diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp')
| -rw-r--r-- | contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp | 887 | 
1 files changed, 887 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp b/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp new file mode 100644 index 000000000000..8f026049cb84 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp @@ -0,0 +1,887 @@ +//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the pass that transforms the X86 machine instructions into +// relocatable machine code. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "x86-emitter" +#include "X86InstrInfo.h" +#include "X86JITInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "X86Relocations.h" +#include "X86.h" +#include "llvm/LLVMContext.h" +#include "llvm/PassManager.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Function.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/MC/MCCodeEmitter.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +STATISTIC(NumEmitted, "Number of machine instructions emitted"); + +namespace { +  template<class CodeEmitter> +  class Emitter : public MachineFunctionPass { +    const X86InstrInfo  *II; +    const TargetData    *TD; +    X86TargetMachine    &TM; +    CodeEmitter         &MCE; +    MachineModuleInfo   *MMI; +    intptr_t PICBaseOffset; +    bool Is64BitMode; +    bool IsPIC; +  public: +    static char ID; +    explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce) +      : MachineFunctionPass(&ID), II(0), TD(0), TM(tm),  +      MCE(mce), PICBaseOffset(0), Is64BitMode(false), +      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} +    Emitter(X86TargetMachine &tm, CodeEmitter &mce, +            const X86InstrInfo &ii, const TargetData &td, bool is64) +      : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm),  +      MCE(mce), PICBaseOffset(0), Is64BitMode(is64), +      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} + +    bool runOnMachineFunction(MachineFunction &MF); + +    virtual const char *getPassName() const { +      return "X86 Machine Code Emitter"; +    } + +    void emitInstruction(const MachineInstr &MI, +                         const TargetInstrDesc *Desc); +     +    void getAnalysisUsage(AnalysisUsage &AU) const { +      AU.setPreservesAll(); +      AU.addRequired<MachineModuleInfo>(); +      MachineFunctionPass::getAnalysisUsage(AU); +    } + +  private: +    void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); +    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, +                           intptr_t Disp = 0, intptr_t PCAdj = 0, +                           bool Indirect = false); +    void emitExternalSymbolAddress(const char *ES, unsigned Reloc); +    void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0, +                              intptr_t PCAdj = 0); +    void emitJumpTableAddress(unsigned JTI, unsigned Reloc, +                              intptr_t PCAdj = 0); + +    void emitDisplacementField(const MachineOperand *RelocOp, int DispVal, +                               intptr_t Adj = 0, bool IsPCRel = true); + +    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); +    void emitRegModRMByte(unsigned RegOpcodeField); +    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); +    void emitConstant(uint64_t Val, unsigned Size); + +    void emitMemModRMByte(const MachineInstr &MI, +                          unsigned Op, unsigned RegOpcodeField, +                          intptr_t PCAdj = 0); + +    unsigned getX86RegNum(unsigned RegNo) const; +  }; + +template<class CodeEmitter> +  char Emitter<CodeEmitter>::ID = 0; +} // end anonymous namespace. + +/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code +/// to the specified templated MachineCodeEmitter object. +FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM, +                                                JITCodeEmitter &JCE) { +  return new Emitter<JITCodeEmitter>(TM, JCE); +} + +template<class CodeEmitter> +bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) { +  MMI = &getAnalysis<MachineModuleInfo>(); +  MCE.setModuleInfo(MMI); +   +  II = TM.getInstrInfo(); +  TD = TM.getTargetData(); +  Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit(); +  IsPIC = TM.getRelocationModel() == Reloc::PIC_; +   +  do { +    DEBUG(dbgs() << "JITTing function '"  +          << MF.getFunction()->getName() << "'\n"); +    MCE.startFunction(MF); +    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();  +         MBB != E; ++MBB) { +      MCE.StartMachineBasicBlock(MBB); +      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); +           I != E; ++I) { +        const TargetInstrDesc &Desc = I->getDesc(); +        emitInstruction(*I, &Desc); +        // MOVPC32r is basically a call plus a pop instruction. +        if (Desc.getOpcode() == X86::MOVPC32r) +          emitInstruction(*I, &II->get(X86::POP32r)); +        NumEmitted++;  // Keep track of the # of mi's emitted +      } +    } +  } while (MCE.finishFunction(MF)); + +  return false; +} + +/// emitPCRelativeBlockAddress - This method keeps track of the information +/// necessary to resolve the address of this block later and emits a dummy +/// value. +/// +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { +  // Remember where this reference was and where it is to so we can +  // deal with it later. +  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), +                                             X86::reloc_pcrel_word, MBB)); +  MCE.emitWordLE(0); +} + +/// emitGlobalAddress - Emit the specified address to the code stream assuming +/// this is part of a "take the address of a global" instruction. +/// +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV, +                                unsigned Reloc, +                                intptr_t Disp /* = 0 */, +                                intptr_t PCAdj /* = 0 */, +                                bool Indirect /* = false */) { +  intptr_t RelocCST = Disp; +  if (Reloc == X86::reloc_picrel_word) +    RelocCST = PICBaseOffset; +  else if (Reloc == X86::reloc_pcrel_word) +    RelocCST = PCAdj; +  MachineRelocation MR = Indirect +    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, +                                           const_cast<GlobalValue *>(GV), +                                           RelocCST, false) +    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, +                               const_cast<GlobalValue *>(GV), RelocCST, false); +  MCE.addRelocation(MR); +  // The relocated value will be added to the displacement +  if (Reloc == X86::reloc_absolute_dword) +    MCE.emitDWordLE(Disp); +  else +    MCE.emitWordLE((int32_t)Disp); +} + +/// emitExternalSymbolAddress - Arrange for the address of an external symbol to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES, +                                                     unsigned Reloc) { +  intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0; + +  // X86 never needs stubs because instruction selection will always pick +  // an instruction sequence that is large enough to hold any address +  // to a symbol. +  // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall) +  bool NeedStub = false; +  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), +                                                 Reloc, ES, RelocCST, +                                                 0, NeedStub)); +  if (Reloc == X86::reloc_absolute_dword) +    MCE.emitDWordLE(0); +  else +    MCE.emitWordLE(0); +} + +/// emitConstPoolAddress - Arrange for the address of an constant pool +/// to be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc, +                                   intptr_t Disp /* = 0 */, +                                   intptr_t PCAdj /* = 0 */) { +  intptr_t RelocCST = 0; +  if (Reloc == X86::reloc_picrel_word) +    RelocCST = PICBaseOffset; +  else if (Reloc == X86::reloc_pcrel_word) +    RelocCST = PCAdj; +  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), +                                                    Reloc, CPI, RelocCST)); +  // The relocated value will be added to the displacement +  if (Reloc == X86::reloc_absolute_dword) +    MCE.emitDWordLE(Disp); +  else +    MCE.emitWordLE((int32_t)Disp); +} + +/// emitJumpTableAddress - Arrange for the address of a jump table to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc, +                                   intptr_t PCAdj /* = 0 */) { +  intptr_t RelocCST = 0; +  if (Reloc == X86::reloc_picrel_word) +    RelocCST = PICBaseOffset; +  else if (Reloc == X86::reloc_pcrel_word) +    RelocCST = PCAdj; +  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), +                                                    Reloc, JTI, RelocCST)); +  // The relocated value will be added to the displacement +  if (Reloc == X86::reloc_absolute_dword) +    MCE.emitDWordLE(0); +  else +    MCE.emitWordLE(0); +} + +template<class CodeEmitter> +unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const { +  return X86RegisterInfo::getX86RegNum(RegNo); +} + +inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, +                                      unsigned RM) { +  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); +  return RM | (RegOpcode << 3) | (Mod << 6); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg, +                                            unsigned RegOpcodeFld){ +  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) { +  MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0)); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,  +                                       unsigned Index, +                                       unsigned Base) { +  // SIB byte is in the same format as the ModRMByte... +  MCE.emitByte(ModRMByte(SS, Index, Base)); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) { +  // Output the constant in little endian byte order... +  for (unsigned i = 0; i != Size; ++i) { +    MCE.emitByte(Val & 255); +    Val >>= 8; +  } +} + +/// isDisp8 - Return true if this signed displacement fits in a 8-bit  +/// sign-extended field.  +static bool isDisp8(int Value) { +  return Value == (signed char)Value; +} + +static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp, +                              const TargetMachine &TM) { +  // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer +  // mechanism as 32-bit mode. +  if (TM.getSubtarget<X86Subtarget>().is64Bit() &&  +      !TM.getSubtarget<X86Subtarget>().isTargetDarwin()) +    return false; +   +  // Return true if this is a reference to a stub containing the address of the +  // global, not the global itself. +  return isGlobalStubReference(GVOp.getTargetFlags()); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp, +                                                 int DispVal, +                                                 intptr_t Adj /* = 0 */, +                                                 bool IsPCRel /* = true */) { +  // If this is a simple integer displacement that doesn't require a relocation, +  // emit it now. +  if (!RelocOp) { +    emitConstant(DispVal, 4); +    return; +  } + +  // Otherwise, this is something that requires a relocation.  Emit it as such +  // now. +  unsigned RelocType = Is64BitMode ? +    (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext) +    : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); +  if (RelocOp->isGlobal()) { +    // In 64-bit static small code model, we could potentially emit absolute. +    // But it's probably not beneficial. If the MCE supports using RIP directly +    // do it, otherwise fallback to absolute (this is determined by IsPCRel).  +    //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative +    //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute +    bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM); +    emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(), +                      Adj, Indirect); +  } else if (RelocOp->isSymbol()) { +    emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType); +  } else if (RelocOp->isCPI()) { +    emitConstPoolAddress(RelocOp->getIndex(), RelocType, +                         RelocOp->getOffset(), Adj); +  } else { +    assert(RelocOp->isJTI() && "Unexpected machine operand!"); +    emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj); +  } +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI, +                                            unsigned Op,unsigned RegOpcodeField, +                                            intptr_t PCAdj) { +  const MachineOperand &Op3 = MI.getOperand(Op+3); +  int DispVal = 0; +  const MachineOperand *DispForReloc = 0; +   +  // Figure out what sort of displacement we have to handle here. +  if (Op3.isGlobal()) { +    DispForReloc = &Op3; +  } else if (Op3.isSymbol()) { +    DispForReloc = &Op3; +  } else if (Op3.isCPI()) { +    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { +      DispForReloc = &Op3; +    } else { +      DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); +      DispVal += Op3.getOffset(); +    } +  } else if (Op3.isJTI()) { +    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { +      DispForReloc = &Op3; +    } else { +      DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); +    } +  } else { +    DispVal = Op3.getImm(); +  } + +  const MachineOperand &Base     = MI.getOperand(Op); +  const MachineOperand &Scale    = MI.getOperand(Op+1); +  const MachineOperand &IndexReg = MI.getOperand(Op+2); + +  unsigned BaseReg = Base.getReg(); +   +  // Handle %rip relative addressing. +  if (BaseReg == X86::RIP || +      (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode +    assert(IndexReg.getReg() == 0 && Is64BitMode && +           "Invalid rip-relative address"); +    MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); +    emitDisplacementField(DispForReloc, DispVal, PCAdj, true); +    return; +  } + +  // Indicate that the displacement will use an pcrel or absolute reference +  // by default. MCEs able to resolve addresses on-the-fly use pcrel by default +  // while others, unless explicit asked to use RIP, use absolute references. +  bool IsPCRel = MCE.earlyResolveAddresses() ? true : false; + +  // Is a SIB byte needed? +  // If no BaseReg, issue a RIP relative instruction only if the MCE can  +  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table +  // 2-7) and absolute references. +  unsigned BaseRegNo = -1U; +  if (BaseReg != 0 && BaseReg != X86::RIP) +    BaseRegNo = getX86RegNum(BaseReg); + +  if (// The SIB byte must be used if there is an index register. +      IndexReg.getReg() == 0 &&  +      // The SIB byte must be used if the base is ESP/RSP/R12, all of which +      // encode to an R/M value of 4, which indicates that a SIB byte is +      // present. +      BaseRegNo != N86::ESP && +      // If there is no base register and we're in 64-bit mode, we need a SIB +      // byte to emit an addr that is just 'disp32' (the non-RIP relative form). +      (!Is64BitMode || BaseReg != 0)) { +    if (BaseReg == 0 ||          // [disp32]     in X86-32 mode +        BaseReg == X86::RIP) {   // [disp32+RIP] in X86-64 mode +      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); +      emitDisplacementField(DispForReloc, DispVal, PCAdj, true); +      return; +    } +     +    // If the base is not EBP/ESP and there is no displacement, use simple +    // indirect register encoding, this handles addresses like [EAX].  The +    // encoding for [EBP] with no displacement means [disp32] so we handle it +    // by emitting a displacement of 0 below. +    if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { +      MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); +      return; +    } +     +    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. +    if (!DispForReloc && isDisp8(DispVal)) { +      MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); +      emitConstant(DispVal, 1); +      return; +    } +     +    // Otherwise, emit the most general non-SIB encoding: [REG+disp32] +    MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); +    emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); +    return; +  } +   +  // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first. +  assert(IndexReg.getReg() != X86::ESP && +         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); + +  bool ForceDisp32 = false; +  bool ForceDisp8  = false; +  if (BaseReg == 0) { +    // If there is no base register, we emit the special case SIB byte with +    // MOD=0, BASE=4, to JUST get the index, scale, and displacement. +    MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); +    ForceDisp32 = true; +  } else if (DispForReloc) { +    // Emit the normal disp32 encoding. +    MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); +    ForceDisp32 = true; +  } else if (DispVal == 0 && BaseRegNo != N86::EBP) { +    // Emit no displacement ModR/M byte +    MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); +  } else if (isDisp8(DispVal)) { +    // Emit the disp8 encoding... +    MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); +    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP +  } else { +    // Emit the normal disp32 encoding... +    MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); +  } + +  // Calculate what the SS field value should be... +  static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; +  unsigned SS = SSTable[Scale.getImm()]; + +  if (BaseReg == 0) { +    // Handle the SIB byte for the case where there is no base, see Intel  +    // Manual 2A, table 2-7. The displacement has already been output. +    unsigned IndexRegNo; +    if (IndexReg.getReg()) +      IndexRegNo = getX86RegNum(IndexReg.getReg()); +    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) +      IndexRegNo = 4; +    emitSIBByte(SS, IndexRegNo, 5); +  } else { +    unsigned BaseRegNo = getX86RegNum(BaseReg); +    unsigned IndexRegNo; +    if (IndexReg.getReg()) +      IndexRegNo = getX86RegNum(IndexReg.getReg()); +    else +      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4] +    emitSIBByte(SS, IndexRegNo, BaseRegNo); +  } + +  // Do we need to output a displacement? +  if (ForceDisp8) { +    emitConstant(DispVal, 1); +  } else if (DispVal != 0 || ForceDisp32) { +    emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); +  } +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI, +                                           const TargetInstrDesc *Desc) { +  DEBUG(dbgs() << MI); + +  MCE.processDebugLoc(MI.getDebugLoc(), true); + +  unsigned Opcode = Desc->Opcode; + +  // Emit the lock opcode prefix as needed. +  if (Desc->TSFlags & X86II::LOCK) +    MCE.emitByte(0xF0); + +  // Emit segment override opcode prefix as needed. +  switch (Desc->TSFlags & X86II::SegOvrMask) { +  case X86II::FS: +    MCE.emitByte(0x64); +    break; +  case X86II::GS: +    MCE.emitByte(0x65); +    break; +  default: llvm_unreachable("Invalid segment!"); +  case 0: break;  // No segment override! +  } + +  // Emit the repeat opcode prefix as needed. +  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) +    MCE.emitByte(0xF3); + +  // Emit the operand size opcode prefix as needed. +  if (Desc->TSFlags & X86II::OpSize) +    MCE.emitByte(0x66); + +  // Emit the address size opcode prefix as needed. +  if (Desc->TSFlags & X86II::AdSize) +    MCE.emitByte(0x67); + +  bool Need0FPrefix = false; +  switch (Desc->TSFlags & X86II::Op0Mask) { +  case X86II::TB:  // Two-byte opcode prefix +  case X86II::T8:  // 0F 38 +  case X86II::TA:  // 0F 3A +    Need0FPrefix = true; +    break; +  case X86II::TF: // F2 0F 38 +    MCE.emitByte(0xF2); +    Need0FPrefix = true; +    break; +  case X86II::REP: break; // already handled. +  case X86II::XS:   // F3 0F +    MCE.emitByte(0xF3); +    Need0FPrefix = true; +    break; +  case X86II::XD:   // F2 0F +    MCE.emitByte(0xF2); +    Need0FPrefix = true; +    break; +  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: +  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: +    MCE.emitByte(0xD8+ +                 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8) +                                   >> X86II::Op0Shift)); +    break; // Two-byte opcode prefix +  default: llvm_unreachable("Invalid prefix!"); +  case 0: break;  // No prefix! +  } + +  // Handle REX prefix. +  if (Is64BitMode) { +    if (unsigned REX = X86InstrInfo::determineREX(MI)) +      MCE.emitByte(0x40 | REX); +  } + +  // 0x0F escape code must be emitted just before the opcode. +  if (Need0FPrefix) +    MCE.emitByte(0x0F); + +  switch (Desc->TSFlags & X86II::Op0Mask) { +  case X86II::TF:    // F2 0F 38 +  case X86II::T8:    // 0F 38 +    MCE.emitByte(0x38); +    break; +  case X86II::TA:    // 0F 3A +    MCE.emitByte(0x3A); +    break; +  } + +  // If this is a two-address instruction, skip one of the register operands. +  unsigned NumOps = Desc->getNumOperands(); +  unsigned CurOp = 0; +  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1) +    ++CurOp; +  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) +    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 +    --NumOps; + +  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags); +  switch (Desc->TSFlags & X86II::FormMask) { +  default: +    llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!"); +  case X86II::Pseudo: +    // Remember the current PC offset, this is the PIC relocation +    // base address. +    switch (Opcode) { +    default:  +      llvm_unreachable("psuedo instructions should be removed before code" +                       " emission"); +      break; +    case TargetOpcode::INLINEASM: +      // We allow inline assembler nodes with empty bodies - they can +      // implicitly define registers, which is ok for JIT. +      if (MI.getOperand(0).getSymbolName()[0]) +        report_fatal_error("JIT does not support inline asm!"); +      break; +    case TargetOpcode::DBG_LABEL: +    case TargetOpcode::GC_LABEL: +    case TargetOpcode::EH_LABEL: +      MCE.emitLabel(MI.getOperand(0).getMCSymbol()); +      break; +         +    case TargetOpcode::IMPLICIT_DEF: +    case TargetOpcode::KILL: +    case X86::FP_REG_KILL: +      break; +    case X86::MOVPC32r: { +      // This emits the "call" portion of this pseudo instruction. +      MCE.emitByte(BaseOpcode); +      emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags)); +      // Remember PIC base. +      PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset(); +      X86JITInfo *JTI = TM.getJITInfo(); +      JTI->setPICBase(MCE.getCurrentPCValue()); +      break; +    } +    } +    CurOp = NumOps; +    break; +  case X86II::RawFrm: { +    MCE.emitByte(BaseOpcode); + +    if (CurOp == NumOps) +      break; +       +    const MachineOperand &MO = MI.getOperand(CurOp++); + +    DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n"); +    DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n"); +    DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n"); +    DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n"); +    DEBUG(dbgs() << "isImm " << MO.isImm() << "\n"); + +    if (MO.isMBB()) { +      emitPCRelativeBlockAddress(MO.getMBB()); +      break; +    } +     +    if (MO.isGlobal()) { +      emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word, +                        MO.getOffset(), 0); +      break; +    } +     +    if (MO.isSymbol()) { +      emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); +      break; +    } + +    // FIXME: Only used by hackish MCCodeEmitter, remove when dead. +    if (MO.isJTI()) { +      emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word); +      break; +    } +     +    assert(MO.isImm() && "Unknown RawFrm operand!"); +    if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) { +      // Fix up immediate operand for pc relative calls. +      intptr_t Imm = (intptr_t)MO.getImm(); +      Imm = Imm - MCE.getCurrentPCValue() - 4; +      emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags)); +    } else +      emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags)); +    break; +  } +       +  case X86II::AddRegFrm: { +    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); +     +    if (CurOp == NumOps) +      break; +       +    const MachineOperand &MO1 = MI.getOperand(CurOp++); +    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); +    if (MO1.isImm()) { +      emitConstant(MO1.getImm(), Size); +      break; +    } +     +    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word +      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); +    if (Opcode == X86::MOV64ri64i32) +      rt = X86::reloc_absolute_word;  // FIXME: add X86II flag? +    // This should not occur on Darwin for relocatable objects. +    if (Opcode == X86::MOV64ri) +      rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag? +    if (MO1.isGlobal()) { +      bool Indirect = gvNeedsNonLazyPtr(MO1, TM); +      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, +                        Indirect); +    } else if (MO1.isSymbol()) +      emitExternalSymbolAddress(MO1.getSymbolName(), rt); +    else if (MO1.isCPI()) +      emitConstPoolAddress(MO1.getIndex(), rt); +    else if (MO1.isJTI()) +      emitJumpTableAddress(MO1.getIndex(), rt); +    break; +  } + +  case X86II::MRMDestReg: { +    MCE.emitByte(BaseOpcode); +    emitRegModRMByte(MI.getOperand(CurOp).getReg(), +                     getX86RegNum(MI.getOperand(CurOp+1).getReg())); +    CurOp += 2; +    if (CurOp != NumOps) +      emitConstant(MI.getOperand(CurOp++).getImm(), +                   X86II::getSizeOfImm(Desc->TSFlags)); +    break; +  } +  case X86II::MRMDestMem: { +    MCE.emitByte(BaseOpcode); +    emitMemModRMByte(MI, CurOp, +                     getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands) +                                  .getReg())); +    CurOp +=  X86AddrNumOperands + 1; +    if (CurOp != NumOps) +      emitConstant(MI.getOperand(CurOp++).getImm(), +                   X86II::getSizeOfImm(Desc->TSFlags)); +    break; +  } + +  case X86II::MRMSrcReg: +    MCE.emitByte(BaseOpcode); +    emitRegModRMByte(MI.getOperand(CurOp+1).getReg(), +                     getX86RegNum(MI.getOperand(CurOp).getReg())); +    CurOp += 2; +    if (CurOp != NumOps) +      emitConstant(MI.getOperand(CurOp++).getImm(), +                   X86II::getSizeOfImm(Desc->TSFlags)); +    break; + +  case X86II::MRMSrcMem: { +    // FIXME: Maybe lea should have its own form? +    int AddrOperands; +    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || +        Opcode == X86::LEA16r || Opcode == X86::LEA32r) +      AddrOperands = X86AddrNumOperands - 1; // No segment register +    else +      AddrOperands = X86AddrNumOperands; + +    intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? +      X86II::getSizeOfImm(Desc->TSFlags) : 0; + +    MCE.emitByte(BaseOpcode); +    emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()), +                     PCAdj); +    CurOp += AddrOperands + 1; +    if (CurOp != NumOps) +      emitConstant(MI.getOperand(CurOp++).getImm(), +                   X86II::getSizeOfImm(Desc->TSFlags)); +    break; +  } + +  case X86II::MRM0r: case X86II::MRM1r: +  case X86II::MRM2r: case X86II::MRM3r: +  case X86II::MRM4r: case X86II::MRM5r: +  case X86II::MRM6r: case X86II::MRM7r: { +    MCE.emitByte(BaseOpcode); +    emitRegModRMByte(MI.getOperand(CurOp++).getReg(), +                     (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r); + +    if (CurOp == NumOps) +      break; +     +    const MachineOperand &MO1 = MI.getOperand(CurOp++); +    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); +    if (MO1.isImm()) { +      emitConstant(MO1.getImm(), Size); +      break; +    } +     +    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word +      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); +    if (Opcode == X86::MOV64ri32) +      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag? +    if (MO1.isGlobal()) { +      bool Indirect = gvNeedsNonLazyPtr(MO1, TM); +      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, +                        Indirect); +    } else if (MO1.isSymbol()) +      emitExternalSymbolAddress(MO1.getSymbolName(), rt); +    else if (MO1.isCPI()) +      emitConstPoolAddress(MO1.getIndex(), rt); +    else if (MO1.isJTI()) +      emitJumpTableAddress(MO1.getIndex(), rt); +    break; +  } + +  case X86II::MRM0m: case X86II::MRM1m: +  case X86II::MRM2m: case X86II::MRM3m: +  case X86II::MRM4m: case X86II::MRM5m: +  case X86II::MRM6m: case X86II::MRM7m: { +    intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ? +      (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ?  +          X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0; + +    MCE.emitByte(BaseOpcode); +    emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, +                     PCAdj); +    CurOp += X86AddrNumOperands; + +    if (CurOp == NumOps) +      break; +     +    const MachineOperand &MO = MI.getOperand(CurOp++); +    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); +    if (MO.isImm()) { +      emitConstant(MO.getImm(), Size); +      break; +    } +     +    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word +      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); +    if (Opcode == X86::MOV64mi32) +      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag? +    if (MO.isGlobal()) { +      bool Indirect = gvNeedsNonLazyPtr(MO, TM); +      emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0, +                        Indirect); +    } else if (MO.isSymbol()) +      emitExternalSymbolAddress(MO.getSymbolName(), rt); +    else if (MO.isCPI()) +      emitConstPoolAddress(MO.getIndex(), rt); +    else if (MO.isJTI()) +      emitJumpTableAddress(MO.getIndex(), rt); +    break; +  } + +  case X86II::MRMInitReg: +    MCE.emitByte(BaseOpcode); +    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). +    emitRegModRMByte(MI.getOperand(CurOp).getReg(), +                     getX86RegNum(MI.getOperand(CurOp).getReg())); +    ++CurOp; +    break; +       +  case X86II::MRM_C1: +    MCE.emitByte(BaseOpcode); +    MCE.emitByte(0xC1); +    break; +  case X86II::MRM_C8: +    MCE.emitByte(BaseOpcode); +    MCE.emitByte(0xC8); +    break; +  case X86II::MRM_C9: +    MCE.emitByte(BaseOpcode); +    MCE.emitByte(0xC9); +    break; +  case X86II::MRM_E8: +    MCE.emitByte(BaseOpcode); +    MCE.emitByte(0xE8); +    break; +  case X86II::MRM_F0: +    MCE.emitByte(BaseOpcode); +    MCE.emitByte(0xF0); +    break; +  } + +  if (!Desc->isVariadic() && CurOp != NumOps) { +#ifndef NDEBUG +    dbgs() << "Cannot encode all operands of: " << MI << "\n"; +#endif +    llvm_unreachable(0); +  } + +  MCE.processDebugLoc(MI.getDebugLoc(), false); +}  | 
