summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp4507
1 files changed, 4507 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
new file mode 100644
index 000000000000..0f9c075ba0cc
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
@@ -0,0 +1,4507 @@
+//===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that Mips uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MipsISelLowering.h"
+#include "InstPrinter/MipsInstPrinter.h"
+#include "MCTargetDesc/MipsBaseInfo.h"
+#include "MCTargetDesc/MipsMCTargetDesc.h"
+#include "MipsCCState.h"
+#include "MipsInstrInfo.h"
+#include "MipsMachineFunction.h"
+#include "MipsRegisterInfo.h"
+#include "MipsSubtarget.h"
+#include "MipsTargetMachine.h"
+#include "MipsTargetObjectFile.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RuntimeLibcalls.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm>
+#include <cassert>
+#include <cctype>
+#include <cstdint>
+#include <deque>
+#include <iterator>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-lower"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+
+static cl::opt<bool>
+LargeGOT("mxgot", cl::Hidden,
+ cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
+
+static cl::opt<bool>
+NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
+ cl::desc("MIPS: Don't trap on integer division by zero."),
+ cl::init(false));
+
+extern cl::opt<bool> EmitJalrReloc;
+
+static const MCPhysReg Mips64DPRegs[8] = {
+ Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
+ Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
+};
+
+// If I is a shifted mask, set the size (Size) and the first bit of the
+// mask (Pos), and return true.
+// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
+static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
+ if (!isShiftedMask_64(I))
+ return false;
+
+ Size = countPopulation(I);
+ Pos = countTrailingZeros(I);
+ return true;
+}
+
+// The MIPS MSA ABI passes vector arguments in the integer register set.
+// The number of integer registers used is dependant on the ABI used.
+MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
+ CallingConv::ID CC,
+ EVT VT) const {
+ if (VT.isVector()) {
+ if (Subtarget.isABI_O32()) {
+ return MVT::i32;
+ } else {
+ return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64;
+ }
+ }
+ return MipsTargetLowering::getRegisterType(Context, VT);
+}
+
+unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
+ CallingConv::ID CC,
+ EVT VT) const {
+ if (VT.isVector())
+ return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)),
+ 1U);
+ return MipsTargetLowering::getNumRegisters(Context, VT);
+}
+
+unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
+ LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
+ unsigned &NumIntermediates, MVT &RegisterVT) const {
+ // Break down vector types to either 2 i64s or 4 i32s.
+ RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
+ IntermediateVT = RegisterVT;
+ NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
+ ? VT.getVectorNumElements()
+ : VT.getSizeInBits() / RegisterVT.getSizeInBits();
+
+ return NumIntermediates;
+}
+
+SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
+ MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
+ return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
+}
+
+SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
+}
+
+SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
+}
+
+SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
+}
+
+SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
+}
+
+SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
+ SelectionDAG &DAG,
+ unsigned Flag) const {
+ return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
+ N->getOffset(), Flag);
+}
+
+const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch ((MipsISD::NodeType)Opcode) {
+ case MipsISD::FIRST_NUMBER: break;
+ case MipsISD::JmpLink: return "MipsISD::JmpLink";
+ case MipsISD::TailCall: return "MipsISD::TailCall";
+ case MipsISD::Highest: return "MipsISD::Highest";
+ case MipsISD::Higher: return "MipsISD::Higher";
+ case MipsISD::Hi: return "MipsISD::Hi";
+ case MipsISD::Lo: return "MipsISD::Lo";
+ case MipsISD::GotHi: return "MipsISD::GotHi";
+ case MipsISD::TlsHi: return "MipsISD::TlsHi";
+ case MipsISD::GPRel: return "MipsISD::GPRel";
+ case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
+ case MipsISD::Ret: return "MipsISD::Ret";
+ case MipsISD::ERet: return "MipsISD::ERet";
+ case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
+ case MipsISD::FMS: return "MipsISD::FMS";
+ case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
+ case MipsISD::FPCmp: return "MipsISD::FPCmp";
+ case MipsISD::FSELECT: return "MipsISD::FSELECT";
+ case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64";
+ case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
+ case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
+ case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
+ case MipsISD::MFHI: return "MipsISD::MFHI";
+ case MipsISD::MFLO: return "MipsISD::MFLO";
+ case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
+ case MipsISD::Mult: return "MipsISD::Mult";
+ case MipsISD::Multu: return "MipsISD::Multu";
+ case MipsISD::MAdd: return "MipsISD::MAdd";
+ case MipsISD::MAddu: return "MipsISD::MAddu";
+ case MipsISD::MSub: return "MipsISD::MSub";
+ case MipsISD::MSubu: return "MipsISD::MSubu";
+ case MipsISD::DivRem: return "MipsISD::DivRem";
+ case MipsISD::DivRemU: return "MipsISD::DivRemU";
+ case MipsISD::DivRem16: return "MipsISD::DivRem16";
+ case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
+ case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
+ case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
+ case MipsISD::Wrapper: return "MipsISD::Wrapper";
+ case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
+ case MipsISD::Sync: return "MipsISD::Sync";
+ case MipsISD::Ext: return "MipsISD::Ext";
+ case MipsISD::Ins: return "MipsISD::Ins";
+ case MipsISD::CIns: return "MipsISD::CIns";
+ case MipsISD::LWL: return "MipsISD::LWL";
+ case MipsISD::LWR: return "MipsISD::LWR";
+ case MipsISD::SWL: return "MipsISD::SWL";
+ case MipsISD::SWR: return "MipsISD::SWR";
+ case MipsISD::LDL: return "MipsISD::LDL";
+ case MipsISD::LDR: return "MipsISD::LDR";
+ case MipsISD::SDL: return "MipsISD::SDL";
+ case MipsISD::SDR: return "MipsISD::SDR";
+ case MipsISD::EXTP: return "MipsISD::EXTP";
+ case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
+ case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
+ case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
+ case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
+ case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
+ case MipsISD::SHILO: return "MipsISD::SHILO";
+ case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
+ case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH";
+ case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL";
+ case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR";
+ case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL";
+ case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR";
+ case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL";
+ case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR";
+ case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL";
+ case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR";
+ case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH";
+ case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH";
+ case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W";
+ case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W";
+ case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH";
+ case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH";
+ case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH";
+ case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH";
+ case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH";
+ case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH";
+ case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH";
+ case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH";
+ case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH";
+ case MipsISD::MULT: return "MipsISD::MULT";
+ case MipsISD::MULTU: return "MipsISD::MULTU";
+ case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
+ case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
+ case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
+ case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
+ case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
+ case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
+ case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
+ case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
+ case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
+ case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
+ case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
+ case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
+ case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
+ case MipsISD::VCEQ: return "MipsISD::VCEQ";
+ case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
+ case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
+ case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
+ case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
+ case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
+ case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
+ case MipsISD::VNOR: return "MipsISD::VNOR";
+ case MipsISD::VSHF: return "MipsISD::VSHF";
+ case MipsISD::SHF: return "MipsISD::SHF";
+ case MipsISD::ILVEV: return "MipsISD::ILVEV";
+ case MipsISD::ILVOD: return "MipsISD::ILVOD";
+ case MipsISD::ILVL: return "MipsISD::ILVL";
+ case MipsISD::ILVR: return "MipsISD::ILVR";
+ case MipsISD::PCKEV: return "MipsISD::PCKEV";
+ case MipsISD::PCKOD: return "MipsISD::PCKOD";
+ case MipsISD::INSVE: return "MipsISD::INSVE";
+ }
+ return nullptr;
+}
+
+MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
+ const MipsSubtarget &STI)
+ : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
+ // Mips does not have i1 type, so use i32 for
+ // setcc operations results (slt, sgt, ...).
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+ // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
+ // does. Integer booleans still use 0 and 1.
+ if (Subtarget.hasMips32r6())
+ setBooleanContents(ZeroOrOneBooleanContent,
+ ZeroOrNegativeOneBooleanContent);
+
+ // Load extented operations for i1 types must be promoted
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ }
+
+ // MIPS doesn't have extending float->double load/store. Set LoadExtAction
+ // for f32, f16
+ for (MVT VT : MVT::fp_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
+ }
+
+ // Set LoadExtAction for f16 vectors to Expand
+ for (MVT VT : MVT::fp_vector_valuetypes()) {
+ MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
+ if (F16VT.isValid())
+ setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
+ }
+
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // Used by legalize types to correctly generate the setcc result.
+ // Without this, every float setcc comes with a AND/OR with the result,
+ // we don't want this, since the fpcmp result goes to a flag register,
+ // which is used implicitly by brcond and select operations.
+ AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
+
+ // Mips Custom Operations
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::f32, Custom);
+ setOperationAction(ISD::SETCC, MVT::f64, Custom);
+ setOperationAction(ISD::BRCOND, MVT::Other, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+
+ if (Subtarget.isGP64bit()) {
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i64, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::i64, Custom);
+ setOperationAction(ISD::LOAD, MVT::i64, Custom);
+ setOperationAction(ISD::STORE, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
+ }
+
+ if (!Subtarget.isGP64bit()) {
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ }
+
+ setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
+ if (Subtarget.isGP64bit())
+ setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
+
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIV, MVT::i64, Expand);
+ setOperationAction(ISD::SREM, MVT::i64, Expand);
+ setOperationAction(ISD::UDIV, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ // Operations not directly supported by Mips.
+ setOperationAction(ISD::BR_CC, MVT::f32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::f64, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+ if (Subtarget.hasCnMips()) {
+ setOperationAction(ISD::CTPOP, MVT::i32, Legal);
+ setOperationAction(ISD::CTPOP, MVT::i64, Legal);
+ } else {
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+ }
+ setOperationAction(ISD::CTTZ, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i64, Expand);
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL, MVT::i64, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
+
+ if (!Subtarget.hasMips32r2())
+ setOperationAction(ISD::ROTR, MVT::i32, Expand);
+
+ if (!Subtarget.hasMips64r2())
+ setOperationAction(ISD::ROTR, MVT::i64, Expand);
+
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::f32, Expand);
+ setOperationAction(ISD::FMA, MVT::f32, Expand);
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+
+ // Lower f16 conversion operations into library calls
+ setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
+ setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
+
+ setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
+
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+
+ // Use the default for now
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ if (!Subtarget.isGP64bit()) {
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
+ }
+
+ if (!Subtarget.hasMips32r2()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ }
+
+ // MIPS16 lacks MIPS32's clz and clo instructions.
+ if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+ if (!Subtarget.hasMips64())
+ setOperationAction(ISD::CTLZ, MVT::i64, Expand);
+
+ if (!Subtarget.hasMips32r2())
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+ if (!Subtarget.hasMips64r2())
+ setOperationAction(ISD::BSWAP, MVT::i64, Expand);
+
+ if (Subtarget.isGP64bit()) {
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
+ setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
+ setTruncStoreAction(MVT::i64, MVT::i32, Custom);
+ }
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ setTargetDAGCombine(ISD::SDIVREM);
+ setTargetDAGCombine(ISD::UDIVREM);
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::SUB);
+ setTargetDAGCombine(ISD::AssertZext);
+ setTargetDAGCombine(ISD::SHL);
+
+ if (ABI.IsO32()) {
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, nullptr);
+ setLibcallName(RTLIB::SRL_I128, nullptr);
+ setLibcallName(RTLIB::SRA_I128, nullptr);
+ }
+
+ setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
+
+ // The arguments on the stack are defined in terms of 4-byte slots on O32
+ // and 8-byte slots on N32/N64.
+ setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);
+
+ setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
+
+ MaxStoresPerMemcpy = 16;
+
+ isMicroMips = Subtarget.inMicroMipsMode();
+}
+
+const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
+ const MipsSubtarget &STI) {
+ if (STI.inMips16Mode())
+ return createMips16TargetLowering(TM, STI);
+
+ return createMipsSETargetLowering(TM, STI);
+}
+
+// Create a fast isel object.
+FastISel *
+MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ const MipsTargetMachine &TM =
+ static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
+
+ // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
+ bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
+ !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
+ !Subtarget.inMicroMipsMode();
+
+ // Disable if either of the following is true:
+ // We do not generate PIC, the ABI is not O32, LargeGOT is being used.
+ if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || LargeGOT)
+ UseFastISel = false;
+
+ return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
+}
+
+EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
+ EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i32;
+ return VT.changeVectorElementTypeToInteger();
+}
+
+static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ EVT Ty = N->getValueType(0);
+ unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
+ unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
+ unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
+ MipsISD::DivRemU16;
+ SDLoc DL(N);
+
+ SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
+ N->getOperand(0), N->getOperand(1));
+ SDValue InChain = DAG.getEntryNode();
+ SDValue InGlue = DivRem;
+
+ // insert MFLO
+ if (N->hasAnyUseOfValue(0)) {
+ SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
+ InGlue);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
+ InChain = CopyFromLo.getValue(1);
+ InGlue = CopyFromLo.getValue(2);
+ }
+
+ // insert MFHI
+ if (N->hasAnyUseOfValue(1)) {
+ SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
+ HI, Ty, InGlue);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
+ }
+
+ return SDValue();
+}
+
+static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown fp condition code!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: return Mips::FCOND_OEQ;
+ case ISD::SETUNE: return Mips::FCOND_UNE;
+ case ISD::SETLT:
+ case ISD::SETOLT: return Mips::FCOND_OLT;
+ case ISD::SETGT:
+ case ISD::SETOGT: return Mips::FCOND_OGT;
+ case ISD::SETLE:
+ case ISD::SETOLE: return Mips::FCOND_OLE;
+ case ISD::SETGE:
+ case ISD::SETOGE: return Mips::FCOND_OGE;
+ case ISD::SETULT: return Mips::FCOND_ULT;
+ case ISD::SETULE: return Mips::FCOND_ULE;
+ case ISD::SETUGT: return Mips::FCOND_UGT;
+ case ISD::SETUGE: return Mips::FCOND_UGE;
+ case ISD::SETUO: return Mips::FCOND_UN;
+ case ISD::SETO: return Mips::FCOND_OR;
+ case ISD::SETNE:
+ case ISD::SETONE: return Mips::FCOND_ONE;
+ case ISD::SETUEQ: return Mips::FCOND_UEQ;
+ }
+}
+
+/// This function returns true if the floating point conditional branches and
+/// conditional moves which use condition code CC should be inverted.
+static bool invertFPCondCodeUser(Mips::CondCode CC) {
+ if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
+ return false;
+
+ assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
+ "Illegal Condition Code");
+
+ return true;
+}
+
+// Creates and returns an FPCmp node from a setcc node.
+// Returns Op if setcc is not a floating point comparison.
+static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
+ // must be a SETCC node
+ if (Op.getOpcode() != ISD::SETCC)
+ return Op;
+
+ SDValue LHS = Op.getOperand(0);
+
+ if (!LHS.getValueType().isFloatingPoint())
+ return Op;
+
+ SDValue RHS = Op.getOperand(1);
+ SDLoc DL(Op);
+
+ // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
+ // node if necessary.
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+
+ return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
+ DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
+}
+
+// Creates and returns a CMovFPT/F node.
+static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
+ SDValue False, const SDLoc &DL) {
+ ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
+ bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
+ SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
+
+ return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
+ True.getValueType(), True, FCC0, False, Cond);
+}
+
+static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue SetCC = N->getOperand(0);
+
+ if ((SetCC.getOpcode() != ISD::SETCC) ||
+ !SetCC.getOperand(0).getValueType().isInteger())
+ return SDValue();
+
+ SDValue False = N->getOperand(2);
+ EVT FalseTy = False.getValueType();
+
+ if (!FalseTy.isInteger())
+ return SDValue();
+
+ ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
+
+ // If the RHS (False) is 0, we swap the order of the operands
+ // of ISD::SELECT (obviously also inverting the condition) so that we can
+ // take advantage of conditional moves using the $0 register.
+ // Example:
+ // return (a != 0) ? x : 0;
+ // load $reg, x
+ // movz $reg, $0, a
+ if (!FalseC)
+ return SDValue();
+
+ const SDLoc DL(N);
+
+ if (!FalseC->getZExtValue()) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
+ SDValue True = N->getOperand(1);
+
+ SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
+ SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
+
+ return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
+ }
+
+ // If both operands are integer constants there's a possibility that we
+ // can do some interesting optimizations.
+ SDValue True = N->getOperand(1);
+ ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
+
+ if (!TrueC || !True.getValueType().isInteger())
+ return SDValue();
+
+ // We'll also ignore MVT::i64 operands as this optimizations proves
+ // to be ineffective because of the required sign extensions as the result
+ // of a SETCC operator is always MVT::i32 for non-vector types.
+ if (True.getValueType() == MVT::i64)
+ return SDValue();
+
+ int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
+
+ // 1) (a < x) ? y : y-1
+ // slti $reg1, a, x
+ // addiu $reg2, $reg1, y-1
+ if (Diff == 1)
+ return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
+
+ // 2) (a < x) ? y-1 : y
+ // slti $reg1, a, x
+ // xor $reg1, $reg1, 1
+ // addiu $reg2, $reg1, y-1
+ if (Diff == -1) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
+ SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
+ SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
+ return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
+ }
+
+ // Could not optimize.
+ return SDValue();
+}
+
+static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
+
+ ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
+ if (!FalseC || FalseC->getZExtValue())
+ return SDValue();
+
+ // Since RHS (False) is 0, we swap the order of the True/False operands
+ // (obviously also inverting the condition) so that we can
+ // take advantage of conditional moves using the $0 register.
+ // Example:
+ // return (a != 0) ? x : 0;
+ // load $reg, x
+ // movz $reg, $0, a
+ unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
+ MipsISD::CMovFP_T;
+
+ SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
+ return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
+ ValueIfFalse, FCC, ValueIfTrue, Glue);
+}
+
+static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
+ return SDValue();
+
+ SDValue FirstOperand = N->getOperand(0);
+ unsigned FirstOperandOpc = FirstOperand.getOpcode();
+ SDValue Mask = N->getOperand(1);
+ EVT ValTy = N->getValueType(0);
+ SDLoc DL(N);
+
+ uint64_t Pos = 0, SMPos, SMSize;
+ ConstantSDNode *CN;
+ SDValue NewOperand;
+ unsigned Opc;
+
+ // Op's second operand must be a shifted mask.
+ if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
+ !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
+ return SDValue();
+
+ if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
+ // Pattern match EXT.
+ // $dst = and ((sra or srl) $src , pos), (2**size - 1)
+ // => ext $dst, $src, pos, size
+
+ // The second operand of the shift must be an immediate.
+ if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
+ return SDValue();
+
+ Pos = CN->getZExtValue();
+
+ // Return if the shifted mask does not start at bit 0 or the sum of its size
+ // and Pos exceeds the word's size.
+ if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
+ return SDValue();
+
+ Opc = MipsISD::Ext;
+ NewOperand = FirstOperand.getOperand(0);
+ } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
+ // Pattern match CINS.
+ // $dst = and (shl $src , pos), mask
+ // => cins $dst, $src, pos, size
+ // mask is a shifted mask with consecutive 1's, pos = shift amount,
+ // size = population count.
+
+ // The second operand of the shift must be an immediate.
+ if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
+ return SDValue();
+
+ Pos = CN->getZExtValue();
+
+ if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
+ Pos + SMSize > ValTy.getSizeInBits())
+ return SDValue();
+
+ NewOperand = FirstOperand.getOperand(0);
+ // SMSize is 'location' (position) in this case, not size.
+ SMSize--;
+ Opc = MipsISD::CIns;
+ } else {
+ // Pattern match EXT.
+ // $dst = and $src, (2**size - 1) , if size > 16
+ // => ext $dst, $src, pos, size , pos = 0
+
+ // If the mask is <= 0xffff, andi can be used instead.
+ if (CN->getZExtValue() <= 0xffff)
+ return SDValue();
+
+ // Return if the mask doesn't start at position 0.
+ if (SMPos)
+ return SDValue();
+
+ Opc = MipsISD::Ext;
+ NewOperand = FirstOperand;
+ }
+ return DAG.getNode(Opc, DL, ValTy, NewOperand,
+ DAG.getConstant(Pos, DL, MVT::i32),
+ DAG.getConstant(SMSize, DL, MVT::i32));
+}
+
+static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ // Pattern match INS.
+ // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
+ // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
+ // => ins $dst, $src, size, pos, $src1
+ if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
+ return SDValue();
+
+ SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
+ uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
+ ConstantSDNode *CN, *CN1;
+
+ // See if Op's first operand matches (and $src1 , mask0).
+ if (And0.getOpcode() != ISD::AND)
+ return SDValue();
+
+ if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
+ !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
+ return SDValue();
+
+ // See if Op's second operand matches (and (shl $src, pos), mask1).
+ if (And1.getOpcode() == ISD::AND &&
+ And1.getOperand(0).getOpcode() == ISD::SHL) {
+
+ if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
+ !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
+ return SDValue();
+
+ // The shift masks must have the same position and size.
+ if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
+ return SDValue();
+
+ SDValue Shl = And1.getOperand(0);
+
+ if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
+ return SDValue();
+
+ unsigned Shamt = CN->getZExtValue();
+
+ // Return if the shift amount and the first bit position of mask are not the
+ // same.
+ EVT ValTy = N->getValueType(0);
+ if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
+ return SDValue();
+
+ SDLoc DL(N);
+ return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
+ DAG.getConstant(SMPos0, DL, MVT::i32),
+ DAG.getConstant(SMSize0, DL, MVT::i32),
+ And0.getOperand(0));
+ } else {
+ // Pattern match DINS.
+ // $dst = or (and $src, mask0), mask1
+ // where mask0 = ((1 << SMSize0) -1) << SMPos0
+ // => dins $dst, $src, pos, size
+ if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
+ ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
+ (SMSize0 + SMPos0 <= 32))) {
+ // Check if AND instruction has constant as argument
+ bool isConstCase = And1.getOpcode() != ISD::AND;
+ if (And1.getOpcode() == ISD::AND) {
+ if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
+ return SDValue();
+ } else {
+ if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
+ return SDValue();
+ }
+ // Don't generate INS if constant OR operand doesn't fit into bits
+ // cleared by constant AND operand.
+ if (CN->getSExtValue() & CN1->getSExtValue())
+ return SDValue();
+
+ SDLoc DL(N);
+ EVT ValTy = N->getOperand(0)->getValueType(0);
+ SDValue Const1;
+ SDValue SrlX;
+ if (!isConstCase) {
+ Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
+ SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
+ }
+ return DAG.getNode(
+ MipsISD::Ins, DL, N->getValueType(0),
+ isConstCase
+ ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
+ : SrlX,
+ DAG.getConstant(SMPos0, DL, MVT::i32),
+ DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
+ : SMSize0,
+ DL, MVT::i32),
+ And0->getOperand(0));
+
+ }
+ return SDValue();
+ }
+}
+
+static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
+ const MipsSubtarget &Subtarget) {
+ // ROOTNode must have a multiplication as an operand for the match to be
+ // successful.
+ if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
+ ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
+ return SDValue();
+
+ // We don't handle vector types here.
+ if (ROOTNode->getValueType(0).isVector())
+ return SDValue();
+
+ // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
+ // arithmetic. E.g.
+ // (add (mul a b) c) =>
+ // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
+ // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
+ // or
+ // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
+ //
+ // The overhead of setting up the Hi/Lo registers and reassembling the
+ // result makes this a dubious optimzation for MIPS64. The core of the
+ // problem is that Hi/Lo contain the upper and lower 32 bits of the
+ // operand and result.
+ //
+ // It requires a chain of 4 add/mul for MIPS64R2 to get better code
+ // density than doing it naively, 5 for MIPS64. Additionally, using
+ // madd/msub on MIPS64 requires the operands actually be 32 bit sign
+ // extended operands, not true 64 bit values.
+ //
+ // FIXME: For the moment, disable this completely for MIPS64.
+ if (Subtarget.hasMips64())
+ return SDValue();
+
+ SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
+ ? ROOTNode->getOperand(0)
+ : ROOTNode->getOperand(1);
+
+ SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
+ ? ROOTNode->getOperand(1)
+ : ROOTNode->getOperand(0);
+
+ // Transform this to a MADD only if the user of this node is the add.
+ // If there are other users of the mul, this function returns here.
+ if (!Mult.hasOneUse())
+ return SDValue();
+
+ // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
+ // must be in canonical form, i.e. sign extended. For MIPS32, the operands
+ // of the multiply must have 32 or more sign bits, otherwise we cannot
+ // perform this optimization. We have to check this here as we're performing
+ // this optimization pre-legalization.
+ SDValue MultLHS = Mult->getOperand(0);
+ SDValue MultRHS = Mult->getOperand(1);
+
+ bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
+ MultRHS->getOpcode() == ISD::SIGN_EXTEND;
+ bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
+ MultRHS->getOpcode() == ISD::ZERO_EXTEND;
+
+ if (!IsSigned && !IsUnsigned)
+ return SDValue();
+
+ // Initialize accumulator.
+ SDLoc DL(ROOTNode);
+ SDValue TopHalf;
+ SDValue BottomHalf;
+ BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
+ CurDAG.getIntPtrConstant(0, DL));
+
+ TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
+ CurDAG.getIntPtrConstant(1, DL));
+ SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
+ BottomHalf,
+ TopHalf);
+
+ // Create MipsMAdd(u) / MipsMSub(u) node.
+ bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
+ unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
+ : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
+ SDValue MAddOps[3] = {
+ CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
+ CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
+ EVT VTs[2] = {MVT::i32, MVT::i32};
+ SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
+
+ SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
+ SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
+ SDValue Combined =
+ CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
+ return Combined;
+}
+
+static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
+ if (DCI.isBeforeLegalizeOps()) {
+ if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
+ !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
+ return performMADD_MSUBCombine(N, DAG, Subtarget);
+
+ return SDValue();
+ }
+
+ return SDValue();
+}
+
+static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
+ if (DCI.isBeforeLegalizeOps()) {
+ if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
+ !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
+ return performMADD_MSUBCombine(N, DAG, Subtarget);
+
+ return SDValue();
+ }
+
+ // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
+ SDValue Add = N->getOperand(1);
+
+ if (Add.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ SDValue Lo = Add.getOperand(1);
+
+ if ((Lo.getOpcode() != MipsISD::Lo) ||
+ (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
+ return SDValue();
+
+ EVT ValTy = N->getValueType(0);
+ SDLoc DL(N);
+
+ SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
+ Add.getOperand(0));
+ return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
+}
+
+static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const MipsSubtarget &Subtarget) {
+ // Pattern match CINS.
+ // $dst = shl (and $src , imm), pos
+ // => cins $dst, $src, pos, size
+
+ if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
+ return SDValue();
+
+ SDValue FirstOperand = N->getOperand(0);
+ unsigned FirstOperandOpc = FirstOperand.getOpcode();
+ SDValue SecondOperand = N->getOperand(1);
+ EVT ValTy = N->getValueType(0);
+ SDLoc DL(N);
+
+ uint64_t Pos = 0, SMPos, SMSize;
+ ConstantSDNode *CN;
+ SDValue NewOperand;
+
+ // The second operand of the shift must be an immediate.
+ if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
+ return SDValue();
+
+ Pos = CN->getZExtValue();
+
+ if (Pos >= ValTy.getSizeInBits())
+ return SDValue();
+
+ if (FirstOperandOpc != ISD::AND)
+ return SDValue();
+
+ // AND's second operand must be a shifted mask.
+ if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
+ !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
+ return SDValue();
+
+ // Return if the shifted mask does not start at bit 0 or the sum of its size
+ // and Pos exceeds the word's size.
+ if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
+ return SDValue();
+
+ NewOperand = FirstOperand.getOperand(0);
+ // SMSize is 'location' (position) in this case, not size.
+ SMSize--;
+
+ return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
+ DAG.getConstant(Pos, DL, MVT::i32),
+ DAG.getConstant(SMSize, DL, MVT::i32));
+}
+
+SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
+ const {
+ SelectionDAG &DAG = DCI.DAG;
+ unsigned Opc = N->getOpcode();
+
+ switch (Opc) {
+ default: break;
+ case ISD::SDIVREM:
+ case ISD::UDIVREM:
+ return performDivRemCombine(N, DAG, DCI, Subtarget);
+ case ISD::SELECT:
+ return performSELECTCombine(N, DAG, DCI, Subtarget);
+ case MipsISD::CMovFP_F:
+ case MipsISD::CMovFP_T:
+ return performCMovFPCombine(N, DAG, DCI, Subtarget);
+ case ISD::AND:
+ return performANDCombine(N, DAG, DCI, Subtarget);
+ case ISD::OR:
+ return performORCombine(N, DAG, DCI, Subtarget);
+ case ISD::ADD:
+ return performADDCombine(N, DAG, DCI, Subtarget);
+ case ISD::SHL:
+ return performSHLCombine(N, DAG, DCI, Subtarget);
+ case ISD::SUB:
+ return performSUBCombine(N, DAG, DCI, Subtarget);
+ }
+
+ return SDValue();
+}
+
+bool MipsTargetLowering::isCheapToSpeculateCttz() const {
+ return Subtarget.hasMips32();
+}
+
+bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
+ return Subtarget.hasMips32();
+}
+
+void
+MipsTargetLowering::LowerOperationWrapper(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ SDValue Res = LowerOperation(SDValue(N, 0), DAG);
+
+ for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
+ Results.push_back(Res.getValue(I));
+}
+
+void
+MipsTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ return LowerOperationWrapper(N, Results, DAG);
+}
+
+SDValue MipsTargetLowering::
+LowerOperation(SDValue Op, SelectionDAG &DAG) const
+{
+ switch (Op.getOpcode())
+ {
+ case ISD::BRCOND: return lowerBRCOND(Op, DAG);
+ case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
+ case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
+ case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
+ case ISD::JumpTable: return lowerJumpTable(Op, DAG);
+ case ISD::SELECT: return lowerSELECT(Op, DAG);
+ case ISD::SETCC: return lowerSETCC(Op, DAG);
+ case ISD::VASTART: return lowerVASTART(Op, DAG);
+ case ISD::VAARG: return lowerVAARG(Op, DAG);
+ case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
+ case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
+ case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
+ case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
+ case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
+ case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
+ case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
+ case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
+ case ISD::LOAD: return lowerLOAD(Op, DAG);
+ case ISD::STORE: return lowerSTORE(Op, DAG);
+ case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG);
+ case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
+ }
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Lower helper functions
+//===----------------------------------------------------------------------===//
+
+// addLiveIn - This helper function adds the specified physical register to the
+// MachineFunction as a live in value. It also creates a corresponding
+// virtual register for it.
+static unsigned
+addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
+{
+ unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
+ MF.getRegInfo().addLiveIn(PReg, VReg);
+ return VReg;
+}
+
+static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
+ MachineBasicBlock &MBB,
+ const TargetInstrInfo &TII,
+ bool Is64Bit, bool IsMicroMips) {
+ if (NoZeroDivCheck)
+ return &MBB;
+
+ // Insert instruction "teq $divisor_reg, $zero, 7".
+ MachineBasicBlock::iterator I(MI);
+ MachineInstrBuilder MIB;
+ MachineOperand &Divisor = MI.getOperand(2);
+ MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
+ TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
+ .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
+ .addReg(Mips::ZERO)
+ .addImm(7);
+
+ // Use the 32-bit sub-register if this is a 64-bit division.
+ if (Is64Bit)
+ MIB->getOperand(0).setSubReg(Mips::sub_32);
+
+ // Clear Divisor's kill flag.
+ Divisor.setIsKill(false);
+
+ // We would normally delete the original instruction here but in this case
+ // we only needed to inject an additional instruction rather than replace it.
+
+ return &MBB;
+}
+
+MachineBasicBlock *
+MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected instr type to insert");
+ case Mips::ATOMIC_LOAD_ADD_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1);
+ case Mips::ATOMIC_LOAD_ADD_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2);
+ case Mips::ATOMIC_LOAD_ADD_I32:
+ return emitAtomicBinary(MI, BB);
+ case Mips::ATOMIC_LOAD_ADD_I64:
+ return emitAtomicBinary(MI, BB);
+
+ case Mips::ATOMIC_LOAD_AND_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1);
+ case Mips::ATOMIC_LOAD_AND_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2);
+ case Mips::ATOMIC_LOAD_AND_I32:
+ return emitAtomicBinary(MI, BB);
+ case Mips::ATOMIC_LOAD_AND_I64:
+ return emitAtomicBinary(MI, BB);
+
+ case Mips::ATOMIC_LOAD_OR_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1);
+ case Mips::ATOMIC_LOAD_OR_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2);
+ case Mips::ATOMIC_LOAD_OR_I32:
+ return emitAtomicBinary(MI, BB);
+ case Mips::ATOMIC_LOAD_OR_I64:
+ return emitAtomicBinary(MI, BB);
+
+ case Mips::ATOMIC_LOAD_XOR_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1);
+ case Mips::ATOMIC_LOAD_XOR_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2);
+ case Mips::ATOMIC_LOAD_XOR_I32:
+ return emitAtomicBinary(MI, BB);
+ case Mips::ATOMIC_LOAD_XOR_I64:
+ return emitAtomicBinary(MI, BB);
+
+ case Mips::ATOMIC_LOAD_NAND_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1);
+ case Mips::ATOMIC_LOAD_NAND_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2);
+ case Mips::ATOMIC_LOAD_NAND_I32:
+ return emitAtomicBinary(MI, BB);
+ case Mips::ATOMIC_LOAD_NAND_I64:
+ return emitAtomicBinary(MI, BB);
+
+ case Mips::ATOMIC_LOAD_SUB_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1);
+ case Mips::ATOMIC_LOAD_SUB_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2);
+ case Mips::ATOMIC_LOAD_SUB_I32:
+ return emitAtomicBinary(MI, BB);
+ case Mips::ATOMIC_LOAD_SUB_I64:
+ return emitAtomicBinary(MI, BB);
+
+ case Mips::ATOMIC_SWAP_I8:
+ return emitAtomicBinaryPartword(MI, BB, 1);
+ case Mips::ATOMIC_SWAP_I16:
+ return emitAtomicBinaryPartword(MI, BB, 2);
+ case Mips::ATOMIC_SWAP_I32:
+ return emitAtomicBinary(MI, BB);
+ case Mips::ATOMIC_SWAP_I64:
+ return emitAtomicBinary(MI, BB);
+
+ case Mips::ATOMIC_CMP_SWAP_I8:
+ return emitAtomicCmpSwapPartword(MI, BB, 1);
+ case Mips::ATOMIC_CMP_SWAP_I16:
+ return emitAtomicCmpSwapPartword(MI, BB, 2);
+ case Mips::ATOMIC_CMP_SWAP_I32:
+ return emitAtomicCmpSwap(MI, BB);
+ case Mips::ATOMIC_CMP_SWAP_I64:
+ return emitAtomicCmpSwap(MI, BB);
+ case Mips::PseudoSDIV:
+ case Mips::PseudoUDIV:
+ case Mips::DIV:
+ case Mips::DIVU:
+ case Mips::MOD:
+ case Mips::MODU:
+ return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
+ false);
+ case Mips::SDIV_MM_Pseudo:
+ case Mips::UDIV_MM_Pseudo:
+ case Mips::SDIV_MM:
+ case Mips::UDIV_MM:
+ case Mips::DIV_MMR6:
+ case Mips::DIVU_MMR6:
+ case Mips::MOD_MMR6:
+ case Mips::MODU_MMR6:
+ return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
+ case Mips::PseudoDSDIV:
+ case Mips::PseudoDUDIV:
+ case Mips::DDIV:
+ case Mips::DDIVU:
+ case Mips::DMOD:
+ case Mips::DMODU:
+ return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
+
+ case Mips::PseudoSELECT_I:
+ case Mips::PseudoSELECT_I64:
+ case Mips::PseudoSELECT_S:
+ case Mips::PseudoSELECT_D32:
+ case Mips::PseudoSELECT_D64:
+ return emitPseudoSELECT(MI, BB, false, Mips::BNE);
+ case Mips::PseudoSELECTFP_F_I:
+ case Mips::PseudoSELECTFP_F_I64:
+ case Mips::PseudoSELECTFP_F_S:
+ case Mips::PseudoSELECTFP_F_D32:
+ case Mips::PseudoSELECTFP_F_D64:
+ return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
+ case Mips::PseudoSELECTFP_T_I:
+ case Mips::PseudoSELECTFP_T_I64:
+ case Mips::PseudoSELECTFP_T_S:
+ case Mips::PseudoSELECTFP_T_D32:
+ case Mips::PseudoSELECTFP_T_D64:
+ return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
+ case Mips::PseudoD_SELECT_I:
+ case Mips::PseudoD_SELECT_I64:
+ return emitPseudoD_SELECT(MI, BB);
+ }
+}
+
+// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
+// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
+MachineBasicBlock *
+MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned AtomicOp;
+ switch (MI.getOpcode()) {
+ case Mips::ATOMIC_LOAD_ADD_I32:
+ AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_SUB_I32:
+ AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_AND_I32:
+ AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_OR_I32:
+ AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_XOR_I32:
+ AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_NAND_I32:
+ AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
+ break;
+ case Mips::ATOMIC_SWAP_I32:
+ AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_ADD_I64:
+ AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_SUB_I64:
+ AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_AND_I64:
+ AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_OR_I64:
+ AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_XOR_I64:
+ AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_NAND_I64:
+ AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
+ break;
+ case Mips::ATOMIC_SWAP_I64:
+ AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
+ break;
+ default:
+ llvm_unreachable("Unknown pseudo atomic for replacement!");
+ }
+
+ unsigned OldVal = MI.getOperand(0).getReg();
+ unsigned Ptr = MI.getOperand(1).getReg();
+ unsigned Incr = MI.getOperand(2).getReg();
+ unsigned Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
+
+ MachineBasicBlock::iterator II(MI);
+
+ // The scratch registers here with the EarlyClobber | Define | Implicit
+ // flags is used to persuade the register allocator and the machine
+ // verifier to accept the usage of this register. This has to be a real
+ // register which has an UNDEF value but is dead after the instruction which
+ // is unique among the registers chosen for the instruction.
+
+ // The EarlyClobber flag has the semantic properties that the operand it is
+ // attached to is clobbered before the rest of the inputs are read. Hence it
+ // must be unique among the operands to the instruction.
+ // The Define flag is needed to coerce the machine verifier that an Undef
+ // value isn't a problem.
+ // The Dead flag is needed as the value in scratch isn't used by any other
+ // instruction. Kill isn't used as Dead is more precise.
+ // The implicit flag is here due to the interaction between the other flags
+ // and the machine verifier.
+
+ // For correctness purpose, a new pseudo is introduced here. We need this
+ // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
+ // that is spread over >1 basic blocks. A register allocator which
+ // introduces (or any codegen infact) a store, can violate the expectations
+ // of the hardware.
+ //
+ // An atomic read-modify-write sequence starts with a linked load
+ // instruction and ends with a store conditional instruction. The atomic
+ // read-modify-write sequence fails if any of the following conditions
+ // occur between the execution of ll and sc:
+ // * A coherent store is completed by another process or coherent I/O
+ // module into the block of synchronizable physical memory containing
+ // the word. The size and alignment of the block is
+ // implementation-dependent.
+ // * A coherent store is executed between an LL and SC sequence on the
+ // same processor to the block of synchornizable physical memory
+ // containing the word.
+ //
+
+ unsigned PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
+ unsigned IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
+
+ BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
+ BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
+
+ BuildMI(*BB, II, DL, TII->get(AtomicOp))
+ .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
+ .addReg(PtrCopy)
+ .addReg(IncrCopy)
+ .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
+ RegState::Implicit | RegState::Dead);
+
+ MI.eraseFromParent();
+
+ return BB;
+}
+
+MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
+ MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
+ unsigned SrcReg) const {
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ const DebugLoc &DL = MI.getDebugLoc();
+
+ if (Subtarget.hasMips32r2() && Size == 1) {
+ BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
+ return BB;
+ }
+
+ if (Subtarget.hasMips32r2() && Size == 2) {
+ BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
+ return BB;
+ }
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
+ unsigned ScrReg = RegInfo.createVirtualRegister(RC);
+
+ assert(Size < 32);
+ int64_t ShiftImm = 32 - (Size * 8);
+
+ BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
+ BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
+
+ return BB;
+}
+
+MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
+ MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
+ assert((Size == 1 || Size == 2) &&
+ "Unsupported size for EmitAtomicBinaryPartial.");
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
+ const bool ArePtrs64bit = ABI.ArePtrs64bit();
+ const TargetRegisterClass *RCp =
+ getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned Dest = MI.getOperand(0).getReg();
+ unsigned Ptr = MI.getOperand(1).getReg();
+ unsigned Incr = MI.getOperand(2).getReg();
+
+ unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
+ unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
+ unsigned Mask = RegInfo.createVirtualRegister(RC);
+ unsigned Mask2 = RegInfo.createVirtualRegister(RC);
+ unsigned Incr2 = RegInfo.createVirtualRegister(RC);
+ unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
+ unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
+ unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
+ unsigned Scratch = RegInfo.createVirtualRegister(RC);
+ unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
+ unsigned Scratch3 = RegInfo.createVirtualRegister(RC);
+
+ unsigned AtomicOp = 0;
+ switch (MI.getOpcode()) {
+ case Mips::ATOMIC_LOAD_NAND_I8:
+ AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_NAND_I16:
+ AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
+ break;
+ case Mips::ATOMIC_SWAP_I8:
+ AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
+ break;
+ case Mips::ATOMIC_SWAP_I16:
+ AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_ADD_I8:
+ AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_ADD_I16:
+ AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_SUB_I8:
+ AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_SUB_I16:
+ AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_AND_I8:
+ AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_AND_I16:
+ AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_OR_I8:
+ AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_OR_I16:
+ AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_XOR_I8:
+ AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
+ break;
+ case Mips::ATOMIC_LOAD_XOR_I16:
+ AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
+ break;
+ default:
+ llvm_unreachable("Unknown subword atomic pseudo for expansion!");
+ }
+
+ // insert new blocks after the current block
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineFunction::iterator It = ++BB->getIterator();
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(exitMBB, BranchProbability::getOne());
+
+ // thisMBB:
+ // addiu masklsb2,$0,-4 # 0xfffffffc
+ // and alignedaddr,ptr,masklsb2
+ // andi ptrlsb2,ptr,3
+ // sll shiftamt,ptrlsb2,3
+ // ori maskupper,$0,255 # 0xff
+ // sll mask,maskupper,shiftamt
+ // nor mask2,$0,mask
+ // sll incr2,incr,shiftamt
+
+ int64_t MaskImm = (Size == 1) ? 255 : 65535;
+ BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
+ .addReg(ABI.GetNullPtr()).addImm(-4);
+ BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
+ .addReg(Ptr).addReg(MaskLSB2);
+ BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
+ .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
+ if (Subtarget.isLittle()) {
+ BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
+ } else {
+ unsigned Off = RegInfo.createVirtualRegister(RC);
+ BuildMI(BB, DL, TII->get(Mips::XORi), Off)
+ .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
+ BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
+ }
+ BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
+ .addReg(Mips::ZERO).addImm(MaskImm);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
+ .addReg(MaskUpper).addReg(ShiftAmt);
+ BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
+
+
+ // The purposes of the flags on the scratch registers is explained in
+ // emitAtomicBinary. In summary, we need a scratch register which is going to
+ // be undef, that is unique among registers chosen for the instruction.
+
+ BuildMI(BB, DL, TII->get(AtomicOp))
+ .addReg(Dest, RegState::Define | RegState::EarlyClobber)
+ .addReg(AlignedAddr)
+ .addReg(Incr2)
+ .addReg(Mask)
+ .addReg(Mask2)
+ .addReg(ShiftAmt)
+ .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
+ RegState::Dead | RegState::Implicit)
+ .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
+ RegState::Dead | RegState::Implicit)
+ .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
+ RegState::Dead | RegState::Implicit);
+
+ MI.eraseFromParent(); // The instruction is gone now.
+
+ return exitMBB;
+}
+
+// Lower atomic compare and swap to a pseudo instruction, taking care to
+// define a scratch register for the pseudo instruction's expansion. The
+// instruction is expanded after the register allocator as to prevent
+// the insertion of stores between the linked load and the store conditional.
+
+MachineBasicBlock *
+MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+
+ assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
+ MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
+ "Unsupported atomic psseudo for EmitAtomicCmpSwap.");
+
+ const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
+ ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
+ : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
+ unsigned Dest = MI.getOperand(0).getReg();
+ unsigned Ptr = MI.getOperand(1).getReg();
+ unsigned OldVal = MI.getOperand(2).getReg();
+ unsigned NewVal = MI.getOperand(3).getReg();
+
+ unsigned Scratch = MRI.createVirtualRegister(RC);
+ MachineBasicBlock::iterator II(MI);
+
+ // We need to create copies of the various registers and kill them at the
+ // atomic pseudo. If the copies are not made, when the atomic is expanded
+ // after fast register allocation, the spills will end up outside of the
+ // blocks that their values are defined in, causing livein errors.
+
+ unsigned DestCopy = MRI.createVirtualRegister(MRI.getRegClass(Dest));
+ unsigned PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
+ unsigned OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
+ unsigned NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
+
+ BuildMI(*BB, II, DL, TII->get(Mips::COPY), DestCopy).addReg(Dest);
+ BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
+ BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
+ BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
+
+ // The purposes of the flags on the scratch registers is explained in
+ // emitAtomicBinary. In summary, we need a scratch register which is going to
+ // be undef, that is unique among registers chosen for the instruction.
+
+ BuildMI(*BB, II, DL, TII->get(AtomicOp))
+ .addReg(Dest, RegState::Define | RegState::EarlyClobber)
+ .addReg(PtrCopy, RegState::Kill)
+ .addReg(OldValCopy, RegState::Kill)
+ .addReg(NewValCopy, RegState::Kill)
+ .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
+ RegState::Dead | RegState::Implicit);
+
+ MI.eraseFromParent(); // The instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
+ MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
+ assert((Size == 1 || Size == 2) &&
+ "Unsupported size for EmitAtomicCmpSwapPartial.");
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
+ const bool ArePtrs64bit = ABI.ArePtrs64bit();
+ const TargetRegisterClass *RCp =
+ getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned Dest = MI.getOperand(0).getReg();
+ unsigned Ptr = MI.getOperand(1).getReg();
+ unsigned CmpVal = MI.getOperand(2).getReg();
+ unsigned NewVal = MI.getOperand(3).getReg();
+
+ unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
+ unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
+ unsigned Mask = RegInfo.createVirtualRegister(RC);
+ unsigned Mask2 = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
+ unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
+ unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
+ unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
+ unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
+ unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
+ unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
+ unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
+ ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
+ : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
+
+ // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
+ // flags are used to coerce the register allocator and the machine verifier to
+ // accept the usage of these registers.
+ // The EarlyClobber flag has the semantic properties that the operand it is
+ // attached to is clobbered before the rest of the inputs are read. Hence it
+ // must be unique among the operands to the instruction.
+ // The Define flag is needed to coerce the machine verifier that an Undef
+ // value isn't a problem.
+ // The Dead flag is needed as the value in scratch isn't used by any other
+ // instruction. Kill isn't used as Dead is more precise.
+ unsigned Scratch = RegInfo.createVirtualRegister(RC);
+ unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
+
+ // insert new blocks after the current block
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineFunction::iterator It = ++BB->getIterator();
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(exitMBB, BranchProbability::getOne());
+
+ // thisMBB:
+ // addiu masklsb2,$0,-4 # 0xfffffffc
+ // and alignedaddr,ptr,masklsb2
+ // andi ptrlsb2,ptr,3
+ // xori ptrlsb2,ptrlsb2,3 # Only for BE
+ // sll shiftamt,ptrlsb2,3
+ // ori maskupper,$0,255 # 0xff
+ // sll mask,maskupper,shiftamt
+ // nor mask2,$0,mask
+ // andi maskedcmpval,cmpval,255
+ // sll shiftedcmpval,maskedcmpval,shiftamt
+ // andi maskednewval,newval,255
+ // sll shiftednewval,maskednewval,shiftamt
+ int64_t MaskImm = (Size == 1) ? 255 : 65535;
+ BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
+ .addReg(ABI.GetNullPtr()).addImm(-4);
+ BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
+ .addReg(Ptr).addReg(MaskLSB2);
+ BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
+ .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
+ if (Subtarget.isLittle()) {
+ BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
+ } else {
+ unsigned Off = RegInfo.createVirtualRegister(RC);
+ BuildMI(BB, DL, TII->get(Mips::XORi), Off)
+ .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
+ BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
+ }
+ BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
+ .addReg(Mips::ZERO).addImm(MaskImm);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
+ .addReg(MaskUpper).addReg(ShiftAmt);
+ BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
+ BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
+ .addReg(CmpVal).addImm(MaskImm);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
+ .addReg(MaskedCmpVal).addReg(ShiftAmt);
+ BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
+ .addReg(NewVal).addImm(MaskImm);
+ BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
+ .addReg(MaskedNewVal).addReg(ShiftAmt);
+
+ // The purposes of the flags on the scratch registers are explained in
+ // emitAtomicBinary. In summary, we need a scratch register which is going to
+ // be undef, that is unique among the register chosen for the instruction.
+
+ BuildMI(BB, DL, TII->get(AtomicOp))
+ .addReg(Dest, RegState::Define | RegState::EarlyClobber)
+ .addReg(AlignedAddr)
+ .addReg(Mask)
+ .addReg(ShiftedCmpVal)
+ .addReg(Mask2)
+ .addReg(ShiftedNewVal)
+ .addReg(ShiftAmt)
+ .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
+ RegState::Dead | RegState::Implicit)
+ .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
+ RegState::Dead | RegState::Implicit);
+
+ MI.eraseFromParent(); // The instruction is gone now.
+
+ return exitMBB;
+}
+
+SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
+ // The first operand is the chain, the second is the condition, the third is
+ // the block to branch to if the condition is true.
+ SDValue Chain = Op.getOperand(0);
+ SDValue Dest = Op.getOperand(2);
+ SDLoc DL(Op);
+
+ assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
+ SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
+
+ // Return if flag is not set by a floating point comparison.
+ if (CondRes.getOpcode() != MipsISD::FPCmp)
+ return Op;
+
+ SDValue CCNode = CondRes.getOperand(2);
+ Mips::CondCode CC =
+ (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
+ unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
+ SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
+ SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
+ return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
+ FCC0, Dest, CondRes);
+}
+
+SDValue MipsTargetLowering::
+lowerSELECT(SDValue Op, SelectionDAG &DAG) const
+{
+ assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
+ SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
+
+ // Return if flag is not set by a floating point comparison.
+ if (Cond.getOpcode() != MipsISD::FPCmp)
+ return Op;
+
+ return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
+ SDLoc(Op));
+}
+
+SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+ assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
+ SDValue Cond = createFPCmp(DAG, Op);
+
+ assert(Cond.getOpcode() == MipsISD::FPCmp &&
+ "Floating point operand expected.");
+
+ SDLoc DL(Op);
+ SDValue True = DAG.getConstant(1, DL, MVT::i32);
+ SDValue False = DAG.getConstant(0, DL, MVT::i32);
+
+ return createCMovFP(DAG, Cond, True, False, DL);
+}
+
+SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT Ty = Op.getValueType();
+ GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = N->getGlobal();
+
+ if (!isPositionIndependent()) {
+ const MipsTargetObjectFile *TLOF =
+ static_cast<const MipsTargetObjectFile *>(
+ getTargetMachine().getObjFileLowering());
+ const GlobalObject *GO = GV->getBaseObject();
+ if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
+ // %gp_rel relocation
+ return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
+
+ // %hi/%lo relocation
+ return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
+ // %highest/%higher/%hi/%lo relocation
+ : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
+ }
+
+ // Every other architecture would use shouldAssumeDSOLocal in here, but
+ // mips is special.
+ // * In PIC code mips requires got loads even for local statics!
+ // * To save on got entries, for local statics the got entry contains the
+ // page and an additional add instruction takes care of the low bits.
+ // * It is legal to access a hidden symbol with a non hidden undefined,
+ // so one cannot guarantee that all access to a hidden symbol will know
+ // it is hidden.
+ // * Mips linkers don't support creating a page and a full got entry for
+ // the same symbol.
+ // * Given all that, we have to use a full got entry for hidden symbols :-(
+ if (GV->hasLocalLinkage())
+ return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
+
+ if (LargeGOT)
+ return getAddrGlobalLargeGOT(
+ N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
+ DAG.getEntryNode(),
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()));
+
+ return getAddrGlobal(
+ N, SDLoc(N), Ty, DAG,
+ (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
+ DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
+}
+
+SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
+ EVT Ty = Op.getValueType();
+
+ if (!isPositionIndependent())
+ return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
+ : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
+
+ return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
+}
+
+SDValue MipsTargetLowering::
+lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
+{
+ // If the relocation model is PIC, use the General Dynamic TLS Model or
+ // Local Dynamic TLS model, otherwise use the Initial Exec or
+ // Local Exec TLS Model.
+
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ if (DAG.getTarget().useEmulatedTLS())
+ return LowerToTLSEmulatedModel(GA, DAG);
+
+ SDLoc DL(GA);
+ const GlobalValue *GV = GA->getGlobal();
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+
+ TLSModel::Model model = getTargetMachine().getTLSModel(GV);
+
+ if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
+ // General Dynamic and Local Dynamic TLS Model.
+ unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
+ : MipsII::MO_TLSGD;
+
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
+ SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
+ getGlobalReg(DAG, PtrVT), TGA);
+ unsigned PtrSize = PtrVT.getSizeInBits();
+ IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
+
+ SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
+
+ ArgListTy Args;
+ ArgListEntry Entry;
+ Entry.Node = Argument;
+ Entry.Ty = PtrTy;
+ Args.push_back(Entry);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(DL)
+ .setChain(DAG.getEntryNode())
+ .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+
+ SDValue Ret = CallResult.first;
+
+ if (model != TLSModel::LocalDynamic)
+ return Ret;
+
+ SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_DTPREL_HI);
+ SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
+ SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_DTPREL_LO);
+ SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
+ SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
+ return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
+ }
+
+ SDValue Offset;
+ if (model == TLSModel::InitialExec) {
+ // Initial Exec TLS Model
+ SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_GOTTPREL);
+ TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
+ TGA);
+ Offset =
+ DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
+ } else {
+ // Local Exec TLS Model
+ assert(model == TLSModel::LocalExec);
+ SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_TPREL_HI);
+ SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
+ MipsII::MO_TPREL_LO);
+ SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
+ SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
+ Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
+ }
+
+ SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
+ return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue MipsTargetLowering::
+lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
+{
+ JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
+ EVT Ty = Op.getValueType();
+
+ if (!isPositionIndependent())
+ return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
+ : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
+
+ return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
+}
+
+SDValue MipsTargetLowering::
+lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
+{
+ ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
+ EVT Ty = Op.getValueType();
+
+ if (!isPositionIndependent()) {
+ const MipsTargetObjectFile *TLOF =
+ static_cast<const MipsTargetObjectFile *>(
+ getTargetMachine().getObjFileLowering());
+
+ if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
+ getTargetMachine()))
+ // %gp_rel relocation
+ return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
+
+ return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
+ : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
+ }
+
+ return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
+}
+
+SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
+
+ SDLoc DL(Op);
+ SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ getPointerTy(MF.getDataLayout()));
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
+ MachinePointerInfo(SV));
+}
+
+SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
+ SDNode *Node = Op.getNode();
+ EVT VT = Node->getValueType(0);
+ SDValue Chain = Node->getOperand(0);
+ SDValue VAListPtr = Node->getOperand(1);
+ unsigned Align = Node->getConstantOperandVal(3);
+ const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
+ SDLoc DL(Node);
+ unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
+
+ SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
+ VAListPtr, MachinePointerInfo(SV));
+ SDValue VAList = VAListLoad;
+
+ // Re-align the pointer if necessary.
+ // It should only ever be necessary for 64-bit types on O32 since the minimum
+ // argument alignment is the same as the maximum type alignment for N32/N64.
+ //
+ // FIXME: We currently align too often. The code generator doesn't notice
+ // when the pointer is still aligned from the last va_arg (or pair of
+ // va_args for the i64 on O32 case).
+ if (Align > getMinStackArgumentAlignment()) {
+ assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
+
+ VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
+ DAG.getConstant(Align - 1, DL, VAList.getValueType()));
+
+ VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
+ DAG.getConstant(-(int64_t)Align, DL,
+ VAList.getValueType()));
+ }
+
+ // Increment the pointer, VAList, to the next vaarg.
+ auto &TD = DAG.getDataLayout();
+ unsigned ArgSizeInBytes =
+ TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
+ SDValue Tmp3 =
+ DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
+ DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
+ DL, VAList.getValueType()));
+ // Store the incremented VAList to the legalized pointer
+ Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
+ MachinePointerInfo(SV));
+
+ // In big-endian mode we must adjust the pointer when the load size is smaller
+ // than the argument slot size. We must also reduce the known alignment to
+ // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
+ // the correct half of the slot, and reduce the alignment from 8 (slot
+ // alignment) down to 4 (type alignment).
+ if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
+ unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
+ VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
+ DAG.getIntPtrConstant(Adjustment, DL));
+ }
+ // Load the actual argument out of the pointer VAList
+ return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
+}
+
+static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
+ bool HasExtractInsert) {
+ EVT TyX = Op.getOperand(0).getValueType();
+ EVT TyY = Op.getOperand(1).getValueType();
+ SDLoc DL(Op);
+ SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
+ SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
+ SDValue Res;
+
+ // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
+ // to i32.
+ SDValue X = (TyX == MVT::f32) ?
+ DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
+ DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
+ Const1);
+ SDValue Y = (TyY == MVT::f32) ?
+ DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
+ DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
+ Const1);
+
+ if (HasExtractInsert) {
+ // ext E, Y, 31, 1 ; extract bit31 of Y
+ // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
+ SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
+ Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
+ } else {
+ // sll SllX, X, 1
+ // srl SrlX, SllX, 1
+ // srl SrlY, Y, 31
+ // sll SllY, SrlX, 31
+ // or Or, SrlX, SllY
+ SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
+ SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
+ SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
+ SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
+ Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
+ }
+
+ if (TyX == MVT::f32)
+ return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
+
+ SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
+ Op.getOperand(0),
+ DAG.getConstant(0, DL, MVT::i32));
+ return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
+}
+
+static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
+ bool HasExtractInsert) {
+ unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
+ unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
+ EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
+ SDLoc DL(Op);
+ SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
+
+ // Bitcast to integer nodes.
+ SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
+ SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
+
+ if (HasExtractInsert) {
+ // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
+ // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
+ SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
+ DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
+
+ if (WidthX > WidthY)
+ E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
+ else if (WidthY > WidthX)
+ E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
+
+ SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
+ DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
+ X);
+ return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
+ }
+
+ // (d)sll SllX, X, 1
+ // (d)srl SrlX, SllX, 1
+ // (d)srl SrlY, Y, width(Y)-1
+ // (d)sll SllY, SrlX, width(Y)-1
+ // or Or, SrlX, SllY
+ SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
+ SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
+ SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
+ DAG.getConstant(WidthY - 1, DL, MVT::i32));
+
+ if (WidthX > WidthY)
+ SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
+ else if (WidthY > WidthX)
+ SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
+
+ SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
+ DAG.getConstant(WidthX - 1, DL, MVT::i32));
+ SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
+ return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
+}
+
+SDValue
+MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
+ if (Subtarget.isGP64bit())
+ return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
+
+ return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
+}
+
+SDValue MipsTargetLowering::
+lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ // check the depth
+ assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
+ "Frame address can only be determined for current frame.");
+
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setFrameAddressIsTaken(true);
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ SDValue FrameAddr = DAG.getCopyFromReg(
+ DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
+ return FrameAddr;
+}
+
+SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ // check the depth
+ assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
+ "Return address can be determined only for current frame.");
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MVT VT = Op.getSimpleValueType();
+ unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
+ MFI.setReturnAddressIsTaken(true);
+
+ // Return RA, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
+ return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
+}
+
+// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
+// generated from __builtin_eh_return (offset, handler)
+// The effect of this is to adjust the stack pointer by "offset"
+// and then branch to "handler".
+SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
+ const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ MipsFI->setCallsEhReturn();
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ SDLoc DL(Op);
+ EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
+
+ // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
+ // EH_RETURN nodes, so that instructions are emitted back-to-back.
+ unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
+ unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
+ Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
+ Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
+ return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
+ DAG.getRegister(OffsetReg, Ty),
+ DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
+ Chain.getValue(1));
+}
+
+SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
+ SelectionDAG &DAG) const {
+ // FIXME: Need pseudo-fence for 'singlethread' fences
+ // FIXME: Set SType for weaker fences where supported/appropriate.
+ unsigned SType = 0;
+ SDLoc DL(Op);
+ return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(SType, DL, MVT::i32));
+}
+
+SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
+
+ SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
+ SDValue Shamt = Op.getOperand(2);
+ // if shamt < (VT.bits):
+ // lo = (shl lo, shamt)
+ // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
+ // else:
+ // lo = 0
+ // hi = (shl lo, shamt[4:0])
+ SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
+ DAG.getConstant(-1, DL, MVT::i32));
+ SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
+ DAG.getConstant(1, DL, VT));
+ SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
+ SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
+ SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
+ SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
+ SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
+ DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
+ Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
+ DAG.getConstant(0, DL, VT), ShiftLeftLo);
+ Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
+
+ SDValue Ops[2] = {Lo, Hi};
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
+ bool IsSRA) const {
+ SDLoc DL(Op);
+ SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
+ SDValue Shamt = Op.getOperand(2);
+ MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
+
+ // if shamt < (VT.bits):
+ // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
+ // if isSRA:
+ // hi = (sra hi, shamt)
+ // else:
+ // hi = (srl hi, shamt)
+ // else:
+ // if isSRA:
+ // lo = (sra hi, shamt[4:0])
+ // hi = (sra hi, 31)
+ // else:
+ // lo = (srl hi, shamt[4:0])
+ // hi = 0
+ SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
+ DAG.getConstant(-1, DL, MVT::i32));
+ SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
+ DAG.getConstant(1, DL, VT));
+ SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
+ SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
+ SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
+ SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
+ DL, VT, Hi, Shamt);
+ SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
+ DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
+ SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
+ DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
+
+ if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
+ SDVTList VTList = DAG.getVTList(VT, VT);
+ return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
+ : Mips::PseudoD_SELECT_I,
+ DL, VTList, Cond, ShiftRightHi,
+ IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
+ ShiftRightHi);
+ }
+
+ Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
+ Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
+ IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
+
+ SDValue Ops[2] = {Lo, Hi};
+ return DAG.getMergeValues(Ops, DL);
+}
+
+static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
+ SDValue Chain, SDValue Src, unsigned Offset) {
+ SDValue Ptr = LD->getBasePtr();
+ EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
+ EVT BasePtrVT = Ptr.getValueType();
+ SDLoc DL(LD);
+ SDVTList VTList = DAG.getVTList(VT, MVT::Other);
+
+ if (Offset)
+ Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
+ DAG.getConstant(Offset, DL, BasePtrVT));
+
+ SDValue Ops[] = { Chain, Ptr, Src };
+ return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
+ LD->getMemOperand());
+}
+
+// Expand an unaligned 32 or 64-bit integer load node.
+SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ EVT MemVT = LD->getMemoryVT();
+
+ if (Subtarget.systemSupportsUnalignedAccess())
+ return Op;
+
+ // Return if load is aligned or if MemVT is neither i32 nor i64.
+ if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
+ ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
+ return SDValue();
+
+ bool IsLittle = Subtarget.isLittle();
+ EVT VT = Op.getValueType();
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
+
+ assert((VT == MVT::i32) || (VT == MVT::i64));
+
+ // Expand
+ // (set dst, (i64 (load baseptr)))
+ // to
+ // (set tmp, (ldl (add baseptr, 7), undef))
+ // (set dst, (ldr baseptr, tmp))
+ if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
+ SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
+ IsLittle ? 7 : 0);
+ return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
+ IsLittle ? 0 : 7);
+ }
+
+ SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
+ IsLittle ? 3 : 0);
+ SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
+ IsLittle ? 0 : 3);
+
+ // Expand
+ // (set dst, (i32 (load baseptr))) or
+ // (set dst, (i64 (sextload baseptr))) or
+ // (set dst, (i64 (extload baseptr)))
+ // to
+ // (set tmp, (lwl (add baseptr, 3), undef))
+ // (set dst, (lwr baseptr, tmp))
+ if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
+ (ExtType == ISD::EXTLOAD))
+ return LWR;
+
+ assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
+
+ // Expand
+ // (set dst, (i64 (zextload baseptr)))
+ // to
+ // (set tmp0, (lwl (add baseptr, 3), undef))
+ // (set tmp1, (lwr baseptr, tmp0))
+ // (set tmp2, (shl tmp1, 32))
+ // (set dst, (srl tmp2, 32))
+ SDLoc DL(LD);
+ SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
+ SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
+ SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
+ SDValue Ops[] = { SRL, LWR.getValue(1) };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
+ SDValue Chain, unsigned Offset) {
+ SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
+ EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
+ SDLoc DL(SD);
+ SDVTList VTList = DAG.getVTList(MVT::Other);
+
+ if (Offset)
+ Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
+ DAG.getConstant(Offset, DL, BasePtrVT));
+
+ SDValue Ops[] = { Chain, Value, Ptr };
+ return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
+ SD->getMemOperand());
+}
+
+// Expand an unaligned 32 or 64-bit integer store node.
+static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
+ bool IsLittle) {
+ SDValue Value = SD->getValue(), Chain = SD->getChain();
+ EVT VT = Value.getValueType();
+
+ // Expand
+ // (store val, baseptr) or
+ // (truncstore val, baseptr)
+ // to
+ // (swl val, (add baseptr, 3))
+ // (swr val, baseptr)
+ if ((VT == MVT::i32) || SD->isTruncatingStore()) {
+ SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
+ IsLittle ? 3 : 0);
+ return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
+ }
+
+ assert(VT == MVT::i64);
+
+ // Expand
+ // (store val, baseptr)
+ // to
+ // (sdl val, (add baseptr, 7))
+ // (sdr val, baseptr)
+ SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
+ return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
+}
+
+// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
+static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
+ bool SingleFloat) {
+ SDValue Val = SD->getValue();
+
+ if (Val.getOpcode() != ISD::FP_TO_SINT ||
+ (Val.getValueSizeInBits() > 32 && SingleFloat))
+ return SDValue();
+
+ EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
+ SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
+ Val.getOperand(0));
+ return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
+ SD->getPointerInfo(), SD->getAlignment(),
+ SD->getMemOperand()->getFlags());
+}
+
+SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ StoreSDNode *SD = cast<StoreSDNode>(Op);
+ EVT MemVT = SD->getMemoryVT();
+
+ // Lower unaligned integer stores.
+ if (!Subtarget.systemSupportsUnalignedAccess() &&
+ (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
+ ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
+ return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
+
+ return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
+}
+
+SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ // Return a fixed StackObject with offset 0 which points to the old stack
+ // pointer.
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ EVT ValTy = Op->getValueType(0);
+ int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
+ return DAG.getFrameIndex(FI, ValTy);
+}
+
+SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
+ return SDValue();
+
+ EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
+ SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
+ Op.getOperand(0));
+ return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// TODO: Implement a generic logic using tblgen that can support this.
+// Mips O32 ABI rules:
+// ---
+// i32 - Passed in A0, A1, A2, A3 and stack
+// f32 - Only passed in f32 registers if no int reg has been used yet to hold
+// an argument. Otherwise, passed in A1, A2, A3 and stack.
+// f64 - Only passed in two aliased f32 registers if no int reg has been used
+// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
+// not used, it must be shadowed. If only A3 is available, shadow it and
+// go to stack.
+// vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
+// vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
+// with the remainder spilled to the stack.
+// vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
+// spilling the remainder to the stack.
+//
+// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
+//===----------------------------------------------------------------------===//
+
+static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
+ CCState &State, ArrayRef<MCPhysReg> F64Regs) {
+ const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
+ State.getMachineFunction().getSubtarget());
+
+ static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
+
+ const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
+
+ static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
+
+ static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
+
+ // Do not process byval args here.
+ if (ArgFlags.isByVal())
+ return true;
+
+ // Promote i8 and i16
+ if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
+ if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
+ LocVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExtUpper;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExtUpper;
+ else
+ LocInfo = CCValAssign::AExtUpper;
+ }
+ }
+
+ // Promote i8 and i16
+ if (LocVT == MVT::i8 || LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ }
+
+ unsigned Reg;
+
+ // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
+ // is true: function is vararg, argument is 3rd or higher, there is previous
+ // argument which is not f32 or f64.
+ bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
+ State.getFirstUnallocated(F32Regs) != ValNo;
+ unsigned OrigAlign = ArgFlags.getOrigAlign();
+ bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
+ bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
+
+ // The MIPS vector ABI for floats passes them in a pair of registers
+ if (ValVT == MVT::i32 && isVectorFloat) {
+ // This is the start of an vector that was scalarized into an unknown number
+ // of components. It doesn't matter how many there are. Allocate one of the
+ // notional 8 byte aligned registers which map onto the argument stack, and
+ // shadow the register lost to alignment requirements.
+ if (ArgFlags.isSplit()) {
+ Reg = State.AllocateReg(FloatVectorIntRegs);
+ if (Reg == Mips::A2)
+ State.AllocateReg(Mips::A1);
+ else if (Reg == 0)
+ State.AllocateReg(Mips::A3);
+ } else {
+ // If we're an intermediate component of the split, we can just attempt to
+ // allocate a register directly.
+ Reg = State.AllocateReg(IntRegs);
+ }
+ } else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
+ Reg = State.AllocateReg(IntRegs);
+ // If this is the first part of an i64 arg,
+ // the allocated register must be either A0 or A2.
+ if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
+ Reg = State.AllocateReg(IntRegs);
+ LocVT = MVT::i32;
+ } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
+ // Allocate int register and shadow next int register. If first
+ // available register is Mips::A1 or Mips::A3, shadow it too.
+ Reg = State.AllocateReg(IntRegs);
+ if (Reg == Mips::A1 || Reg == Mips::A3)
+ Reg = State.AllocateReg(IntRegs);
+ State.AllocateReg(IntRegs);
+ LocVT = MVT::i32;
+ } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
+ // we are guaranteed to find an available float register
+ if (ValVT == MVT::f32) {
+ Reg = State.AllocateReg(F32Regs);
+ // Shadow int register
+ State.AllocateReg(IntRegs);
+ } else {
+ Reg = State.AllocateReg(F64Regs);
+ // Shadow int registers
+ unsigned Reg2 = State.AllocateReg(IntRegs);
+ if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
+ State.AllocateReg(IntRegs);
+ State.AllocateReg(IntRegs);
+ }
+ } else
+ llvm_unreachable("Cannot handle this ValVT.");
+
+ if (!Reg) {
+ unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ } else
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+
+ return false;
+}
+
+static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
+
+ return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
+}
+
+static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
+
+ return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
+}
+
+static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
+ CCState &State) LLVM_ATTRIBUTE_UNUSED;
+
+#include "MipsGenCallingConv.inc"
+
+ CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
+ return CC_Mips;
+ }
+
+ CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
+ return RetCC_Mips;
+ }
+//===----------------------------------------------------------------------===//
+// Call Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+// Return next O32 integer argument register.
+static unsigned getNextIntArgReg(unsigned Reg) {
+ assert((Reg == Mips::A0) || (Reg == Mips::A2));
+ return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
+}
+
+SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
+ SDValue Chain, SDValue Arg,
+ const SDLoc &DL, bool IsTailCall,
+ SelectionDAG &DAG) const {
+ if (!IsTailCall) {
+ SDValue PtrOff =
+ DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
+ DAG.getIntPtrConstant(Offset, DL));
+ return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
+ }
+
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
+ /* Alignment = */ 0, MachineMemOperand::MOVolatile);
+}
+
+void MipsTargetLowering::
+getOpndList(SmallVectorImpl<SDValue> &Ops,
+ std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
+ bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
+ bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
+ SDValue Chain) const {
+ // Insert node "GP copy globalreg" before call to function.
+ //
+ // R_MIPS_CALL* operators (emitted when non-internal functions are called
+ // in PIC mode) allow symbols to be resolved via lazy binding.
+ // The lazy binding stub requires GP to point to the GOT.
+ // Note that we don't need GP to point to the GOT for indirect calls
+ // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
+ // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
+ // used for the function (that is, Mips linker doesn't generate lazy binding
+ // stub for a function whose address is taken in the program).
+ if (IsPICCall && !InternalLinkage && IsCallReloc) {
+ unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
+ EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
+ RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
+ }
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emitted instructions must be
+ // stuck together.
+ SDValue InFlag;
+
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const uint32_t *Mask =
+ TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+ if (Subtarget.inMips16HardFloat()) {
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
+ StringRef Sym = G->getGlobal()->getName();
+ Function *F = G->getGlobal()->getParent()->getFunction(Sym);
+ if (F && F->hasFnAttribute("__Mips16RetHelper")) {
+ Mask = MipsRegisterInfo::getMips16RetHelperMask();
+ }
+ }
+ }
+ Ops.push_back(CLI.DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+}
+
+void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
+ SDNode *Node) const {
+ switch (MI.getOpcode()) {
+ default:
+ return;
+ case Mips::JALR:
+ case Mips::JALRPseudo:
+ case Mips::JALR64:
+ case Mips::JALR64Pseudo:
+ case Mips::JALR16_MM:
+ case Mips::JALRC16_MMR6:
+ case Mips::TAILCALLREG:
+ case Mips::TAILCALLREG64:
+ case Mips::TAILCALLR6REG:
+ case Mips::TAILCALL64R6REG:
+ case Mips::TAILCALLREG_MM:
+ case Mips::TAILCALLREG_MMR6: {
+ if (!EmitJalrReloc ||
+ Subtarget.inMips16Mode() ||
+ !isPositionIndependent() ||
+ Node->getNumOperands() < 1 ||
+ Node->getOperand(0).getNumOperands() < 2) {
+ return;
+ }
+ // We are after the callee address, set by LowerCall().
+ // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
+ // symbol.
+ const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
+ StringRef Sym;
+ if (const GlobalAddressSDNode *G =
+ dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
+ Sym = G->getGlobal()->getName();
+ }
+ else if (const ExternalSymbolSDNode *ES =
+ dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
+ Sym = ES->getSymbol();
+ }
+
+ if (Sym.empty())
+ return;
+
+ MachineFunction *MF = MI.getParent()->getParent();
+ MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
+ MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
+ }
+ }
+}
+
+/// LowerCall - functions arguments are copied from virtual regs to
+/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
+SDValue
+MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc DL = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &IsTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool IsVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
+ MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
+ bool IsPIC = isPositionIndependent();
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ MipsCCState CCInfo(
+ CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
+ MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
+
+ const ExternalSymbolSDNode *ES =
+ dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
+
+ // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
+ // is during the lowering of a call with a byval argument which produces
+ // a call to memcpy. For the O32 case, this causes the caller to allocate
+ // stack space for the reserved argument area for the callee, then recursively
+ // again for the memcpy call. In the NEWABI case, this doesn't occur as those
+ // ABIs mandate that the callee allocates the reserved argument area. We do
+ // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
+ //
+ // If the callee has a byval argument and memcpy is used, we are mandated
+ // to already have produced a reserved argument area for the callee for O32.
+ // Therefore, the reserved argument area can be reused for both calls.
+ //
+ // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
+ // present, as we have yet to hook that node onto the chain.
+ //
+ // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
+ // case. GCC does a similar trick, in that wherever possible, it calculates
+ // the maximum out going argument area (including the reserved area), and
+ // preallocates the stack space on entrance to the caller.
+ //
+ // FIXME: We should do the same for efficiency and space.
+
+ // Note: The check on the calling convention below must match
+ // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
+ bool MemcpyInByVal = ES &&
+ StringRef(ES->getSymbol()) == StringRef("memcpy") &&
+ CallConv != CallingConv::Fast &&
+ Chain.getOpcode() == ISD::CALLSEQ_START;
+
+ // Allocate the reserved argument area. It seems strange to do this from the
+ // caller side but removing it breaks the frame size calculation.
+ unsigned ReservedArgArea =
+ MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
+ CCInfo.AllocateStack(ReservedArgArea, 1);
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
+ ES ? ES->getSymbol() : nullptr);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NextStackOffset = CCInfo.getNextStackOffset();
+
+ // Check if it's really possible to do a tail call. Restrict it to functions
+ // that are part of this compilation unit.
+ bool InternalLinkage = false;
+ if (IsTailCall) {
+ IsTailCall = isEligibleForTailCallOptimization(
+ CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ InternalLinkage = G->getGlobal()->hasInternalLinkage();
+ IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
+ G->getGlobal()->hasPrivateLinkage() ||
+ G->getGlobal()->hasHiddenVisibility() ||
+ G->getGlobal()->hasProtectedVisibility());
+ }
+ }
+ if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
+ report_fatal_error("failed to perform tail call elimination on a call "
+ "site marked musttail");
+
+ if (IsTailCall)
+ ++NumTailCalls;
+
+ // Chain is the output chain of the last Load/Store or CopyToReg node.
+ // ByValChain is the output chain of the last Memcpy node created for copying
+ // byval arguments to the stack.
+ unsigned StackAlignment = TFL->getStackAlignment();
+ NextStackOffset = alignTo(NextStackOffset, StackAlignment);
+ SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
+
+ if (!(IsTailCall || MemcpyInByVal))
+ Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
+
+ SDValue StackPtr =
+ DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
+ getPointerTy(DAG.getDataLayout()));
+
+ std::deque<std::pair<unsigned, SDValue>> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ CCInfo.rewindByValRegsInfo();
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ SDValue Arg = OutVals[i];
+ CCValAssign &VA = ArgLocs[i];
+ MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ bool UseUpperBits = false;
+
+ // ByVal Arg.
+ if (Flags.isByVal()) {
+ unsigned FirstByValReg, LastByValReg;
+ unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
+ CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
+
+ assert(Flags.getByValSize() &&
+ "ByVal args of size 0 should have been ignored by front-end.");
+ assert(ByValIdx < CCInfo.getInRegsParamsCount());
+ assert(!IsTailCall &&
+ "Do not tail-call optimize if there is a byval argument.");
+ passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
+ FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
+ VA);
+ CCInfo.nextInRegsParam();
+ continue;
+ }
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ if (VA.isRegLoc()) {
+ if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
+ (ValVT == MVT::f64 && LocVT == MVT::i64) ||
+ (ValVT == MVT::i64 && LocVT == MVT::f64))
+ Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
+ else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
+ SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
+ Arg, DAG.getConstant(0, DL, MVT::i32));
+ SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
+ Arg, DAG.getConstant(1, DL, MVT::i32));
+ if (!Subtarget.isLittle())
+ std::swap(Lo, Hi);
+ unsigned LocRegLo = VA.getLocReg();
+ unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
+ RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
+ RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
+ continue;
+ }
+ }
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
+ break;
+ case CCValAssign::SExtUpper:
+ UseUpperBits = true;
+ LLVM_FALLTHROUGH;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
+ break;
+ case CCValAssign::ZExtUpper:
+ UseUpperBits = true;
+ LLVM_FALLTHROUGH;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
+ break;
+ case CCValAssign::AExtUpper:
+ UseUpperBits = true;
+ LLVM_FALLTHROUGH;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
+ break;
+ }
+
+ if (UseUpperBits) {
+ unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
+ unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
+ Arg = DAG.getNode(
+ ISD::SHL, DL, VA.getLocVT(), Arg,
+ DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
+ }
+
+ // Arguments that can be passed on register must be kept at
+ // RegsToPass vector
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ continue;
+ }
+
+ // Register can't get to this point...
+ assert(VA.isMemLoc());
+
+ // emit ISD::STORE whichs stores the
+ // parameter value to a stack Location
+ MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
+ Chain, Arg, DL, IsTailCall, DAG));
+ }
+
+ // Transform all store nodes into one single node because all store
+ // nodes are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+
+ EVT Ty = Callee.getValueType();
+ bool GlobalOrExternal = false, IsCallReloc = false;
+
+ // The long-calls feature is ignored in case of PIC.
+ // While we do not support -mshared / -mno-shared properly,
+ // ignore long-calls in case of -mabicalls too.
+ if (!Subtarget.isABICalls() && !IsPIC) {
+ // If the function should be called using "long call",
+ // get its address into a register to prevent using
+ // of the `jal` instruction for the direct call.
+ if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ if (Subtarget.useLongCalls())
+ Callee = Subtarget.hasSym32()
+ ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
+ : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
+ } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ bool UseLongCalls = Subtarget.useLongCalls();
+ // If the function has long-call/far/near attribute
+ // it overrides command line switch pased to the backend.
+ if (auto *F = dyn_cast<Function>(N->getGlobal())) {
+ if (F->hasFnAttribute("long-call"))
+ UseLongCalls = true;
+ else if (F->hasFnAttribute("short-call"))
+ UseLongCalls = false;
+ }
+ if (UseLongCalls)
+ Callee = Subtarget.hasSym32()
+ ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
+ : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
+ }
+ }
+
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ if (IsPIC) {
+ const GlobalValue *Val = G->getGlobal();
+ InternalLinkage = Val->hasInternalLinkage();
+
+ if (InternalLinkage)
+ Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
+ else if (LargeGOT) {
+ Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
+ MipsII::MO_CALL_LO16, Chain,
+ FuncInfo->callPtrInfo(Val));
+ IsCallReloc = true;
+ } else {
+ Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
+ FuncInfo->callPtrInfo(Val));
+ IsCallReloc = true;
+ }
+ } else
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
+ getPointerTy(DAG.getDataLayout()), 0,
+ MipsII::MO_NO_FLAG);
+ GlobalOrExternal = true;
+ }
+ else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+
+ if (!IsPIC) // static
+ Callee = DAG.getTargetExternalSymbol(
+ Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
+ else if (LargeGOT) {
+ Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
+ MipsII::MO_CALL_LO16, Chain,
+ FuncInfo->callPtrInfo(Sym));
+ IsCallReloc = true;
+ } else { // PIC
+ Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
+ FuncInfo->callPtrInfo(Sym));
+ IsCallReloc = true;
+ }
+
+ GlobalOrExternal = true;
+ }
+
+ SmallVector<SDValue, 8> Ops(1, Chain);
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
+ IsCallReloc, CLI, Callee, Chain);
+
+ if (IsTailCall) {
+ MF.getFrameInfo().setHasTailCall();
+ return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
+ }
+
+ Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
+ SDValue InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node in the case of where it is not a call to
+ // memcpy.
+ if (!(MemcpyInByVal)) {
+ Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
+ DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
+ InVals, CLI);
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue MipsTargetLowering::LowerCallResult(
+ SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
+ TargetLowering::CallLoweringInfo &CLI) const {
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ const ExternalSymbolSDNode *ES =
+ dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
+ ES ? ES->getSymbol() : nullptr);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
+ RVLocs[i].getLocVT(), InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+
+ if (VA.isUpperBitsInLoc()) {
+ unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
+ unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
+ unsigned Shift =
+ VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
+ Val = DAG.getNode(
+ Shift, DL, VA.getLocVT(), Val,
+ DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
+ }
+
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
+ break;
+ case CCValAssign::AExt:
+ case CCValAssign::AExtUpper:
+ Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
+ break;
+ case CCValAssign::ZExt:
+ case CCValAssign::ZExtUpper:
+ Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
+ DAG.getValueType(VA.getValVT()));
+ Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
+ break;
+ case CCValAssign::SExt:
+ case CCValAssign::SExtUpper:
+ Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
+ DAG.getValueType(VA.getValVT()));
+ Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
+ EVT ArgVT, const SDLoc &DL,
+ SelectionDAG &DAG) {
+ MVT LocVT = VA.getLocVT();
+ EVT ValVT = VA.getValVT();
+
+ // Shift into the upper bits if necessary.
+ switch (VA.getLocInfo()) {
+ default:
+ break;
+ case CCValAssign::AExtUpper:
+ case CCValAssign::SExtUpper:
+ case CCValAssign::ZExtUpper: {
+ unsigned ValSizeInBits = ArgVT.getSizeInBits();
+ unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
+ unsigned Opcode =
+ VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
+ Val = DAG.getNode(
+ Opcode, DL, VA.getLocVT(), Val,
+ DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
+ break;
+ }
+ }
+
+ // If this is an value smaller than the argument slot size (32-bit for O32,
+ // 64-bit for N32/N64), it has been promoted in some way to the argument slot
+ // size. Extract the value and insert any appropriate assertions regarding
+ // sign/zero extension.
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::AExtUpper:
+ case CCValAssign::AExt:
+ Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
+ break;
+ case CCValAssign::SExtUpper:
+ case CCValAssign::SExt:
+ Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
+ Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
+ break;
+ case CCValAssign::ZExtUpper:
+ case CCValAssign::ZExt:
+ Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
+ Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
+ break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
+ break;
+ }
+
+ return Val;
+}
+
+//===----------------------------------------------------------------------===//
+// Formal Arguments Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+/// LowerFormalArguments - transform physical registers into virtual registers
+/// and generate load operations for arguments places on the stack.
+SDValue MipsTargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ MipsFI->setVarArgsFrameIndex(0);
+
+ // Used with vargs to acumulate store chains.
+ std::vector<SDValue> OutChains;
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
+ const Function &Func = DAG.getMachineFunction().getFunction();
+ Function::const_arg_iterator FuncArg = Func.arg_begin();
+
+ if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
+ report_fatal_error(
+ "Functions with the interrupt attribute cannot have arguments!");
+
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
+ MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
+ CCInfo.getInRegsParamsCount() > 0);
+
+ unsigned CurArgIdx = 0;
+ CCInfo.rewindByValRegsInfo();
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (Ins[i].isOrigArg()) {
+ std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
+ CurArgIdx = Ins[i].getOrigArgIndex();
+ }
+ EVT ValVT = VA.getValVT();
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ bool IsRegLoc = VA.isRegLoc();
+
+ if (Flags.isByVal()) {
+ assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
+ unsigned FirstByValReg, LastByValReg;
+ unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
+ CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
+
+ assert(Flags.getByValSize() &&
+ "ByVal args of size 0 should have been ignored by front-end.");
+ assert(ByValIdx < CCInfo.getInRegsParamsCount());
+ copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
+ FirstByValReg, LastByValReg, VA, CCInfo);
+ CCInfo.nextInRegsParam();
+ continue;
+ }
+
+ // Arguments stored on registers
+ if (IsRegLoc) {
+ MVT RegVT = VA.getLocVT();
+ unsigned ArgReg = VA.getLocReg();
+ const TargetRegisterClass *RC = getRegClassFor(RegVT);
+
+ // Transform the arguments stored on
+ // physical registers into virtual ones
+ unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
+
+ ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
+
+ // Handle floating point arguments passed in integer registers and
+ // long double arguments passed in floating point registers.
+ if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
+ (RegVT == MVT::i64 && ValVT == MVT::f64) ||
+ (RegVT == MVT::f64 && ValVT == MVT::i64))
+ ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
+ else if (ABI.IsO32() && RegVT == MVT::i32 &&
+ ValVT == MVT::f64) {
+ unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
+ getNextIntArgReg(ArgReg), RC);
+ SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
+ if (!Subtarget.isLittle())
+ std::swap(ArgValue, ArgValue2);
+ ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
+ ArgValue, ArgValue2);
+ }
+
+ InVals.push_back(ArgValue);
+ } else { // VA.isRegLoc()
+ MVT LocVT = VA.getLocVT();
+
+ if (ABI.IsO32()) {
+ // We ought to be able to use LocVT directly but O32 sets it to i32
+ // when allocating floating point values to integer registers.
+ // This shouldn't influence how we load the value into registers unless
+ // we are targeting softfloat.
+ if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
+ LocVT = VA.getValVT();
+ }
+
+ // sanity check
+ assert(VA.isMemLoc());
+
+ // The stack pointer offset is relative to the caller stack frame.
+ int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
+ VA.getLocMemOffset(), true);
+
+ // Create load nodes to retrieve arguments from the stack
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ SDValue ArgValue = DAG.getLoad(
+ LocVT, DL, Chain, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
+ OutChains.push_back(ArgValue.getValue(1));
+
+ ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
+
+ InVals.push_back(ArgValue);
+ }
+ }
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ // The mips ABIs for returning structs by value requires that we copy
+ // the sret argument into $v0 for the return. Save the argument into
+ // a virtual register so that we can access it from the return points.
+ if (Ins[i].Flags.isSRet()) {
+ unsigned Reg = MipsFI->getSRetReturnReg();
+ if (!Reg) {
+ Reg = MF.getRegInfo().createVirtualRegister(
+ getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
+ MipsFI->setSRetReturnReg(Reg);
+ }
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
+ break;
+ }
+ }
+
+ if (IsVarArg)
+ writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
+
+ // All stores are grouped in one node to allow the matching between
+ // the size of Ins and InVals. This only happens when on varg functions
+ if (!OutChains.empty()) {
+ OutChains.push_back(Chain);
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+bool
+MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, RetCC_Mips);
+}
+
+bool
+MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
+ if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
+ return true;
+
+ return IsSigned;
+}
+
+SDValue
+MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
+ const SDLoc &DL,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ MipsFI->setISR();
+
+ return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
+}
+
+SDValue
+MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool IsVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &DL, SelectionDAG &DAG) const {
+ // CCValAssign - represent the assignment of
+ // the return value to a location
+ SmallVector<CCValAssign, 16> RVLocs;
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // CCState - Info about the registers and stack slot.
+ MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
+
+ // Analyze return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ SDValue Val = OutVals[i];
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ bool UseUpperBits = false;
+
+ switch (VA.getLocInfo()) {
+ default:
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
+ break;
+ case CCValAssign::AExtUpper:
+ UseUpperBits = true;
+ LLVM_FALLTHROUGH;
+ case CCValAssign::AExt:
+ Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
+ break;
+ case CCValAssign::ZExtUpper:
+ UseUpperBits = true;
+ LLVM_FALLTHROUGH;
+ case CCValAssign::ZExt:
+ Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
+ break;
+ case CCValAssign::SExtUpper:
+ UseUpperBits = true;
+ LLVM_FALLTHROUGH;
+ case CCValAssign::SExt:
+ Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
+ break;
+ }
+
+ if (UseUpperBits) {
+ unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
+ unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
+ Val = DAG.getNode(
+ ISD::SHL, DL, VA.getLocVT(), Val,
+ DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
+ }
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
+
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // The mips ABIs for returning structs by value requires that we copy
+ // the sret argument into $v0 for the return. We saved the argument into
+ // a virtual register in the entry block, so now we copy the value out
+ // and into $v0.
+ if (MF.getFunction().hasStructRetAttr()) {
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+ unsigned Reg = MipsFI->getSRetReturnReg();
+
+ if (!Reg)
+ llvm_unreachable("sret virtual register not created in the entry block");
+ SDValue Val =
+ DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
+ unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
+
+ Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ // ISRs must use "eret".
+ if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
+ return LowerInterruptReturn(RetOps, DL, DAG);
+
+ // Standard return on Mips is a "jr $ra"
+ return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
+}
+
+//===----------------------------------------------------------------------===//
+// Mips Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+MipsTargetLowering::ConstraintType
+MipsTargetLowering::getConstraintType(StringRef Constraint) const {
+ // Mips specific constraints
+ // GCC config/mips/constraints.md
+ //
+ // 'd' : An address register. Equivalent to r
+ // unless generating MIPS16 code.
+ // 'y' : Equivalent to r; retained for
+ // backwards compatibility.
+ // 'c' : A register suitable for use in an indirect
+ // jump. This will always be $25 for -mabicalls.
+ // 'l' : The lo register. 1 word storage.
+ // 'x' : The hilo register pair. Double word storage.
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default : break;
+ case 'd':
+ case 'y':
+ case 'f':
+ case 'c':
+ case 'l':
+ case 'x':
+ return C_RegisterClass;
+ case 'R':
+ return C_Memory;
+ }
+ }
+
+ if (Constraint == "ZC")
+ return C_Memory;
+
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+MipsTargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'd':
+ case 'y':
+ if (type->isIntegerTy())
+ weight = CW_Register;
+ break;
+ case 'f': // FPU or MSA register
+ if (Subtarget.hasMSA() && type->isVectorTy() &&
+ cast<VectorType>(type)->getBitWidth() == 128)
+ weight = CW_Register;
+ else if (type->isFloatTy())
+ weight = CW_Register;
+ break;
+ case 'c': // $25 for indirect jumps
+ case 'l': // lo register
+ case 'x': // hilo register pair
+ if (type->isIntegerTy())
+ weight = CW_SpecificReg;
+ break;
+ case 'I': // signed 16 bit immediate
+ case 'J': // integer zero
+ case 'K': // unsigned 16 bit immediate
+ case 'L': // signed 32 bit immediate where lower 16 bits are 0
+ case 'N': // immediate in the range of -65535 to -1 (inclusive)
+ case 'O': // signed 15 bit immediate (+- 16383)
+ case 'P': // immediate in the range of 65535 to 1 (inclusive)
+ if (isa<ConstantInt>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 'R':
+ weight = CW_Memory;
+ break;
+ }
+ return weight;
+}
+
+/// This is a helper function to parse a physical register string and split it
+/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
+/// that is returned indicates whether parsing was successful. The second flag
+/// is true if the numeric part exists.
+static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
+ unsigned long long &Reg) {
+ if (C.front() != '{' || C.back() != '}')
+ return std::make_pair(false, false);
+
+ // Search for the first numeric character.
+ StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
+ I = std::find_if(B, E, isdigit);
+
+ Prefix = StringRef(B, I - B);
+
+ // The second flag is set to false if no numeric characters were found.
+ if (I == E)
+ return std::make_pair(true, false);
+
+ // Parse the numeric characters.
+ return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
+ true);
+}
+
+EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
+ ISD::NodeType) const {
+ bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
+ EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
+ return VT.bitsLT(MinVT) ? MinVT : VT;
+}
+
+std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
+parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
+ const TargetRegisterInfo *TRI =
+ Subtarget.getRegisterInfo();
+ const TargetRegisterClass *RC;
+ StringRef Prefix;
+ unsigned long long Reg;
+
+ std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
+
+ if (!R.first)
+ return std::make_pair(0U, nullptr);
+
+ if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
+ // No numeric characters follow "hi" or "lo".
+ if (R.second)
+ return std::make_pair(0U, nullptr);
+
+ RC = TRI->getRegClass(Prefix == "hi" ?
+ Mips::HI32RegClassID : Mips::LO32RegClassID);
+ return std::make_pair(*(RC->begin()), RC);
+ } else if (Prefix.startswith("$msa")) {
+ // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
+
+ // No numeric characters follow the name.
+ if (R.second)
+ return std::make_pair(0U, nullptr);
+
+ Reg = StringSwitch<unsigned long long>(Prefix)
+ .Case("$msair", Mips::MSAIR)
+ .Case("$msacsr", Mips::MSACSR)
+ .Case("$msaaccess", Mips::MSAAccess)
+ .Case("$msasave", Mips::MSASave)
+ .Case("$msamodify", Mips::MSAModify)
+ .Case("$msarequest", Mips::MSARequest)
+ .Case("$msamap", Mips::MSAMap)
+ .Case("$msaunmap", Mips::MSAUnmap)
+ .Default(0);
+
+ if (!Reg)
+ return std::make_pair(0U, nullptr);
+
+ RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
+ return std::make_pair(Reg, RC);
+ }
+
+ if (!R.second)
+ return std::make_pair(0U, nullptr);
+
+ if (Prefix == "$f") { // Parse $f0-$f31.
+ // If the size of FP registers is 64-bit or Reg is an even number, select
+ // the 64-bit register class. Otherwise, select the 32-bit register class.
+ if (VT == MVT::Other)
+ VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
+
+ RC = getRegClassFor(VT);
+
+ if (RC == &Mips::AFGR64RegClass) {
+ assert(Reg % 2 == 0);
+ Reg >>= 1;
+ }
+ } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
+ RC = TRI->getRegClass(Mips::FCCRegClassID);
+ else if (Prefix == "$w") { // Parse $w0-$w31.
+ RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
+ } else { // Parse $0-$31.
+ assert(Prefix == "$");
+ RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
+ }
+
+ assert(Reg < RC->getNumRegs());
+ return std::make_pair(*(RC->begin() + Reg), RC);
+}
+
+/// Given a register class constraint, like 'r', if this corresponds directly
+/// to an LLVM register class, return a register of 0 and the register class
+/// pointer.
+std::pair<unsigned, const TargetRegisterClass *>
+MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+ StringRef Constraint,
+ MVT VT) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
+ case 'y': // Same as 'r'. Exists for compatibility.
+ case 'r':
+ if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
+ if (Subtarget.inMips16Mode())
+ return std::make_pair(0U, &Mips::CPU16RegsRegClass);
+ return std::make_pair(0U, &Mips::GPR32RegClass);
+ }
+ if (VT == MVT::i64 && !Subtarget.isGP64bit())
+ return std::make_pair(0U, &Mips::GPR32RegClass);
+ if (VT == MVT::i64 && Subtarget.isGP64bit())
+ return std::make_pair(0U, &Mips::GPR64RegClass);
+ // This will generate an error message
+ return std::make_pair(0U, nullptr);
+ case 'f': // FPU or MSA register
+ if (VT == MVT::v16i8)
+ return std::make_pair(0U, &Mips::MSA128BRegClass);
+ else if (VT == MVT::v8i16 || VT == MVT::v8f16)
+ return std::make_pair(0U, &Mips::MSA128HRegClass);
+ else if (VT == MVT::v4i32 || VT == MVT::v4f32)
+ return std::make_pair(0U, &Mips::MSA128WRegClass);
+ else if (VT == MVT::v2i64 || VT == MVT::v2f64)
+ return std::make_pair(0U, &Mips::MSA128DRegClass);
+ else if (VT == MVT::f32)
+ return std::make_pair(0U, &Mips::FGR32RegClass);
+ else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
+ if (Subtarget.isFP64bit())
+ return std::make_pair(0U, &Mips::FGR64RegClass);
+ return std::make_pair(0U, &Mips::AFGR64RegClass);
+ }
+ break;
+ case 'c': // register suitable for indirect jump
+ if (VT == MVT::i32)
+ return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
+ if (VT == MVT::i64)
+ return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
+ // This will generate an error message
+ return std::make_pair(0U, nullptr);
+ case 'l': // use the `lo` register to store values
+ // that are no bigger than a word
+ if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
+ return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
+ return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
+ case 'x': // use the concatenated `hi` and `lo` registers
+ // to store doubleword values
+ // Fixme: Not triggering the use of both hi and low
+ // This will generate an error message
+ return std::make_pair(0U, nullptr);
+ }
+ }
+
+ std::pair<unsigned, const TargetRegisterClass *> R;
+ R = parseRegForInlineAsmConstraint(Constraint, VT);
+
+ if (R.second)
+ return R;
+
+ return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Result;
+
+ // Only support length 1 constraints for now.
+ if (Constraint.length() > 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break; // This will fall through to the generic implementation
+ case 'I': // Signed 16 bit constant
+ // If this fails, the parent routine will give an error
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if (isInt<16>(Val)) {
+ Result = DAG.getTargetConstant(Val, DL, Type);
+ break;
+ }
+ }
+ return;
+ case 'J': // integer zero
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getZExtValue();
+ if (Val == 0) {
+ Result = DAG.getTargetConstant(0, DL, Type);
+ break;
+ }
+ }
+ return;
+ case 'K': // unsigned 16 bit immediate
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ uint64_t Val = (uint64_t)C->getZExtValue();
+ if (isUInt<16>(Val)) {
+ Result = DAG.getTargetConstant(Val, DL, Type);
+ break;
+ }
+ }
+ return;
+ case 'L': // signed 32 bit immediate where lower 16 bits are 0
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
+ Result = DAG.getTargetConstant(Val, DL, Type);
+ break;
+ }
+ }
+ return;
+ case 'N': // immediate in the range of -65535 to -1 (inclusive)
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if ((Val >= -65535) && (Val <= -1)) {
+ Result = DAG.getTargetConstant(Val, DL, Type);
+ break;
+ }
+ }
+ return;
+ case 'O': // signed 15 bit immediate
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if ((isInt<15>(Val))) {
+ Result = DAG.getTargetConstant(Val, DL, Type);
+ break;
+ }
+ }
+ return;
+ case 'P': // immediate in the range of 1 to 65535 (inclusive)
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ EVT Type = Op.getValueType();
+ int64_t Val = C->getSExtValue();
+ if ((Val <= 65535) && (Val >= 1)) {
+ Result = DAG.getTargetConstant(Val, DL, Type);
+ break;
+ }
+ }
+ return;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+
+ TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS, Instruction *I) const {
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (!AM.HasBaseReg) // allow "r+i".
+ break;
+ return false; // disallow "r+r" or "r+r+i".
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+bool
+MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The Mips target isn't yet aware of offsets.
+ return false;
+}
+
+EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
+ unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ if (Subtarget.hasMips64())
+ return MVT::i64;
+
+ return MVT::i32;
+}
+
+bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return false;
+ if (Imm.isNegZero())
+ return false;
+ return Imm.isZero();
+}
+
+unsigned MipsTargetLowering::getJumpTableEncoding() const {
+
+ // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
+ if (ABI.IsN64() && isPositionIndependent())
+ return MachineJumpTableInfo::EK_GPRel64BlockAddress;
+
+ return TargetLowering::getJumpTableEncoding();
+}
+
+bool MipsTargetLowering::useSoftFloat() const {
+ return Subtarget.useSoftFloat();
+}
+
+void MipsTargetLowering::copyByValRegs(
+ SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
+ SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
+ SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
+ unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
+ MipsCCState &State) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
+ unsigned NumRegs = LastReg - FirstReg;
+ unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
+ unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
+ int FrameObjOffset;
+ ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
+
+ if (RegAreaSize)
+ FrameObjOffset =
+ (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
+ (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
+ else
+ FrameObjOffset = VA.getLocMemOffset();
+
+ // Create frame object.
+ EVT PtrTy = getPointerTy(DAG.getDataLayout());
+ // Make the fixed object stored to mutable so that the load instructions
+ // referencing it have their memory dependencies added.
+ // Set the frame object as isAliased which clears the underlying objects
+ // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
+ // stores as dependencies for loads referencing this fixed object.
+ int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
+ InVals.push_back(FIN);
+
+ if (!NumRegs)
+ return;
+
+ // Copy arg registers.
+ MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
+ const TargetRegisterClass *RC = getRegClassFor(RegTy);
+
+ for (unsigned I = 0; I < NumRegs; ++I) {
+ unsigned ArgReg = ByValArgRegs[FirstReg + I];
+ unsigned VReg = addLiveIn(MF, ArgReg, RC);
+ unsigned Offset = I * GPRSizeInBytes;
+ SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
+ DAG.getConstant(Offset, DL, PtrTy));
+ SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
+ StorePtr, MachinePointerInfo(FuncArg, Offset));
+ OutChains.push_back(Store);
+ }
+}
+
+// Copy byVal arg to registers and stack.
+void MipsTargetLowering::passByValArg(
+ SDValue Chain, const SDLoc &DL,
+ std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
+ SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
+ MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
+ unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
+ const CCValAssign &VA) const {
+ unsigned ByValSizeInBytes = Flags.getByValSize();
+ unsigned OffsetInBytes = 0; // From beginning of struct
+ unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
+ unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
+ EVT PtrTy = getPointerTy(DAG.getDataLayout()),
+ RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
+ unsigned NumRegs = LastReg - FirstReg;
+
+ if (NumRegs) {
+ ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
+ bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
+ unsigned I = 0;
+
+ // Copy words to registers.
+ for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
+ SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
+ DAG.getConstant(OffsetInBytes, DL, PtrTy));
+ SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
+ MachinePointerInfo(), Alignment);
+ MemOpChains.push_back(LoadVal.getValue(1));
+ unsigned ArgReg = ArgRegs[FirstReg + I];
+ RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
+ }
+
+ // Return if the struct has been fully copied.
+ if (ByValSizeInBytes == OffsetInBytes)
+ return;
+
+ // Copy the remainder of the byval argument with sub-word loads and shifts.
+ if (LeftoverBytes) {
+ SDValue Val;
+
+ for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
+ OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
+ unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
+
+ if (RemainingSizeInBytes < LoadSizeInBytes)
+ continue;
+
+ // Load subword.
+ SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
+ DAG.getConstant(OffsetInBytes, DL,
+ PtrTy));
+ SDValue LoadVal = DAG.getExtLoad(
+ ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
+ MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
+ MemOpChains.push_back(LoadVal.getValue(1));
+
+ // Shift the loaded value.
+ unsigned Shamt;
+
+ if (isLittle)
+ Shamt = TotalBytesLoaded * 8;
+ else
+ Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
+
+ SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
+ DAG.getConstant(Shamt, DL, MVT::i32));
+
+ if (Val.getNode())
+ Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
+ else
+ Val = Shift;
+
+ OffsetInBytes += LoadSizeInBytes;
+ TotalBytesLoaded += LoadSizeInBytes;
+ Alignment = std::min(Alignment, LoadSizeInBytes);
+ }
+
+ unsigned ArgReg = ArgRegs[FirstReg + I];
+ RegsToPass.push_back(std::make_pair(ArgReg, Val));
+ return;
+ }
+ }
+
+ // Copy remainder of byval arg to it with memcpy.
+ unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
+ SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
+ DAG.getConstant(OffsetInBytes, DL, PtrTy));
+ SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
+ DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
+ Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
+ DAG.getConstant(MemCpySize, DL, PtrTy),
+ Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
+ /*isTailCall=*/false,
+ MachinePointerInfo(), MachinePointerInfo());
+ MemOpChains.push_back(Chain);
+}
+
+void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
+ SDValue Chain, const SDLoc &DL,
+ SelectionDAG &DAG,
+ CCState &State) const {
+ ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
+ unsigned Idx = State.getFirstUnallocated(ArgRegs);
+ unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
+ MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
+ const TargetRegisterClass *RC = getRegClassFor(RegTy);
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ // Offset of the first variable argument from stack pointer.
+ int VaArgOffset;
+
+ if (ArgRegs.size() == Idx)
+ VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
+ else {
+ VaArgOffset =
+ (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
+ (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
+ }
+
+ // Record the frame index of the first variable argument
+ // which is a value necessary to VASTART.
+ int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
+ MipsFI->setVarArgsFrameIndex(FI);
+
+ // Copy the integer registers that have not been used for argument passing
+ // to the argument register save area. For O32, the save area is allocated
+ // in the caller's stack frame, while for N32/64, it is allocated in the
+ // callee's stack frame.
+ for (unsigned I = Idx; I < ArgRegs.size();
+ ++I, VaArgOffset += RegSizeInBytes) {
+ unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
+ FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
+ SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ SDValue Store =
+ DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
+ cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
+ (Value *)nullptr);
+ OutChains.push_back(Store);
+ }
+}
+
+void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
+ unsigned Align) const {
+ const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
+
+ assert(Size && "Byval argument's size shouldn't be 0.");
+
+ Align = std::min(Align, TFL->getStackAlignment());
+
+ unsigned FirstReg = 0;
+ unsigned NumRegs = 0;
+
+ if (State->getCallingConv() != CallingConv::Fast) {
+ unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
+ ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
+ // FIXME: The O32 case actually describes no shadow registers.
+ const MCPhysReg *ShadowRegs =
+ ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
+
+ // We used to check the size as well but we can't do that anymore since
+ // CCState::HandleByVal() rounds up the size after calling this function.
+ assert(!(Align % RegSizeInBytes) &&
+ "Byval argument's alignment should be a multiple of"
+ "RegSizeInBytes.");
+
+ FirstReg = State->getFirstUnallocated(IntArgRegs);
+
+ // If Align > RegSizeInBytes, the first arg register must be even.
+ // FIXME: This condition happens to do the right thing but it's not the
+ // right way to test it. We want to check that the stack frame offset
+ // of the register is aligned.
+ if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
+ State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
+ ++FirstReg;
+ }
+
+ // Mark the registers allocated.
+ Size = alignTo(Size, RegSizeInBytes);
+ for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
+ Size -= RegSizeInBytes, ++I, ++NumRegs)
+ State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
+ }
+
+ State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
+}
+
+MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
+ MachineBasicBlock *BB,
+ bool isFPCmp,
+ unsigned Opc) const {
+ assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
+ "Subtarget already supports SELECT nodes with the use of"
+ "conditional-move instructions.");
+
+ const TargetInstrInfo *TII =
+ Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ // To "insert" a SELECT instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = ++BB->getIterator();
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // setcc r1, r2, r3
+ // bNE r1, r0, copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ if (isFPCmp) {
+ // bc1[tf] cc, sinkMBB
+ BuildMI(BB, DL, TII->get(Opc))
+ .addReg(MI.getOperand(1).getReg())
+ .addMBB(sinkMBB);
+ } else {
+ // bne rs, $0, sinkMBB
+ BuildMI(BB, DL, TII->get(Opc))
+ .addReg(MI.getOperand(1).getReg())
+ .addReg(Mips::ZERO)
+ .addMBB(sinkMBB);
+ }
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
+ // ...
+ BB = sinkMBB;
+
+ BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
+ .addReg(MI.getOperand(2).getReg())
+ .addMBB(thisMBB)
+ .addReg(MI.getOperand(3).getReg())
+ .addMBB(copy0MBB);
+
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
+ "Subtarget already supports SELECT nodes with the use of"
+ "conditional-move instructions.");
+
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ // D_SELECT substitutes two SELECT nodes that goes one after another and
+ // have the same condition operand. On machines which don't have
+ // conditional-move instruction, it reduces unnecessary branch instructions
+ // which are result of using two diamond patterns that are result of two
+ // SELECT pseudo instructions.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = ++BB->getIterator();
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // setcc r1, r2, r3
+ // bNE r1, r0, copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Next, add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // bne rs, $0, sinkMBB
+ BuildMI(BB, DL, TII->get(Mips::BNE))
+ .addReg(MI.getOperand(2).getReg())
+ .addReg(Mips::ZERO)
+ .addMBB(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
+ // ...
+ BB = sinkMBB;
+
+ // Use two PHI nodes to select two reults
+ BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
+ .addReg(MI.getOperand(3).getReg())
+ .addMBB(thisMBB)
+ .addReg(MI.getOperand(5).getReg())
+ .addMBB(copy0MBB);
+ BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
+ .addReg(MI.getOperand(4).getReg())
+ .addMBB(thisMBB)
+ .addReg(MI.getOperand(6).getReg())
+ .addMBB(copy0MBB);
+
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+
+ return BB;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
+ SelectionDAG &DAG) const {
+ // Named registers is expected to be fairly rare. For now, just support $28
+ // since the linux kernel uses it.
+ if (Subtarget.isGP64bit()) {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("$28", Mips::GP_64)
+ .Default(0);
+ if (Reg)
+ return Reg;
+ } else {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("$28", Mips::GP)
+ .Default(0);
+ if (Reg)
+ return Reg;
+ }
+ report_fatal_error("Invalid register name global variable");
+}