as the source
+// of the value to be stored. If the instruction stores into a location
+// that is shorter than 32 bits, some bits of the source register are not
+// used. For each store instruction, calculate the set of used bits in
+// the source register, and set appropriate bits in Bits. Return true if
+// the bits are calculated, false otherwise.
+bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
+ uint16_t Begin) {
+ using namespace Hexagon;
+
+ switch (Opc) {
+ // Store byte
+ case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
+ case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
+ case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
+ case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
+ case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
+ case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
+ case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
+ case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
+ case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
+ case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
+ case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
+ case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
+ case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
+ case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
+ case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
+ case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
+ case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
+ case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
+ case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
+ case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
+ case S4_storerb_ap: // memb(Re32=#U6)=Rt32
+ case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
+ case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
+ case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
+ case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
+ case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
+ case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
+ case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
+ case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
+ case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
+ case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
+ case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
+ case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
+ case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
+ case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
+ case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
+ case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
+ case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
+ case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
+ case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
+ case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
+ case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
+ case S2_storerbgp: // memb(gp+#u16:0)=Rt32
+ case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
+ case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
+ case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
+ case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
+ case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
+ case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
+ case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
+ case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
+ case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
+ Bits.set(Begin, Begin+8);
+ return true;
+
+ // Store low half
+ case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
+ case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
+ case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
+ case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
+ case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
+ case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
+ case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
+ case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
+ case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
+ case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
+ case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
+ case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
+ case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
+ case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
+ case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
+ case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
+ case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
+ case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
+ case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
+ case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
+ case S4_storerh_ap: // memh(Re32=#U6)=Rt32
+ case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
+ case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
+ case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
+ case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
+ case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
+ case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
+ case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
+ case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
+ case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
+ case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
+ case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
+ case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
+ case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
+ case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
+ case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
+ case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
+ case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
+ case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
+ case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
+ case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
+ case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
+ case S2_storerhgp: // memh(gp+#u16:1)=Rt32
+ case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
+ case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
+ case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
+ case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
+ case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
+ case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
+ case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
+ case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
+ case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
+ Bits.set(Begin, Begin+16);
+ return true;
+
+ // Store high half
+ case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
+ case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
+ case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
+ case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
+ case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
+ case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
+ case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
+ case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
+ case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
+ case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
+ case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
+ case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
+ case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
+ case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
+ case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
+ case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
+ case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
+ case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
+ case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
+ case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
+ case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
+ case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
+ case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
+ case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
+ case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
+ case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
+ Bits.set(Begin+16, Begin+32);
+ return true;
+ }
+
+ return false;
+}
+
+// For an instruction with opcode Opc, calculate the set of bits that it
+// uses in a register in operand OpN. This only calculates the set of used
+// bits for cases where it does not depend on any operands (as is the case
+// in shifts, for example). For concrete instructions from a program, the
+// operand may be a subregister of a larger register, while Bits would
+// correspond to the larger register in its entirety. Because of that,
+// the parameter Begin can be used to indicate which bit of Bits should be
+// considered the LSB of of the operand.
+bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
+ BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
+ using namespace Hexagon;
+
+ const MCInstrDesc &D = HII.get(Opc);
+ if (D.mayStore()) {
+ if (OpN == D.getNumOperands()-1)
+ return getUsedBitsInStore(Opc, Bits, Begin);
+ return false;
+ }
+
+ switch (Opc) {
+ // One register source. Used bits: R1[0-7].
+ case A2_sxtb:
+ case A2_zxtb:
+ case A4_cmpbeqi:
+ case A4_cmpbgti:
+ case A4_cmpbgtui:
+ if (OpN == 1) {
+ Bits.set(Begin, Begin+8);
+ return true;
+ }
+ break;
+
+ // One register source. Used bits: R1[0-15].
+ case A2_aslh:
+ case A2_sxth:
+ case A2_zxth:
+ case A4_cmpheqi:
+ case A4_cmphgti:
+ case A4_cmphgtui:
+ if (OpN == 1) {
+ Bits.set(Begin, Begin+16);
+ return true;
+ }
+ break;
+
+ // One register source. Used bits: R1[16-31].
+ case A2_asrh:
+ if (OpN == 1) {
+ Bits.set(Begin+16, Begin+32);
+ return true;
+ }
+ break;
+
+ // Two register sources. Used bits: R1[0-7], R2[0-7].
+ case A4_cmpbeq:
+ case A4_cmpbgt:
+ case A4_cmpbgtu:
+ if (OpN == 1) {
+ Bits.set(Begin, Begin+8);
+ return true;
+ }
+ break;
+
+ // Two register sources. Used bits: R1[0-15], R2[0-15].
+ case A4_cmpheq:
+ case A4_cmphgt:
+ case A4_cmphgtu:
+ case A2_addh_h16_ll:
+ case A2_addh_h16_sat_ll:
+ case A2_addh_l16_ll:
+ case A2_addh_l16_sat_ll:
+ case A2_combine_ll:
+ case A2_subh_h16_ll:
+ case A2_subh_h16_sat_ll:
+ case A2_subh_l16_ll:
+ case A2_subh_l16_sat_ll:
+ case M2_mpy_acc_ll_s0:
+ case M2_mpy_acc_ll_s1:
+ case M2_mpy_acc_sat_ll_s0:
+ case M2_mpy_acc_sat_ll_s1:
+ case M2_mpy_ll_s0:
+ case M2_mpy_ll_s1:
+ case M2_mpy_nac_ll_s0:
+ case M2_mpy_nac_ll_s1:
+ case M2_mpy_nac_sat_ll_s0:
+ case M2_mpy_nac_sat_ll_s1:
+ case M2_mpy_rnd_ll_s0:
+ case M2_mpy_rnd_ll_s1:
+ case M2_mpy_sat_ll_s0:
+ case M2_mpy_sat_ll_s1:
+ case M2_mpy_sat_rnd_ll_s0:
+ case M2_mpy_sat_rnd_ll_s1:
+ case M2_mpyd_acc_ll_s0:
+ case M2_mpyd_acc_ll_s1:
+ case M2_mpyd_ll_s0:
+ case M2_mpyd_ll_s1:
+ case M2_mpyd_nac_ll_s0:
+ case M2_mpyd_nac_ll_s1:
+ case M2_mpyd_rnd_ll_s0:
+ case M2_mpyd_rnd_ll_s1:
+ case M2_mpyu_acc_ll_s0:
+ case M2_mpyu_acc_ll_s1:
+ case M2_mpyu_ll_s0:
+ case M2_mpyu_ll_s1:
+ case M2_mpyu_nac_ll_s0:
+ case M2_mpyu_nac_ll_s1:
+ case M2_mpyud_acc_ll_s0:
+ case M2_mpyud_acc_ll_s1:
+ case M2_mpyud_ll_s0:
+ case M2_mpyud_ll_s1:
+ case M2_mpyud_nac_ll_s0:
+ case M2_mpyud_nac_ll_s1:
+ if (OpN == 1 || OpN == 2) {
+ Bits.set(Begin, Begin+16);
+ return true;
+ }
+ break;
+
+ // Two register sources. Used bits: R1[0-15], R2[16-31].
+ case A2_addh_h16_lh:
+ case A2_addh_h16_sat_lh:
+ case A2_combine_lh:
+ case A2_subh_h16_lh:
+ case A2_subh_h16_sat_lh:
+ case M2_mpy_acc_lh_s0:
+ case M2_mpy_acc_lh_s1:
+ case M2_mpy_acc_sat_lh_s0:
+ case M2_mpy_acc_sat_lh_s1:
+ case M2_mpy_lh_s0:
+ case M2_mpy_lh_s1:
+ case M2_mpy_nac_lh_s0:
+ case M2_mpy_nac_lh_s1:
+ case M2_mpy_nac_sat_lh_s0:
+ case M2_mpy_nac_sat_lh_s1:
+ case M2_mpy_rnd_lh_s0:
+ case M2_mpy_rnd_lh_s1:
+ case M2_mpy_sat_lh_s0:
+ case M2_mpy_sat_lh_s1:
+ case M2_mpy_sat_rnd_lh_s0:
+ case M2_mpy_sat_rnd_lh_s1:
+ case M2_mpyd_acc_lh_s0:
+ case M2_mpyd_acc_lh_s1:
+ case M2_mpyd_lh_s0:
+ case M2_mpyd_lh_s1:
+ case M2_mpyd_nac_lh_s0:
+ case M2_mpyd_nac_lh_s1:
+ case M2_mpyd_rnd_lh_s0:
+ case M2_mpyd_rnd_lh_s1:
+ case M2_mpyu_acc_lh_s0:
+ case M2_mpyu_acc_lh_s1:
+ case M2_mpyu_lh_s0:
+ case M2_mpyu_lh_s1:
+ case M2_mpyu_nac_lh_s0:
+ case M2_mpyu_nac_lh_s1:
+ case M2_mpyud_acc_lh_s0:
+ case M2_mpyud_acc_lh_s1:
+ case M2_mpyud_lh_s0:
+ case M2_mpyud_lh_s1:
+ case M2_mpyud_nac_lh_s0:
+ case M2_mpyud_nac_lh_s1:
+ // These four are actually LH.
+ case A2_addh_l16_hl:
+ case A2_addh_l16_sat_hl:
+ case A2_subh_l16_hl:
+ case A2_subh_l16_sat_hl:
+ if (OpN == 1) {
+ Bits.set(Begin, Begin+16);
+ return true;
+ }
+ if (OpN == 2) {
+ Bits.set(Begin+16, Begin+32);
+ return true;
+ }
+ break;
+
+ // Two register sources, used bits: R1[16-31], R2[0-15].
+ case A2_addh_h16_hl:
+ case A2_addh_h16_sat_hl:
+ case A2_combine_hl:
+ case A2_subh_h16_hl:
+ case A2_subh_h16_sat_hl:
+ case M2_mpy_acc_hl_s0:
+ case M2_mpy_acc_hl_s1:
+ case M2_mpy_acc_sat_hl_s0:
+ case M2_mpy_acc_sat_hl_s1:
+ case M2_mpy_hl_s0:
+ case M2_mpy_hl_s1:
+ case M2_mpy_nac_hl_s0:
+ case M2_mpy_nac_hl_s1:
+ case M2_mpy_nac_sat_hl_s0:
+ case M2_mpy_nac_sat_hl_s1:
+ case M2_mpy_rnd_hl_s0:
+ case M2_mpy_rnd_hl_s1:
+ case M2_mpy_sat_hl_s0:
+ case M2_mpy_sat_hl_s1:
+ case M2_mpy_sat_rnd_hl_s0:
+ case M2_mpy_sat_rnd_hl_s1:
+ case M2_mpyd_acc_hl_s0:
+ case M2_mpyd_acc_hl_s1:
+ case M2_mpyd_hl_s0:
+ case M2_mpyd_hl_s1:
+ case M2_mpyd_nac_hl_s0:
+ case M2_mpyd_nac_hl_s1:
+ case M2_mpyd_rnd_hl_s0:
+ case M2_mpyd_rnd_hl_s1:
+ case M2_mpyu_acc_hl_s0:
+ case M2_mpyu_acc_hl_s1:
+ case M2_mpyu_hl_s0:
+ case M2_mpyu_hl_s1:
+ case M2_mpyu_nac_hl_s0:
+ case M2_mpyu_nac_hl_s1:
+ case M2_mpyud_acc_hl_s0:
+ case M2_mpyud_acc_hl_s1:
+ case M2_mpyud_hl_s0:
+ case M2_mpyud_hl_s1:
+ case M2_mpyud_nac_hl_s0:
+ case M2_mpyud_nac_hl_s1:
+ if (OpN == 1) {
+ Bits.set(Begin+16, Begin+32);
+ return true;
+ }
+ if (OpN == 2) {
+ Bits.set(Begin, Begin+16);
+ return true;
+ }
+ break;
+
+ // Two register sources, used bits: R1[16-31], R2[16-31].
+ case A2_addh_h16_hh:
+ case A2_addh_h16_sat_hh:
+ case A2_combine_hh:
+ case A2_subh_h16_hh:
+ case A2_subh_h16_sat_hh:
+ case M2_mpy_acc_hh_s0:
+ case M2_mpy_acc_hh_s1:
+ case M2_mpy_acc_sat_hh_s0:
+ case M2_mpy_acc_sat_hh_s1:
+ case M2_mpy_hh_s0:
+ case M2_mpy_hh_s1:
+ case M2_mpy_nac_hh_s0:
+ case M2_mpy_nac_hh_s1:
+ case M2_mpy_nac_sat_hh_s0:
+ case M2_mpy_nac_sat_hh_s1:
+ case M2_mpy_rnd_hh_s0:
+ case M2_mpy_rnd_hh_s1:
+ case M2_mpy_sat_hh_s0:
+ case M2_mpy_sat_hh_s1:
+ case M2_mpy_sat_rnd_hh_s0:
+ case M2_mpy_sat_rnd_hh_s1:
+ case M2_mpyd_acc_hh_s0:
+ case M2_mpyd_acc_hh_s1:
+ case M2_mpyd_hh_s0:
+ case M2_mpyd_hh_s1:
+ case M2_mpyd_nac_hh_s0:
+ case M2_mpyd_nac_hh_s1:
+ case M2_mpyd_rnd_hh_s0:
+ case M2_mpyd_rnd_hh_s1:
+ case M2_mpyu_acc_hh_s0:
+ case M2_mpyu_acc_hh_s1:
+ case M2_mpyu_hh_s0:
+ case M2_mpyu_hh_s1:
+ case M2_mpyu_nac_hh_s0:
+ case M2_mpyu_nac_hh_s1:
+ case M2_mpyud_acc_hh_s0:
+ case M2_mpyud_acc_hh_s1:
+ case M2_mpyud_hh_s0:
+ case M2_mpyud_hh_s1:
+ case M2_mpyud_nac_hh_s0:
+ case M2_mpyud_nac_hh_s1:
+ if (OpN == 1 || OpN == 2) {
+ Bits.set(Begin+16, Begin+32);
+ return true;
+ }
+ break;
+ }
+
+ return false;
+}
+
+// Calculate the register class that matches Reg:Sub. For example, if
+// vreg1 is a double register, then vreg1:isub_hi would match the "int"
+// register class.
+const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
+ const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
+ if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+ return nullptr;
+ auto *RC = MRI.getRegClass(RR.Reg);
+ if (RR.Sub == 0)
+ return RC;
+ auto &HRI = static_cast<const HexagonRegisterInfo&>(
+ *MRI.getTargetRegisterInfo());
+
+ auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
+ (void)HRI;
+ assert(Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo) ||
+ Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
+ };
+
+ switch (RC->getID()) {
+ case Hexagon::DoubleRegsRegClassID:
+ VerifySR(RC, RR.Sub);
+ return &Hexagon::IntRegsRegClass;
+ case Hexagon::VecDblRegsRegClassID:
+ VerifySR(RC, RR.Sub);
+ return &Hexagon::VectorRegsRegClass;
+ case Hexagon::VecDblRegs128BRegClassID:
+ VerifySR(RC, RR.Sub);
+ return &Hexagon::VectorRegs128BRegClass;
+ }
+ return nullptr;
+}
+
+// Check if RD could be replaced with RS at any possible use of RD.
+// For example a predicate register cannot be replaced with a integer
+// register, but a 64-bit register with a subregister can be replaced
+// with a 32-bit register.
+bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
+ const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
+ if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
+ !TargetRegisterInfo::isVirtualRegister(RS.Reg))
+ return false;
+ // Return false if one (or both) classes are nullptr.
+ auto *DRC = getFinalVRegClass(RD, MRI);
+ if (!DRC)
+ return false;
+
+ return DRC == getFinalVRegClass(RS, MRI);
+}
+
+bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
+ unsigned NewSub) {
+ if (!PreserveTiedOps)
+ return false;
+ return llvm::any_of(MRI.use_operands(Reg),
+ [NewSub] (const MachineOperand &Op) -> bool {
+ return Op.getSubReg() != NewSub && Op.isTied();
+ });
+}
+
+namespace {
+
+ class DeadCodeElimination {
+ public:
+ DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
+ : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
+ MDT(mdt), MRI(mf.getRegInfo()) {}
+
+ bool run() {
+ return runOnNode(MDT.getRootNode());
+ }
+
+ private:
+ bool isDead(unsigned R) const;
+ bool runOnNode(MachineDomTreeNode *N);
+
+ MachineFunction &MF;
+ const HexagonInstrInfo &HII;
+ MachineDominatorTree &MDT;
+ MachineRegisterInfo &MRI;
+ };
+
+} // end anonymous namespace
+
+bool DeadCodeElimination::isDead(unsigned R) const {
+ for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
+ MachineInstr *UseI = I->getParent();
+ if (UseI->isDebugValue())
+ continue;
+ if (UseI->isPHI()) {
+ assert(!UseI->getOperand(0).getSubReg());
+ unsigned DR = UseI->getOperand(0).getReg();
+ if (DR == R)
+ continue;
+ }
+ return false;
+ }
+ return true;
+}
+
+bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
+ bool Changed = false;
+
+ for (auto *DTN : children<MachineDomTreeNode*>(N))
+ Changed |= runOnNode(DTN);
+
+ MachineBasicBlock *B = N->getBlock();
+ std::vector<MachineInstr*> Instrs;
+ for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
+ Instrs.push_back(&*I);
+
+ for (auto MI : Instrs) {
+ unsigned Opc = MI->getOpcode();
+ // Do not touch lifetime markers. This is why the target-independent DCE
+ // cannot be used.
+ if (Opc == TargetOpcode::LIFETIME_START ||
+ Opc == TargetOpcode::LIFETIME_END)
+ continue;
+ bool Store = false;
+ if (MI->isInlineAsm())
+ continue;
+ // Delete PHIs if possible.
+ if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
+ continue;
+
+ bool AllDead = true;
+ SmallVector<unsigned,2> Regs;
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+ unsigned R = Op.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
+ AllDead = false;
+ break;
+ }
+ Regs.push_back(R);
+ }
+ if (!AllDead)
+ continue;
+
+ B->erase(MI);
+ for (unsigned i = 0, n = Regs.size(); i != n; ++i)
+ MRI.markUsesInDebugValueAsUndef(Regs[i]);
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+namespace {
+
+// Eliminate redundant instructions
+//
+// This transformation will identify instructions where the output register
+// is the same as one of its input registers. This only works on instructions
+// that define a single register (unlike post-increment loads, for example).
+// The equality check is actually more detailed: the code calculates which
+// bits of the output are used, and only compares these bits with the input
+// registers.
+// If the output matches an input, the instruction is replaced with COPY.
+// The copies will be removed by another transformation.
+ class RedundantInstrElimination : public Transformation {
+ public:
+ RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
+ const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
+ : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
+
+ bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+
+ private:
+ bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
+ unsigned &LostB, unsigned &LostE);
+ bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
+ unsigned &LostB, unsigned &LostE);
+ bool computeUsedBits(unsigned Reg, BitVector &Bits);
+ bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
+ uint16_t Begin);
+ bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
+
+ const HexagonInstrInfo &HII;
+ const HexagonRegisterInfo &HRI;
+ MachineRegisterInfo &MRI;
+ BitTracker &BT;
+ };
+
+} // end anonymous namespace
+
+// Check if the instruction is a lossy shift left, where the input being
+// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
+// of bit indices that are lost.
+bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
+ unsigned OpN, unsigned &LostB, unsigned &LostE) {
+ using namespace Hexagon;
+
+ unsigned Opc = MI.getOpcode();
+ unsigned ImN, RegN, Width;
+ switch (Opc) {
+ case S2_asl_i_p:
+ ImN = 2;
+ RegN = 1;
+ Width = 64;
+ break;
+ case S2_asl_i_p_acc:
+ case S2_asl_i_p_and:
+ case S2_asl_i_p_nac:
+ case S2_asl_i_p_or:
+ case S2_asl_i_p_xacc:
+ ImN = 3;
+ RegN = 2;
+ Width = 64;
+ break;
+ case S2_asl_i_r:
+ ImN = 2;
+ RegN = 1;
+ Width = 32;
+ break;
+ case S2_addasl_rrri:
+ case S4_andi_asl_ri:
+ case S4_ori_asl_ri:
+ case S4_addi_asl_ri:
+ case S4_subi_asl_ri:
+ case S2_asl_i_r_acc:
+ case S2_asl_i_r_and:
+ case S2_asl_i_r_nac:
+ case S2_asl_i_r_or:
+ case S2_asl_i_r_sat:
+ case S2_asl_i_r_xacc:
+ ImN = 3;
+ RegN = 2;
+ Width = 32;
+ break;
+ default:
+ return false;
+ }
+
+ if (RegN != OpN)
+ return false;
+
+ assert(MI.getOperand(ImN).isImm());
+ unsigned S = MI.getOperand(ImN).getImm();
+ if (S == 0)
+ return false;
+ LostB = Width-S;
+ LostE = Width;
+ return true;
+}
+
+// Check if the instruction is a lossy shift right, where the input being
+// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
+// of bit indices that are lost.
+bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
+ unsigned OpN, unsigned &LostB, unsigned &LostE) {
+ using namespace Hexagon;
+
+ unsigned Opc = MI.getOpcode();
+ unsigned ImN, RegN;
+ switch (Opc) {
+ case S2_asr_i_p:
+ case S2_lsr_i_p:
+ ImN = 2;
+ RegN = 1;
+ break;
+ case S2_asr_i_p_acc:
+ case S2_asr_i_p_and:
+ case S2_asr_i_p_nac:
+ case S2_asr_i_p_or:
+ case S2_lsr_i_p_acc:
+ case S2_lsr_i_p_and:
+ case S2_lsr_i_p_nac:
+ case S2_lsr_i_p_or:
+ case S2_lsr_i_p_xacc:
+ ImN = 3;
+ RegN = 2;
+ break;
+ case S2_asr_i_r:
+ case S2_lsr_i_r:
+ ImN = 2;
+ RegN = 1;
+ break;
+ case S4_andi_lsr_ri:
+ case S4_ori_lsr_ri:
+ case S4_addi_lsr_ri:
+ case S4_subi_lsr_ri:
+ case S2_asr_i_r_acc:
+ case S2_asr_i_r_and:
+ case S2_asr_i_r_nac:
+ case S2_asr_i_r_or:
+ case S2_lsr_i_r_acc:
+ case S2_lsr_i_r_and:
+ case S2_lsr_i_r_nac:
+ case S2_lsr_i_r_or:
+ case S2_lsr_i_r_xacc:
+ ImN = 3;
+ RegN = 2;
+ break;
+
+ default:
+ return false;
+ }
+
+ if (RegN != OpN)
+ return false;
+
+ assert(MI.getOperand(ImN).isImm());
+ unsigned S = MI.getOperand(ImN).getImm();
+ LostB = 0;
+ LostE = S;
+ return true;
+}
+
+// Calculate the bit vector that corresponds to the used bits of register Reg.
+// The vector Bits has the same size, as the size of Reg in bits. If the cal-
+// culation fails (i.e. the used bits are unknown), it returns false. Other-
+// wise, it returns true and sets the corresponding bits in Bits.
+bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
+ BitVector Used(Bits.size());
+ RegisterSet Visited;
+ std::vector<unsigned> Pending;
+ Pending.push_back(Reg);
+
+ for (unsigned i = 0; i < Pending.size(); ++i) {
+ unsigned R = Pending[i];
+ if (Visited.has(R))
+ continue;
+ Visited.insert(R);
+ for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
+ BitTracker::RegisterRef UR = *I;
+ unsigned B, W;
+ if (!HBS::getSubregMask(UR, B, W, MRI))
+ return false;
+ MachineInstr &UseI = *I->getParent();
+ if (UseI.isPHI() || UseI.isCopy()) {
+ unsigned DefR = UseI.getOperand(0).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(DefR))
+ return false;
+ Pending.push_back(DefR);
+ } else {
+ if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
+ return false;
+ }
+ }
+ }
+ Bits |= Used;
+ return true;
+}
+
+// Calculate the bits used by instruction MI in a register in operand OpN.
+// Return true/false if the calculation succeeds/fails. If is succeeds, set
+// used bits in Bits. This function does not reset any bits in Bits, so
+// subsequent calls over different instructions will result in the union
+// of the used bits in all these instructions.
+// The register in question may be used with a sub-register, whereas Bits
+// holds the bits for the entire register. To keep track of that, the
+// argument Begin indicates where in Bits is the lowest-significant bit
+// of the register used in operand OpN. For example, in instruction:
+// vreg1 = S2_lsr_i_r vreg2:isub_hi, 10
+// the operand 1 is a 32-bit register, which happens to be a subregister
+// of the 64-bit register vreg2, and that subregister starts at position 32.
+// In this case Begin=32, since Bits[32] would be the lowest-significant bit
+// of vreg2:isub_hi.
+bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
+ unsigned OpN, BitVector &Bits, uint16_t Begin) {
+ unsigned Opc = MI.getOpcode();
+ BitVector T(Bits.size());
+ bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
+ // Even if we don't have bits yet, we could still provide some information
+ // if the instruction is a lossy shift: the lost bits will be marked as
+ // not used.
+ unsigned LB, LE;
+ if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
+ assert(MI.getOperand(OpN).isReg());
+ BitTracker::RegisterRef RR = MI.getOperand(OpN);
+ const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
+ uint16_t Width = HRI.getRegSizeInBits(*RC);
+
+ if (!GotBits)
+ T.set(Begin, Begin+Width);
+ assert(LB <= LE && LB < Width && LE <= Width);
+ T.reset(Begin+LB, Begin+LE);
+ GotBits = true;
+ }
+ if (GotBits)
+ Bits |= T;
+ return GotBits;
+}
+
+// Calculates the used bits in RD ("defined register"), and checks if these
+// bits in RS ("used register") and RD are identical.
+bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
+ BitTracker::RegisterRef RS) {
+ const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
+ const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
+
+ unsigned DB, DW;
+ if (!HBS::getSubregMask(RD, DB, DW, MRI))
+ return false;
+ unsigned SB, SW;
+ if (!HBS::getSubregMask(RS, SB, SW, MRI))
+ return false;
+ if (SW != DW)
+ return false;
+
+ BitVector Used(DC.width());
+ if (!computeUsedBits(RD.Reg, Used))
+ return false;
+
+ for (unsigned i = 0; i != DW; ++i)
+ if (Used[i+DB] && DC[DB+i] != SC[SB+i])
+ return false;
+ return true;
+}
+
+bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
+ const RegisterSet&) {
+ if (!BT.reached(&B))
+ return false;
+ bool Changed = false;
+
+ for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
+ NextI = std::next(I);
+ MachineInstr *MI = &*I;
+
+ if (MI->getOpcode() == TargetOpcode::COPY)
+ continue;
+ if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
+ continue;
+ unsigned NumD = MI->getDesc().getNumDefs();
+ if (NumD != 1)
+ continue;
+
+ BitTracker::RegisterRef RD = MI->getOperand(0);
+ if (!BT.has(RD.Reg))
+ continue;
+ const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
+ auto At = MI->isPHI() ? B.getFirstNonPHI()
+ : MachineBasicBlock::iterator(MI);
+
+ // Find a source operand that is equal to the result.
+ for (auto &Op : MI->uses()) {
+ if (!Op.isReg())
+ continue;
+ BitTracker::RegisterRef RS = Op;
+ if (!BT.has(RS.Reg))
+ continue;
+ if (!HBS::isTransparentCopy(RD, RS, MRI))
+ continue;
+
+ unsigned BN, BW;
+ if (!HBS::getSubregMask(RS, BN, BW, MRI))
+ continue;
+
+ const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
+ if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
+ continue;
+
+ // If found, replace the instruction with a COPY.
+ const DebugLoc &DL = MI->getDebugLoc();
+ const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
+ unsigned NewR = MRI.createVirtualRegister(FRC);
+ MachineInstr *CopyI =
+ BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
+ .addReg(RS.Reg, 0, RS.Sub);
+ HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+ // This pass can create copies between registers that don't have the
+ // exact same values. Updating the tracker has to involve updating
+ // all dependent cells. Example:
+ // vreg1 = inst vreg2 ; vreg1 != vreg2, but used bits are equal
+ //
+ // vreg3 = copy vreg2 ; <- inserted
+ // ... = vreg3 ; <- replaced from vreg2
+ // Indirectly, we can create a "copy" between vreg1 and vreg2 even
+ // though their exact values do not match.
+ BT.visit(*CopyI);
+ Changed = true;
+ break;
+ }
+ }
+
+ return Changed;
+}
+
+namespace {
+
+// Recognize instructions that produce constant values known at compile-time.
+// Replace them with register definitions that load these constants directly.
+ class ConstGeneration : public Transformation {
+ public:
+ ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
+ MachineRegisterInfo &mri)
+ : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
+
+ bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+ static bool isTfrConst(const MachineInstr &MI);
+
+ private:
+ unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
+ MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
+
+ const HexagonInstrInfo &HII;
+ MachineRegisterInfo &MRI;
+ BitTracker &BT;
+ };
+
+} // end anonymous namespace
+
+bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
+ unsigned Opc = MI.getOpcode();
+ switch (Opc) {
+ case Hexagon::A2_combineii:
+ case Hexagon::A4_combineii:
+ case Hexagon::A2_tfrsi:
+ case Hexagon::A2_tfrpi:
+ case Hexagon::PS_true:
+ case Hexagon::PS_false:
+ case Hexagon::CONST32:
+ case Hexagon::CONST64:
+ return true;
+ }
+ return false;
+}
+
+// Generate a transfer-immediate instruction that is appropriate for the
+// register class and the actual value being transferred.
+unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
+ MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
+ unsigned Reg = MRI.createVirtualRegister(RC);
+ if (RC == &Hexagon::IntRegsRegClass) {
+ BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
+ .addImm(int32_t(C));
+ return Reg;
+ }
+
+ if (RC == &Hexagon::DoubleRegsRegClass) {
+ if (isInt<8>(C)) {
+ BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
+ .addImm(C);
+ return Reg;
+ }
+
+ unsigned Lo = Lo_32(C), Hi = Hi_32(C);
+ if (isInt<8>(Lo) || isInt<8>(Hi)) {
+ unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
+ : Hexagon::A4_combineii;
+ BuildMI(B, At, DL, HII.get(Opc), Reg)
+ .addImm(int32_t(Hi))
+ .addImm(int32_t(Lo));
+ return Reg;
+ }
+
+ BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
+ .addImm(C);
+ return Reg;
+ }
+
+ if (RC == &Hexagon::PredRegsRegClass) {
+ unsigned Opc;
+ if (C == 0)
+ Opc = Hexagon::PS_false;
+ else if ((C & 0xFF) == 0xFF)
+ Opc = Hexagon::PS_true;
+ else
+ return 0;
+ BuildMI(B, At, DL, HII.get(Opc), Reg);
+ return Reg;
+ }
+
+ return 0;
+}
+
+bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
+ if (!BT.reached(&B))
+ return false;
+ bool Changed = false;
+ RegisterSet Defs;
+
+ for (auto I = B.begin(), E = B.end(); I != E; ++I) {
+ if (isTfrConst(*I))
+ continue;
+ Defs.clear();
+ HBS::getInstrDefs(*I, Defs);
+ if (Defs.count() != 1)
+ continue;
+ unsigned DR = Defs.find_first();
+ if (!TargetRegisterInfo::isVirtualRegister(DR))
+ continue;
+ uint64_t U;
+ const BitTracker::RegisterCell &DRC = BT.lookup(DR);
+ if (HBS::getConst(DRC, 0, DRC.width(), U)) {
+ int64_t C = U;
+ DebugLoc DL = I->getDebugLoc();
+ auto At = I->isPHI() ? B.getFirstNonPHI() : I;
+ unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
+ if (ImmReg) {
+ HBS::replaceReg(DR, ImmReg, MRI);
+ BT.put(ImmReg, DRC);
+ Changed = true;
+ }
+ }
+ }
+ return Changed;
+}
+
+namespace {
+
+// Identify pairs of available registers which hold identical values.
+// In such cases, only one of them needs to be calculated, the other one
+// will be defined as a copy of the first.
+ class CopyGeneration : public Transformation {
+ public:
+ CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
+ const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
+ : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
+
+ bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+
+ private:
+ bool findMatch(const BitTracker::RegisterRef &Inp,
+ BitTracker::RegisterRef &Out, const RegisterSet &AVs);
+
+ const HexagonInstrInfo &HII;
+ const HexagonRegisterInfo &HRI;
+ MachineRegisterInfo &MRI;
+ BitTracker &BT;
+ RegisterSet Forbidden;
+ };
+
+// Eliminate register copies RD = RS, by replacing the uses of RD with
+// with uses of RS.
+ class CopyPropagation : public Transformation {
+ public:
+ CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
+ : Transformation(false), HRI(hri), MRI(mri) {}
+
+ bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+
+ static bool isCopyReg(unsigned Opc, bool NoConv);
+
+ private:
+ bool propagateRegCopy(MachineInstr &MI);
+
+ const HexagonRegisterInfo &HRI;
+ MachineRegisterInfo &MRI;
+ };
+
+} // end anonymous namespace
+
+/// Check if there is a register in AVs that is identical to Inp. If so,
+/// set Out to the found register. The output may be a pair Reg:Sub.
+bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
+ BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
+ if (!BT.has(Inp.Reg))
+ return false;
+ const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
+ auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
+ unsigned B, W;
+ if (!HBS::getSubregMask(Inp, B, W, MRI))
+ return false;
+
+ for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
+ if (!BT.has(R) || Forbidden[R])
+ continue;
+ const BitTracker::RegisterCell &RC = BT.lookup(R);
+ unsigned RW = RC.width();
+ if (W == RW) {
+ if (FRC != MRI.getRegClass(R))
+ continue;
+ if (!HBS::isTransparentCopy(R, Inp, MRI))
+ continue;
+ if (!HBS::isEqual(InpRC, B, RC, 0, W))
+ continue;
+ Out.Reg = R;
+ Out.Sub = 0;
+ return true;
+ }
+ // Check if there is a super-register, whose part (with a subregister)
+ // is equal to the input.
+ // Only do double registers for now.
+ if (W*2 != RW)
+ continue;
+ if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
+ continue;
+
+ if (HBS::isEqual(InpRC, B, RC, 0, W))
+ Out.Sub = Hexagon::isub_lo;
+ else if (HBS::isEqual(InpRC, B, RC, W, W))
+ Out.Sub = Hexagon::isub_hi;
+ else
+ continue;
+ Out.Reg = R;
+ if (HBS::isTransparentCopy(Out, Inp, MRI))
+ return true;
+ }
+ return false;
+}
+
+bool CopyGeneration::processBlock(MachineBasicBlock &B,
+ const RegisterSet &AVs) {
+ if (!BT.reached(&B))
+ return false;
+ RegisterSet AVB(AVs);
+ bool Changed = false;
+ RegisterSet Defs;
+
+ for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
+ ++I, AVB.insert(Defs)) {
+ NextI = std::next(I);
+ Defs.clear();
+ HBS::getInstrDefs(*I, Defs);
+
+ unsigned Opc = I->getOpcode();
+ if (CopyPropagation::isCopyReg(Opc, false) ||
+ ConstGeneration::isTfrConst(*I))
+ continue;
+
+ DebugLoc DL = I->getDebugLoc();
+ auto At = I->isPHI() ? B.getFirstNonPHI() : I;
+
+ for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
+ BitTracker::RegisterRef MR;
+ auto *FRC = HBS::getFinalVRegClass(R, MRI);
+
+ if (findMatch(R, MR, AVB)) {
+ unsigned NewR = MRI.createVirtualRegister(FRC);
+ BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
+ .addReg(MR.Reg, 0, MR.Sub);
+ BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
+ HBS::replaceReg(R, NewR, MRI);
+ Forbidden.insert(R);
+ continue;
+ }
+
+ if (FRC == &Hexagon::DoubleRegsRegClass ||
+ FRC == &Hexagon::VecDblRegsRegClass ||
+ FRC == &Hexagon::VecDblRegs128BRegClass) {
+ // Try to generate REG_SEQUENCE.
+ unsigned SubLo = HRI.getHexagonSubRegIndex(FRC, Hexagon::ps_sub_lo);
+ unsigned SubHi = HRI.getHexagonSubRegIndex(FRC, Hexagon::ps_sub_hi);
+ BitTracker::RegisterRef TL = { R, SubLo };
+ BitTracker::RegisterRef TH = { R, SubHi };
+ BitTracker::RegisterRef ML, MH;
+ if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
+ auto *FRC = HBS::getFinalVRegClass(R, MRI);
+ unsigned NewR = MRI.createVirtualRegister(FRC);
+ BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
+ .addReg(ML.Reg, 0, ML.Sub)
+ .addImm(SubLo)
+ .addReg(MH.Reg, 0, MH.Sub)
+ .addImm(SubHi);
+ BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
+ HBS::replaceReg(R, NewR, MRI);
+ Forbidden.insert(R);
+ }
+ }
+ }
+ }
+
+ return Changed;
+}
+
+bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
+ switch (Opc) {
+ case TargetOpcode::COPY:
+ case TargetOpcode::REG_SEQUENCE:
+ case Hexagon::A4_combineir:
+ case Hexagon::A4_combineri:
+ return true;
+ case Hexagon::A2_tfr:
+ case Hexagon::A2_tfrp:
+ case Hexagon::A2_combinew:
+ case Hexagon::V6_vcombine:
+ case Hexagon::V6_vcombine_128B:
+ return NoConv;
+ default:
+ break;
+ }
+ return false;
+}
+
+bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
+ bool Changed = false;
+ unsigned Opc = MI.getOpcode();
+ BitTracker::RegisterRef RD = MI.getOperand(0);
+ assert(MI.getOperand(0).getSubReg() == 0);
+
+ switch (Opc) {
+ case TargetOpcode::COPY:
+ case Hexagon::A2_tfr:
+ case Hexagon::A2_tfrp: {
+ BitTracker::RegisterRef RS = MI.getOperand(1);
+ if (!HBS::isTransparentCopy(RD, RS, MRI))
+ break;
+ if (RS.Sub != 0)
+ Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
+ else
+ Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
+ break;
+ }
+ case TargetOpcode::REG_SEQUENCE: {
+ BitTracker::RegisterRef SL, SH;
+ if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
+ const TargetRegisterClass *RC = MRI.getRegClass(RD.Reg);
+ unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
+ unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
+ Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
+ Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
+ }
+ break;
+ }
+ case Hexagon::A2_combinew:
+ case Hexagon::V6_vcombine:
+ case Hexagon::V6_vcombine_128B: {
+ const TargetRegisterClass *RC = MRI.getRegClass(RD.Reg);
+ unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
+ unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
+ BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
+ Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
+ Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
+ break;
+ }
+ case Hexagon::A4_combineir:
+ case Hexagon::A4_combineri: {
+ unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
+ unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
+ : Hexagon::isub_hi;
+ BitTracker::RegisterRef RS = MI.getOperand(SrcX);
+ Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
+ break;
+ }
+ }
+ return Changed;
+}
+
+bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
+ std::vector<MachineInstr*> Instrs;
+ for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
+ Instrs.push_back(&*I);
+
+ bool Changed = false;
+ for (auto I : Instrs) {
+ unsigned Opc = I->getOpcode();
+ if (!CopyPropagation::isCopyReg(Opc, true))
+ continue;
+ Changed |= propagateRegCopy(*I);
+ }
+
+ return Changed;
+}
+
+namespace {
+
+// Recognize patterns that can be simplified and replace them with the
+// simpler forms.
+// This is by no means complete
+ class BitSimplification : public Transformation {
+ public:
+ BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
+ const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
+ MachineRegisterInfo &mri, MachineFunction &mf)
+ : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
+ MF(mf), BT(bt) {}
+
+ bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
+
+ private:
+ struct RegHalf : public BitTracker::RegisterRef {
+ bool Low; // Low/High halfword.
+ };
+
+ bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
+ unsigned B, RegHalf &RH);
+ bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
+
+ bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
+ BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
+ unsigned getCombineOpcode(bool HLow, bool LLow);
+
+ bool genStoreUpperHalf(MachineInstr *MI);
+ bool genStoreImmediate(MachineInstr *MI);
+ bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
+ const BitTracker::RegisterCell &RC);
+ bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
+ const BitTracker::RegisterCell &RC);
+ bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
+ const BitTracker::RegisterCell &RC);
+ bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
+ const BitTracker::RegisterCell &RC);
+ bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
+ const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
+ bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
+ const BitTracker::RegisterCell &RC);
+ bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
+ const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
+
+ // Cache of created instructions to avoid creating duplicates.
+ // XXX Currently only used by genBitSplit.
+ std::vector<MachineInstr*> NewMIs;
+
+ const MachineDominatorTree &MDT;
+ const HexagonInstrInfo &HII;
+ const HexagonRegisterInfo &HRI;
+ MachineRegisterInfo &MRI;
+ MachineFunction &MF;
+ BitTracker &BT;
+ };
+
+} // end anonymous namespace
+
+// Check if the bits [B..B+16) in register cell RC form a valid halfword,
+// i.e. [0..16), [16..32), etc. of some register. If so, return true and
+// set the information about the found register in RH.
+bool BitSimplification::matchHalf(unsigned SelfR,
+ const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
+ // XXX This could be searching in the set of available registers, in case
+ // the match is not exact.
+
+ // Match 16-bit chunks, where the RC[B..B+15] references exactly one
+ // register and all the bits B..B+15 match between RC and the register.
+ // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
+ // and RC = { [0]:0 [1-15]:v1[1-15]... }.
+ bool Low = false;
+ unsigned I = B;
+ while (I < B+16 && RC[I].num())
+ I++;
+ if (I == B+16)
+ return false;
+
+ unsigned Reg = RC[I].RefI.Reg;
+ unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
+ if (P < I-B)
+ return false;
+ unsigned Pos = P - (I-B);
+
+ if (Reg == 0 || Reg == SelfR) // Don't match "self".
+ return false;
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return false;
+ if (!BT.has(Reg))
+ return false;
+
+ const BitTracker::RegisterCell &SC = BT.lookup(Reg);
+ if (Pos+16 > SC.width())
+ return false;
+
+ for (unsigned i = 0; i < 16; ++i) {
+ const BitTracker::BitValue &RV = RC[i+B];
+ if (RV.Type == BitTracker::BitValue::Ref) {
+ if (RV.RefI.Reg != Reg)
+ return false;
+ if (RV.RefI.Pos != i+Pos)
+ return false;
+ continue;
+ }
+ if (RC[i+B] != SC[i+Pos])
+ return false;
+ }
+
+ unsigned Sub = 0;
+ switch (Pos) {
+ case 0:
+ Sub = Hexagon::isub_lo;
+ Low = true;
+ break;
+ case 16:
+ Sub = Hexagon::isub_lo;
+ Low = false;
+ break;
+ case 32:
+ Sub = Hexagon::isub_hi;
+ Low = true;
+ break;
+ case 48:
+ Sub = Hexagon::isub_hi;
+ Low = false;
+ break;
+ default:
+ return false;
+ }
+
+ RH.Reg = Reg;
+ RH.Sub = Sub;
+ RH.Low = Low;
+ // If the subregister is not valid with the register, set it to 0.
+ if (!HBS::getFinalVRegClass(RH, MRI))
+ RH.Sub = 0;
+
+ return true;
+}
+
+bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
+ unsigned OpNum) {
+ auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
+ auto *RRC = HBS::getFinalVRegClass(R, MRI);
+ return OpRC->hasSubClassEq(RRC);
+}
+
+// Check if RC matches the pattern of a S2_packhl. If so, return true and
+// set the inputs Rs and Rt.
+bool BitSimplification::matchPackhl(unsigned SelfR,
+ const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
+ BitTracker::RegisterRef &Rt) {
+ RegHalf L1, H1, L2, H2;
+
+ if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
+ return false;
+ if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
+ return false;
+
+ // Rs = H1.L1, Rt = H2.L2
+ if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
+ return false;
+ if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
+ return false;
+
+ Rs = H1;
+ Rt = H2;
+ return true;
+}
+
+unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
+ return HLow ? LLow ? Hexagon::A2_combine_ll
+ : Hexagon::A2_combine_lh
+ : LLow ? Hexagon::A2_combine_hl
+ : Hexagon::A2_combine_hh;
+}
+
+// If MI stores the upper halfword of a register (potentially obtained via
+// shifts or extracts), replace it with a storerf instruction. This could
+// cause the "extraction" code to become dead.
+bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
+ unsigned Opc = MI->getOpcode();
+ if (Opc != Hexagon::S2_storerh_io)
+ return false;
+
+ MachineOperand &ValOp = MI->getOperand(2);
+ BitTracker::RegisterRef RS = ValOp;
+ if (!BT.has(RS.Reg))
+ return false;
+ const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
+ RegHalf H;
+ if (!matchHalf(0, RC, 0, H))
+ return false;
+ if (H.Low)
+ return false;
+ MI->setDesc(HII.get(Hexagon::S2_storerf_io));
+ ValOp.setReg(H.Reg);
+ ValOp.setSubReg(H.Sub);
+ return true;
+}
+
+// If MI stores a value known at compile-time, and the value is within a range
+// that avoids using constant-extenders, replace it with a store-immediate.
+bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
+ unsigned Opc = MI->getOpcode();
+ unsigned Align = 0;
+ switch (Opc) {
+ case Hexagon::S2_storeri_io:
+ Align++;
+ case Hexagon::S2_storerh_io:
+ Align++;
+ case Hexagon::S2_storerb_io:
+ break;
+ default:
+ return false;
+ }
+
+ // Avoid stores to frame-indices (due to an unknown offset).
+ if (!MI->getOperand(0).isReg())
+ return false;
+ MachineOperand &OffOp = MI->getOperand(1);
+ if (!OffOp.isImm())
+ return false;
+
+ int64_t Off = OffOp.getImm();
+ // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
+ if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
+ return false;
+ // Source register:
+ BitTracker::RegisterRef RS = MI->getOperand(2);
+ if (!BT.has(RS.Reg))
+ return false;
+ const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
+ uint64_t U;
+ if (!HBS::getConst(RC, 0, RC.width(), U))
+ return false;
+
+ // Only consider 8-bit values to avoid constant-extenders.
+ int V;
+ switch (Opc) {
+ case Hexagon::S2_storerb_io:
+ V = int8_t(U);
+ break;
+ case Hexagon::S2_storerh_io:
+ V = int16_t(U);
+ break;
+ case Hexagon::S2_storeri_io:
+ V = int32_t(U);
+ break;
+ }
+ if (!isInt<8>(V))
+ return false;
+
+ MI->RemoveOperand(2);
+ switch (Opc) {
+ case Hexagon::S2_storerb_io:
+ MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
+ break;
+ case Hexagon::S2_storerh_io:
+ MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
+ break;
+ case Hexagon::S2_storeri_io:
+ MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
+ break;
+ }
+ MI->addOperand(MachineOperand::CreateImm(V));
+ return true;
+}
+
+// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
+// last instruction in a sequence that results in something equivalent to
+// the pack-halfwords. The intent is to cause the entire sequence to become
+// dead.
+bool BitSimplification::genPackhl(MachineInstr *MI,
+ BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+ unsigned Opc = MI->getOpcode();
+ if (Opc == Hexagon::S2_packhl)
+ return false;
+ BitTracker::RegisterRef Rs, Rt;
+ if (!matchPackhl(RD.Reg, RC, Rs, Rt))
+ return false;
+ if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
+ !validateReg(Rt, Hexagon::S2_packhl, 2))
+ return false;
+
+ MachineBasicBlock &B = *MI->getParent();
+ unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
+ DebugLoc DL = MI->getDebugLoc();
+ auto At = MI->isPHI() ? B.getFirstNonPHI()
+ : MachineBasicBlock::iterator(MI);
+ BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
+ .addReg(Rs.Reg, 0, Rs.Sub)
+ .addReg(Rt.Reg, 0, Rt.Sub);
+ HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+ BT.put(BitTracker::RegisterRef(NewR), RC);
+ return true;
+}
+
+// If MI produces halfword of the input in the low half of the output,
+// replace it with zero-extend or extractu.
+bool BitSimplification::genExtractHalf(MachineInstr *MI,
+ BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+ RegHalf L;
+ // Check for halfword in low 16 bits, zeros elsewhere.
+ if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
+ return false;
+
+ unsigned Opc = MI->getOpcode();
+ MachineBasicBlock &B = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // Prefer zxth, since zxth can go in any slot, while extractu only in
+ // slots 2 and 3.
+ unsigned NewR = 0;
+ auto At = MI->isPHI() ? B.getFirstNonPHI()
+ : MachineBasicBlock::iterator(MI);
+ if (L.Low && Opc != Hexagon::A2_zxth) {
+ if (validateReg(L, Hexagon::A2_zxth, 1)) {
+ NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
+ .addReg(L.Reg, 0, L.Sub);
+ }
+ } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
+ if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
+ NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
+ .addReg(L.Reg, 0, L.Sub)
+ .addImm(16);
+ }
+ }
+ if (NewR == 0)
+ return false;
+ HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+ BT.put(BitTracker::RegisterRef(NewR), RC);
+ return true;
+}
+
+// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
+// combine.
+bool BitSimplification::genCombineHalf(MachineInstr *MI,
+ BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+ RegHalf L, H;
+ // Check for combine h/l
+ if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
+ return false;
+ // Do nothing if this is just a reg copy.
+ if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
+ return false;
+
+ unsigned Opc = MI->getOpcode();
+ unsigned COpc = getCombineOpcode(H.Low, L.Low);
+ if (COpc == Opc)
+ return false;
+ if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
+ return false;
+
+ MachineBasicBlock &B = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ auto At = MI->isPHI() ? B.getFirstNonPHI()
+ : MachineBasicBlock::iterator(MI);
+ BuildMI(B, At, DL, HII.get(COpc), NewR)
+ .addReg(H.Reg, 0, H.Sub)
+ .addReg(L.Reg, 0, L.Sub);
+ HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+ BT.put(BitTracker::RegisterRef(NewR), RC);
+ return true;
+}
+
+// If MI resets high bits of a register and keeps the lower ones, replace it
+// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
+bool BitSimplification::genExtractLow(MachineInstr *MI,
+ BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case Hexagon::A2_zxtb:
+ case Hexagon::A2_zxth:
+ case Hexagon::S2_extractu:
+ return false;
+ }
+ if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
+ int32_t Imm = MI->getOperand(2).getImm();
+ if (isInt<10>(Imm))
+ return false;
+ }
+
+ if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
+ return false;
+ unsigned W = RC.width();
+ while (W > 0 && RC[W-1].is(0))
+ W--;
+ if (W == 0 || W == RC.width())
+ return false;
+ unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
+ : (W == 16) ? Hexagon::A2_zxth
+ : (W < 10) ? Hexagon::A2_andir
+ : Hexagon::S2_extractu;
+ MachineBasicBlock &B = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+
+ for (auto &Op : MI->uses()) {
+ if (!Op.isReg())
+ continue;
+ BitTracker::RegisterRef RS = Op;
+ if (!BT.has(RS.Reg))
+ continue;
+ const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
+ unsigned BN, BW;
+ if (!HBS::getSubregMask(RS, BN, BW, MRI))
+ continue;
+ if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
+ continue;
+ if (!validateReg(RS, NewOpc, 1))
+ continue;
+
+ unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ auto At = MI->isPHI() ? B.getFirstNonPHI()
+ : MachineBasicBlock::iterator(MI);
+ auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
+ .addReg(RS.Reg, 0, RS.Sub);
+ if (NewOpc == Hexagon::A2_andir)
+ MIB.addImm((1 << W) - 1);
+ else if (NewOpc == Hexagon::S2_extractu)
+ MIB.addImm(W).addImm(0);
+ HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
+ BT.put(BitTracker::RegisterRef(NewR), RC);
+ return true;
+ }
+ return false;
+}
+
+bool BitSimplification::genBitSplit(MachineInstr *MI,
+ BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
+ const RegisterSet &AVs) {
+ if (!GenBitSplit)
+ return false;
+ if (MaxBitSplit.getNumOccurrences()) {
+ if (CountBitSplit >= MaxBitSplit)
+ return false;
+ }
+
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case Hexagon::A4_bitsplit:
+ case Hexagon::A4_bitspliti:
+ return false;
+ }
+
+ unsigned W = RC.width();
+ if (W != 32)
+ return false;
+
+ auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
+ unsigned Z = C.width();
+ while (Z > 0 && C[Z-1].is(0))
+ --Z;
+ return C.width() - Z;
+ };
+
+ // Count the number of leading zeros in the target RC.
+ unsigned Z = ctlz(RC);
+ if (Z == 0 || Z == W)
+ return false;
+
+ // A simplistic analysis: assume the source register (the one being split)
+ // is fully unknown, and that all its bits are self-references.
+ const BitTracker::BitValue &B0 = RC[0];
+ if (B0.Type != BitTracker::BitValue::Ref)
+ return false;
+
+ unsigned SrcR = B0.RefI.Reg;
+ unsigned SrcSR = 0;
+ unsigned Pos = B0.RefI.Pos;
+
+ // All the non-zero bits should be consecutive bits from the same register.
+ for (unsigned i = 1; i < W-Z; ++i) {
+ const BitTracker::BitValue &V = RC[i];
+ if (V.Type != BitTracker::BitValue::Ref)
+ return false;
+ if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
+ return false;
+ }
+
+ // Now, find the other bitfield among AVs.
+ for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
+ // The number of leading zeros here should be the number of trailing
+ // non-zeros in RC.
+ if (!BT.has(S))
+ continue;
+ const BitTracker::RegisterCell &SC = BT.lookup(S);
+ if (SC.width() != W || ctlz(SC) != W-Z)
+ continue;
+ // The Z lower bits should now match SrcR.
+ const BitTracker::BitValue &S0 = SC[0];
+ if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
+ continue;
+ unsigned P = S0.RefI.Pos;
+
+ if (Pos <= P && (Pos + W-Z) != P)
+ continue;
+ if (P < Pos && (P + Z) != Pos)
+ continue;
+ // The starting bitfield position must be at a subregister boundary.
+ if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
+ continue;
+
+ unsigned I;
+ for (I = 1; I < Z; ++I) {
+ const BitTracker::BitValue &V = SC[I];
+ if (V.Type != BitTracker::BitValue::Ref)
+ break;
+ if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
+ break;
+ }
+ if (I != Z)
+ continue;
+
+ // Generate bitsplit where S is defined.
+ if (MaxBitSplit.getNumOccurrences())
+ CountBitSplit++;
+ MachineInstr *DefS = MRI.getVRegDef(S);
+ assert(DefS != nullptr);
+ DebugLoc DL = DefS->getDebugLoc();
+ MachineBasicBlock &B = *DefS->getParent();
+ auto At = DefS->isPHI() ? B.getFirstNonPHI()
+ : MachineBasicBlock::iterator(DefS);
+ if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
+ SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
+ if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
+ continue;
+ unsigned ImmOp = Pos <= P ? W-Z : Z;
+
+ // Find an existing bitsplit instruction if one already exists.
+ unsigned NewR = 0;
+ for (MachineInstr *In : NewMIs) {
+ if (In->getOpcode() != Hexagon::A4_bitspliti)
+ continue;
+ MachineOperand &Op1 = In->getOperand(1);
+ if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
+ continue;
+ if (In->getOperand(2).getImm() != ImmOp)
+ continue;
+ // Check if the target register is available here.
+ MachineOperand &Op0 = In->getOperand(0);
+ MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
+ assert(DefI != nullptr);
+ if (!MDT.dominates(DefI, &*At))
+ continue;
+
+ // Found one that can be reused.
+ assert(Op0.getSubReg() == 0);
+ NewR = Op0.getReg();
+ break;
+ }
+ if (!NewR) {
+ NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
+ auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
+ .addReg(SrcR, 0, SrcSR)
+ .addImm(ImmOp);
+ NewMIs.push_back(NewBS);
+ }
+ if (Pos <= P) {
+ HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
+ HBS::replaceRegWithSub(S, NewR, Hexagon::isub_hi, MRI);
+ } else {
+ HBS::replaceRegWithSub(S, NewR, Hexagon::isub_lo, MRI);
+ HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
+ }
+ return true;
+ }
+
+ return false;
+}
+
+// Check for tstbit simplification opportunity, where the bit being checked
+// can be tracked back to another register. For example:
+// vreg2 = S2_lsr_i_r vreg1, 5
+// vreg3 = S2_tstbit_i vreg2, 0
+// =>
+// vreg3 = S2_tstbit_i vreg1, 5
+bool BitSimplification::simplifyTstbit(MachineInstr *MI,
+ BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
+ unsigned Opc = MI->getOpcode();
+ if (Opc != Hexagon::S2_tstbit_i)
+ return false;
+
+ unsigned BN = MI->getOperand(2).getImm();
+ BitTracker::RegisterRef RS = MI->getOperand(1);
+ unsigned F, W;
+ DebugLoc DL = MI->getDebugLoc();
+ if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
+ return false;
+ MachineBasicBlock &B = *MI->getParent();
+ auto At = MI->isPHI() ? B.getFirstNonPHI()
+ : MachineBasicBlock::iterator(MI);
+
+ const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
+ const BitTracker::BitValue &V = SC[F+BN];
+ if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
+ const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
+ // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
+ // a double register, need to use a subregister and adjust bit
+ // number.
+ unsigned P = std::numeric_limits<unsigned>::max();
+ BitTracker::RegisterRef RR(V.RefI.Reg, 0);
+ if (TC == &Hexagon::DoubleRegsRegClass) {
+ P = V.RefI.Pos;
+ RR.Sub = Hexagon::isub_lo;
+ if (P >= 32) {
+ P -= 32;
+ RR.Sub = Hexagon::isub_hi;
+ }
+ } else if (TC == &Hexagon::IntRegsRegClass) {
+ P = V.RefI.Pos;
+ }
+ if (P != std::numeric_limits<unsigned>::max()) {
+ unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
+ BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
+ .addReg(RR.Reg, 0, RR.Sub)
+ .addImm(P);
+ HBS::replaceReg(RD.Reg, NewR, MRI);
+ BT.put(NewR, RC);
+ return true;
+ }
+ } else if (V.is(0) || V.is(1)) {
+ unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
+ unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
+ BuildMI(B, At, DL, HII.get(NewOpc), NewR);
+ HBS::replaceReg(RD.Reg, NewR, MRI);
+ return true;
+ }
+
+ return false;
+}
+
+// Detect whether RD is a bitfield extract (sign- or zero-extended) of
+// some register from the AVs set. Create a new corresponding instruction
+// at the location of MI. The intent is to recognize situations where
+// a sequence of instructions performs an operation that is equivalent to
+// an extract operation, such as a shift left followed by a shift right.
+bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
+ BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
+ const RegisterSet &AVs) {
+ if (!GenExtract)
+ return false;
+ if (MaxExtract.getNumOccurrences()) {
+ if (CountExtract >= MaxExtract)
+ return false;
+ CountExtract++;
+ }
+
+ unsigned W = RC.width();
+ unsigned RW = W;
+ unsigned Len;
+ bool Signed;
+
+ // The code is mostly class-independent, except for the part that generates
+ // the extract instruction, and establishes the source register (in case it
+ // needs to use a subregister).
+ const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
+ if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
+ return false;
+ assert(RD.Sub == 0);
+
+ // Observation:
+ // If the cell has a form of 00..0xx..x with k zeros and n remaining
+ // bits, this could be an extractu of the n bits, but it could also be
+ // an extractu of a longer field which happens to have 0s in the top
+ // bit positions.
+ // The same logic applies to sign-extended fields.
+ //
+ // Do not check for the extended extracts, since it would expand the
+ // search space quite a bit. The search may be expensive as it is.
+
+ const BitTracker::BitValue &TopV = RC[W-1];
+
+ // Eliminate candidates that have self-referential bits, since they
+ // cannot be extracts from other registers. Also, skip registers that
+ // have compile-time constant values.
+ bool IsConst = true;
+ for (unsigned I = 0; I != W; ++I) {
+ const BitTracker::BitValue &V = RC[I];
+ if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
+ return false;
+ IsConst = IsConst && (V.is(0) || V.is(1));
+ }
+ if (IsConst)
+ return false;
+
+ if (TopV.is(0) || TopV.is(1)) {
+ bool S = TopV.is(1);
+ for (--W; W > 0 && RC[W-1].is(S); --W)
+ ;
+ Len = W;
+ Signed = S;
+ // The sign bit must be a part of the field being extended.
+ if (Signed)
+ ++Len;
+ } else {
+ // This could still be a sign-extended extract.
+ assert(TopV.Type == BitTracker::BitValue::Ref);
+ if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
+ return false;
+ for (--W; W > 0 && RC[W-1] == TopV; --W)
+ ;
+ // The top bits of RC are copies of TopV. One occurrence of TopV will
+ // be a part of the field.
+ Len = W + 1;
+ Signed = true;
+ }
+
+ // This would be just a copy. It should be handled elsewhere.
+ if (Len == RW)
+ return false;
+
+ DEBUG({
+ dbgs() << __func__ << " on reg: " << PrintReg(RD.Reg, &HRI, RD.Sub)
+ << ", MI: " << *MI;
+ dbgs() << "Cell: " << RC << '\n';
+ dbgs() << "Expected bitfield size: " << Len << " bits, "
+ << (Signed ? "sign" : "zero") << "-extended\n";
+ });
+
+ bool Changed = false;
+
+ for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
+ if (!BT.has(R))
+ continue;
+ const BitTracker::RegisterCell &SC = BT.lookup(R);
+ unsigned SW = SC.width();
+
+ // The source can be longer than the destination, as long as its size is
+ // a multiple of the size of the destination. Also, we would need to be
+ // able to refer to the subregister in the source that would be of the
+ // same size as the destination, but only check the sizes here.
+ if (SW < RW || (SW % RW) != 0)
+ continue;
+
+ // The field can start at any offset in SC as long as it contains Len
+ // bits and does not cross subregister boundary (if the source register
+ // is longer than the destination).
+ unsigned Off = 0;
+ while (Off <= SW-Len) {
+ unsigned OE = (Off+Len)/RW;
+ if (OE != Off/RW) {
+ // The assumption here is that if the source (R) is longer than the
+ // destination, then the destination is a sequence of words of
+ // size RW, and each such word in R can be accessed via a subregister.
+ //
+ // If the beginning and the end of the field cross the subregister
+ // boundary, advance to the next subregister.
+ Off = OE*RW;
+ continue;
+ }
+ if (HBS::isEqual(RC, 0, SC, Off, Len))
+ break;
+ ++Off;
+ }
+
+ if (Off > SW-Len)
+ continue;
+
+ // Found match.
+ unsigned ExtOpc = 0;
+ if (Off == 0) {
+ if (Len == 8)
+ ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
+ else if (Len == 16)
+ ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
+ else if (Len < 10 && !Signed)
+ ExtOpc = Hexagon::A2_andir;
+ }
+ if (ExtOpc == 0) {
+ ExtOpc =
+ Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp)
+ : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
+ }
+ unsigned SR = 0;
+ // This only recognizes isub_lo and isub_hi.
+ if (RW != SW && RW*2 != SW)
+ continue;
+ if (RW != SW)
+ SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
+ Off = Off % RW;
+
+ if (!validateReg({R,SR}, ExtOpc, 1))
+ continue;
+
+ // Don't generate the same instruction as the one being optimized.
+ if (MI->getOpcode() == ExtOpc) {
+ // All possible ExtOpc's have the source in operand(1).
+ const MachineOperand &SrcOp = MI->getOperand(1);
+ if (SrcOp.getReg() == R)
+ continue;
+ }
+
+ DebugLoc DL = MI->getDebugLoc();
+ MachineBasicBlock &B = *MI->getParent();
+ unsigned NewR = MRI.createVirtualRegister(FRC);
+ auto At = MI->isPHI() ? B.getFirstNonPHI()
+ : MachineBasicBlock::iterator(MI);
+ auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
+ .addReg(R, 0, SR);
+ switch (ExtOpc) {
+ case Hexagon::A2_sxtb:
+ case Hexagon::A2_zxtb:
+ case Hexagon::A2_sxth:
+ case Hexagon::A2_zxth:
+ break;
+ case Hexagon::A2_andir:
+ MIB.addImm((1u << Len) - 1);
+ break;
+ case Hexagon::S4_extract:
+ case Hexagon::S2_extractu:
+ case Hexagon::S4_extractp:
+ case Hexagon::S2_extractup:
+ MIB.addImm(Len)
+ .addImm(Off);
+ break;
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+
+ HBS::replaceReg(RD.Reg, NewR, MRI);
+ BT.put(BitTracker::RegisterRef(NewR), RC);
+ Changed = true;
+ break;
+ }
+
+ return Changed;
+}
+
+bool BitSimplification::processBlock(MachineBasicBlock &B,
+ const RegisterSet &AVs) {
+ if (!BT.reached(&B))
+ return false;
+ bool Changed = false;
+ RegisterSet AVB = AVs;
+ RegisterSet Defs;
+
+ for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
+ MachineInstr *MI = &*I;
+ Defs.clear();
+ HBS::getInstrDefs(*MI, Defs);
+
+ unsigned Opc = MI->getOpcode();
+ if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
+ continue;
+
+ if (MI->mayStore()) {
+ bool T = genStoreUpperHalf(MI);
+ T = T || genStoreImmediate(MI);
+ Changed |= T;
+ continue;
+ }
+
+ if (Defs.count() != 1)
+ continue;
+ const MachineOperand &Op0 = MI->getOperand(0);
+ if (!Op0.isReg() || !Op0.isDef())
+ continue;
+ BitTracker::RegisterRef RD = Op0;
+ if (!BT.has(RD.Reg))
+ continue;
+ const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
+ const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
+
+ if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
+ bool T = genPackhl(MI, RD, RC);
+ T = T || simplifyExtractLow(MI, RD, RC, AVB);
+ Changed |= T;
+ continue;
+ }
+
+ if (FRC->getID() == Hexagon::IntRegsRegClassID) {
+ bool T = genBitSplit(MI, RD, RC, AVB);
+ T = T || simplifyExtractLow(MI, RD, RC, AVB);
+ T = T || genExtractHalf(MI, RD, RC);
+ T = T || genCombineHalf(MI, RD, RC);
+ T = T || genExtractLow(MI, RD, RC);
+ Changed |= T;
+ continue;
+ }
+
+ if (FRC->getID() == Hexagon::PredRegsRegClassID) {
+ bool T = simplifyTstbit(MI, RD, RC);
+ Changed |= T;
+ continue;
+ }
+ }
+ return Changed;
+}
+
+bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(*MF.getFunction()))
+ return false;
+
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HRI = *HST.getRegisterInfo();
+ auto &HII = *HST.getInstrInfo();
+
+ MDT = &getAnalysis<MachineDominatorTree>();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool Changed;
+
+ Changed = DeadCodeElimination(MF, *MDT).run();
+
+ const HexagonEvaluator HE(HRI, MRI, HII, MF);
+ BitTracker BT(HE, MF);
+ DEBUG(BT.trace(true));
+ BT.run();
+
+ MachineBasicBlock &Entry = MF.front();
+
+ RegisterSet AIG; // Available registers for IG.
+ ConstGeneration ImmG(BT, HII, MRI);
+ Changed |= visitBlock(Entry, ImmG, AIG);
+
+ RegisterSet ARE; // Available registers for RIE.
+ RedundantInstrElimination RIE(BT, HII, HRI, MRI);
+ bool Ried = visitBlock(Entry, RIE, ARE);
+ if (Ried) {
+ Changed = true;
+ BT.run();
+ }
+
+ RegisterSet ACG; // Available registers for CG.
+ CopyGeneration CopyG(BT, HII, HRI, MRI);
+ Changed |= visitBlock(Entry, CopyG, ACG);
+
+ RegisterSet ACP; // Available registers for CP.
+ CopyPropagation CopyP(HRI, MRI);
+ Changed |= visitBlock(Entry, CopyP, ACP);
+
+ Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
+
+ BT.run();
+ RegisterSet ABS; // Available registers for BS.
+ BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
+ Changed |= visitBlock(Entry, BitS, ABS);
+
+ Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
+
+ if (Changed) {
+ for (auto &B : MF)
+ for (auto &I : B)
+ I.clearKillInfo();
+ DeadCodeElimination(MF, *MDT).run();
+ }
+ return Changed;
+}
+
+// Recognize loops where the code at the end of the loop matches the code
+// before the entry of the loop, and the matching code is such that is can
+// be simplified. This pass relies on the bit simplification above and only
+// prepares code in a way that can be handled by the bit simplifcation.
+//
+// This is the motivating testcase (and explanation):
+//
+// {
+// loop0(.LBB0_2, r1) // %for.body.preheader
+// r5:4 = memd(r0++#8)
+// }
+// {
+// r3 = lsr(r4, #16)
+// r7:6 = combine(r5, r5)
+// }
+// {
+// r3 = insert(r5, #16, #16)
+// r7:6 = vlsrw(r7:6, #16)
+// }
+// .LBB0_2:
+// {
+// memh(r2+#4) = r5
+// memh(r2+#6) = r6 # R6 is really R5.H
+// }
+// {
+// r2 = add(r2, #8)
+// memh(r2+#0) = r4
+// memh(r2+#2) = r3 # R3 is really R4.H
+// }
+// {
+// r5:4 = memd(r0++#8)
+// }
+// { # "Shuffling" code that sets up R3 and R6
+// r3 = lsr(r4, #16) # so that their halves can be stored in the
+// r7:6 = combine(r5, r5) # next iteration. This could be folded into
+// } # the stores if the code was at the beginning
+// { # of the loop iteration. Since the same code
+// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
+// r7:6 = vlsrw(r7:6, #16) # there.
+// }:endloop0
+//
+//
+// The outcome:
+//
+// {
+// loop0(.LBB0_2, r1)
+// r5:4 = memd(r0++#8)
+// }
+// .LBB0_2:
+// {
+// memh(r2+#4) = r5
+// memh(r2+#6) = r5.h
+// }
+// {
+// r2 = add(r2, #8)
+// memh(r2+#0) = r4
+// memh(r2+#2) = r4.h
+// }
+// {
+// r5:4 = memd(r0++#8)
+// }:endloop0
+
+namespace llvm {
+
+ FunctionPass *createHexagonLoopRescheduling();
+ void initializeHexagonLoopReschedulingPass(PassRegistry&);
+
+} // end namespace llvm
+
+namespace {
+
+ class HexagonLoopRescheduling : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ HexagonLoopRescheduling() : MachineFunctionPass(ID),
+ HII(nullptr), HRI(nullptr), MRI(nullptr), BTP(nullptr) {
+ initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ private:
+ const HexagonInstrInfo *HII;
+ const HexagonRegisterInfo *HRI;
+ MachineRegisterInfo *MRI;
+ BitTracker *BTP;
+
+ struct LoopCand {
+ LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
+ MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
+ MachineBasicBlock *LB, *PB, *EB;
+ };
+ typedef std::vector<MachineInstr*> InstrList;
+ struct InstrGroup {
+ BitTracker::RegisterRef Inp, Out;
+ InstrList Ins;
+ };
+ struct PhiInfo {
+ PhiInfo(MachineInstr &P, MachineBasicBlock &B);
+ unsigned DefR;
+ BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
+ MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block
+ };
+
+ static unsigned getDefReg(const MachineInstr *MI);
+ bool isConst(unsigned Reg) const;
+ bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
+ bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
+ bool isShuffleOf(unsigned OutR, unsigned InpR) const;
+ bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
+ unsigned &InpR2) const;
+ void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
+ MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
+ bool processLoop(LoopCand &C);
+ };
+
+} // end anonymous namespace
+
+char HexagonLoopRescheduling::ID = 0;
+
+INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
+ "Hexagon Loop Rescheduling", false, false)
+
+HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
+ MachineBasicBlock &B) {
+ DefR = HexagonLoopRescheduling::getDefReg(&P);
+ LB = &B;
+ PB = nullptr;
+ for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
+ const MachineOperand &OpB = P.getOperand(i+1);
+ if (OpB.getMBB() == &B) {
+ LR = P.getOperand(i);
+ continue;
+ }
+ PB = OpB.getMBB();
+ PR = P.getOperand(i);
+ }
+}
+
+unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
+ RegisterSet Defs;
+ HBS::getInstrDefs(*MI, Defs);
+ if (Defs.count() != 1)
+ return 0;
+ return Defs.find_first();
+}
+
+bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
+ if (!BTP->has(Reg))
+ return false;
+ const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
+ for (unsigned i = 0, w = RC.width(); i < w; ++i) {
+ const BitTracker::BitValue &V = RC[i];
+ if (!V.is(0) && !V.is(1))
+ return false;
+ }
+ return true;
+}
+
+bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
+ unsigned DefR) const {
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case TargetOpcode::COPY:
+ case Hexagon::S2_lsr_i_r:
+ case Hexagon::S2_asr_i_r:
+ case Hexagon::S2_asl_i_r:
+ case Hexagon::S2_lsr_i_p:
+ case Hexagon::S2_asr_i_p:
+ case Hexagon::S2_asl_i_p:
+ case Hexagon::S2_insert:
+ case Hexagon::A2_or:
+ case Hexagon::A2_orp:
+ case Hexagon::A2_and:
+ case Hexagon::A2_andp:
+ case Hexagon::A2_combinew:
+ case Hexagon::A4_combineri:
+ case Hexagon::A4_combineir:
+ case Hexagon::A2_combineii:
+ case Hexagon::A4_combineii:
+ case Hexagon::A2_combine_ll:
+ case Hexagon::A2_combine_lh:
+ case Hexagon::A2_combine_hl:
+ case Hexagon::A2_combine_hh:
+ return true;
+ }
+ return false;
+}
+
+bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
+ unsigned InpR) const {
+ for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
+ const MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg())
+ continue;
+ if (Op.getReg() == InpR)
+ return i == n-1;
+ }
+ return false;
+}
+
+bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
+ if (!BTP->has(OutR) || !BTP->has(InpR))
+ return false;
+ const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
+ for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
+ const BitTracker::BitValue &V = OutC[i];
+ if (V.Type != BitTracker::BitValue::Ref)
+ continue;
+ if (V.RefI.Reg != InpR)
+ return false;
+ }
+ return true;
+}
+
+bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
+ unsigned OutR2, unsigned &InpR2) const {
+ if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
+ return false;
+ const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
+ const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
+ unsigned W = OutC1.width();
+ unsigned MatchR = 0;
+ if (W != OutC2.width())
+ return false;
+ for (unsigned i = 0; i < W; ++i) {
+ const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
+ if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
+ return false;
+ if (V1.Type != BitTracker::BitValue::Ref)
+ continue;
+ if (V1.RefI.Pos != V2.RefI.Pos)
+ return false;
+ if (V1.RefI.Reg != InpR1)
+ return false;
+ if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
+ return false;
+ if (!MatchR)
+ MatchR = V2.RefI.Reg;
+ else if (V2.RefI.Reg != MatchR)
+ return false;
+ }
+ InpR2 = MatchR;
+ return true;
+}
+
+void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
+ MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
+ unsigned NewPredR) {
+ DenseMap<unsigned,unsigned> RegMap;
+
+ const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
+ unsigned PhiR = MRI->createVirtualRegister(PhiRC);
+ BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
+ .addReg(NewPredR)
+ .addMBB(&PB)
+ .addReg(G.Inp.Reg)
+ .addMBB(&LB);
+ RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
+
+ for (unsigned i = G.Ins.size(); i > 0; --i) {
+ const MachineInstr *SI = G.Ins[i-1];
+ unsigned DR = getDefReg(SI);
+ const TargetRegisterClass *RC = MRI->getRegClass(DR);
+ unsigned NewDR = MRI->createVirtualRegister(RC);
+ DebugLoc DL = SI->getDebugLoc();
+
+ auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
+ for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
+ const MachineOperand &Op = SI->getOperand(j);
+ if (!Op.isReg()) {
+ MIB.add(Op);
+ continue;
+ }
+ if (!Op.isUse())
+ continue;
+ unsigned UseR = RegMap[Op.getReg()];
+ MIB.addReg(UseR, 0, Op.getSubReg());
+ }
+ RegMap.insert(std::make_pair(DR, NewDR));
+ }
+
+ HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
+}
+
+bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
+ DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
+ std::vector<PhiInfo> Phis;
+ for (auto &I : *C.LB) {
+ if (!I.isPHI())
+ break;
+ unsigned PR = getDefReg(&I);
+ if (isConst(PR))
+ continue;
+ bool BadUse = false, GoodUse = false;
+ for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
+ MachineInstr *UseI = UI->getParent();
+ if (UseI->getParent() != C.LB) {
+ BadUse = true;
+ break;
+ }
+ if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
+ GoodUse = true;
+ }
+ if (BadUse || !GoodUse)
+ continue;
+
+ Phis.push_back(PhiInfo(I, *C.LB));
+ }
+
+ DEBUG({
+ dbgs() << "Phis: {";
+ for (auto &I : Phis) {
+ dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
+ << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
+ << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
+ << I.LB->getNumber() << ')';
+ }
+ dbgs() << " }\n";
+ });
+
+ if (Phis.empty())
+ return false;
+
+ bool Changed = false;
+ InstrList ShufIns;
+
+ // Go backwards in the block: for each bit shuffling instruction, check
+ // if that instruction could potentially be moved to the front of the loop:
+ // the output of the loop cannot be used in a non-shuffling instruction
+ // in this loop.
+ for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
+ if (I->isTerminator())
+ continue;
+ if (I->isPHI())
+ break;
+
+ RegisterSet Defs;
+ HBS::getInstrDefs(*I, Defs);
+ if (Defs.count() != 1)
+ continue;
+ unsigned DefR = Defs.find_first();
+ if (!TargetRegisterInfo::isVirtualRegister(DefR))
+ continue;
+ if (!isBitShuffle(&*I, DefR))
+ continue;
+
+ bool BadUse = false;
+ for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
+ MachineInstr *UseI = UI->getParent();
+ if (UseI->getParent() == C.LB) {
+ if (UseI->isPHI()) {
+ // If the use is in a phi node in this loop, then it should be
+ // the value corresponding to the back edge.
+ unsigned Idx = UI.getOperandNo();
+ if (UseI->getOperand(Idx+1).getMBB() != C.LB)
+ BadUse = true;
+ } else {
+ auto F = find(ShufIns, UseI);
+ if (F == ShufIns.end())
+ BadUse = true;
+ }
+ } else {
+ // There is a use outside of the loop, but there is no epilog block
+ // suitable for a copy-out.
+ if (C.EB == nullptr)
+ BadUse = true;
+ }
+ if (BadUse)
+ break;
+ }
+
+ if (BadUse)
+ continue;
+ ShufIns.push_back(&*I);
+ }
+
+ // Partition the list of shuffling instructions into instruction groups,
+ // where each group has to be moved as a whole (i.e. a group is a chain of
+ // dependent instructions). A group produces a single live output register,
+ // which is meant to be the input of the loop phi node (although this is
+ // not checked here yet). It also uses a single register as its input,
+ // which is some value produced in the loop body. After moving the group
+ // to the beginning of the loop, that input register would need to be
+ // the loop-carried register (through a phi node) instead of the (currently
+ // loop-carried) output register.
+ typedef std::vector<InstrGroup> InstrGroupList;
+ InstrGroupList Groups;
+
+ for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
+ MachineInstr *SI = ShufIns[i];
+ if (SI == nullptr)
+ continue;
+
+ InstrGroup G;
+ G.Ins.push_back(SI);
+ G.Out.Reg = getDefReg(SI);
+ RegisterSet Inputs;
+ HBS::getInstrUses(*SI, Inputs);
+
+ for (unsigned j = i+1; j < n; ++j) {
+ MachineInstr *MI = ShufIns[j];
+ if (MI == nullptr)
+ continue;
+ RegisterSet Defs;
+ HBS::getInstrDefs(*MI, Defs);
+ // If this instruction does not define any pending inputs, skip it.
+ if (!Defs.intersects(Inputs))
+ continue;
+ // Otherwise, add it to the current group and remove the inputs that
+ // are defined by MI.
+ G.Ins.push_back(MI);
+ Inputs.remove(Defs);
+ // Then add all registers used by MI.
+ HBS::getInstrUses(*MI, Inputs);
+ ShufIns[j] = nullptr;
+ }
+
+ // Only add a group if it requires at most one register.
+ if (Inputs.count() > 1)
+ continue;
+ auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
+ return G.Out.Reg == P.LR.Reg;
+ };
+ if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
+ continue;
+
+ G.Inp.Reg = Inputs.find_first();
+ Groups.push_back(G);
+ }
+
+ DEBUG({
+ for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
+ InstrGroup &G = Groups[i];
+ dbgs() << "Group[" << i << "] inp: "
+ << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
+ << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
+ for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
+ dbgs() << " " << *G.Ins[j];
+ }
+ });
+
+ for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
+ InstrGroup &G = Groups[i];
+ if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
+ continue;
+ auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
+ return G.Out.Reg == P.LR.Reg;
+ };
+ auto F = llvm::find_if(Phis, LoopInpEq);
+ if (F == Phis.end())
+ continue;
+ unsigned PrehR = 0;
+ if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
+ const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
+ unsigned Opc = DefPrehR->getOpcode();
+ if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
+ continue;
+ if (!DefPrehR->getOperand(1).isImm())
+ continue;
+ if (DefPrehR->getOperand(1).getImm() != 0)
+ continue;
+ const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
+ if (RC != MRI->getRegClass(F->PR.Reg)) {
+ PrehR = MRI->createVirtualRegister(RC);
+ unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
+ : Hexagon::A2_tfrpi;
+ auto T = C.PB->getFirstTerminator();
+ DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
+ BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
+ .addImm(0);
+ } else {
+ PrehR = F->PR.Reg;
+ }
+ }
+ // isSameShuffle could match with PrehR being of a wider class than
+ // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
+ // it would match for the input being a 32-bit register, and PrehR
+ // being a 64-bit register (where the low 32 bits match). This could
+ // be handled, but for now skip these cases.
+ if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
+ continue;
+ moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(*MF.getFunction()))
+ return false;
+
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ HII = HST.getInstrInfo();
+ HRI = HST.getRegisterInfo();
+ MRI = &MF.getRegInfo();
+ const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
+ BitTracker BT(HE, MF);
+ DEBUG(BT.trace(true));
+ BT.run();
+ BTP = &BT;
+
+ std::vector<LoopCand> Cand;
+
+ for (auto &B : MF) {
+ if (B.pred_size() != 2 || B.succ_size() != 2)
+ continue;
+ MachineBasicBlock *PB = nullptr;
+ bool IsLoop = false;
+ for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
+ if (*PI != &B)
+ PB = *PI;
+ else
+ IsLoop = true;
+ }
+ if (!IsLoop)
+ continue;
+
+ MachineBasicBlock *EB = nullptr;
+ for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
+ if (*SI == &B)
+ continue;
+ // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
+ // edge from B to EP is non-critical.
+ if ((*SI)->pred_size() == 1)
+ EB = *SI;
+ break;
+ }
+
+ Cand.push_back(LoopCand(&B, PB, EB));
+ }
+
+ bool Changed = false;
+ for (auto &C : Cand)
+ Changed |= processLoop(C);
+
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+FunctionPass *llvm::createHexagonLoopRescheduling() {
+ return new HexagonLoopRescheduling();
+}
+
+FunctionPass *llvm::createHexagonBitSimplify() {
+ return new HexagonBitSimplify();
+}