diff options
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp')
| -rw-r--r-- | contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp | 6549 |
1 files changed, 0 insertions, 6549 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp deleted file mode 100644 index 543cac075f55..000000000000 --- a/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp +++ /dev/null @@ -1,6549 +0,0 @@ -//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file defines a pattern matching instruction selector for PowerPC, -// converting from a legalized dag to a PPC dag. -// -//===----------------------------------------------------------------------===// - -#include "MCTargetDesc/PPCMCTargetDesc.h" -#include "MCTargetDesc/PPCPredicates.h" -#include "PPC.h" -#include "PPCISelLowering.h" -#include "PPCMachineFunctionInfo.h" -#include "PPCSubtarget.h" -#include "PPCTargetMachine.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/CodeGen/FunctionLoweringInfo.h" -#include "llvm/CodeGen/ISDOpcodes.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/SelectionDAGISel.h" -#include "llvm/CodeGen/SelectionDAGNodes.h" -#include "llvm/CodeGen/TargetInstrInfo.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/ValueTypes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Module.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CodeGen.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MachineValueType.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <iterator> -#include <limits> -#include <memory> -#include <new> -#include <tuple> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "ppc-codegen" - -STATISTIC(NumSextSetcc, - "Number of (sext(setcc)) nodes expanded into GPR sequence."); -STATISTIC(NumZextSetcc, - "Number of (zext(setcc)) nodes expanded into GPR sequence."); -STATISTIC(SignExtensionsAdded, - "Number of sign extensions for compare inputs added."); -STATISTIC(ZeroExtensionsAdded, - "Number of zero extensions for compare inputs added."); -STATISTIC(NumLogicOpsOnComparison, - "Number of logical ops on i1 values calculated in GPR."); -STATISTIC(OmittedForNonExtendUses, - "Number of compares not eliminated as they have non-extending uses."); -STATISTIC(NumP9Setb, - "Number of compares lowered to setb."); - -// FIXME: Remove this once the bug has been fixed! -cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", -cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); - -static cl::opt<bool> - UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), - cl::desc("use aggressive ppc isel for bit permutations"), - cl::Hidden); -static cl::opt<bool> BPermRewriterNoMasking( - "ppc-bit-perm-rewriter-stress-rotates", - cl::desc("stress rotate selection in aggressive ppc isel for " - "bit permutations"), - cl::Hidden); - -static cl::opt<bool> EnableBranchHint( - "ppc-use-branch-hint", cl::init(true), - cl::desc("Enable static hinting of branches on ppc"), - cl::Hidden); - -static cl::opt<bool> EnableTLSOpt( - "ppc-tls-opt", cl::init(true), - cl::desc("Enable tls optimization peephole"), - cl::Hidden); - -enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, - ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, - ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; - -static cl::opt<ICmpInGPRType> CmpInGPR( - "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), - cl::desc("Specify the types of comparisons to emit GPR-only code for."), - cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), - clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), - clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), - clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), - clEnumValN(ICGPR_NonExtIn, "nonextin", - "Only comparisons where inputs don't need [sz]ext."), - clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), - clEnumValN(ICGPR_ZextI32, "zexti32", - "Only i32 comparisons with zext result."), - clEnumValN(ICGPR_ZextI64, "zexti64", - "Only i64 comparisons with zext result."), - clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), - clEnumValN(ICGPR_SextI32, "sexti32", - "Only i32 comparisons with sext result."), - clEnumValN(ICGPR_SextI64, "sexti64", - "Only i64 comparisons with sext result."))); -namespace { - - //===--------------------------------------------------------------------===// - /// PPCDAGToDAGISel - PPC specific code to select PPC machine - /// instructions for SelectionDAG operations. - /// - class PPCDAGToDAGISel : public SelectionDAGISel { - const PPCTargetMachine &TM; - const PPCSubtarget *PPCSubTarget; - const PPCTargetLowering *PPCLowering; - unsigned GlobalBaseReg; - - public: - explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) - : SelectionDAGISel(tm, OptLevel), TM(tm) {} - - bool runOnMachineFunction(MachineFunction &MF) override { - // Make sure we re-emit a set of the global base reg if necessary - GlobalBaseReg = 0; - PPCSubTarget = &MF.getSubtarget<PPCSubtarget>(); - PPCLowering = PPCSubTarget->getTargetLowering(); - SelectionDAGISel::runOnMachineFunction(MF); - - if (!PPCSubTarget->isSVR4ABI()) - InsertVRSaveCode(MF); - - return true; - } - - void PreprocessISelDAG() override; - void PostprocessISelDAG() override; - - /// getI16Imm - Return a target constant with the specified value, of type - /// i16. - inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { - return CurDAG->getTargetConstant(Imm, dl, MVT::i16); - } - - /// getI32Imm - Return a target constant with the specified value, of type - /// i32. - inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { - return CurDAG->getTargetConstant(Imm, dl, MVT::i32); - } - - /// getI64Imm - Return a target constant with the specified value, of type - /// i64. - inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { - return CurDAG->getTargetConstant(Imm, dl, MVT::i64); - } - - /// getSmallIPtrImm - Return a target constant of pointer type. - inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { - return CurDAG->getTargetConstant( - Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); - } - - /// isRotateAndMask - Returns true if Mask and Shift can be folded into a - /// rotate and mask opcode and mask operation. - static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, - unsigned &SH, unsigned &MB, unsigned &ME); - - /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC - /// base register. Return the virtual register that holds this value. - SDNode *getGlobalBaseReg(); - - void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); - - // Select - Convert the specified operand from a target-independent to a - // target-specific node if it hasn't already been changed. - void Select(SDNode *N) override; - - bool tryBitfieldInsert(SDNode *N); - bool tryBitPermutation(SDNode *N); - bool tryIntCompareInGPR(SDNode *N); - - // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into - // an X-Form load instruction with the offset being a relocation coming from - // the PPCISD::ADD_TLS. - bool tryTLSXFormLoad(LoadSDNode *N); - // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into - // an X-Form store instruction with the offset being a relocation coming from - // the PPCISD::ADD_TLS. - bool tryTLSXFormStore(StoreSDNode *N); - /// SelectCC - Select a comparison of the specified values with the - /// specified condition code, returning the CR# of the expression. - SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, - const SDLoc &dl); - - /// SelectAddrImmOffs - Return true if the operand is valid for a preinc - /// immediate field. Note that the operand at this point is already the - /// result of a prior SelectAddressRegImm call. - bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { - if (N.getOpcode() == ISD::TargetConstant || - N.getOpcode() == ISD::TargetGlobalAddress) { - Out = N; - return true; - } - - return false; - } - - /// SelectAddrIdx - Given the specified address, check to see if it can be - /// represented as an indexed [r+r] operation. - /// This is for xform instructions whose associated displacement form is D. - /// The last parameter \p 0 means associated D form has no requirment for 16 - /// bit signed displacement. - /// Returns false if it can be represented by [r+imm], which are preferred. - bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { - return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 0); - } - - /// SelectAddrIdx4 - Given the specified address, check to see if it can be - /// represented as an indexed [r+r] operation. - /// This is for xform instructions whose associated displacement form is DS. - /// The last parameter \p 4 means associated DS form 16 bit signed - /// displacement must be a multiple of 4. - /// Returns false if it can be represented by [r+imm], which are preferred. - bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { - return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 4); - } - - /// SelectAddrIdx16 - Given the specified address, check to see if it can be - /// represented as an indexed [r+r] operation. - /// This is for xform instructions whose associated displacement form is DQ. - /// The last parameter \p 16 means associated DQ form 16 bit signed - /// displacement must be a multiple of 16. - /// Returns false if it can be represented by [r+imm], which are preferred. - bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { - return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 16); - } - - /// SelectAddrIdxOnly - Given the specified address, force it to be - /// represented as an indexed [r+r] operation. - bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { - return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); - } - - /// SelectAddrImm - Returns true if the address N can be represented by - /// a base register plus a signed 16-bit displacement [r+imm]. - /// The last parameter \p 0 means D form has no requirment for 16 bit signed - /// displacement. - bool SelectAddrImm(SDValue N, SDValue &Disp, - SDValue &Base) { - return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0); - } - - /// SelectAddrImmX4 - Returns true if the address N can be represented by - /// a base register plus a signed 16-bit displacement that is a multiple of - /// 4 (last parameter). Suitable for use by STD and friends. - bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { - return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4); - } - - /// SelectAddrImmX16 - Returns true if the address N can be represented by - /// a base register plus a signed 16-bit displacement that is a multiple of - /// 16(last parameter). Suitable for use by STXV and friends. - bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { - return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16); - } - - // Select an address into a single register. - bool SelectAddr(SDValue N, SDValue &Base) { - Base = N; - return true; - } - - /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for - /// inline asm expressions. It is always correct to compute the value into - /// a register. The case of adding a (possibly relocatable) constant to a - /// register can be improved, but it is wrong to substitute Reg+Reg for - /// Reg in an asm, because the load or store opcode would have to change. - bool SelectInlineAsmMemoryOperand(const SDValue &Op, - unsigned ConstraintID, - std::vector<SDValue> &OutOps) override { - switch(ConstraintID) { - default: - errs() << "ConstraintID: " << ConstraintID << "\n"; - llvm_unreachable("Unexpected asm memory constraint"); - case InlineAsm::Constraint_es: - case InlineAsm::Constraint_i: - case InlineAsm::Constraint_m: - case InlineAsm::Constraint_o: - case InlineAsm::Constraint_Q: - case InlineAsm::Constraint_Z: - case InlineAsm::Constraint_Zy: - // We need to make sure that this one operand does not end up in r0 - // (because we might end up lowering this as 0(%op)). - const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); - const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); - SDLoc dl(Op); - SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); - SDValue NewOp = - SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, - dl, Op.getValueType(), - Op, RC), 0); - - OutOps.push_back(NewOp); - return false; - } - return true; - } - - void InsertVRSaveCode(MachineFunction &MF); - - StringRef getPassName() const override { - return "PowerPC DAG->DAG Pattern Instruction Selection"; - } - -// Include the pieces autogenerated from the target description. -#include "PPCGenDAGISel.inc" - -private: - bool trySETCC(SDNode *N); - - void PeepholePPC64(); - void PeepholePPC64ZExt(); - void PeepholeCROps(); - - SDValue combineToCMPB(SDNode *N); - void foldBoolExts(SDValue &Res, SDNode *&N); - - bool AllUsersSelectZero(SDNode *N); - void SwapAllSelectUsers(SDNode *N); - - bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; - void transferMemOperands(SDNode *N, SDNode *Result); - }; - -} // end anonymous namespace - -/// InsertVRSaveCode - Once the entire function has been instruction selected, -/// all virtual registers are created and all machine instructions are built, -/// check to see if we need to save/restore VRSAVE. If so, do it. -void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { - // Check to see if this function uses vector registers, which means we have to - // save and restore the VRSAVE register and update it with the regs we use. - // - // In this case, there will be virtual registers of vector type created - // by the scheduler. Detect them now. - bool HasVectorVReg = false; - for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { - unsigned Reg = TargetRegisterInfo::index2VirtReg(i); - if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { - HasVectorVReg = true; - break; - } - } - if (!HasVectorVReg) return; // nothing to do. - - // If we have a vector register, we want to emit code into the entry and exit - // blocks to save and restore the VRSAVE register. We do this here (instead - // of marking all vector instructions as clobbering VRSAVE) for two reasons: - // - // 1. This (trivially) reduces the load on the register allocator, by not - // having to represent the live range of the VRSAVE register. - // 2. This (more significantly) allows us to create a temporary virtual - // register to hold the saved VRSAVE value, allowing this temporary to be - // register allocated, instead of forcing it to be spilled to the stack. - - // Create two vregs - one to hold the VRSAVE register that is live-in to the - // function and one for the value after having bits or'd into it. - unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); - unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); - - const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); - MachineBasicBlock &EntryBB = *Fn.begin(); - DebugLoc dl; - // Emit the following code into the entry block: - // InVRSAVE = MFVRSAVE - // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE - // MTVRSAVE UpdatedVRSAVE - MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point - BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); - BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), - UpdatedVRSAVE).addReg(InVRSAVE); - BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); - - // Find all return blocks, outputting a restore in each epilog. - for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { - if (BB->isReturnBlock()) { - IP = BB->end(); --IP; - - // Skip over all terminator instructions, which are part of the return - // sequence. - MachineBasicBlock::iterator I2 = IP; - while (I2 != BB->begin() && (--I2)->isTerminator()) - IP = I2; - - // Emit: MTVRSAVE InVRSave - BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); - } - } -} - -/// getGlobalBaseReg - Output the instructions required to put the -/// base address to use for accessing globals into a register. -/// -SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { - if (!GlobalBaseReg) { - const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); - // Insert the set of GlobalBaseReg into the first MBB of the function - MachineBasicBlock &FirstMBB = MF->front(); - MachineBasicBlock::iterator MBBI = FirstMBB.begin(); - const Module *M = MF->getFunction().getParent(); - DebugLoc dl; - - if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { - if (PPCSubTarget->isTargetELF()) { - GlobalBaseReg = PPC::R30; - if (!PPCSubTarget->isSecurePlt() && - M->getPICLevel() == PICLevel::SmallPIC) { - BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); - BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); - MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); - } else { - BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); - BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); - unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); - BuildMI(FirstMBB, MBBI, dl, - TII.get(PPC::UpdateGBR), GlobalBaseReg) - .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); - MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); - } - } else { - GlobalBaseReg = - RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); - BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); - BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); - } - } else { - // We must ensure that this sequence is dominated by the prologue. - // FIXME: This is a bit of a big hammer since we don't get the benefits - // of shrink-wrapping whenever we emit this instruction. Considering - // this is used in any function where we emit a jump table, this may be - // a significant limitation. We should consider inserting this in the - // block where it is used and then commoning this sequence up if it - // appears in multiple places. - // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of - // MovePCtoLR8. - MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); - GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); - BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); - BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); - } - } - return CurDAG->getRegister(GlobalBaseReg, - PPCLowering->getPointerTy(CurDAG->getDataLayout())) - .getNode(); -} - -/// isInt32Immediate - This method tests to see if the node is a 32-bit constant -/// operand. If so Imm will receive the 32-bit value. -static bool isInt32Immediate(SDNode *N, unsigned &Imm) { - if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { - Imm = cast<ConstantSDNode>(N)->getZExtValue(); - return true; - } - return false; -} - -/// isInt64Immediate - This method tests to see if the node is a 64-bit constant -/// operand. If so Imm will receive the 64-bit value. -static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { - if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { - Imm = cast<ConstantSDNode>(N)->getZExtValue(); - return true; - } - return false; -} - -// isInt32Immediate - This method tests to see if a constant operand. -// If so Imm will receive the 32 bit value. -static bool isInt32Immediate(SDValue N, unsigned &Imm) { - return isInt32Immediate(N.getNode(), Imm); -} - -/// isInt64Immediate - This method tests to see if the value is a 64-bit -/// constant operand. If so Imm will receive the 64-bit value. -static bool isInt64Immediate(SDValue N, uint64_t &Imm) { - return isInt64Immediate(N.getNode(), Imm); -} - -static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo, - const SDValue &DestMBB) { - assert(isa<BasicBlockSDNode>(DestMBB)); - - if (!FuncInfo->BPI) return PPC::BR_NO_HINT; - - const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); - const Instruction *BBTerm = BB->getTerminator(); - - if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; - - const BasicBlock *TBB = BBTerm->getSuccessor(0); - const BasicBlock *FBB = BBTerm->getSuccessor(1); - - auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB); - auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB); - - // We only want to handle cases which are easy to predict at static time, e.g. - // C++ throw statement, that is very likely not taken, or calling never - // returned function, e.g. stdlib exit(). So we set Threshold to filter - // unwanted cases. - // - // Below is LLVM branch weight table, we only want to handle case 1, 2 - // - // Case Taken:Nontaken Example - // 1. Unreachable 1048575:1 C++ throw, stdlib exit(), - // 2. Invoke-terminating 1:1048575 - // 3. Coldblock 4:64 __builtin_expect - // 4. Loop Branch 124:4 For loop - // 5. PH/ZH/FPH 20:12 - const uint32_t Threshold = 10000; - - if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) - return PPC::BR_NO_HINT; - - LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() - << "::" << BB->getName() << "'\n" - << " -> " << TBB->getName() << ": " << TProb << "\n" - << " -> " << FBB->getName() << ": " << FProb << "\n"); - - const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); - - // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, - // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock - if (BBDN->getBasicBlock()->getBasicBlock() != TBB) - std::swap(TProb, FProb); - - return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; -} - -// isOpcWithIntImmediate - This method tests to see if the node is a specific -// opcode and that it has a immediate integer right operand. -// If so Imm will receive the 32 bit value. -static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { - return N->getOpcode() == Opc - && isInt32Immediate(N->getOperand(1).getNode(), Imm); -} - -void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { - SDLoc dl(SN); - int FI = cast<FrameIndexSDNode>(N)->getIndex(); - SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); - unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; - if (SN->hasOneUse()) - CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, - getSmallIPtrImm(Offset, dl)); - else - ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, - getSmallIPtrImm(Offset, dl))); -} - -bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, - bool isShiftMask, unsigned &SH, - unsigned &MB, unsigned &ME) { - // Don't even go down this path for i64, since different logic will be - // necessary for rldicl/rldicr/rldimi. - if (N->getValueType(0) != MVT::i32) - return false; - - unsigned Shift = 32; - unsigned Indeterminant = ~0; // bit mask marking indeterminant results - unsigned Opcode = N->getOpcode(); - if (N->getNumOperands() != 2 || - !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) - return false; - - if (Opcode == ISD::SHL) { - // apply shift left to mask if it comes first - if (isShiftMask) Mask = Mask << Shift; - // determine which bits are made indeterminant by shift - Indeterminant = ~(0xFFFFFFFFu << Shift); - } else if (Opcode == ISD::SRL) { - // apply shift right to mask if it comes first - if (isShiftMask) Mask = Mask >> Shift; - // determine which bits are made indeterminant by shift - Indeterminant = ~(0xFFFFFFFFu >> Shift); - // adjust for the left rotate - Shift = 32 - Shift; - } else if (Opcode == ISD::ROTL) { - Indeterminant = 0; - } else { - return false; - } - - // if the mask doesn't intersect any Indeterminant bits - if (Mask && !(Mask & Indeterminant)) { - SH = Shift & 31; - // make sure the mask is still a mask (wrap arounds may not be) - return isRunOfOnes(Mask, MB, ME); - } - return false; -} - -bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { - SDValue Base = ST->getBasePtr(); - if (Base.getOpcode() != PPCISD::ADD_TLS) - return false; - SDValue Offset = ST->getOffset(); - if (!Offset.isUndef()) - return false; - - SDLoc dl(ST); - EVT MemVT = ST->getMemoryVT(); - EVT RegVT = ST->getValue().getValueType(); - - unsigned Opcode; - switch (MemVT.getSimpleVT().SimpleTy) { - default: - return false; - case MVT::i8: { - Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; - break; - } - case MVT::i16: { - Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; - break; - } - case MVT::i32: { - Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; - break; - } - case MVT::i64: { - Opcode = PPC::STDXTLS; - break; - } - } - SDValue Chain = ST->getChain(); - SDVTList VTs = ST->getVTList(); - SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), - Chain}; - SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); - transferMemOperands(ST, MN); - ReplaceNode(ST, MN); - return true; -} - -bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { - SDValue Base = LD->getBasePtr(); - if (Base.getOpcode() != PPCISD::ADD_TLS) - return false; - SDValue Offset = LD->getOffset(); - if (!Offset.isUndef()) - return false; - - SDLoc dl(LD); - EVT MemVT = LD->getMemoryVT(); - EVT RegVT = LD->getValueType(0); - unsigned Opcode; - switch (MemVT.getSimpleVT().SimpleTy) { - default: - return false; - case MVT::i8: { - Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; - break; - } - case MVT::i16: { - Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; - break; - } - case MVT::i32: { - Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; - break; - } - case MVT::i64: { - Opcode = PPC::LDXTLS; - break; - } - } - SDValue Chain = LD->getChain(); - SDVTList VTs = LD->getVTList(); - SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; - SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); - transferMemOperands(LD, MN); - ReplaceNode(LD, MN); - return true; -} - -/// Turn an or of two masked values into the rotate left word immediate then -/// mask insert (rlwimi) instruction. -bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { - SDValue Op0 = N->getOperand(0); - SDValue Op1 = N->getOperand(1); - SDLoc dl(N); - - KnownBits LKnown = CurDAG->computeKnownBits(Op0); - KnownBits RKnown = CurDAG->computeKnownBits(Op1); - - unsigned TargetMask = LKnown.Zero.getZExtValue(); - unsigned InsertMask = RKnown.Zero.getZExtValue(); - - if ((TargetMask | InsertMask) == 0xFFFFFFFF) { - unsigned Op0Opc = Op0.getOpcode(); - unsigned Op1Opc = Op1.getOpcode(); - unsigned Value, SH = 0; - TargetMask = ~TargetMask; - InsertMask = ~InsertMask; - - // If the LHS has a foldable shift and the RHS does not, then swap it to the - // RHS so that we can fold the shift into the insert. - if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { - if (Op0.getOperand(0).getOpcode() == ISD::SHL || - Op0.getOperand(0).getOpcode() == ISD::SRL) { - if (Op1.getOperand(0).getOpcode() != ISD::SHL && - Op1.getOperand(0).getOpcode() != ISD::SRL) { - std::swap(Op0, Op1); - std::swap(Op0Opc, Op1Opc); - std::swap(TargetMask, InsertMask); - } - } - } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { - if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && - Op1.getOperand(0).getOpcode() != ISD::SRL) { - std::swap(Op0, Op1); - std::swap(Op0Opc, Op1Opc); - std::swap(TargetMask, InsertMask); - } - } - - unsigned MB, ME; - if (isRunOfOnes(InsertMask, MB, ME)) { - if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && - isInt32Immediate(Op1.getOperand(1), Value)) { - Op1 = Op1.getOperand(0); - SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; - } - if (Op1Opc == ISD::AND) { - // The AND mask might not be a constant, and we need to make sure that - // if we're going to fold the masking with the insert, all bits not - // know to be zero in the mask are known to be one. - KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); - bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); - - unsigned SHOpc = Op1.getOperand(0).getOpcode(); - if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && - isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { - // Note that Value must be in range here (less than 32) because - // otherwise there would not be any bits set in InsertMask. - Op1 = Op1.getOperand(0).getOperand(0); - SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; - } - } - - SH &= 31; - SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), - getI32Imm(ME, dl) }; - ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); - return true; - } - } - return false; -} - -// Predict the number of instructions that would be generated by calling -// selectI64Imm(N). -static unsigned selectI64ImmInstrCountDirect(int64_t Imm) { - // Assume no remaining bits. - unsigned Remainder = 0; - // Assume no shift required. - unsigned Shift = 0; - - // If it can't be represented as a 32 bit value. - if (!isInt<32>(Imm)) { - Shift = countTrailingZeros<uint64_t>(Imm); - int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; - - // If the shifted value fits 32 bits. - if (isInt<32>(ImmSh)) { - // Go with the shifted value. - Imm = ImmSh; - } else { - // Still stuck with a 64 bit value. - Remainder = Imm; - Shift = 32; - Imm >>= 32; - } - } - - // Intermediate operand. - unsigned Result = 0; - - // Handle first 32 bits. - unsigned Lo = Imm & 0xFFFF; - - // Simple value. - if (isInt<16>(Imm)) { - // Just the Lo bits. - ++Result; - } else if (Lo) { - // Handle the Hi bits and Lo bits. - Result += 2; - } else { - // Just the Hi bits. - ++Result; - } - - // If no shift, we're done. - if (!Shift) return Result; - - // If Hi word == Lo word, - // we can use rldimi to insert the Lo word into Hi word. - if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { - ++Result; - return Result; - } - - // Shift for next step if the upper 32-bits were not zero. - if (Imm) - ++Result; - - // Add in the last bits as required. - if ((Remainder >> 16) & 0xFFFF) - ++Result; - if (Remainder & 0xFFFF) - ++Result; - - return Result; -} - -static uint64_t Rot64(uint64_t Imm, unsigned R) { - return (Imm << R) | (Imm >> (64 - R)); -} - -static unsigned selectI64ImmInstrCount(int64_t Imm) { - unsigned Count = selectI64ImmInstrCountDirect(Imm); - - // If the instruction count is 1 or 2, we do not need further analysis - // since rotate + load constant requires at least 2 instructions. - if (Count <= 2) - return Count; - - for (unsigned r = 1; r < 63; ++r) { - uint64_t RImm = Rot64(Imm, r); - unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; - Count = std::min(Count, RCount); - - // See comments in selectI64Imm for an explanation of the logic below. - unsigned LS = findLastSet(RImm); - if (LS != r-1) - continue; - - uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); - uint64_t RImmWithOnes = RImm | OnesMask; - - RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; - Count = std::min(Count, RCount); - } - - return Count; -} - -// Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount -// (above) needs to be kept in sync with this function. -static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, - int64_t Imm) { - // Assume no remaining bits. - unsigned Remainder = 0; - // Assume no shift required. - unsigned Shift = 0; - - // If it can't be represented as a 32 bit value. - if (!isInt<32>(Imm)) { - Shift = countTrailingZeros<uint64_t>(Imm); - int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; - - // If the shifted value fits 32 bits. - if (isInt<32>(ImmSh)) { - // Go with the shifted value. - Imm = ImmSh; - } else { - // Still stuck with a 64 bit value. - Remainder = Imm; - Shift = 32; - Imm >>= 32; - } - } - - // Intermediate operand. - SDNode *Result; - - // Handle first 32 bits. - unsigned Lo = Imm & 0xFFFF; - unsigned Hi = (Imm >> 16) & 0xFFFF; - - auto getI32Imm = [CurDAG, dl](unsigned Imm) { - return CurDAG->getTargetConstant(Imm, dl, MVT::i32); - }; - - // Simple value. - if (isInt<16>(Imm)) { - uint64_t SextImm = SignExtend64(Lo, 16); - SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); - // Just the Lo bits. - Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); - } else if (Lo) { - // Handle the Hi bits. - unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; - Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); - // And Lo bits. - Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, - SDValue(Result, 0), getI32Imm(Lo)); - } else { - // Just the Hi bits. - Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); - } - - // If no shift, we're done. - if (!Shift) return Result; - - // If Hi word == Lo word, - // we can use rldimi to insert the Lo word into Hi word. - if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { - SDValue Ops[] = - { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)}; - return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); - } - - // Shift for next step if the upper 32-bits were not zero. - if (Imm) { - Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, - SDValue(Result, 0), - getI32Imm(Shift), - getI32Imm(63 - Shift)); - } - - // Add in the last bits as required. - if ((Hi = (Remainder >> 16) & 0xFFFF)) { - Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, - SDValue(Result, 0), getI32Imm(Hi)); - } - if ((Lo = Remainder & 0xFFFF)) { - Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, - SDValue(Result, 0), getI32Imm(Lo)); - } - - return Result; -} - -static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, - int64_t Imm) { - unsigned Count = selectI64ImmInstrCountDirect(Imm); - - // If the instruction count is 1 or 2, we do not need further analysis - // since rotate + load constant requires at least 2 instructions. - if (Count <= 2) - return selectI64ImmDirect(CurDAG, dl, Imm); - - unsigned RMin = 0; - - int64_t MatImm; - unsigned MaskEnd; - - for (unsigned r = 1; r < 63; ++r) { - uint64_t RImm = Rot64(Imm, r); - unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; - if (RCount < Count) { - Count = RCount; - RMin = r; - MatImm = RImm; - MaskEnd = 63; - } - - // If the immediate to generate has many trailing zeros, it might be - // worthwhile to generate a rotated value with too many leading ones - // (because that's free with li/lis's sign-extension semantics), and then - // mask them off after rotation. - - unsigned LS = findLastSet(RImm); - // We're adding (63-LS) higher-order ones, and we expect to mask them off - // after performing the inverse rotation by (64-r). So we need that: - // 63-LS == 64-r => LS == r-1 - if (LS != r-1) - continue; - - uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); - uint64_t RImmWithOnes = RImm | OnesMask; - - RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; - if (RCount < Count) { - Count = RCount; - RMin = r; - MatImm = RImmWithOnes; - MaskEnd = LS; - } - } - - if (!RMin) - return selectI64ImmDirect(CurDAG, dl, Imm); - - auto getI32Imm = [CurDAG, dl](unsigned Imm) { - return CurDAG->getTargetConstant(Imm, dl, MVT::i32); - }; - - SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0); - return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, - getI32Imm(64 - RMin), getI32Imm(MaskEnd)); -} - -static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { - unsigned MaxTruncation = 0; - // Cannot use range-based for loop here as we need the actual use (i.e. we - // need the operand number corresponding to the use). A range-based for - // will unbox the use and provide an SDNode*. - for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); - Use != UseEnd; ++Use) { - unsigned Opc = - Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); - switch (Opc) { - default: return 0; - case ISD::TRUNCATE: - if (Use->isMachineOpcode()) - return 0; - MaxTruncation = - std::max(MaxTruncation, Use->getValueType(0).getSizeInBits()); - continue; - case ISD::STORE: { - if (Use->isMachineOpcode()) - return 0; - StoreSDNode *STN = cast<StoreSDNode>(*Use); - unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); - if (MemVTSize == 64 || Use.getOperandNo() != 0) - return 0; - MaxTruncation = std::max(MaxTruncation, MemVTSize); - continue; - } - case PPC::STW8: - case PPC::STWX8: - case PPC::STWU8: - case PPC::STWUX8: - if (Use.getOperandNo() != 0) - return 0; - MaxTruncation = std::max(MaxTruncation, 32u); - continue; - case PPC::STH8: - case PPC::STHX8: - case PPC::STHU8: - case PPC::STHUX8: - if (Use.getOperandNo() != 0) - return 0; - MaxTruncation = std::max(MaxTruncation, 16u); - continue; - case PPC::STB8: - case PPC::STBX8: - case PPC::STBU8: - case PPC::STBUX8: - if (Use.getOperandNo() != 0) - return 0; - MaxTruncation = std::max(MaxTruncation, 8u); - continue; - } - } - return MaxTruncation; -} - -// Select a 64-bit constant. -static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { - SDLoc dl(N); - - // Get 64 bit value. - int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); - if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { - uint64_t SextImm = SignExtend64(Imm, MinSize); - SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); - if (isInt<16>(SextImm)) - return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); - } - return selectI64Imm(CurDAG, dl, Imm); -} - -namespace { - -class BitPermutationSelector { - struct ValueBit { - SDValue V; - - // The bit number in the value, using a convention where bit 0 is the - // lowest-order bit. - unsigned Idx; - - // ConstZero means a bit we need to mask off. - // Variable is a bit comes from an input variable. - // VariableKnownToBeZero is also a bit comes from an input variable, - // but it is known to be already zero. So we do not need to mask them. - enum Kind { - ConstZero, - Variable, - VariableKnownToBeZero - } K; - - ValueBit(SDValue V, unsigned I, Kind K = Variable) - : V(V), Idx(I), K(K) {} - ValueBit(Kind K = Variable) - : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} - - bool isZero() const { - return K == ConstZero || K == VariableKnownToBeZero; - } - - bool hasValue() const { - return K == Variable || K == VariableKnownToBeZero; - } - - SDValue getValue() const { - assert(hasValue() && "Cannot get the value of a constant bit"); - return V; - } - - unsigned getValueBitIndex() const { - assert(hasValue() && "Cannot get the value bit index of a constant bit"); - return Idx; - } - }; - - // A bit group has the same underlying value and the same rotate factor. - struct BitGroup { - SDValue V; - unsigned RLAmt; - unsigned StartIdx, EndIdx; - - // This rotation amount assumes that the lower 32 bits of the quantity are - // replicated in the high 32 bits by the rotation operator (which is done - // by rlwinm and friends in 64-bit mode). - bool Repl32; - // Did converting to Repl32 == true change the rotation factor? If it did, - // it decreased it by 32. - bool Repl32CR; - // Was this group coalesced after setting Repl32 to true? - bool Repl32Coalesced; - - BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) - : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), - Repl32Coalesced(false) { - LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R - << " [" << S << ", " << E << "]\n"); - } - }; - - // Information on each (Value, RLAmt) pair (like the number of groups - // associated with each) used to choose the lowering method. - struct ValueRotInfo { - SDValue V; - unsigned RLAmt = std::numeric_limits<unsigned>::max(); - unsigned NumGroups = 0; - unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); - bool Repl32 = false; - - ValueRotInfo() = default; - - // For sorting (in reverse order) by NumGroups, and then by - // FirstGroupStartIdx. - bool operator < (const ValueRotInfo &Other) const { - // We need to sort so that the non-Repl32 come first because, when we're - // doing masking, the Repl32 bit groups might be subsumed into the 64-bit - // masking operation. - if (Repl32 < Other.Repl32) - return true; - else if (Repl32 > Other.Repl32) - return false; - else if (NumGroups > Other.NumGroups) - return true; - else if (NumGroups < Other.NumGroups) - return false; - else if (RLAmt == 0 && Other.RLAmt != 0) - return true; - else if (RLAmt != 0 && Other.RLAmt == 0) - return false; - else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) - return true; - return false; - } - }; - - using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; - using ValueBitsMemoizer = - DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; - ValueBitsMemoizer Memoizer; - - // Return a pair of bool and a SmallVector pointer to a memoization entry. - // The bool is true if something interesting was deduced, otherwise if we're - // providing only a generic representation of V (or something else likewise - // uninteresting for instruction selection) through the SmallVector. - std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, - unsigned NumBits) { - auto &ValueEntry = Memoizer[V]; - if (ValueEntry) - return std::make_pair(ValueEntry->first, &ValueEntry->second); - ValueEntry.reset(new ValueBitsMemoizedValue()); - bool &Interesting = ValueEntry->first; - SmallVector<ValueBit, 64> &Bits = ValueEntry->second; - Bits.resize(NumBits); - - switch (V.getOpcode()) { - default: break; - case ISD::ROTL: - if (isa<ConstantSDNode>(V.getOperand(1))) { - unsigned RotAmt = V.getConstantOperandVal(1); - - const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; - - for (unsigned i = 0; i < NumBits; ++i) - Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; - - return std::make_pair(Interesting = true, &Bits); - } - break; - case ISD::SHL: - if (isa<ConstantSDNode>(V.getOperand(1))) { - unsigned ShiftAmt = V.getConstantOperandVal(1); - - const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; - - for (unsigned i = ShiftAmt; i < NumBits; ++i) - Bits[i] = LHSBits[i - ShiftAmt]; - - for (unsigned i = 0; i < ShiftAmt; ++i) - Bits[i] = ValueBit(ValueBit::ConstZero); - - return std::make_pair(Interesting = true, &Bits); - } - break; - case ISD::SRL: - if (isa<ConstantSDNode>(V.getOperand(1))) { - unsigned ShiftAmt = V.getConstantOperandVal(1); - - const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; - - for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) - Bits[i] = LHSBits[i + ShiftAmt]; - - for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) - Bits[i] = ValueBit(ValueBit::ConstZero); - - return std::make_pair(Interesting = true, &Bits); - } - break; - case ISD::AND: - if (isa<ConstantSDNode>(V.getOperand(1))) { - uint64_t Mask = V.getConstantOperandVal(1); - - const SmallVector<ValueBit, 64> *LHSBits; - // Mark this as interesting, only if the LHS was also interesting. This - // prevents the overall procedure from matching a single immediate 'and' - // (which is non-optimal because such an and might be folded with other - // things if we don't select it here). - std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); - - for (unsigned i = 0; i < NumBits; ++i) - if (((Mask >> i) & 1) == 1) - Bits[i] = (*LHSBits)[i]; - else { - // AND instruction masks this bit. If the input is already zero, - // we have nothing to do here. Otherwise, make the bit ConstZero. - if ((*LHSBits)[i].isZero()) - Bits[i] = (*LHSBits)[i]; - else - Bits[i] = ValueBit(ValueBit::ConstZero); - } - - return std::make_pair(Interesting, &Bits); - } - break; - case ISD::OR: { - const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; - const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; - - bool AllDisjoint = true; - SDValue LastVal = SDValue(); - unsigned LastIdx = 0; - for (unsigned i = 0; i < NumBits; ++i) { - if (LHSBits[i].isZero() && RHSBits[i].isZero()) { - // If both inputs are known to be zero and one is ConstZero and - // another is VariableKnownToBeZero, we can select whichever - // we like. To minimize the number of bit groups, we select - // VariableKnownToBeZero if this bit is the next bit of the same - // input variable from the previous bit. Otherwise, we select - // ConstZero. - if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && - LHSBits[i].getValueBitIndex() == LastIdx + 1) - Bits[i] = LHSBits[i]; - else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && - RHSBits[i].getValueBitIndex() == LastIdx + 1) - Bits[i] = RHSBits[i]; - else - Bits[i] = ValueBit(ValueBit::ConstZero); - } - else if (LHSBits[i].isZero()) - Bits[i] = RHSBits[i]; - else if (RHSBits[i].isZero()) - Bits[i] = LHSBits[i]; - else { - AllDisjoint = false; - break; - } - // We remember the value and bit index of this bit. - if (Bits[i].hasValue()) { - LastVal = Bits[i].getValue(); - LastIdx = Bits[i].getValueBitIndex(); - } - else { - if (LastVal) LastVal = SDValue(); - LastIdx = 0; - } - } - - if (!AllDisjoint) - break; - - return std::make_pair(Interesting = true, &Bits); - } - case ISD::ZERO_EXTEND: { - // We support only the case with zero extension from i32 to i64 so far. - if (V.getValueType() != MVT::i64 || - V.getOperand(0).getValueType() != MVT::i32) - break; - - const SmallVector<ValueBit, 64> *LHSBits; - const unsigned NumOperandBits = 32; - std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), - NumOperandBits); - - for (unsigned i = 0; i < NumOperandBits; ++i) - Bits[i] = (*LHSBits)[i]; - - for (unsigned i = NumOperandBits; i < NumBits; ++i) - Bits[i] = ValueBit(ValueBit::ConstZero); - - return std::make_pair(Interesting, &Bits); - } - case ISD::TRUNCATE: { - EVT FromType = V.getOperand(0).getValueType(); - EVT ToType = V.getValueType(); - // We support only the case with truncate from i64 to i32. - if (FromType != MVT::i64 || ToType != MVT::i32) - break; - const unsigned NumAllBits = FromType.getSizeInBits(); - SmallVector<ValueBit, 64> *InBits; - std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), - NumAllBits); - const unsigned NumValidBits = ToType.getSizeInBits(); - - // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. - // So, we cannot include this truncate. - bool UseUpper32bit = false; - for (unsigned i = 0; i < NumValidBits; ++i) - if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { - UseUpper32bit = true; - break; - } - if (UseUpper32bit) - break; - - for (unsigned i = 0; i < NumValidBits; ++i) - Bits[i] = (*InBits)[i]; - - return std::make_pair(Interesting, &Bits); - } - case ISD::AssertZext: { - // For AssertZext, we look through the operand and - // mark the bits known to be zero. - const SmallVector<ValueBit, 64> *LHSBits; - std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), - NumBits); - - EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); - const unsigned NumValidBits = FromType.getSizeInBits(); - for (unsigned i = 0; i < NumValidBits; ++i) - Bits[i] = (*LHSBits)[i]; - - // These bits are known to be zero. - for (unsigned i = NumValidBits; i < NumBits; ++i) - Bits[i] = ValueBit((*LHSBits)[i].getValue(), - (*LHSBits)[i].getValueBitIndex(), - ValueBit::VariableKnownToBeZero); - - return std::make_pair(Interesting, &Bits); - } - case ISD::LOAD: - LoadSDNode *LD = cast<LoadSDNode>(V); - if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { - EVT VT = LD->getMemoryVT(); - const unsigned NumValidBits = VT.getSizeInBits(); - - for (unsigned i = 0; i < NumValidBits; ++i) - Bits[i] = ValueBit(V, i); - - // These bits are known to be zero. - for (unsigned i = NumValidBits; i < NumBits; ++i) - Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); - - // Zero-extending load itself cannot be optimized. So, it is not - // interesting by itself though it gives useful information. - return std::make_pair(Interesting = false, &Bits); - } - break; - } - - for (unsigned i = 0; i < NumBits; ++i) - Bits[i] = ValueBit(V, i); - - return std::make_pair(Interesting = false, &Bits); - } - - // For each value (except the constant ones), compute the left-rotate amount - // to get it from its original to final position. - void computeRotationAmounts() { - NeedMask = false; - RLAmt.resize(Bits.size()); - for (unsigned i = 0; i < Bits.size(); ++i) - if (Bits[i].hasValue()) { - unsigned VBI = Bits[i].getValueBitIndex(); - if (i >= VBI) - RLAmt[i] = i - VBI; - else - RLAmt[i] = Bits.size() - (VBI - i); - } else if (Bits[i].isZero()) { - NeedMask = true; - RLAmt[i] = UINT32_MAX; - } else { - llvm_unreachable("Unknown value bit type"); - } - } - - // Collect groups of consecutive bits with the same underlying value and - // rotation factor. If we're doing late masking, we ignore zeros, otherwise - // they break up groups. - void collectBitGroups(bool LateMask) { - BitGroups.clear(); - - unsigned LastRLAmt = RLAmt[0]; - SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); - unsigned LastGroupStartIdx = 0; - bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); - for (unsigned i = 1; i < Bits.size(); ++i) { - unsigned ThisRLAmt = RLAmt[i]; - SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); - if (LateMask && !ThisValue) { - ThisValue = LastValue; - ThisRLAmt = LastRLAmt; - // If we're doing late masking, then the first bit group always starts - // at zero (even if the first bits were zero). - if (BitGroups.empty()) - LastGroupStartIdx = 0; - } - - // If this bit is known to be zero and the current group is a bit group - // of zeros, we do not need to terminate the current bit group even the - // Value or RLAmt does not match here. Instead, we terminate this group - // when the first non-zero bit appears later. - if (IsGroupOfZeros && Bits[i].isZero()) - continue; - - // If this bit has the same underlying value and the same rotate factor as - // the last one, then they're part of the same group. - if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) - // We cannot continue the current group if this bits is not known to - // be zero in a bit group of zeros. - if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) - continue; - - if (LastValue.getNode()) - BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, - i-1)); - LastRLAmt = ThisRLAmt; - LastValue = ThisValue; - LastGroupStartIdx = i; - IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); - } - if (LastValue.getNode()) - BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, - Bits.size()-1)); - - if (BitGroups.empty()) - return; - - // We might be able to combine the first and last groups. - if (BitGroups.size() > 1) { - // If the first and last groups are the same, then remove the first group - // in favor of the last group, making the ending index of the last group - // equal to the ending index of the to-be-removed first group. - if (BitGroups[0].StartIdx == 0 && - BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && - BitGroups[0].V == BitGroups[BitGroups.size()-1].V && - BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { - LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); - BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; - BitGroups.erase(BitGroups.begin()); - } - } - } - - // Take all (SDValue, RLAmt) pairs and sort them by the number of groups - // associated with each. If the number of groups are same, we prefer a group - // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate - // instruction. If there is a degeneracy, pick the one that occurs - // first (in the final value). - void collectValueRotInfo() { - ValueRots.clear(); - - for (auto &BG : BitGroups) { - unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); - ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; - VRI.V = BG.V; - VRI.RLAmt = BG.RLAmt; - VRI.Repl32 = BG.Repl32; - VRI.NumGroups += 1; - VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); - } - - // Now that we've collected the various ValueRotInfo instances, we need to - // sort them. - ValueRotsVec.clear(); - for (auto &I : ValueRots) { - ValueRotsVec.push_back(I.second); - } - llvm::sort(ValueRotsVec); - } - - // In 64-bit mode, rlwinm and friends have a rotation operator that - // replicates the low-order 32 bits into the high-order 32-bits. The mask - // indices of these instructions can only be in the lower 32 bits, so they - // can only represent some 64-bit bit groups. However, when they can be used, - // the 32-bit replication can be used to represent, as a single bit group, - // otherwise separate bit groups. We'll convert to replicated-32-bit bit - // groups when possible. Returns true if any of the bit groups were - // converted. - void assignRepl32BitGroups() { - // If we have bits like this: - // - // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 - // Groups: | RLAmt = 8 | RLAmt = 40 | - // - // But, making use of a 32-bit operation that replicates the low-order 32 - // bits into the high-order 32 bits, this can be one bit group with a RLAmt - // of 8. - - auto IsAllLow32 = [this](BitGroup & BG) { - if (BG.StartIdx <= BG.EndIdx) { - for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { - if (!Bits[i].hasValue()) - continue; - if (Bits[i].getValueBitIndex() >= 32) - return false; - } - } else { - for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { - if (!Bits[i].hasValue()) - continue; - if (Bits[i].getValueBitIndex() >= 32) - return false; - } - for (unsigned i = 0; i <= BG.EndIdx; ++i) { - if (!Bits[i].hasValue()) - continue; - if (Bits[i].getValueBitIndex() >= 32) - return false; - } - } - - return true; - }; - - for (auto &BG : BitGroups) { - // If this bit group has RLAmt of 0 and will not be merged with - // another bit group, we don't benefit from Repl32. We don't mark - // such group to give more freedom for later instruction selection. - if (BG.RLAmt == 0) { - auto PotentiallyMerged = [this](BitGroup & BG) { - for (auto &BG2 : BitGroups) - if (&BG != &BG2 && BG.V == BG2.V && - (BG2.RLAmt == 0 || BG2.RLAmt == 32)) - return true; - return false; - }; - if (!PotentiallyMerged(BG)) - continue; - } - if (BG.StartIdx < 32 && BG.EndIdx < 32) { - if (IsAllLow32(BG)) { - if (BG.RLAmt >= 32) { - BG.RLAmt -= 32; - BG.Repl32CR = true; - } - - BG.Repl32 = true; - - LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " - << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" - << BG.StartIdx << ", " << BG.EndIdx << "]\n"); - } - } - } - - // Now walk through the bit groups, consolidating where possible. - for (auto I = BitGroups.begin(); I != BitGroups.end();) { - // We might want to remove this bit group by merging it with the previous - // group (which might be the ending group). - auto IP = (I == BitGroups.begin()) ? - std::prev(BitGroups.end()) : std::prev(I); - if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && - I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { - - LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " - << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" - << I->StartIdx << ", " << I->EndIdx - << "] with group with range [" << IP->StartIdx << ", " - << IP->EndIdx << "]\n"); - - IP->EndIdx = I->EndIdx; - IP->Repl32CR = IP->Repl32CR || I->Repl32CR; - IP->Repl32Coalesced = true; - I = BitGroups.erase(I); - continue; - } else { - // There is a special case worth handling: If there is a single group - // covering the entire upper 32 bits, and it can be merged with both - // the next and previous groups (which might be the same group), then - // do so. If it is the same group (so there will be only one group in - // total), then we need to reverse the order of the range so that it - // covers the entire 64 bits. - if (I->StartIdx == 32 && I->EndIdx == 63) { - assert(std::next(I) == BitGroups.end() && - "bit group ends at index 63 but there is another?"); - auto IN = BitGroups.begin(); - - if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && - (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && - IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && - IsAllLow32(*I)) { - - LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() - << " RLAmt = " << I->RLAmt << " [" << I->StartIdx - << ", " << I->EndIdx - << "] with 32-bit replicated groups with ranges [" - << IP->StartIdx << ", " << IP->EndIdx << "] and [" - << IN->StartIdx << ", " << IN->EndIdx << "]\n"); - - if (IP == IN) { - // There is only one other group; change it to cover the whole - // range (backward, so that it can still be Repl32 but cover the - // whole 64-bit range). - IP->StartIdx = 31; - IP->EndIdx = 30; - IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; - IP->Repl32Coalesced = true; - I = BitGroups.erase(I); - } else { - // There are two separate groups, one before this group and one - // after us (at the beginning). We're going to remove this group, - // but also the group at the very beginning. - IP->EndIdx = IN->EndIdx; - IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; - IP->Repl32Coalesced = true; - I = BitGroups.erase(I); - BitGroups.erase(BitGroups.begin()); - } - - // This must be the last group in the vector (and we might have - // just invalidated the iterator above), so break here. - break; - } - } - } - - ++I; - } - } - - SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { - return CurDAG->getTargetConstant(Imm, dl, MVT::i32); - } - - uint64_t getZerosMask() { - uint64_t Mask = 0; - for (unsigned i = 0; i < Bits.size(); ++i) { - if (Bits[i].hasValue()) - continue; - Mask |= (UINT64_C(1) << i); - } - - return ~Mask; - } - - // This method extends an input value to 64 bit if input is 32-bit integer. - // While selecting instructions in BitPermutationSelector in 64-bit mode, - // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. - // In such case, we extend it to 64 bit to be consistent with other values. - SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { - if (V.getValueSizeInBits() == 64) - return V; - - assert(V.getValueSizeInBits() == 32); - SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); - SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, - MVT::i64), 0); - SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, - MVT::i64, ImDef, V, - SubRegIdx), 0); - return ExtVal; - } - - SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { - if (V.getValueSizeInBits() == 32) - return V; - - assert(V.getValueSizeInBits() == 64); - SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); - SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, - MVT::i32, V, SubRegIdx), 0); - return SubVal; - } - - // Depending on the number of groups for a particular value, it might be - // better to rotate, mask explicitly (using andi/andis), and then or the - // result. Select this part of the result first. - void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { - if (BPermRewriterNoMasking) - return; - - for (ValueRotInfo &VRI : ValueRotsVec) { - unsigned Mask = 0; - for (unsigned i = 0; i < Bits.size(); ++i) { - if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) - continue; - if (RLAmt[i] != VRI.RLAmt) - continue; - Mask |= (1u << i); - } - - // Compute the masks for andi/andis that would be necessary. - unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; - assert((ANDIMask != 0 || ANDISMask != 0) && - "No set bits in mask for value bit groups"); - bool NeedsRotate = VRI.RLAmt != 0; - - // We're trying to minimize the number of instructions. If we have one - // group, using one of andi/andis can break even. If we have three - // groups, we can use both andi and andis and break even (to use both - // andi and andis we also need to or the results together). We need four - // groups if we also need to rotate. To use andi/andis we need to do more - // than break even because rotate-and-mask instructions tend to be easier - // to schedule. - - // FIXME: We've biased here against using andi/andis, which is right for - // POWER cores, but not optimal everywhere. For example, on the A2, - // andi/andis have single-cycle latency whereas the rotate-and-mask - // instructions take two cycles, and it would be better to bias toward - // andi/andis in break-even cases. - - unsigned NumAndInsts = (unsigned) NeedsRotate + - (unsigned) (ANDIMask != 0) + - (unsigned) (ANDISMask != 0) + - (unsigned) (ANDIMask != 0 && ANDISMask != 0) + - (unsigned) (bool) Res; - - LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() - << " RL: " << VRI.RLAmt << ":" - << "\n\t\t\tisel using masking: " << NumAndInsts - << " using rotates: " << VRI.NumGroups << "\n"); - - if (NumAndInsts >= VRI.NumGroups) - continue; - - LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); - - if (InstCnt) *InstCnt += NumAndInsts; - - SDValue VRot; - if (VRI.RLAmt) { - SDValue Ops[] = - { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), - getI32Imm(0, dl), getI32Imm(31, dl) }; - VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, - Ops), 0); - } else { - VRot = TruncateToInt32(VRI.V, dl); - } - - SDValue ANDIVal, ANDISVal; - if (ANDIMask != 0) - ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, - VRot, getI32Imm(ANDIMask, dl)), 0); - if (ANDISMask != 0) - ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, - VRot, getI32Imm(ANDISMask, dl)), 0); - - SDValue TotalVal; - if (!ANDIVal) - TotalVal = ANDISVal; - else if (!ANDISVal) - TotalVal = ANDIVal; - else - TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, - ANDIVal, ANDISVal), 0); - - if (!Res) - Res = TotalVal; - else - Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, - Res, TotalVal), 0); - - // Now, remove all groups with this underlying value and rotation - // factor. - eraseMatchingBitGroups([VRI](const BitGroup &BG) { - return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; - }); - } - } - - // Instruction selection for the 32-bit case. - SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { - SDLoc dl(N); - SDValue Res; - - if (InstCnt) *InstCnt = 0; - - // Take care of cases that should use andi/andis first. - SelectAndParts32(dl, Res, InstCnt); - - // If we've not yet selected a 'starting' instruction, and we have no zeros - // to fill in, select the (Value, RLAmt) with the highest priority (largest - // number of groups), and start with this rotated value. - if ((!NeedMask || LateMask) && !Res) { - ValueRotInfo &VRI = ValueRotsVec[0]; - if (VRI.RLAmt) { - if (InstCnt) *InstCnt += 1; - SDValue Ops[] = - { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), - getI32Imm(0, dl), getI32Imm(31, dl) }; - Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), - 0); - } else { - Res = TruncateToInt32(VRI.V, dl); - } - - // Now, remove all groups with this underlying value and rotation factor. - eraseMatchingBitGroups([VRI](const BitGroup &BG) { - return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; - }); - } - - if (InstCnt) *InstCnt += BitGroups.size(); - - // Insert the other groups (one at a time). - for (auto &BG : BitGroups) { - if (!Res) { - SDValue Ops[] = - { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), - getI32Imm(Bits.size() - BG.EndIdx - 1, dl), - getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; - Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); - } else { - SDValue Ops[] = - { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), - getI32Imm(Bits.size() - BG.EndIdx - 1, dl), - getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; - Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); - } - } - - if (LateMask) { - unsigned Mask = (unsigned) getZerosMask(); - - unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; - assert((ANDIMask != 0 || ANDISMask != 0) && - "No set bits in zeros mask?"); - - if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + - (unsigned) (ANDISMask != 0) + - (unsigned) (ANDIMask != 0 && ANDISMask != 0); - - SDValue ANDIVal, ANDISVal; - if (ANDIMask != 0) - ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, - Res, getI32Imm(ANDIMask, dl)), 0); - if (ANDISMask != 0) - ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, - Res, getI32Imm(ANDISMask, dl)), 0); - - if (!ANDIVal) - Res = ANDISVal; - else if (!ANDISVal) - Res = ANDIVal; - else - Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, - ANDIVal, ANDISVal), 0); - } - - return Res.getNode(); - } - - unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, - unsigned MaskStart, unsigned MaskEnd, - bool IsIns) { - // In the notation used by the instructions, 'start' and 'end' are reversed - // because bits are counted from high to low order. - unsigned InstMaskStart = 64 - MaskEnd - 1, - InstMaskEnd = 64 - MaskStart - 1; - - if (Repl32) - return 1; - - if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || - InstMaskEnd == 63 - RLAmt) - return 1; - - return 2; - } - - // For 64-bit values, not all combinations of rotates and masks are - // available. Produce one if it is available. - SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, - bool Repl32, unsigned MaskStart, unsigned MaskEnd, - unsigned *InstCnt = nullptr) { - // In the notation used by the instructions, 'start' and 'end' are reversed - // because bits are counted from high to low order. - unsigned InstMaskStart = 64 - MaskEnd - 1, - InstMaskEnd = 64 - MaskStart - 1; - - if (InstCnt) *InstCnt += 1; - - if (Repl32) { - // This rotation amount assumes that the lower 32 bits of the quantity - // are replicated in the high 32 bits by the rotation operator (which is - // done by rlwinm and friends). - assert(InstMaskStart >= 32 && "Mask cannot start out of range"); - assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); - SDValue Ops[] = - { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), - getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; - return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, - Ops), 0); - } - - if (InstMaskEnd == 63) { - SDValue Ops[] = - { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), - getI32Imm(InstMaskStart, dl) }; - return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); - } - - if (InstMaskStart == 0) { - SDValue Ops[] = - { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), - getI32Imm(InstMaskEnd, dl) }; - return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); - } - - if (InstMaskEnd == 63 - RLAmt) { - SDValue Ops[] = - { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), - getI32Imm(InstMaskStart, dl) }; - return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); - } - - // We cannot do this with a single instruction, so we'll use two. The - // problem is that we're not free to choose both a rotation amount and mask - // start and end independently. We can choose an arbitrary mask start and - // end, but then the rotation amount is fixed. Rotation, however, can be - // inverted, and so by applying an "inverse" rotation first, we can get the - // desired result. - if (InstCnt) *InstCnt += 1; - - // The rotation mask for the second instruction must be MaskStart. - unsigned RLAmt2 = MaskStart; - // The first instruction must rotate V so that the overall rotation amount - // is RLAmt. - unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; - if (RLAmt1) - V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); - return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); - } - - // For 64-bit values, not all combinations of rotates and masks are - // available. Produce a rotate-mask-and-insert if one is available. - SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, - unsigned RLAmt, bool Repl32, unsigned MaskStart, - unsigned MaskEnd, unsigned *InstCnt = nullptr) { - // In the notation used by the instructions, 'start' and 'end' are reversed - // because bits are counted from high to low order. - unsigned InstMaskStart = 64 - MaskEnd - 1, - InstMaskEnd = 64 - MaskStart - 1; - - if (InstCnt) *InstCnt += 1; - - if (Repl32) { - // This rotation amount assumes that the lower 32 bits of the quantity - // are replicated in the high 32 bits by the rotation operator (which is - // done by rlwinm and friends). - assert(InstMaskStart >= 32 && "Mask cannot start out of range"); - assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); - SDValue Ops[] = - { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), - getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; - return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, - Ops), 0); - } - - if (InstMaskEnd == 63 - RLAmt) { - SDValue Ops[] = - { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), - getI32Imm(InstMaskStart, dl) }; - return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); - } - - // We cannot do this with a single instruction, so we'll use two. The - // problem is that we're not free to choose both a rotation amount and mask - // start and end independently. We can choose an arbitrary mask start and - // end, but then the rotation amount is fixed. Rotation, however, can be - // inverted, and so by applying an "inverse" rotation first, we can get the - // desired result. - if (InstCnt) *InstCnt += 1; - - // The rotation mask for the second instruction must be MaskStart. - unsigned RLAmt2 = MaskStart; - // The first instruction must rotate V so that the overall rotation amount - // is RLAmt. - unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; - if (RLAmt1) - V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); - return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); - } - - void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { - if (BPermRewriterNoMasking) - return; - - // The idea here is the same as in the 32-bit version, but with additional - // complications from the fact that Repl32 might be true. Because we - // aggressively convert bit groups to Repl32 form (which, for small - // rotation factors, involves no other change), and then coalesce, it might - // be the case that a single 64-bit masking operation could handle both - // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 - // form allowed coalescing, then we must use a 32-bit rotaton in order to - // completely capture the new combined bit group. - - for (ValueRotInfo &VRI : ValueRotsVec) { - uint64_t Mask = 0; - - // We need to add to the mask all bits from the associated bit groups. - // If Repl32 is false, we need to add bits from bit groups that have - // Repl32 true, but are trivially convertable to Repl32 false. Such a - // group is trivially convertable if it overlaps only with the lower 32 - // bits, and the group has not been coalesced. - auto MatchingBG = [VRI](const BitGroup &BG) { - if (VRI.V != BG.V) - return false; - - unsigned EffRLAmt = BG.RLAmt; - if (!VRI.Repl32 && BG.Repl32) { - if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && - !BG.Repl32Coalesced) { - if (BG.Repl32CR) - EffRLAmt += 32; - } else { - return false; - } - } else if (VRI.Repl32 != BG.Repl32) { - return false; - } - - return VRI.RLAmt == EffRLAmt; - }; - - for (auto &BG : BitGroups) { - if (!MatchingBG(BG)) - continue; - - if (BG.StartIdx <= BG.EndIdx) { - for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) - Mask |= (UINT64_C(1) << i); - } else { - for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) - Mask |= (UINT64_C(1) << i); - for (unsigned i = 0; i <= BG.EndIdx; ++i) - Mask |= (UINT64_C(1) << i); - } - } - - // We can use the 32-bit andi/andis technique if the mask does not - // require any higher-order bits. This can save an instruction compared - // to always using the general 64-bit technique. - bool Use32BitInsts = isUInt<32>(Mask); - // Compute the masks for andi/andis that would be necessary. - unsigned ANDIMask = (Mask & UINT16_MAX), - ANDISMask = (Mask >> 16) & UINT16_MAX; - - bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); - - unsigned NumAndInsts = (unsigned) NeedsRotate + - (unsigned) (bool) Res; - if (Use32BitInsts) - NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + - (unsigned) (ANDIMask != 0 && ANDISMask != 0); - else - NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1; - - unsigned NumRLInsts = 0; - bool FirstBG = true; - bool MoreBG = false; - for (auto &BG : BitGroups) { - if (!MatchingBG(BG)) { - MoreBG = true; - continue; - } - NumRLInsts += - SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, - !FirstBG); - FirstBG = false; - } - - LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() - << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") - << "\n\t\t\tisel using masking: " << NumAndInsts - << " using rotates: " << NumRLInsts << "\n"); - - // When we'd use andi/andis, we bias toward using the rotates (andi only - // has a record form, and is cracked on POWER cores). However, when using - // general 64-bit constant formation, bias toward the constant form, - // because that exposes more opportunities for CSE. - if (NumAndInsts > NumRLInsts) - continue; - // When merging multiple bit groups, instruction or is used. - // But when rotate is used, rldimi can inert the rotated value into any - // register, so instruction or can be avoided. - if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) - continue; - - LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); - - if (InstCnt) *InstCnt += NumAndInsts; - - SDValue VRot; - // We actually need to generate a rotation if we have a non-zero rotation - // factor or, in the Repl32 case, if we care about any of the - // higher-order replicated bits. In the latter case, we generate a mask - // backward so that it actually includes the entire 64 bits. - if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) - VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, - VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); - else - VRot = VRI.V; - - SDValue TotalVal; - if (Use32BitInsts) { - assert((ANDIMask != 0 || ANDISMask != 0) && - "No set bits in mask when using 32-bit ands for 64-bit value"); - - SDValue ANDIVal, ANDISVal; - if (ANDIMask != 0) - ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, - ExtendToInt64(VRot, dl), - getI32Imm(ANDIMask, dl)), - 0); - if (ANDISMask != 0) - ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, - ExtendToInt64(VRot, dl), - getI32Imm(ANDISMask, dl)), - 0); - - if (!ANDIVal) - TotalVal = ANDISVal; - else if (!ANDISVal) - TotalVal = ANDIVal; - else - TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, - ExtendToInt64(ANDIVal, dl), ANDISVal), 0); - } else { - TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); - TotalVal = - SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, - ExtendToInt64(VRot, dl), TotalVal), - 0); - } - - if (!Res) - Res = TotalVal; - else - Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, - ExtendToInt64(Res, dl), TotalVal), - 0); - - // Now, remove all groups with this underlying value and rotation - // factor. - eraseMatchingBitGroups(MatchingBG); - } - } - - // Instruction selection for the 64-bit case. - SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { - SDLoc dl(N); - SDValue Res; - - if (InstCnt) *InstCnt = 0; - - // Take care of cases that should use andi/andis first. - SelectAndParts64(dl, Res, InstCnt); - - // If we've not yet selected a 'starting' instruction, and we have no zeros - // to fill in, select the (Value, RLAmt) with the highest priority (largest - // number of groups), and start with this rotated value. - if ((!NeedMask || LateMask) && !Res) { - // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 - // groups will come first, and so the VRI representing the largest number - // of groups might not be first (it might be the first Repl32 groups). - unsigned MaxGroupsIdx = 0; - if (!ValueRotsVec[0].Repl32) { - for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) - if (ValueRotsVec[i].Repl32) { - if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) - MaxGroupsIdx = i; - break; - } - } - - ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; - bool NeedsRotate = false; - if (VRI.RLAmt) { - NeedsRotate = true; - } else if (VRI.Repl32) { - for (auto &BG : BitGroups) { - if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || - BG.Repl32 != VRI.Repl32) - continue; - - // We don't need a rotate if the bit group is confined to the lower - // 32 bits. - if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) - continue; - - NeedsRotate = true; - break; - } - } - - if (NeedsRotate) - Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, - VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, - InstCnt); - else - Res = VRI.V; - - // Now, remove all groups with this underlying value and rotation factor. - if (Res) - eraseMatchingBitGroups([VRI](const BitGroup &BG) { - return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && - BG.Repl32 == VRI.Repl32; - }); - } - - // Because 64-bit rotates are more flexible than inserts, we might have a - // preference regarding which one we do first (to save one instruction). - if (!Res) - for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { - if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, - false) < - SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, - true)) { - if (I != BitGroups.begin()) { - BitGroup BG = *I; - BitGroups.erase(I); - BitGroups.insert(BitGroups.begin(), BG); - } - - break; - } - } - - // Insert the other groups (one at a time). - for (auto &BG : BitGroups) { - if (!Res) - Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, - BG.EndIdx, InstCnt); - else - Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, - BG.StartIdx, BG.EndIdx, InstCnt); - } - - if (LateMask) { - uint64_t Mask = getZerosMask(); - - // We can use the 32-bit andi/andis technique if the mask does not - // require any higher-order bits. This can save an instruction compared - // to always using the general 64-bit technique. - bool Use32BitInsts = isUInt<32>(Mask); - // Compute the masks for andi/andis that would be necessary. - unsigned ANDIMask = (Mask & UINT16_MAX), - ANDISMask = (Mask >> 16) & UINT16_MAX; - - if (Use32BitInsts) { - assert((ANDIMask != 0 || ANDISMask != 0) && - "No set bits in mask when using 32-bit ands for 64-bit value"); - - if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + - (unsigned) (ANDISMask != 0) + - (unsigned) (ANDIMask != 0 && ANDISMask != 0); - - SDValue ANDIVal, ANDISVal; - if (ANDIMask != 0) - ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, - ExtendToInt64(Res, dl), getI32Imm(ANDIMask, dl)), 0); - if (ANDISMask != 0) - ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, - ExtendToInt64(Res, dl), getI32Imm(ANDISMask, dl)), 0); - - if (!ANDIVal) - Res = ANDISVal; - else if (!ANDISVal) - Res = ANDIVal; - else - Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, - ExtendToInt64(ANDIVal, dl), ANDISVal), 0); - } else { - if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1; - - SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); - Res = - SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, - ExtendToInt64(Res, dl), MaskVal), 0); - } - } - - return Res.getNode(); - } - - SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { - // Fill in BitGroups. - collectBitGroups(LateMask); - if (BitGroups.empty()) - return nullptr; - - // For 64-bit values, figure out when we can use 32-bit instructions. - if (Bits.size() == 64) - assignRepl32BitGroups(); - - // Fill in ValueRotsVec. - collectValueRotInfo(); - - if (Bits.size() == 32) { - return Select32(N, LateMask, InstCnt); - } else { - assert(Bits.size() == 64 && "Not 64 bits here?"); - return Select64(N, LateMask, InstCnt); - } - - return nullptr; - } - - void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { - BitGroups.erase(remove_if(BitGroups, F), BitGroups.end()); - } - - SmallVector<ValueBit, 64> Bits; - - bool NeedMask; - SmallVector<unsigned, 64> RLAmt; - - SmallVector<BitGroup, 16> BitGroups; - - DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; - SmallVector<ValueRotInfo, 16> ValueRotsVec; - - SelectionDAG *CurDAG; - -public: - BitPermutationSelector(SelectionDAG *DAG) - : CurDAG(DAG) {} - - // Here we try to match complex bit permutations into a set of - // rotate-and-shift/shift/and/or instructions, using a set of heuristics - // known to produce optimal code for common cases (like i32 byte swapping). - SDNode *Select(SDNode *N) { - Memoizer.clear(); - auto Result = - getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); - if (!Result.first) - return nullptr; - Bits = std::move(*Result.second); - - LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" - " selection for: "); - LLVM_DEBUG(N->dump(CurDAG)); - - // Fill it RLAmt and set NeedMask. - computeRotationAmounts(); - - if (!NeedMask) - return Select(N, false); - - // We currently have two techniques for handling results with zeros: early - // masking (the default) and late masking. Late masking is sometimes more - // efficient, but because the structure of the bit groups is different, it - // is hard to tell without generating both and comparing the results. With - // late masking, we ignore zeros in the resulting value when inserting each - // set of bit groups, and then mask in the zeros at the end. With early - // masking, we only insert the non-zero parts of the result at every step. - - unsigned InstCnt = 0, InstCntLateMask = 0; - LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); - SDNode *RN = Select(N, false, &InstCnt); - LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); - - LLVM_DEBUG(dbgs() << "\tLate masking:\n"); - SDNode *RNLM = Select(N, true, &InstCntLateMask); - LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask - << " instructions\n"); - - if (InstCnt <= InstCntLateMask) { - LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); - return RN; - } - - LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); - return RNLM; - } -}; - -class IntegerCompareEliminator { - SelectionDAG *CurDAG; - PPCDAGToDAGISel *S; - // Conversion type for interpreting results of a 32-bit instruction as - // a 64-bit value or vice versa. - enum ExtOrTruncConversion { Ext, Trunc }; - - // Modifiers to guide how an ISD::SETCC node's result is to be computed - // in a GPR. - // ZExtOrig - use the original condition code, zero-extend value - // ZExtInvert - invert the condition code, zero-extend value - // SExtOrig - use the original condition code, sign-extend value - // SExtInvert - invert the condition code, sign-extend value - enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; - - // Comparisons against zero to emit GPR code sequences for. Each of these - // sequences may need to be emitted for two or more equivalent patterns. - // For example (a >= 0) == (a > -1). The direction of the comparison (</>) - // matters as well as the extension type: sext (-1/0), zext (1/0). - // GEZExt - (zext (LHS >= 0)) - // GESExt - (sext (LHS >= 0)) - // LEZExt - (zext (LHS <= 0)) - // LESExt - (sext (LHS <= 0)) - enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; - - SDNode *tryEXTEND(SDNode *N); - SDNode *tryLogicOpOfCompares(SDNode *N); - SDValue computeLogicOpInGPR(SDValue LogicOp); - SDValue signExtendInputIfNeeded(SDValue Input); - SDValue zeroExtendInputIfNeeded(SDValue Input); - SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); - SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, - ZeroCompare CmpTy); - SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, - int64_t RHSValue, SDLoc dl); - SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, - int64_t RHSValue, SDLoc dl); - SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, - int64_t RHSValue, SDLoc dl); - SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, - int64_t RHSValue, SDLoc dl); - SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); - -public: - IntegerCompareEliminator(SelectionDAG *DAG, - PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { - assert(CurDAG->getTargetLoweringInfo() - .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && - "Only expecting to use this on 64 bit targets."); - } - SDNode *Select(SDNode *N) { - if (CmpInGPR == ICGPR_None) - return nullptr; - switch (N->getOpcode()) { - default: break; - case ISD::ZERO_EXTEND: - if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || - CmpInGPR == ICGPR_SextI64) - return nullptr; - LLVM_FALLTHROUGH; - case ISD::SIGN_EXTEND: - if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || - CmpInGPR == ICGPR_ZextI64) - return nullptr; - return tryEXTEND(N); - case ISD::AND: - case ISD::OR: - case ISD::XOR: - return tryLogicOpOfCompares(N); - } - return nullptr; - } -}; - -static bool isLogicOp(unsigned Opc) { - return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR; -} -// The obvious case for wanting to keep the value in a GPR. Namely, the -// result of the comparison is actually needed in a GPR. -SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { - assert((N->getOpcode() == ISD::ZERO_EXTEND || - N->getOpcode() == ISD::SIGN_EXTEND) && - "Expecting a zero/sign extend node!"); - SDValue WideRes; - // If we are zero-extending the result of a logical operation on i1 - // values, we can keep the values in GPRs. - if (isLogicOp(N->getOperand(0).getOpcode()) && - N->getOperand(0).getValueType() == MVT::i1 && - N->getOpcode() == ISD::ZERO_EXTEND) - WideRes = computeLogicOpInGPR(N->getOperand(0)); - else if (N->getOperand(0).getOpcode() != ISD::SETCC) - return nullptr; - else - WideRes = - getSETCCInGPR(N->getOperand(0), - N->getOpcode() == ISD::SIGN_EXTEND ? - SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); - - if (!WideRes) - return nullptr; - - SDLoc dl(N); - bool Input32Bit = WideRes.getValueType() == MVT::i32; - bool Output32Bit = N->getValueType(0) == MVT::i32; - - NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; - NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; - - SDValue ConvOp = WideRes; - if (Input32Bit != Output32Bit) - ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : - ExtOrTruncConversion::Trunc); - return ConvOp.getNode(); -} - -// Attempt to perform logical operations on the results of comparisons while -// keeping the values in GPRs. Without doing so, these would end up being -// lowered to CR-logical operations which suffer from significant latency and -// low ILP. -SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { - if (N->getValueType(0) != MVT::i1) - return nullptr; - assert(isLogicOp(N->getOpcode()) && - "Expected a logic operation on setcc results."); - SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); - if (!LoweredLogical) - return nullptr; - - SDLoc dl(N); - bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; - unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; - SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); - SDValue LHS = LoweredLogical.getOperand(0); - SDValue RHS = LoweredLogical.getOperand(1); - SDValue WideOp; - SDValue OpToConvToRecForm; - - // Look through any 32-bit to 64-bit implicit extend nodes to find the - // opcode that is input to the XORI. - if (IsBitwiseNegate && - LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) - OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); - else if (IsBitwiseNegate) - // If the input to the XORI isn't an extension, that's what we're after. - OpToConvToRecForm = LoweredLogical.getOperand(0); - else - // If this is not an XORI, it is a reg-reg logical op and we can convert - // it to record-form. - OpToConvToRecForm = LoweredLogical; - - // Get the record-form version of the node we're looking to use to get the - // CR result from. - uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); - int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); - - // Convert the right node to record-form. This is either the logical we're - // looking at or it is the input node to the negation (if we're looking at - // a bitwise negation). - if (NewOpc != -1 && IsBitwiseNegate) { - // The input to the XORI has a record-form. Use it. - assert(LoweredLogical.getConstantOperandVal(1) == 1 && - "Expected a PPC::XORI8 only for bitwise negation."); - // Emit the record-form instruction. - std::vector<SDValue> Ops; - for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) - Ops.push_back(OpToConvToRecForm.getOperand(i)); - - WideOp = - SDValue(CurDAG->getMachineNode(NewOpc, dl, - OpToConvToRecForm.getValueType(), - MVT::Glue, Ops), 0); - } else { - assert((NewOpc != -1 || !IsBitwiseNegate) && - "No record form available for AND8/OR8/XOR8?"); - WideOp = - SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDIo8 : NewOpc, dl, - MVT::i64, MVT::Glue, LHS, RHS), 0); - } - - // Select this node to a single bit from CR0 set by the record-form node - // just created. For bitwise negation, use the EQ bit which is the equivalent - // of negating the result (i.e. it is a bit set when the result of the - // operation is zero). - SDValue SRIdxVal = - CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); - SDValue CRBit = - SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, - MVT::i1, CR0Reg, SRIdxVal, - WideOp.getValue(1)), 0); - return CRBit.getNode(); -} - -// Lower a logical operation on i1 values into a GPR sequence if possible. -// The result can be kept in a GPR if requested. -// Three types of inputs can be handled: -// - SETCC -// - TRUNCATE -// - Logical operation (AND/OR/XOR) -// There is also a special case that is handled (namely a complement operation -// achieved with xor %a, -1). -SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { - assert(isLogicOp(LogicOp.getOpcode()) && - "Can only handle logic operations here."); - assert(LogicOp.getValueType() == MVT::i1 && - "Can only handle logic operations on i1 values here."); - SDLoc dl(LogicOp); - SDValue LHS, RHS; - - // Special case: xor %a, -1 - bool IsBitwiseNegation = isBitwiseNot(LogicOp); - - // Produces a GPR sequence for each operand of the binary logic operation. - // For SETCC, it produces the respective comparison, for TRUNCATE it truncates - // the value in a GPR and for logic operations, it will recursively produce - // a GPR sequence for the operation. - auto getLogicOperand = [&] (SDValue Operand) -> SDValue { - unsigned OperandOpcode = Operand.getOpcode(); - if (OperandOpcode == ISD::SETCC) - return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); - else if (OperandOpcode == ISD::TRUNCATE) { - SDValue InputOp = Operand.getOperand(0); - EVT InVT = InputOp.getValueType(); - return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : - PPC::RLDICL, dl, InVT, InputOp, - S->getI64Imm(0, dl), - S->getI64Imm(63, dl)), 0); - } else if (isLogicOp(OperandOpcode)) - return computeLogicOpInGPR(Operand); - return SDValue(); - }; - LHS = getLogicOperand(LogicOp.getOperand(0)); - RHS = getLogicOperand(LogicOp.getOperand(1)); - - // If a GPR sequence can't be produced for the LHS we can't proceed. - // Not producing a GPR sequence for the RHS is only a problem if this isn't - // a bitwise negation operation. - if (!LHS || (!RHS && !IsBitwiseNegation)) - return SDValue(); - - NumLogicOpsOnComparison++; - - // We will use the inputs as 64-bit values. - if (LHS.getValueType() == MVT::i32) - LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); - if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) - RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); - - unsigned NewOpc; - switch (LogicOp.getOpcode()) { - default: llvm_unreachable("Unknown logic operation."); - case ISD::AND: NewOpc = PPC::AND8; break; - case ISD::OR: NewOpc = PPC::OR8; break; - case ISD::XOR: NewOpc = PPC::XOR8; break; - } - - if (IsBitwiseNegation) { - RHS = S->getI64Imm(1, dl); - NewOpc = PPC::XORI8; - } - - return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); - -} - -/// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. -/// Otherwise just reinterpret it as a 64-bit value. -/// Useful when emitting comparison code for 32-bit values without using -/// the compare instruction (which only considers the lower 32-bits). -SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { - assert(Input.getValueType() == MVT::i32 && - "Can only sign-extend 32-bit values here."); - unsigned Opc = Input.getOpcode(); - - // The value was sign extended and then truncated to 32-bits. No need to - // sign extend it again. - if (Opc == ISD::TRUNCATE && - (Input.getOperand(0).getOpcode() == ISD::AssertSext || - Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) - return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); - - LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); - // The input is a sign-extending load. All ppc sign-extending loads - // sign-extend to the full 64-bits. - if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) - return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); - - ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); - // We don't sign-extend constants. - if (InputConst) - return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); - - SDLoc dl(Input); - SignExtensionsAdded++; - return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, - MVT::i64, Input), 0); -} - -/// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. -/// Otherwise just reinterpret it as a 64-bit value. -/// Useful when emitting comparison code for 32-bit values without using -/// the compare instruction (which only considers the lower 32-bits). -SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { - assert(Input.getValueType() == MVT::i32 && - "Can only zero-extend 32-bit values here."); - unsigned Opc = Input.getOpcode(); - - // The only condition under which we can omit the actual extend instruction: - // - The value is a positive constant - // - The value comes from a load that isn't a sign-extending load - // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. - bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && - (Input.getOperand(0).getOpcode() == ISD::AssertZext || - Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); - if (IsTruncateOfZExt) - return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); - - ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); - if (InputConst && InputConst->getSExtValue() >= 0) - return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); - - LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); - // The input is a load that doesn't sign-extend (it will be zero-extended). - if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) - return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); - - // None of the above, need to zero-extend. - SDLoc dl(Input); - ZeroExtensionsAdded++; - return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, - S->getI64Imm(0, dl), - S->getI64Imm(32, dl)), 0); -} - -// Handle a 32-bit value in a 64-bit register and vice-versa. These are of -// course not actual zero/sign extensions that will generate machine code, -// they're just a way to reinterpret a 32 bit value in a register as a -// 64 bit value and vice-versa. -SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, - ExtOrTruncConversion Conv) { - SDLoc dl(NatWidthRes); - - // For reinterpreting 32-bit values as 64 bit values, we generate - // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> - if (Conv == ExtOrTruncConversion::Ext) { - SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); - SDValue SubRegIdx = - CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); - return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, - ImDef, NatWidthRes, SubRegIdx), 0); - } - - assert(Conv == ExtOrTruncConversion::Trunc && - "Unknown convertion between 32 and 64 bit values."); - // For reinterpreting 64-bit values as 32-bit values, we just need to - // EXTRACT_SUBREG (i.e. extract the low word). - SDValue SubRegIdx = - CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); - return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, - NatWidthRes, SubRegIdx), 0); -} - -// Produce a GPR sequence for compound comparisons (<=, >=) against zero. -// Handle both zero-extensions and sign-extensions. -SDValue -IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, - ZeroCompare CmpTy) { - EVT InVT = LHS.getValueType(); - bool Is32Bit = InVT == MVT::i32; - SDValue ToExtend; - - // Produce the value that needs to be either zero or sign extended. - switch (CmpTy) { - case ZeroCompare::GEZExt: - case ZeroCompare::GESExt: - ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, - dl, InVT, LHS, LHS), 0); - break; - case ZeroCompare::LEZExt: - case ZeroCompare::LESExt: { - if (Is32Bit) { - // Upper 32 bits cannot be undefined for this sequence. - LHS = signExtendInputIfNeeded(LHS); - SDValue Neg = - SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); - ToExtend = - SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, - Neg, S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - } else { - SDValue Addi = - SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, - S->getI64Imm(~0ULL, dl)), 0); - ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, - Addi, LHS), 0); - } - break; - } - } - - // For 64-bit sequences, the extensions are the same for the GE/LE cases. - if (!Is32Bit && - (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) - return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, - ToExtend, S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - if (!Is32Bit && - (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) - return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, - S->getI64Imm(63, dl)), 0); - - assert(Is32Bit && "Should have handled the 32-bit sequences above."); - // For 32-bit sequences, the extensions differ between GE/LE cases. - switch (CmpTy) { - case ZeroCompare::GEZExt: { - SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), - S->getI32Imm(31, dl) }; - return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, - ShiftOps), 0); - } - case ZeroCompare::GESExt: - return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, - S->getI32Imm(31, dl)), 0); - case ZeroCompare::LEZExt: - return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, - S->getI32Imm(1, dl)), 0); - case ZeroCompare::LESExt: - return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, - S->getI32Imm(-1, dl)), 0); - } - - // The above case covers all the enumerators so it can't have a default clause - // to avoid compiler warnings. - llvm_unreachable("Unknown zero-comparison type."); -} - -/// Produces a zero-extended result of comparing two 32-bit values according to -/// the passed condition code. -SDValue -IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, - ISD::CondCode CC, - int64_t RHSValue, SDLoc dl) { - if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || - CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) - return SDValue(); - bool IsRHSZero = RHSValue == 0; - bool IsRHSOne = RHSValue == 1; - bool IsRHSNegOne = RHSValue == -1LL; - switch (CC) { - default: return SDValue(); - case ISD::SETEQ: { - // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) - // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5) - SDValue Xor = IsRHSZero ? LHS : - SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); - SDValue Clz = - SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); - SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), - S->getI32Imm(31, dl) }; - return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, - ShiftOps), 0); - } - case ISD::SETNE: { - // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) - // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1) - SDValue Xor = IsRHSZero ? LHS : - SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); - SDValue Clz = - SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); - SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), - S->getI32Imm(31, dl) }; - SDValue Shift = - SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); - return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, - S->getI32Imm(1, dl)), 0); - } - case ISD::SETGE: { - // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) - // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31) - if(IsRHSZero) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); - - // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) - // by swapping inputs and falling through. - std::swap(LHS, RHS); - ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); - IsRHSZero = RHSConst && RHSConst->isNullValue(); - LLVM_FALLTHROUGH; - } - case ISD::SETLE: { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) - // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1) - if(IsRHSZero) { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); - } - - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = signExtendInputIfNeeded(LHS); - RHS = signExtendInputIfNeeded(RHS); - SDValue Sub = - SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); - SDValue Shift = - SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, - S->getI64Imm(1, dl), S->getI64Imm(63, dl)), - 0); - return - SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, - MVT::i64, Shift, S->getI32Imm(1, dl)), 0); - } - case ISD::SETGT: { - // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) - // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) - // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63) - // Handle SETLT -1 (which is equivalent to SETGE 0). - if (IsRHSNegOne) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); - - if (IsRHSZero) { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = signExtendInputIfNeeded(LHS); - RHS = signExtendInputIfNeeded(RHS); - SDValue Neg = - SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); - return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, - Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); - } - // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as - // (%b < %a) by swapping inputs and falling through. - std::swap(LHS, RHS); - ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); - IsRHSZero = RHSConst && RHSConst->isNullValue(); - IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; - LLVM_FALLTHROUGH; - } - case ISD::SETLT: { - // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) - // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1) - // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31) - // Handle SETLT 1 (which is equivalent to SETLE 0). - if (IsRHSOne) { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); - } - - if (IsRHSZero) { - SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), - S->getI32Imm(31, dl) }; - return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, - ShiftOps), 0); - } - - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = signExtendInputIfNeeded(LHS); - RHS = signExtendInputIfNeeded(RHS); - SDValue SUBFNode = - SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); - return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, - SUBFNode, S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - } - case ISD::SETUGE: - // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) - // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ISD::SETULE: { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = zeroExtendInputIfNeeded(LHS); - RHS = zeroExtendInputIfNeeded(RHS); - SDValue Subtract = - SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); - SDValue SrdiNode = - SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, - Subtract, S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, - S->getI32Imm(1, dl)), 0); - } - case ISD::SETUGT: - // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) - // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ISD::SETULT: { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = zeroExtendInputIfNeeded(LHS); - RHS = zeroExtendInputIfNeeded(RHS); - SDValue Subtract = - SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); - return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, - Subtract, S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - } - } -} - -/// Produces a sign-extended result of comparing two 32-bit values according to -/// the passed condition code. -SDValue -IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, - ISD::CondCode CC, - int64_t RHSValue, SDLoc dl) { - if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || - CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) - return SDValue(); - bool IsRHSZero = RHSValue == 0; - bool IsRHSOne = RHSValue == 1; - bool IsRHSNegOne = RHSValue == -1LL; - - switch (CC) { - default: return SDValue(); - case ISD::SETEQ: { - // (sext (setcc %a, %b, seteq)) -> - // (ashr (shl (ctlz (xor %a, %b)), 58), 63) - // (sext (setcc %a, 0, seteq)) -> - // (ashr (shl (ctlz %a), 58), 63) - SDValue CountInput = IsRHSZero ? LHS : - SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); - SDValue Cntlzw = - SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); - SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), - S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; - SDValue Slwi = - SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); - return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); - } - case ISD::SETNE: { - // Bitwise xor the operands, count leading zeros, shift right by 5 bits and - // flip the bit, finally take 2's complement. - // (sext (setcc %a, %b, setne)) -> - // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) - // Same as above, but the first xor is not needed. - // (sext (setcc %a, 0, setne)) -> - // (neg (xor (lshr (ctlz %a), 5), 1)) - SDValue Xor = IsRHSZero ? LHS : - SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); - SDValue Clz = - SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); - SDValue ShiftOps[] = - { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; - SDValue Shift = - SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); - SDValue Xori = - SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, - S->getI32Imm(1, dl)), 0); - return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); - } - case ISD::SETGE: { - // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) - // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31) - if (IsRHSZero) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); - - // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) - // by swapping inputs and falling through. - std::swap(LHS, RHS); - ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); - IsRHSZero = RHSConst && RHSConst->isNullValue(); - LLVM_FALLTHROUGH; - } - case ISD::SETLE: { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) - // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1) - if (IsRHSZero) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); - - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = signExtendInputIfNeeded(LHS); - RHS = signExtendInputIfNeeded(RHS); - SDValue SUBFNode = - SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, - LHS, RHS), 0); - SDValue Srdi = - SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, - SUBFNode, S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, - S->getI32Imm(-1, dl)), 0); - } - case ISD::SETGT: { - // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) - // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) - // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63) - if (IsRHSNegOne) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); - if (IsRHSZero) { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = signExtendInputIfNeeded(LHS); - RHS = signExtendInputIfNeeded(RHS); - SDValue Neg = - SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); - return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, - S->getI64Imm(63, dl)), 0); - } - // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as - // (%b < %a) by swapping inputs and falling through. - std::swap(LHS, RHS); - ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); - IsRHSZero = RHSConst && RHSConst->isNullValue(); - IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; - LLVM_FALLTHROUGH; - } - case ISD::SETLT: { - // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) - // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1) - // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31) - if (IsRHSOne) { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); - } - if (IsRHSZero) - return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, - S->getI32Imm(31, dl)), 0); - - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = signExtendInputIfNeeded(LHS); - RHS = signExtendInputIfNeeded(RHS); - SDValue SUBFNode = - SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); - return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, - SUBFNode, S->getI64Imm(63, dl)), 0); - } - case ISD::SETUGE: - // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) - // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ISD::SETULE: { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = zeroExtendInputIfNeeded(LHS); - RHS = zeroExtendInputIfNeeded(RHS); - SDValue Subtract = - SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); - SDValue Shift = - SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, - S->getI32Imm(1, dl), S->getI32Imm(63,dl)), - 0); - return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, - S->getI32Imm(-1, dl)), 0); - } - case ISD::SETUGT: - // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) - // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ISD::SETULT: { - if (CmpInGPR == ICGPR_NonExtIn) - return SDValue(); - // The upper 32-bits of the register can't be undefined for this sequence. - LHS = zeroExtendInputIfNeeded(LHS); - RHS = zeroExtendInputIfNeeded(RHS); - SDValue Subtract = - SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); - return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, - Subtract, S->getI64Imm(63, dl)), 0); - } - } -} - -/// Produces a zero-extended result of comparing two 64-bit values according to -/// the passed condition code. -SDValue -IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, - ISD::CondCode CC, - int64_t RHSValue, SDLoc dl) { - if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || - CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) - return SDValue(); - bool IsRHSZero = RHSValue == 0; - bool IsRHSOne = RHSValue == 1; - bool IsRHSNegOne = RHSValue == -1LL; - switch (CC) { - default: return SDValue(); - case ISD::SETEQ: { - // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) - // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6) - SDValue Xor = IsRHSZero ? LHS : - SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); - SDValue Clz = - SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); - return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, - S->getI64Imm(58, dl), - S->getI64Imm(63, dl)), 0); - } - case ISD::SETNE: { - // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) - // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) - // {addcz.reg, addcz.CA} = (addcarry %a, -1) - // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) - SDValue Xor = IsRHSZero ? LHS : - SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); - SDValue AC = - SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, - Xor, S->getI32Imm(~0U, dl)), 0); - return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, - Xor, AC.getValue(1)), 0); - } - case ISD::SETGE: { - // {subc.reg, subc.CA} = (subcarry %a, %b) - // (zext (setcc %a, %b, setge)) -> - // (adde (lshr %b, 63), (ashr %a, 63), subc.CA) - // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) - if (IsRHSZero) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); - std::swap(LHS, RHS); - ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); - IsRHSZero = RHSConst && RHSConst->isNullValue(); - LLVM_FALLTHROUGH; - } - case ISD::SETLE: { - // {subc.reg, subc.CA} = (subcarry %b, %a) - // (zext (setcc %a, %b, setge)) -> - // (adde (lshr %a, 63), (ashr %b, 63), subc.CA) - // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) - if (IsRHSZero) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); - SDValue ShiftL = - SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, - S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - SDValue ShiftR = - SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, - S->getI64Imm(63, dl)), 0); - SDValue SubtractCarry = - SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, - LHS, RHS), 1); - return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, - ShiftR, ShiftL, SubtractCarry), 0); - } - case ISD::SETGT: { - // {subc.reg, subc.CA} = (subcarry %b, %a) - // (zext (setcc %a, %b, setgt)) -> - // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) - // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) - if (IsRHSNegOne) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); - if (IsRHSZero) { - SDValue Addi = - SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, - S->getI64Imm(~0ULL, dl)), 0); - SDValue Nor = - SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); - return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, - S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - } - std::swap(LHS, RHS); - ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); - IsRHSZero = RHSConst && RHSConst->isNullValue(); - IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; - LLVM_FALLTHROUGH; - } - case ISD::SETLT: { - // {subc.reg, subc.CA} = (subcarry %a, %b) - // (zext (setcc %a, %b, setlt)) -> - // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) - // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) - if (IsRHSOne) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); - if (IsRHSZero) - return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, - S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - SDValue SRADINode = - SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, - LHS, S->getI64Imm(63, dl)), 0); - SDValue SRDINode = - SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, - RHS, S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - SDValue SUBFC8Carry = - SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, - RHS, LHS), 1); - SDValue ADDE8Node = - SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, - SRDINode, SRADINode, SUBFC8Carry), 0); - return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, - ADDE8Node, S->getI64Imm(1, dl)), 0); - } - case ISD::SETUGE: - // {subc.reg, subc.CA} = (subcarry %a, %b) - // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ISD::SETULE: { - // {subc.reg, subc.CA} = (subcarry %b, %a) - // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) - SDValue SUBFC8Carry = - SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, - LHS, RHS), 1); - SDValue SUBFE8Node = - SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, - LHS, LHS, SUBFC8Carry), 0); - return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, - SUBFE8Node, S->getI64Imm(1, dl)), 0); - } - case ISD::SETUGT: - // {subc.reg, subc.CA} = (subcarry %b, %a) - // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ISD::SETULT: { - // {subc.reg, subc.CA} = (subcarry %a, %b) - // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) - SDValue SubtractCarry = - SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, - RHS, LHS), 1); - SDValue ExtSub = - SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, - LHS, LHS, SubtractCarry), 0); - return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, - ExtSub), 0); - } - } -} - -/// Produces a sign-extended result of comparing two 64-bit values according to -/// the passed condition code. -SDValue -IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, - ISD::CondCode CC, - int64_t RHSValue, SDLoc dl) { - if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || - CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) - return SDValue(); - bool IsRHSZero = RHSValue == 0; - bool IsRHSOne = RHSValue == 1; - bool IsRHSNegOne = RHSValue == -1LL; - switch (CC) { - default: return SDValue(); - case ISD::SETEQ: { - // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) - // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) - // {addcz.reg, addcz.CA} = (addcarry %a, -1) - // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) - SDValue AddInput = IsRHSZero ? LHS : - SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); - SDValue Addic = - SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, - AddInput, S->getI32Imm(~0U, dl)), 0); - return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, - Addic, Addic.getValue(1)), 0); - } - case ISD::SETNE: { - // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) - // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) - // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) - // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) - SDValue Xor = IsRHSZero ? LHS : - SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); - SDValue SC = - SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, - Xor, S->getI32Imm(0, dl)), 0); - return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, - SC, SC.getValue(1)), 0); - } - case ISD::SETGE: { - // {subc.reg, subc.CA} = (subcarry %a, %b) - // (zext (setcc %a, %b, setge)) -> - // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) - // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) - if (IsRHSZero) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); - std::swap(LHS, RHS); - ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); - IsRHSZero = RHSConst && RHSConst->isNullValue(); - LLVM_FALLTHROUGH; - } - case ISD::SETLE: { - // {subc.reg, subc.CA} = (subcarry %b, %a) - // (zext (setcc %a, %b, setge)) -> - // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) - // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) - if (IsRHSZero) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); - SDValue ShiftR = - SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, - S->getI64Imm(63, dl)), 0); - SDValue ShiftL = - SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, - S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - SDValue SubtractCarry = - SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, - LHS, RHS), 1); - SDValue Adde = - SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, - ShiftR, ShiftL, SubtractCarry), 0); - return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); - } - case ISD::SETGT: { - // {subc.reg, subc.CA} = (subcarry %b, %a) - // (zext (setcc %a, %b, setgt)) -> - // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) - // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) - if (IsRHSNegOne) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); - if (IsRHSZero) { - SDValue Add = - SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, - S->getI64Imm(-1, dl)), 0); - SDValue Nor = - SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); - return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, - S->getI64Imm(63, dl)), 0); - } - std::swap(LHS, RHS); - ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); - IsRHSZero = RHSConst && RHSConst->isNullValue(); - IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; - LLVM_FALLTHROUGH; - } - case ISD::SETLT: { - // {subc.reg, subc.CA} = (subcarry %a, %b) - // (zext (setcc %a, %b, setlt)) -> - // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) - // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) - if (IsRHSOne) - return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); - if (IsRHSZero) { - return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, - S->getI64Imm(63, dl)), 0); - } - SDValue SRADINode = - SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, - LHS, S->getI64Imm(63, dl)), 0); - SDValue SRDINode = - SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, - RHS, S->getI64Imm(1, dl), - S->getI64Imm(63, dl)), 0); - SDValue SUBFC8Carry = - SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, - RHS, LHS), 1); - SDValue ADDE8Node = - SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, - SRDINode, SRADINode, SUBFC8Carry), 0); - SDValue XORI8Node = - SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, - ADDE8Node, S->getI64Imm(1, dl)), 0); - return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, - XORI8Node), 0); - } - case ISD::SETUGE: - // {subc.reg, subc.CA} = (subcarry %a, %b) - // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ISD::SETULE: { - // {subc.reg, subc.CA} = (subcarry %b, %a) - // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) - SDValue SubtractCarry = - SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, - LHS, RHS), 1); - SDValue ExtSub = - SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, - LHS, SubtractCarry), 0); - return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, - ExtSub, ExtSub), 0); - } - case ISD::SETUGT: - // {subc.reg, subc.CA} = (subcarry %b, %a) - // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ISD::SETULT: { - // {subc.reg, subc.CA} = (subcarry %a, %b) - // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) - SDValue SubCarry = - SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, - RHS, LHS), 1); - return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, - LHS, LHS, SubCarry), 0); - } - } -} - -/// Do all uses of this SDValue need the result in a GPR? -/// This is meant to be used on values that have type i1 since -/// it is somewhat meaningless to ask if values of other types -/// should be kept in GPR's. -static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { - assert(Compare.getOpcode() == ISD::SETCC && - "An ISD::SETCC node required here."); - - // For values that have a single use, the caller should obviously already have - // checked if that use is an extending use. We check the other uses here. - if (Compare.hasOneUse()) - return true; - // We want the value in a GPR if it is being extended, used for a select, or - // used in logical operations. - for (auto CompareUse : Compare.getNode()->uses()) - if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && - CompareUse->getOpcode() != ISD::ZERO_EXTEND && - CompareUse->getOpcode() != ISD::SELECT && - !isLogicOp(CompareUse->getOpcode())) { - OmittedForNonExtendUses++; - return false; - } - return true; -} - -/// Returns an equivalent of a SETCC node but with the result the same width as -/// the inputs. This can also be used for SELECT_CC if either the true or false -/// values is a power of two while the other is zero. -SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, - SetccInGPROpts ConvOpts) { - assert((Compare.getOpcode() == ISD::SETCC || - Compare.getOpcode() == ISD::SELECT_CC) && - "An ISD::SETCC node required here."); - - // Don't convert this comparison to a GPR sequence because there are uses - // of the i1 result (i.e. uses that require the result in the CR). - if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) - return SDValue(); - - SDValue LHS = Compare.getOperand(0); - SDValue RHS = Compare.getOperand(1); - - // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. - int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; - ISD::CondCode CC = - cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); - EVT InputVT = LHS.getValueType(); - if (InputVT != MVT::i32 && InputVT != MVT::i64) - return SDValue(); - - if (ConvOpts == SetccInGPROpts::ZExtInvert || - ConvOpts == SetccInGPROpts::SExtInvert) - CC = ISD::getSetCCInverse(CC, true); - - bool Inputs32Bit = InputVT == MVT::i32; - - SDLoc dl(Compare); - ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); - int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; - bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || - ConvOpts == SetccInGPROpts::SExtInvert; - - if (IsSext && Inputs32Bit) - return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); - else if (Inputs32Bit) - return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); - else if (IsSext) - return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); - return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); -} - -} // end anonymous namespace - -bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { - if (N->getValueType(0) != MVT::i32 && - N->getValueType(0) != MVT::i64) - return false; - - // This optimization will emit code that assumes 64-bit registers - // so we don't want to run it in 32-bit mode. Also don't run it - // on functions that are not to be optimized. - if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) - return false; - - switch (N->getOpcode()) { - default: break; - case ISD::ZERO_EXTEND: - case ISD::SIGN_EXTEND: - case ISD::AND: - case ISD::OR: - case ISD::XOR: { - IntegerCompareEliminator ICmpElim(CurDAG, this); - if (SDNode *New = ICmpElim.Select(N)) { - ReplaceNode(N, New); - return true; - } - } - } - return false; -} - -bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { - if (N->getValueType(0) != MVT::i32 && - N->getValueType(0) != MVT::i64) - return false; - - if (!UseBitPermRewriter) - return false; - - switch (N->getOpcode()) { - default: break; - case ISD::ROTL: - case ISD::SHL: - case ISD::SRL: - case ISD::AND: - case ISD::OR: { - BitPermutationSelector BPS(CurDAG); - if (SDNode *New = BPS.Select(N)) { - ReplaceNode(N, New); - return true; - } - return false; - } - } - - return false; -} - -/// SelectCC - Select a comparison of the specified values with the specified -/// condition code, returning the CR# of the expression. -SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, - const SDLoc &dl) { - // Always select the LHS. - unsigned Opc; - - if (LHS.getValueType() == MVT::i32) { - unsigned Imm; - if (CC == ISD::SETEQ || CC == ISD::SETNE) { - if (isInt32Immediate(RHS, Imm)) { - // SETEQ/SETNE comparison with 16-bit immediate, fold it. - if (isUInt<16>(Imm)) - return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, - getI32Imm(Imm & 0xFFFF, dl)), - 0); - // If this is a 16-bit signed immediate, fold it. - if (isInt<16>((int)Imm)) - return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, - getI32Imm(Imm & 0xFFFF, dl)), - 0); - - // For non-equality comparisons, the default code would materialize the - // constant, then compare against it, like this: - // lis r2, 4660 - // ori r2, r2, 22136 - // cmpw cr0, r3, r2 - // Since we are just comparing for equality, we can emit this instead: - // xoris r0,r3,0x1234 - // cmplwi cr0,r0,0x5678 - // beq cr0,L6 - SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, - getI32Imm(Imm >> 16, dl)), 0); - return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, - getI32Imm(Imm & 0xFFFF, dl)), 0); - } - Opc = PPC::CMPLW; - } else if (ISD::isUnsignedIntSetCC(CC)) { - if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) - return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, - getI32Imm(Imm & 0xFFFF, dl)), 0); - Opc = PPC::CMPLW; - } else { - int16_t SImm; - if (isIntS16Immediate(RHS, SImm)) - return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, - getI32Imm((int)SImm & 0xFFFF, - dl)), - 0); - Opc = PPC::CMPW; - } - } else if (LHS.getValueType() == MVT::i64) { - uint64_t Imm; - if (CC == ISD::SETEQ || CC == ISD::SETNE) { - if (isInt64Immediate(RHS.getNode(), Imm)) { - // SETEQ/SETNE comparison with 16-bit immediate, fold it. - if (isUInt<16>(Imm)) - return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, - getI32Imm(Imm & 0xFFFF, dl)), - 0); - // If this is a 16-bit signed immediate, fold it. - if (isInt<16>(Imm)) - return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, - getI32Imm(Imm & 0xFFFF, dl)), - 0); - - // For non-equality comparisons, the default code would materialize the - // constant, then compare against it, like this: - // lis r2, 4660 - // ori r2, r2, 22136 - // cmpd cr0, r3, r2 - // Since we are just comparing for equality, we can emit this instead: - // xoris r0,r3,0x1234 - // cmpldi cr0,r0,0x5678 - // beq cr0,L6 - if (isUInt<32>(Imm)) { - SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, - getI64Imm(Imm >> 16, dl)), 0); - return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, - getI64Imm(Imm & 0xFFFF, dl)), - 0); - } - } - Opc = PPC::CMPLD; - } else if (ISD::isUnsignedIntSetCC(CC)) { - if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) - return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, - getI64Imm(Imm & 0xFFFF, dl)), 0); - Opc = PPC::CMPLD; - } else { - int16_t SImm; - if (isIntS16Immediate(RHS, SImm)) - return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, - getI64Imm(SImm & 0xFFFF, dl)), - 0); - Opc = PPC::CMPD; - } - } else if (LHS.getValueType() == MVT::f32) { - if (PPCSubTarget->hasSPE()) { - switch (CC) { - default: - case ISD::SETEQ: - case ISD::SETNE: - Opc = PPC::EFSCMPEQ; - break; - case ISD::SETLT: - case ISD::SETGE: - case ISD::SETOLT: - case ISD::SETOGE: - case ISD::SETULT: - case ISD::SETUGE: - Opc = PPC::EFSCMPLT; - break; - case ISD::SETGT: - case ISD::SETLE: - case ISD::SETOGT: - case ISD::SETOLE: - case ISD::SETUGT: - case ISD::SETULE: - Opc = PPC::EFSCMPGT; - break; - } - } else - Opc = PPC::FCMPUS; - } else if (LHS.getValueType() == MVT::f64) { - if (PPCSubTarget->hasSPE()) { - switch (CC) { - default: - case ISD::SETEQ: - case ISD::SETNE: - Opc = PPC::EFDCMPEQ; - break; - case ISD::SETLT: - case ISD::SETGE: - case ISD::SETOLT: - case ISD::SETOGE: - case ISD::SETULT: - case ISD::SETUGE: - Opc = PPC::EFDCMPLT; - break; - case ISD::SETGT: - case ISD::SETLE: - case ISD::SETOGT: - case ISD::SETOLE: - case ISD::SETUGT: - case ISD::SETULE: - Opc = PPC::EFDCMPGT; - break; - } - } else - Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; - } else { - assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); - assert(PPCSubTarget->hasVSX() && "__float128 requires VSX"); - Opc = PPC::XSCMPUQP; - } - return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); -} - -static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { - switch (CC) { - case ISD::SETUEQ: - case ISD::SETONE: - case ISD::SETOLE: - case ISD::SETOGE: - llvm_unreachable("Should be lowered by legalize!"); - default: llvm_unreachable("Unknown condition!"); - case ISD::SETOEQ: - case ISD::SETEQ: return PPC::PRED_EQ; - case ISD::SETUNE: - case ISD::SETNE: return PPC::PRED_NE; - case ISD::SETOLT: - case ISD::SETLT: return PPC::PRED_LT; - case ISD::SETULE: - case ISD::SETLE: return PPC::PRED_LE; - case ISD::SETOGT: - case ISD::SETGT: return PPC::PRED_GT; - case ISD::SETUGE: - case ISD::SETGE: return PPC::PRED_GE; - case ISD::SETO: return PPC::PRED_NU; - case ISD::SETUO: return PPC::PRED_UN; - // These two are invalid for floating point. Assume we have int. - case ISD::SETULT: return PPC::PRED_LT; - case ISD::SETUGT: return PPC::PRED_GT; - } -} - -/// getCRIdxForSetCC - Return the index of the condition register field -/// associated with the SetCC condition, and whether or not the field is -/// treated as inverted. That is, lt = 0; ge = 0 inverted. -static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { - Invert = false; - switch (CC) { - default: llvm_unreachable("Unknown condition!"); - case ISD::SETOLT: - case ISD::SETLT: return 0; // Bit #0 = SETOLT - case ISD::SETOGT: - case ISD::SETGT: return 1; // Bit #1 = SETOGT - case ISD::SETOEQ: - case ISD::SETEQ: return 2; // Bit #2 = SETOEQ - case ISD::SETUO: return 3; // Bit #3 = SETUO - case ISD::SETUGE: - case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE - case ISD::SETULE: - case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE - case ISD::SETUNE: - case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE - case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO - case ISD::SETUEQ: - case ISD::SETOGE: - case ISD::SETOLE: - case ISD::SETONE: - llvm_unreachable("Invalid branch code: should be expanded by legalize"); - // These are invalid for floating point. Assume integer. - case ISD::SETULT: return 0; - case ISD::SETUGT: return 1; - } -} - -// getVCmpInst: return the vector compare instruction for the specified -// vector type and condition code. Since this is for altivec specific code, -// only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). -static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, - bool HasVSX, bool &Swap, bool &Negate) { - Swap = false; - Negate = false; - - if (VecVT.isFloatingPoint()) { - /* Handle some cases by swapping input operands. */ - switch (CC) { - case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; - case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; - case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; - case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; - case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; - case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; - default: break; - } - /* Handle some cases by negating the result. */ - switch (CC) { - case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; - case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; - case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; - case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; - default: break; - } - /* We have instructions implementing the remaining cases. */ - switch (CC) { - case ISD::SETEQ: - case ISD::SETOEQ: - if (VecVT == MVT::v4f32) - return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; - else if (VecVT == MVT::v2f64) - return PPC::XVCMPEQDP; - break; - case ISD::SETGT: - case ISD::SETOGT: - if (VecVT == MVT::v4f32) - return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; - else if (VecVT == MVT::v2f64) - return PPC::XVCMPGTDP; - break; - case ISD::SETGE: - case ISD::SETOGE: - if (VecVT == MVT::v4f32) - return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; - else if (VecVT == MVT::v2f64) - return PPC::XVCMPGEDP; - break; - default: - break; - } - llvm_unreachable("Invalid floating-point vector compare condition"); - } else { - /* Handle some cases by swapping input operands. */ - switch (CC) { - case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; - case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; - case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; - case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; - default: break; - } - /* Handle some cases by negating the result. */ - switch (CC) { - case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; - case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; - case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; - case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; - default: break; - } - /* We have instructions implementing the remaining cases. */ - switch (CC) { - case ISD::SETEQ: - case ISD::SETUEQ: - if (VecVT == MVT::v16i8) - return PPC::VCMPEQUB; - else if (VecVT == MVT::v8i16) - return PPC::VCMPEQUH; - else if (VecVT == MVT::v4i32) - return PPC::VCMPEQUW; - else if (VecVT == MVT::v2i64) - return PPC::VCMPEQUD; - break; - case ISD::SETGT: - if (VecVT == MVT::v16i8) - return PPC::VCMPGTSB; - else if (VecVT == MVT::v8i16) - return PPC::VCMPGTSH; - else if (VecVT == MVT::v4i32) - return PPC::VCMPGTSW; - else if (VecVT == MVT::v2i64) - return PPC::VCMPGTSD; - break; - case ISD::SETUGT: - if (VecVT == MVT::v16i8) - return PPC::VCMPGTUB; - else if (VecVT == MVT::v8i16) - return PPC::VCMPGTUH; - else if (VecVT == MVT::v4i32) - return PPC::VCMPGTUW; - else if (VecVT == MVT::v2i64) - return PPC::VCMPGTUD; - break; - default: - break; - } - llvm_unreachable("Invalid integer vector compare condition"); - } -} - -bool PPCDAGToDAGISel::trySETCC(SDNode *N) { - SDLoc dl(N); - unsigned Imm; - ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); - EVT PtrVT = - CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); - bool isPPC64 = (PtrVT == MVT::i64); - - if (!PPCSubTarget->useCRBits() && - isInt32Immediate(N->getOperand(1), Imm)) { - // We can codegen setcc op, imm very efficiently compared to a brcond. - // Check for those cases here. - // setcc op, 0 - if (Imm == 0) { - SDValue Op = N->getOperand(0); - switch (CC) { - default: break; - case ISD::SETEQ: { - Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); - SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), - getI32Imm(31, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); - return true; - } - case ISD::SETNE: { - if (isPPC64) break; - SDValue AD = - SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, - Op, getI32Imm(~0U, dl)), 0); - CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); - return true; - } - case ISD::SETLT: { - SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), - getI32Imm(31, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); - return true; - } - case ISD::SETGT: { - SDValue T = - SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); - T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); - SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), - getI32Imm(31, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); - return true; - } - } - } else if (Imm == ~0U) { // setcc op, -1 - SDValue Op = N->getOperand(0); - switch (CC) { - default: break; - case ISD::SETEQ: - if (isPPC64) break; - Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, - Op, getI32Imm(1, dl)), 0); - CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, - SDValue(CurDAG->getMachineNode(PPC::LI, dl, - MVT::i32, - getI32Imm(0, dl)), - 0), Op.getValue(1)); - return true; - case ISD::SETNE: { - if (isPPC64) break; - Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); - SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, - Op, getI32Imm(~0U, dl)); - CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, - SDValue(AD, 1)); - return true; - } - case ISD::SETLT: { - SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, - getI32Imm(1, dl)), 0); - SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, - Op), 0); - SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), - getI32Imm(31, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); - return true; - } - case ISD::SETGT: { - SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), - getI32Imm(31, dl) }; - Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); - CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); - return true; - } - } - } - } - - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - - // Altivec Vector compare instructions do not set any CR register by default and - // vector compare operations return the same type as the operands. - if (LHS.getValueType().isVector()) { - if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE()) - return false; - - EVT VecVT = LHS.getValueType(); - bool Swap, Negate; - unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, - PPCSubTarget->hasVSX(), Swap, Negate); - if (Swap) - std::swap(LHS, RHS); - - EVT ResVT = VecVT.changeVectorElementTypeToInteger(); - if (Negate) { - SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); - CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, - ResVT, VCmp, VCmp); - return true; - } - - CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); - return true; - } - - if (PPCSubTarget->useCRBits()) - return false; - - bool Inv; - unsigned Idx = getCRIdxForSetCC(CC, Inv); - SDValue CCReg = SelectCC(LHS, RHS, CC, dl); - SDValue IntCR; - - // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that - // The correct compare instruction is already set by SelectCC() - if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { - Idx = 1; - } - - // Force the ccreg into CR7. - SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); - - SDValue InFlag(nullptr, 0); // Null incoming flag value. - CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, - InFlag).getValue(1); - - IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, - CCReg), 0); - - SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), - getI32Imm(31, dl), getI32Imm(31, dl) }; - if (!Inv) { - CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); - return true; - } - - // Get the specified bit. - SDValue Tmp = - SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); - CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); - return true; -} - -/// Does this node represent a load/store node whose address can be represented -/// with a register plus an immediate that's a multiple of \p Val: -bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { - LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); - StoreSDNode *STN = dyn_cast<StoreSDNode>(N); - SDValue AddrOp; - if (LDN) - AddrOp = LDN->getOperand(1); - else if (STN) - AddrOp = STN->getOperand(2); - - // If the address points a frame object or a frame object with an offset, - // we need to check the object alignment. - short Imm = 0; - if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( - AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : - AddrOp)) { - // If op0 is a frame index that is under aligned, we can't do it either, - // because it is translated to r31 or r1 + slot + offset. We won't know the - // slot number until the stack frame is finalized. - const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); - unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex()); - if ((SlotAlign % Val) != 0) - return false; - - // If we have an offset, we need further check on the offset. - if (AddrOp.getOpcode() != ISD::ADD) - return true; - } - - if (AddrOp.getOpcode() == ISD::ADD) - return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); - - // If the address comes from the outside, the offset will be zero. - return AddrOp.getOpcode() == ISD::CopyFromReg; -} - -void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { - // Transfer memoperands. - MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); - CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); -} - -static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, - bool &NeedSwapOps, bool &IsUnCmp) { - - assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); - - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - SDValue TrueRes = N->getOperand(2); - SDValue FalseRes = N->getOperand(3); - ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); - if (!TrueConst) - return false; - - assert((N->getSimpleValueType(0) == MVT::i64 || - N->getSimpleValueType(0) == MVT::i32) && - "Expecting either i64 or i32 here."); - - // We are looking for any of: - // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) - // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) - // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq) - // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq) - int64_t TrueResVal = TrueConst->getSExtValue(); - if ((TrueResVal < -1 || TrueResVal > 1) || - (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || - (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || - (TrueResVal == 0 && - (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) - return false; - - bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC; - SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0); - if (SetOrSelCC.getOpcode() != ISD::SETCC && - SetOrSelCC.getOpcode() != ISD::SELECT_CC) - return false; - - // Without this setb optimization, the outer SELECT_CC will be manually - // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass - // transforms pseudo instruction to isel instruction. When there are more than - // one use for result like zext/sext, with current optimization we only see - // isel is replaced by setb but can't see any significant gain. Since - // setb has longer latency than original isel, we should avoid this. Another - // point is that setb requires comparison always kept, it can break the - // opportunity to get the comparison away if we have in future. - if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) - return false; - - SDValue InnerLHS = SetOrSelCC.getOperand(0); - SDValue InnerRHS = SetOrSelCC.getOperand(1); - ISD::CondCode InnerCC = - cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); - // If the inner comparison is a select_cc, make sure the true/false values are - // 1/-1 and canonicalize it if needed. - if (InnerIsSel) { - ConstantSDNode *SelCCTrueConst = - dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); - ConstantSDNode *SelCCFalseConst = - dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); - if (!SelCCTrueConst || !SelCCFalseConst) - return false; - int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); - int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); - // The values must be -1/1 (requiring a swap) or 1/-1. - if (SelCCTVal == -1 && SelCCFVal == 1) { - std::swap(InnerLHS, InnerRHS); - } else if (SelCCTVal != 1 || SelCCFVal != -1) - return false; - } - - // Canonicalize unsigned case - if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { - IsUnCmp = true; - InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; - } - - bool InnerSwapped = false; - if (LHS == InnerRHS && RHS == InnerLHS) - InnerSwapped = true; - else if (LHS != InnerLHS || RHS != InnerRHS) - return false; - - switch (CC) { - // (select_cc lhs, rhs, 0, \ - // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) - case ISD::SETEQ: - if (!InnerIsSel) - return false; - if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) - return false; - NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; - break; - - // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) - // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) - // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) - // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) - // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) - // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) - case ISD::SETULT: - if (!IsUnCmp && InnerCC != ISD::SETNE) - return false; - IsUnCmp = true; - LLVM_FALLTHROUGH; - case ISD::SETLT: - if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || - (InnerCC == ISD::SETLT && InnerSwapped)) - NeedSwapOps = (TrueResVal == 1); - else - return false; - break; - - // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) - // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) - // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) - // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) - // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) - // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) - case ISD::SETUGT: - if (!IsUnCmp && InnerCC != ISD::SETNE) - return false; - IsUnCmp = true; - LLVM_FALLTHROUGH; - case ISD::SETGT: - if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || - (InnerCC == ISD::SETGT && InnerSwapped)) - NeedSwapOps = (TrueResVal == -1); - else - return false; - break; - - default: - return false; - } - - LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); - LLVM_DEBUG(N->dump()); - - return true; -} - -// Select - Convert the specified operand from a target-independent to a -// target-specific node if it hasn't already been changed. -void PPCDAGToDAGISel::Select(SDNode *N) { - SDLoc dl(N); - if (N->isMachineOpcode()) { - N->setNodeId(-1); - return; // Already selected. - } - - // In case any misguided DAG-level optimizations form an ADD with a - // TargetConstant operand, crash here instead of miscompiling (by selecting - // an r+r add instead of some kind of r+i add). - if (N->getOpcode() == ISD::ADD && - N->getOperand(1).getOpcode() == ISD::TargetConstant) - llvm_unreachable("Invalid ADD with TargetConstant operand"); - - // Try matching complex bit permutations before doing anything else. - if (tryBitPermutation(N)) - return; - - // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). - if (tryIntCompareInGPR(N)) - return; - - switch (N->getOpcode()) { - default: break; - - case ISD::Constant: - if (N->getValueType(0) == MVT::i64) { - ReplaceNode(N, selectI64Imm(CurDAG, N)); - return; - } - break; - - case ISD::SETCC: - if (trySETCC(N)) - return; - break; - // These nodes will be transformed into GETtlsADDR32 node, which - // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT - case PPCISD::ADDI_TLSLD_L_ADDR: - case PPCISD::ADDI_TLSGD_L_ADDR: { - const Module *Mod = MF->getFunction().getParent(); - if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || - !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() || - Mod->getPICLevel() == PICLevel::SmallPIC) - break; - // Attach global base pointer on GETtlsADDR32 node in order to - // generate secure plt code for TLS symbols. - getGlobalBaseReg(); - } break; - case PPCISD::CALL: { - if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || - !TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt() || - !PPCSubTarget->isTargetELF()) - break; - - SDValue Op = N->getOperand(1); - - if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { - if (GA->getTargetFlags() == PPCII::MO_PLT) - getGlobalBaseReg(); - } - else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { - if (ES->getTargetFlags() == PPCII::MO_PLT) - getGlobalBaseReg(); - } - } - break; - - case PPCISD::GlobalBaseReg: - ReplaceNode(N, getGlobalBaseReg()); - return; - - case ISD::FrameIndex: - selectFrameIndex(N, N); - return; - - case PPCISD::MFOCRF: { - SDValue InFlag = N->getOperand(1); - ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, - N->getOperand(0), InFlag)); - return; - } - - case PPCISD::READ_TIME_BASE: - ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, - MVT::Other, N->getOperand(0))); - return; - - case PPCISD::SRA_ADDZE: { - SDValue N0 = N->getOperand(0); - SDValue ShiftAmt = - CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> - getConstantIntValue(), dl, - N->getValueType(0)); - if (N->getValueType(0) == MVT::i64) { - SDNode *Op = - CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, - N0, ShiftAmt); - CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), - SDValue(Op, 1)); - return; - } else { - assert(N->getValueType(0) == MVT::i32 && - "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); - SDNode *Op = - CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, - N0, ShiftAmt); - CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), - SDValue(Op, 1)); - return; - } - } - - case ISD::STORE: { - // Change TLS initial-exec D-form stores to X-form stores. - StoreSDNode *ST = cast<StoreSDNode>(N); - if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() && - ST->getAddressingMode() != ISD::PRE_INC) - if (tryTLSXFormStore(ST)) - return; - break; - } - case ISD::LOAD: { - // Handle preincrement loads. - LoadSDNode *LD = cast<LoadSDNode>(N); - EVT LoadedVT = LD->getMemoryVT(); - - // Normal loads are handled by code generated from the .td file. - if (LD->getAddressingMode() != ISD::PRE_INC) { - // Change TLS initial-exec D-form loads to X-form loads. - if (EnableTLSOpt && PPCSubTarget->isELFv2ABI()) - if (tryTLSXFormLoad(LD)) - return; - break; - } - - SDValue Offset = LD->getOffset(); - if (Offset.getOpcode() == ISD::TargetConstant || - Offset.getOpcode() == ISD::TargetGlobalAddress) { - - unsigned Opcode; - bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; - if (LD->getValueType(0) != MVT::i64) { - // Handle PPC32 integer and normal FP loads. - assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); - switch (LoadedVT.getSimpleVT().SimpleTy) { - default: llvm_unreachable("Invalid PPC load type!"); - case MVT::f64: Opcode = PPC::LFDU; break; - case MVT::f32: Opcode = PPC::LFSU; break; - case MVT::i32: Opcode = PPC::LWZU; break; - case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; - case MVT::i1: - case MVT::i8: Opcode = PPC::LBZU; break; - } - } else { - assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); - assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); - switch (LoadedVT.getSimpleVT().SimpleTy) { - default: llvm_unreachable("Invalid PPC load type!"); - case MVT::i64: Opcode = PPC::LDU; break; - case MVT::i32: Opcode = PPC::LWZU8; break; - case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; - case MVT::i1: - case MVT::i8: Opcode = PPC::LBZU8; break; - } - } - - SDValue Chain = LD->getChain(); - SDValue Base = LD->getBasePtr(); - SDValue Ops[] = { Offset, Base, Chain }; - SDNode *MN = CurDAG->getMachineNode( - Opcode, dl, LD->getValueType(0), - PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); - transferMemOperands(N, MN); - ReplaceNode(N, MN); - return; - } else { - unsigned Opcode; - bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; - if (LD->getValueType(0) != MVT::i64) { - // Handle PPC32 integer and normal FP loads. - assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); - switch (LoadedVT.getSimpleVT().SimpleTy) { - default: llvm_unreachable("Invalid PPC load type!"); - case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX - case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX - case MVT::f64: Opcode = PPC::LFDUX; break; - case MVT::f32: Opcode = PPC::LFSUX; break; - case MVT::i32: Opcode = PPC::LWZUX; break; - case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; - case MVT::i1: - case MVT::i8: Opcode = PPC::LBZUX; break; - } - } else { - assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); - assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && - "Invalid sext update load"); - switch (LoadedVT.getSimpleVT().SimpleTy) { - default: llvm_unreachable("Invalid PPC load type!"); - case MVT::i64: Opcode = PPC::LDUX; break; - case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; - case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; - case MVT::i1: - case MVT::i8: Opcode = PPC::LBZUX8; break; - } - } - - SDValue Chain = LD->getChain(); - SDValue Base = LD->getBasePtr(); - SDValue Ops[] = { Base, Offset, Chain }; - SDNode *MN = CurDAG->getMachineNode( - Opcode, dl, LD->getValueType(0), - PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); - transferMemOperands(N, MN); - ReplaceNode(N, MN); - return; - } - } - - case ISD::AND: { - unsigned Imm, Imm2, SH, MB, ME; - uint64_t Imm64; - - // If this is an and of a value rotated between 0 and 31 bits and then and'd - // with a mask, emit rlwinm - if (isInt32Immediate(N->getOperand(1), Imm) && - isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { - SDValue Val = N->getOperand(0).getOperand(0); - SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl), - getI32Imm(ME, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); - return; - } - // If this is just a masked value where the input is not handled above, and - // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm - if (isInt32Immediate(N->getOperand(1), Imm) && - isRunOfOnes(Imm, MB, ME) && - N->getOperand(0).getOpcode() != ISD::ROTL) { - SDValue Val = N->getOperand(0); - SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl), - getI32Imm(ME, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); - return; - } - // If this is a 64-bit zero-extension mask, emit rldicl. - if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && - isMask_64(Imm64)) { - SDValue Val = N->getOperand(0); - MB = 64 - countTrailingOnes(Imm64); - SH = 0; - - if (Val.getOpcode() == ISD::ANY_EXTEND) { - auto Op0 = Val.getOperand(0); - if ( Op0.getOpcode() == ISD::SRL && - isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { - - auto ResultType = Val.getNode()->getValueType(0); - auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, - ResultType); - SDValue IDVal (ImDef, 0); - - Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, - ResultType, IDVal, Op0.getOperand(0), - getI32Imm(1, dl)), 0); - SH = 64 - Imm; - } - } - - // If the operand is a logical right shift, we can fold it into this - // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) - // for n <= mb. The right shift is really a left rotate followed by a - // mask, and this mask is a more-restrictive sub-mask of the mask implied - // by the shift. - if (Val.getOpcode() == ISD::SRL && - isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { - assert(Imm < 64 && "Illegal shift amount"); - Val = Val.getOperand(0); - SH = 64 - Imm; - } - - SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); - return; - } - // If this is a negated 64-bit zero-extension mask, - // i.e. the immediate is a sequence of ones from most significant side - // and all zero for reminder, we should use rldicr. - if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && - isMask_64(~Imm64)) { - SDValue Val = N->getOperand(0); - MB = 63 - countTrailingOnes(~Imm64); - SH = 0; - SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); - return; - } - - // AND X, 0 -> 0, not "rlwinm 32". - if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { - ReplaceUses(SDValue(N, 0), N->getOperand(1)); - return; - } - // ISD::OR doesn't get all the bitfield insertion fun. - // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a - // bitfield insert. - if (isInt32Immediate(N->getOperand(1), Imm) && - N->getOperand(0).getOpcode() == ISD::OR && - isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { - // The idea here is to check whether this is equivalent to: - // (c1 & m) | (x & ~m) - // where m is a run-of-ones mask. The logic here is that, for each bit in - // c1 and c2: - // - if both are 1, then the output will be 1. - // - if both are 0, then the output will be 0. - // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will - // come from x. - // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will - // be 0. - // If that last condition is never the case, then we can form m from the - // bits that are the same between c1 and c2. - unsigned MB, ME; - if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) { - SDValue Ops[] = { N->getOperand(0).getOperand(0), - N->getOperand(0).getOperand(1), - getI32Imm(0, dl), getI32Imm(MB, dl), - getI32Imm(ME, dl) }; - ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); - return; - } - } - - // Other cases are autogenerated. - break; - } - case ISD::OR: { - if (N->getValueType(0) == MVT::i32) - if (tryBitfieldInsert(N)) - return; - - int16_t Imm; - if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && - isIntS16Immediate(N->getOperand(1), Imm)) { - KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); - - // If this is equivalent to an add, then we can fold it with the - // FrameIndex calculation. - if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { - selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); - return; - } - } - - // OR with a 32-bit immediate can be handled by ori + oris - // without creating an immediate in a GPR. - uint64_t Imm64 = 0; - bool IsPPC64 = PPCSubTarget->isPPC64(); - if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && - (Imm64 & ~0xFFFFFFFFuLL) == 0) { - // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. - uint64_t ImmHi = Imm64 >> 16; - uint64_t ImmLo = Imm64 & 0xFFFF; - if (ImmHi != 0 && ImmLo != 0) { - SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, - N->getOperand(0), - getI16Imm(ImmLo, dl)); - SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; - CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); - return; - } - } - - // Other cases are autogenerated. - break; - } - case ISD::XOR: { - // XOR with a 32-bit immediate can be handled by xori + xoris - // without creating an immediate in a GPR. - uint64_t Imm64 = 0; - bool IsPPC64 = PPCSubTarget->isPPC64(); - if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && - (Imm64 & ~0xFFFFFFFFuLL) == 0) { - // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. - uint64_t ImmHi = Imm64 >> 16; - uint64_t ImmLo = Imm64 & 0xFFFF; - if (ImmHi != 0 && ImmLo != 0) { - SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, - N->getOperand(0), - getI16Imm(ImmLo, dl)); - SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; - CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); - return; - } - } - - break; - } - case ISD::ADD: { - int16_t Imm; - if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && - isIntS16Immediate(N->getOperand(1), Imm)) { - selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); - return; - } - - break; - } - case ISD::SHL: { - unsigned Imm, SH, MB, ME; - if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && - isRotateAndMask(N, Imm, true, SH, MB, ME)) { - SDValue Ops[] = { N->getOperand(0).getOperand(0), - getI32Imm(SH, dl), getI32Imm(MB, dl), - getI32Imm(ME, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); - return; - } - - // Other cases are autogenerated. - break; - } - case ISD::SRL: { - unsigned Imm, SH, MB, ME; - if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && - isRotateAndMask(N, Imm, true, SH, MB, ME)) { - SDValue Ops[] = { N->getOperand(0).getOperand(0), - getI32Imm(SH, dl), getI32Imm(MB, dl), - getI32Imm(ME, dl) }; - CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); - return; - } - - // Other cases are autogenerated. - break; - } - // FIXME: Remove this once the ANDI glue bug is fixed: - case PPCISD::ANDIo_1_EQ_BIT: - case PPCISD::ANDIo_1_GT_BIT: { - if (!ANDIGlueBug) - break; - - EVT InVT = N->getOperand(0).getValueType(); - assert((InVT == MVT::i64 || InVT == MVT::i32) && - "Invalid input type for ANDIo_1_EQ_BIT"); - - unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo; - SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, - N->getOperand(0), - CurDAG->getTargetConstant(1, dl, InVT)), - 0); - SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); - SDValue SRIdxVal = - CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ? - PPC::sub_eq : PPC::sub_gt, dl, MVT::i32); - - CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, - SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); - return; - } - case ISD::SELECT_CC: { - ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); - EVT PtrVT = - CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); - bool isPPC64 = (PtrVT == MVT::i64); - - // If this is a select of i1 operands, we'll pattern match it. - if (PPCSubTarget->useCRBits() && - N->getOperand(0).getValueType() == MVT::i1) - break; - - if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) { - bool NeedSwapOps = false; - bool IsUnCmp = false; - if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - if (NeedSwapOps) - std::swap(LHS, RHS); - - // Make use of SelectCC to generate the comparison to set CR bits, for - // equality comparisons having one literal operand, SelectCC probably - // doesn't need to materialize the whole literal and just use xoris to - // check it first, it leads the following comparison result can't - // exactly represent GT/LT relationship. So to avoid this we specify - // SETGT/SETUGT here instead of SETEQ. - SDValue GenCC = - SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); - CurDAG->SelectNodeTo( - N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, - N->getValueType(0), GenCC); - NumP9Setb++; - return; - } - } - - // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc - if (!isPPC64) - if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) - if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) - if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) - if (N1C->isNullValue() && N3C->isNullValue() && - N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && - // FIXME: Implement this optzn for PPC64. - N->getValueType(0) == MVT::i32) { - SDNode *Tmp = - CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, - N->getOperand(0), getI32Imm(~0U, dl)); - CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), - N->getOperand(0), SDValue(Tmp, 1)); - return; - } - - SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); - - if (N->getValueType(0) == MVT::i1) { - // An i1 select is: (c & t) | (!c & f). - bool Inv; - unsigned Idx = getCRIdxForSetCC(CC, Inv); - - unsigned SRI; - switch (Idx) { - default: llvm_unreachable("Invalid CC index"); - case 0: SRI = PPC::sub_lt; break; - case 1: SRI = PPC::sub_gt; break; - case 2: SRI = PPC::sub_eq; break; - case 3: SRI = PPC::sub_un; break; - } - - SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); - - SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, - CCBit, CCBit), 0); - SDValue C = Inv ? NotCCBit : CCBit, - NotC = Inv ? CCBit : NotCCBit; - - SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, - C, N->getOperand(2)), 0); - SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, - NotC, N->getOperand(3)), 0); - - CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); - return; - } - - unsigned BROpc = getPredicateForSetCC(CC); - - unsigned SelectCCOp; - if (N->getValueType(0) == MVT::i32) - SelectCCOp = PPC::SELECT_CC_I4; - else if (N->getValueType(0) == MVT::i64) - SelectCCOp = PPC::SELECT_CC_I8; - else if (N->getValueType(0) == MVT::f32) { - if (PPCSubTarget->hasP8Vector()) - SelectCCOp = PPC::SELECT_CC_VSSRC; - else if (PPCSubTarget->hasSPE()) - SelectCCOp = PPC::SELECT_CC_SPE4; - else - SelectCCOp = PPC::SELECT_CC_F4; - } else if (N->getValueType(0) == MVT::f64) { - if (PPCSubTarget->hasVSX()) - SelectCCOp = PPC::SELECT_CC_VSFRC; - else if (PPCSubTarget->hasSPE()) - SelectCCOp = PPC::SELECT_CC_SPE; - else - SelectCCOp = PPC::SELECT_CC_F8; - } else if (N->getValueType(0) == MVT::f128) - SelectCCOp = PPC::SELECT_CC_F16; - else if (PPCSubTarget->hasSPE()) - SelectCCOp = PPC::SELECT_CC_SPE; - else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) - SelectCCOp = PPC::SELECT_CC_QFRC; - else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) - SelectCCOp = PPC::SELECT_CC_QSRC; - else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) - SelectCCOp = PPC::SELECT_CC_QBRC; - else if (N->getValueType(0) == MVT::v2f64 || - N->getValueType(0) == MVT::v2i64) - SelectCCOp = PPC::SELECT_CC_VSRC; - else - SelectCCOp = PPC::SELECT_CC_VRRC; - - SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), - getI32Imm(BROpc, dl) }; - CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); - return; - } - case ISD::VECTOR_SHUFFLE: - if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || - N->getValueType(0) == MVT::v2i64)) { - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); - - SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), - Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); - unsigned DM[2]; - - for (int i = 0; i < 2; ++i) - if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) - DM[i] = 0; - else - DM[i] = 1; - - if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && - Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && - isa<LoadSDNode>(Op1.getOperand(0))) { - LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); - SDValue Base, Offset; - - if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && - (LD->getMemoryVT() == MVT::f64 || - LD->getMemoryVT() == MVT::i64) && - SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { - SDValue Chain = LD->getChain(); - SDValue Ops[] = { Base, Offset, Chain }; - MachineMemOperand *MemOp = LD->getMemOperand(); - SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, - N->getValueType(0), Ops); - CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); - return; - } - } - - // For little endian, we must swap the input operands and adjust - // the mask elements (reverse and invert them). - if (PPCSubTarget->isLittleEndian()) { - std::swap(Op1, Op2); - unsigned tmp = DM[0]; - DM[0] = 1 - DM[1]; - DM[1] = 1 - tmp; - } - - SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, - MVT::i32); - SDValue Ops[] = { Op1, Op2, DMV }; - CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); - return; - } - - break; - case PPCISD::BDNZ: - case PPCISD::BDZ: { - bool IsPPC64 = PPCSubTarget->isPPC64(); - SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; - CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ - ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) - : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), - MVT::Other, Ops); - return; - } - case PPCISD::COND_BRANCH: { - // Op #0 is the Chain. - // Op #1 is the PPC::PRED_* number. - // Op #2 is the CR# - // Op #3 is the Dest MBB - // Op #4 is the Flag. - // Prevent PPC::PRED_* from being selected into LI. - unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); - if (EnableBranchHint) - PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3)); - - SDValue Pred = getI32Imm(PCC, dl); - SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), - N->getOperand(0), N->getOperand(4) }; - CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); - return; - } - case ISD::BR_CC: { - ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); - unsigned PCC = getPredicateForSetCC(CC); - - if (N->getOperand(2).getValueType() == MVT::i1) { - unsigned Opc; - bool Swap; - switch (PCC) { - default: llvm_unreachable("Unexpected Boolean-operand predicate"); - case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; - case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; - case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; - case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; - case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; - case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; - } - - // A signed comparison of i1 values produces the opposite result to an - // unsigned one if the condition code includes less-than or greater-than. - // This is because 1 is the most negative signed i1 number and the most - // positive unsigned i1 number. The CR-logical operations used for such - // comparisons are non-commutative so for signed comparisons vs. unsigned - // ones, the input operands just need to be swapped. - if (ISD::isSignedIntSetCC(CC)) - Swap = !Swap; - - SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, - N->getOperand(Swap ? 3 : 2), - N->getOperand(Swap ? 2 : 3)), 0); - CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), - N->getOperand(0)); - return; - } - - if (EnableBranchHint) - PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4)); - - SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); - SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, - N->getOperand(4), N->getOperand(0) }; - CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); - return; - } - case ISD::BRIND: { - // FIXME: Should custom lower this. - SDValue Chain = N->getOperand(0); - SDValue Target = N->getOperand(1); - unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; - unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; - Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, - Chain), 0); - CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); - return; - } - case PPCISD::TOC_ENTRY: { - assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) && - "Only supported for 64-bit ABI and 32-bit SVR4"); - if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) { - SDValue GA = N->getOperand(0); - SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA, - N->getOperand(1)); - transferMemOperands(N, MN); - ReplaceNode(N, MN); - return; - } - - // For medium and large code model, we generate two instructions as - // described below. Otherwise we allow SelectCodeCommon to handle this, - // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. - CodeModel::Model CModel = TM.getCodeModel(); - if (CModel != CodeModel::Medium && CModel != CodeModel::Large) - break; - - // The first source operand is a TargetGlobalAddress or a TargetJumpTable. - // If it must be toc-referenced according to PPCSubTarget, we generate: - // LDtocL(@sym, ADDIStocHA(%x2, @sym)) - // Otherwise we generate: - // ADDItocL(ADDIStocHA(%x2, @sym), @sym) - SDValue GA = N->getOperand(0); - SDValue TOCbase = N->getOperand(1); - SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, - TOCbase, GA); - if (PPCLowering->isAccessedAsGotIndirect(GA)) { - // If it is access as got-indirect, we need an extra LD to load - // the address. - SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, - SDValue(Tmp, 0)); - transferMemOperands(N, MN); - ReplaceNode(N, MN); - return; - } - - // Build the address relative to the TOC-pointer.. - ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, - SDValue(Tmp, 0), GA)); - return; - } - case PPCISD::PPC32_PICGOT: - // Generate a PIC-safe GOT reference. - assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() && - "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); - CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, - PPCLowering->getPointerTy(CurDAG->getDataLayout()), - MVT::i32); - return; - - case PPCISD::VADD_SPLAT: { - // This expands into one of three sequences, depending on whether - // the first operand is odd or even, positive or negative. - assert(isa<ConstantSDNode>(N->getOperand(0)) && - isa<ConstantSDNode>(N->getOperand(1)) && - "Invalid operand on VADD_SPLAT!"); - - int Elt = N->getConstantOperandVal(0); - int EltSize = N->getConstantOperandVal(1); - unsigned Opc1, Opc2, Opc3; - EVT VT; - - if (EltSize == 1) { - Opc1 = PPC::VSPLTISB; - Opc2 = PPC::VADDUBM; - Opc3 = PPC::VSUBUBM; - VT = MVT::v16i8; - } else if (EltSize == 2) { - Opc1 = PPC::VSPLTISH; - Opc2 = PPC::VADDUHM; - Opc3 = PPC::VSUBUHM; - VT = MVT::v8i16; - } else { - assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); - Opc1 = PPC::VSPLTISW; - Opc2 = PPC::VADDUWM; - Opc3 = PPC::VSUBUWM; - VT = MVT::v4i32; - } - - if ((Elt & 1) == 0) { - // Elt is even, in the range [-32,-18] + [16,30]. - // - // Convert: VADD_SPLAT elt, size - // Into: tmp = VSPLTIS[BHW] elt - // VADDU[BHW]M tmp, tmp - // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 - SDValue EltVal = getI32Imm(Elt >> 1, dl); - SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); - SDValue TmpVal = SDValue(Tmp, 0); - ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); - return; - } else if (Elt > 0) { - // Elt is odd and positive, in the range [17,31]. - // - // Convert: VADD_SPLAT elt, size - // Into: tmp1 = VSPLTIS[BHW] elt-16 - // tmp2 = VSPLTIS[BHW] -16 - // VSUBU[BHW]M tmp1, tmp2 - SDValue EltVal = getI32Imm(Elt - 16, dl); - SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); - EltVal = getI32Imm(-16, dl); - SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); - ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), - SDValue(Tmp2, 0))); - return; - } else { - // Elt is odd and negative, in the range [-31,-17]. - // - // Convert: VADD_SPLAT elt, size - // Into: tmp1 = VSPLTIS[BHW] elt+16 - // tmp2 = VSPLTIS[BHW] -16 - // VADDU[BHW]M tmp1, tmp2 - SDValue EltVal = getI32Imm(Elt + 16, dl); - SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); - EltVal = getI32Imm(-16, dl); - SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); - ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), - SDValue(Tmp2, 0))); - return; - } - } - } - - SelectCode(N); -} - -// If the target supports the cmpb instruction, do the idiom recognition here. -// We don't do this as a DAG combine because we don't want to do it as nodes -// are being combined (because we might miss part of the eventual idiom). We -// don't want to do it during instruction selection because we want to reuse -// the logic for lowering the masking operations already part of the -// instruction selector. -SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { - SDLoc dl(N); - - assert(N->getOpcode() == ISD::OR && - "Only OR nodes are supported for CMPB"); - - SDValue Res; - if (!PPCSubTarget->hasCMPB()) - return Res; - - if (N->getValueType(0) != MVT::i32 && - N->getValueType(0) != MVT::i64) - return Res; - - EVT VT = N->getValueType(0); - - SDValue RHS, LHS; - bool BytesFound[8] = {false, false, false, false, false, false, false, false}; - uint64_t Mask = 0, Alt = 0; - - auto IsByteSelectCC = [this](SDValue O, unsigned &b, - uint64_t &Mask, uint64_t &Alt, - SDValue &LHS, SDValue &RHS) { - if (O.getOpcode() != ISD::SELECT_CC) - return false; - ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); - - if (!isa<ConstantSDNode>(O.getOperand(2)) || - !isa<ConstantSDNode>(O.getOperand(3))) - return false; - - uint64_t PM = O.getConstantOperandVal(2); - uint64_t PAlt = O.getConstantOperandVal(3); - for (b = 0; b < 8; ++b) { - uint64_t Mask = UINT64_C(0xFF) << (8*b); - if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) - break; - } - - if (b == 8) - return false; - Mask |= PM; - Alt |= PAlt; - - if (!isa<ConstantSDNode>(O.getOperand(1)) || - O.getConstantOperandVal(1) != 0) { - SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); - if (Op0.getOpcode() == ISD::TRUNCATE) - Op0 = Op0.getOperand(0); - if (Op1.getOpcode() == ISD::TRUNCATE) - Op1 = Op1.getOperand(0); - - if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && - Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && - isa<ConstantSDNode>(Op0.getOperand(1))) { - - unsigned Bits = Op0.getValueSizeInBits(); - if (b != Bits/8-1) - return false; - if (Op0.getConstantOperandVal(1) != Bits-8) - return false; - - LHS = Op0.getOperand(0); - RHS = Op1.getOperand(0); - return true; - } - - // When we have small integers (i16 to be specific), the form present - // post-legalization uses SETULT in the SELECT_CC for the - // higher-order byte, depending on the fact that the - // even-higher-order bytes are known to all be zero, for example: - // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult - // (so when the second byte is the same, because all higher-order - // bits from bytes 3 and 4 are known to be zero, the result of the - // xor can be at most 255) - if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && - isa<ConstantSDNode>(O.getOperand(1))) { - - uint64_t ULim = O.getConstantOperandVal(1); - if (ULim != (UINT64_C(1) << b*8)) - return false; - - // Now we need to make sure that the upper bytes are known to be - // zero. - unsigned Bits = Op0.getValueSizeInBits(); - if (!CurDAG->MaskedValueIsZero( - Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) - return false; - - LHS = Op0.getOperand(0); - RHS = Op0.getOperand(1); - return true; - } - - return false; - } - - if (CC != ISD::SETEQ) - return false; - - SDValue Op = O.getOperand(0); - if (Op.getOpcode() == ISD::AND) { - if (!isa<ConstantSDNode>(Op.getOperand(1))) - return false; - if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) - return false; - - SDValue XOR = Op.getOperand(0); - if (XOR.getOpcode() == ISD::TRUNCATE) - XOR = XOR.getOperand(0); - if (XOR.getOpcode() != ISD::XOR) - return false; - - LHS = XOR.getOperand(0); - RHS = XOR.getOperand(1); - return true; - } else if (Op.getOpcode() == ISD::SRL) { - if (!isa<ConstantSDNode>(Op.getOperand(1))) - return false; - unsigned Bits = Op.getValueSizeInBits(); - if (b != Bits/8-1) - return false; - if (Op.getConstantOperandVal(1) != Bits-8) - return false; - - SDValue XOR = Op.getOperand(0); - if (XOR.getOpcode() == ISD::TRUNCATE) - XOR = XOR.getOperand(0); - if (XOR.getOpcode() != ISD::XOR) - return false; - - LHS = XOR.getOperand(0); - RHS = XOR.getOperand(1); - return true; - } - - return false; - }; - - SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); - while (!Queue.empty()) { - SDValue V = Queue.pop_back_val(); - - for (const SDValue &O : V.getNode()->ops()) { - unsigned b = 0; - uint64_t M = 0, A = 0; - SDValue OLHS, ORHS; - if (O.getOpcode() == ISD::OR) { - Queue.push_back(O); - } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { - if (!LHS) { - LHS = OLHS; - RHS = ORHS; - BytesFound[b] = true; - Mask |= M; - Alt |= A; - } else if ((LHS == ORHS && RHS == OLHS) || - (RHS == ORHS && LHS == OLHS)) { - BytesFound[b] = true; - Mask |= M; - Alt |= A; - } else { - return Res; - } - } else { - return Res; - } - } - } - - unsigned LastB = 0, BCnt = 0; - for (unsigned i = 0; i < 8; ++i) - if (BytesFound[LastB]) { - ++BCnt; - LastB = i; - } - - if (!LastB || BCnt < 2) - return Res; - - // Because we'll be zero-extending the output anyway if don't have a specific - // value for each input byte (via the Mask), we can 'anyext' the inputs. - if (LHS.getValueType() != VT) { - LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); - RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); - } - - Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); - - bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); - if (NonTrivialMask && !Alt) { - // Res = Mask & CMPB - Res = CurDAG->getNode(ISD::AND, dl, VT, Res, - CurDAG->getConstant(Mask, dl, VT)); - } else if (Alt) { - // Res = (CMPB & Mask) | (~CMPB & Alt) - // Which, as suggested here: - // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge - // can be written as: - // Res = Alt ^ ((Alt ^ Mask) & CMPB) - // useful because the (Alt ^ Mask) can be pre-computed. - Res = CurDAG->getNode(ISD::AND, dl, VT, Res, - CurDAG->getConstant(Mask ^ Alt, dl, VT)); - Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, - CurDAG->getConstant(Alt, dl, VT)); - } - - return Res; -} - -// When CR bit registers are enabled, an extension of an i1 variable to a i32 -// or i64 value is lowered in terms of a SELECT_I[48] operation, and thus -// involves constant materialization of a 0 or a 1 or both. If the result of -// the extension is then operated upon by some operator that can be constant -// folded with a constant 0 or 1, and that constant can be materialized using -// only one instruction (like a zero or one), then we should fold in those -// operations with the select. -void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { - if (!PPCSubTarget->useCRBits()) - return; - - if (N->getOpcode() != ISD::ZERO_EXTEND && - N->getOpcode() != ISD::SIGN_EXTEND && - N->getOpcode() != ISD::ANY_EXTEND) - return; - - if (N->getOperand(0).getValueType() != MVT::i1) - return; - - if (!N->hasOneUse()) - return; - - SDLoc dl(N); - EVT VT = N->getValueType(0); - SDValue Cond = N->getOperand(0); - SDValue ConstTrue = - CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); - SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); - - do { - SDNode *User = *N->use_begin(); - if (User->getNumOperands() != 2) - break; - - auto TryFold = [this, N, User, dl](SDValue Val) { - SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); - SDValue O0 = UserO0.getNode() == N ? Val : UserO0; - SDValue O1 = UserO1.getNode() == N ? Val : UserO1; - - return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, - User->getValueType(0), - O0.getNode(), O1.getNode()); - }; - - // FIXME: When the semantics of the interaction between select and undef - // are clearly defined, it may turn out to be unnecessary to break here. - SDValue TrueRes = TryFold(ConstTrue); - if (!TrueRes || TrueRes.isUndef()) - break; - SDValue FalseRes = TryFold(ConstFalse); - if (!FalseRes || FalseRes.isUndef()) - break; - - // For us to materialize these using one instruction, we must be able to - // represent them as signed 16-bit integers. - uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(), - False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); - if (!isInt<16>(True) || !isInt<16>(False)) - break; - - // We can replace User with a new SELECT node, and try again to see if we - // can fold the select with its user. - Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); - N = User; - ConstTrue = TrueRes; - ConstFalse = FalseRes; - } while (N->hasOneUse()); -} - -void PPCDAGToDAGISel::PreprocessISelDAG() { - SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); - - bool MadeChange = false; - while (Position != CurDAG->allnodes_begin()) { - SDNode *N = &*--Position; - if (N->use_empty()) - continue; - - SDValue Res; - switch (N->getOpcode()) { - default: break; - case ISD::OR: - Res = combineToCMPB(N); - break; - } - - if (!Res) - foldBoolExts(Res, N); - - if (Res) { - LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); - LLVM_DEBUG(N->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\nNew: "); - LLVM_DEBUG(Res.getNode()->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\n"); - - CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); - MadeChange = true; - } - } - - if (MadeChange) - CurDAG->RemoveDeadNodes(); -} - -/// PostprocessISelDAG - Perform some late peephole optimizations -/// on the DAG representation. -void PPCDAGToDAGISel::PostprocessISelDAG() { - // Skip peepholes at -O0. - if (TM.getOptLevel() == CodeGenOpt::None) - return; - - PeepholePPC64(); - PeepholeCROps(); - PeepholePPC64ZExt(); -} - -// Check if all users of this node will become isel where the second operand -// is the constant zero. If this is so, and if we can negate the condition, -// then we can flip the true and false operands. This will allow the zero to -// be folded with the isel so that we don't need to materialize a register -// containing zero. -bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { - for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); - UI != UE; ++UI) { - SDNode *User = *UI; - if (!User->isMachineOpcode()) - return false; - if (User->getMachineOpcode() != PPC::SELECT_I4 && - User->getMachineOpcode() != PPC::SELECT_I8) - return false; - - SDNode *Op2 = User->getOperand(2).getNode(); - if (!Op2->isMachineOpcode()) - return false; - - if (Op2->getMachineOpcode() != PPC::LI && - Op2->getMachineOpcode() != PPC::LI8) - return false; - - ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); - if (!C) - return false; - - if (!C->isNullValue()) - return false; - } - - return true; -} - -void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { - SmallVector<SDNode *, 4> ToReplace; - for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); - UI != UE; ++UI) { - SDNode *User = *UI; - assert((User->getMachineOpcode() == PPC::SELECT_I4 || - User->getMachineOpcode() == PPC::SELECT_I8) && - "Must have all select users"); - ToReplace.push_back(User); - } - - for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), - UE = ToReplace.end(); UI != UE; ++UI) { - SDNode *User = *UI; - SDNode *ResNode = - CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), - User->getValueType(0), User->getOperand(0), - User->getOperand(2), - User->getOperand(1)); - - LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); - LLVM_DEBUG(User->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\nNew: "); - LLVM_DEBUG(ResNode->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\n"); - - ReplaceUses(User, ResNode); - } -} - -void PPCDAGToDAGISel::PeepholeCROps() { - bool IsModified; - do { - IsModified = false; - for (SDNode &Node : CurDAG->allnodes()) { - MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); - if (!MachineNode || MachineNode->use_empty()) - continue; - SDNode *ResNode = MachineNode; - - bool Op1Set = false, Op1Unset = false, - Op1Not = false, - Op2Set = false, Op2Unset = false, - Op2Not = false; - - unsigned Opcode = MachineNode->getMachineOpcode(); - switch (Opcode) { - default: break; - case PPC::CRAND: - case PPC::CRNAND: - case PPC::CROR: - case PPC::CRXOR: - case PPC::CRNOR: - case PPC::CREQV: - case PPC::CRANDC: - case PPC::CRORC: { - SDValue Op = MachineNode->getOperand(1); - if (Op.isMachineOpcode()) { - if (Op.getMachineOpcode() == PPC::CRSET) - Op2Set = true; - else if (Op.getMachineOpcode() == PPC::CRUNSET) - Op2Unset = true; - else if (Op.getMachineOpcode() == PPC::CRNOR && - Op.getOperand(0) == Op.getOperand(1)) - Op2Not = true; - } - LLVM_FALLTHROUGH; - } - case PPC::BC: - case PPC::BCn: - case PPC::SELECT_I4: - case PPC::SELECT_I8: - case PPC::SELECT_F4: - case PPC::SELECT_F8: - case PPC::SELECT_QFRC: - case PPC::SELECT_QSRC: - case PPC::SELECT_QBRC: - case PPC::SELECT_SPE: - case PPC::SELECT_SPE4: - case PPC::SELECT_VRRC: - case PPC::SELECT_VSFRC: - case PPC::SELECT_VSSRC: - case PPC::SELECT_VSRC: { - SDValue Op = MachineNode->getOperand(0); - if (Op.isMachineOpcode()) { - if (Op.getMachineOpcode() == PPC::CRSET) - Op1Set = true; - else if (Op.getMachineOpcode() == PPC::CRUNSET) - Op1Unset = true; - else if (Op.getMachineOpcode() == PPC::CRNOR && - Op.getOperand(0) == Op.getOperand(1)) - Op1Not = true; - } - } - break; - } - - bool SelectSwap = false; - switch (Opcode) { - default: break; - case PPC::CRAND: - if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) - // x & x = x - ResNode = MachineNode->getOperand(0).getNode(); - else if (Op1Set) - // 1 & y = y - ResNode = MachineNode->getOperand(1).getNode(); - else if (Op2Set) - // x & 1 = x - ResNode = MachineNode->getOperand(0).getNode(); - else if (Op1Unset || Op2Unset) - // x & 0 = 0 & y = 0 - ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), - MVT::i1); - else if (Op1Not) - // ~x & y = andc(y, x) - ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(0). - getOperand(0)); - else if (Op2Not) - // x & ~y = andc(x, y) - ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1). - getOperand(0)); - else if (AllUsersSelectZero(MachineNode)) { - ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1)); - SelectSwap = true; - } - break; - case PPC::CRNAND: - if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) - // nand(x, x) -> nor(x, x) - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(0)); - else if (Op1Set) - // nand(1, y) -> nor(y, y) - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(1)); - else if (Op2Set) - // nand(x, 1) -> nor(x, x) - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(0)); - else if (Op1Unset || Op2Unset) - // nand(x, 0) = nand(0, y) = 1 - ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), - MVT::i1); - else if (Op1Not) - // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) - ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0). - getOperand(0), - MachineNode->getOperand(1)); - else if (Op2Not) - // nand(x, ~y) = ~x | y = orc(y, x) - ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1). - getOperand(0), - MachineNode->getOperand(0)); - else if (AllUsersSelectZero(MachineNode)) { - ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1)); - SelectSwap = true; - } - break; - case PPC::CROR: - if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) - // x | x = x - ResNode = MachineNode->getOperand(0).getNode(); - else if (Op1Set || Op2Set) - // x | 1 = 1 | y = 1 - ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), - MVT::i1); - else if (Op1Unset) - // 0 | y = y - ResNode = MachineNode->getOperand(1).getNode(); - else if (Op2Unset) - // x | 0 = x - ResNode = MachineNode->getOperand(0).getNode(); - else if (Op1Not) - // ~x | y = orc(y, x) - ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(0). - getOperand(0)); - else if (Op2Not) - // x | ~y = orc(x, y) - ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1). - getOperand(0)); - else if (AllUsersSelectZero(MachineNode)) { - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1)); - SelectSwap = true; - } - break; - case PPC::CRXOR: - if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) - // xor(x, x) = 0 - ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), - MVT::i1); - else if (Op1Set) - // xor(1, y) -> nor(y, y) - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(1)); - else if (Op2Set) - // xor(x, 1) -> nor(x, x) - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(0)); - else if (Op1Unset) - // xor(0, y) = y - ResNode = MachineNode->getOperand(1).getNode(); - else if (Op2Unset) - // xor(x, 0) = x - ResNode = MachineNode->getOperand(0).getNode(); - else if (Op1Not) - // xor(~x, y) = eqv(x, y) - ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0). - getOperand(0), - MachineNode->getOperand(1)); - else if (Op2Not) - // xor(x, ~y) = eqv(x, y) - ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1). - getOperand(0)); - else if (AllUsersSelectZero(MachineNode)) { - ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1)); - SelectSwap = true; - } - break; - case PPC::CRNOR: - if (Op1Set || Op2Set) - // nor(1, y) -> 0 - ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), - MVT::i1); - else if (Op1Unset) - // nor(0, y) = ~y -> nor(y, y) - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(1)); - else if (Op2Unset) - // nor(x, 0) = ~x - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(0)); - else if (Op1Not) - // nor(~x, y) = andc(x, y) - ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0). - getOperand(0), - MachineNode->getOperand(1)); - else if (Op2Not) - // nor(x, ~y) = andc(y, x) - ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1). - getOperand(0), - MachineNode->getOperand(0)); - else if (AllUsersSelectZero(MachineNode)) { - ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1)); - SelectSwap = true; - } - break; - case PPC::CREQV: - if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) - // eqv(x, x) = 1 - ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), - MVT::i1); - else if (Op1Set) - // eqv(1, y) = y - ResNode = MachineNode->getOperand(1).getNode(); - else if (Op2Set) - // eqv(x, 1) = x - ResNode = MachineNode->getOperand(0).getNode(); - else if (Op1Unset) - // eqv(0, y) = ~y -> nor(y, y) - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(1)); - else if (Op2Unset) - // eqv(x, 0) = ~x - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(0)); - else if (Op1Not) - // eqv(~x, y) = xor(x, y) - ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0). - getOperand(0), - MachineNode->getOperand(1)); - else if (Op2Not) - // eqv(x, ~y) = xor(x, y) - ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1). - getOperand(0)); - else if (AllUsersSelectZero(MachineNode)) { - ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1)); - SelectSwap = true; - } - break; - case PPC::CRANDC: - if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) - // andc(x, x) = 0 - ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), - MVT::i1); - else if (Op1Set) - // andc(1, y) = ~y - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(1)); - else if (Op1Unset || Op2Set) - // andc(0, y) = andc(x, 1) = 0 - ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), - MVT::i1); - else if (Op2Unset) - // andc(x, 0) = x - ResNode = MachineNode->getOperand(0).getNode(); - else if (Op1Not) - // andc(~x, y) = ~(x | y) = nor(x, y) - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0). - getOperand(0), - MachineNode->getOperand(1)); - else if (Op2Not) - // andc(x, ~y) = x & y - ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1). - getOperand(0)); - else if (AllUsersSelectZero(MachineNode)) { - ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(0)); - SelectSwap = true; - } - break; - case PPC::CRORC: - if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) - // orc(x, x) = 1 - ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), - MVT::i1); - else if (Op1Set || Op2Unset) - // orc(1, y) = orc(x, 0) = 1 - ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), - MVT::i1); - else if (Op2Set) - // orc(x, 1) = x - ResNode = MachineNode->getOperand(0).getNode(); - else if (Op1Unset) - // orc(0, y) = ~y - ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(1)); - else if (Op1Not) - // orc(~x, y) = ~(x & y) = nand(x, y) - ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0). - getOperand(0), - MachineNode->getOperand(1)); - else if (Op2Not) - // orc(x, ~y) = x | y - ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(0), - MachineNode->getOperand(1). - getOperand(0)); - else if (AllUsersSelectZero(MachineNode)) { - ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), - MVT::i1, MachineNode->getOperand(1), - MachineNode->getOperand(0)); - SelectSwap = true; - } - break; - case PPC::SELECT_I4: - case PPC::SELECT_I8: - case PPC::SELECT_F4: - case PPC::SELECT_F8: - case PPC::SELECT_QFRC: - case PPC::SELECT_QSRC: - case PPC::SELECT_QBRC: - case PPC::SELECT_SPE: - case PPC::SELECT_SPE4: - case PPC::SELECT_VRRC: - case PPC::SELECT_VSFRC: - case PPC::SELECT_VSSRC: - case PPC::SELECT_VSRC: - if (Op1Set) - ResNode = MachineNode->getOperand(1).getNode(); - else if (Op1Unset) - ResNode = MachineNode->getOperand(2).getNode(); - else if (Op1Not) - ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), - SDLoc(MachineNode), - MachineNode->getValueType(0), - MachineNode->getOperand(0). - getOperand(0), - MachineNode->getOperand(2), - MachineNode->getOperand(1)); - break; - case PPC::BC: - case PPC::BCn: - if (Op1Not) - ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : - PPC::BC, - SDLoc(MachineNode), - MVT::Other, - MachineNode->getOperand(0). - getOperand(0), - MachineNode->getOperand(1), - MachineNode->getOperand(2)); - // FIXME: Handle Op1Set, Op1Unset here too. - break; - } - - // If we're inverting this node because it is used only by selects that - // we'd like to swap, then swap the selects before the node replacement. - if (SelectSwap) - SwapAllSelectUsers(MachineNode); - - if (ResNode != MachineNode) { - LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); - LLVM_DEBUG(MachineNode->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\nNew: "); - LLVM_DEBUG(ResNode->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\n"); - - ReplaceUses(MachineNode, ResNode); - IsModified = true; - } - } - if (IsModified) - CurDAG->RemoveDeadNodes(); - } while (IsModified); -} - -// Gather the set of 32-bit operations that are known to have their -// higher-order 32 bits zero, where ToPromote contains all such operations. -static bool PeepholePPC64ZExtGather(SDValue Op32, - SmallPtrSetImpl<SDNode *> &ToPromote) { - if (!Op32.isMachineOpcode()) - return false; - - // First, check for the "frontier" instructions (those that will clear the - // higher-order 32 bits. - - // For RLWINM and RLWNM, we need to make sure that the mask does not wrap - // around. If it does not, then these instructions will clear the - // higher-order bits. - if ((Op32.getMachineOpcode() == PPC::RLWINM || - Op32.getMachineOpcode() == PPC::RLWNM) && - Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { - ToPromote.insert(Op32.getNode()); - return true; - } - - // SLW and SRW always clear the higher-order bits. - if (Op32.getMachineOpcode() == PPC::SLW || - Op32.getMachineOpcode() == PPC::SRW) { - ToPromote.insert(Op32.getNode()); - return true; - } - - // For LI and LIS, we need the immediate to be positive (so that it is not - // sign extended). - if (Op32.getMachineOpcode() == PPC::LI || - Op32.getMachineOpcode() == PPC::LIS) { - if (!isUInt<15>(Op32.getConstantOperandVal(0))) - return false; - - ToPromote.insert(Op32.getNode()); - return true; - } - - // LHBRX and LWBRX always clear the higher-order bits. - if (Op32.getMachineOpcode() == PPC::LHBRX || - Op32.getMachineOpcode() == PPC::LWBRX) { - ToPromote.insert(Op32.getNode()); - return true; - } - - // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. - if (Op32.getMachineOpcode() == PPC::CNTLZW || - Op32.getMachineOpcode() == PPC::CNTTZW) { - ToPromote.insert(Op32.getNode()); - return true; - } - - // Next, check for those instructions we can look through. - - // Assuming the mask does not wrap around, then the higher-order bits are - // taken directly from the first operand. - if (Op32.getMachineOpcode() == PPC::RLWIMI && - Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { - SmallPtrSet<SDNode *, 16> ToPromote1; - if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) - return false; - - ToPromote.insert(Op32.getNode()); - ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); - return true; - } - - // For OR, the higher-order bits are zero if that is true for both operands. - // For SELECT_I4, the same is true (but the relevant operand numbers are - // shifted by 1). - if (Op32.getMachineOpcode() == PPC::OR || - Op32.getMachineOpcode() == PPC::SELECT_I4) { - unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; - SmallPtrSet<SDNode *, 16> ToPromote1; - if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) - return false; - if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) - return false; - - ToPromote.insert(Op32.getNode()); - ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); - return true; - } - - // For ORI and ORIS, we need the higher-order bits of the first operand to be - // zero, and also for the constant to be positive (so that it is not sign - // extended). - if (Op32.getMachineOpcode() == PPC::ORI || - Op32.getMachineOpcode() == PPC::ORIS) { - SmallPtrSet<SDNode *, 16> ToPromote1; - if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) - return false; - if (!isUInt<15>(Op32.getConstantOperandVal(1))) - return false; - - ToPromote.insert(Op32.getNode()); - ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); - return true; - } - - // The higher-order bits of AND are zero if that is true for at least one of - // the operands. - if (Op32.getMachineOpcode() == PPC::AND) { - SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; - bool Op0OK = - PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); - bool Op1OK = - PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); - if (!Op0OK && !Op1OK) - return false; - - ToPromote.insert(Op32.getNode()); - - if (Op0OK) - ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); - - if (Op1OK) - ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); - - return true; - } - - // For ANDI and ANDIS, the higher-order bits are zero if either that is true - // of the first operand, or if the second operand is positive (so that it is - // not sign extended). - if (Op32.getMachineOpcode() == PPC::ANDIo || - Op32.getMachineOpcode() == PPC::ANDISo) { - SmallPtrSet<SDNode *, 16> ToPromote1; - bool Op0OK = - PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); - bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); - if (!Op0OK && !Op1OK) - return false; - - ToPromote.insert(Op32.getNode()); - - if (Op0OK) - ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); - - return true; - } - - return false; -} - -void PPCDAGToDAGISel::PeepholePPC64ZExt() { - if (!PPCSubTarget->isPPC64()) - return; - - // When we zero-extend from i32 to i64, we use a pattern like this: - // def : Pat<(i64 (zext i32:$in)), - // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), - // 0, 32)>; - // There are several 32-bit shift/rotate instructions, however, that will - // clear the higher-order bits of their output, rendering the RLDICL - // unnecessary. When that happens, we remove it here, and redefine the - // relevant 32-bit operation to be a 64-bit operation. - - SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); - - bool MadeChange = false; - while (Position != CurDAG->allnodes_begin()) { - SDNode *N = &*--Position; - // Skip dead nodes and any non-machine opcodes. - if (N->use_empty() || !N->isMachineOpcode()) - continue; - - if (N->getMachineOpcode() != PPC::RLDICL) - continue; - - if (N->getConstantOperandVal(1) != 0 || - N->getConstantOperandVal(2) != 32) - continue; - - SDValue ISR = N->getOperand(0); - if (!ISR.isMachineOpcode() || - ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) - continue; - - if (!ISR.hasOneUse()) - continue; - - if (ISR.getConstantOperandVal(2) != PPC::sub_32) - continue; - - SDValue IDef = ISR.getOperand(0); - if (!IDef.isMachineOpcode() || - IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) - continue; - - // We now know that we're looking at a canonical i32 -> i64 zext. See if we - // can get rid of it. - - SDValue Op32 = ISR->getOperand(1); - if (!Op32.isMachineOpcode()) - continue; - - // There are some 32-bit instructions that always clear the high-order 32 - // bits, there are also some instructions (like AND) that we can look - // through. - SmallPtrSet<SDNode *, 16> ToPromote; - if (!PeepholePPC64ZExtGather(Op32, ToPromote)) - continue; - - // If the ToPromote set contains nodes that have uses outside of the set - // (except for the original INSERT_SUBREG), then abort the transformation. - bool OutsideUse = false; - for (SDNode *PN : ToPromote) { - for (SDNode *UN : PN->uses()) { - if (!ToPromote.count(UN) && UN != ISR.getNode()) { - OutsideUse = true; - break; - } - } - - if (OutsideUse) - break; - } - if (OutsideUse) - continue; - - MadeChange = true; - - // We now know that this zero extension can be removed by promoting to - // nodes in ToPromote to 64-bit operations, where for operations in the - // frontier of the set, we need to insert INSERT_SUBREGs for their - // operands. - for (SDNode *PN : ToPromote) { - unsigned NewOpcode; - switch (PN->getMachineOpcode()) { - default: - llvm_unreachable("Don't know the 64-bit variant of this instruction"); - case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; - case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; - case PPC::SLW: NewOpcode = PPC::SLW8; break; - case PPC::SRW: NewOpcode = PPC::SRW8; break; - case PPC::LI: NewOpcode = PPC::LI8; break; - case PPC::LIS: NewOpcode = PPC::LIS8; break; - case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; - case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; - case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; - case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break; - case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; - case PPC::OR: NewOpcode = PPC::OR8; break; - case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; - case PPC::ORI: NewOpcode = PPC::ORI8; break; - case PPC::ORIS: NewOpcode = PPC::ORIS8; break; - case PPC::AND: NewOpcode = PPC::AND8; break; - case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break; - case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break; - } - - // Note: During the replacement process, the nodes will be in an - // inconsistent state (some instructions will have operands with values - // of the wrong type). Once done, however, everything should be right - // again. - - SmallVector<SDValue, 4> Ops; - for (const SDValue &V : PN->ops()) { - if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && - !isa<ConstantSDNode>(V)) { - SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; - SDNode *ReplOp = - CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), - ISR.getNode()->getVTList(), ReplOpOps); - Ops.push_back(SDValue(ReplOp, 0)); - } else { - Ops.push_back(V); - } - } - - // Because all to-be-promoted nodes only have users that are other - // promoted nodes (or the original INSERT_SUBREG), we can safely replace - // the i32 result value type with i64. - - SmallVector<EVT, 2> NewVTs; - SDVTList VTs = PN->getVTList(); - for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) - if (VTs.VTs[i] == MVT::i32) - NewVTs.push_back(MVT::i64); - else - NewVTs.push_back(VTs.VTs[i]); - - LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); - LLVM_DEBUG(PN->dump(CurDAG)); - - CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); - - LLVM_DEBUG(dbgs() << "\nNew: "); - LLVM_DEBUG(PN->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\n"); - } - - // Now we replace the original zero extend and its associated INSERT_SUBREG - // with the value feeding the INSERT_SUBREG (which has now been promoted to - // return an i64). - - LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); - LLVM_DEBUG(N->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\nNew: "); - LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\n"); - - ReplaceUses(N, Op32.getNode()); - } - - if (MadeChange) - CurDAG->RemoveDeadNodes(); -} - -void PPCDAGToDAGISel::PeepholePPC64() { - // These optimizations are currently supported only for 64-bit SVR4. - if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) - return; - - SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); - - while (Position != CurDAG->allnodes_begin()) { - SDNode *N = &*--Position; - // Skip dead nodes and any non-machine opcodes. - if (N->use_empty() || !N->isMachineOpcode()) - continue; - - unsigned FirstOp; - unsigned StorageOpcode = N->getMachineOpcode(); - bool RequiresMod4Offset = false; - - switch (StorageOpcode) { - default: continue; - - case PPC::LWA: - case PPC::LD: - case PPC::DFLOADf64: - case PPC::DFLOADf32: - RequiresMod4Offset = true; - LLVM_FALLTHROUGH; - case PPC::LBZ: - case PPC::LBZ8: - case PPC::LFD: - case PPC::LFS: - case PPC::LHA: - case PPC::LHA8: - case PPC::LHZ: - case PPC::LHZ8: - case PPC::LWZ: - case PPC::LWZ8: - FirstOp = 0; - break; - - case PPC::STD: - case PPC::DFSTOREf64: - case PPC::DFSTOREf32: - RequiresMod4Offset = true; - LLVM_FALLTHROUGH; - case PPC::STB: - case PPC::STB8: - case PPC::STFD: - case PPC::STFS: - case PPC::STH: - case PPC::STH8: - case PPC::STW: - case PPC::STW8: - FirstOp = 1; - break; - } - - // If this is a load or store with a zero offset, or within the alignment, - // we may be able to fold an add-immediate into the memory operation. - // The check against alignment is below, as it can't occur until we check - // the arguments to N - if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) - continue; - - SDValue Base = N->getOperand(FirstOp + 1); - if (!Base.isMachineOpcode()) - continue; - - unsigned Flags = 0; - bool ReplaceFlags = true; - - // When the feeding operation is an add-immediate of some sort, - // determine whether we need to add relocation information to the - // target flags on the immediate operand when we fold it into the - // load instruction. - // - // For something like ADDItocL, the relocation information is - // inferred from the opcode; when we process it in the AsmPrinter, - // we add the necessary relocation there. A load, though, can receive - // relocation from various flavors of ADDIxxx, so we need to carry - // the relocation information in the target flags. - switch (Base.getMachineOpcode()) { - default: continue; - - case PPC::ADDI8: - case PPC::ADDI: - // In some cases (such as TLS) the relocation information - // is already in place on the operand, so copying the operand - // is sufficient. - ReplaceFlags = false; - // For these cases, the immediate may not be divisible by 4, in - // which case the fold is illegal for DS-form instructions. (The - // other cases provide aligned addresses and are always safe.) - if (RequiresMod4Offset && - (!isa<ConstantSDNode>(Base.getOperand(1)) || - Base.getConstantOperandVal(1) % 4 != 0)) - continue; - break; - case PPC::ADDIdtprelL: - Flags = PPCII::MO_DTPREL_LO; - break; - case PPC::ADDItlsldL: - Flags = PPCII::MO_TLSLD_LO; - break; - case PPC::ADDItocL: - Flags = PPCII::MO_TOC_LO; - break; - } - - SDValue ImmOpnd = Base.getOperand(1); - - // On PPC64, the TOC base pointer is guaranteed by the ABI only to have - // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, - // we might have needed different @ha relocation values for the offset - // pointers). - int MaxDisplacement = 7; - if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { - const GlobalValue *GV = GA->getGlobal(); - MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement); - } - - bool UpdateHBase = false; - SDValue HBase = Base.getOperand(0); - - int Offset = N->getConstantOperandVal(FirstOp); - if (ReplaceFlags) { - if (Offset < 0 || Offset > MaxDisplacement) { - // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only - // one use, then we can do this for any offset, we just need to also - // update the offset (i.e. the symbol addend) on the addis also. - if (Base.getMachineOpcode() != PPC::ADDItocL) - continue; - - if (!HBase.isMachineOpcode() || - HBase.getMachineOpcode() != PPC::ADDIStocHA) - continue; - - if (!Base.hasOneUse() || !HBase.hasOneUse()) - continue; - - SDValue HImmOpnd = HBase.getOperand(1); - if (HImmOpnd != ImmOpnd) - continue; - - UpdateHBase = true; - } - } else { - // If we're directly folding the addend from an addi instruction, then: - // 1. In general, the offset on the memory access must be zero. - // 2. If the addend is a constant, then it can be combined with a - // non-zero offset, but only if the result meets the encoding - // requirements. - if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { - Offset += C->getSExtValue(); - - if (RequiresMod4Offset && (Offset % 4) != 0) - continue; - - if (!isInt<16>(Offset)) - continue; - - ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), - ImmOpnd.getValueType()); - } else if (Offset != 0) { - continue; - } - } - - // We found an opportunity. Reverse the operands from the add - // immediate and substitute them into the load or store. If - // needed, update the target flags for the immediate operand to - // reflect the necessary relocation information. - LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); - LLVM_DEBUG(Base->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\nN: "); - LLVM_DEBUG(N->dump(CurDAG)); - LLVM_DEBUG(dbgs() << "\n"); - - // If the relocation information isn't already present on the - // immediate operand, add it now. - if (ReplaceFlags) { - if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { - SDLoc dl(GA); - const GlobalValue *GV = GA->getGlobal(); - // We can't perform this optimization for data whose alignment - // is insufficient for the instruction encoding. - if (GV->getAlignment() < 4 && - (RequiresMod4Offset || (Offset % 4) != 0)) { - LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); - continue; - } - ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); - } else if (ConstantPoolSDNode *CP = - dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { - const Constant *C = CP->getConstVal(); - ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, - CP->getAlignment(), - Offset, Flags); - } - } - - if (FirstOp == 1) // Store - (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, - Base.getOperand(0), N->getOperand(3)); - else // Load - (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), - N->getOperand(2)); - - if (UpdateHBase) - (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), - ImmOpnd); - - // The add-immediate may now be dead, in which case remove it. - if (Base.getNode()->use_empty()) - CurDAG->RemoveDeadNode(Base.getNode()); - } -} - -/// createPPCISelDag - This pass converts a legalized DAG into a -/// PowerPC-specific DAG, ready for instruction scheduling. -/// -FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, - CodeGenOpt::Level OptLevel) { - return new PPCDAGToDAGISel(TM, OptLevel); -} |
