diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp')
| -rw-r--r-- | contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp | 4507 |
1 files changed, 4507 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp new file mode 100644 index 000000000000..0f9c075ba0cc --- /dev/null +++ b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp @@ -0,0 +1,4507 @@ +//===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that Mips uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#include "MipsISelLowering.h" +#include "InstPrinter/MipsInstPrinter.h" +#include "MCTargetDesc/MipsBaseInfo.h" +#include "MCTargetDesc/MipsMCTargetDesc.h" +#include "MipsCCState.h" +#include "MipsInstrInfo.h" +#include "MipsMachineFunction.h" +#include "MipsRegisterInfo.h" +#include "MipsSubtarget.h" +#include "MipsTargetMachine.h" +#include "MipsTargetObjectFile.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <cassert> +#include <cctype> +#include <cstdint> +#include <deque> +#include <iterator> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "mips-lower" + +STATISTIC(NumTailCalls, "Number of tail calls"); + +static cl::opt<bool> +LargeGOT("mxgot", cl::Hidden, + cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false)); + +static cl::opt<bool> +NoZeroDivCheck("mno-check-zero-division", cl::Hidden, + cl::desc("MIPS: Don't trap on integer division by zero."), + cl::init(false)); + +extern cl::opt<bool> EmitJalrReloc; + +static const MCPhysReg Mips64DPRegs[8] = { + Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, + Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64 +}; + +// If I is a shifted mask, set the size (Size) and the first bit of the +// mask (Pos), and return true. +// For example, if I is 0x003ff800, (Pos, Size) = (11, 11). +static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { + if (!isShiftedMask_64(I)) + return false; + + Size = countPopulation(I); + Pos = countTrailingZeros(I); + return true; +} + +// The MIPS MSA ABI passes vector arguments in the integer register set. +// The number of integer registers used is dependant on the ABI used. +MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, + CallingConv::ID CC, + EVT VT) const { + if (VT.isVector()) { + if (Subtarget.isABI_O32()) { + return MVT::i32; + } else { + return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64; + } + } + return MipsTargetLowering::getRegisterType(Context, VT); +} + +unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, + CallingConv::ID CC, + EVT VT) const { + if (VT.isVector()) + return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)), + 1U); + return MipsTargetLowering::getNumRegisters(Context, VT); +} + +unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv( + LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, + unsigned &NumIntermediates, MVT &RegisterVT) const { + // Break down vector types to either 2 i64s or 4 i32s. + RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT); + IntermediateVT = RegisterVT; + NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits() + ? VT.getVectorNumElements() + : VT.getSizeInBits() / RegisterVT.getSizeInBits(); + + return NumIntermediates; +} + +SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const { + MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>(); + return DAG.getRegister(FI->getGlobalBaseReg(), Ty); +} + +SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag); +} + +SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); +} + +SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); +} + +SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); +} + +SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, + SelectionDAG &DAG, + unsigned Flag) const { + return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), + N->getOffset(), Flag); +} + +const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((MipsISD::NodeType)Opcode) { + case MipsISD::FIRST_NUMBER: break; + case MipsISD::JmpLink: return "MipsISD::JmpLink"; + case MipsISD::TailCall: return "MipsISD::TailCall"; + case MipsISD::Highest: return "MipsISD::Highest"; + case MipsISD::Higher: return "MipsISD::Higher"; + case MipsISD::Hi: return "MipsISD::Hi"; + case MipsISD::Lo: return "MipsISD::Lo"; + case MipsISD::GotHi: return "MipsISD::GotHi"; + case MipsISD::TlsHi: return "MipsISD::TlsHi"; + case MipsISD::GPRel: return "MipsISD::GPRel"; + case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; + case MipsISD::Ret: return "MipsISD::Ret"; + case MipsISD::ERet: return "MipsISD::ERet"; + case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN"; + case MipsISD::FMS: return "MipsISD::FMS"; + case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; + case MipsISD::FPCmp: return "MipsISD::FPCmp"; + case MipsISD::FSELECT: return "MipsISD::FSELECT"; + case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64"; + case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; + case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; + case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP"; + case MipsISD::MFHI: return "MipsISD::MFHI"; + case MipsISD::MFLO: return "MipsISD::MFLO"; + case MipsISD::MTLOHI: return "MipsISD::MTLOHI"; + case MipsISD::Mult: return "MipsISD::Mult"; + case MipsISD::Multu: return "MipsISD::Multu"; + case MipsISD::MAdd: return "MipsISD::MAdd"; + case MipsISD::MAddu: return "MipsISD::MAddu"; + case MipsISD::MSub: return "MipsISD::MSub"; + case MipsISD::MSubu: return "MipsISD::MSubu"; + case MipsISD::DivRem: return "MipsISD::DivRem"; + case MipsISD::DivRemU: return "MipsISD::DivRemU"; + case MipsISD::DivRem16: return "MipsISD::DivRem16"; + case MipsISD::DivRemU16: return "MipsISD::DivRemU16"; + case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; + case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; + case MipsISD::Wrapper: return "MipsISD::Wrapper"; + case MipsISD::DynAlloc: return "MipsISD::DynAlloc"; + case MipsISD::Sync: return "MipsISD::Sync"; + case MipsISD::Ext: return "MipsISD::Ext"; + case MipsISD::Ins: return "MipsISD::Ins"; + case MipsISD::CIns: return "MipsISD::CIns"; + case MipsISD::LWL: return "MipsISD::LWL"; + case MipsISD::LWR: return "MipsISD::LWR"; + case MipsISD::SWL: return "MipsISD::SWL"; + case MipsISD::SWR: return "MipsISD::SWR"; + case MipsISD::LDL: return "MipsISD::LDL"; + case MipsISD::LDR: return "MipsISD::LDR"; + case MipsISD::SDL: return "MipsISD::SDL"; + case MipsISD::SDR: return "MipsISD::SDR"; + case MipsISD::EXTP: return "MipsISD::EXTP"; + case MipsISD::EXTPDP: return "MipsISD::EXTPDP"; + case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H"; + case MipsISD::EXTR_W: return "MipsISD::EXTR_W"; + case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W"; + case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W"; + case MipsISD::SHILO: return "MipsISD::SHILO"; + case MipsISD::MTHLIP: return "MipsISD::MTHLIP"; + case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH"; + case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL"; + case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR"; + case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL"; + case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR"; + case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL"; + case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR"; + case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL"; + case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR"; + case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH"; + case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH"; + case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W"; + case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W"; + case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH"; + case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH"; + case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH"; + case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH"; + case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH"; + case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH"; + case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH"; + case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH"; + case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH"; + case MipsISD::MULT: return "MipsISD::MULT"; + case MipsISD::MULTU: return "MipsISD::MULTU"; + case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP"; + case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP"; + case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP"; + case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP"; + case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP"; + case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP"; + case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP"; + case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP"; + case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP"; + case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO"; + case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO"; + case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO"; + case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO"; + case MipsISD::VCEQ: return "MipsISD::VCEQ"; + case MipsISD::VCLE_S: return "MipsISD::VCLE_S"; + case MipsISD::VCLE_U: return "MipsISD::VCLE_U"; + case MipsISD::VCLT_S: return "MipsISD::VCLT_S"; + case MipsISD::VCLT_U: return "MipsISD::VCLT_U"; + case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT"; + case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT"; + case MipsISD::VNOR: return "MipsISD::VNOR"; + case MipsISD::VSHF: return "MipsISD::VSHF"; + case MipsISD::SHF: return "MipsISD::SHF"; + case MipsISD::ILVEV: return "MipsISD::ILVEV"; + case MipsISD::ILVOD: return "MipsISD::ILVOD"; + case MipsISD::ILVL: return "MipsISD::ILVL"; + case MipsISD::ILVR: return "MipsISD::ILVR"; + case MipsISD::PCKEV: return "MipsISD::PCKEV"; + case MipsISD::PCKOD: return "MipsISD::PCKOD"; + case MipsISD::INSVE: return "MipsISD::INSVE"; + } + return nullptr; +} + +MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM, + const MipsSubtarget &STI) + : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) { + // Mips does not have i1 type, so use i32 for + // setcc operations results (slt, sgt, ...). + setBooleanContents(ZeroOrOneBooleanContent); + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA + // does. Integer booleans still use 0 and 1. + if (Subtarget.hasMips32r6()) + setBooleanContents(ZeroOrOneBooleanContent, + ZeroOrNegativeOneBooleanContent); + + // Load extented operations for i1 types must be promoted + for (MVT VT : MVT::integer_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); + } + + // MIPS doesn't have extending float->double load/store. Set LoadExtAction + // for f32, f16 + for (MVT VT : MVT::fp_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); + } + + // Set LoadExtAction for f16 vectors to Expand + for (MVT VT : MVT::fp_vector_valuetypes()) { + MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements()); + if (F16VT.isValid()) + setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand); + } + + setTruncStoreAction(MVT::f32, MVT::f16, Expand); + setTruncStoreAction(MVT::f64, MVT::f16, Expand); + + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + // Used by legalize types to correctly generate the setcc result. + // Without this, every float setcc comes with a AND/OR with the result, + // we don't want this, since the fpcmp result goes to a flag register, + // which is used implicitly by brcond and select operations. + AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); + + // Mips Custom Operations + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); + setOperationAction(ISD::BlockAddress, MVT::i32, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); + setOperationAction(ISD::JumpTable, MVT::i32, Custom); + setOperationAction(ISD::ConstantPool, MVT::i32, Custom); + setOperationAction(ISD::SELECT, MVT::f32, Custom); + setOperationAction(ISD::SELECT, MVT::f64, Custom); + setOperationAction(ISD::SELECT, MVT::i32, Custom); + setOperationAction(ISD::SETCC, MVT::f32, Custom); + setOperationAction(ISD::SETCC, MVT::f64, Custom); + setOperationAction(ISD::BRCOND, MVT::Other, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); + + if (Subtarget.isGP64bit()) { + setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); + setOperationAction(ISD::BlockAddress, MVT::i64, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); + setOperationAction(ISD::JumpTable, MVT::i64, Custom); + setOperationAction(ISD::ConstantPool, MVT::i64, Custom); + setOperationAction(ISD::SELECT, MVT::i64, Custom); + setOperationAction(ISD::LOAD, MVT::i64, Custom); + setOperationAction(ISD::STORE, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); + setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); + setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); + setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); + } + + if (!Subtarget.isGP64bit()) { + setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); + setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); + setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); + } + + setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); + if (Subtarget.isGP64bit()) + setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); + + setOperationAction(ISD::SDIV, MVT::i32, Expand); + setOperationAction(ISD::SREM, MVT::i32, Expand); + setOperationAction(ISD::UDIV, MVT::i32, Expand); + setOperationAction(ISD::UREM, MVT::i32, Expand); + setOperationAction(ISD::SDIV, MVT::i64, Expand); + setOperationAction(ISD::SREM, MVT::i64, Expand); + setOperationAction(ISD::UDIV, MVT::i64, Expand); + setOperationAction(ISD::UREM, MVT::i64, Expand); + + // Operations not directly supported by Mips. + setOperationAction(ISD::BR_CC, MVT::f32, Expand); + setOperationAction(ISD::BR_CC, MVT::f64, Expand); + setOperationAction(ISD::BR_CC, MVT::i32, Expand); + setOperationAction(ISD::BR_CC, MVT::i64, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + if (Subtarget.hasCnMips()) { + setOperationAction(ISD::CTPOP, MVT::i32, Legal); + setOperationAction(ISD::CTPOP, MVT::i64, Legal); + } else { + setOperationAction(ISD::CTPOP, MVT::i32, Expand); + setOperationAction(ISD::CTPOP, MVT::i64, Expand); + } + setOperationAction(ISD::CTTZ, MVT::i32, Expand); + setOperationAction(ISD::CTTZ, MVT::i64, Expand); + setOperationAction(ISD::ROTL, MVT::i32, Expand); + setOperationAction(ISD::ROTL, MVT::i64, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); + + if (!Subtarget.hasMips32r2()) + setOperationAction(ISD::ROTR, MVT::i32, Expand); + + if (!Subtarget.hasMips64r2()) + setOperationAction(ISD::ROTR, MVT::i64, Expand); + + setOperationAction(ISD::FSIN, MVT::f32, Expand); + setOperationAction(ISD::FSIN, MVT::f64, Expand); + setOperationAction(ISD::FCOS, MVT::f32, Expand); + setOperationAction(ISD::FCOS, MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + setOperationAction(ISD::FPOW, MVT::f32, Expand); + setOperationAction(ISD::FPOW, MVT::f64, Expand); + setOperationAction(ISD::FLOG, MVT::f32, Expand); + setOperationAction(ISD::FLOG2, MVT::f32, Expand); + setOperationAction(ISD::FLOG10, MVT::f32, Expand); + setOperationAction(ISD::FEXP, MVT::f32, Expand); + setOperationAction(ISD::FMA, MVT::f32, Expand); + setOperationAction(ISD::FMA, MVT::f64, Expand); + setOperationAction(ISD::FREM, MVT::f32, Expand); + setOperationAction(ISD::FREM, MVT::f64, Expand); + + // Lower f16 conversion operations into library calls + setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); + setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); + + setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); + + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction(ISD::VAARG, MVT::Other, Custom); + setOperationAction(ISD::VACOPY, MVT::Other, Expand); + setOperationAction(ISD::VAEND, MVT::Other, Expand); + + // Use the default for now + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + + if (!Subtarget.isGP64bit()) { + setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); + setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); + } + + if (!Subtarget.hasMips32r2()) { + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); + } + + // MIPS16 lacks MIPS32's clz and clo instructions. + if (!Subtarget.hasMips32() || Subtarget.inMips16Mode()) + setOperationAction(ISD::CTLZ, MVT::i32, Expand); + if (!Subtarget.hasMips64()) + setOperationAction(ISD::CTLZ, MVT::i64, Expand); + + if (!Subtarget.hasMips32r2()) + setOperationAction(ISD::BSWAP, MVT::i32, Expand); + if (!Subtarget.hasMips64r2()) + setOperationAction(ISD::BSWAP, MVT::i64, Expand); + + if (Subtarget.isGP64bit()) { + setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom); + setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom); + setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom); + setTruncStoreAction(MVT::i64, MVT::i32, Custom); + } + + setOperationAction(ISD::TRAP, MVT::Other, Legal); + + setTargetDAGCombine(ISD::SDIVREM); + setTargetDAGCombine(ISD::UDIVREM); + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::AND); + setTargetDAGCombine(ISD::OR); + setTargetDAGCombine(ISD::ADD); + setTargetDAGCombine(ISD::SUB); + setTargetDAGCombine(ISD::AssertZext); + setTargetDAGCombine(ISD::SHL); + + if (ABI.IsO32()) { + // These libcalls are not available in 32-bit. + setLibcallName(RTLIB::SHL_I128, nullptr); + setLibcallName(RTLIB::SRL_I128, nullptr); + setLibcallName(RTLIB::SRA_I128, nullptr); + } + + setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2); + + // The arguments on the stack are defined in terms of 4-byte slots on O32 + // and 8-byte slots on N32/N64. + setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4); + + setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP); + + MaxStoresPerMemcpy = 16; + + isMicroMips = Subtarget.inMicroMipsMode(); +} + +const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM, + const MipsSubtarget &STI) { + if (STI.inMips16Mode()) + return createMips16TargetLowering(TM, STI); + + return createMipsSETargetLowering(TM, STI); +} + +// Create a fast isel object. +FastISel * +MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) const { + const MipsTargetMachine &TM = + static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget()); + + // We support only the standard encoding [MIPS32,MIPS32R5] ISAs. + bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() && + !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() && + !Subtarget.inMicroMipsMode(); + + // Disable if either of the following is true: + // We do not generate PIC, the ABI is not O32, LargeGOT is being used. + if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || LargeGOT) + UseFastISel = false; + + return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr; +} + +EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, + EVT VT) const { + if (!VT.isVector()) + return MVT::i32; + return VT.changeVectorElementTypeToInteger(); +} + +static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + EVT Ty = N->getValueType(0); + unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64; + unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64; + unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 : + MipsISD::DivRemU16; + SDLoc DL(N); + + SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue, + N->getOperand(0), N->getOperand(1)); + SDValue InChain = DAG.getEntryNode(); + SDValue InGlue = DivRem; + + // insert MFLO + if (N->hasAnyUseOfValue(0)) { + SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty, + InGlue); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); + InChain = CopyFromLo.getValue(1); + InGlue = CopyFromLo.getValue(2); + } + + // insert MFHI + if (N->hasAnyUseOfValue(1)) { + SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL, + HI, Ty, InGlue); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); + } + + return SDValue(); +} + +static Mips::CondCode condCodeToFCC(ISD::CondCode CC) { + switch (CC) { + default: llvm_unreachable("Unknown fp condition code!"); + case ISD::SETEQ: + case ISD::SETOEQ: return Mips::FCOND_OEQ; + case ISD::SETUNE: return Mips::FCOND_UNE; + case ISD::SETLT: + case ISD::SETOLT: return Mips::FCOND_OLT; + case ISD::SETGT: + case ISD::SETOGT: return Mips::FCOND_OGT; + case ISD::SETLE: + case ISD::SETOLE: return Mips::FCOND_OLE; + case ISD::SETGE: + case ISD::SETOGE: return Mips::FCOND_OGE; + case ISD::SETULT: return Mips::FCOND_ULT; + case ISD::SETULE: return Mips::FCOND_ULE; + case ISD::SETUGT: return Mips::FCOND_UGT; + case ISD::SETUGE: return Mips::FCOND_UGE; + case ISD::SETUO: return Mips::FCOND_UN; + case ISD::SETO: return Mips::FCOND_OR; + case ISD::SETNE: + case ISD::SETONE: return Mips::FCOND_ONE; + case ISD::SETUEQ: return Mips::FCOND_UEQ; + } +} + +/// This function returns true if the floating point conditional branches and +/// conditional moves which use condition code CC should be inverted. +static bool invertFPCondCodeUser(Mips::CondCode CC) { + if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) + return false; + + assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && + "Illegal Condition Code"); + + return true; +} + +// Creates and returns an FPCmp node from a setcc node. +// Returns Op if setcc is not a floating point comparison. +static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) { + // must be a SETCC node + if (Op.getOpcode() != ISD::SETCC) + return Op; + + SDValue LHS = Op.getOperand(0); + + if (!LHS.getValueType().isFloatingPoint()) + return Op; + + SDValue RHS = Op.getOperand(1); + SDLoc DL(Op); + + // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of + // node if necessary. + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + + return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS, + DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32)); +} + +// Creates and returns a CMovFPT/F node. +static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True, + SDValue False, const SDLoc &DL) { + ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2)); + bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue()); + SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); + + return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, + True.getValueType(), True, FCC0, False, Cond); +} + +static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue SetCC = N->getOperand(0); + + if ((SetCC.getOpcode() != ISD::SETCC) || + !SetCC.getOperand(0).getValueType().isInteger()) + return SDValue(); + + SDValue False = N->getOperand(2); + EVT FalseTy = False.getValueType(); + + if (!FalseTy.isInteger()) + return SDValue(); + + ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False); + + // If the RHS (False) is 0, we swap the order of the operands + // of ISD::SELECT (obviously also inverting the condition) so that we can + // take advantage of conditional moves using the $0 register. + // Example: + // return (a != 0) ? x : 0; + // load $reg, x + // movz $reg, $0, a + if (!FalseC) + return SDValue(); + + const SDLoc DL(N); + + if (!FalseC->getZExtValue()) { + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); + SDValue True = N->getOperand(1); + + SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), + SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); + + return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); + } + + // If both operands are integer constants there's a possibility that we + // can do some interesting optimizations. + SDValue True = N->getOperand(1); + ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True); + + if (!TrueC || !True.getValueType().isInteger()) + return SDValue(); + + // We'll also ignore MVT::i64 operands as this optimizations proves + // to be ineffective because of the required sign extensions as the result + // of a SETCC operator is always MVT::i32 for non-vector types. + if (True.getValueType() == MVT::i64) + return SDValue(); + + int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue(); + + // 1) (a < x) ? y : y-1 + // slti $reg1, a, x + // addiu $reg2, $reg1, y-1 + if (Diff == 1) + return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False); + + // 2) (a < x) ? y-1 : y + // slti $reg1, a, x + // xor $reg1, $reg1, 1 + // addiu $reg2, $reg1, y-1 + if (Diff == -1) { + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); + SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), + SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); + return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True); + } + + // Could not optimize. + return SDValue(); +} + +static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2); + + ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse); + if (!FalseC || FalseC->getZExtValue()) + return SDValue(); + + // Since RHS (False) is 0, we swap the order of the True/False operands + // (obviously also inverting the condition) so that we can + // take advantage of conditional moves using the $0 register. + // Example: + // return (a != 0) ? x : 0; + // load $reg, x + // movz $reg, $0, a + unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F : + MipsISD::CMovFP_T; + + SDValue FCC = N->getOperand(1), Glue = N->getOperand(3); + return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(), + ValueIfFalse, FCC, ValueIfTrue, Glue); +} + +static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) + return SDValue(); + + SDValue FirstOperand = N->getOperand(0); + unsigned FirstOperandOpc = FirstOperand.getOpcode(); + SDValue Mask = N->getOperand(1); + EVT ValTy = N->getValueType(0); + SDLoc DL(N); + + uint64_t Pos = 0, SMPos, SMSize; + ConstantSDNode *CN; + SDValue NewOperand; + unsigned Opc; + + // Op's second operand must be a shifted mask. + if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || + !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) + return SDValue(); + + if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) { + // Pattern match EXT. + // $dst = and ((sra or srl) $src , pos), (2**size - 1) + // => ext $dst, $src, pos, size + + // The second operand of the shift must be an immediate. + if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) + return SDValue(); + + Pos = CN->getZExtValue(); + + // Return if the shifted mask does not start at bit 0 or the sum of its size + // and Pos exceeds the word's size. + if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) + return SDValue(); + + Opc = MipsISD::Ext; + NewOperand = FirstOperand.getOperand(0); + } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) { + // Pattern match CINS. + // $dst = and (shl $src , pos), mask + // => cins $dst, $src, pos, size + // mask is a shifted mask with consecutive 1's, pos = shift amount, + // size = population count. + + // The second operand of the shift must be an immediate. + if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1)))) + return SDValue(); + + Pos = CN->getZExtValue(); + + if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 || + Pos + SMSize > ValTy.getSizeInBits()) + return SDValue(); + + NewOperand = FirstOperand.getOperand(0); + // SMSize is 'location' (position) in this case, not size. + SMSize--; + Opc = MipsISD::CIns; + } else { + // Pattern match EXT. + // $dst = and $src, (2**size - 1) , if size > 16 + // => ext $dst, $src, pos, size , pos = 0 + + // If the mask is <= 0xffff, andi can be used instead. + if (CN->getZExtValue() <= 0xffff) + return SDValue(); + + // Return if the mask doesn't start at position 0. + if (SMPos) + return SDValue(); + + Opc = MipsISD::Ext; + NewOperand = FirstOperand; + } + return DAG.getNode(Opc, DL, ValTy, NewOperand, + DAG.getConstant(Pos, DL, MVT::i32), + DAG.getConstant(SMSize, DL, MVT::i32)); +} + +static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + // Pattern match INS. + // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), + // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 + // => ins $dst, $src, size, pos, $src1 + if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) + return SDValue(); + + SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); + uint64_t SMPos0, SMSize0, SMPos1, SMSize1; + ConstantSDNode *CN, *CN1; + + // See if Op's first operand matches (and $src1 , mask0). + if (And0.getOpcode() != ISD::AND) + return SDValue(); + + if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || + !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) + return SDValue(); + + // See if Op's second operand matches (and (shl $src, pos), mask1). + if (And1.getOpcode() == ISD::AND && + And1.getOperand(0).getOpcode() == ISD::SHL) { + + if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || + !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) + return SDValue(); + + // The shift masks must have the same position and size. + if (SMPos0 != SMPos1 || SMSize0 != SMSize1) + return SDValue(); + + SDValue Shl = And1.getOperand(0); + + if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) + return SDValue(); + + unsigned Shamt = CN->getZExtValue(); + + // Return if the shift amount and the first bit position of mask are not the + // same. + EVT ValTy = N->getValueType(0); + if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) + return SDValue(); + + SDLoc DL(N); + return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0), + DAG.getConstant(SMPos0, DL, MVT::i32), + DAG.getConstant(SMSize0, DL, MVT::i32), + And0.getOperand(0)); + } else { + // Pattern match DINS. + // $dst = or (and $src, mask0), mask1 + // where mask0 = ((1 << SMSize0) -1) << SMPos0 + // => dins $dst, $src, pos, size + if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) && + ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) || + (SMSize0 + SMPos0 <= 32))) { + // Check if AND instruction has constant as argument + bool isConstCase = And1.getOpcode() != ISD::AND; + if (And1.getOpcode() == ISD::AND) { + if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1)))) + return SDValue(); + } else { + if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)))) + return SDValue(); + } + // Don't generate INS if constant OR operand doesn't fit into bits + // cleared by constant AND operand. + if (CN->getSExtValue() & CN1->getSExtValue()) + return SDValue(); + + SDLoc DL(N); + EVT ValTy = N->getOperand(0)->getValueType(0); + SDValue Const1; + SDValue SrlX; + if (!isConstCase) { + Const1 = DAG.getConstant(SMPos0, DL, MVT::i32); + SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1); + } + return DAG.getNode( + MipsISD::Ins, DL, N->getValueType(0), + isConstCase + ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy) + : SrlX, + DAG.getConstant(SMPos0, DL, MVT::i32), + DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31 + : SMSize0, + DL, MVT::i32), + And0->getOperand(0)); + + } + return SDValue(); + } +} + +static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG, + const MipsSubtarget &Subtarget) { + // ROOTNode must have a multiplication as an operand for the match to be + // successful. + if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL && + ROOTNode->getOperand(1).getOpcode() != ISD::MUL) + return SDValue(); + + // We don't handle vector types here. + if (ROOTNode->getValueType(0).isVector()) + return SDValue(); + + // For MIPS64, madd / msub instructions are inefficent to use with 64 bit + // arithmetic. E.g. + // (add (mul a b) c) => + // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in + // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32) + // or + // MIPS64R2: (dins (mflo res) (mfhi res) 32 32) + // + // The overhead of setting up the Hi/Lo registers and reassembling the + // result makes this a dubious optimzation for MIPS64. The core of the + // problem is that Hi/Lo contain the upper and lower 32 bits of the + // operand and result. + // + // It requires a chain of 4 add/mul for MIPS64R2 to get better code + // density than doing it naively, 5 for MIPS64. Additionally, using + // madd/msub on MIPS64 requires the operands actually be 32 bit sign + // extended operands, not true 64 bit values. + // + // FIXME: For the moment, disable this completely for MIPS64. + if (Subtarget.hasMips64()) + return SDValue(); + + SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL + ? ROOTNode->getOperand(0) + : ROOTNode->getOperand(1); + + SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL + ? ROOTNode->getOperand(1) + : ROOTNode->getOperand(0); + + // Transform this to a MADD only if the user of this node is the add. + // If there are other users of the mul, this function returns here. + if (!Mult.hasOneUse()) + return SDValue(); + + // maddu and madd are unusual instructions in that on MIPS64 bits 63..31 + // must be in canonical form, i.e. sign extended. For MIPS32, the operands + // of the multiply must have 32 or more sign bits, otherwise we cannot + // perform this optimization. We have to check this here as we're performing + // this optimization pre-legalization. + SDValue MultLHS = Mult->getOperand(0); + SDValue MultRHS = Mult->getOperand(1); + + bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND && + MultRHS->getOpcode() == ISD::SIGN_EXTEND; + bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND && + MultRHS->getOpcode() == ISD::ZERO_EXTEND; + + if (!IsSigned && !IsUnsigned) + return SDValue(); + + // Initialize accumulator. + SDLoc DL(ROOTNode); + SDValue TopHalf; + SDValue BottomHalf; + BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand, + CurDAG.getIntPtrConstant(0, DL)); + + TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand, + CurDAG.getIntPtrConstant(1, DL)); + SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, + BottomHalf, + TopHalf); + + // Create MipsMAdd(u) / MipsMSub(u) node. + bool IsAdd = ROOTNode->getOpcode() == ISD::ADD; + unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd) + : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub); + SDValue MAddOps[3] = { + CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)), + CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn}; + EVT VTs[2] = {MVT::i32, MVT::i32}; + SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps); + + SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd); + SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd); + SDValue Combined = + CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi); + return Combined; +} + +static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + // (sub v0 (mul v1, v2)) => (msub v1, v2, v0) + if (DCI.isBeforeLegalizeOps()) { + if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && + !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) + return performMADD_MSUBCombine(N, DAG, Subtarget); + + return SDValue(); + } + + return SDValue(); +} + +static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + // (add v0 (mul v1, v2)) => (madd v1, v2, v0) + if (DCI.isBeforeLegalizeOps()) { + if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() && + !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64) + return performMADD_MSUBCombine(N, DAG, Subtarget); + + return SDValue(); + } + + // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt)) + SDValue Add = N->getOperand(1); + + if (Add.getOpcode() != ISD::ADD) + return SDValue(); + + SDValue Lo = Add.getOperand(1); + + if ((Lo.getOpcode() != MipsISD::Lo) || + (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable)) + return SDValue(); + + EVT ValTy = N->getValueType(0); + SDLoc DL(N); + + SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0), + Add.getOperand(0)); + return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo); +} + +static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget &Subtarget) { + // Pattern match CINS. + // $dst = shl (and $src , imm), pos + // => cins $dst, $src, pos, size + + if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips()) + return SDValue(); + + SDValue FirstOperand = N->getOperand(0); + unsigned FirstOperandOpc = FirstOperand.getOpcode(); + SDValue SecondOperand = N->getOperand(1); + EVT ValTy = N->getValueType(0); + SDLoc DL(N); + + uint64_t Pos = 0, SMPos, SMSize; + ConstantSDNode *CN; + SDValue NewOperand; + + // The second operand of the shift must be an immediate. + if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand))) + return SDValue(); + + Pos = CN->getZExtValue(); + + if (Pos >= ValTy.getSizeInBits()) + return SDValue(); + + if (FirstOperandOpc != ISD::AND) + return SDValue(); + + // AND's second operand must be a shifted mask. + if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) || + !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) + return SDValue(); + + // Return if the shifted mask does not start at bit 0 or the sum of its size + // and Pos exceeds the word's size. + if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits()) + return SDValue(); + + NewOperand = FirstOperand.getOperand(0); + // SMSize is 'location' (position) in this case, not size. + SMSize--; + + return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand, + DAG.getConstant(Pos, DL, MVT::i32), + DAG.getConstant(SMSize, DL, MVT::i32)); +} + +SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) + const { + SelectionDAG &DAG = DCI.DAG; + unsigned Opc = N->getOpcode(); + + switch (Opc) { + default: break; + case ISD::SDIVREM: + case ISD::UDIVREM: + return performDivRemCombine(N, DAG, DCI, Subtarget); + case ISD::SELECT: + return performSELECTCombine(N, DAG, DCI, Subtarget); + case MipsISD::CMovFP_F: + case MipsISD::CMovFP_T: + return performCMovFPCombine(N, DAG, DCI, Subtarget); + case ISD::AND: + return performANDCombine(N, DAG, DCI, Subtarget); + case ISD::OR: + return performORCombine(N, DAG, DCI, Subtarget); + case ISD::ADD: + return performADDCombine(N, DAG, DCI, Subtarget); + case ISD::SHL: + return performSHLCombine(N, DAG, DCI, Subtarget); + case ISD::SUB: + return performSUBCombine(N, DAG, DCI, Subtarget); + } + + return SDValue(); +} + +bool MipsTargetLowering::isCheapToSpeculateCttz() const { + return Subtarget.hasMips32(); +} + +bool MipsTargetLowering::isCheapToSpeculateCtlz() const { + return Subtarget.hasMips32(); +} + +void +MipsTargetLowering::LowerOperationWrapper(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + SDValue Res = LowerOperation(SDValue(N, 0), DAG); + + for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) + Results.push_back(Res.getValue(I)); +} + +void +MipsTargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + return LowerOperationWrapper(N, Results, DAG); +} + +SDValue MipsTargetLowering:: +LowerOperation(SDValue Op, SelectionDAG &DAG) const +{ + switch (Op.getOpcode()) + { + case ISD::BRCOND: return lowerBRCOND(Op, DAG); + case ISD::ConstantPool: return lowerConstantPool(Op, DAG); + case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG); + case ISD::BlockAddress: return lowerBlockAddress(Op, DAG); + case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG); + case ISD::JumpTable: return lowerJumpTable(Op, DAG); + case ISD::SELECT: return lowerSELECT(Op, DAG); + case ISD::SETCC: return lowerSETCC(Op, DAG); + case ISD::VASTART: return lowerVASTART(Op, DAG); + case ISD::VAARG: return lowerVAARG(Op, DAG); + case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG); + case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); + case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); + case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG); + case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG); + case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG); + case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true); + case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false); + case ISD::LOAD: return lowerLOAD(Op, DAG); + case ISD::STORE: return lowerSTORE(Op, DAG); + case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG); + case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG); + } + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Lower helper functions +//===----------------------------------------------------------------------===// + +// addLiveIn - This helper function adds the specified physical register to the +// MachineFunction as a live in value. It also creates a corresponding +// virtual register for it. +static unsigned +addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) +{ + unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); + MF.getRegInfo().addLiveIn(PReg, VReg); + return VReg; +} + +static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI, + MachineBasicBlock &MBB, + const TargetInstrInfo &TII, + bool Is64Bit, bool IsMicroMips) { + if (NoZeroDivCheck) + return &MBB; + + // Insert instruction "teq $divisor_reg, $zero, 7". + MachineBasicBlock::iterator I(MI); + MachineInstrBuilder MIB; + MachineOperand &Divisor = MI.getOperand(2); + MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(), + TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ)) + .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill())) + .addReg(Mips::ZERO) + .addImm(7); + + // Use the 32-bit sub-register if this is a 64-bit division. + if (Is64Bit) + MIB->getOperand(0).setSubReg(Mips::sub_32); + + // Clear Divisor's kill flag. + Divisor.setIsKill(false); + + // We would normally delete the original instruction here but in this case + // we only needed to inject an additional instruction rather than replace it. + + return &MBB; +} + +MachineBasicBlock * +MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, + MachineBasicBlock *BB) const { + switch (MI.getOpcode()) { + default: + llvm_unreachable("Unexpected instr type to insert"); + case Mips::ATOMIC_LOAD_ADD_I8: + return emitAtomicBinaryPartword(MI, BB, 1); + case Mips::ATOMIC_LOAD_ADD_I16: + return emitAtomicBinaryPartword(MI, BB, 2); + case Mips::ATOMIC_LOAD_ADD_I32: + return emitAtomicBinary(MI, BB); + case Mips::ATOMIC_LOAD_ADD_I64: + return emitAtomicBinary(MI, BB); + + case Mips::ATOMIC_LOAD_AND_I8: + return emitAtomicBinaryPartword(MI, BB, 1); + case Mips::ATOMIC_LOAD_AND_I16: + return emitAtomicBinaryPartword(MI, BB, 2); + case Mips::ATOMIC_LOAD_AND_I32: + return emitAtomicBinary(MI, BB); + case Mips::ATOMIC_LOAD_AND_I64: + return emitAtomicBinary(MI, BB); + + case Mips::ATOMIC_LOAD_OR_I8: + return emitAtomicBinaryPartword(MI, BB, 1); + case Mips::ATOMIC_LOAD_OR_I16: + return emitAtomicBinaryPartword(MI, BB, 2); + case Mips::ATOMIC_LOAD_OR_I32: + return emitAtomicBinary(MI, BB); + case Mips::ATOMIC_LOAD_OR_I64: + return emitAtomicBinary(MI, BB); + + case Mips::ATOMIC_LOAD_XOR_I8: + return emitAtomicBinaryPartword(MI, BB, 1); + case Mips::ATOMIC_LOAD_XOR_I16: + return emitAtomicBinaryPartword(MI, BB, 2); + case Mips::ATOMIC_LOAD_XOR_I32: + return emitAtomicBinary(MI, BB); + case Mips::ATOMIC_LOAD_XOR_I64: + return emitAtomicBinary(MI, BB); + + case Mips::ATOMIC_LOAD_NAND_I8: + return emitAtomicBinaryPartword(MI, BB, 1); + case Mips::ATOMIC_LOAD_NAND_I16: + return emitAtomicBinaryPartword(MI, BB, 2); + case Mips::ATOMIC_LOAD_NAND_I32: + return emitAtomicBinary(MI, BB); + case Mips::ATOMIC_LOAD_NAND_I64: + return emitAtomicBinary(MI, BB); + + case Mips::ATOMIC_LOAD_SUB_I8: + return emitAtomicBinaryPartword(MI, BB, 1); + case Mips::ATOMIC_LOAD_SUB_I16: + return emitAtomicBinaryPartword(MI, BB, 2); + case Mips::ATOMIC_LOAD_SUB_I32: + return emitAtomicBinary(MI, BB); + case Mips::ATOMIC_LOAD_SUB_I64: + return emitAtomicBinary(MI, BB); + + case Mips::ATOMIC_SWAP_I8: + return emitAtomicBinaryPartword(MI, BB, 1); + case Mips::ATOMIC_SWAP_I16: + return emitAtomicBinaryPartword(MI, BB, 2); + case Mips::ATOMIC_SWAP_I32: + return emitAtomicBinary(MI, BB); + case Mips::ATOMIC_SWAP_I64: + return emitAtomicBinary(MI, BB); + + case Mips::ATOMIC_CMP_SWAP_I8: + return emitAtomicCmpSwapPartword(MI, BB, 1); + case Mips::ATOMIC_CMP_SWAP_I16: + return emitAtomicCmpSwapPartword(MI, BB, 2); + case Mips::ATOMIC_CMP_SWAP_I32: + return emitAtomicCmpSwap(MI, BB); + case Mips::ATOMIC_CMP_SWAP_I64: + return emitAtomicCmpSwap(MI, BB); + case Mips::PseudoSDIV: + case Mips::PseudoUDIV: + case Mips::DIV: + case Mips::DIVU: + case Mips::MOD: + case Mips::MODU: + return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, + false); + case Mips::SDIV_MM_Pseudo: + case Mips::UDIV_MM_Pseudo: + case Mips::SDIV_MM: + case Mips::UDIV_MM: + case Mips::DIV_MMR6: + case Mips::DIVU_MMR6: + case Mips::MOD_MMR6: + case Mips::MODU_MMR6: + return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true); + case Mips::PseudoDSDIV: + case Mips::PseudoDUDIV: + case Mips::DDIV: + case Mips::DDIVU: + case Mips::DMOD: + case Mips::DMODU: + return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false); + + case Mips::PseudoSELECT_I: + case Mips::PseudoSELECT_I64: + case Mips::PseudoSELECT_S: + case Mips::PseudoSELECT_D32: + case Mips::PseudoSELECT_D64: + return emitPseudoSELECT(MI, BB, false, Mips::BNE); + case Mips::PseudoSELECTFP_F_I: + case Mips::PseudoSELECTFP_F_I64: + case Mips::PseudoSELECTFP_F_S: + case Mips::PseudoSELECTFP_F_D32: + case Mips::PseudoSELECTFP_F_D64: + return emitPseudoSELECT(MI, BB, true, Mips::BC1F); + case Mips::PseudoSELECTFP_T_I: + case Mips::PseudoSELECTFP_T_I64: + case Mips::PseudoSELECTFP_T_S: + case Mips::PseudoSELECTFP_T_D32: + case Mips::PseudoSELECTFP_T_D64: + return emitPseudoSELECT(MI, BB, true, Mips::BC1T); + case Mips::PseudoD_SELECT_I: + case Mips::PseudoD_SELECT_I64: + return emitPseudoD_SELECT(MI, BB); + } +} + +// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and +// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) +MachineBasicBlock * +MipsTargetLowering::emitAtomicBinary(MachineInstr &MI, + MachineBasicBlock *BB) const { + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + unsigned AtomicOp; + switch (MI.getOpcode()) { + case Mips::ATOMIC_LOAD_ADD_I32: + AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA; + break; + case Mips::ATOMIC_LOAD_SUB_I32: + AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA; + break; + case Mips::ATOMIC_LOAD_AND_I32: + AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA; + break; + case Mips::ATOMIC_LOAD_OR_I32: + AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA; + break; + case Mips::ATOMIC_LOAD_XOR_I32: + AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA; + break; + case Mips::ATOMIC_LOAD_NAND_I32: + AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA; + break; + case Mips::ATOMIC_SWAP_I32: + AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA; + break; + case Mips::ATOMIC_LOAD_ADD_I64: + AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA; + break; + case Mips::ATOMIC_LOAD_SUB_I64: + AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA; + break; + case Mips::ATOMIC_LOAD_AND_I64: + AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA; + break; + case Mips::ATOMIC_LOAD_OR_I64: + AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA; + break; + case Mips::ATOMIC_LOAD_XOR_I64: + AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA; + break; + case Mips::ATOMIC_LOAD_NAND_I64: + AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA; + break; + case Mips::ATOMIC_SWAP_I64: + AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA; + break; + default: + llvm_unreachable("Unknown pseudo atomic for replacement!"); + } + + unsigned OldVal = MI.getOperand(0).getReg(); + unsigned Ptr = MI.getOperand(1).getReg(); + unsigned Incr = MI.getOperand(2).getReg(); + unsigned Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal)); + + MachineBasicBlock::iterator II(MI); + + // The scratch registers here with the EarlyClobber | Define | Implicit + // flags is used to persuade the register allocator and the machine + // verifier to accept the usage of this register. This has to be a real + // register which has an UNDEF value but is dead after the instruction which + // is unique among the registers chosen for the instruction. + + // The EarlyClobber flag has the semantic properties that the operand it is + // attached to is clobbered before the rest of the inputs are read. Hence it + // must be unique among the operands to the instruction. + // The Define flag is needed to coerce the machine verifier that an Undef + // value isn't a problem. + // The Dead flag is needed as the value in scratch isn't used by any other + // instruction. Kill isn't used as Dead is more precise. + // The implicit flag is here due to the interaction between the other flags + // and the machine verifier. + + // For correctness purpose, a new pseudo is introduced here. We need this + // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence + // that is spread over >1 basic blocks. A register allocator which + // introduces (or any codegen infact) a store, can violate the expectations + // of the hardware. + // + // An atomic read-modify-write sequence starts with a linked load + // instruction and ends with a store conditional instruction. The atomic + // read-modify-write sequence fails if any of the following conditions + // occur between the execution of ll and sc: + // * A coherent store is completed by another process or coherent I/O + // module into the block of synchronizable physical memory containing + // the word. The size and alignment of the block is + // implementation-dependent. + // * A coherent store is executed between an LL and SC sequence on the + // same processor to the block of synchornizable physical memory + // containing the word. + // + + unsigned PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr)); + unsigned IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr)); + + BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr); + BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); + + BuildMI(*BB, II, DL, TII->get(AtomicOp)) + .addReg(OldVal, RegState::Define | RegState::EarlyClobber) + .addReg(PtrCopy) + .addReg(IncrCopy) + .addReg(Scratch, RegState::Define | RegState::EarlyClobber | + RegState::Implicit | RegState::Dead); + + MI.eraseFromParent(); + + return BB; +} + +MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg( + MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, + unsigned SrcReg) const { + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + const DebugLoc &DL = MI.getDebugLoc(); + + if (Subtarget.hasMips32r2() && Size == 1) { + BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg); + return BB; + } + + if (Subtarget.hasMips32r2() && Size == 2) { + BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg); + return BB; + } + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::i32); + unsigned ScrReg = RegInfo.createVirtualRegister(RC); + + assert(Size < 32); + int64_t ShiftImm = 32 - (Size * 8); + + BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm); + BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm); + + return BB; +} + +MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword( + MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { + assert((Size == 1 || Size == 2) && + "Unsupported size for EmitAtomicBinaryPartial."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::i32); + const bool ArePtrs64bit = ABI.ArePtrs64bit(); + const TargetRegisterClass *RCp = + getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + unsigned Dest = MI.getOperand(0).getReg(); + unsigned Ptr = MI.getOperand(1).getReg(); + unsigned Incr = MI.getOperand(2).getReg(); + + unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp); + unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); + unsigned Mask = RegInfo.createVirtualRegister(RC); + unsigned Mask2 = RegInfo.createVirtualRegister(RC); + unsigned Incr2 = RegInfo.createVirtualRegister(RC); + unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp); + unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); + unsigned MaskUpper = RegInfo.createVirtualRegister(RC); + unsigned Scratch = RegInfo.createVirtualRegister(RC); + unsigned Scratch2 = RegInfo.createVirtualRegister(RC); + unsigned Scratch3 = RegInfo.createVirtualRegister(RC); + + unsigned AtomicOp = 0; + switch (MI.getOpcode()) { + case Mips::ATOMIC_LOAD_NAND_I8: + AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA; + break; + case Mips::ATOMIC_LOAD_NAND_I16: + AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA; + break; + case Mips::ATOMIC_SWAP_I8: + AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA; + break; + case Mips::ATOMIC_SWAP_I16: + AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA; + break; + case Mips::ATOMIC_LOAD_ADD_I8: + AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA; + break; + case Mips::ATOMIC_LOAD_ADD_I16: + AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA; + break; + case Mips::ATOMIC_LOAD_SUB_I8: + AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA; + break; + case Mips::ATOMIC_LOAD_SUB_I16: + AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA; + break; + case Mips::ATOMIC_LOAD_AND_I8: + AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA; + break; + case Mips::ATOMIC_LOAD_AND_I16: + AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA; + break; + case Mips::ATOMIC_LOAD_OR_I8: + AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA; + break; + case Mips::ATOMIC_LOAD_OR_I16: + AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA; + break; + case Mips::ATOMIC_LOAD_XOR_I8: + AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA; + break; + case Mips::ATOMIC_LOAD_XOR_I16: + AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA; + break; + default: + llvm_unreachable("Unknown subword atomic pseudo for expansion!"); + } + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = ++BB->getIterator(); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + BB->addSuccessor(exitMBB, BranchProbability::getOne()); + + // thisMBB: + // addiu masklsb2,$0,-4 # 0xfffffffc + // and alignedaddr,ptr,masklsb2 + // andi ptrlsb2,ptr,3 + // sll shiftamt,ptrlsb2,3 + // ori maskupper,$0,255 # 0xff + // sll mask,maskupper,shiftamt + // nor mask2,$0,mask + // sll incr2,incr,shiftamt + + int64_t MaskImm = (Size == 1) ? 255 : 65535; + BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2) + .addReg(ABI.GetNullPtr()).addImm(-4); + BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr) + .addReg(Ptr).addReg(MaskLSB2); + BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) + .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); + if (Subtarget.isLittle()) { + BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); + } else { + unsigned Off = RegInfo.createVirtualRegister(RC); + BuildMI(BB, DL, TII->get(Mips::XORi), Off) + .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); + BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); + } + BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) + .addReg(Mips::ZERO).addImm(MaskImm); + BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) + .addReg(MaskUpper).addReg(ShiftAmt); + BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); + BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt); + + + // The purposes of the flags on the scratch registers is explained in + // emitAtomicBinary. In summary, we need a scratch register which is going to + // be undef, that is unique among registers chosen for the instruction. + + BuildMI(BB, DL, TII->get(AtomicOp)) + .addReg(Dest, RegState::Define | RegState::EarlyClobber) + .addReg(AlignedAddr) + .addReg(Incr2) + .addReg(Mask) + .addReg(Mask2) + .addReg(ShiftAmt) + .addReg(Scratch, RegState::EarlyClobber | RegState::Define | + RegState::Dead | RegState::Implicit) + .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | + RegState::Dead | RegState::Implicit) + .addReg(Scratch3, RegState::EarlyClobber | RegState::Define | + RegState::Dead | RegState::Implicit); + + MI.eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +// Lower atomic compare and swap to a pseudo instruction, taking care to +// define a scratch register for the pseudo instruction's expansion. The +// instruction is expanded after the register allocator as to prevent +// the insertion of stores between the linked load and the store conditional. + +MachineBasicBlock * +MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI, + MachineBasicBlock *BB) const { + + assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 || + MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) && + "Unsupported atomic psseudo for EmitAtomicCmpSwap."); + + const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8; + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 + ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA + : Mips::ATOMIC_CMP_SWAP_I64_POSTRA; + unsigned Dest = MI.getOperand(0).getReg(); + unsigned Ptr = MI.getOperand(1).getReg(); + unsigned OldVal = MI.getOperand(2).getReg(); + unsigned NewVal = MI.getOperand(3).getReg(); + + unsigned Scratch = MRI.createVirtualRegister(RC); + MachineBasicBlock::iterator II(MI); + + // We need to create copies of the various registers and kill them at the + // atomic pseudo. If the copies are not made, when the atomic is expanded + // after fast register allocation, the spills will end up outside of the + // blocks that their values are defined in, causing livein errors. + + unsigned DestCopy = MRI.createVirtualRegister(MRI.getRegClass(Dest)); + unsigned PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr)); + unsigned OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal)); + unsigned NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal)); + + BuildMI(*BB, II, DL, TII->get(Mips::COPY), DestCopy).addReg(Dest); + BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr); + BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal); + BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal); + + // The purposes of the flags on the scratch registers is explained in + // emitAtomicBinary. In summary, we need a scratch register which is going to + // be undef, that is unique among registers chosen for the instruction. + + BuildMI(*BB, II, DL, TII->get(AtomicOp)) + .addReg(Dest, RegState::Define | RegState::EarlyClobber) + .addReg(PtrCopy, RegState::Kill) + .addReg(OldValCopy, RegState::Kill) + .addReg(NewValCopy, RegState::Kill) + .addReg(Scratch, RegState::EarlyClobber | RegState::Define | + RegState::Dead | RegState::Implicit); + + MI.eraseFromParent(); // The instruction is gone now. + + return BB; +} + +MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword( + MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const { + assert((Size == 1 || Size == 2) && + "Unsupported size for EmitAtomicCmpSwapPartial."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::i32); + const bool ArePtrs64bit = ABI.ArePtrs64bit(); + const TargetRegisterClass *RCp = + getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + unsigned Dest = MI.getOperand(0).getReg(); + unsigned Ptr = MI.getOperand(1).getReg(); + unsigned CmpVal = MI.getOperand(2).getReg(); + unsigned NewVal = MI.getOperand(3).getReg(); + + unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp); + unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); + unsigned Mask = RegInfo.createVirtualRegister(RC); + unsigned Mask2 = RegInfo.createVirtualRegister(RC); + unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC); + unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC); + unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp); + unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); + unsigned MaskUpper = RegInfo.createVirtualRegister(RC); + unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC); + unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC); + unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8 + ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA + : Mips::ATOMIC_CMP_SWAP_I16_POSTRA; + + // The scratch registers here with the EarlyClobber | Define | Dead | Implicit + // flags are used to coerce the register allocator and the machine verifier to + // accept the usage of these registers. + // The EarlyClobber flag has the semantic properties that the operand it is + // attached to is clobbered before the rest of the inputs are read. Hence it + // must be unique among the operands to the instruction. + // The Define flag is needed to coerce the machine verifier that an Undef + // value isn't a problem. + // The Dead flag is needed as the value in scratch isn't used by any other + // instruction. Kill isn't used as Dead is more precise. + unsigned Scratch = RegInfo.createVirtualRegister(RC); + unsigned Scratch2 = RegInfo.createVirtualRegister(RC); + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = ++BB->getIterator(); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + BB->addSuccessor(exitMBB, BranchProbability::getOne()); + + // thisMBB: + // addiu masklsb2,$0,-4 # 0xfffffffc + // and alignedaddr,ptr,masklsb2 + // andi ptrlsb2,ptr,3 + // xori ptrlsb2,ptrlsb2,3 # Only for BE + // sll shiftamt,ptrlsb2,3 + // ori maskupper,$0,255 # 0xff + // sll mask,maskupper,shiftamt + // nor mask2,$0,mask + // andi maskedcmpval,cmpval,255 + // sll shiftedcmpval,maskedcmpval,shiftamt + // andi maskednewval,newval,255 + // sll shiftednewval,maskednewval,shiftamt + int64_t MaskImm = (Size == 1) ? 255 : 65535; + BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2) + .addReg(ABI.GetNullPtr()).addImm(-4); + BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr) + .addReg(Ptr).addReg(MaskLSB2); + BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2) + .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3); + if (Subtarget.isLittle()) { + BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); + } else { + unsigned Off = RegInfo.createVirtualRegister(RC); + BuildMI(BB, DL, TII->get(Mips::XORi), Off) + .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); + BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); + } + BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) + .addReg(Mips::ZERO).addImm(MaskImm); + BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) + .addReg(MaskUpper).addReg(ShiftAmt); + BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); + BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal) + .addReg(CmpVal).addImm(MaskImm); + BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal) + .addReg(MaskedCmpVal).addReg(ShiftAmt); + BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal) + .addReg(NewVal).addImm(MaskImm); + BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal) + .addReg(MaskedNewVal).addReg(ShiftAmt); + + // The purposes of the flags on the scratch registers are explained in + // emitAtomicBinary. In summary, we need a scratch register which is going to + // be undef, that is unique among the register chosen for the instruction. + + BuildMI(BB, DL, TII->get(AtomicOp)) + .addReg(Dest, RegState::Define | RegState::EarlyClobber) + .addReg(AlignedAddr) + .addReg(Mask) + .addReg(ShiftedCmpVal) + .addReg(Mask2) + .addReg(ShiftedNewVal) + .addReg(ShiftAmt) + .addReg(Scratch, RegState::EarlyClobber | RegState::Define | + RegState::Dead | RegState::Implicit) + .addReg(Scratch2, RegState::EarlyClobber | RegState::Define | + RegState::Dead | RegState::Implicit); + + MI.eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { + // The first operand is the chain, the second is the condition, the third is + // the block to branch to if the condition is true. + SDValue Chain = Op.getOperand(0); + SDValue Dest = Op.getOperand(2); + SDLoc DL(Op); + + assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); + SDValue CondRes = createFPCmp(DAG, Op.getOperand(1)); + + // Return if flag is not set by a floating point comparison. + if (CondRes.getOpcode() != MipsISD::FPCmp) + return Op; + + SDValue CCNode = CondRes.getOperand(2); + Mips::CondCode CC = + (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); + unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T; + SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32); + SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); + return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode, + FCC0, Dest, CondRes); +} + +SDValue MipsTargetLowering:: +lowerSELECT(SDValue Op, SelectionDAG &DAG) const +{ + assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); + SDValue Cond = createFPCmp(DAG, Op.getOperand(0)); + + // Return if flag is not set by a floating point comparison. + if (Cond.getOpcode() != MipsISD::FPCmp) + return Op; + + return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), + SDLoc(Op)); +} + +SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { + assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); + SDValue Cond = createFPCmp(DAG, Op); + + assert(Cond.getOpcode() == MipsISD::FPCmp && + "Floating point operand expected."); + + SDLoc DL(Op); + SDValue True = DAG.getConstant(1, DL, MVT::i32); + SDValue False = DAG.getConstant(0, DL, MVT::i32); + + return createCMovFP(DAG, Cond, True, False, DL); +} + +SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + EVT Ty = Op.getValueType(); + GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = N->getGlobal(); + + if (!isPositionIndependent()) { + const MipsTargetObjectFile *TLOF = + static_cast<const MipsTargetObjectFile *>( + getTargetMachine().getObjFileLowering()); + const GlobalObject *GO = GV->getBaseObject(); + if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine())) + // %gp_rel relocation + return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); + + // %hi/%lo relocation + return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) + // %highest/%higher/%hi/%lo relocation + : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); + } + + // Every other architecture would use shouldAssumeDSOLocal in here, but + // mips is special. + // * In PIC code mips requires got loads even for local statics! + // * To save on got entries, for local statics the got entry contains the + // page and an additional add instruction takes care of the low bits. + // * It is legal to access a hidden symbol with a non hidden undefined, + // so one cannot guarantee that all access to a hidden symbol will know + // it is hidden. + // * Mips linkers don't support creating a page and a full got entry for + // the same symbol. + // * Given all that, we have to use a full got entry for hidden symbols :-( + if (GV->hasLocalLinkage()) + return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); + + if (LargeGOT) + return getAddrGlobalLargeGOT( + N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16, + DAG.getEntryNode(), + MachinePointerInfo::getGOT(DAG.getMachineFunction())); + + return getAddrGlobal( + N, SDLoc(N), Ty, DAG, + (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT, + DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction())); +} + +SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op, + SelectionDAG &DAG) const { + BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); + EVT Ty = Op.getValueType(); + + if (!isPositionIndependent()) + return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) + : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); + + return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); +} + +SDValue MipsTargetLowering:: +lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const +{ + // If the relocation model is PIC, use the General Dynamic TLS Model or + // Local Dynamic TLS model, otherwise use the Initial Exec or + // Local Exec TLS Model. + + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + if (DAG.getTarget().useEmulatedTLS()) + return LowerToTLSEmulatedModel(GA, DAG); + + SDLoc DL(GA); + const GlobalValue *GV = GA->getGlobal(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + TLSModel::Model model = getTargetMachine().getTLSModel(GV); + + if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { + // General Dynamic and Local Dynamic TLS Model. + unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM + : MipsII::MO_TLSGD; + + SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag); + SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, + getGlobalReg(DAG, PtrVT), TGA); + unsigned PtrSize = PtrVT.getSizeInBits(); + IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); + + SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); + + ArgListTy Args; + ArgListEntry Entry; + Entry.Node = Argument; + Entry.Ty = PtrTy; + Args.push_back(Entry); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(DL) + .setChain(DAG.getEntryNode()) + .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args)); + std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); + + SDValue Ret = CallResult.first; + + if (model != TLSModel::LocalDynamic) + return Ret; + + SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_DTPREL_HI); + SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); + SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_DTPREL_LO); + SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); + SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret); + return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo); + } + + SDValue Offset; + if (model == TLSModel::InitialExec) { + // Initial Exec TLS Model + SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_GOTTPREL); + TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), + TGA); + Offset = + DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo()); + } else { + // Local Exec TLS Model + assert(model == TLSModel::LocalExec); + SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_TPREL_HI); + SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + MipsII::MO_TPREL_LO); + SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi); + SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); + Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); + } + + SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); + return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset); +} + +SDValue MipsTargetLowering:: +lowerJumpTable(SDValue Op, SelectionDAG &DAG) const +{ + JumpTableSDNode *N = cast<JumpTableSDNode>(Op); + EVT Ty = Op.getValueType(); + + if (!isPositionIndependent()) + return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) + : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); + + return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); +} + +SDValue MipsTargetLowering:: +lowerConstantPool(SDValue Op, SelectionDAG &DAG) const +{ + ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); + EVT Ty = Op.getValueType(); + + if (!isPositionIndependent()) { + const MipsTargetObjectFile *TLOF = + static_cast<const MipsTargetObjectFile *>( + getTargetMachine().getObjFileLowering()); + + if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(), + getTargetMachine())) + // %gp_rel relocation + return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64()); + + return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) + : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); + } + + return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); +} + +SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); + + SDLoc DL(Op); + SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + getPointerTy(MF.getDataLayout())); + + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), + MachinePointerInfo(SV)); +} + +SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { + SDNode *Node = Op.getNode(); + EVT VT = Node->getValueType(0); + SDValue Chain = Node->getOperand(0); + SDValue VAListPtr = Node->getOperand(1); + unsigned Align = Node->getConstantOperandVal(3); + const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); + SDLoc DL(Node); + unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4; + + SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, + VAListPtr, MachinePointerInfo(SV)); + SDValue VAList = VAListLoad; + + // Re-align the pointer if necessary. + // It should only ever be necessary for 64-bit types on O32 since the minimum + // argument alignment is the same as the maximum type alignment for N32/N64. + // + // FIXME: We currently align too often. The code generator doesn't notice + // when the pointer is still aligned from the last va_arg (or pair of + // va_args for the i64 on O32 case). + if (Align > getMinStackArgumentAlignment()) { + assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); + + VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, + DAG.getConstant(Align - 1, DL, VAList.getValueType())); + + VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList, + DAG.getConstant(-(int64_t)Align, DL, + VAList.getValueType())); + } + + // Increment the pointer, VAList, to the next vaarg. + auto &TD = DAG.getDataLayout(); + unsigned ArgSizeInBytes = + TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())); + SDValue Tmp3 = + DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, + DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes), + DL, VAList.getValueType())); + // Store the incremented VAList to the legalized pointer + Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr, + MachinePointerInfo(SV)); + + // In big-endian mode we must adjust the pointer when the load size is smaller + // than the argument slot size. We must also reduce the known alignment to + // match. For example in the N64 ABI, we must add 4 bytes to the offset to get + // the correct half of the slot, and reduce the alignment from 8 (slot + // alignment) down to 4 (type alignment). + if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) { + unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes; + VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList, + DAG.getIntPtrConstant(Adjustment, DL)); + } + // Load the actual argument out of the pointer VAList + return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo()); +} + +static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, + bool HasExtractInsert) { + EVT TyX = Op.getOperand(0).getValueType(); + EVT TyY = Op.getOperand(1).getValueType(); + SDLoc DL(Op); + SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); + SDValue Const31 = DAG.getConstant(31, DL, MVT::i32); + SDValue Res; + + // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it + // to i32. + SDValue X = (TyX == MVT::f32) ? + DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : + DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), + Const1); + SDValue Y = (TyY == MVT::f32) ? + DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : + DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), + Const1); + + if (HasExtractInsert) { + // ext E, Y, 31, 1 ; extract bit31 of Y + // ins X, E, 31, 1 ; insert extracted bit at bit31 of X + SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); + Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); + } else { + // sll SllX, X, 1 + // srl SrlX, SllX, 1 + // srl SrlY, Y, 31 + // sll SllY, SrlX, 31 + // or Or, SrlX, SllY + SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); + SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); + SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); + SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); + Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); + } + + if (TyX == MVT::f32) + return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); + + SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, + Op.getOperand(0), + DAG.getConstant(0, DL, MVT::i32)); + return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); +} + +static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, + bool HasExtractInsert) { + unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); + unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); + EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); + SDLoc DL(Op); + SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); + + // Bitcast to integer nodes. + SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); + SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); + + if (HasExtractInsert) { + // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y + // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X + SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, + DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1); + + if (WidthX > WidthY) + E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); + else if (WidthY > WidthX) + E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); + + SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, + DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1, + X); + return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); + } + + // (d)sll SllX, X, 1 + // (d)srl SrlX, SllX, 1 + // (d)srl SrlY, Y, width(Y)-1 + // (d)sll SllY, SrlX, width(Y)-1 + // or Or, SrlX, SllY + SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); + SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); + SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, + DAG.getConstant(WidthY - 1, DL, MVT::i32)); + + if (WidthX > WidthY) + SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); + else if (WidthY > WidthX) + SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); + + SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, + DAG.getConstant(WidthX - 1, DL, MVT::i32)); + SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); + return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); +} + +SDValue +MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { + if (Subtarget.isGP64bit()) + return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert()); + + return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert()); +} + +SDValue MipsTargetLowering:: +lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { + // check the depth + assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && + "Frame address can only be determined for current frame."); + + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + MFI.setFrameAddressIsTaken(true); + EVT VT = Op.getValueType(); + SDLoc DL(Op); + SDValue FrameAddr = DAG.getCopyFromReg( + DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT); + return FrameAddr; +} + +SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + if (verifyReturnAddressArgumentIsConstant(Op, DAG)) + return SDValue(); + + // check the depth + assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && + "Return address can be determined only for current frame."); + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + MVT VT = Op.getSimpleValueType(); + unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA; + MFI.setReturnAddressIsTaken(true); + + // Return RA, which contains the return address. Mark it an implicit live-in. + unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT)); + return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT); +} + +// An EH_RETURN is the result of lowering llvm.eh.return which in turn is +// generated from __builtin_eh_return (offset, handler) +// The effect of this is to adjust the stack pointer by "offset" +// and then branch to "handler". +SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) + const { + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + MipsFI->setCallsEhReturn(); + SDValue Chain = Op.getOperand(0); + SDValue Offset = Op.getOperand(1); + SDValue Handler = Op.getOperand(2); + SDLoc DL(Op); + EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; + + // Store stack offset in V1, store jump target in V0. Glue CopyToReg and + // EH_RETURN nodes, so that instructions are emitted back-to-back. + unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1; + unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0; + Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue()); + Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1)); + return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain, + DAG.getRegister(OffsetReg, Ty), + DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())), + Chain.getValue(1)); +} + +SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op, + SelectionDAG &DAG) const { + // FIXME: Need pseudo-fence for 'singlethread' fences + // FIXME: Set SType for weaker fences where supported/appropriate. + unsigned SType = 0; + SDLoc DL(Op); + return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0), + DAG.getConstant(SType, DL, MVT::i32)); +} + +SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; + + SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); + SDValue Shamt = Op.getOperand(2); + // if shamt < (VT.bits): + // lo = (shl lo, shamt) + // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt)) + // else: + // lo = 0 + // hi = (shl lo, shamt[4:0]) + SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, + DAG.getConstant(-1, DL, MVT::i32)); + SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, + DAG.getConstant(1, DL, VT)); + SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not); + SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); + SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); + SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); + SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, + DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); + Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, + DAG.getConstant(0, DL, VT), ShiftLeftLo); + Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or); + + SDValue Ops[2] = {Lo, Hi}; + return DAG.getMergeValues(Ops, DL); +} + +SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, + bool IsSRA) const { + SDLoc DL(Op); + SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); + SDValue Shamt = Op.getOperand(2); + MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; + + // if shamt < (VT.bits): + // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt)) + // if isSRA: + // hi = (sra hi, shamt) + // else: + // hi = (srl hi, shamt) + // else: + // if isSRA: + // lo = (sra hi, shamt[4:0]) + // hi = (sra hi, 31) + // else: + // lo = (srl hi, shamt[4:0]) + // hi = 0 + SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, + DAG.getConstant(-1, DL, MVT::i32)); + SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, + DAG.getConstant(1, DL, VT)); + SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not); + SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); + SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); + SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, + DL, VT, Hi, Shamt); + SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, + DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); + SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi, + DAG.getConstant(VT.getSizeInBits() - 1, DL, VT)); + + if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) { + SDVTList VTList = DAG.getVTList(VT, VT); + return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64 + : Mips::PseudoD_SELECT_I, + DL, VTList, Cond, ShiftRightHi, + IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or, + ShiftRightHi); + } + + Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or); + Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, + IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi); + + SDValue Ops[2] = {Lo, Hi}; + return DAG.getMergeValues(Ops, DL); +} + +static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD, + SDValue Chain, SDValue Src, unsigned Offset) { + SDValue Ptr = LD->getBasePtr(); + EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT(); + EVT BasePtrVT = Ptr.getValueType(); + SDLoc DL(LD); + SDVTList VTList = DAG.getVTList(VT, MVT::Other); + + if (Offset) + Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, + DAG.getConstant(Offset, DL, BasePtrVT)); + + SDValue Ops[] = { Chain, Ptr, Src }; + return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, + LD->getMemOperand()); +} + +// Expand an unaligned 32 or 64-bit integer load node. +SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { + LoadSDNode *LD = cast<LoadSDNode>(Op); + EVT MemVT = LD->getMemoryVT(); + + if (Subtarget.systemSupportsUnalignedAccess()) + return Op; + + // Return if load is aligned or if MemVT is neither i32 nor i64. + if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) || + ((MemVT != MVT::i32) && (MemVT != MVT::i64))) + return SDValue(); + + bool IsLittle = Subtarget.isLittle(); + EVT VT = Op.getValueType(); + ISD::LoadExtType ExtType = LD->getExtensionType(); + SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT); + + assert((VT == MVT::i32) || (VT == MVT::i64)); + + // Expand + // (set dst, (i64 (load baseptr))) + // to + // (set tmp, (ldl (add baseptr, 7), undef)) + // (set dst, (ldr baseptr, tmp)) + if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) { + SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef, + IsLittle ? 7 : 0); + return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL, + IsLittle ? 0 : 7); + } + + SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef, + IsLittle ? 3 : 0); + SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL, + IsLittle ? 0 : 3); + + // Expand + // (set dst, (i32 (load baseptr))) or + // (set dst, (i64 (sextload baseptr))) or + // (set dst, (i64 (extload baseptr))) + // to + // (set tmp, (lwl (add baseptr, 3), undef)) + // (set dst, (lwr baseptr, tmp)) + if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) || + (ExtType == ISD::EXTLOAD)) + return LWR; + + assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD)); + + // Expand + // (set dst, (i64 (zextload baseptr))) + // to + // (set tmp0, (lwl (add baseptr, 3), undef)) + // (set tmp1, (lwr baseptr, tmp0)) + // (set tmp2, (shl tmp1, 32)) + // (set dst, (srl tmp2, 32)) + SDLoc DL(LD); + SDValue Const32 = DAG.getConstant(32, DL, MVT::i32); + SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32); + SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32); + SDValue Ops[] = { SRL, LWR.getValue(1) }; + return DAG.getMergeValues(Ops, DL); +} + +static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD, + SDValue Chain, unsigned Offset) { + SDValue Ptr = SD->getBasePtr(), Value = SD->getValue(); + EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType(); + SDLoc DL(SD); + SDVTList VTList = DAG.getVTList(MVT::Other); + + if (Offset) + Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, + DAG.getConstant(Offset, DL, BasePtrVT)); + + SDValue Ops[] = { Chain, Value, Ptr }; + return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, + SD->getMemOperand()); +} + +// Expand an unaligned 32 or 64-bit integer store node. +static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG, + bool IsLittle) { + SDValue Value = SD->getValue(), Chain = SD->getChain(); + EVT VT = Value.getValueType(); + + // Expand + // (store val, baseptr) or + // (truncstore val, baseptr) + // to + // (swl val, (add baseptr, 3)) + // (swr val, baseptr) + if ((VT == MVT::i32) || SD->isTruncatingStore()) { + SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain, + IsLittle ? 3 : 0); + return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3); + } + + assert(VT == MVT::i64); + + // Expand + // (store val, baseptr) + // to + // (sdl val, (add baseptr, 7)) + // (sdr val, baseptr) + SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0); + return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7); +} + +// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr). +static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG, + bool SingleFloat) { + SDValue Val = SD->getValue(); + + if (Val.getOpcode() != ISD::FP_TO_SINT || + (Val.getValueSizeInBits() > 32 && SingleFloat)) + return SDValue(); + + EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits()); + SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy, + Val.getOperand(0)); + return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(), + SD->getPointerInfo(), SD->getAlignment(), + SD->getMemOperand()->getFlags()); +} + +SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { + StoreSDNode *SD = cast<StoreSDNode>(Op); + EVT MemVT = SD->getMemoryVT(); + + // Lower unaligned integer stores. + if (!Subtarget.systemSupportsUnalignedAccess() && + (SD->getAlignment() < MemVT.getSizeInBits() / 8) && + ((MemVT == MVT::i32) || (MemVT == MVT::i64))) + return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle()); + + return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat()); +} + +SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op, + SelectionDAG &DAG) const { + + // Return a fixed StackObject with offset 0 which points to the old stack + // pointer. + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + EVT ValTy = Op->getValueType(0); + int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false); + return DAG.getFrameIndex(FI, ValTy); +} + +SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op, + SelectionDAG &DAG) const { + if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat()) + return SDValue(); + + EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits()); + SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy, + Op.getOperand(0)); + return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc); +} + +//===----------------------------------------------------------------------===// +// Calling Convention Implementation +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// TODO: Implement a generic logic using tblgen that can support this. +// Mips O32 ABI rules: +// --- +// i32 - Passed in A0, A1, A2, A3 and stack +// f32 - Only passed in f32 registers if no int reg has been used yet to hold +// an argument. Otherwise, passed in A1, A2, A3 and stack. +// f64 - Only passed in two aliased f32 registers if no int reg has been used +// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is +// not used, it must be shadowed. If only A3 is available, shadow it and +// go to stack. +// vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack. +// vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3} +// with the remainder spilled to the stack. +// vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases +// spilling the remainder to the stack. +// +// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. +//===----------------------------------------------------------------------===// + +static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, + CCState &State, ArrayRef<MCPhysReg> F64Regs) { + const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>( + State.getMachineFunction().getSubtarget()); + + static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; + + const MipsCCState * MipsState = static_cast<MipsCCState *>(&State); + + static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 }; + + static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 }; + + // Do not process byval args here. + if (ArgFlags.isByVal()) + return true; + + // Promote i8 and i16 + if (ArgFlags.isInReg() && !Subtarget.isLittle()) { + if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) { + LocVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExtUpper; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExtUpper; + else + LocInfo = CCValAssign::AExtUpper; + } + } + + // Promote i8 and i16 + if (LocVT == MVT::i8 || LocVT == MVT::i16) { + LocVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExt; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExt; + else + LocInfo = CCValAssign::AExt; + } + + unsigned Reg; + + // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following + // is true: function is vararg, argument is 3rd or higher, there is previous + // argument which is not f32 or f64. + bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 || + State.getFirstUnallocated(F32Regs) != ValNo; + unsigned OrigAlign = ArgFlags.getOrigAlign(); + bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); + bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo); + + // The MIPS vector ABI for floats passes them in a pair of registers + if (ValVT == MVT::i32 && isVectorFloat) { + // This is the start of an vector that was scalarized into an unknown number + // of components. It doesn't matter how many there are. Allocate one of the + // notional 8 byte aligned registers which map onto the argument stack, and + // shadow the register lost to alignment requirements. + if (ArgFlags.isSplit()) { + Reg = State.AllocateReg(FloatVectorIntRegs); + if (Reg == Mips::A2) + State.AllocateReg(Mips::A1); + else if (Reg == 0) + State.AllocateReg(Mips::A3); + } else { + // If we're an intermediate component of the split, we can just attempt to + // allocate a register directly. + Reg = State.AllocateReg(IntRegs); + } + } else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { + Reg = State.AllocateReg(IntRegs); + // If this is the first part of an i64 arg, + // the allocated register must be either A0 or A2. + if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) + Reg = State.AllocateReg(IntRegs); + LocVT = MVT::i32; + } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { + // Allocate int register and shadow next int register. If first + // available register is Mips::A1 or Mips::A3, shadow it too. + Reg = State.AllocateReg(IntRegs); + if (Reg == Mips::A1 || Reg == Mips::A3) + Reg = State.AllocateReg(IntRegs); + State.AllocateReg(IntRegs); + LocVT = MVT::i32; + } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { + // we are guaranteed to find an available float register + if (ValVT == MVT::f32) { + Reg = State.AllocateReg(F32Regs); + // Shadow int register + State.AllocateReg(IntRegs); + } else { + Reg = State.AllocateReg(F64Regs); + // Shadow int registers + unsigned Reg2 = State.AllocateReg(IntRegs); + if (Reg2 == Mips::A1 || Reg2 == Mips::A3) + State.AllocateReg(IntRegs); + State.AllocateReg(IntRegs); + } + } else + llvm_unreachable("Cannot handle this ValVT."); + + if (!Reg) { + unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + } else + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + + return false; +} + +static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 }; + + return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); +} + +static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 }; + + return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); +} + +static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, + CCState &State) LLVM_ATTRIBUTE_UNUSED; + +#include "MipsGenCallingConv.inc" + + CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{ + return CC_Mips; + } + + CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{ + return RetCC_Mips; + } +//===----------------------------------------------------------------------===// +// Call Calling Convention Implementation +//===----------------------------------------------------------------------===// + +// Return next O32 integer argument register. +static unsigned getNextIntArgReg(unsigned Reg) { + assert((Reg == Mips::A0) || (Reg == Mips::A2)); + return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; +} + +SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset, + SDValue Chain, SDValue Arg, + const SDLoc &DL, bool IsTailCall, + SelectionDAG &DAG) const { + if (!IsTailCall) { + SDValue PtrOff = + DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, + DAG.getIntPtrConstant(Offset, DL)); + return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()); + } + + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false); + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), + /* Alignment = */ 0, MachineMemOperand::MOVolatile); +} + +void MipsTargetLowering:: +getOpndList(SmallVectorImpl<SDValue> &Ops, + std::deque<std::pair<unsigned, SDValue>> &RegsToPass, + bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, + bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, + SDValue Chain) const { + // Insert node "GP copy globalreg" before call to function. + // + // R_MIPS_CALL* operators (emitted when non-internal functions are called + // in PIC mode) allow symbols to be resolved via lazy binding. + // The lazy binding stub requires GP to point to the GOT. + // Note that we don't need GP to point to the GOT for indirect calls + // (when R_MIPS_CALL* is not used for the call) because Mips linker generates + // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs + // used for the function (that is, Mips linker doesn't generate lazy binding + // stub for a function whose address is taken in the program). + if (IsPICCall && !InternalLinkage && IsCallReloc) { + unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP; + EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; + RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty))); + } + + // Build a sequence of copy-to-reg nodes chained together with token + // chain and flag operands which copy the outgoing args into registers. + // The InFlag in necessary since all emitted instructions must be + // stuck together. + SDValue InFlag; + + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + // Add argument registers to the end of the list so that they are + // known live into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + const uint32_t *Mask = + TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + if (Subtarget.inMips16HardFloat()) { + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { + StringRef Sym = G->getGlobal()->getName(); + Function *F = G->getGlobal()->getParent()->getFunction(Sym); + if (F && F->hasFnAttribute("__Mips16RetHelper")) { + Mask = MipsRegisterInfo::getMips16RetHelperMask(); + } + } + } + Ops.push_back(CLI.DAG.getRegisterMask(Mask)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); +} + +void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, + SDNode *Node) const { + switch (MI.getOpcode()) { + default: + return; + case Mips::JALR: + case Mips::JALRPseudo: + case Mips::JALR64: + case Mips::JALR64Pseudo: + case Mips::JALR16_MM: + case Mips::JALRC16_MMR6: + case Mips::TAILCALLREG: + case Mips::TAILCALLREG64: + case Mips::TAILCALLR6REG: + case Mips::TAILCALL64R6REG: + case Mips::TAILCALLREG_MM: + case Mips::TAILCALLREG_MMR6: { + if (!EmitJalrReloc || + Subtarget.inMips16Mode() || + !isPositionIndependent() || + Node->getNumOperands() < 1 || + Node->getOperand(0).getNumOperands() < 2) { + return; + } + // We are after the callee address, set by LowerCall(). + // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the + // symbol. + const SDValue TargetAddr = Node->getOperand(0).getOperand(1); + StringRef Sym; + if (const GlobalAddressSDNode *G = + dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) { + Sym = G->getGlobal()->getName(); + } + else if (const ExternalSymbolSDNode *ES = + dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) { + Sym = ES->getSymbol(); + } + + if (Sym.empty()) + return; + + MachineFunction *MF = MI.getParent()->getParent(); + MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym); + MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR)); + } + } +} + +/// LowerCall - functions arguments are copied from virtual regs to +/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. +SDValue +MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc DL = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &IsTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool IsVarArg = CLI.IsVarArg; + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); + MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); + bool IsPIC = isPositionIndependent(); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + MipsCCState CCInfo( + CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), + MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget)); + + const ExternalSymbolSDNode *ES = + dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode()); + + // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which + // is during the lowering of a call with a byval argument which produces + // a call to memcpy. For the O32 case, this causes the caller to allocate + // stack space for the reserved argument area for the callee, then recursively + // again for the memcpy call. In the NEWABI case, this doesn't occur as those + // ABIs mandate that the callee allocates the reserved argument area. We do + // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though. + // + // If the callee has a byval argument and memcpy is used, we are mandated + // to already have produced a reserved argument area for the callee for O32. + // Therefore, the reserved argument area can be reused for both calls. + // + // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START + // present, as we have yet to hook that node onto the chain. + // + // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this + // case. GCC does a similar trick, in that wherever possible, it calculates + // the maximum out going argument area (including the reserved area), and + // preallocates the stack space on entrance to the caller. + // + // FIXME: We should do the same for efficiency and space. + + // Note: The check on the calling convention below must match + // MipsABIInfo::GetCalleeAllocdArgSizeInBytes(). + bool MemcpyInByVal = ES && + StringRef(ES->getSymbol()) == StringRef("memcpy") && + CallConv != CallingConv::Fast && + Chain.getOpcode() == ISD::CALLSEQ_START; + + // Allocate the reserved argument area. It seems strange to do this from the + // caller side but removing it breaks the frame size calculation. + unsigned ReservedArgArea = + MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv); + CCInfo.AllocateStack(ReservedArgArea, 1); + + CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), + ES ? ES->getSymbol() : nullptr); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NextStackOffset = CCInfo.getNextStackOffset(); + + // Check if it's really possible to do a tail call. Restrict it to functions + // that are part of this compilation unit. + bool InternalLinkage = false; + if (IsTailCall) { + IsTailCall = isEligibleForTailCallOptimization( + CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>()); + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + InternalLinkage = G->getGlobal()->hasInternalLinkage(); + IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() || + G->getGlobal()->hasPrivateLinkage() || + G->getGlobal()->hasHiddenVisibility() || + G->getGlobal()->hasProtectedVisibility()); + } + } + if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) + report_fatal_error("failed to perform tail call elimination on a call " + "site marked musttail"); + + if (IsTailCall) + ++NumTailCalls; + + // Chain is the output chain of the last Load/Store or CopyToReg node. + // ByValChain is the output chain of the last Memcpy node created for copying + // byval arguments to the stack. + unsigned StackAlignment = TFL->getStackAlignment(); + NextStackOffset = alignTo(NextStackOffset, StackAlignment); + SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true); + + if (!(IsTailCall || MemcpyInByVal)) + Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL); + + SDValue StackPtr = + DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, + getPointerTy(DAG.getDataLayout())); + + std::deque<std::pair<unsigned, SDValue>> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + + CCInfo.rewindByValRegsInfo(); + + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + SDValue Arg = OutVals[i]; + CCValAssign &VA = ArgLocs[i]; + MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); + ISD::ArgFlagsTy Flags = Outs[i].Flags; + bool UseUpperBits = false; + + // ByVal Arg. + if (Flags.isByVal()) { + unsigned FirstByValReg, LastByValReg; + unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); + CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); + + assert(Flags.getByValSize() && + "ByVal args of size 0 should have been ignored by front-end."); + assert(ByValIdx < CCInfo.getInRegsParamsCount()); + assert(!IsTailCall && + "Do not tail-call optimize if there is a byval argument."); + passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg, + FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(), + VA); + CCInfo.nextInRegsParam(); + continue; + } + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + if (VA.isRegLoc()) { + if ((ValVT == MVT::f32 && LocVT == MVT::i32) || + (ValVT == MVT::f64 && LocVT == MVT::i64) || + (ValVT == MVT::i64 && LocVT == MVT::f64)) + Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); + else if (ValVT == MVT::f64 && LocVT == MVT::i32) { + SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, + Arg, DAG.getConstant(0, DL, MVT::i32)); + SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, + Arg, DAG.getConstant(1, DL, MVT::i32)); + if (!Subtarget.isLittle()) + std::swap(Lo, Hi); + unsigned LocRegLo = VA.getLocReg(); + unsigned LocRegHigh = getNextIntArgReg(LocRegLo); + RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); + RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); + continue; + } + } + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); + break; + case CCValAssign::SExtUpper: + UseUpperBits = true; + LLVM_FALLTHROUGH; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg); + break; + case CCValAssign::ZExtUpper: + UseUpperBits = true; + LLVM_FALLTHROUGH; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg); + break; + case CCValAssign::AExtUpper: + UseUpperBits = true; + LLVM_FALLTHROUGH; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg); + break; + } + + if (UseUpperBits) { + unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); + unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); + Arg = DAG.getNode( + ISD::SHL, DL, VA.getLocVT(), Arg, + DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); + } + + // Arguments that can be passed on register must be kept at + // RegsToPass vector + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + continue; + } + + // Register can't get to this point... + assert(VA.isMemLoc()); + + // emit ISD::STORE whichs stores the + // parameter value to a stack Location + MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(), + Chain, Arg, DL, IsTailCall, DAG)); + } + + // Transform all store nodes into one single node because all store + // nodes are independent of each other. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); + + // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every + // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol + // node so that legalize doesn't hack it. + + EVT Ty = Callee.getValueType(); + bool GlobalOrExternal = false, IsCallReloc = false; + + // The long-calls feature is ignored in case of PIC. + // While we do not support -mshared / -mno-shared properly, + // ignore long-calls in case of -mabicalls too. + if (!Subtarget.isABICalls() && !IsPIC) { + // If the function should be called using "long call", + // get its address into a register to prevent using + // of the `jal` instruction for the direct call. + if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) { + if (Subtarget.useLongCalls()) + Callee = Subtarget.hasSym32() + ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) + : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); + } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) { + bool UseLongCalls = Subtarget.useLongCalls(); + // If the function has long-call/far/near attribute + // it overrides command line switch pased to the backend. + if (auto *F = dyn_cast<Function>(N->getGlobal())) { + if (F->hasFnAttribute("long-call")) + UseLongCalls = true; + else if (F->hasFnAttribute("short-call")) + UseLongCalls = false; + } + if (UseLongCalls) + Callee = Subtarget.hasSym32() + ? getAddrNonPIC(N, SDLoc(N), Ty, DAG) + : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG); + } + } + + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + if (IsPIC) { + const GlobalValue *Val = G->getGlobal(); + InternalLinkage = Val->hasInternalLinkage(); + + if (InternalLinkage) + Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64()); + else if (LargeGOT) { + Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16, + MipsII::MO_CALL_LO16, Chain, + FuncInfo->callPtrInfo(Val)); + IsCallReloc = true; + } else { + Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, + FuncInfo->callPtrInfo(Val)); + IsCallReloc = true; + } + } else + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, + getPointerTy(DAG.getDataLayout()), 0, + MipsII::MO_NO_FLAG); + GlobalOrExternal = true; + } + else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + const char *Sym = S->getSymbol(); + + if (!IsPIC) // static + Callee = DAG.getTargetExternalSymbol( + Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG); + else if (LargeGOT) { + Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16, + MipsII::MO_CALL_LO16, Chain, + FuncInfo->callPtrInfo(Sym)); + IsCallReloc = true; + } else { // PIC + Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, + FuncInfo->callPtrInfo(Sym)); + IsCallReloc = true; + } + + GlobalOrExternal = true; + } + + SmallVector<SDValue, 8> Ops(1, Chain); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage, + IsCallReloc, CLI, Callee, Chain); + + if (IsTailCall) { + MF.getFrameInfo().setHasTailCall(); + return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops); + } + + Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops); + SDValue InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node in the case of where it is not a call to + // memcpy. + if (!(MemcpyInByVal)) { + Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal, + DAG.getIntPtrConstant(0, DL, true), InFlag, DL); + InFlag = Chain.getValue(1); + } + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, + InVals, CLI); +} + +/// LowerCallResult - Lower the result values of a call into the +/// appropriate copies out of appropriate physical registers. +SDValue MipsTargetLowering::LowerCallResult( + SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, + TargetLowering::CallLoweringInfo &CLI) const { + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + const ExternalSymbolSDNode *ES = + dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode()); + CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy, + ES ? ES->getSymbol() : nullptr); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(), + RVLocs[i].getLocVT(), InFlag); + Chain = Val.getValue(1); + InFlag = Val.getValue(2); + + if (VA.isUpperBitsInLoc()) { + unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits(); + unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); + unsigned Shift = + VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; + Val = DAG.getNode( + Shift, DL, VA.getLocVT(), Val, + DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); + } + + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); + break; + case CCValAssign::AExt: + case CCValAssign::AExtUpper: + Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); + break; + case CCValAssign::ZExt: + case CCValAssign::ZExtUpper: + Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, + DAG.getValueType(VA.getValVT())); + Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); + break; + case CCValAssign::SExt: + case CCValAssign::SExtUpper: + Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, + DAG.getValueType(VA.getValVT())); + Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); + break; + } + + InVals.push_back(Val); + } + + return Chain; +} + +static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA, + EVT ArgVT, const SDLoc &DL, + SelectionDAG &DAG) { + MVT LocVT = VA.getLocVT(); + EVT ValVT = VA.getValVT(); + + // Shift into the upper bits if necessary. + switch (VA.getLocInfo()) { + default: + break; + case CCValAssign::AExtUpper: + case CCValAssign::SExtUpper: + case CCValAssign::ZExtUpper: { + unsigned ValSizeInBits = ArgVT.getSizeInBits(); + unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); + unsigned Opcode = + VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; + Val = DAG.getNode( + Opcode, DL, VA.getLocVT(), Val, + DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); + break; + } + } + + // If this is an value smaller than the argument slot size (32-bit for O32, + // 64-bit for N32/N64), it has been promoted in some way to the argument slot + // size. Extract the value and insert any appropriate assertions regarding + // sign/zero extension. + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::AExtUpper: + case CCValAssign::AExt: + Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); + break; + case CCValAssign::SExtUpper: + case CCValAssign::SExt: + Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT)); + Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); + break; + case CCValAssign::ZExtUpper: + case CCValAssign::ZExt: + Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT)); + Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); + break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); + break; + } + + return Val; +} + +//===----------------------------------------------------------------------===// +// Formal Arguments Calling Convention Implementation +//===----------------------------------------------------------------------===// +/// LowerFormalArguments - transform physical registers into virtual registers +/// and generate load operations for arguments places on the stack. +SDValue MipsTargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + MipsFI->setVarArgsFrameIndex(0); + + // Used with vargs to acumulate store chains. + std::vector<SDValue> OutChains; + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); + const Function &Func = DAG.getMachineFunction().getFunction(); + Function::const_arg_iterator FuncArg = Func.arg_begin(); + + if (Func.hasFnAttribute("interrupt") && !Func.arg_empty()) + report_fatal_error( + "Functions with the interrupt attribute cannot have arguments!"); + + CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg); + MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(), + CCInfo.getInRegsParamsCount() > 0); + + unsigned CurArgIdx = 0; + CCInfo.rewindByValRegsInfo(); + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (Ins[i].isOrigArg()) { + std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx); + CurArgIdx = Ins[i].getOrigArgIndex(); + } + EVT ValVT = VA.getValVT(); + ISD::ArgFlagsTy Flags = Ins[i].Flags; + bool IsRegLoc = VA.isRegLoc(); + + if (Flags.isByVal()) { + assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit"); + unsigned FirstByValReg, LastByValReg; + unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); + CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); + + assert(Flags.getByValSize() && + "ByVal args of size 0 should have been ignored by front-end."); + assert(ByValIdx < CCInfo.getInRegsParamsCount()); + copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg, + FirstByValReg, LastByValReg, VA, CCInfo); + CCInfo.nextInRegsParam(); + continue; + } + + // Arguments stored on registers + if (IsRegLoc) { + MVT RegVT = VA.getLocVT(); + unsigned ArgReg = VA.getLocReg(); + const TargetRegisterClass *RC = getRegClassFor(RegVT); + + // Transform the arguments stored on + // physical registers into virtual ones + unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC); + SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); + + ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); + + // Handle floating point arguments passed in integer registers and + // long double arguments passed in floating point registers. + if ((RegVT == MVT::i32 && ValVT == MVT::f32) || + (RegVT == MVT::i64 && ValVT == MVT::f64) || + (RegVT == MVT::f64 && ValVT == MVT::i64)) + ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue); + else if (ABI.IsO32() && RegVT == MVT::i32 && + ValVT == MVT::f64) { + unsigned Reg2 = addLiveIn(DAG.getMachineFunction(), + getNextIntArgReg(ArgReg), RC); + SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT); + if (!Subtarget.isLittle()) + std::swap(ArgValue, ArgValue2); + ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, + ArgValue, ArgValue2); + } + + InVals.push_back(ArgValue); + } else { // VA.isRegLoc() + MVT LocVT = VA.getLocVT(); + + if (ABI.IsO32()) { + // We ought to be able to use LocVT directly but O32 sets it to i32 + // when allocating floating point values to integer registers. + // This shouldn't influence how we load the value into registers unless + // we are targeting softfloat. + if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat()) + LocVT = VA.getValVT(); + } + + // sanity check + assert(VA.isMemLoc()); + + // The stack pointer offset is relative to the caller stack frame. + int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, + VA.getLocMemOffset(), true); + + // Create load nodes to retrieve arguments from the stack + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue ArgValue = DAG.getLoad( + LocVT, DL, Chain, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); + OutChains.push_back(ArgValue.getValue(1)); + + ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); + + InVals.push_back(ArgValue); + } + } + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + // The mips ABIs for returning structs by value requires that we copy + // the sret argument into $v0 for the return. Save the argument into + // a virtual register so that we can access it from the return points. + if (Ins[i].Flags.isSRet()) { + unsigned Reg = MipsFI->getSRetReturnReg(); + if (!Reg) { + Reg = MF.getRegInfo().createVirtualRegister( + getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32)); + MipsFI->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); + break; + } + } + + if (IsVarArg) + writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo); + + // All stores are grouped in one node to allow the matching between + // the size of Ins and InVals. This only happens when on varg functions + if (!OutChains.empty()) { + OutChains.push_back(Chain); + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); + } + + return Chain; +} + +//===----------------------------------------------------------------------===// +// Return Value Calling Convention Implementation +//===----------------------------------------------------------------------===// + +bool +MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv, + MachineFunction &MF, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + LLVMContext &Context) const { + SmallVector<CCValAssign, 16> RVLocs; + MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); + return CCInfo.CheckReturn(Outs, RetCC_Mips); +} + +bool +MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { + if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32) + return true; + + return IsSigned; +} + +SDValue +MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, + const SDLoc &DL, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + MipsFI->setISR(); + + return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps); +} + +SDValue +MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, + bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SDLoc &DL, SelectionDAG &DAG) const { + // CCValAssign - represent the assignment of + // the return value to a location + SmallVector<CCValAssign, 16> RVLocs; + MachineFunction &MF = DAG.getMachineFunction(); + + // CCState - Info about the registers and stack slot. + MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); + + // Analyze return values. + CCInfo.AnalyzeReturn(Outs, RetCC_Mips); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + SDValue Val = OutVals[i]; + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + bool UseUpperBits = false; + + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val); + break; + case CCValAssign::AExtUpper: + UseUpperBits = true; + LLVM_FALLTHROUGH; + case CCValAssign::AExt: + Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val); + break; + case CCValAssign::ZExtUpper: + UseUpperBits = true; + LLVM_FALLTHROUGH; + case CCValAssign::ZExt: + Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val); + break; + case CCValAssign::SExtUpper: + UseUpperBits = true; + LLVM_FALLTHROUGH; + case CCValAssign::SExt: + Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val); + break; + } + + if (UseUpperBits) { + unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); + unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); + Val = DAG.getNode( + ISD::SHL, DL, VA.getLocVT(), Val, + DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); + } + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag); + + // Guarantee that all emitted copies are stuck together with flags. + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + // The mips ABIs for returning structs by value requires that we copy + // the sret argument into $v0 for the return. We saved the argument into + // a virtual register in the entry block, so now we copy the value out + // and into $v0. + if (MF.getFunction().hasStructRetAttr()) { + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + unsigned Reg = MipsFI->getSRetReturnReg(); + + if (!Reg) + llvm_unreachable("sret virtual register not created in the entry block"); + SDValue Val = + DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); + unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0; + + Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout()))); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + // ISRs must use "eret". + if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt")) + return LowerInterruptReturn(RetOps, DL, DAG); + + // Standard return on Mips is a "jr $ra" + return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps); +} + +//===----------------------------------------------------------------------===// +// Mips Inline Assembly Support +//===----------------------------------------------------------------------===// + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +MipsTargetLowering::ConstraintType +MipsTargetLowering::getConstraintType(StringRef Constraint) const { + // Mips specific constraints + // GCC config/mips/constraints.md + // + // 'd' : An address register. Equivalent to r + // unless generating MIPS16 code. + // 'y' : Equivalent to r; retained for + // backwards compatibility. + // 'c' : A register suitable for use in an indirect + // jump. This will always be $25 for -mabicalls. + // 'l' : The lo register. 1 word storage. + // 'x' : The hilo register pair. Double word storage. + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default : break; + case 'd': + case 'y': + case 'f': + case 'c': + case 'l': + case 'x': + return C_RegisterClass; + case 'R': + return C_Memory; + } + } + + if (Constraint == "ZC") + return C_Memory; + + return TargetLowering::getConstraintType(Constraint); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight +MipsTargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (!CallOperandVal) + return CW_Default; + Type *type = CallOperandVal->getType(); + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + break; + case 'd': + case 'y': + if (type->isIntegerTy()) + weight = CW_Register; + break; + case 'f': // FPU or MSA register + if (Subtarget.hasMSA() && type->isVectorTy() && + cast<VectorType>(type)->getBitWidth() == 128) + weight = CW_Register; + else if (type->isFloatTy()) + weight = CW_Register; + break; + case 'c': // $25 for indirect jumps + case 'l': // lo register + case 'x': // hilo register pair + if (type->isIntegerTy()) + weight = CW_SpecificReg; + break; + case 'I': // signed 16 bit immediate + case 'J': // integer zero + case 'K': // unsigned 16 bit immediate + case 'L': // signed 32 bit immediate where lower 16 bits are 0 + case 'N': // immediate in the range of -65535 to -1 (inclusive) + case 'O': // signed 15 bit immediate (+- 16383) + case 'P': // immediate in the range of 65535 to 1 (inclusive) + if (isa<ConstantInt>(CallOperandVal)) + weight = CW_Constant; + break; + case 'R': + weight = CW_Memory; + break; + } + return weight; +} + +/// This is a helper function to parse a physical register string and split it +/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag +/// that is returned indicates whether parsing was successful. The second flag +/// is true if the numeric part exists. +static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix, + unsigned long long &Reg) { + if (C.front() != '{' || C.back() != '}') + return std::make_pair(false, false); + + // Search for the first numeric character. + StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1; + I = std::find_if(B, E, isdigit); + + Prefix = StringRef(B, I - B); + + // The second flag is set to false if no numeric characters were found. + if (I == E) + return std::make_pair(true, false); + + // Parse the numeric characters. + return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg), + true); +} + +EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, + ISD::NodeType) const { + bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32; + EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32); + return VT.bitsLT(MinVT) ? MinVT : VT; +} + +std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering:: +parseRegForInlineAsmConstraint(StringRef C, MVT VT) const { + const TargetRegisterInfo *TRI = + Subtarget.getRegisterInfo(); + const TargetRegisterClass *RC; + StringRef Prefix; + unsigned long long Reg; + + std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg); + + if (!R.first) + return std::make_pair(0U, nullptr); + + if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo. + // No numeric characters follow "hi" or "lo". + if (R.second) + return std::make_pair(0U, nullptr); + + RC = TRI->getRegClass(Prefix == "hi" ? + Mips::HI32RegClassID : Mips::LO32RegClassID); + return std::make_pair(*(RC->begin()), RC); + } else if (Prefix.startswith("$msa")) { + // Parse $msa(ir|csr|access|save|modify|request|map|unmap) + + // No numeric characters follow the name. + if (R.second) + return std::make_pair(0U, nullptr); + + Reg = StringSwitch<unsigned long long>(Prefix) + .Case("$msair", Mips::MSAIR) + .Case("$msacsr", Mips::MSACSR) + .Case("$msaaccess", Mips::MSAAccess) + .Case("$msasave", Mips::MSASave) + .Case("$msamodify", Mips::MSAModify) + .Case("$msarequest", Mips::MSARequest) + .Case("$msamap", Mips::MSAMap) + .Case("$msaunmap", Mips::MSAUnmap) + .Default(0); + + if (!Reg) + return std::make_pair(0U, nullptr); + + RC = TRI->getRegClass(Mips::MSACtrlRegClassID); + return std::make_pair(Reg, RC); + } + + if (!R.second) + return std::make_pair(0U, nullptr); + + if (Prefix == "$f") { // Parse $f0-$f31. + // If the size of FP registers is 64-bit or Reg is an even number, select + // the 64-bit register class. Otherwise, select the 32-bit register class. + if (VT == MVT::Other) + VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32; + + RC = getRegClassFor(VT); + + if (RC == &Mips::AFGR64RegClass) { + assert(Reg % 2 == 0); + Reg >>= 1; + } + } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7. + RC = TRI->getRegClass(Mips::FCCRegClassID); + else if (Prefix == "$w") { // Parse $w0-$w31. + RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT); + } else { // Parse $0-$31. + assert(Prefix == "$"); + RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT); + } + + assert(Reg < RC->getNumRegs()); + return std::make_pair(*(RC->begin() + Reg), RC); +} + +/// Given a register class constraint, like 'r', if this corresponds directly +/// to an LLVM register class, return a register of 0 and the register class +/// pointer. +std::pair<unsigned, const TargetRegisterClass *> +MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, + MVT VT) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'd': // Address register. Same as 'r' unless generating MIPS16 code. + case 'y': // Same as 'r'. Exists for compatibility. + case 'r': + if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { + if (Subtarget.inMips16Mode()) + return std::make_pair(0U, &Mips::CPU16RegsRegClass); + return std::make_pair(0U, &Mips::GPR32RegClass); + } + if (VT == MVT::i64 && !Subtarget.isGP64bit()) + return std::make_pair(0U, &Mips::GPR32RegClass); + if (VT == MVT::i64 && Subtarget.isGP64bit()) + return std::make_pair(0U, &Mips::GPR64RegClass); + // This will generate an error message + return std::make_pair(0U, nullptr); + case 'f': // FPU or MSA register + if (VT == MVT::v16i8) + return std::make_pair(0U, &Mips::MSA128BRegClass); + else if (VT == MVT::v8i16 || VT == MVT::v8f16) + return std::make_pair(0U, &Mips::MSA128HRegClass); + else if (VT == MVT::v4i32 || VT == MVT::v4f32) + return std::make_pair(0U, &Mips::MSA128WRegClass); + else if (VT == MVT::v2i64 || VT == MVT::v2f64) + return std::make_pair(0U, &Mips::MSA128DRegClass); + else if (VT == MVT::f32) + return std::make_pair(0U, &Mips::FGR32RegClass); + else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) { + if (Subtarget.isFP64bit()) + return std::make_pair(0U, &Mips::FGR64RegClass); + return std::make_pair(0U, &Mips::AFGR64RegClass); + } + break; + case 'c': // register suitable for indirect jump + if (VT == MVT::i32) + return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass); + if (VT == MVT::i64) + return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass); + // This will generate an error message + return std::make_pair(0U, nullptr); + case 'l': // use the `lo` register to store values + // that are no bigger than a word + if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) + return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass); + return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass); + case 'x': // use the concatenated `hi` and `lo` registers + // to store doubleword values + // Fixme: Not triggering the use of both hi and low + // This will generate an error message + return std::make_pair(0U, nullptr); + } + } + + std::pair<unsigned, const TargetRegisterClass *> R; + R = parseRegForInlineAsmConstraint(Constraint, VT); + + if (R.second) + return R; + + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); +} + +/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +/// vector. If it is invalid, don't add anything to Ops. +void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue>&Ops, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue Result; + + // Only support length 1 constraints for now. + if (Constraint.length() > 1) return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: break; // This will fall through to the generic implementation + case 'I': // Signed 16 bit constant + // If this fails, the parent routine will give an error + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if (isInt<16>(Val)) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'J': // integer zero + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getZExtValue(); + if (Val == 0) { + Result = DAG.getTargetConstant(0, DL, Type); + break; + } + } + return; + case 'K': // unsigned 16 bit immediate + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + uint64_t Val = (uint64_t)C->getZExtValue(); + if (isUInt<16>(Val)) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'L': // signed 32 bit immediate where lower 16 bits are 0 + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){ + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'N': // immediate in the range of -65535 to -1 (inclusive) + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if ((Val >= -65535) && (Val <= -1)) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'O': // signed 15 bit immediate + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if ((isInt<15>(Val))) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + case 'P': // immediate in the range of 1 to 65535 (inclusive) + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + EVT Type = Op.getValueType(); + int64_t Val = C->getSExtValue(); + if ((Val <= 65535) && (Val >= 1)) { + Result = DAG.getTargetConstant(Val, DL, Type); + break; + } + } + return; + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + + TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS, Instruction *I) const { + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + switch (AM.Scale) { + case 0: // "r+i" or just "i", depending on HasBaseReg. + break; + case 1: + if (!AM.HasBaseReg) // allow "r+i". + break; + return false; // disallow "r+r" or "r+r+i". + default: + return false; + } + + return true; +} + +bool +MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + // The Mips target isn't yet aware of offsets. + return false; +} + +EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, + unsigned SrcAlign, + bool IsMemset, bool ZeroMemset, + bool MemcpyStrSrc, + MachineFunction &MF) const { + if (Subtarget.hasMips64()) + return MVT::i64; + + return MVT::i32; +} + +bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + if (VT != MVT::f32 && VT != MVT::f64) + return false; + if (Imm.isNegZero()) + return false; + return Imm.isZero(); +} + +unsigned MipsTargetLowering::getJumpTableEncoding() const { + + // FIXME: For space reasons this should be: EK_GPRel32BlockAddress. + if (ABI.IsN64() && isPositionIndependent()) + return MachineJumpTableInfo::EK_GPRel64BlockAddress; + + return TargetLowering::getJumpTableEncoding(); +} + +bool MipsTargetLowering::useSoftFloat() const { + return Subtarget.useSoftFloat(); +} + +void MipsTargetLowering::copyByValRegs( + SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains, + SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags, + SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg, + unsigned FirstReg, unsigned LastReg, const CCValAssign &VA, + MipsCCState &State) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes(); + unsigned NumRegs = LastReg - FirstReg; + unsigned RegAreaSize = NumRegs * GPRSizeInBytes; + unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize); + int FrameObjOffset; + ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs(); + + if (RegAreaSize) + FrameObjOffset = + (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - + (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes); + else + FrameObjOffset = VA.getLocMemOffset(); + + // Create frame object. + EVT PtrTy = getPointerTy(DAG.getDataLayout()); + // Make the fixed object stored to mutable so that the load instructions + // referencing it have their memory dependencies added. + // Set the frame object as isAliased which clears the underlying objects + // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all + // stores as dependencies for loads referencing this fixed object. + int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true); + SDValue FIN = DAG.getFrameIndex(FI, PtrTy); + InVals.push_back(FIN); + + if (!NumRegs) + return; + + // Copy arg registers. + MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8); + const TargetRegisterClass *RC = getRegClassFor(RegTy); + + for (unsigned I = 0; I < NumRegs; ++I) { + unsigned ArgReg = ByValArgRegs[FirstReg + I]; + unsigned VReg = addLiveIn(MF, ArgReg, RC); + unsigned Offset = I * GPRSizeInBytes; + SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN, + DAG.getConstant(Offset, DL, PtrTy)); + SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy), + StorePtr, MachinePointerInfo(FuncArg, Offset)); + OutChains.push_back(Store); + } +} + +// Copy byVal arg to registers and stack. +void MipsTargetLowering::passByValArg( + SDValue Chain, const SDLoc &DL, + std::deque<std::pair<unsigned, SDValue>> &RegsToPass, + SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr, + MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg, + unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle, + const CCValAssign &VA) const { + unsigned ByValSizeInBytes = Flags.getByValSize(); + unsigned OffsetInBytes = 0; // From beginning of struct + unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); + unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes); + EVT PtrTy = getPointerTy(DAG.getDataLayout()), + RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); + unsigned NumRegs = LastReg - FirstReg; + + if (NumRegs) { + ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs(); + bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes); + unsigned I = 0; + + // Copy words to registers. + for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) { + SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, + DAG.getConstant(OffsetInBytes, DL, PtrTy)); + SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr, + MachinePointerInfo(), Alignment); + MemOpChains.push_back(LoadVal.getValue(1)); + unsigned ArgReg = ArgRegs[FirstReg + I]; + RegsToPass.push_back(std::make_pair(ArgReg, LoadVal)); + } + + // Return if the struct has been fully copied. + if (ByValSizeInBytes == OffsetInBytes) + return; + + // Copy the remainder of the byval argument with sub-word loads and shifts. + if (LeftoverBytes) { + SDValue Val; + + for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0; + OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) { + unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes; + + if (RemainingSizeInBytes < LoadSizeInBytes) + continue; + + // Load subword. + SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, + DAG.getConstant(OffsetInBytes, DL, + PtrTy)); + SDValue LoadVal = DAG.getExtLoad( + ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(), + MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment); + MemOpChains.push_back(LoadVal.getValue(1)); + + // Shift the loaded value. + unsigned Shamt; + + if (isLittle) + Shamt = TotalBytesLoaded * 8; + else + Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8; + + SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal, + DAG.getConstant(Shamt, DL, MVT::i32)); + + if (Val.getNode()) + Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift); + else + Val = Shift; + + OffsetInBytes += LoadSizeInBytes; + TotalBytesLoaded += LoadSizeInBytes; + Alignment = std::min(Alignment, LoadSizeInBytes); + } + + unsigned ArgReg = ArgRegs[FirstReg + I]; + RegsToPass.push_back(std::make_pair(ArgReg, Val)); + return; + } + } + + // Copy remainder of byval arg to it with memcpy. + unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes; + SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, + DAG.getConstant(OffsetInBytes, DL, PtrTy)); + SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr, + DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); + Chain = DAG.getMemcpy(Chain, DL, Dst, Src, + DAG.getConstant(MemCpySize, DL, PtrTy), + Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false, + /*isTailCall=*/false, + MachinePointerInfo(), MachinePointerInfo()); + MemOpChains.push_back(Chain); +} + +void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains, + SDValue Chain, const SDLoc &DL, + SelectionDAG &DAG, + CCState &State) const { + ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs(); + unsigned Idx = State.getFirstUnallocated(ArgRegs); + unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); + MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); + const TargetRegisterClass *RC = getRegClassFor(RegTy); + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + // Offset of the first variable argument from stack pointer. + int VaArgOffset; + + if (ArgRegs.size() == Idx) + VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes); + else { + VaArgOffset = + (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - + (int)(RegSizeInBytes * (ArgRegs.size() - Idx)); + } + + // Record the frame index of the first variable argument + // which is a value necessary to VASTART. + int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); + MipsFI->setVarArgsFrameIndex(FI); + + // Copy the integer registers that have not been used for argument passing + // to the argument register save area. For O32, the save area is allocated + // in the caller's stack frame, while for N32/64, it is allocated in the + // callee's stack frame. + for (unsigned I = Idx; I < ArgRegs.size(); + ++I, VaArgOffset += RegSizeInBytes) { + unsigned Reg = addLiveIn(MF, ArgRegs[I], RC); + SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy); + FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true); + SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue Store = + DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo()); + cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue( + (Value *)nullptr); + OutChains.push_back(Store); + } +} + +void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size, + unsigned Align) const { + const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); + + assert(Size && "Byval argument's size shouldn't be 0."); + + Align = std::min(Align, TFL->getStackAlignment()); + + unsigned FirstReg = 0; + unsigned NumRegs = 0; + + if (State->getCallingConv() != CallingConv::Fast) { + unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); + ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs(); + // FIXME: The O32 case actually describes no shadow registers. + const MCPhysReg *ShadowRegs = + ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs; + + // We used to check the size as well but we can't do that anymore since + // CCState::HandleByVal() rounds up the size after calling this function. + assert(!(Align % RegSizeInBytes) && + "Byval argument's alignment should be a multiple of" + "RegSizeInBytes."); + + FirstReg = State->getFirstUnallocated(IntArgRegs); + + // If Align > RegSizeInBytes, the first arg register must be even. + // FIXME: This condition happens to do the right thing but it's not the + // right way to test it. We want to check that the stack frame offset + // of the register is aligned. + if ((Align > RegSizeInBytes) && (FirstReg % 2)) { + State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]); + ++FirstReg; + } + + // Mark the registers allocated. + Size = alignTo(Size, RegSizeInBytes); + for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size()); + Size -= RegSizeInBytes, ++I, ++NumRegs) + State->AllocateReg(IntArgRegs[I], ShadowRegs[I]); + } + + State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs); +} + +MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI, + MachineBasicBlock *BB, + bool isFPCmp, + unsigned Opc) const { + assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && + "Subtarget already supports SELECT nodes with the use of" + "conditional-move instructions."); + + const TargetInstrInfo *TII = + Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + // To "insert" a SELECT instruction, we actually have to insert the + // diamond control-flow pattern. The incoming instruction knows the + // destination vreg to set, the condition code register to branch on, the + // true/false values to select between, and a branch opcode to use. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = ++BB->getIterator(); + + // thisMBB: + // ... + // TrueVal = ... + // setcc r1, r2, r3 + // bNE r1, r0, copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Next, add the true and fallthrough blocks as its successors. + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + if (isFPCmp) { + // bc1[tf] cc, sinkMBB + BuildMI(BB, DL, TII->get(Opc)) + .addReg(MI.getOperand(1).getReg()) + .addMBB(sinkMBB); + } else { + // bne rs, $0, sinkMBB + BuildMI(BB, DL, TII->get(Opc)) + .addReg(MI.getOperand(1).getReg()) + .addReg(Mips::ZERO) + .addMBB(sinkMBB); + } + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + BB = copy0MBB; + + // Update machine-CFG edges + BB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] + // ... + BB = sinkMBB; + + BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) + .addReg(MI.getOperand(2).getReg()) + .addMBB(thisMBB) + .addReg(MI.getOperand(3).getReg()) + .addMBB(copy0MBB); + + MI.eraseFromParent(); // The pseudo instruction is gone now. + + return BB; +} + +MachineBasicBlock *MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI, + MachineBasicBlock *BB) const { + assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && + "Subtarget already supports SELECT nodes with the use of" + "conditional-move instructions."); + + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + // D_SELECT substitutes two SELECT nodes that goes one after another and + // have the same condition operand. On machines which don't have + // conditional-move instruction, it reduces unnecessary branch instructions + // which are result of using two diamond patterns that are result of two + // SELECT pseudo instructions. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = ++BB->getIterator(); + + // thisMBB: + // ... + // TrueVal = ... + // setcc r1, r2, r3 + // bNE r1, r0, copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Next, add the true and fallthrough blocks as its successors. + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + // bne rs, $0, sinkMBB + BuildMI(BB, DL, TII->get(Mips::BNE)) + .addReg(MI.getOperand(2).getReg()) + .addReg(Mips::ZERO) + .addMBB(sinkMBB); + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + BB = copy0MBB; + + // Update machine-CFG edges + BB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] + // ... + BB = sinkMBB; + + // Use two PHI nodes to select two reults + BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) + .addReg(MI.getOperand(3).getReg()) + .addMBB(thisMBB) + .addReg(MI.getOperand(5).getReg()) + .addMBB(copy0MBB); + BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg()) + .addReg(MI.getOperand(4).getReg()) + .addMBB(thisMBB) + .addReg(MI.getOperand(6).getReg()) + .addMBB(copy0MBB); + + MI.eraseFromParent(); // The pseudo instruction is gone now. + + return BB; +} + +// FIXME? Maybe this could be a TableGen attribute on some registers and +// this table could be generated automatically from RegInfo. +unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT, + SelectionDAG &DAG) const { + // Named registers is expected to be fairly rare. For now, just support $28 + // since the linux kernel uses it. + if (Subtarget.isGP64bit()) { + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("$28", Mips::GP_64) + .Default(0); + if (Reg) + return Reg; + } else { + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("$28", Mips::GP) + .Default(0); + if (Reg) + return Reg; + } + report_fatal_error("Invalid register name global variable"); +} |
