summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp1046
1 files changed, 0 insertions, 1046 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp b/contrib/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
deleted file mode 100644
index 5ce3255ea96a..000000000000
--- a/contrib/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
+++ /dev/null
@@ -1,1046 +0,0 @@
-//====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-/// \file
-///
-/// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
-/// flag bits.
-///
-/// We have to do this by carefully analyzing and rewriting the usage of the
-/// copied EFLAGS register because there is no general way to rematerialize the
-/// entire EFLAGS register safely and efficiently. Using `popf` both forces
-/// dynamic stack adjustment and can create correctness issues due to IF, TF,
-/// and other non-status flags being overwritten. Using sequences involving
-/// SAHF don't work on all x86 processors and are often quite slow compared to
-/// directly testing a single status preserved in its own GPR.
-///
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "X86InstrBuilder.h"
-#include "X86InstrInfo.h"
-#include "X86Subtarget.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/ScopeExit.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/SparseBitVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineDominators.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/MachineSSAUpdater.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSchedule.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/MC/MCSchedule.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <iterator>
-#include <utility>
-
-using namespace llvm;
-
-#define PASS_KEY "x86-flags-copy-lowering"
-#define DEBUG_TYPE PASS_KEY
-
-STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
-STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
-STATISTIC(NumTestsInserted, "Number of test instructions inserted");
-STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
-
-namespace {
-
-// Convenient array type for storing registers associated with each condition.
-using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
-
-class X86FlagsCopyLoweringPass : public MachineFunctionPass {
-public:
- X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }
-
- StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
- bool runOnMachineFunction(MachineFunction &MF) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
-
- /// Pass identification, replacement for typeid.
- static char ID;
-
-private:
- MachineRegisterInfo *MRI;
- const X86Subtarget *Subtarget;
- const X86InstrInfo *TII;
- const TargetRegisterInfo *TRI;
- const TargetRegisterClass *PromoteRC;
- MachineDominatorTree *MDT;
-
- CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator CopyDefI);
-
- unsigned promoteCondToReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator TestPos,
- DebugLoc TestLoc, X86::CondCode Cond);
- std::pair<unsigned, bool>
- getCondOrInverseInReg(MachineBasicBlock &TestMBB,
- MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
- X86::CondCode Cond, CondRegArray &CondRegs);
- void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
- DebugLoc Loc, unsigned Reg);
-
- void rewriteArithmetic(MachineBasicBlock &TestMBB,
- MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
- MachineInstr &MI, MachineOperand &FlagUse,
- CondRegArray &CondRegs);
- void rewriteCMov(MachineBasicBlock &TestMBB,
- MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
- MachineInstr &CMovI, MachineOperand &FlagUse,
- CondRegArray &CondRegs);
- void rewriteCondJmp(MachineBasicBlock &TestMBB,
- MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
- MachineInstr &JmpI, CondRegArray &CondRegs);
- void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
- MachineInstr &CopyDefI);
- void rewriteSetCarryExtended(MachineBasicBlock &TestMBB,
- MachineBasicBlock::iterator TestPos,
- DebugLoc TestLoc, MachineInstr &SetBI,
- MachineOperand &FlagUse, CondRegArray &CondRegs);
- void rewriteSetCC(MachineBasicBlock &TestMBB,
- MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
- MachineInstr &SetCCI, MachineOperand &FlagUse,
- CondRegArray &CondRegs);
-};
-
-} // end anonymous namespace
-
-INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
- "X86 EFLAGS copy lowering", false, false)
-INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
- "X86 EFLAGS copy lowering", false, false)
-
-FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
- return new X86FlagsCopyLoweringPass();
-}
-
-char X86FlagsCopyLoweringPass::ID = 0;
-
-void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<MachineDominatorTree>();
- MachineFunctionPass::getAnalysisUsage(AU);
-}
-
-namespace {
-/// An enumeration of the arithmetic instruction mnemonics which have
-/// interesting flag semantics.
-///
-/// We can map instruction opcodes into these mnemonics to make it easy to
-/// dispatch with specific functionality.
-enum class FlagArithMnemonic {
- ADC,
- ADCX,
- ADOX,
- RCL,
- RCR,
- SBB,
-};
-} // namespace
-
-static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
- switch (Opcode) {
- default:
- report_fatal_error("No support for lowering a copy into EFLAGS when used "
- "by this instruction!");
-
-#define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
- case X86::MNEMONIC##8##SUFFIX: \
- case X86::MNEMONIC##16##SUFFIX: \
- case X86::MNEMONIC##32##SUFFIX: \
- case X86::MNEMONIC##64##SUFFIX:
-
-#define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
- LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
- LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
- LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
- LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
- case X86::MNEMONIC##8ri: \
- case X86::MNEMONIC##16ri8: \
- case X86::MNEMONIC##32ri8: \
- case X86::MNEMONIC##64ri8: \
- case X86::MNEMONIC##16ri: \
- case X86::MNEMONIC##32ri: \
- case X86::MNEMONIC##64ri32: \
- case X86::MNEMONIC##8mi: \
- case X86::MNEMONIC##16mi8: \
- case X86::MNEMONIC##32mi8: \
- case X86::MNEMONIC##64mi8: \
- case X86::MNEMONIC##16mi: \
- case X86::MNEMONIC##32mi: \
- case X86::MNEMONIC##64mi32: \
- case X86::MNEMONIC##8i8: \
- case X86::MNEMONIC##16i16: \
- case X86::MNEMONIC##32i32: \
- case X86::MNEMONIC##64i32:
-
- LLVM_EXPAND_ADC_SBB_INSTR(ADC)
- return FlagArithMnemonic::ADC;
-
- LLVM_EXPAND_ADC_SBB_INSTR(SBB)
- return FlagArithMnemonic::SBB;
-
-#undef LLVM_EXPAND_ADC_SBB_INSTR
-
- LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
- LLVM_EXPAND_INSTR_SIZES(RCL, r1)
- LLVM_EXPAND_INSTR_SIZES(RCL, ri)
- return FlagArithMnemonic::RCL;
-
- LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
- LLVM_EXPAND_INSTR_SIZES(RCR, r1)
- LLVM_EXPAND_INSTR_SIZES(RCR, ri)
- return FlagArithMnemonic::RCR;
-
-#undef LLVM_EXPAND_INSTR_SIZES
-
- case X86::ADCX32rr:
- case X86::ADCX64rr:
- case X86::ADCX32rm:
- case X86::ADCX64rm:
- return FlagArithMnemonic::ADCX;
-
- case X86::ADOX32rr:
- case X86::ADOX64rr:
- case X86::ADOX32rm:
- case X86::ADOX64rm:
- return FlagArithMnemonic::ADOX;
- }
-}
-
-static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
- MachineInstr &SplitI,
- const X86InstrInfo &TII) {
- MachineFunction &MF = *MBB.getParent();
-
- assert(SplitI.getParent() == &MBB &&
- "Split instruction must be in the split block!");
- assert(SplitI.isBranch() &&
- "Only designed to split a tail of branch instructions!");
- assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
- "Must split on an actual jCC instruction!");
-
- // Dig out the previous instruction to the split point.
- MachineInstr &PrevI = *std::prev(SplitI.getIterator());
- assert(PrevI.isBranch() && "Must split after a branch!");
- assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
- "Must split after an actual jCC instruction!");
- assert(!std::prev(PrevI.getIterator())->isTerminator() &&
- "Must only have this one terminator prior to the split!");
-
- // Grab the one successor edge that will stay in `MBB`.
- MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
-
- // Analyze the original block to see if we are actually splitting an edge
- // into two edges. This can happen when we have multiple conditional jumps to
- // the same successor.
- bool IsEdgeSplit =
- std::any_of(SplitI.getIterator(), MBB.instr_end(),
- [&](MachineInstr &MI) {
- assert(MI.isTerminator() &&
- "Should only have spliced terminators!");
- return llvm::any_of(
- MI.operands(), [&](MachineOperand &MOp) {
- return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
- });
- }) ||
- MBB.getFallThrough() == &UnsplitSucc;
-
- MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
-
- // Insert the new block immediately after the current one. Any existing
- // fallthrough will be sunk into this new block anyways.
- MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
-
- // Splice the tail of instructions into the new block.
- NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
-
- // Copy the necessary succesors (and their probability info) into the new
- // block.
- for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
- if (IsEdgeSplit || *SI != &UnsplitSucc)
- NewMBB.copySuccessor(&MBB, SI);
- // Normalize the probabilities if we didn't end up splitting the edge.
- if (!IsEdgeSplit)
- NewMBB.normalizeSuccProbs();
-
- // Now replace all of the moved successors in the original block with the new
- // block. This will merge their probabilities.
- for (MachineBasicBlock *Succ : NewMBB.successors())
- if (Succ != &UnsplitSucc)
- MBB.replaceSuccessor(Succ, &NewMBB);
-
- // We should always end up replacing at least one successor.
- assert(MBB.isSuccessor(&NewMBB) &&
- "Failed to make the new block a successor!");
-
- // Now update all the PHIs.
- for (MachineBasicBlock *Succ : NewMBB.successors()) {
- for (MachineInstr &MI : *Succ) {
- if (!MI.isPHI())
- break;
-
- for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
- OpIdx += 2) {
- MachineOperand &OpV = MI.getOperand(OpIdx);
- MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
- assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
- if (OpMBB.getMBB() != &MBB)
- continue;
-
- // Replace the operand for unsplit successors
- if (!IsEdgeSplit || Succ != &UnsplitSucc) {
- OpMBB.setMBB(&NewMBB);
-
- // We have to continue scanning as there may be multiple entries in
- // the PHI.
- continue;
- }
-
- // When we have split the edge append a new successor.
- MI.addOperand(MF, OpV);
- MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
- break;
- }
- }
- }
-
- return NewMBB;
-}
-
-bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
- LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
- << " **********\n");
-
- Subtarget = &MF.getSubtarget<X86Subtarget>();
- MRI = &MF.getRegInfo();
- TII = Subtarget->getInstrInfo();
- TRI = Subtarget->getRegisterInfo();
- MDT = &getAnalysis<MachineDominatorTree>();
- PromoteRC = &X86::GR8RegClass;
-
- if (MF.begin() == MF.end())
- // Nothing to do for a degenerate empty function...
- return false;
-
- // Collect the copies in RPO so that when there are chains where a copy is in
- // turn copied again we visit the first one first. This ensures we can find
- // viable locations for testing the original EFLAGS that dominate all the
- // uses across complex CFGs.
- SmallVector<MachineInstr *, 4> Copies;
- ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
- for (MachineBasicBlock *MBB : RPOT)
- for (MachineInstr &MI : *MBB)
- if (MI.getOpcode() == TargetOpcode::COPY &&
- MI.getOperand(0).getReg() == X86::EFLAGS)
- Copies.push_back(&MI);
-
- for (MachineInstr *CopyI : Copies) {
- MachineBasicBlock &MBB = *CopyI->getParent();
-
- MachineOperand &VOp = CopyI->getOperand(1);
- assert(VOp.isReg() &&
- "The input to the copy for EFLAGS should always be a register!");
- MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
- if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
- // FIXME: The big likely candidate here are PHI nodes. We could in theory
- // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
- // enough that it is probably better to change every other part of LLVM
- // to avoid creating them. The issue is that once we have PHIs we won't
- // know which original EFLAGS value we need to capture with our setCCs
- // below. The end result will be computing a complete set of setCCs that
- // we *might* want, computing them in every place where we copy *out* of
- // EFLAGS and then doing SSA formation on all of them to insert necessary
- // PHI nodes and consume those here. Then hoping that somehow we DCE the
- // unnecessary ones. This DCE seems very unlikely to be successful and so
- // we will almost certainly end up with a glut of dead setCC
- // instructions. Until we have a motivating test case and fail to avoid
- // it by changing other parts of LLVM's lowering, we refuse to handle
- // this complex case here.
- LLVM_DEBUG(
- dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
- CopyDefI.dump());
- report_fatal_error(
- "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
- }
-
- auto Cleanup = make_scope_exit([&] {
- // All uses of the EFLAGS copy are now rewritten, kill the copy into
- // eflags and if dead the copy from.
- CopyI->eraseFromParent();
- if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
- CopyDefI.eraseFromParent();
- ++NumCopiesEliminated;
- });
-
- MachineOperand &DOp = CopyI->getOperand(0);
- assert(DOp.isDef() && "Expected register def!");
- assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
- if (DOp.isDead())
- continue;
-
- MachineBasicBlock *TestMBB = CopyDefI.getParent();
- auto TestPos = CopyDefI.getIterator();
- DebugLoc TestLoc = CopyDefI.getDebugLoc();
-
- LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
-
- // Walk up across live-in EFLAGS to find where they were actually def'ed.
- //
- // This copy's def may just be part of a region of blocks covered by
- // a single def of EFLAGS and we want to find the top of that region where
- // possible.
- //
- // This is essentially a search for a *candidate* reaching definition
- // location. We don't need to ever find the actual reaching definition here,
- // but we want to walk up the dominator tree to find the highest point which
- // would be viable for such a definition.
- auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
- MachineBasicBlock::iterator End) {
- // Scan backwards as we expect these to be relatively short and often find
- // a clobber near the end.
- return llvm::any_of(
- llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
- // Flag any instruction (other than the copy we are
- // currently rewriting) that defs EFLAGS.
- return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
- });
- };
- auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
- MachineBasicBlock *EndMBB) {
- assert(MDT->dominates(BeginMBB, EndMBB) &&
- "Only support paths down the dominator tree!");
- SmallPtrSet<MachineBasicBlock *, 4> Visited;
- SmallVector<MachineBasicBlock *, 4> Worklist;
- // We terminate at the beginning. No need to scan it.
- Visited.insert(BeginMBB);
- Worklist.push_back(EndMBB);
- do {
- auto *MBB = Worklist.pop_back_val();
- for (auto *PredMBB : MBB->predecessors()) {
- if (!Visited.insert(PredMBB).second)
- continue;
- if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
- return true;
- // Enqueue this block to walk its predecessors.
- Worklist.push_back(PredMBB);
- }
- } while (!Worklist.empty());
- // No clobber found along a path from the begin to end.
- return false;
- };
- while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
- !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
- // Find the nearest common dominator of the predecessors, as
- // that will be the best candidate to hoist into.
- MachineBasicBlock *HoistMBB =
- std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
- *TestMBB->pred_begin(),
- [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
- return MDT->findNearestCommonDominator(LHS, RHS);
- });
-
- // Now we need to scan all predecessors that may be reached along paths to
- // the hoist block. A clobber anywhere in any of these blocks the hoist.
- // Note that this even handles loops because we require *no* clobbers.
- if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
- break;
-
- // We also need the terminators to not sneakily clobber flags.
- if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
- HoistMBB->instr_end()))
- break;
-
- // We found a viable location, hoist our test position to it.
- TestMBB = HoistMBB;
- TestPos = TestMBB->getFirstTerminator()->getIterator();
- // Clear the debug location as it would just be confusing after hoisting.
- TestLoc = DebugLoc();
- }
- LLVM_DEBUG({
- auto DefIt = llvm::find_if(
- llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
- [&](MachineInstr &MI) {
- return MI.findRegisterDefOperand(X86::EFLAGS);
- });
- if (DefIt.base() != TestMBB->instr_begin()) {
- dbgs() << " Using EFLAGS defined by: ";
- DefIt->dump();
- } else {
- dbgs() << " Using live-in flags for BB:\n";
- TestMBB->dump();
- }
- });
-
- // While rewriting uses, we buffer jumps and rewrite them in a second pass
- // because doing so will perturb the CFG that we are walking to find the
- // uses in the first place.
- SmallVector<MachineInstr *, 4> JmpIs;
-
- // Gather the condition flags that have already been preserved in
- // registers. We do this from scratch each time as we expect there to be
- // very few of them and we expect to not revisit the same copy definition
- // many times. If either of those change sufficiently we could build a map
- // of these up front instead.
- CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
-
- // Collect the basic blocks we need to scan. Typically this will just be
- // a single basic block but we may have to scan multiple blocks if the
- // EFLAGS copy lives into successors.
- SmallVector<MachineBasicBlock *, 2> Blocks;
- SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
- Blocks.push_back(&MBB);
-
- do {
- MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
-
- // Track when if/when we find a kill of the flags in this block.
- bool FlagsKilled = false;
-
- // In most cases, we walk from the beginning to the end of the block. But
- // when the block is the same block as the copy is from, we will visit it
- // twice. The first time we start from the copy and go to the end. The
- // second time we start from the beginning and go to the copy. This lets
- // us handle copies inside of cycles.
- // FIXME: This loop is *super* confusing. This is at least in part
- // a symptom of all of this routine needing to be refactored into
- // documentable components. Once done, there may be a better way to write
- // this loop.
- for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
- ? std::next(CopyI->getIterator())
- : UseMBB.instr_begin(),
- MIE = UseMBB.instr_end();
- MII != MIE;) {
- MachineInstr &MI = *MII++;
- // If we are in the original copy block and encounter either the copy
- // def or the copy itself, break so that we don't re-process any part of
- // the block or process the instructions in the range that was copied
- // over.
- if (&MI == CopyI || &MI == &CopyDefI) {
- assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
- "Should only encounter these on the second pass over the "
- "original block.");
- break;
- }
-
- MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
- if (!FlagUse) {
- if (MI.findRegisterDefOperand(X86::EFLAGS)) {
- // If EFLAGS are defined, it's as-if they were killed. We can stop
- // scanning here.
- //
- // NB!!! Many instructions only modify some flags. LLVM currently
- // models this as clobbering all flags, but if that ever changes
- // this will need to be carefully updated to handle that more
- // complex logic.
- FlagsKilled = true;
- break;
- }
- continue;
- }
-
- LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump());
-
- // Check the kill flag before we rewrite as that may change it.
- if (FlagUse->isKill())
- FlagsKilled = true;
-
- // Once we encounter a branch, the rest of the instructions must also be
- // branches. We can't rewrite in place here, so we handle them below.
- //
- // Note that we don't have to handle tail calls here, even conditional
- // tail calls, as those are not introduced into the X86 MI until post-RA
- // branch folding or black placement. As a consequence, we get to deal
- // with the simpler formulation of conditional branches followed by tail
- // calls.
- if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
- auto JmpIt = MI.getIterator();
- do {
- JmpIs.push_back(&*JmpIt);
- ++JmpIt;
- } while (JmpIt != UseMBB.instr_end() &&
- X86::getCondFromBranch(*JmpIt) !=
- X86::COND_INVALID);
- break;
- }
-
- // Otherwise we can just rewrite in-place.
- if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
- rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
- } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
- rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
- } else if (MI.getOpcode() == TargetOpcode::COPY) {
- rewriteCopy(MI, *FlagUse, CopyDefI);
- } else {
- // We assume all other instructions that use flags also def them.
- assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
- "Expected a def of EFLAGS for this instruction!");
-
- // NB!!! Several arithmetic instructions only *partially* update
- // flags. Theoretically, we could generate MI code sequences that
- // would rely on this fact and observe different flags independently.
- // But currently LLVM models all of these instructions as clobbering
- // all the flags in an undef way. We rely on that to simplify the
- // logic.
- FlagsKilled = true;
-
- switch (MI.getOpcode()) {
- case X86::SETB_C8r:
- case X86::SETB_C16r:
- case X86::SETB_C32r:
- case X86::SETB_C64r:
- // Use custom lowering for arithmetic that is merely extending the
- // carry flag. We model this as the SETB_C* pseudo instructions.
- rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
- CondRegs);
- break;
-
- default:
- // Generically handle remaining uses as arithmetic instructions.
- rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
- CondRegs);
- break;
- }
- break;
- }
-
- // If this was the last use of the flags, we're done.
- if (FlagsKilled)
- break;
- }
-
- // If the flags were killed, we're done with this block.
- if (FlagsKilled)
- continue;
-
- // Otherwise we need to scan successors for ones where the flags live-in
- // and queue those up for processing.
- for (MachineBasicBlock *SuccMBB : UseMBB.successors())
- if (SuccMBB->isLiveIn(X86::EFLAGS) &&
- VisitedBlocks.insert(SuccMBB).second) {
- // We currently don't do any PHI insertion and so we require that the
- // test basic block dominates all of the use basic blocks. Further, we
- // can't have a cycle from the test block back to itself as that would
- // create a cycle requiring a PHI to break it.
- //
- // We could in theory do PHI insertion here if it becomes useful by
- // just taking undef values in along every edge that we don't trace
- // this EFLAGS copy along. This isn't as bad as fully general PHI
- // insertion, but still seems like a great deal of complexity.
- //
- // Because it is theoretically possible that some earlier MI pass or
- // other lowering transformation could induce this to happen, we do
- // a hard check even in non-debug builds here.
- if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
- LLVM_DEBUG({
- dbgs()
- << "ERROR: Encountered use that is not dominated by our test "
- "basic block! Rewriting this would require inserting PHI "
- "nodes to track the flag state across the CFG.\n\nTest "
- "block:\n";
- TestMBB->dump();
- dbgs() << "Use block:\n";
- SuccMBB->dump();
- });
- report_fatal_error(
- "Cannot lower EFLAGS copy when original copy def "
- "does not dominate all uses.");
- }
-
- Blocks.push_back(SuccMBB);
- }
- } while (!Blocks.empty());
-
- // Now rewrite the jumps that use the flags. These we handle specially
- // because if there are multiple jumps in a single basic block we'll have
- // to do surgery on the CFG.
- MachineBasicBlock *LastJmpMBB = nullptr;
- for (MachineInstr *JmpI : JmpIs) {
- // Past the first jump within a basic block we need to split the blocks
- // apart.
- if (JmpI->getParent() == LastJmpMBB)
- splitBlock(*JmpI->getParent(), *JmpI, *TII);
- else
- LastJmpMBB = JmpI->getParent();
-
- rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
- }
-
- // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
- // the copy's def operand is itself a kill.
- }
-
-#ifndef NDEBUG
- for (MachineBasicBlock &MBB : MF)
- for (MachineInstr &MI : MBB)
- if (MI.getOpcode() == TargetOpcode::COPY &&
- (MI.getOperand(0).getReg() == X86::EFLAGS ||
- MI.getOperand(1).getReg() == X86::EFLAGS)) {
- LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
- MI.dump());
- llvm_unreachable("Unlowered EFLAGS copy!");
- }
-#endif
-
- return true;
-}
-
-/// Collect any conditions that have already been set in registers so that we
-/// can re-use them rather than adding duplicates.
-CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
- MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
- CondRegArray CondRegs = {};
-
- // Scan backwards across the range of instructions with live EFLAGS.
- for (MachineInstr &MI :
- llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
- X86::CondCode Cond = X86::getCondFromSETCC(MI);
- if (Cond != X86::COND_INVALID && !MI.mayStore() && MI.getOperand(0).isReg() &&
- TRI->isVirtualRegister(MI.getOperand(0).getReg())) {
- assert(MI.getOperand(0).isDef() &&
- "A non-storing SETcc should always define a register!");
- CondRegs[Cond] = MI.getOperand(0).getReg();
- }
-
- // Stop scanning when we see the first definition of the EFLAGS as prior to
- // this we would potentially capture the wrong flag state.
- if (MI.findRegisterDefOperand(X86::EFLAGS))
- break;
- }
- return CondRegs;
-}
-
-unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
- MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
- DebugLoc TestLoc, X86::CondCode Cond) {
- unsigned Reg = MRI->createVirtualRegister(PromoteRC);
- auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
- TII->get(X86::SETCCr), Reg).addImm(Cond);
- (void)SetI;
- LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump());
- ++NumSetCCsInserted;
- return Reg;
-}
-
-std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
- MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
- DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
- unsigned &CondReg = CondRegs[Cond];
- unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
- if (!CondReg && !InvCondReg)
- CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
-
- if (CondReg)
- return {CondReg, false};
- else
- return {InvCondReg, true};
-}
-
-void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator Pos,
- DebugLoc Loc, unsigned Reg) {
- auto TestI =
- BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
- (void)TestI;
- LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump());
- ++NumTestsInserted;
-}
-
-void X86FlagsCopyLoweringPass::rewriteArithmetic(
- MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
- DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
- CondRegArray &CondRegs) {
- // Arithmetic is either reading CF or OF. Figure out which condition we need
- // to preserve in a register.
- X86::CondCode Cond;
-
- // The addend to use to reset CF or OF when added to the flag value.
- int Addend;
-
- switch (getMnemonicFromOpcode(MI.getOpcode())) {
- case FlagArithMnemonic::ADC:
- case FlagArithMnemonic::ADCX:
- case FlagArithMnemonic::RCL:
- case FlagArithMnemonic::RCR:
- case FlagArithMnemonic::SBB:
- Cond = X86::COND_B; // CF == 1
- // Set up an addend that when one is added will need a carry due to not
- // having a higher bit available.
- Addend = 255;
- break;
-
- case FlagArithMnemonic::ADOX:
- Cond = X86::COND_O; // OF == 1
- // Set up an addend that when one is added will turn from positive to
- // negative and thus overflow in the signed domain.
- Addend = 127;
- break;
- }
-
- // Now get a register that contains the value of the flag input to the
- // arithmetic. We require exactly this flag to simplify the arithmetic
- // required to materialize it back into the flag.
- unsigned &CondReg = CondRegs[Cond];
- if (!CondReg)
- CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
-
- MachineBasicBlock &MBB = *MI.getParent();
-
- // Insert an instruction that will set the flag back to the desired value.
- unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
- auto AddI =
- BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
- .addDef(TmpReg, RegState::Dead)
- .addReg(CondReg)
- .addImm(Addend);
- (void)AddI;
- LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump());
- ++NumAddsInserted;
- FlagUse.setIsKill(true);
-}
-
-void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
- MachineBasicBlock::iterator TestPos,
- DebugLoc TestLoc,
- MachineInstr &CMovI,
- MachineOperand &FlagUse,
- CondRegArray &CondRegs) {
- // First get the register containing this specific condition.
- X86::CondCode Cond = X86::getCondFromCMov(CMovI);
- unsigned CondReg;
- bool Inverted;
- std::tie(CondReg, Inverted) =
- getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
-
- MachineBasicBlock &MBB = *CMovI.getParent();
-
- // Insert a direct test of the saved register.
- insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
-
- // Rewrite the CMov to use the !ZF flag from the test, and then kill its use
- // of the flags afterward.
- CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
- .setImm(Inverted ? X86::COND_E : X86::COND_NE);
- FlagUse.setIsKill(true);
- LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
-}
-
-void X86FlagsCopyLoweringPass::rewriteCondJmp(
- MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
- DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
- // First get the register containing this specific condition.
- X86::CondCode Cond = X86::getCondFromBranch(JmpI);
- unsigned CondReg;
- bool Inverted;
- std::tie(CondReg, Inverted) =
- getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
-
- MachineBasicBlock &JmpMBB = *JmpI.getParent();
-
- // Insert a direct test of the saved register.
- insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
-
- // Rewrite the jump to use the !ZF flag from the test, and kill its use of
- // flags afterward.
- JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
- JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
- LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
-}
-
-void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
- MachineOperand &FlagUse,
- MachineInstr &CopyDefI) {
- // Just replace this copy with the original copy def.
- MRI->replaceRegWith(MI.getOperand(0).getReg(),
- CopyDefI.getOperand(0).getReg());
- MI.eraseFromParent();
-}
-
-void X86FlagsCopyLoweringPass::rewriteSetCarryExtended(
- MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
- DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse,
- CondRegArray &CondRegs) {
- // This routine is only used to handle pseudos for setting a register to zero
- // or all ones based on CF. This is essentially the sign extended from 1-bit
- // form of SETB and modeled with the SETB_C* pseudos. They require special
- // handling as they aren't normal SETcc instructions and are lowered to an
- // EFLAGS clobbering operation (SBB typically). One simplifying aspect is that
- // they are only provided in reg-defining forms. A complicating factor is that
- // they can define many different register widths.
- assert(SetBI.getOperand(0).isReg() &&
- "Cannot have a non-register defined operand to this variant of SETB!");
-
- // Little helper to do the common final step of replacing the register def'ed
- // by this SETB instruction with a new register and removing the SETB
- // instruction.
- auto RewriteToReg = [&](unsigned Reg) {
- MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg);
- SetBI.eraseFromParent();
- };
-
- // Grab the register class used for this particular instruction.
- auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg());
-
- MachineBasicBlock &MBB = *SetBI.getParent();
- auto SetPos = SetBI.getIterator();
- auto SetLoc = SetBI.getDebugLoc();
-
- auto AdjustReg = [&](unsigned Reg) {
- auto &OrigRC = *MRI->getRegClass(Reg);
- if (&OrigRC == &SetBRC)
- return Reg;
-
- unsigned NewReg;
-
- int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8;
- int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8;
- assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!");
- assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!");
- int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit,
- X86::NoSubRegister, X86::sub_32bit};
-
- // If the original size is smaller than the target *and* is smaller than 4
- // bytes, we need to explicitly zero extend it. We always extend to 4-bytes
- // to maximize the chance of being able to CSE that operation and to avoid
- // partial dependency stalls extending to 2-bytes.
- if (OrigRegSize < TargetRegSize && OrigRegSize < 4) {
- NewReg = MRI->createVirtualRegister(&X86::GR32RegClass);
- BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg)
- .addReg(Reg);
- if (&SetBRC == &X86::GR32RegClass)
- return NewReg;
- Reg = NewReg;
- OrigRegSize = 4;
- }
-
- NewReg = MRI->createVirtualRegister(&SetBRC);
- if (OrigRegSize < TargetRegSize) {
- BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG),
- NewReg)
- .addImm(0)
- .addReg(Reg)
- .addImm(SubRegIdx[OrigRegSize]);
- } else if (OrigRegSize > TargetRegSize) {
- if (TargetRegSize == 1 && !Subtarget->is64Bit()) {
- // Need to constrain the register class.
- MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass);
- }
-
- BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY),
- NewReg)
- .addReg(Reg, 0, SubRegIdx[TargetRegSize]);
- } else {
- BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg)
- .addReg(Reg);
- }
- return NewReg;
- };
-
- unsigned &CondReg = CondRegs[X86::COND_B];
- if (!CondReg)
- CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B);
-
- // Adjust the condition to have the desired register width by zero-extending
- // as needed.
- // FIXME: We should use a better API to avoid the local reference and using a
- // different variable here.
- unsigned ExtCondReg = AdjustReg(CondReg);
-
- // Now we need to turn this into a bitmask. We do this by subtracting it from
- // zero.
- unsigned ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
- BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg);
- ZeroReg = AdjustReg(ZeroReg);
-
- unsigned Sub;
- switch (SetBI.getOpcode()) {
- case X86::SETB_C8r:
- Sub = X86::SUB8rr;
- break;
-
- case X86::SETB_C16r:
- Sub = X86::SUB16rr;
- break;
-
- case X86::SETB_C32r:
- Sub = X86::SUB32rr;
- break;
-
- case X86::SETB_C64r:
- Sub = X86::SUB64rr;
- break;
-
- default:
- llvm_unreachable("Invalid SETB_C* opcode!");
- }
- unsigned ResultReg = MRI->createVirtualRegister(&SetBRC);
- BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg)
- .addReg(ZeroReg)
- .addReg(ExtCondReg);
- return RewriteToReg(ResultReg);
-}
-
-void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
- MachineBasicBlock::iterator TestPos,
- DebugLoc TestLoc,
- MachineInstr &SetCCI,
- MachineOperand &FlagUse,
- CondRegArray &CondRegs) {
- X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
- // Note that we can't usefully rewrite this to the inverse without complex
- // analysis of the users of the setCC. Largely we rely on duplicates which
- // could have been avoided already being avoided here.
- unsigned &CondReg = CondRegs[Cond];
- if (!CondReg)
- CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
-
- // Rewriting a register def is trivial: we just replace the register and
- // remove the setcc.
- if (!SetCCI.mayStore()) {
- assert(SetCCI.getOperand(0).isReg() &&
- "Cannot have a non-register defined operand to SETcc!");
- MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
- SetCCI.eraseFromParent();
- return;
- }
-
- // Otherwise, we need to emit a store.
- auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
- SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
- // Copy the address operands.
- for (int i = 0; i < X86::AddrNumOperands; ++i)
- MIB.add(SetCCI.getOperand(i));
-
- MIB.addReg(CondReg);
-
- MIB.setMemRefs(SetCCI.memoperands());
-
- SetCCI.eraseFromParent();
- return;
-}