summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelLowering.cpp38527
1 files changed, 38527 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
new file mode 100644
index 000000000000..9edd799779c7
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
@@ -0,0 +1,38527 @@
+//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that X86 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86ISelLowering.h"
+#include "Utils/X86ShuffleDecode.h"
+#include "X86CallingConv.h"
+#include "X86FrameLowering.h"
+#include "X86InstrBuilder.h"
+#include "X86IntrinsicsInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86ShuffleDecodeConstantPool.h"
+#include "X86TargetMachine.h"
+#include "X86TargetObjectFile.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/WinEHFuncInfo.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm>
+#include <bitset>
+#include <cctype>
+#include <numeric>
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-isel"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+
+static cl::opt<bool> ExperimentalVectorWideningLegalization(
+ "x86-experimental-vector-widening-legalization", cl::init(false),
+ cl::desc("Enable an experimental vector type legalization through widening "
+ "rather than promotion."),
+ cl::Hidden);
+
+static cl::opt<int> ExperimentalPrefLoopAlignment(
+ "x86-experimental-pref-loop-alignment", cl::init(4),
+ cl::desc("Sets the preferable loop alignment for experiments "
+ "(the last x86-experimental-pref-loop-alignment bits"
+ " of the loop header PC will be 0)."),
+ cl::Hidden);
+
+static cl::opt<bool> MulConstantOptimization(
+ "mul-constant-optimization", cl::init(true),
+ cl::desc("Replace 'mul x, Const' with more effective instructions like "
+ "SHIFT, LEA, etc."),
+ cl::Hidden);
+
+/// Call this when the user attempts to do something unsupported, like
+/// returning a double without SSE2 enabled on x86_64. This is not fatal, unlike
+/// report_fatal_error, so calling code should attempt to recover without
+/// crashing.
+static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl,
+ const char *Msg) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ DAG.getContext()->diagnose(
+ DiagnosticInfoUnsupported(MF.getFunction(), Msg, dl.getDebugLoc()));
+}
+
+X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
+ const X86Subtarget &STI)
+ : TargetLowering(TM), Subtarget(STI) {
+ bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87();
+ X86ScalarSSEf64 = Subtarget.hasSSE2();
+ X86ScalarSSEf32 = Subtarget.hasSSE1();
+ MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
+
+ // Set up the TargetLowering object.
+
+ // X86 is weird. It always uses i8 for shift amounts and setcc results.
+ setBooleanContents(ZeroOrOneBooleanContent);
+ // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ // For 64-bit, since we have so many registers, use the ILP scheduler.
+ // For 32-bit, use the register pressure specific scheduling.
+ // For Atom, always use ILP scheduling.
+ if (Subtarget.isAtom())
+ setSchedulingPreference(Sched::ILP);
+ else if (Subtarget.is64Bit())
+ setSchedulingPreference(Sched::ILP);
+ else
+ setSchedulingPreference(Sched::RegPressure);
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
+
+ // Bypass expensive divides and use cheaper ones.
+ if (TM.getOptLevel() >= CodeGenOpt::Default) {
+ if (Subtarget.hasSlowDivide32())
+ addBypassSlowDiv(32, 8);
+ if (Subtarget.hasSlowDivide64() && Subtarget.is64Bit())
+ addBypassSlowDiv(64, 32);
+ }
+
+ if (Subtarget.isTargetKnownWindowsMSVC() ||
+ Subtarget.isTargetWindowsItanium()) {
+ // Setup Windows compiler runtime calls.
+ setLibcallName(RTLIB::SDIV_I64, "_alldiv");
+ setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
+ setLibcallName(RTLIB::SREM_I64, "_allrem");
+ setLibcallName(RTLIB::UREM_I64, "_aullrem");
+ setLibcallName(RTLIB::MUL_I64, "_allmul");
+ setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
+ }
+
+ if (Subtarget.isTargetDarwin()) {
+ // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
+ setUseUnderscoreSetJmp(false);
+ setUseUnderscoreLongJmp(false);
+ } else if (Subtarget.isTargetWindowsGNU()) {
+ // MS runtime is weird: it exports _setjmp, but longjmp!
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(false);
+ } else {
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(true);
+ }
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i8, &X86::GR8RegClass);
+ addRegisterClass(MVT::i16, &X86::GR16RegClass);
+ addRegisterClass(MVT::i32, &X86::GR32RegClass);
+ if (Subtarget.is64Bit())
+ addRegisterClass(MVT::i64, &X86::GR64RegClass);
+
+ for (MVT VT : MVT::integer_valuetypes())
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+
+ // We don't accept any truncstore of integer registers.
+ setTruncStoreAction(MVT::i64, MVT::i32, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
+ setTruncStoreAction(MVT::i32, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
+ setTruncStoreAction(MVT::i16, MVT::i8, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // SETOEQ and SETUNE require checking two conditions.
+ setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
+
+ // Integer absolute.
+ if (Subtarget.hasCMov()) {
+ setOperationAction(ISD::ABS , MVT::i16 , Custom);
+ setOperationAction(ISD::ABS , MVT::i32 , Custom);
+ if (Subtarget.is64Bit())
+ setOperationAction(ISD::ABS , MVT::i64 , Custom);
+ }
+
+ // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
+ // operation.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
+
+ if (Subtarget.is64Bit()) {
+ if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512())
+ // f32/f64 are legal, f80 is custom.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
+ else
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
+ } else if (!Subtarget.useSoftFloat()) {
+ // We have an algorithm for SSE2->double, and we turn this into a
+ // 64-bit FILD followed by conditional FADD for other targets.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
+ // We have an algorithm for SSE2, and we turn this into a 64-bit
+ // FILD or VCVTUSI2SS/SD for other targets.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
+ }
+
+ // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
+ // this operation.
+ setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
+
+ if (!Subtarget.useSoftFloat()) {
+ // SSE has no i16 to fp conversion, only i32.
+ if (X86ScalarSSEf32) {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
+ // f32 and f64 cases are Legal, f80 case is not
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
+ } else {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
+ }
+ } else {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
+ }
+
+ // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
+ // this operation.
+ setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
+
+ if (!Subtarget.useSoftFloat()) {
+ // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
+ // are Legal, f80 is custom lowered.
+ setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
+
+ if (X86ScalarSSEf32) {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
+ // f32 and f64 cases are Legal, f80 case is not
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
+ } else {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
+ }
+ } else {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Expand);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Expand);
+ }
+
+ // Handle FP_TO_UINT by promoting the destination to a larger signed
+ // conversion.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
+
+ if (Subtarget.is64Bit()) {
+ if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
+ // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
+ } else {
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
+ }
+ } else if (!Subtarget.useSoftFloat()) {
+ // Since AVX is a superset of SSE3, only check for SSE here.
+ if (Subtarget.hasSSE1() && !Subtarget.hasSSE3())
+ // Expand FP_TO_UINT into a select.
+ // FIXME: We would like to use a Custom expander here eventually to do
+ // the optimal thing for SSE vs. the default expansion in the legalizer.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
+ else
+ // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom.
+ // With SSE3 we can use fisttpll to convert to a signed i64; without
+ // SSE, we're stuck with a fistpll.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
+
+ setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
+ }
+
+ // TODO: when we have SSE, these could be more efficient, by using movd/movq.
+ if (!X86ScalarSSEf64) {
+ setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
+ setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
+ if (Subtarget.is64Bit()) {
+ setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
+ // Without SSE, i64->f64 goes through memory.
+ setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
+ }
+ } else if (!Subtarget.is64Bit())
+ setOperationAction(ISD::BITCAST , MVT::i64 , Custom);
+
+ // Scalar integer divide and remainder are lowered to use operations that
+ // produce two results, to match the available instructions. This exposes
+ // the two-result form to trivial CSE, which is able to combine x/y and x%y
+ // into a single instruction.
+ //
+ // Scalar integer multiply-high is also lowered to use two-result
+ // operations, to match the available instructions. However, plain multiply
+ // (low) operations are left as Legal, as there are single-result
+ // instructions for this in x86. Using the two-result multiply instructions
+ // when both high and low results are needed must be arranged by dagcombine.
+ for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ }
+
+ setOperationAction(ISD::BR_JT , MVT::Other, Expand);
+ setOperationAction(ISD::BRCOND , MVT::Other, Custom);
+ for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128,
+ MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
+ setOperationAction(ISD::BR_CC, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ }
+ if (Subtarget.is64Bit())
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
+ setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
+
+ setOperationAction(ISD::FREM , MVT::f32 , Expand);
+ setOperationAction(ISD::FREM , MVT::f64 , Expand);
+ setOperationAction(ISD::FREM , MVT::f80 , Expand);
+ setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
+
+ // Promote the i8 variants and force them on up to i32 which has a shorter
+ // encoding.
+ setOperationPromotedToType(ISD::CTTZ , MVT::i8 , MVT::i32);
+ setOperationPromotedToType(ISD::CTTZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
+ if (!Subtarget.hasBMI()) {
+ setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
+ setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Legal);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Legal);
+ if (Subtarget.is64Bit()) {
+ setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Legal);
+ }
+ }
+
+ if (Subtarget.hasLZCNT()) {
+ // When promoting the i8 variants, force them to i32 for a shorter
+ // encoding.
+ setOperationPromotedToType(ISD::CTLZ , MVT::i8 , MVT::i32);
+ setOperationPromotedToType(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
+ } else {
+ setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
+ if (Subtarget.is64Bit()) {
+ setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
+ }
+ }
+
+ // Special handling for half-precision floating point conversions.
+ // If we don't have F16C support, then lower half float conversions
+ // into library calls.
+ if (Subtarget.useSoftFloat() || !Subtarget.hasF16C()) {
+ setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
+ }
+
+ // There's never any support for operations beyond MVT::f32.
+ setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
+ setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f80, MVT::f16, Expand);
+
+ if (Subtarget.hasPOPCNT()) {
+ setOperationPromotedToType(ISD::CTPOP, MVT::i8, MVT::i32);
+ } else {
+ setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
+ setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
+ setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
+ if (Subtarget.is64Bit())
+ setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
+ }
+
+ setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
+
+ if (!Subtarget.hasMOVBE())
+ setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
+
+ // These should be promoted to a larger select which is supported.
+ setOperationAction(ISD::SELECT , MVT::i1 , Promote);
+ // X86 wants to expand cmov itself.
+ for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128 }) {
+ setOperationAction(ISD::SELECT, VT, Custom);
+ setOperationAction(ISD::SETCC, VT, Custom);
+ }
+ for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
+ if (VT == MVT::i64 && !Subtarget.is64Bit())
+ continue;
+ setOperationAction(ISD::SELECT, VT, Custom);
+ setOperationAction(ISD::SETCC, VT, Custom);
+ }
+
+ // Custom action for SELECT MMX and expand action for SELECT_CC MMX
+ setOperationAction(ISD::SELECT, MVT::x86mmx, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::x86mmx, Expand);
+
+ setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
+ // NOTE: EH_SJLJ_SETJMP/_LONGJMP are not recommended, since
+ // LLVM/Clang supports zero-cost DWARF and SEH exception handling.
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+ setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
+ if (TM.Options.ExceptionModel == ExceptionHandling::SjLj)
+ setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
+
+ // Darwin ABI issue.
+ for (auto VT : { MVT::i32, MVT::i64 }) {
+ if (VT == MVT::i64 && !Subtarget.is64Bit())
+ continue;
+ setOperationAction(ISD::ConstantPool , VT, Custom);
+ setOperationAction(ISD::JumpTable , VT, Custom);
+ setOperationAction(ISD::GlobalAddress , VT, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, VT, Custom);
+ setOperationAction(ISD::ExternalSymbol , VT, Custom);
+ setOperationAction(ISD::BlockAddress , VT, Custom);
+ }
+
+ // 64-bit shl, sra, srl (iff 32-bit x86)
+ for (auto VT : { MVT::i32, MVT::i64 }) {
+ if (VT == MVT::i64 && !Subtarget.is64Bit())
+ continue;
+ setOperationAction(ISD::SHL_PARTS, VT, Custom);
+ setOperationAction(ISD::SRA_PARTS, VT, Custom);
+ setOperationAction(ISD::SRL_PARTS, VT, Custom);
+ }
+
+ if (Subtarget.hasSSEPrefetch() || Subtarget.has3DNow())
+ setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
+
+ setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
+
+ // Expand certain atomics
+ for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
+ }
+
+ if (Subtarget.hasCmpxchg16b()) {
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
+ }
+
+ // FIXME - use subtarget debug flags
+ if (!Subtarget.isTargetDarwin() && !Subtarget.isTargetELF() &&
+ !Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64() &&
+ TM.Options.ExceptionModel != ExceptionHandling::SjLj) {
+ setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
+ }
+
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
+
+ setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
+ setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+ setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex
+ setOperationAction(ISD::VASTART , MVT::Other, Custom);
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ bool Is64Bit = Subtarget.is64Bit();
+ setOperationAction(ISD::VAARG, MVT::Other, Is64Bit ? Custom : Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Is64Bit ? Custom : Expand);
+
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
+
+ // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
+ setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
+ setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom);
+
+ if (!Subtarget.useSoftFloat() && X86ScalarSSEf64) {
+ // f32 and f64 use SSE.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f32, Subtarget.hasAVX512() ? &X86::FR32XRegClass
+ : &X86::FR32RegClass);
+ addRegisterClass(MVT::f64, Subtarget.hasAVX512() ? &X86::FR64XRegClass
+ : &X86::FR64RegClass);
+
+ for (auto VT : { MVT::f32, MVT::f64 }) {
+ // Use ANDPD to simulate FABS.
+ setOperationAction(ISD::FABS, VT, Custom);
+
+ // Use XORP to simulate FNEG.
+ setOperationAction(ISD::FNEG, VT, Custom);
+
+ // Use ANDPD and ORPD to simulate FCOPYSIGN.
+ setOperationAction(ISD::FCOPYSIGN, VT, Custom);
+
+ // We don't support sin/cos/fmod
+ setOperationAction(ISD::FSIN , VT, Expand);
+ setOperationAction(ISD::FCOS , VT, Expand);
+ setOperationAction(ISD::FSINCOS, VT, Expand);
+ }
+
+ // Lower this to MOVMSK plus an AND.
+ setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
+ setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
+
+ // Expand FP immediates into loads from the stack, except for the special
+ // cases we handle.
+ addLegalFPImmediate(APFloat(+0.0)); // xorpd
+ addLegalFPImmediate(APFloat(+0.0f)); // xorps
+ } else if (UseX87 && X86ScalarSSEf32) {
+ // Use SSE for f32, x87 for f64.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f32, &X86::FR32RegClass);
+ addRegisterClass(MVT::f64, &X86::RFP64RegClass);
+
+ // Use ANDPS to simulate FABS.
+ setOperationAction(ISD::FABS , MVT::f32, Custom);
+
+ // Use XORP to simulate FNEG.
+ setOperationAction(ISD::FNEG , MVT::f32, Custom);
+
+ setOperationAction(ISD::UNDEF, MVT::f64, Expand);
+
+ // Use ANDPS and ORPS to simulate FCOPYSIGN.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // We don't support sin/cos/fmod
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+
+ // Special cases we handle for FP constants.
+ addLegalFPImmediate(APFloat(+0.0f)); // xorps
+ addLegalFPImmediate(APFloat(+0.0)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
+
+ // Always expand sin/cos functions even though x87 has an instruction.
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ } else if (UseX87) {
+ // f32 and f64 in x87.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f64, &X86::RFP64RegClass);
+ addRegisterClass(MVT::f32, &X86::RFP32RegClass);
+
+ for (auto VT : { MVT::f32, MVT::f64 }) {
+ setOperationAction(ISD::UNDEF, VT, Expand);
+ setOperationAction(ISD::FCOPYSIGN, VT, Expand);
+
+ // Always expand sin/cos functions even though x87 has an instruction.
+ setOperationAction(ISD::FSIN , VT, Expand);
+ setOperationAction(ISD::FCOS , VT, Expand);
+ setOperationAction(ISD::FSINCOS, VT, Expand);
+ }
+ addLegalFPImmediate(APFloat(+0.0)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
+ addLegalFPImmediate(APFloat(+0.0f)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0f)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
+ }
+
+ // We don't support FMA.
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FMA, MVT::f32, Expand);
+
+ // Long double always uses X87, except f128 in MMX.
+ if (UseX87) {
+ if (Subtarget.is64Bit() && Subtarget.hasMMX()) {
+ addRegisterClass(MVT::f128, &X86::FR128RegClass);
+ ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
+ setOperationAction(ISD::FABS , MVT::f128, Custom);
+ setOperationAction(ISD::FNEG , MVT::f128, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom);
+ }
+
+ addRegisterClass(MVT::f80, &X86::RFP80RegClass);
+ setOperationAction(ISD::UNDEF, MVT::f80, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
+ {
+ APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended());
+ addLegalFPImmediate(TmpFlt); // FLD0
+ TmpFlt.changeSign();
+ addLegalFPImmediate(TmpFlt); // FLD0/FCHS
+
+ bool ignored;
+ APFloat TmpFlt2(+1.0);
+ TmpFlt2.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
+ &ignored);
+ addLegalFPImmediate(TmpFlt2); // FLD1
+ TmpFlt2.changeSign();
+ addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
+ }
+
+ // Always expand sin/cos functions even though x87 has an instruction.
+ setOperationAction(ISD::FSIN , MVT::f80, Expand);
+ setOperationAction(ISD::FCOS , MVT::f80, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
+
+ setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f80, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
+ setOperationAction(ISD::FRINT, MVT::f80, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
+ setOperationAction(ISD::FMA, MVT::f80, Expand);
+ }
+
+ // Always use a library call for pow.
+ setOperationAction(ISD::FPOW , MVT::f32 , Expand);
+ setOperationAction(ISD::FPOW , MVT::f64 , Expand);
+ setOperationAction(ISD::FPOW , MVT::f80 , Expand);
+
+ setOperationAction(ISD::FLOG, MVT::f80, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f80, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f80, Expand);
+ setOperationAction(ISD::FEXP, MVT::f80, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f80, Expand);
+ setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
+ setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
+
+ // Some FP actions are always expanded for vector types.
+ for (auto VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32,
+ MVT::v2f64, MVT::v4f64, MVT::v8f64 }) {
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FSINCOS, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+ setOperationAction(ISD::FCOPYSIGN, VT, Expand);
+ setOperationAction(ISD::FPOW, VT, Expand);
+ setOperationAction(ISD::FLOG, VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FLOG10, VT, Expand);
+ setOperationAction(ISD::FEXP, VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ }
+
+ // First set operation action for all vector types to either promote
+ // (for widening) or expand (for scalarization). Then we will selectively
+ // turn on ones that can be effectively codegen'd.
+ for (MVT VT : MVT::vector_valuetypes()) {
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
+ setOperationAction(ISD::FMA, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Expand);
+ setOperationAction(ISD::UDIVREM, VT, Expand);
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ setOperationAction(ISD::ROTL, VT, Expand);
+ setOperationAction(ISD::ROTR, VT, Expand);
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::SETCC, VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::SINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
+ setOperationAction(ISD::TRUNCATE, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
+ setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
+ setOperationAction(ISD::ANY_EXTEND, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ for (MVT InnerVT : MVT::vector_valuetypes()) {
+ setTruncStoreAction(InnerVT, VT, Expand);
+
+ setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
+
+ // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
+ // types, we have to deal with them whether we ask for Expansion or not.
+ // Setting Expand causes its own optimisation problems though, so leave
+ // them legal.
+ if (VT.getVectorElementType() == MVT::i1)
+ setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
+
+ // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
+ // split/scalarized right now.
+ if (VT.getVectorElementType() == MVT::f16)
+ setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
+ }
+ }
+
+ // FIXME: In order to prevent SSE instructions being expanded to MMX ones
+ // with -msoft-float, disable use of MMX as well.
+ if (!Subtarget.useSoftFloat() && Subtarget.hasMMX()) {
+ addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
+ // No operations on x86mmx supported, everything uses intrinsics.
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasSSE1()) {
+ addRegisterClass(MVT::v4f32, Subtarget.hasVLX() ? &X86::VR128XRegClass
+ : &X86::VR128RegClass);
+
+ setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
+ setOperationAction(ISD::FABS, MVT::v4f32, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v4f32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasSSE2()) {
+ addRegisterClass(MVT::v2f64, Subtarget.hasVLX() ? &X86::VR128XRegClass
+ : &X86::VR128RegClass);
+
+ // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
+ // registers cannot be used even for integer operations.
+ addRegisterClass(MVT::v16i8, Subtarget.hasVLX() ? &X86::VR128XRegClass
+ : &X86::VR128RegClass);
+ addRegisterClass(MVT::v8i16, Subtarget.hasVLX() ? &X86::VR128XRegClass
+ : &X86::VR128RegClass);
+ addRegisterClass(MVT::v4i32, Subtarget.hasVLX() ? &X86::VR128XRegClass
+ : &X86::VR128RegClass);
+ addRegisterClass(MVT::v2i64, Subtarget.hasVLX() ? &X86::VR128XRegClass
+ : &X86::VR128RegClass);
+
+ setOperationAction(ISD::MUL, MVT::v16i8, Custom);
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v2i64, Custom);
+ setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom);
+ setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom);
+ setOperationAction(ISD::MULHU, MVT::v16i8, Custom);
+ setOperationAction(ISD::MULHS, MVT::v16i8, Custom);
+ setOperationAction(ISD::MULHU, MVT::v8i16, Legal);
+ setOperationAction(ISD::MULHS, MVT::v8i16, Legal);
+ setOperationAction(ISD::MUL, MVT::v8i16, Legal);
+ setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
+ setOperationAction(ISD::FABS, MVT::v2f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Custom);
+
+ setOperationAction(ISD::SMAX, MVT::v8i16, Legal);
+ setOperationAction(ISD::UMAX, MVT::v16i8, Legal);
+ setOperationAction(ISD::SMIN, MVT::v8i16, Legal);
+ setOperationAction(ISD::UMIN, MVT::v16i8, Legal);
+
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
+ setOperationAction(ISD::SETCC, VT, Custom);
+ setOperationAction(ISD::CTPOP, VT, Custom);
+ setOperationAction(ISD::CTTZ, VT, Custom);
+ }
+
+ for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ }
+
+ // We support custom legalizing of sext and anyext loads for specific
+ // memory vector types which we can load as a scalar (or sequence of
+ // scalars) and extend in-register to a legal 128-bit vector type. For sext
+ // loads these must work with a single scalar load.
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom);
+ }
+
+ for (auto VT : { MVT::v2f64, MVT::v2i64 }) {
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Custom);
+
+ if (VT == MVT::v2i64 && !Subtarget.is64Bit())
+ continue;
+
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ }
+
+ // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
+ for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
+ setOperationPromotedToType(ISD::AND, VT, MVT::v2i64);
+ setOperationPromotedToType(ISD::OR, VT, MVT::v2i64);
+ setOperationPromotedToType(ISD::XOR, VT, MVT::v2i64);
+ setOperationPromotedToType(ISD::LOAD, VT, MVT::v2i64);
+ setOperationPromotedToType(ISD::SELECT, VT, MVT::v2i64);
+ }
+
+ // Custom lower v2i64 and v2f64 selects.
+ setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
+
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
+
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
+
+ // Fast v2f32 UINT_TO_FP( v2i32 ) custom conversion.
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom);
+
+ setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom);
+
+ for (MVT VT : MVT::fp_vector_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal);
+
+ setOperationAction(ISD::BITCAST, MVT::v2i32, Custom);
+ setOperationAction(ISD::BITCAST, MVT::v4i16, Custom);
+ setOperationAction(ISD::BITCAST, MVT::v8i8, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom);
+
+ // In the customized shift lowering, the legal v4i32/v2i64 cases
+ // in AVX2 will be recognized.
+ for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
+ setOperationAction(ISD::SRL, VT, Custom);
+ setOperationAction(ISD::SHL, VT, Custom);
+ setOperationAction(ISD::SRA, VT, Custom);
+ }
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasSSSE3()) {
+ setOperationAction(ISD::ABS, MVT::v16i8, Legal);
+ setOperationAction(ISD::ABS, MVT::v8i16, Legal);
+ setOperationAction(ISD::ABS, MVT::v4i32, Legal);
+ setOperationAction(ISD::BITREVERSE, MVT::v16i8, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v16i8, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v8i16, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v2i64, Custom);
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasSSE41()) {
+ for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
+ setOperationAction(ISD::FFLOOR, RoundedTy, Legal);
+ setOperationAction(ISD::FCEIL, RoundedTy, Legal);
+ setOperationAction(ISD::FTRUNC, RoundedTy, Legal);
+ setOperationAction(ISD::FRINT, RoundedTy, Legal);
+ setOperationAction(ISD::FNEARBYINT, RoundedTy, Legal);
+ }
+
+ setOperationAction(ISD::SMAX, MVT::v16i8, Legal);
+ setOperationAction(ISD::SMAX, MVT::v4i32, Legal);
+ setOperationAction(ISD::UMAX, MVT::v8i16, Legal);
+ setOperationAction(ISD::UMAX, MVT::v4i32, Legal);
+ setOperationAction(ISD::SMIN, MVT::v16i8, Legal);
+ setOperationAction(ISD::SMIN, MVT::v4i32, Legal);
+ setOperationAction(ISD::UMIN, MVT::v8i16, Legal);
+ setOperationAction(ISD::UMIN, MVT::v4i32, Legal);
+
+ // FIXME: Do we need to handle scalar-to-vector here?
+ setOperationAction(ISD::MUL, MVT::v4i32, Legal);
+
+ // We directly match byte blends in the backend as they match the VSELECT
+ // condition form.
+ setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
+
+ // SSE41 brings specific instructions for doing vector sign extend even in
+ // cases where we don't have SRA.
+ for (auto VT : { MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Legal);
+ setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Legal);
+ }
+
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom);
+ }
+
+ // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
+ for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) {
+ setLoadExtAction(LoadExtOp, MVT::v8i16, MVT::v8i8, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i8, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v2i32, MVT::v2i8, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i8, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i16, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i16, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i32, Legal);
+ }
+
+ // i8 vectors are custom because the source register and source
+ // source memory operand types are not the same width.
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasXOP()) {
+ for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
+ MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
+ setOperationAction(ISD::ROTL, VT, Custom);
+
+ // XOP can efficiently perform BITREVERSE with VPPERM.
+ for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 })
+ setOperationAction(ISD::BITREVERSE, VT, Custom);
+
+ for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
+ MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
+ setOperationAction(ISD::BITREVERSE, VT, Custom);
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasFp256()) {
+ bool HasInt256 = Subtarget.hasInt256();
+
+ addRegisterClass(MVT::v32i8, Subtarget.hasVLX() ? &X86::VR256XRegClass
+ : &X86::VR256RegClass);
+ addRegisterClass(MVT::v16i16, Subtarget.hasVLX() ? &X86::VR256XRegClass
+ : &X86::VR256RegClass);
+ addRegisterClass(MVT::v8i32, Subtarget.hasVLX() ? &X86::VR256XRegClass
+ : &X86::VR256RegClass);
+ addRegisterClass(MVT::v8f32, Subtarget.hasVLX() ? &X86::VR256XRegClass
+ : &X86::VR256RegClass);
+ addRegisterClass(MVT::v4i64, Subtarget.hasVLX() ? &X86::VR256XRegClass
+ : &X86::VR256RegClass);
+ addRegisterClass(MVT::v4f64, Subtarget.hasVLX() ? &X86::VR256XRegClass
+ : &X86::VR256RegClass);
+
+ for (auto VT : { MVT::v8f32, MVT::v4f64 }) {
+ setOperationAction(ISD::FFLOOR, VT, Legal);
+ setOperationAction(ISD::FCEIL, VT, Legal);
+ setOperationAction(ISD::FTRUNC, VT, Legal);
+ setOperationAction(ISD::FRINT, VT, Legal);
+ setOperationAction(ISD::FNEARBYINT, VT, Legal);
+ setOperationAction(ISD::FNEG, VT, Custom);
+ setOperationAction(ISD::FABS, VT, Custom);
+ setOperationAction(ISD::FCOPYSIGN, VT, Custom);
+ }
+
+ // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
+ // even though v8i16 is a legal type.
+ setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
+
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
+ setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
+
+ for (MVT VT : MVT::fp_vector_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal);
+
+ // In the customized shift lowering, the legal v8i32/v4i64 cases
+ // in AVX2 will be recognized.
+ for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
+ setOperationAction(ISD::SRL, VT, Custom);
+ setOperationAction(ISD::SHL, VT, Custom);
+ setOperationAction(ISD::SRA, VT, Custom);
+ }
+
+ setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
+
+ for (auto VT : { MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
+ setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
+ setOperationAction(ISD::ANY_EXTEND, VT, Custom);
+ }
+
+ setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
+ setOperationAction(ISD::BITREVERSE, MVT::v32i8, Custom);
+
+ for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
+ setOperationAction(ISD::SETCC, VT, Custom);
+ setOperationAction(ISD::CTPOP, VT, Custom);
+ setOperationAction(ISD::CTTZ, VT, Custom);
+ setOperationAction(ISD::CTLZ, VT, Custom);
+ }
+
+ if (Subtarget.hasAnyFMA()) {
+ for (auto VT : { MVT::f32, MVT::f64, MVT::v4f32, MVT::v8f32,
+ MVT::v2f64, MVT::v4f64 })
+ setOperationAction(ISD::FMA, VT, Legal);
+ }
+
+ for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
+ setOperationAction(ISD::ADD, VT, HasInt256 ? Legal : Custom);
+ setOperationAction(ISD::SUB, VT, HasInt256 ? Legal : Custom);
+ }
+
+ setOperationAction(ISD::MUL, MVT::v4i64, Custom);
+ setOperationAction(ISD::MUL, MVT::v8i32, HasInt256 ? Legal : Custom);
+ setOperationAction(ISD::MUL, MVT::v16i16, HasInt256 ? Legal : Custom);
+ setOperationAction(ISD::MUL, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom);
+ setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom);
+
+ setOperationAction(ISD::MULHU, MVT::v16i16, HasInt256 ? Legal : Custom);
+ setOperationAction(ISD::MULHS, MVT::v16i16, HasInt256 ? Legal : Custom);
+ setOperationAction(ISD::MULHU, MVT::v32i8, Custom);
+ setOperationAction(ISD::MULHS, MVT::v32i8, Custom);
+
+ for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
+ setOperationAction(ISD::ABS, VT, HasInt256 ? Legal : Custom);
+ setOperationAction(ISD::SMAX, VT, HasInt256 ? Legal : Custom);
+ setOperationAction(ISD::UMAX, VT, HasInt256 ? Legal : Custom);
+ setOperationAction(ISD::SMIN, VT, HasInt256 ? Legal : Custom);
+ setOperationAction(ISD::UMIN, VT, HasInt256 ? Legal : Custom);
+ }
+
+ if (HasInt256) {
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i16, Custom);
+
+ // The custom lowering for UINT_TO_FP for v8i32 becomes interesting
+ // when we have a 256bit-wide blend with immediate.
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
+
+ // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
+ for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) {
+ setLoadExtAction(LoadExtOp, MVT::v16i16, MVT::v16i8, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i8, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i8, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i16, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i16, Legal);
+ setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i32, Legal);
+ }
+ }
+
+ for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
+ MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) {
+ setOperationAction(ISD::MLOAD, VT, Legal);
+ setOperationAction(ISD::MSTORE, VT, Legal);
+ }
+
+ // Extract subvector is special because the value type
+ // (result) is 128-bit but the source is 256-bit wide.
+ for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
+ MVT::v4f32, MVT::v2f64 }) {
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
+ }
+
+ // Custom lower several nodes for 256-bit types.
+ for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
+ MVT::v8f32, MVT::v4f64 }) {
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
+ }
+
+ if (HasInt256)
+ setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
+
+ // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
+ for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
+ setOperationPromotedToType(ISD::AND, VT, MVT::v4i64);
+ setOperationPromotedToType(ISD::OR, VT, MVT::v4i64);
+ setOperationPromotedToType(ISD::XOR, VT, MVT::v4i64);
+ setOperationPromotedToType(ISD::LOAD, VT, MVT::v4i64);
+ setOperationPromotedToType(ISD::SELECT, VT, MVT::v4i64);
+ }
+
+ if (HasInt256) {
+ // Custom legalize 2x32 to get a little better code.
+ setOperationAction(ISD::MGATHER, MVT::v2f32, Custom);
+ setOperationAction(ISD::MGATHER, MVT::v2i32, Custom);
+
+ for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
+ MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 })
+ setOperationAction(ISD::MGATHER, VT, Custom);
+ }
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
+ addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
+ addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
+ addRegisterClass(MVT::v8i64, &X86::VR512RegClass);
+ addRegisterClass(MVT::v8f64, &X86::VR512RegClass);
+
+ addRegisterClass(MVT::v1i1, &X86::VK1RegClass);
+ addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
+ addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
+
+ setOperationAction(ISD::SELECT, MVT::v1i1, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v1i1, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v1i1, Custom);
+
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i1, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v16i1, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i1, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i1, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i1, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2i1, Custom);
+
+ // Extends of v16i1/v8i1 to 128-bit vectors.
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v16i8, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v16i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v8i16, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v8i16, Custom);
+
+ for (auto VT : { MVT::v8i1, MVT::v16i1 }) {
+ setOperationAction(ISD::ADD, VT, Custom);
+ setOperationAction(ISD::SUB, VT, Custom);
+ setOperationAction(ISD::MUL, VT, Custom);
+ setOperationAction(ISD::SETCC, VT, Custom);
+ setOperationAction(ISD::SELECT, VT, Custom);
+ setOperationAction(ISD::TRUNCATE, VT, Custom);
+
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ }
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v16i1, Custom);
+ for (auto VT : { MVT::v1i1, MVT::v2i1, MVT::v4i1, MVT::v8i1,
+ MVT::v16i1, MVT::v32i1, MVT::v64i1 })
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
+
+ for (MVT VT : MVT::fp_vector_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
+
+ for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) {
+ setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i8, Legal);
+ setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i16, Legal);
+ setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i8, Legal);
+ setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i16, Legal);
+ setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i32, Legal);
+ }
+
+ for (MVT VT : {MVT::v2i64, MVT::v4i32, MVT::v8i32, MVT::v4i64, MVT::v8i16,
+ MVT::v16i8, MVT::v16i16, MVT::v32i8, MVT::v16i32,
+ MVT::v8i64, MVT::v32i16, MVT::v64i8}) {
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ setLoadExtAction(ISD::SEXTLOAD, VT, MaskVT, Custom);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MaskVT, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MaskVT, Custom);
+ setTruncStoreAction(VT, MaskVT, Custom);
+ }
+
+ for (MVT VT : { MVT::v16f32, MVT::v8f64 }) {
+ setOperationAction(ISD::FNEG, VT, Custom);
+ setOperationAction(ISD::FABS, VT, Custom);
+ setOperationAction(ISD::FMA, VT, Legal);
+ setOperationAction(ISD::FCOPYSIGN, VT, Custom);
+ }
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v16i16, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v16i8, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v16i8, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v16i16, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
+
+ setTruncStoreAction(MVT::v8i64, MVT::v8i8, Legal);
+ setTruncStoreAction(MVT::v8i64, MVT::v8i16, Legal);
+ setTruncStoreAction(MVT::v8i64, MVT::v8i32, Legal);
+ setTruncStoreAction(MVT::v16i32, MVT::v16i8, Legal);
+ setTruncStoreAction(MVT::v16i32, MVT::v16i16, Legal);
+
+ if (!Subtarget.hasVLX()) {
+ // With 512-bit vectors and no VLX, we prefer to widen MLOAD/MSTORE
+ // to 512-bit rather than use the AVX2 instructions so that we can use
+ // k-masks.
+ for (auto VT : {MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
+ MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64}) {
+ setOperationAction(ISD::MLOAD, VT, Custom);
+ setOperationAction(ISD::MSTORE, VT, Custom);
+ }
+ }
+
+ setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
+
+ for (auto VT : { MVT::v16f32, MVT::v8f64 }) {
+ setOperationAction(ISD::FFLOOR, VT, Legal);
+ setOperationAction(ISD::FCEIL, VT, Legal);
+ setOperationAction(ISD::FTRUNC, VT, Legal);
+ setOperationAction(ISD::FRINT, VT, Legal);
+ setOperationAction(ISD::FNEARBYINT, VT, Legal);
+ }
+
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i32, Custom);
+
+ // Without BWI we need to use custom lowering to handle MVT::v64i8 input.
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v64i8, Custom);
+ setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, MVT::v64i8, Custom);
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::MUL, MVT::v8i64, Custom);
+ setOperationAction(ISD::MUL, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::UMUL_LOHI, MVT::v16i32, Custom);
+ setOperationAction(ISD::SMUL_LOHI, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::SELECT, MVT::v8f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v16f32, Custom);
+
+ for (auto VT : { MVT::v16i32, MVT::v8i64 }) {
+ setOperationAction(ISD::SMAX, VT, Legal);
+ setOperationAction(ISD::UMAX, VT, Legal);
+ setOperationAction(ISD::SMIN, VT, Legal);
+ setOperationAction(ISD::UMIN, VT, Legal);
+ setOperationAction(ISD::ABS, VT, Legal);
+ setOperationAction(ISD::SRL, VT, Custom);
+ setOperationAction(ISD::SHL, VT, Custom);
+ setOperationAction(ISD::SRA, VT, Custom);
+ setOperationAction(ISD::CTPOP, VT, Custom);
+ setOperationAction(ISD::CTTZ, VT, Custom);
+ setOperationAction(ISD::ROTL, VT, Custom);
+ setOperationAction(ISD::ROTR, VT, Custom);
+ }
+
+ // Need to promote to 64-bit even though we have 32-bit masked instructions
+ // because the IR optimizers rearrange bitcasts around logic ops leaving
+ // too many variations to handle if we don't promote them.
+ setOperationPromotedToType(ISD::AND, MVT::v16i32, MVT::v8i64);
+ setOperationPromotedToType(ISD::OR, MVT::v16i32, MVT::v8i64);
+ setOperationPromotedToType(ISD::XOR, MVT::v16i32, MVT::v8i64);
+
+ if (Subtarget.hasDQI()) {
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal);
+ }
+
+ if (Subtarget.hasCDI()) {
+ // NonVLX sub-targets extend 128/256 vectors to use the 512 version.
+ for (auto VT : { MVT::v16i32, MVT::v8i64} ) {
+ setOperationAction(ISD::CTLZ, VT, Legal);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
+ }
+ } // Subtarget.hasCDI()
+
+ if (Subtarget.hasVPOPCNTDQ()) {
+ for (auto VT : { MVT::v16i32, MVT::v8i64 })
+ setOperationAction(ISD::CTPOP, VT, Legal);
+ }
+
+ // Extract subvector is special because the value type
+ // (result) is 256-bit but the source is 512-bit wide.
+ // 128-bit was made Legal under AVX1.
+ for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
+ MVT::v8f32, MVT::v4f64 })
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
+
+ for (auto VT : { MVT::v16i32, MVT::v8i64, MVT::v16f32, MVT::v8f64 }) {
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal);
+ setOperationAction(ISD::MLOAD, VT, Legal);
+ setOperationAction(ISD::MSTORE, VT, Legal);
+ setOperationAction(ISD::MGATHER, VT, Custom);
+ setOperationAction(ISD::MSCATTER, VT, Custom);
+ }
+ for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) {
+ setOperationPromotedToType(ISD::LOAD, VT, MVT::v8i64);
+ setOperationPromotedToType(ISD::SELECT, VT, MVT::v8i64);
+ }
+ }// has AVX-512
+
+ if (!Subtarget.useSoftFloat() &&
+ (Subtarget.hasAVX512() || Subtarget.hasVLX())) {
+ // These operations are handled on non-VLX by artificially widening in
+ // isel patterns.
+ // TODO: Custom widen in lowering on non-VLX and drop the isel patterns?
+
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
+
+ for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
+ setOperationAction(ISD::SMAX, VT, Legal);
+ setOperationAction(ISD::UMAX, VT, Legal);
+ setOperationAction(ISD::SMIN, VT, Legal);
+ setOperationAction(ISD::UMIN, VT, Legal);
+ setOperationAction(ISD::ABS, VT, Legal);
+ }
+
+ for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) {
+ setOperationAction(ISD::ROTL, VT, Custom);
+ setOperationAction(ISD::ROTR, VT, Custom);
+ }
+
+ for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
+ MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 })
+ setOperationAction(ISD::MSCATTER, VT, Custom);
+
+ if (Subtarget.hasDQI()) {
+ for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
+ setOperationAction(ISD::SINT_TO_FP, VT, Legal);
+ setOperationAction(ISD::UINT_TO_FP, VT, Legal);
+ setOperationAction(ISD::FP_TO_SINT, VT, Legal);
+ setOperationAction(ISD::FP_TO_UINT, VT, Legal);
+ }
+ }
+
+ if (Subtarget.hasCDI()) {
+ for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) {
+ setOperationAction(ISD::CTLZ, VT, Legal);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
+ }
+ } // Subtarget.hasCDI()
+
+ if (Subtarget.hasVPOPCNTDQ()) {
+ for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 })
+ setOperationAction(ISD::CTPOP, VT, Legal);
+ }
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) {
+ addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
+ addRegisterClass(MVT::v64i8, &X86::VR512RegClass);
+
+ addRegisterClass(MVT::v32i1, &X86::VK32RegClass);
+ addRegisterClass(MVT::v64i1, &X86::VK64RegClass);
+
+ for (auto VT : { MVT::v32i1, MVT::v64i1 }) {
+ setOperationAction(ISD::ADD, VT, Custom);
+ setOperationAction(ISD::SUB, VT, Custom);
+ setOperationAction(ISD::MUL, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+
+ setOperationAction(ISD::TRUNCATE, VT, Custom);
+ setOperationAction(ISD::SETCC, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::SELECT, VT, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ }
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i1, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i1, Custom);
+
+ // Extends from v32i1 masks to 256-bit vectors.
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v32i8, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v32i8, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v32i8, Custom);
+ // Extends from v64i1 masks to 512-bit vectors.
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v64i8, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v64i8, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v64i8, Custom);
+
+ setOperationAction(ISD::MUL, MVT::v32i16, Legal);
+ setOperationAction(ISD::MUL, MVT::v64i8, Custom);
+ setOperationAction(ISD::MULHS, MVT::v32i16, Legal);
+ setOperationAction(ISD::MULHU, MVT::v32i16, Legal);
+ setOperationAction(ISD::MULHS, MVT::v64i8, Custom);
+ setOperationAction(ISD::MULHU, MVT::v64i8, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i16, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i8, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i16, Legal);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i8, Legal);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i16, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v64i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v32i16, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v32i16, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v32i16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i8, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v32i8, Custom);
+ setOperationAction(ISD::BITREVERSE, MVT::v64i8, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v32i16, Custom);
+
+ setTruncStoreAction(MVT::v32i16, MVT::v32i8, Legal);
+
+ for (auto VT : { MVT::v64i8, MVT::v32i16 }) {
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Custom);
+ setOperationAction(ISD::ABS, VT, Legal);
+ setOperationAction(ISD::SRL, VT, Custom);
+ setOperationAction(ISD::SHL, VT, Custom);
+ setOperationAction(ISD::SRA, VT, Custom);
+ setOperationAction(ISD::MLOAD, VT, Legal);
+ setOperationAction(ISD::MSTORE, VT, Legal);
+ setOperationAction(ISD::CTPOP, VT, Custom);
+ setOperationAction(ISD::CTTZ, VT, Custom);
+ setOperationAction(ISD::CTLZ, VT, Custom);
+ setOperationAction(ISD::SMAX, VT, Legal);
+ setOperationAction(ISD::UMAX, VT, Legal);
+ setOperationAction(ISD::SMIN, VT, Legal);
+ setOperationAction(ISD::UMIN, VT, Legal);
+
+ setOperationPromotedToType(ISD::AND, VT, MVT::v8i64);
+ setOperationPromotedToType(ISD::OR, VT, MVT::v8i64);
+ setOperationPromotedToType(ISD::XOR, VT, MVT::v8i64);
+ }
+
+ for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) {
+ setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8, Legal);
+ }
+
+ if (Subtarget.hasBITALG()) {
+ for (auto VT : { MVT::v64i8, MVT::v32i16 })
+ setOperationAction(ISD::CTPOP, VT, Legal);
+ }
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasBWI() &&
+ (Subtarget.hasAVX512() || Subtarget.hasVLX())) {
+ for (auto VT : { MVT::v32i8, MVT::v16i8, MVT::v16i16, MVT::v8i16 }) {
+ setOperationAction(ISD::MLOAD, VT, Subtarget.hasVLX() ? Legal : Custom);
+ setOperationAction(ISD::MSTORE, VT, Subtarget.hasVLX() ? Legal : Custom);
+ }
+
+ // These operations are handled on non-VLX by artificially widening in
+ // isel patterns.
+ // TODO: Custom widen in lowering on non-VLX and drop the isel patterns?
+
+ if (Subtarget.hasBITALG()) {
+ for (auto VT : { MVT::v16i8, MVT::v32i8, MVT::v8i16, MVT::v16i16 })
+ setOperationAction(ISD::CTPOP, VT, Legal);
+ }
+ }
+
+ if (!Subtarget.useSoftFloat() && Subtarget.hasVLX()) {
+ addRegisterClass(MVT::v4i1, &X86::VK4RegClass);
+ addRegisterClass(MVT::v2i1, &X86::VK2RegClass);
+
+ for (auto VT : { MVT::v2i1, MVT::v4i1 }) {
+ setOperationAction(ISD::ADD, VT, Custom);
+ setOperationAction(ISD::SUB, VT, Custom);
+ setOperationAction(ISD::MUL, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+
+ setOperationAction(ISD::TRUNCATE, VT, Custom);
+ setOperationAction(ISD::SETCC, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::SELECT, VT, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ }
+
+ // TODO: v8i1 concat should be legal without VLX to support concats of
+ // v1i1, but we won't legalize it correctly currently without introducing
+ // a v4i1 concat in the middle.
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i1, Custom);
+
+ // Extends from v2i1/v4i1 masks to 128-bit vectors.
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v2i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v2i64, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v2i64, Custom);
+
+ setTruncStoreAction(MVT::v4i64, MVT::v4i8, Legal);
+ setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal);
+ setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal);
+ setTruncStoreAction(MVT::v8i32, MVT::v8i8, Legal);
+ setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal);
+
+ setTruncStoreAction(MVT::v2i64, MVT::v2i8, Legal);
+ setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal);
+ setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal);
+ setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
+ setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
+
+ if (Subtarget.hasDQI()) {
+ // Fast v2f32 SINT_TO_FP( v2i64 ) custom conversion.
+ // v2f32 UINT_TO_FP is already custom under SSE2.
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2f32, Custom);
+ assert(isOperationCustom(ISD::UINT_TO_FP, MVT::v2f32) &&
+ "Unexpected operation action!");
+ // v2i64 FP_TO_S/UINT(v2f32) custom conversion.
+ setOperationAction(ISD::FP_TO_SINT, MVT::v2f32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v2f32, Custom);
+ }
+
+ if (Subtarget.hasBWI()) {
+ setTruncStoreAction(MVT::v16i16, MVT::v16i8, Legal);
+ setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
+ }
+ }
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
+ if (!Subtarget.is64Bit()) {
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
+ }
+
+ // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
+ // handle type legalization for these operations here.
+ //
+ // FIXME: We really should do custom legalization for addition and
+ // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
+ // than generic legalization for 64-bit multiplication-with-overflow, though.
+ for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
+ if (VT == MVT::i64 && !Subtarget.is64Bit())
+ continue;
+ // Add/Sub/Mul with overflow operations are custom lowered.
+ setOperationAction(ISD::SADDO, VT, Custom);
+ setOperationAction(ISD::UADDO, VT, Custom);
+ setOperationAction(ISD::SSUBO, VT, Custom);
+ setOperationAction(ISD::USUBO, VT, Custom);
+ setOperationAction(ISD::SMULO, VT, Custom);
+ setOperationAction(ISD::UMULO, VT, Custom);
+
+ // Support carry in as value rather than glue.
+ setOperationAction(ISD::ADDCARRY, VT, Custom);
+ setOperationAction(ISD::SUBCARRY, VT, Custom);
+ setOperationAction(ISD::SETCCCARRY, VT, Custom);
+ }
+
+ if (!Subtarget.is64Bit()) {
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, nullptr);
+ setLibcallName(RTLIB::SRL_I128, nullptr);
+ setLibcallName(RTLIB::SRA_I128, nullptr);
+ setLibcallName(RTLIB::MUL_I128, nullptr);
+ }
+
+ // Combine sin / cos into _sincos_stret if it is available.
+ if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
+ getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
+ setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
+ }
+
+ if (Subtarget.isTargetWin64()) {
+ setOperationAction(ISD::SDIV, MVT::i128, Custom);
+ setOperationAction(ISD::UDIV, MVT::i128, Custom);
+ setOperationAction(ISD::SREM, MVT::i128, Custom);
+ setOperationAction(ISD::UREM, MVT::i128, Custom);
+ setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
+ setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
+ }
+
+ // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)`
+ // is. We should promote the value to 64-bits to solve this.
+ // This is what the CRT headers do - `fmodf` is an inline header
+ // function casting to f64 and calling `fmod`.
+ if (Subtarget.is32Bit() && (Subtarget.isTargetKnownWindowsMSVC() ||
+ Subtarget.isTargetWindowsItanium()))
+ for (ISD::NodeType Op :
+ {ISD::FCEIL, ISD::FCOS, ISD::FEXP, ISD::FFLOOR, ISD::FREM, ISD::FLOG,
+ ISD::FLOG10, ISD::FPOW, ISD::FSIN})
+ if (isOperationExpand(Op, MVT::f32))
+ setOperationAction(Op, MVT::f32, Promote);
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
+ setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::INSERT_SUBVECTOR);
+ setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
+ setTargetDAGCombine(ISD::BITCAST);
+ setTargetDAGCombine(ISD::VSELECT);
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::FADD);
+ setTargetDAGCombine(ISD::FSUB);
+ setTargetDAGCombine(ISD::FNEG);
+ setTargetDAGCombine(ISD::FMA);
+ setTargetDAGCombine(ISD::FMINNUM);
+ setTargetDAGCombine(ISD::FMAXNUM);
+ setTargetDAGCombine(ISD::SUB);
+ setTargetDAGCombine(ISD::LOAD);
+ setTargetDAGCombine(ISD::MLOAD);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::MSTORE);
+ setTargetDAGCombine(ISD::TRUNCATE);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
+ setTargetDAGCombine(ISD::SIGN_EXTEND_VECTOR_INREG);
+ setTargetDAGCombine(ISD::ZERO_EXTEND_VECTOR_INREG);
+ setTargetDAGCombine(ISD::SINT_TO_FP);
+ setTargetDAGCombine(ISD::UINT_TO_FP);
+ setTargetDAGCombine(ISD::SETCC);
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::XOR);
+ setTargetDAGCombine(ISD::MSCATTER);
+ setTargetDAGCombine(ISD::MGATHER);
+
+ computeRegisterProperties(Subtarget.getRegisterInfo());
+
+ MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
+ MaxStoresPerMemsetOptSize = 8;
+ MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
+ MaxStoresPerMemcpyOptSize = 4;
+ MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
+ MaxStoresPerMemmoveOptSize = 4;
+
+ // TODO: These control memcmp expansion in CGP and could be raised higher, but
+ // that needs to benchmarked and balanced with the potential use of vector
+ // load/store types (PR33329, PR33914).
+ MaxLoadsPerMemcmp = 2;
+ MaxLoadsPerMemcmpOptSize = 2;
+
+ // Set loop alignment to 2^ExperimentalPrefLoopAlignment bytes (default: 2^4).
+ setPrefLoopAlignment(ExperimentalPrefLoopAlignment);
+
+ // An out-of-order CPU can speculatively execute past a predictable branch,
+ // but a conditional move could be stalled by an expensive earlier operation.
+ PredictableSelectIsExpensive = Subtarget.getSchedModel().isOutOfOrder();
+ EnableExtLdPromotion = true;
+ setPrefFunctionAlignment(4); // 2^4 bytes.
+
+ verifyIntrinsicTables();
+}
+
+// This has so far only been implemented for 64-bit MachO.
+bool X86TargetLowering::useLoadStackGuardNode() const {
+ return Subtarget.isTargetMachO() && Subtarget.is64Bit();
+}
+
+bool X86TargetLowering::useStackGuardXorFP() const {
+ // Currently only MSVC CRTs XOR the frame pointer into the stack guard value.
+ return Subtarget.getTargetTriple().isOSMSVCRT();
+}
+
+SDValue X86TargetLowering::emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
+ const SDLoc &DL) const {
+ EVT PtrTy = getPointerTy(DAG.getDataLayout());
+ unsigned XorOp = Subtarget.is64Bit() ? X86::XOR64_FP : X86::XOR32_FP;
+ MachineSDNode *Node = DAG.getMachineNode(XorOp, DL, PtrTy, Val);
+ return SDValue(Node, 0);
+}
+
+TargetLoweringBase::LegalizeTypeAction
+X86TargetLowering::getPreferredVectorAction(EVT VT) const {
+ if (ExperimentalVectorWideningLegalization &&
+ VT.getVectorNumElements() != 1 &&
+ VT.getVectorElementType().getSimpleVT() != MVT::i1)
+ return TypeWidenVector;
+
+ return TargetLoweringBase::getPreferredVectorAction(VT);
+}
+
+EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL,
+ LLVMContext& Context,
+ EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i8;
+
+ if (Subtarget.hasAVX512()) {
+ const unsigned NumElts = VT.getVectorNumElements();
+
+ // Figure out what this type will be legalized to.
+ EVT LegalVT = VT;
+ while (getTypeAction(Context, LegalVT) != TypeLegal)
+ LegalVT = getTypeToTransformTo(Context, LegalVT);
+
+ // If we got a 512-bit vector then we'll definitely have a vXi1 compare.
+ if (LegalVT.getSimpleVT().is512BitVector())
+ return EVT::getVectorVT(Context, MVT::i1, NumElts);
+
+ if (LegalVT.getSimpleVT().isVector() && Subtarget.hasVLX()) {
+ // If we legalized to less than a 512-bit vector, then we will use a vXi1
+ // compare for vXi32/vXi64 for sure. If we have BWI we will also support
+ // vXi16/vXi8.
+ MVT EltVT = LegalVT.getSimpleVT().getVectorElementType();
+ if (Subtarget.hasBWI() || EltVT.getSizeInBits() >= 32)
+ return EVT::getVectorVT(Context, MVT::i1, NumElts);
+ }
+ }
+
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// Helper for getByValTypeAlignment to determine
+/// the desired ByVal argument alignment.
+static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
+ if (MaxAlign == 16)
+ return;
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ if (VTy->getBitWidth() == 128)
+ MaxAlign = 16;
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(ATy->getElementType(), EltAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ for (auto *EltTy : STy->elements()) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(EltTy, EltAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ if (MaxAlign == 16)
+ break;
+ }
+ }
+}
+
+/// Return the desired alignment for ByVal aggregate
+/// function arguments in the caller parameter area. For X86, aggregates
+/// that contain SSE vectors are placed at 16-byte boundaries while the rest
+/// are at 4-byte boundaries.
+unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty,
+ const DataLayout &DL) const {
+ if (Subtarget.is64Bit()) {
+ // Max of 8 and alignment of type.
+ unsigned TyAlign = DL.getABITypeAlignment(Ty);
+ if (TyAlign > 8)
+ return TyAlign;
+ return 8;
+ }
+
+ unsigned Align = 4;
+ if (Subtarget.hasSSE1())
+ getMaxByValAlign(Ty, Align);
+ return Align;
+}
+
+/// Returns the target specific optimal type for load
+/// and store operations as a result of memset, memcpy, and memmove
+/// lowering. If DstAlign is zero that means it's safe to destination
+/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
+/// means there isn't a need to check it against alignment requirement,
+/// probably because the source does not need to be loaded. If 'IsMemset' is
+/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
+/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
+/// source is constant so it does not need to be loaded.
+/// It returns EVT::Other if the type should be determined using generic
+/// target-independent logic.
+EVT
+X86TargetLowering::getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ const Function &F = MF.getFunction();
+ if (!F.hasFnAttribute(Attribute::NoImplicitFloat)) {
+ if (Size >= 16 &&
+ (!Subtarget.isUnalignedMem16Slow() ||
+ ((DstAlign == 0 || DstAlign >= 16) &&
+ (SrcAlign == 0 || SrcAlign >= 16)))) {
+ // FIXME: Check if unaligned 32-byte accesses are slow.
+ if (Size >= 32 && Subtarget.hasAVX()) {
+ // Although this isn't a well-supported type for AVX1, we'll let
+ // legalization and shuffle lowering produce the optimal codegen. If we
+ // choose an optimal type with a vector element larger than a byte,
+ // getMemsetStores() may create an intermediate splat (using an integer
+ // multiply) before we splat as a vector.
+ return MVT::v32i8;
+ }
+ if (Subtarget.hasSSE2())
+ return MVT::v16i8;
+ // TODO: Can SSE1 handle a byte vector?
+ if (Subtarget.hasSSE1())
+ return MVT::v4f32;
+ } else if ((!IsMemset || ZeroMemset) && !MemcpyStrSrc && Size >= 8 &&
+ !Subtarget.is64Bit() && Subtarget.hasSSE2()) {
+ // Do not use f64 to lower memcpy if source is string constant. It's
+ // better to use i32 to avoid the loads.
+ // Also, do not use f64 to lower memset unless this is a memset of zeros.
+ // The gymnastics of splatting a byte value into an XMM register and then
+ // only using 8-byte stores (because this is a CPU with slow unaligned
+ // 16-byte accesses) makes that a loser.
+ return MVT::f64;
+ }
+ }
+ // This is a compromise. If we reach here, unaligned accesses may be slow on
+ // this target. However, creating smaller, aligned accesses could be even
+ // slower and would certainly be a lot more code.
+ if (Subtarget.is64Bit() && Size >= 8)
+ return MVT::i64;
+ return MVT::i32;
+}
+
+bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
+ if (VT == MVT::f32)
+ return X86ScalarSSEf32;
+ else if (VT == MVT::f64)
+ return X86ScalarSSEf64;
+ return true;
+}
+
+bool
+X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned,
+ unsigned,
+ bool *Fast) const {
+ if (Fast) {
+ switch (VT.getSizeInBits()) {
+ default:
+ // 8-byte and under are always assumed to be fast.
+ *Fast = true;
+ break;
+ case 128:
+ *Fast = !Subtarget.isUnalignedMem16Slow();
+ break;
+ case 256:
+ *Fast = !Subtarget.isUnalignedMem32Slow();
+ break;
+ // TODO: What about AVX-512 (512-bit) accesses?
+ }
+ }
+ // Misaligned accesses of any size are always allowed.
+ return true;
+}
+
+/// Return the entry encoding for a jump table in the
+/// current function. The returned value is a member of the
+/// MachineJumpTableInfo::JTEntryKind enum.
+unsigned X86TargetLowering::getJumpTableEncoding() const {
+ // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
+ // symbol.
+ if (isPositionIndependent() && Subtarget.isPICStyleGOT())
+ return MachineJumpTableInfo::EK_Custom32;
+
+ // Otherwise, use the normal jump table encoding heuristics.
+ return TargetLowering::getJumpTableEncoding();
+}
+
+bool X86TargetLowering::useSoftFloat() const {
+ return Subtarget.useSoftFloat();
+}
+
+void X86TargetLowering::markLibCallAttributes(MachineFunction *MF, unsigned CC,
+ ArgListTy &Args) const {
+
+ // Only relabel X86-32 for C / Stdcall CCs.
+ if (Subtarget.is64Bit())
+ return;
+ if (CC != CallingConv::C && CC != CallingConv::X86_StdCall)
+ return;
+ unsigned ParamRegs = 0;
+ if (auto *M = MF->getFunction().getParent())
+ ParamRegs = M->getNumberRegisterParameters();
+
+ // Mark the first N int arguments as having reg
+ for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
+ Type *T = Args[Idx].Ty;
+ if (T->isPointerTy() || T->isIntegerTy())
+ if (MF->getDataLayout().getTypeAllocSize(T) <= 8) {
+ unsigned numRegs = 1;
+ if (MF->getDataLayout().getTypeAllocSize(T) > 4)
+ numRegs = 2;
+ if (ParamRegs < numRegs)
+ return;
+ ParamRegs -= numRegs;
+ Args[Idx].IsInReg = true;
+ }
+ }
+}
+
+const MCExpr *
+X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
+ const MachineBasicBlock *MBB,
+ unsigned uid,MCContext &Ctx) const{
+ assert(isPositionIndependent() && Subtarget.isPICStyleGOT());
+ // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
+ // entries.
+ return MCSymbolRefExpr::create(MBB->getSymbol(),
+ MCSymbolRefExpr::VK_GOTOFF, Ctx);
+}
+
+/// Returns relocation base for the given PIC jumptable.
+SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const {
+ if (!Subtarget.is64Bit())
+ // This doesn't have SDLoc associated with it, but is not really the
+ // same as a Register.
+ return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
+ getPointerTy(DAG.getDataLayout()));
+ return Table;
+}
+
+/// This returns the relocation base for the given PIC jumptable,
+/// the same as getPICJumpTableRelocBase, but as an MCExpr.
+const MCExpr *X86TargetLowering::
+getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
+ MCContext &Ctx) const {
+ // X86-64 uses RIP relative addressing based on the jump table label.
+ if (Subtarget.isPICStyleRIPRel())
+ return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
+
+ // Otherwise, the reference is relative to the PIC base.
+ return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
+}
+
+std::pair<const TargetRegisterClass *, uint8_t>
+X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
+ MVT VT) const {
+ const TargetRegisterClass *RRC = nullptr;
+ uint8_t Cost = 1;
+ switch (VT.SimpleTy) {
+ default:
+ return TargetLowering::findRepresentativeClass(TRI, VT);
+ case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
+ RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
+ break;
+ case MVT::x86mmx:
+ RRC = &X86::VR64RegClass;
+ break;
+ case MVT::f32: case MVT::f64:
+ case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
+ case MVT::v4f32: case MVT::v2f64:
+ case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64:
+ case MVT::v8f32: case MVT::v4f64:
+ case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64:
+ case MVT::v16f32: case MVT::v8f64:
+ RRC = &X86::VR128XRegClass;
+ break;
+ }
+ return std::make_pair(RRC, Cost);
+}
+
+unsigned X86TargetLowering::getAddressSpace() const {
+ if (Subtarget.is64Bit())
+ return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? 256 : 257;
+ return 256;
+}
+
+static bool hasStackGuardSlotTLS(const Triple &TargetTriple) {
+ return TargetTriple.isOSGlibc() || TargetTriple.isOSFuchsia() ||
+ (TargetTriple.isAndroid() && !TargetTriple.isAndroidVersionLT(17));
+}
+
+static Constant* SegmentOffset(IRBuilder<> &IRB,
+ unsigned Offset, unsigned AddressSpace) {
+ return ConstantExpr::getIntToPtr(
+ ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
+ Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
+}
+
+Value *X86TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
+ // glibc, bionic, and Fuchsia have a special slot for the stack guard in
+ // tcbhead_t; use it instead of the usual global variable (see
+ // sysdeps/{i386,x86_64}/nptl/tls.h)
+ if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) {
+ if (Subtarget.isTargetFuchsia()) {
+ // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
+ return SegmentOffset(IRB, 0x10, getAddressSpace());
+ } else {
+ // %fs:0x28, unless we're using a Kernel code model, in which case
+ // it's %gs:0x28. gs:0x14 on i386.
+ unsigned Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14;
+ return SegmentOffset(IRB, Offset, getAddressSpace());
+ }
+ }
+
+ return TargetLowering::getIRStackGuard(IRB);
+}
+
+void X86TargetLowering::insertSSPDeclarations(Module &M) const {
+ // MSVC CRT provides functionalities for stack protection.
+ if (Subtarget.getTargetTriple().isOSMSVCRT()) {
+ // MSVC CRT has a global variable holding security cookie.
+ M.getOrInsertGlobal("__security_cookie",
+ Type::getInt8PtrTy(M.getContext()));
+
+ // MSVC CRT has a function to validate security cookie.
+ auto *SecurityCheckCookie = cast<Function>(
+ M.getOrInsertFunction("__security_check_cookie",
+ Type::getVoidTy(M.getContext()),
+ Type::getInt8PtrTy(M.getContext())));
+ SecurityCheckCookie->setCallingConv(CallingConv::X86_FastCall);
+ SecurityCheckCookie->addAttribute(1, Attribute::AttrKind::InReg);
+ return;
+ }
+ // glibc, bionic, and Fuchsia have a special slot for the stack guard.
+ if (hasStackGuardSlotTLS(Subtarget.getTargetTriple()))
+ return;
+ TargetLowering::insertSSPDeclarations(M);
+}
+
+Value *X86TargetLowering::getSDagStackGuard(const Module &M) const {
+ // MSVC CRT has a global variable holding security cookie.
+ if (Subtarget.getTargetTriple().isOSMSVCRT())
+ return M.getGlobalVariable("__security_cookie");
+ return TargetLowering::getSDagStackGuard(M);
+}
+
+Value *X86TargetLowering::getSSPStackGuardCheck(const Module &M) const {
+ // MSVC CRT has a function to validate security cookie.
+ if (Subtarget.getTargetTriple().isOSMSVCRT())
+ return M.getFunction("__security_check_cookie");
+ return TargetLowering::getSSPStackGuardCheck(M);
+}
+
+Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
+ if (Subtarget.getTargetTriple().isOSContiki())
+ return getDefaultSafeStackPointerLocation(IRB, false);
+
+ // Android provides a fixed TLS slot for the SafeStack pointer. See the
+ // definition of TLS_SLOT_SAFESTACK in
+ // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
+ if (Subtarget.isTargetAndroid()) {
+ // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
+ // %gs:0x24 on i386
+ unsigned Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24;
+ return SegmentOffset(IRB, Offset, getAddressSpace());
+ }
+
+ // Fuchsia is similar.
+ if (Subtarget.isTargetFuchsia()) {
+ // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
+ return SegmentOffset(IRB, 0x18, getAddressSpace());
+ }
+
+ return TargetLowering::getSafeStackPointerLocation(IRB);
+}
+
+bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
+ unsigned DestAS) const {
+ assert(SrcAS != DestAS && "Expected different address spaces!");
+
+ return SrcAS < 256 && DestAS < 256;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "X86GenCallingConv.inc"
+
+bool X86TargetLowering::CanLowerReturn(
+ CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, RetCC_X86);
+}
+
+const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
+ static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
+ return ScratchRegs;
+}
+
+/// Lowers masks values (v*i1) to the local register values
+/// \returns DAG node after lowering to register type
+static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc,
+ const SDLoc &Dl, SelectionDAG &DAG) {
+ EVT ValVT = ValArg.getValueType();
+
+ if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) ||
+ (ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) {
+ // Two stage lowering might be required
+ // bitcast: v8i1 -> i8 / v16i1 -> i16
+ // anyextend: i8 -> i32 / i16 -> i32
+ EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16;
+ SDValue ValToCopy = DAG.getBitcast(TempValLoc, ValArg);
+ if (ValLoc == MVT::i32)
+ ValToCopy = DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValToCopy);
+ return ValToCopy;
+ } else if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) ||
+ (ValVT == MVT::v64i1 && ValLoc == MVT::i64)) {
+ // One stage lowering is required
+ // bitcast: v32i1 -> i32 / v64i1 -> i64
+ return DAG.getBitcast(ValLoc, ValArg);
+ } else
+ return DAG.getNode(ISD::SIGN_EXTEND, Dl, ValLoc, ValArg);
+}
+
+/// Breaks v64i1 value into two registers and adds the new node to the DAG
+static void Passv64i1ArgInRegs(
+ const SDLoc &Dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg,
+ SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, CCValAssign &VA,
+ CCValAssign &NextVA, const X86Subtarget &Subtarget) {
+ assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
+ assert(Subtarget.is32Bit() && "Expecting 32 bit target");
+ assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value");
+ assert(VA.isRegLoc() && NextVA.isRegLoc() &&
+ "The value should reside in two registers");
+
+ // Before splitting the value we cast it to i64
+ Arg = DAG.getBitcast(MVT::i64, Arg);
+
+ // Splitting the value into two i32 types
+ SDValue Lo, Hi;
+ Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
+ DAG.getConstant(0, Dl, MVT::i32));
+ Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
+ DAG.getConstant(1, Dl, MVT::i32));
+
+ // Attach the two i32 types into corresponding registers
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
+ RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Hi));
+}
+
+SDValue
+X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SDLoc &dl, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ // In some cases we need to disable registers from the default CSR list.
+ // For example, when they are used for argument passing.
+ bool ShouldDisableCalleeSavedRegister =
+ CallConv == CallingConv::X86_RegCall ||
+ MF.getFunction().hasFnAttribute("no_caller_saved_registers");
+
+ if (CallConv == CallingConv::X86_INTR && !Outs.empty())
+ report_fatal_error("X86 interrupts may not return any value");
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_X86);
+
+ SDValue Flag;
+ SmallVector<SDValue, 6> RetOps;
+ RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
+ // Operand #1 = Bytes To Pop
+ RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
+ MVT::i32));
+
+ // Copy the result values into the output registers.
+ for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E;
+ ++I, ++OutsIndex) {
+ CCValAssign &VA = RVLocs[I];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ // Add the register to the CalleeSaveDisableRegs list.
+ if (ShouldDisableCalleeSavedRegister)
+ MF.getRegInfo().disableCalleeSavedRegister(VA.getLocReg());
+
+ SDValue ValToCopy = OutVals[OutsIndex];
+ EVT ValVT = ValToCopy.getValueType();
+
+ // Promote values to the appropriate types.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ else if (VA.getLocInfo() == CCValAssign::AExt) {
+ if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
+ ValToCopy = lowerMasksToReg(ValToCopy, VA.getLocVT(), dl, DAG);
+ else
+ ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ }
+ else if (VA.getLocInfo() == CCValAssign::BCvt)
+ ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
+
+ assert(VA.getLocInfo() != CCValAssign::FPExt &&
+ "Unexpected FP-extend for return value.");
+
+ // If this is x86-64, and we disabled SSE, we can't return FP values,
+ // or SSE or MMX vectors.
+ if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
+ VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
+ (Subtarget.is64Bit() && !Subtarget.hasSSE1())) {
+ errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
+ VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
+ } else if (ValVT == MVT::f64 &&
+ (Subtarget.is64Bit() && !Subtarget.hasSSE2())) {
+ // Likewise we can't return F64 values with SSE1 only. gcc does so, but
+ // llvm-gcc has never done it right and no one has noticed, so this
+ // should be OK for now.
+ errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
+ VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
+ }
+
+ // Returns in ST0/ST1 are handled specially: these are pushed as operands to
+ // the RET instruction and handled by the FP Stackifier.
+ if (VA.getLocReg() == X86::FP0 ||
+ VA.getLocReg() == X86::FP1) {
+ // If this is a copy from an xmm register to ST(0), use an FPExtend to
+ // change the value to the FP stack register class.
+ if (isScalarFPTypeInSSEReg(VA.getValVT()))
+ ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
+ RetOps.push_back(ValToCopy);
+ // Don't emit a copytoreg.
+ continue;
+ }
+
+ // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
+ // which is returned in RAX / RDX.
+ if (Subtarget.is64Bit()) {
+ if (ValVT == MVT::x86mmx) {
+ if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
+ ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
+ ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
+ ValToCopy);
+ // If we don't have SSE2 available, convert to v4f32 so the generated
+ // register is legal.
+ if (!Subtarget.hasSSE2())
+ ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
+ }
+ }
+ }
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+
+ if (VA.needsCustom()) {
+ assert(VA.getValVT() == MVT::v64i1 &&
+ "Currently the only custom case is when we split v64i1 to 2 regs");
+
+ Passv64i1ArgInRegs(dl, DAG, Chain, ValToCopy, RegsToPass, VA, RVLocs[++I],
+ Subtarget);
+
+ assert(2 == RegsToPass.size() &&
+ "Expecting two registers after Pass64BitArgInRegs");
+
+ // Add the second register to the CalleeSaveDisableRegs list.
+ if (ShouldDisableCalleeSavedRegister)
+ MF.getRegInfo().disableCalleeSavedRegister(RVLocs[I].getLocReg());
+ } else {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), ValToCopy));
+ }
+
+ // Add nodes to the DAG and add the values into the RetOps list
+ for (auto &Reg : RegsToPass) {
+ Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
+ }
+ }
+
+ // Swift calling convention does not require we copy the sret argument
+ // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
+
+ // All x86 ABIs require that for returning structs by value we copy
+ // the sret argument into %rax/%eax (depending on ABI) for the return.
+ // We saved the argument into a virtual register in the entry block,
+ // so now we copy the value out and into %rax/%eax.
+ //
+ // Checking Function.hasStructRetAttr() here is insufficient because the IR
+ // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
+ // false, then an sret argument may be implicitly inserted in the SelDAG. In
+ // either case FuncInfo->setSRetReturnReg() will have been called.
+ if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
+ // When we have both sret and another return value, we should use the
+ // original Chain stored in RetOps[0], instead of the current Chain updated
+ // in the above loop. If we only have sret, RetOps[0] equals to Chain.
+
+ // For the case of sret and another return value, we have
+ // Chain_0 at the function entry
+ // Chain_1 = getCopyToReg(Chain_0) in the above loop
+ // If we use Chain_1 in getCopyFromReg, we will have
+ // Val = getCopyFromReg(Chain_1)
+ // Chain_2 = getCopyToReg(Chain_1, Val) from below
+
+ // getCopyToReg(Chain_0) will be glued together with
+ // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
+ // in Unit B, and we will have cyclic dependency between Unit A and Unit B:
+ // Data dependency from Unit B to Unit A due to usage of Val in
+ // getCopyToReg(Chain_1, Val)
+ // Chain dependency from Unit A to Unit B
+
+ // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
+ SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg,
+ getPointerTy(MF.getDataLayout()));
+
+ unsigned RetValReg
+ = (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ?
+ X86::RAX : X86::EAX;
+ Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
+ Flag = Chain.getValue(1);
+
+ // RAX/EAX now acts like a return value.
+ RetOps.push_back(
+ DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
+
+ // Add the returned register to the CalleeSaveDisableRegs list.
+ if (ShouldDisableCalleeSavedRegister)
+ MF.getRegInfo().disableCalleeSavedRegister(RetValReg);
+ }
+
+ const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const MCPhysReg *I =
+ TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
+ if (I) {
+ for (; *I; ++I) {
+ if (X86::GR64RegClass.contains(*I))
+ RetOps.push_back(DAG.getRegister(*I, MVT::i64));
+ else
+ llvm_unreachable("Unexpected register class in CSRsViaCopy!");
+ }
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ X86ISD::NodeType opcode = X86ISD::RET_FLAG;
+ if (CallConv == CallingConv::X86_INTR)
+ opcode = X86ISD::IRET;
+ return DAG.getNode(opcode, dl, MVT::Other, RetOps);
+}
+
+bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
+ if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0))
+ return false;
+
+ SDValue TCChain = Chain;
+ SDNode *Copy = *N->use_begin();
+ if (Copy->getOpcode() == ISD::CopyToReg) {
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else if (Copy->getOpcode() != ISD::FP_EXTEND)
+ return false;
+
+ bool HasRet = false;
+ for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != X86ISD::RET_FLAG)
+ return false;
+ // If we are returning more than one value, we can definitely
+ // not make a tail call see PR19530
+ if (UI->getNumOperands() > 4)
+ return false;
+ if (UI->getNumOperands() == 4 &&
+ UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
+ return false;
+ HasRet = true;
+ }
+
+ if (!HasRet)
+ return false;
+
+ Chain = TCChain;
+ return true;
+}
+
+EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
+ ISD::NodeType ExtendKind) const {
+ MVT ReturnMVT = MVT::i32;
+
+ bool Darwin = Subtarget.getTargetTriple().isOSDarwin();
+ if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) {
+ // The ABI does not require i1, i8 or i16 to be extended.
+ //
+ // On Darwin, there is code in the wild relying on Clang's old behaviour of
+ // always extending i8/i16 return values, so keep doing that for now.
+ // (PR26665).
+ ReturnMVT = MVT::i8;
+ }
+
+ EVT MinVT = getRegisterType(Context, ReturnMVT);
+ return VT.bitsLT(MinVT) ? MinVT : VT;
+}
+
+/// Reads two 32 bit registers and creates a 64 bit mask value.
+/// \param VA The current 32 bit value that need to be assigned.
+/// \param NextVA The next 32 bit value that need to be assigned.
+/// \param Root The parent DAG node.
+/// \param [in,out] InFlag Represents SDvalue in the parent DAG node for
+/// glue purposes. In the case the DAG is already using
+/// physical register instead of virtual, we should glue
+/// our new SDValue to InFlag SDvalue.
+/// \return a new SDvalue of size 64bit.
+static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &Root, SelectionDAG &DAG,
+ const SDLoc &Dl, const X86Subtarget &Subtarget,
+ SDValue *InFlag = nullptr) {
+ assert((Subtarget.hasBWI()) && "Expected AVX512BW target!");
+ assert(Subtarget.is32Bit() && "Expecting 32 bit target");
+ assert(VA.getValVT() == MVT::v64i1 &&
+ "Expecting first location of 64 bit width type");
+ assert(NextVA.getValVT() == VA.getValVT() &&
+ "The locations should have the same type");
+ assert(VA.isRegLoc() && NextVA.isRegLoc() &&
+ "The values should reside in two registers");
+
+ SDValue Lo, Hi;
+ unsigned Reg;
+ SDValue ArgValueLo, ArgValueHi;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetRegisterClass *RC = &X86::GR32RegClass;
+
+ // Read a 32 bit value from the registers
+ if (nullptr == InFlag) {
+ // When no physical register is present,
+ // create an intermediate virtual register
+ Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValueLo = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
+ Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
+ ArgValueHi = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
+ } else {
+ // When a physical register is available read the value from it and glue
+ // the reads together.
+ ArgValueLo =
+ DAG.getCopyFromReg(Root, Dl, VA.getLocReg(), MVT::i32, *InFlag);
+ *InFlag = ArgValueLo.getValue(2);
+ ArgValueHi =
+ DAG.getCopyFromReg(Root, Dl, NextVA.getLocReg(), MVT::i32, *InFlag);
+ *InFlag = ArgValueHi.getValue(2);
+ }
+
+ // Convert the i32 type into v32i1 type
+ Lo = DAG.getBitcast(MVT::v32i1, ArgValueLo);
+
+ // Convert the i32 type into v32i1 type
+ Hi = DAG.getBitcast(MVT::v32i1, ArgValueHi);
+
+ // Concatenate the two values together
+ return DAG.getNode(ISD::CONCAT_VECTORS, Dl, MVT::v64i1, Lo, Hi);
+}
+
+/// The function will lower a register of various sizes (8/16/32/64)
+/// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1)
+/// \returns a DAG node contains the operand after lowering to mask type.
+static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT,
+ const EVT &ValLoc, const SDLoc &Dl,
+ SelectionDAG &DAG) {
+ SDValue ValReturned = ValArg;
+
+ if (ValVT == MVT::v1i1)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v1i1, ValReturned);
+
+ if (ValVT == MVT::v64i1) {
+ // In 32 bit machine, this case is handled by getv64i1Argument
+ assert(ValLoc == MVT::i64 && "Expecting only i64 locations");
+ // In 64 bit machine, There is no need to truncate the value only bitcast
+ } else {
+ MVT maskLen;
+ switch (ValVT.getSimpleVT().SimpleTy) {
+ case MVT::v8i1:
+ maskLen = MVT::i8;
+ break;
+ case MVT::v16i1:
+ maskLen = MVT::i16;
+ break;
+ case MVT::v32i1:
+ maskLen = MVT::i32;
+ break;
+ default:
+ llvm_unreachable("Expecting a vector of i1 types");
+ }
+
+ ValReturned = DAG.getNode(ISD::TRUNCATE, Dl, maskLen, ValReturned);
+ }
+ return DAG.getBitcast(ValVT, ValReturned);
+}
+
+/// Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue X86TargetLowering::LowerCallResult(
+ SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
+ uint32_t *RegMask) const {
+
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ bool Is64Bit = Subtarget.is64Bit();
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E;
+ ++I, ++InsIndex) {
+ CCValAssign &VA = RVLocs[I];
+ EVT CopyVT = VA.getLocVT();
+
+ // In some calling conventions we need to remove the used registers
+ // from the register mask.
+ if (RegMask) {
+ for (MCSubRegIterator SubRegs(VA.getLocReg(), TRI, /*IncludeSelf=*/true);
+ SubRegs.isValid(); ++SubRegs)
+ RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32));
+ }
+
+ // If this is x86-64, and we disabled SSE, we can't return FP values
+ if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) &&
+ ((Is64Bit || Ins[InsIndex].Flags.isInReg()) && !Subtarget.hasSSE1())) {
+ errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
+ VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
+ }
+
+ // If we prefer to use the value in xmm registers, copy it out as f80 and
+ // use a truncate to move it from fp stack reg to xmm reg.
+ bool RoundAfterCopy = false;
+ if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
+ isScalarFPTypeInSSEReg(VA.getValVT())) {
+ if (!Subtarget.hasX87())
+ report_fatal_error("X87 register return with X87 disabled");
+ CopyVT = MVT::f80;
+ RoundAfterCopy = (CopyVT != VA.getLocVT());
+ }
+
+ SDValue Val;
+ if (VA.needsCustom()) {
+ assert(VA.getValVT() == MVT::v64i1 &&
+ "Currently the only custom case is when we split v64i1 to 2 regs");
+ Val =
+ getv64i1Argument(VA, RVLocs[++I], Chain, DAG, dl, Subtarget, &InFlag);
+ } else {
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag)
+ .getValue(1);
+ Val = Chain.getValue(0);
+ InFlag = Chain.getValue(2);
+ }
+
+ if (RoundAfterCopy)
+ Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
+ // This truncation won't change the value.
+ DAG.getIntPtrConstant(1, dl));
+
+ if (VA.isExtInLoc() && (VA.getValVT().getScalarType() == MVT::i1)) {
+ if (VA.getValVT().isVector() &&
+ ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
+ (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
+ // promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
+ Val = lowerRegToMasks(Val, VA.getValVT(), VA.getLocVT(), dl, DAG);
+ } else
+ Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// C & StdCall & Fast Calling Convention implementation
+//===----------------------------------------------------------------------===//
+// StdCall calling convention seems to be standard for many Windows' API
+// routines and around. It differs from C calling convention just a little:
+// callee should clean up the stack, not caller. Symbols should be also
+// decorated in some fancy way :) It doesn't support any vector arguments.
+// For info on fast calling convention see Fast Calling Convention (tail call)
+// implementation LowerX86_32FastCCCallTo.
+
+/// CallIsStructReturn - Determines whether a call uses struct return
+/// semantics.
+enum StructReturnType {
+ NotStructReturn,
+ RegStructReturn,
+ StackStructReturn
+};
+static StructReturnType
+callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsMCU) {
+ if (Outs.empty())
+ return NotStructReturn;
+
+ const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
+ if (!Flags.isSRet())
+ return NotStructReturn;
+ if (Flags.isInReg() || IsMCU)
+ return RegStructReturn;
+ return StackStructReturn;
+}
+
+/// Determines whether a function uses struct return semantics.
+static StructReturnType
+argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsMCU) {
+ if (Ins.empty())
+ return NotStructReturn;
+
+ const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
+ if (!Flags.isSRet())
+ return NotStructReturn;
+ if (Flags.isInReg() || IsMCU)
+ return RegStructReturn;
+ return StackStructReturn;
+}
+
+/// Make a copy of an aggregate at address specified by "Src" to address
+/// "Dst" with size and alignment information specified by the specific
+/// parameter attribute. The copy will be passed as a byval function parameter.
+static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
+ SDValue Chain, ISD::ArgFlagsTy Flags,
+ SelectionDAG &DAG, const SDLoc &dl) {
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
+
+ return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
+ /*isVolatile*/false, /*AlwaysInline=*/true,
+ /*isTailCall*/false,
+ MachinePointerInfo(), MachinePointerInfo());
+}
+
+/// Return true if the calling convention is one that we can guarantee TCO for.
+static bool canGuaranteeTCO(CallingConv::ID CC) {
+ return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
+ CC == CallingConv::X86_RegCall || CC == CallingConv::HiPE ||
+ CC == CallingConv::HHVM);
+}
+
+/// Return true if we might ever do TCO for calls with this calling convention.
+static bool mayTailCallThisCC(CallingConv::ID CC) {
+ switch (CC) {
+ // C calling conventions:
+ case CallingConv::C:
+ case CallingConv::Win64:
+ case CallingConv::X86_64_SysV:
+ // Callee pop conventions:
+ case CallingConv::X86_ThisCall:
+ case CallingConv::X86_StdCall:
+ case CallingConv::X86_VectorCall:
+ case CallingConv::X86_FastCall:
+ return true;
+ default:
+ return canGuaranteeTCO(CC);
+ }
+}
+
+/// Return true if the function is being made into a tailcall target by
+/// changing its ABI.
+static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
+ return GuaranteedTailCallOpt && canGuaranteeTCO(CC);
+}
+
+bool X86TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
+ auto Attr =
+ CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
+ if (!CI->isTailCall() || Attr.getValueAsString() == "true")
+ return false;
+
+ ImmutableCallSite CS(CI);
+ CallingConv::ID CalleeCC = CS.getCallingConv();
+ if (!mayTailCallThisCC(CalleeCC))
+ return false;
+
+ return true;
+}
+
+SDValue
+X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ const SDLoc &dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ MachineFrameInfo &MFI, unsigned i) const {
+ // Create the nodes corresponding to a load from this parameter slot.
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ bool AlwaysUseMutable = shouldGuaranteeTCO(
+ CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
+ bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
+ EVT ValVT;
+ MVT PtrVT = getPointerTy(DAG.getDataLayout());
+
+ // If value is passed by pointer we have address passed instead of the value
+ // itself. No need to extend if the mask value and location share the same
+ // absolute size.
+ bool ExtendedInMem =
+ VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 &&
+ VA.getValVT().getSizeInBits() != VA.getLocVT().getSizeInBits();
+
+ if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
+ ValVT = VA.getLocVT();
+ else
+ ValVT = VA.getValVT();
+
+ // Calculate SP offset of interrupt parameter, re-arrange the slot normally
+ // taken by a return address.
+ int Offset = 0;
+ if (CallConv == CallingConv::X86_INTR) {
+ // X86 interrupts may take one or two arguments.
+ // On the stack there will be no return address as in regular call.
+ // Offset of last argument need to be set to -4/-8 bytes.
+ // Where offset of the first argument out of two, should be set to 0 bytes.
+ Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1);
+ if (Subtarget.is64Bit() && Ins.size() == 2) {
+ // The stack pointer needs to be realigned for 64 bit handlers with error
+ // code, so the argument offset changes by 8 bytes.
+ Offset += 8;
+ }
+ }
+
+ // FIXME: For now, all byval parameter objects are marked mutable. This can be
+ // changed with more analysis.
+ // In case of tail call optimization mark all arguments mutable. Since they
+ // could be overwritten by lowering of arguments in case of a tail call.
+ if (Flags.isByVal()) {
+ unsigned Bytes = Flags.getByValSize();
+ if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
+ int FI = MFI.CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
+ // Adjust SP offset of interrupt parameter.
+ if (CallConv == CallingConv::X86_INTR) {
+ MFI.setObjectOffset(FI, Offset);
+ }
+ return DAG.getFrameIndex(FI, PtrVT);
+ }
+
+ // This is an argument in memory. We might be able to perform copy elision.
+ if (Flags.isCopyElisionCandidate()) {
+ EVT ArgVT = Ins[i].ArgVT;
+ SDValue PartAddr;
+ if (Ins[i].PartOffset == 0) {
+ // If this is a one-part value or the first part of a multi-part value,
+ // create a stack object for the entire argument value type and return a
+ // load from our portion of it. This assumes that if the first part of an
+ // argument is in memory, the rest will also be in memory.
+ int FI = MFI.CreateFixedObject(ArgVT.getStoreSize(), VA.getLocMemOffset(),
+ /*Immutable=*/false);
+ PartAddr = DAG.getFrameIndex(FI, PtrVT);
+ return DAG.getLoad(
+ ValVT, dl, Chain, PartAddr,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
+ } else {
+ // This is not the first piece of an argument in memory. See if there is
+ // already a fixed stack object including this offset. If so, assume it
+ // was created by the PartOffset == 0 branch above and create a load from
+ // the appropriate offset into it.
+ int64_t PartBegin = VA.getLocMemOffset();
+ int64_t PartEnd = PartBegin + ValVT.getSizeInBits() / 8;
+ int FI = MFI.getObjectIndexBegin();
+ for (; MFI.isFixedObjectIndex(FI); ++FI) {
+ int64_t ObjBegin = MFI.getObjectOffset(FI);
+ int64_t ObjEnd = ObjBegin + MFI.getObjectSize(FI);
+ if (ObjBegin <= PartBegin && PartEnd <= ObjEnd)
+ break;
+ }
+ if (MFI.isFixedObjectIndex(FI)) {
+ SDValue Addr =
+ DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getFrameIndex(FI, PtrVT),
+ DAG.getIntPtrConstant(Ins[i].PartOffset, dl));
+ return DAG.getLoad(
+ ValVT, dl, Chain, Addr,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI,
+ Ins[i].PartOffset));
+ }
+ }
+ }
+
+ int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
+ VA.getLocMemOffset(), isImmutable);
+
+ // Set SExt or ZExt flag.
+ if (VA.getLocInfo() == CCValAssign::ZExt) {
+ MFI.setObjectZExt(FI, true);
+ } else if (VA.getLocInfo() == CCValAssign::SExt) {
+ MFI.setObjectSExt(FI, true);
+ }
+
+ // Adjust SP offset of interrupt parameter.
+ if (CallConv == CallingConv::X86_INTR) {
+ MFI.setObjectOffset(FI, Offset);
+ }
+
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ SDValue Val = DAG.getLoad(
+ ValVT, dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
+ return ExtendedInMem
+ ? (VA.getValVT().isVector()
+ ? DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VA.getValVT(), Val)
+ : DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val))
+ : Val;
+}
+
+// FIXME: Get this from tablegen.
+static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
+ const X86Subtarget &Subtarget) {
+ assert(Subtarget.is64Bit());
+
+ if (Subtarget.isCallingConvWin64(CallConv)) {
+ static const MCPhysReg GPR64ArgRegsWin64[] = {
+ X86::RCX, X86::RDX, X86::R8, X86::R9
+ };
+ return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
+ }
+
+ static const MCPhysReg GPR64ArgRegs64Bit[] = {
+ X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
+ };
+ return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
+}
+
+// FIXME: Get this from tablegen.
+static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
+ CallingConv::ID CallConv,
+ const X86Subtarget &Subtarget) {
+ assert(Subtarget.is64Bit());
+ if (Subtarget.isCallingConvWin64(CallConv)) {
+ // The XMM registers which might contain var arg parameters are shadowed
+ // in their paired GPR. So we only need to save the GPR to their home
+ // slots.
+ // TODO: __vectorcall will change this.
+ return None;
+ }
+
+ const Function &F = MF.getFunction();
+ bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat);
+ bool isSoftFloat = Subtarget.useSoftFloat();
+ assert(!(isSoftFloat && NoImplicitFloatOps) &&
+ "SSE register cannot be used when SSE is disabled!");
+ if (isSoftFloat || NoImplicitFloatOps || !Subtarget.hasSSE1())
+ // Kernel mode asks for SSE to be disabled, so there are no XMM argument
+ // registers.
+ return None;
+
+ static const MCPhysReg XMMArgRegs64Bit[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
+}
+
+#ifndef NDEBUG
+static bool isSortedByValueNo(const SmallVectorImpl<CCValAssign> &ArgLocs) {
+ return std::is_sorted(ArgLocs.begin(), ArgLocs.end(),
+ [](const CCValAssign &A, const CCValAssign &B) -> bool {
+ return A.getValNo() < B.getValNo();
+ });
+}
+#endif
+
+SDValue X86TargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
+ SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
+
+ const Function &F = MF.getFunction();
+ if (F.hasExternalLinkage() && Subtarget.isTargetCygMing() &&
+ F.getName() == "main")
+ FuncInfo->setForceFramePointer(true);
+
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ bool Is64Bit = Subtarget.is64Bit();
+ bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
+
+ assert(
+ !(isVarArg && canGuaranteeTCO(CallConv)) &&
+ "Var args not supported with calling conv' regcall, fastcc, ghc or hipe");
+
+ if (CallConv == CallingConv::X86_INTR) {
+ bool isLegal = Ins.size() == 1 ||
+ (Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) ||
+ (!Is64Bit && Ins[1].VT == MVT::i32)));
+ if (!isLegal)
+ report_fatal_error("X86 interrupts may take one or two arguments");
+ }
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
+
+ // Allocate shadow area for Win64.
+ if (IsWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeArguments(Ins, CC_X86);
+
+ // In vectorcall calling convention a second pass is required for the HVA
+ // types.
+ if (CallingConv::X86_VectorCall == CallConv) {
+ CCInfo.AnalyzeArgumentsSecondPass(Ins, CC_X86);
+ }
+
+ // The next loop assumes that the locations are in the same order of the
+ // input arguments.
+ assert(isSortedByValueNo(ArgLocs) &&
+ "Argument Location list must be sorted before lowering");
+
+ SDValue ArgValue;
+ for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E;
+ ++I, ++InsIndex) {
+ assert(InsIndex < Ins.size() && "Invalid Ins index");
+ CCValAssign &VA = ArgLocs[I];
+
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+ if (VA.needsCustom()) {
+ assert(
+ VA.getValVT() == MVT::v64i1 &&
+ "Currently the only custom case is when we split v64i1 to 2 regs");
+
+ // v64i1 values, in regcall calling convention, that are
+ // compiled to 32 bit arch, are split up into two registers.
+ ArgValue =
+ getv64i1Argument(VA, ArgLocs[++I], Chain, DAG, dl, Subtarget);
+ } else {
+ const TargetRegisterClass *RC;
+ if (RegVT == MVT::i32)
+ RC = &X86::GR32RegClass;
+ else if (Is64Bit && RegVT == MVT::i64)
+ RC = &X86::GR64RegClass;
+ else if (RegVT == MVT::f32)
+ RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
+ else if (RegVT == MVT::f64)
+ RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
+ else if (RegVT == MVT::f80)
+ RC = &X86::RFP80RegClass;
+ else if (RegVT == MVT::f128)
+ RC = &X86::FR128RegClass;
+ else if (RegVT.is512BitVector())
+ RC = &X86::VR512RegClass;
+ else if (RegVT.is256BitVector())
+ RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass;
+ else if (RegVT.is128BitVector())
+ RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass;
+ else if (RegVT == MVT::x86mmx)
+ RC = &X86::VR64RegClass;
+ else if (RegVT == MVT::v1i1)
+ RC = &X86::VK1RegClass;
+ else if (RegVT == MVT::v8i1)
+ RC = &X86::VK8RegClass;
+ else if (RegVT == MVT::v16i1)
+ RC = &X86::VK16RegClass;
+ else if (RegVT == MVT::v32i1)
+ RC = &X86::VK32RegClass;
+ else if (RegVT == MVT::v64i1)
+ RC = &X86::VK64RegClass;
+ else
+ llvm_unreachable("Unknown argument type!");
+
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+ }
+
+ // If this is an 8 or 16-bit value, it is really passed promoted to 32
+ // bits. Insert an assert[sz]ext to capture this, then truncate to the
+ // right size.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::BCvt)
+ ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
+
+ if (VA.isExtInLoc()) {
+ // Handle MMX values passed in XMM regs.
+ if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
+ ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
+ else if (VA.getValVT().isVector() &&
+ VA.getValVT().getScalarType() == MVT::i1 &&
+ ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
+ (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
+ // Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
+ ArgValue = lowerRegToMasks(ArgValue, VA.getValVT(), RegVT, dl, DAG);
+ } else
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ }
+ } else {
+ assert(VA.isMemLoc());
+ ArgValue =
+ LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, InsIndex);
+ }
+
+ // If value is passed via pointer - do a load.
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ ArgValue =
+ DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo());
+
+ InVals.push_back(ArgValue);
+ }
+
+ for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
+ // Swift calling convention does not require we copy the sret argument
+ // into %rax/%eax for the return. We don't set SRetReturnReg for Swift.
+ if (CallConv == CallingConv::Swift)
+ continue;
+
+ // All x86 ABIs require that for returning structs by value we copy the
+ // sret argument into %rax/%eax (depending on ABI) for the return. Save
+ // the argument into a virtual register so that we can access it from the
+ // return points.
+ if (Ins[I].Flags.isSRet()) {
+ unsigned Reg = FuncInfo->getSRetReturnReg();
+ if (!Reg) {
+ MVT PtrTy = getPointerTy(DAG.getDataLayout());
+ Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
+ FuncInfo->setSRetReturnReg(Reg);
+ }
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[I]);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
+ break;
+ }
+ }
+
+ unsigned StackSize = CCInfo.getNextStackOffset();
+ // Align stack specially for tail calls.
+ if (shouldGuaranteeTCO(CallConv,
+ MF.getTarget().Options.GuaranteedTailCallOpt))
+ StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start. We
+ // can skip this if there are no va_start calls.
+ if (MFI.hasVAStart() &&
+ (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
+ CallConv != CallingConv::X86_ThisCall))) {
+ FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
+ }
+
+ // Figure out if XMM registers are in use.
+ assert(!(Subtarget.useSoftFloat() &&
+ F.hasFnAttribute(Attribute::NoImplicitFloat)) &&
+ "SSE register cannot be used when SSE is disabled!");
+
+ // 64-bit calling conventions support varargs and register parameters, so we
+ // have to do extra work to spill them in the prologue.
+ if (Is64Bit && isVarArg && MFI.hasVAStart()) {
+ // Find the first unallocated argument registers.
+ ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
+ ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
+ unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
+ assert(!(NumXMMRegs && !Subtarget.hasSSE1()) &&
+ "SSE register cannot be used when SSE is disabled!");
+
+ // Gather all the live in physical registers.
+ SmallVector<SDValue, 6> LiveGPRs;
+ SmallVector<SDValue, 8> LiveXMMRegs;
+ SDValue ALVal;
+ for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
+ unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
+ LiveGPRs.push_back(
+ DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
+ }
+ if (!ArgXMMs.empty()) {
+ unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
+ ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
+ for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
+ unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
+ LiveXMMRegs.push_back(
+ DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
+ }
+ }
+
+ if (IsWin64) {
+ // Get to the caller-allocated home save location. Add 8 to account
+ // for the return address.
+ int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
+ FuncInfo->setRegSaveFrameIndex(
+ MFI.CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
+ // Fixup to set vararg frame on shadow area (4 x i64).
+ if (NumIntRegs < 4)
+ FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
+ } else {
+ // For X86-64, if there are vararg parameters that are passed via
+ // registers, then we must store them to their spots on the stack so
+ // they may be loaded by dereferencing the result of va_next.
+ FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
+ FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
+ FuncInfo->setRegSaveFrameIndex(MFI.CreateStackObject(
+ ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
+ }
+
+ // Store the integer parameter registers.
+ SmallVector<SDValue, 8> MemOps;
+ SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
+ getPointerTy(DAG.getDataLayout()));
+ unsigned Offset = FuncInfo->getVarArgsGPOffset();
+ for (SDValue Val : LiveGPRs) {
+ SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
+ RSFIN, DAG.getIntPtrConstant(Offset, dl));
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo::getFixedStack(
+ DAG.getMachineFunction(),
+ FuncInfo->getRegSaveFrameIndex(), Offset));
+ MemOps.push_back(Store);
+ Offset += 8;
+ }
+
+ if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
+ // Now store the XMM (fp + vector) parameter registers.
+ SmallVector<SDValue, 12> SaveXMMOps;
+ SaveXMMOps.push_back(Chain);
+ SaveXMMOps.push_back(ALVal);
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getRegSaveFrameIndex(), dl));
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getVarArgsFPOffset(), dl));
+ SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
+ LiveXMMRegs.end());
+ MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
+ MVT::Other, SaveXMMOps));
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+ }
+
+ if (isVarArg && MFI.hasMustTailInVarArgFunc()) {
+ // Find the largest legal vector type.
+ MVT VecVT = MVT::Other;
+ // FIXME: Only some x86_32 calling conventions support AVX512.
+ if (Subtarget.hasAVX512() &&
+ (Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
+ CallConv == CallingConv::Intel_OCL_BI)))
+ VecVT = MVT::v16f32;
+ else if (Subtarget.hasAVX())
+ VecVT = MVT::v8f32;
+ else if (Subtarget.hasSSE2())
+ VecVT = MVT::v4f32;
+
+ // We forward some GPRs and some vector types.
+ SmallVector<MVT, 2> RegParmTypes;
+ MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
+ RegParmTypes.push_back(IntVT);
+ if (VecVT != MVT::Other)
+ RegParmTypes.push_back(VecVT);
+
+ // Compute the set of forwarded registers. The rest are scratch.
+ SmallVectorImpl<ForwardedRegister> &Forwards =
+ FuncInfo->getForwardedMustTailRegParms();
+ CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
+
+ // Conservatively forward AL on x86_64, since it might be used for varargs.
+ if (Is64Bit && !CCInfo.isAllocated(X86::AL)) {
+ unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
+ Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
+ }
+
+ // Copy all forwards from physical to virtual registers.
+ for (ForwardedRegister &F : Forwards) {
+ // FIXME: Can we use a less constrained schedule?
+ SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
+ F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
+ Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal);
+ }
+ }
+
+ // Some CCs need callee pop.
+ if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
+ MF.getTarget().Options.GuaranteedTailCallOpt)) {
+ FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
+ } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
+ // X86 interrupts must pop the error code (and the alignment padding) if
+ // present.
+ FuncInfo->setBytesToPopOnReturn(Is64Bit ? 16 : 4);
+ } else {
+ FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
+ // If this is an sret function, the return should pop the hidden pointer.
+ if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
+ !Subtarget.getTargetTriple().isOSMSVCRT() &&
+ argsAreStructReturn(Ins, Subtarget.isTargetMCU()) == StackStructReturn)
+ FuncInfo->setBytesToPopOnReturn(4);
+ }
+
+ if (!Is64Bit) {
+ // RegSaveFrameIndex is X86-64 only.
+ FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
+ if (CallConv == CallingConv::X86_FastCall ||
+ CallConv == CallingConv::X86_ThisCall)
+ // fastcc functions can't have varargs.
+ FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
+ }
+
+ FuncInfo->setArgumentStackSize(StackSize);
+
+ if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
+ EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn());
+ if (Personality == EHPersonality::CoreCLR) {
+ assert(Is64Bit);
+ // TODO: Add a mechanism to frame lowering that will allow us to indicate
+ // that we'd prefer this slot be allocated towards the bottom of the frame
+ // (i.e. near the stack pointer after allocating the frame). Every
+ // funclet needs a copy of this slot in its (mostly empty) frame, and the
+ // offset from the bottom of this and each funclet's frame must be the
+ // same, so the size of funclets' (mostly empty) frames is dictated by
+ // how far this slot is from the bottom (since they allocate just enough
+ // space to accommodate holding this slot at the correct offset).
+ int PSPSymFI = MFI.CreateStackObject(8, 8, /*isSS=*/false);
+ EHInfo->PSPSymFrameIdx = PSPSymFI;
+ }
+ }
+
+ if (CallConv == CallingConv::X86_RegCall ||
+ F.hasFnAttribute("no_caller_saved_registers")) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ for (std::pair<unsigned, unsigned> Pair : MRI.liveins())
+ MRI.disableCalleeSavedRegister(Pair.first);
+ }
+
+ return Chain;
+}
+
+SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
+ SDValue Arg, const SDLoc &dl,
+ SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
+ StackPtr, PtrOff);
+ if (Flags.isByVal())
+ return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
+
+ return DAG.getStore(
+ Chain, dl, Arg, PtrOff,
+ MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
+}
+
+/// Emit a load of return address if tail call
+/// optimization is performed and it is required.
+SDValue X86TargetLowering::EmitTailCallLoadRetAddr(
+ SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall,
+ bool Is64Bit, int FPDiff, const SDLoc &dl) const {
+ // Adjust the Return address stack slot.
+ EVT VT = getPointerTy(DAG.getDataLayout());
+ OutRetAddr = getReturnAddressFrameIndex(DAG);
+
+ // Load the "old" Return address.
+ OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo());
+ return SDValue(OutRetAddr.getNode(), 1);
+}
+
+/// Emit a store of the return address if tail call
+/// optimization is performed and it is required (FPDiff!=0).
+static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
+ SDValue Chain, SDValue RetAddrFrIdx,
+ EVT PtrVT, unsigned SlotSize,
+ int FPDiff, const SDLoc &dl) {
+ // Store the return address to the appropriate stack slot.
+ if (!FPDiff) return Chain;
+ // Calculate the new stack slot for the return address.
+ int NewReturnAddrFI =
+ MF.getFrameInfo().CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
+ false);
+ SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
+ Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
+ MachinePointerInfo::getFixedStack(
+ DAG.getMachineFunction(), NewReturnAddrFI));
+ return Chain;
+}
+
+/// Returns a vector_shuffle mask for an movs{s|d}, movd
+/// operation of specified width.
+static SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ Mask.push_back(NumElems);
+ for (unsigned i = 1; i != NumElems; ++i)
+ Mask.push_back(i);
+ return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
+}
+
+SDValue
+X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool &isTailCall = CLI.IsTailCall;
+ bool isVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool Is64Bit = Subtarget.is64Bit();
+ bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
+ StructReturnType SR = callIsStructReturn(Outs, Subtarget.isTargetMCU());
+ bool IsSibcall = false;
+ X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
+ auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
+ const auto *CI = dyn_cast_or_null<CallInst>(CLI.CS.getInstruction());
+ const Function *Fn = CI ? CI->getCalledFunction() : nullptr;
+ bool HasNCSR = (CI && CI->hasFnAttr("no_caller_saved_registers")) ||
+ (Fn && Fn->hasFnAttribute("no_caller_saved_registers"));
+
+ if (CallConv == CallingConv::X86_INTR)
+ report_fatal_error("X86 interrupts may not be called directly");
+
+ if (Attr.getValueAsString() == "true")
+ isTailCall = false;
+
+ if (Subtarget.isPICStyleGOT() &&
+ !MF.getTarget().Options.GuaranteedTailCallOpt) {
+ // If we are using a GOT, disable tail calls to external symbols with
+ // default visibility. Tail calling such a symbol requires using a GOT
+ // relocation, which forces early binding of the symbol. This breaks code
+ // that require lazy function symbol resolution. Using musttail or
+ // GuaranteedTailCallOpt will override this.
+ GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
+ if (!G || (!G->getGlobal()->hasLocalLinkage() &&
+ G->getGlobal()->hasDefaultVisibility()))
+ isTailCall = false;
+ }
+
+ bool IsMustTail = CLI.CS && CLI.CS.isMustTailCall();
+ if (IsMustTail) {
+ // Force this to be a tail call. The verifier rules are enough to ensure
+ // that we can lower this successfully without moving the return address
+ // around.
+ isTailCall = true;
+ } else if (isTailCall) {
+ // Check if it's really possible to do a tail call.
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ isVarArg, SR != NotStructReturn,
+ MF.getFunction().hasStructRetAttr(), CLI.RetTy,
+ Outs, OutVals, Ins, DAG);
+
+ // Sibcalls are automatically detected tailcalls which do not require
+ // ABI changes.
+ if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
+ IsSibcall = true;
+
+ if (isTailCall)
+ ++NumTailCalls;
+ }
+
+ assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
+ "Var args not supported with calling convention fastcc, ghc or hipe");
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
+
+ // Allocate shadow area for Win64.
+ if (IsWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeArguments(Outs, CC_X86);
+
+ // In vectorcall calling convention a second pass is required for the HVA
+ // types.
+ if (CallingConv::X86_VectorCall == CallConv) {
+ CCInfo.AnalyzeArgumentsSecondPass(Outs, CC_X86);
+ }
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
+ if (IsSibcall)
+ // This is a sibcall. The memory operands are available in caller's
+ // own caller's stack.
+ NumBytes = 0;
+ else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ canGuaranteeTCO(CallConv))
+ NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
+
+ int FPDiff = 0;
+ if (isTailCall && !IsSibcall && !IsMustTail) {
+ // Lower arguments at fp - stackoffset + fpdiff.
+ unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
+
+ FPDiff = NumBytesCallerPushed - NumBytes;
+
+ // Set the delta of movement of the returnaddr stackslot.
+ // But only set if delta is greater than previous delta.
+ if (FPDiff < X86Info->getTCReturnAddrDelta())
+ X86Info->setTCReturnAddrDelta(FPDiff);
+ }
+
+ unsigned NumBytesToPush = NumBytes;
+ unsigned NumBytesToPop = NumBytes;
+
+ // If we have an inalloca argument, all stack space has already been allocated
+ // for us and be right at the top of the stack. We don't support multiple
+ // arguments passed in memory when using inalloca.
+ if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
+ NumBytesToPush = 0;
+ if (!ArgLocs.back().isMemLoc())
+ report_fatal_error("cannot use inalloca attribute on a register "
+ "parameter");
+ if (ArgLocs.back().getLocMemOffset() != 0)
+ report_fatal_error("any parameter with the inalloca attribute must be "
+ "the only memory argument");
+ }
+
+ if (!IsSibcall)
+ Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush,
+ NumBytes - NumBytesToPush, dl);
+
+ SDValue RetAddrFrIdx;
+ // Load return address for tail calls.
+ if (isTailCall && FPDiff)
+ Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
+ Is64Bit, FPDiff, dl);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+ SDValue StackPtr;
+
+ // The next loop assumes that the locations are in the same order of the
+ // input arguments.
+ assert(isSortedByValueNo(ArgLocs) &&
+ "Argument Location list must be sorted before lowering");
+
+ // Walk the register/memloc assignments, inserting copies/loads. In the case
+ // of tail call optimization arguments are handle later.
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E;
+ ++I, ++OutIndex) {
+ assert(OutIndex < Outs.size() && "Invalid Out index");
+ // Skip inalloca arguments, they have already been written.
+ ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags;
+ if (Flags.isInAlloca())
+ continue;
+
+ CCValAssign &VA = ArgLocs[I];
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = OutVals[OutIndex];
+ bool isByVal = Flags.isByVal();
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::AExt:
+ if (Arg.getValueType().isVector() &&
+ Arg.getValueType().getVectorElementType() == MVT::i1)
+ Arg = lowerMasksToReg(Arg, RegVT, dl, DAG);
+ else if (RegVT.is128BitVector()) {
+ // Special case: passing MMX values in XMM registers.
+ Arg = DAG.getBitcast(MVT::i64, Arg);
+ Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
+ Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
+ } else
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getBitcast(RegVT, Arg);
+ break;
+ case CCValAssign::Indirect: {
+ // Store the argument.
+ SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ Chain = DAG.getStore(
+ Chain, dl, Arg, SpillSlot,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
+ Arg = SpillSlot;
+ break;
+ }
+ }
+
+ if (VA.needsCustom()) {
+ assert(VA.getValVT() == MVT::v64i1 &&
+ "Currently the only custom case is when we split v64i1 to 2 regs");
+ // Split v64i1 value into two registers
+ Passv64i1ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++I],
+ Subtarget);
+ } else if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ if (isVarArg && IsWin64) {
+ // Win64 ABI requires argument XMM reg to be copied to the corresponding
+ // shadow reg if callee is a varargs function.
+ unsigned ShadowReg = 0;
+ switch (VA.getLocReg()) {
+ case X86::XMM0: ShadowReg = X86::RCX; break;
+ case X86::XMM1: ShadowReg = X86::RDX; break;
+ case X86::XMM2: ShadowReg = X86::R8; break;
+ case X86::XMM3: ShadowReg = X86::R9; break;
+ }
+ if (ShadowReg)
+ RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
+ }
+ } else if (!IsSibcall && (!isTailCall || isByVal)) {
+ assert(VA.isMemLoc());
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
+ getPointerTy(DAG.getDataLayout()));
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ if (Subtarget.isPICStyleGOT()) {
+ // ELF / PIC requires GOT in the EBX register before function calls via PLT
+ // GOT pointer.
+ if (!isTailCall) {
+ RegsToPass.push_back(std::make_pair(
+ unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
+ getPointerTy(DAG.getDataLayout()))));
+ } else {
+ // If we are tail calling and generating PIC/GOT style code load the
+ // address of the callee into ECX. The value in ecx is used as target of
+ // the tail jump. This is done to circumvent the ebx/callee-saved problem
+ // for tail calls on PIC/GOT architectures. Normally we would just put the
+ // address of GOT into ebx and then call target@PLT. But for tail calls
+ // ebx would be restored (since ebx is callee saved) before jumping to the
+ // target@PLT.
+
+ // Note: The actual moving to ECX is done further down.
+ GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
+ if (G && !G->getGlobal()->hasLocalLinkage() &&
+ G->getGlobal()->hasDefaultVisibility())
+ Callee = LowerGlobalAddress(Callee, DAG);
+ else if (isa<ExternalSymbolSDNode>(Callee))
+ Callee = LowerExternalSymbol(Callee, DAG);
+ }
+ }
+
+ if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
+ // From AMD64 ABI document:
+ // For calls that may call functions that use varargs or stdargs
+ // (prototype-less calls or calls to functions containing ellipsis (...) in
+ // the declaration) %al is used as hidden argument to specify the number
+ // of SSE registers used. The contents of %al do not need to match exactly
+ // the number of registers, but must be an ubound on the number of SSE
+ // registers used and is in the range 0 - 8 inclusive.
+
+ // Count the number of XMM registers allocated.
+ static const MCPhysReg XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
+ assert((Subtarget.hasSSE1() || !NumXMMRegs)
+ && "SSE registers cannot be used when SSE is disabled");
+
+ RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
+ DAG.getConstant(NumXMMRegs, dl,
+ MVT::i8)));
+ }
+
+ if (isVarArg && IsMustTail) {
+ const auto &Forwards = X86Info->getForwardedMustTailRegParms();
+ for (const auto &F : Forwards) {
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
+ RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
+ }
+ }
+
+ // For tail calls lower the arguments to the 'real' stack slots. Sibcalls
+ // don't need this because the eligibility check rejects calls that require
+ // shuffling arguments passed in memory.
+ if (!IsSibcall && isTailCall) {
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+ SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
+
+ SmallVector<SDValue, 8> MemOpChains2;
+ SDValue FIN;
+ int FI = 0;
+ for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E;
+ ++I, ++OutsIndex) {
+ CCValAssign &VA = ArgLocs[I];
+
+ if (VA.isRegLoc()) {
+ if (VA.needsCustom()) {
+ assert((CallConv == CallingConv::X86_RegCall) &&
+ "Expecting custom case only in regcall calling convention");
+ // This means that we are in special case where one argument was
+ // passed through two register locations - Skip the next location
+ ++I;
+ }
+
+ continue;
+ }
+
+ assert(VA.isMemLoc());
+ SDValue Arg = OutVals[OutsIndex];
+ ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags;
+ // Skip inalloca arguments. They don't require any work.
+ if (Flags.isInAlloca())
+ continue;
+ // Create frame index.
+ int32_t Offset = VA.getLocMemOffset()+FPDiff;
+ uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
+ FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
+ FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+
+ if (Flags.isByVal()) {
+ // Copy relative to framepointer.
+ SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
+ getPointerTy(DAG.getDataLayout()));
+ Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
+ StackPtr, Source);
+
+ MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
+ ArgChain,
+ Flags, DAG, dl));
+ } else {
+ // Store relative to framepointer.
+ MemOpChains2.push_back(DAG.getStore(
+ ArgChain, dl, Arg, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
+ }
+ }
+
+ if (!MemOpChains2.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
+
+ // Store the return address to the appropriate stack slot.
+ Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
+ getPointerTy(DAG.getDataLayout()),
+ RegInfo->getSlotSize(), FPDiff, dl);
+ }
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into registers.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
+ assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
+ // In the 64-bit large code model, we have to make all calls
+ // through a register, since the call instruction's 32-bit
+ // pc-relative offset may not be large enough to hold the whole
+ // address.
+ } else if (Callee->getOpcode() == ISD::GlobalAddress) {
+ // If the callee is a GlobalAddress node (quite common, every direct call
+ // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
+ // it.
+ GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee);
+
+ // We should use extra load for direct calls to dllimported functions in
+ // non-JIT mode.
+ const GlobalValue *GV = G->getGlobal();
+ if (!GV->hasDLLImportStorageClass()) {
+ unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV);
+
+ Callee = DAG.getTargetGlobalAddress(
+ GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags);
+
+ if (OpFlags == X86II::MO_GOTPCREL) {
+ // Add a wrapper.
+ Callee = DAG.getNode(X86ISD::WrapperRIP, dl,
+ getPointerTy(DAG.getDataLayout()), Callee);
+ // Add extra indirection
+ Callee = DAG.getLoad(
+ getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()));
+ }
+ }
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
+ unsigned char OpFlags =
+ Subtarget.classifyGlobalFunctionReference(nullptr, *Mod);
+
+ Callee = DAG.getTargetExternalSymbol(
+ S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags);
+ } else if (Subtarget.isTarget64BitILP32() &&
+ Callee->getValueType(0) == MVT::i32) {
+ // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
+ Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
+ }
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+
+ if (!IsSibcall && isTailCall) {
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getIntPtrConstant(NumBytesToPop, dl, true),
+ DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+ }
+
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ if (isTailCall)
+ Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32));
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ // If HasNCSR is asserted (attribute NoCallerSavedRegisters exists) then we
+ // set X86_INTR calling convention because it has the same CSR mask
+ // (same preserved registers).
+ const uint32_t *Mask = RegInfo->getCallPreservedMask(
+ MF, HasNCSR ? (CallingConv::ID)CallingConv::X86_INTR : CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+
+ // If this is an invoke in a 32-bit function using a funclet-based
+ // personality, assume the function clobbers all registers. If an exception
+ // is thrown, the runtime will not restore CSRs.
+ // FIXME: Model this more precisely so that we can register allocate across
+ // the normal edge and spill and fill across the exceptional edge.
+ if (!Is64Bit && CLI.CS && CLI.CS.isInvoke()) {
+ const Function &CallerFn = MF.getFunction();
+ EHPersonality Pers =
+ CallerFn.hasPersonalityFn()
+ ? classifyEHPersonality(CallerFn.getPersonalityFn())
+ : EHPersonality::Unknown;
+ if (isFuncletEHPersonality(Pers))
+ Mask = RegInfo->getNoPreservedMask();
+ }
+
+ // Define a new register mask from the existing mask.
+ uint32_t *RegMask = nullptr;
+
+ // In some calling conventions we need to remove the used physical registers
+ // from the reg mask.
+ if (CallConv == CallingConv::X86_RegCall || HasNCSR) {
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+
+ // Allocate a new Reg Mask and copy Mask.
+ RegMask = MF.allocateRegisterMask(TRI->getNumRegs());
+ unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32;
+ memcpy(RegMask, Mask, sizeof(uint32_t) * RegMaskSize);
+
+ // Make sure all sub registers of the argument registers are reset
+ // in the RegMask.
+ for (auto const &RegPair : RegsToPass)
+ for (MCSubRegIterator SubRegs(RegPair.first, TRI, /*IncludeSelf=*/true);
+ SubRegs.isValid(); ++SubRegs)
+ RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32));
+
+ // Create the RegMask Operand according to our updated mask.
+ Ops.push_back(DAG.getRegisterMask(RegMask));
+ } else {
+ // Create the RegMask Operand according to the static mask.
+ Ops.push_back(DAG.getRegisterMask(Mask));
+ }
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ if (isTailCall) {
+ // We used to do:
+ //// If this is the first return lowered for this function, add the regs
+ //// to the liveout set for the function.
+ // This isn't right, although it's probably harmless on x86; liveouts
+ // should be computed from returns not tail calls. Consider a void
+ // function making a tail call to a function returning int.
+ MF.getFrameInfo().setHasTailCall();
+ return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
+ }
+
+ Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ unsigned NumBytesForCalleeToPop;
+ if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
+ DAG.getTarget().Options.GuaranteedTailCallOpt))
+ NumBytesForCalleeToPop = NumBytes; // Callee pops everything
+ else if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
+ !Subtarget.getTargetTriple().isOSMSVCRT() &&
+ SR == StackStructReturn)
+ // If this is a call to a struct-return function, the callee
+ // pops the hidden struct pointer, so we have to push it back.
+ // This is common for Darwin/X86, Linux & Mingw32 targets.
+ // For MSVC Win32 targets, the caller pops the hidden struct pointer.
+ NumBytesForCalleeToPop = 4;
+ else
+ NumBytesForCalleeToPop = 0; // Callee pops nothing.
+
+ if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) {
+ // No need to reset the stack after the call if the call doesn't return. To
+ // make the MI verify, we'll pretend the callee does it for us.
+ NumBytesForCalleeToPop = NumBytes;
+ }
+
+ // Returns a flag for retval copy to use.
+ if (!IsSibcall) {
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getIntPtrConstant(NumBytesToPop, dl, true),
+ DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl,
+ true),
+ InFlag, dl);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
+ InVals, RegMask);
+}
+
+//===----------------------------------------------------------------------===//
+// Fast Calling Convention (tail call) implementation
+//===----------------------------------------------------------------------===//
+
+// Like std call, callee cleans arguments, convention except that ECX is
+// reserved for storing the tail called function address. Only 2 registers are
+// free for argument passing (inreg). Tail call optimization is performed
+// provided:
+// * tailcallopt is enabled
+// * caller/callee are fastcc
+// On X86_64 architecture with GOT-style position independent code only local
+// (within module) calls are supported at the moment.
+// To keep the stack aligned according to platform abi the function
+// GetAlignedArgumentStackSize ensures that argument delta is always multiples
+// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
+// If a tail called function callee has more arguments than the caller the
+// caller needs to make sure that there is room to move the RETADDR to. This is
+// achieved by reserving an area the size of the argument delta right after the
+// original RETADDR, but before the saved framepointer or the spilled registers
+// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
+// stack layout:
+// arg1
+// arg2
+// RETADDR
+// [ new RETADDR
+// move area ]
+// (possible EBP)
+// ESI
+// EDI
+// local1 ..
+
+/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
+/// requirement.
+unsigned
+X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
+ SelectionDAG& DAG) const {
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
+ unsigned StackAlignment = TFI.getStackAlignment();
+ uint64_t AlignMask = StackAlignment - 1;
+ int64_t Offset = StackSize;
+ unsigned SlotSize = RegInfo->getSlotSize();
+ if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
+ // Number smaller than 12 so just add the difference.
+ Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
+ } else {
+ // Mask out lower bits, add stackalignment once plus the 12 bytes.
+ Offset = ((~AlignMask) & Offset) + StackAlignment +
+ (StackAlignment-SlotSize);
+ }
+ return Offset;
+}
+
+/// Return true if the given stack call argument is already available in the
+/// same position (relatively) of the caller's incoming argument stack.
+static
+bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
+ MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
+ const X86InstrInfo *TII, const CCValAssign &VA) {
+ unsigned Bytes = Arg.getValueSizeInBits() / 8;
+
+ for (;;) {
+ // Look through nodes that don't alter the bits of the incoming value.
+ unsigned Op = Arg.getOpcode();
+ if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) {
+ Arg = Arg.getOperand(0);
+ continue;
+ }
+ if (Op == ISD::TRUNCATE) {
+ const SDValue &TruncInput = Arg.getOperand(0);
+ if (TruncInput.getOpcode() == ISD::AssertZext &&
+ cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
+ Arg.getValueType()) {
+ Arg = TruncInput.getOperand(0);
+ continue;
+ }
+ }
+ break;
+ }
+
+ int FI = INT_MAX;
+ if (Arg.getOpcode() == ISD::CopyFromReg) {
+ unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VR))
+ return false;
+ MachineInstr *Def = MRI->getVRegDef(VR);
+ if (!Def)
+ return false;
+ if (!Flags.isByVal()) {
+ if (!TII->isLoadFromStackSlot(*Def, FI))
+ return false;
+ } else {
+ unsigned Opcode = Def->getOpcode();
+ if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
+ Opcode == X86::LEA64_32r) &&
+ Def->getOperand(1).isFI()) {
+ FI = Def->getOperand(1).getIndex();
+ Bytes = Flags.getByValSize();
+ } else
+ return false;
+ }
+ } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
+ if (Flags.isByVal())
+ // ByVal argument is passed in as a pointer but it's now being
+ // dereferenced. e.g.
+ // define @foo(%struct.X* %A) {
+ // tail call @bar(%struct.X* byval %A)
+ // }
+ return false;
+ SDValue Ptr = Ld->getBasePtr();
+ FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
+ if (!FINode)
+ return false;
+ FI = FINode->getIndex();
+ } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
+ FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
+ FI = FINode->getIndex();
+ Bytes = Flags.getByValSize();
+ } else
+ return false;
+
+ assert(FI != INT_MAX);
+ if (!MFI.isFixedObjectIndex(FI))
+ return false;
+
+ if (Offset != MFI.getObjectOffset(FI))
+ return false;
+
+ // If this is not byval, check that the argument stack object is immutable.
+ // inalloca and argument copy elision can create mutable argument stack
+ // objects. Byval objects can be mutated, but a byval call intends to pass the
+ // mutated memory.
+ if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(FI))
+ return false;
+
+ if (VA.getLocVT().getSizeInBits() > Arg.getValueSizeInBits()) {
+ // If the argument location is wider than the argument type, check that any
+ // extension flags match.
+ if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
+ Flags.isSExt() != MFI.isObjectSExt(FI)) {
+ return false;
+ }
+ }
+
+ return Bytes == MFI.getObjectSize(FI);
+}
+
+/// Check whether the call is eligible for tail call optimization. Targets
+/// that want to do tail call optimization should implement this function.
+bool X86TargetLowering::IsEligibleForTailCallOptimization(
+ SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
+ bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
+ if (!mayTailCallThisCC(CalleeCC))
+ return false;
+
+ // If -tailcallopt is specified, make fastcc functions tail-callable.
+ MachineFunction &MF = DAG.getMachineFunction();
+ const Function &CallerF = MF.getFunction();
+
+ // If the function return type is x86_fp80 and the callee return type is not,
+ // then the FP_EXTEND of the call result is not a nop. It's not safe to
+ // perform a tailcall optimization here.
+ if (CallerF.getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
+ return false;
+
+ CallingConv::ID CallerCC = CallerF.getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+ bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC);
+ bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC);
+
+ // Win64 functions have extra shadow space for argument homing. Don't do the
+ // sibcall if the caller and callee have mismatched expectations for this
+ // space.
+ if (IsCalleeWin64 != IsCallerWin64)
+ return false;
+
+ if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
+ if (canGuaranteeTCO(CalleeCC) && CCMatch)
+ return true;
+ return false;
+ }
+
+ // Look for obvious safe cases to perform tail call optimization that do not
+ // require ABI changes. This is what gcc calls sibcall.
+
+ // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
+ // emit a special epilogue.
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ if (RegInfo->needsStackRealignment(MF))
+ return false;
+
+ // Also avoid sibcall optimization if either caller or callee uses struct
+ // return semantics.
+ if (isCalleeStructRet || isCallerStructRet)
+ return false;
+
+ // Do not sibcall optimize vararg calls unless all arguments are passed via
+ // registers.
+ LLVMContext &C = *DAG.getContext();
+ if (isVarArg && !Outs.empty()) {
+ // Optimizing for varargs on Win64 is unlikely to be safe without
+ // additional testing.
+ if (IsCalleeWin64 || IsCallerWin64)
+ return false;
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_X86);
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
+ if (!ArgLocs[i].isRegLoc())
+ return false;
+ }
+
+ // If the call result is in ST0 / ST1, it needs to be popped off the x87
+ // stack. Therefore, if it's not used by the call it is not safe to optimize
+ // this into a sibcall.
+ bool Unused = false;
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ if (!Ins[i].Used) {
+ Unused = true;
+ break;
+ }
+ }
+ if (Unused) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CalleeCC, false, MF, RVLocs, C);
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
+ return false;
+ }
+ }
+
+ // Check that the call results are passed in the same way.
+ if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
+ RetCC_X86, RetCC_X86))
+ return false;
+ // The callee has to preserve all registers the caller needs to preserve.
+ const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
+ if (!CCMatch) {
+ const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
+ if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
+ return false;
+ }
+
+ unsigned StackArgsSize = 0;
+
+ // If the callee takes no arguments then go on to check the results of the
+ // call.
+ if (!Outs.empty()) {
+ // Check if stack adjustment is needed. For now, do not do this if any
+ // argument is passed on the stack.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
+
+ // Allocate shadow area for Win64
+ if (IsCalleeWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_X86);
+ StackArgsSize = CCInfo.getNextStackOffset();
+
+ if (CCInfo.getNextStackOffset()) {
+ // Check if the arguments are already laid out in the right way as
+ // the caller's fixed stack objects.
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ const MachineRegisterInfo *MRI = &MF.getRegInfo();
+ const X86InstrInfo *TII = Subtarget.getInstrInfo();
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return false;
+ if (!VA.isRegLoc()) {
+ if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
+ MFI, MRI, TII, VA))
+ return false;
+ }
+ }
+ }
+
+ bool PositionIndependent = isPositionIndependent();
+ // If the tailcall address may be in a register, then make sure it's
+ // possible to register allocate for it. In 32-bit, the call address can
+ // only target EAX, EDX, or ECX since the tail call must be scheduled after
+ // callee-saved registers are restored. These happen to be the same
+ // registers used to pass 'inreg' arguments so watch out for those.
+ if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) &&
+ !isa<ExternalSymbolSDNode>(Callee)) ||
+ PositionIndependent)) {
+ unsigned NumInRegs = 0;
+ // In PIC we need an extra register to formulate the address computation
+ // for the callee.
+ unsigned MaxInRegs = PositionIndependent ? 2 : 3;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (!VA.isRegLoc())
+ continue;
+ unsigned Reg = VA.getLocReg();
+ switch (Reg) {
+ default: break;
+ case X86::EAX: case X86::EDX: case X86::ECX:
+ if (++NumInRegs == MaxInRegs)
+ return false;
+ break;
+ }
+ }
+ }
+
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
+ return false;
+ }
+
+ bool CalleeWillPop =
+ X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg,
+ MF.getTarget().Options.GuaranteedTailCallOpt);
+
+ if (unsigned BytesToPop =
+ MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) {
+ // If we have bytes to pop, the callee must pop them.
+ bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
+ if (!CalleePopMatches)
+ return false;
+ } else if (CalleeWillPop && StackArgsSize > 0) {
+ // If we don't have bytes to pop, make sure the callee doesn't pop any.
+ return false;
+ }
+
+ return true;
+}
+
+FastISel *
+X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ return X86::createFastISel(funcInfo, libInfo);
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Hooks
+//===----------------------------------------------------------------------===//
+
+static bool MayFoldLoad(SDValue Op) {
+ return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
+}
+
+static bool MayFoldIntoStore(SDValue Op) {
+ return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
+}
+
+static bool MayFoldIntoZeroExtend(SDValue Op) {
+ if (Op.hasOneUse()) {
+ unsigned Opcode = Op.getNode()->use_begin()->getOpcode();
+ return (ISD::ZERO_EXTEND == Opcode);
+ }
+ return false;
+}
+
+static bool isTargetShuffle(unsigned Opcode) {
+ switch(Opcode) {
+ default: return false;
+ case X86ISD::BLENDI:
+ case X86ISD::PSHUFB:
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ case X86ISD::SHUFP:
+ case X86ISD::INSERTPS:
+ case X86ISD::EXTRQI:
+ case X86ISD::INSERTQI:
+ case X86ISD::PALIGNR:
+ case X86ISD::VSHLDQ:
+ case X86ISD::VSRLDQ:
+ case X86ISD::MOVLHPS:
+ case X86ISD::MOVHLPS:
+ case X86ISD::MOVLPS:
+ case X86ISD::MOVLPD:
+ case X86ISD::MOVSHDUP:
+ case X86ISD::MOVSLDUP:
+ case X86ISD::MOVDDUP:
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ case X86ISD::VBROADCAST:
+ case X86ISD::VPERMILPI:
+ case X86ISD::VPERMILPV:
+ case X86ISD::VPERM2X128:
+ case X86ISD::VPERMIL2:
+ case X86ISD::VPERMI:
+ case X86ISD::VPPERM:
+ case X86ISD::VPERMV:
+ case X86ISD::VPERMV3:
+ case X86ISD::VPERMIV3:
+ case X86ISD::VZEXT_MOVL:
+ return true;
+ }
+}
+
+static bool isTargetShuffleVariableMask(unsigned Opcode) {
+ switch (Opcode) {
+ default: return false;
+ // Target Shuffles.
+ case X86ISD::PSHUFB:
+ case X86ISD::VPERMILPV:
+ case X86ISD::VPERMIL2:
+ case X86ISD::VPPERM:
+ case X86ISD::VPERMV:
+ case X86ISD::VPERMV3:
+ case X86ISD::VPERMIV3:
+ return true;
+ // 'Faux' Target Shuffles.
+ case ISD::AND:
+ case X86ISD::ANDNP:
+ return true;
+ }
+}
+
+SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ int ReturnAddrIndex = FuncInfo->getRAIndex();
+
+ if (ReturnAddrIndex == 0) {
+ // Set up a frame object for the return address.
+ unsigned SlotSize = RegInfo->getSlotSize();
+ ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize,
+ -(int64_t)SlotSize,
+ false);
+ FuncInfo->setRAIndex(ReturnAddrIndex);
+ }
+
+ return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
+}
+
+bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
+ bool hasSymbolicDisplacement) {
+ // Offset should fit into 32 bit immediate field.
+ if (!isInt<32>(Offset))
+ return false;
+
+ // If we don't have a symbolic displacement - we don't have any extra
+ // restrictions.
+ if (!hasSymbolicDisplacement)
+ return true;
+
+ // FIXME: Some tweaks might be needed for medium code model.
+ if (M != CodeModel::Small && M != CodeModel::Kernel)
+ return false;
+
+ // For small code model we assume that latest object is 16MB before end of 31
+ // bits boundary. We may also accept pretty large negative constants knowing
+ // that all objects are in the positive half of address space.
+ if (M == CodeModel::Small && Offset < 16*1024*1024)
+ return true;
+
+ // For kernel code model we know that all object resist in the negative half
+ // of 32bits address space. We may not accept negative offsets, since they may
+ // be just off and we may accept pretty large positive ones.
+ if (M == CodeModel::Kernel && Offset >= 0)
+ return true;
+
+ return false;
+}
+
+/// Determines whether the callee is required to pop its own arguments.
+/// Callee pop is necessary to support tail calls.
+bool X86::isCalleePop(CallingConv::ID CallingConv,
+ bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
+ // If GuaranteeTCO is true, we force some calls to be callee pop so that we
+ // can guarantee TCO.
+ if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
+ return true;
+
+ switch (CallingConv) {
+ default:
+ return false;
+ case CallingConv::X86_StdCall:
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_ThisCall:
+ case CallingConv::X86_VectorCall:
+ return !is64Bit;
+ }
+}
+
+/// \brief Return true if the condition is an unsigned comparison operation.
+static bool isX86CCUnsigned(unsigned X86CC) {
+ switch (X86CC) {
+ default:
+ llvm_unreachable("Invalid integer condition!");
+ case X86::COND_E:
+ case X86::COND_NE:
+ case X86::COND_B:
+ case X86::COND_A:
+ case X86::COND_BE:
+ case X86::COND_AE:
+ return true;
+ case X86::COND_G:
+ case X86::COND_GE:
+ case X86::COND_L:
+ case X86::COND_LE:
+ return false;
+ }
+}
+
+static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) {
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Invalid integer condition!");
+ case ISD::SETEQ: return X86::COND_E;
+ case ISD::SETGT: return X86::COND_G;
+ case ISD::SETGE: return X86::COND_GE;
+ case ISD::SETLT: return X86::COND_L;
+ case ISD::SETLE: return X86::COND_LE;
+ case ISD::SETNE: return X86::COND_NE;
+ case ISD::SETULT: return X86::COND_B;
+ case ISD::SETUGT: return X86::COND_A;
+ case ISD::SETULE: return X86::COND_BE;
+ case ISD::SETUGE: return X86::COND_AE;
+ }
+}
+
+/// Do a one-to-one translation of a ISD::CondCode to the X86-specific
+/// condition code, returning the condition code and the LHS/RHS of the
+/// comparison to make.
+static X86::CondCode TranslateX86CC(ISD::CondCode SetCCOpcode, const SDLoc &DL,
+ bool isFP, SDValue &LHS, SDValue &RHS,
+ SelectionDAG &DAG) {
+ if (!isFP) {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
+ if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
+ // X > -1 -> X == 0, jump !sign.
+ RHS = DAG.getConstant(0, DL, RHS.getValueType());
+ return X86::COND_NS;
+ }
+ if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
+ // X < 0 -> X == 0, jump on sign.
+ return X86::COND_S;
+ }
+ if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
+ // X < 1 -> X <= 0
+ RHS = DAG.getConstant(0, DL, RHS.getValueType());
+ return X86::COND_LE;
+ }
+ }
+
+ return TranslateIntegerX86CC(SetCCOpcode);
+ }
+
+ // First determine if it is required or is profitable to flip the operands.
+
+ // If LHS is a foldable load, but RHS is not, flip the condition.
+ if (ISD::isNON_EXTLoad(LHS.getNode()) &&
+ !ISD::isNON_EXTLoad(RHS.getNode())) {
+ SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
+ std::swap(LHS, RHS);
+ }
+
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ std::swap(LHS, RHS);
+ break;
+ }
+
+ // On a floating point condition, the flags are set as follows:
+ // ZF PF CF op
+ // 0 | 0 | 0 | X > Y
+ // 0 | 0 | 1 | X < Y
+ // 1 | 0 | 0 | X == Y
+ // 1 | 1 | 1 | unordered
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Condcode should be pre-legalized away");
+ case ISD::SETUEQ:
+ case ISD::SETEQ: return X86::COND_E;
+ case ISD::SETOLT: // flipped
+ case ISD::SETOGT:
+ case ISD::SETGT: return X86::COND_A;
+ case ISD::SETOLE: // flipped
+ case ISD::SETOGE:
+ case ISD::SETGE: return X86::COND_AE;
+ case ISD::SETUGT: // flipped
+ case ISD::SETULT:
+ case ISD::SETLT: return X86::COND_B;
+ case ISD::SETUGE: // flipped
+ case ISD::SETULE:
+ case ISD::SETLE: return X86::COND_BE;
+ case ISD::SETONE:
+ case ISD::SETNE: return X86::COND_NE;
+ case ISD::SETUO: return X86::COND_P;
+ case ISD::SETO: return X86::COND_NP;
+ case ISD::SETOEQ:
+ case ISD::SETUNE: return X86::COND_INVALID;
+ }
+}
+
+/// Is there a floating point cmov for the specific X86 condition code?
+/// Current x86 isa includes the following FP cmov instructions:
+/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
+static bool hasFPCMov(unsigned X86CC) {
+ switch (X86CC) {
+ default:
+ return false;
+ case X86::COND_B:
+ case X86::COND_BE:
+ case X86::COND_E:
+ case X86::COND_P:
+ case X86::COND_A:
+ case X86::COND_AE:
+ case X86::COND_NE:
+ case X86::COND_NP:
+ return true;
+ }
+}
+
+
+bool X86TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ MachineFunction &MF,
+ unsigned Intrinsic) const {
+
+ const IntrinsicData* IntrData = getIntrinsicWithChain(Intrinsic);
+ if (!IntrData)
+ return false;
+
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.flags = MachineMemOperand::MONone;
+ Info.offset = 0;
+
+ switch (IntrData->Type) {
+ case EXPAND_FROM_MEM: {
+ Info.ptrVal = I.getArgOperand(0);
+ Info.memVT = MVT::getVT(I.getType());
+ Info.align = 1;
+ Info.flags |= MachineMemOperand::MOLoad;
+ break;
+ }
+ case COMPRESS_TO_MEM: {
+ Info.ptrVal = I.getArgOperand(0);
+ Info.memVT = MVT::getVT(I.getArgOperand(1)->getType());
+ Info.align = 1;
+ Info.flags |= MachineMemOperand::MOStore;
+ break;
+ }
+ case TRUNCATE_TO_MEM_VI8:
+ case TRUNCATE_TO_MEM_VI16:
+ case TRUNCATE_TO_MEM_VI32: {
+ Info.ptrVal = I.getArgOperand(0);
+ MVT VT = MVT::getVT(I.getArgOperand(1)->getType());
+ MVT ScalarVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
+ if (IntrData->Type == TRUNCATE_TO_MEM_VI8)
+ ScalarVT = MVT::i8;
+ else if (IntrData->Type == TRUNCATE_TO_MEM_VI16)
+ ScalarVT = MVT::i16;
+ else if (IntrData->Type == TRUNCATE_TO_MEM_VI32)
+ ScalarVT = MVT::i32;
+
+ Info.memVT = MVT::getVectorVT(ScalarVT, VT.getVectorNumElements());
+ Info.align = 1;
+ Info.flags |= MachineMemOperand::MOStore;
+ break;
+ }
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+/// Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
+ if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
+ return true;
+ }
+ return false;
+}
+
+bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
+ ISD::LoadExtType ExtTy,
+ EVT NewVT) const {
+ // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
+ // relocation target a movq or addq instruction: don't let the load shrink.
+ SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
+ if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
+ if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
+ return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
+ return true;
+}
+
+/// \brief Returns true if it is beneficial to convert a load of a constant
+/// to just the constant itself.
+bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0 || BitSize > 64)
+ return false;
+ return true;
+}
+
+bool X86TargetLowering::convertSelectOfConstantsToMath(EVT VT) const {
+ // TODO: It might be a win to ease or lift this restriction, but the generic
+ // folds in DAGCombiner conflict with vector folds for an AVX512 target.
+ if (VT.isVector() && Subtarget.hasAVX512())
+ return false;
+
+ return true;
+}
+
+bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
+ unsigned Index) const {
+ if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
+ return false;
+
+ // Mask vectors support all subregister combinations and operations that
+ // extract half of vector.
+ if (ResVT.getVectorElementType() == MVT::i1)
+ return Index == 0 || ((ResVT.getSizeInBits() == SrcVT.getSizeInBits()*2) &&
+ (Index == ResVT.getVectorNumElements()));
+
+ return (Index % ResVT.getVectorNumElements()) == 0;
+}
+
+bool X86TargetLowering::isCheapToSpeculateCttz() const {
+ // Speculate cttz only if we can directly use TZCNT.
+ return Subtarget.hasBMI();
+}
+
+bool X86TargetLowering::isCheapToSpeculateCtlz() const {
+ // Speculate ctlz only if we can directly use LZCNT.
+ return Subtarget.hasLZCNT();
+}
+
+bool X86TargetLowering::canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
+ const SelectionDAG &DAG) const {
+ // Do not merge to float value size (128 bytes) if no implicit
+ // float attribute is set.
+ bool NoFloat = DAG.getMachineFunction().getFunction().hasFnAttribute(
+ Attribute::NoImplicitFloat);
+
+ if (NoFloat) {
+ unsigned MaxIntSize = Subtarget.is64Bit() ? 64 : 32;
+ return (MemVT.getSizeInBits() <= MaxIntSize);
+ }
+ return true;
+}
+
+bool X86TargetLowering::isCtlzFast() const {
+ return Subtarget.hasFastLZCNT();
+}
+
+bool X86TargetLowering::isMaskAndCmp0FoldingBeneficial(
+ const Instruction &AndI) const {
+ return true;
+}
+
+bool X86TargetLowering::hasAndNotCompare(SDValue Y) const {
+ if (!Subtarget.hasBMI())
+ return false;
+
+ // There are only 32-bit and 64-bit forms for 'andn'.
+ EVT VT = Y.getValueType();
+ if (VT != MVT::i32 && VT != MVT::i64)
+ return false;
+
+ return true;
+}
+
+MVT X86TargetLowering::hasFastEqualityCompare(unsigned NumBits) const {
+ MVT VT = MVT::getIntegerVT(NumBits);
+ if (isTypeLegal(VT))
+ return VT;
+
+ // PMOVMSKB can handle this.
+ if (NumBits == 128 && isTypeLegal(MVT::v16i8))
+ return MVT::v16i8;
+
+ // VPMOVMSKB can handle this.
+ if (NumBits == 256 && isTypeLegal(MVT::v32i8))
+ return MVT::v32i8;
+
+ // TODO: Allow 64-bit type for 32-bit target.
+ // TODO: 512-bit types should be allowed, but make sure that those
+ // cases are handled in combineVectorSizedSetCCEquality().
+
+ return MVT::INVALID_SIMPLE_VALUE_TYPE;
+}
+
+/// Val is the undef sentinel value or equal to the specified value.
+static bool isUndefOrEqual(int Val, int CmpVal) {
+ return ((Val == SM_SentinelUndef) || (Val == CmpVal));
+}
+
+/// Val is either the undef or zero sentinel value.
+static bool isUndefOrZero(int Val) {
+ return ((Val == SM_SentinelUndef) || (Val == SM_SentinelZero));
+}
+
+/// Return true if every element in Mask, beginning
+/// from position Pos and ending in Pos+Size is the undef sentinel value.
+static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
+ for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
+ if (Mask[i] != SM_SentinelUndef)
+ return false;
+ return true;
+}
+
+/// Return true if Val is undef or if its value falls within the
+/// specified range (L, H].
+static bool isUndefOrInRange(int Val, int Low, int Hi) {
+ return (Val == SM_SentinelUndef) || (Val >= Low && Val < Hi);
+}
+
+/// Return true if every element in Mask is undef or if its value
+/// falls within the specified range (L, H].
+static bool isUndefOrInRange(ArrayRef<int> Mask,
+ int Low, int Hi) {
+ for (int M : Mask)
+ if (!isUndefOrInRange(M, Low, Hi))
+ return false;
+ return true;
+}
+
+/// Return true if Val is undef, zero or if its value falls within the
+/// specified range (L, H].
+static bool isUndefOrZeroOrInRange(int Val, int Low, int Hi) {
+ return isUndefOrZero(Val) || (Val >= Low && Val < Hi);
+}
+
+/// Return true if every element in Mask is undef, zero or if its value
+/// falls within the specified range (L, H].
+static bool isUndefOrZeroOrInRange(ArrayRef<int> Mask, int Low, int Hi) {
+ for (int M : Mask)
+ if (!isUndefOrZeroOrInRange(M, Low, Hi))
+ return false;
+ return true;
+}
+
+/// Return true if every element in Mask, beginning
+/// from position Pos and ending in Pos+Size, falls within the specified
+/// sequential range (Low, Low+Size]. or is undef.
+static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
+ unsigned Pos, unsigned Size, int Low) {
+ for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
+ if (!isUndefOrEqual(Mask[i], Low))
+ return false;
+ return true;
+}
+
+/// Return true if every element in Mask, beginning
+/// from position Pos and ending in Pos+Size, falls within the specified
+/// sequential range (Low, Low+Size], or is undef or is zero.
+static bool isSequentialOrUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
+ unsigned Size, int Low) {
+ for (unsigned i = Pos, e = Pos + Size; i != e; ++i, ++Low)
+ if (!isUndefOrZero(Mask[i]) && Mask[i] != Low)
+ return false;
+ return true;
+}
+
+/// Return true if every element in Mask, beginning
+/// from position Pos and ending in Pos+Size is undef or is zero.
+static bool isUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
+ unsigned Size) {
+ for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
+ if (!isUndefOrZero(Mask[i]))
+ return false;
+ return true;
+}
+
+/// \brief Helper function to test whether a shuffle mask could be
+/// simplified by widening the elements being shuffled.
+///
+/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
+/// leaves it in an unspecified state.
+///
+/// NOTE: This must handle normal vector shuffle masks and *target* vector
+/// shuffle masks. The latter have the special property of a '-2' representing
+/// a zero-ed lane of a vector.
+static bool canWidenShuffleElements(ArrayRef<int> Mask,
+ SmallVectorImpl<int> &WidenedMask) {
+ WidenedMask.assign(Mask.size() / 2, 0);
+ for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
+ int M0 = Mask[i];
+ int M1 = Mask[i + 1];
+
+ // If both elements are undef, its trivial.
+ if (M0 == SM_SentinelUndef && M1 == SM_SentinelUndef) {
+ WidenedMask[i / 2] = SM_SentinelUndef;
+ continue;
+ }
+
+ // Check for an undef mask and a mask value properly aligned to fit with
+ // a pair of values. If we find such a case, use the non-undef mask's value.
+ if (M0 == SM_SentinelUndef && M1 >= 0 && (M1 % 2) == 1) {
+ WidenedMask[i / 2] = M1 / 2;
+ continue;
+ }
+ if (M1 == SM_SentinelUndef && M0 >= 0 && (M0 % 2) == 0) {
+ WidenedMask[i / 2] = M0 / 2;
+ continue;
+ }
+
+ // When zeroing, we need to spread the zeroing across both lanes to widen.
+ if (M0 == SM_SentinelZero || M1 == SM_SentinelZero) {
+ if ((M0 == SM_SentinelZero || M0 == SM_SentinelUndef) &&
+ (M1 == SM_SentinelZero || M1 == SM_SentinelUndef)) {
+ WidenedMask[i / 2] = SM_SentinelZero;
+ continue;
+ }
+ return false;
+ }
+
+ // Finally check if the two mask values are adjacent and aligned with
+ // a pair.
+ if (M0 != SM_SentinelUndef && (M0 % 2) == 0 && (M0 + 1) == M1) {
+ WidenedMask[i / 2] = M0 / 2;
+ continue;
+ }
+
+ // Otherwise we can't safely widen the elements used in this shuffle.
+ return false;
+ }
+ assert(WidenedMask.size() == Mask.size() / 2 &&
+ "Incorrect size of mask after widening the elements!");
+
+ return true;
+}
+
+/// Returns true if Elt is a constant zero or a floating point constant +0.0.
+bool X86::isZeroNode(SDValue Elt) {
+ return isNullConstant(Elt) || isNullFPConstant(Elt);
+}
+
+// Build a vector of constants.
+// Use an UNDEF node if MaskElt == -1.
+// Split 64-bit constants in the 32-bit mode.
+static SDValue getConstVector(ArrayRef<int> Values, MVT VT, SelectionDAG &DAG,
+ const SDLoc &dl, bool IsMask = false) {
+
+ SmallVector<SDValue, 32> Ops;
+ bool Split = false;
+
+ MVT ConstVecVT = VT;
+ unsigned NumElts = VT.getVectorNumElements();
+ bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
+ if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
+ ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
+ Split = true;
+ }
+
+ MVT EltVT = ConstVecVT.getVectorElementType();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ bool IsUndef = Values[i] < 0 && IsMask;
+ SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) :
+ DAG.getConstant(Values[i], dl, EltVT);
+ Ops.push_back(OpNode);
+ if (Split)
+ Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) :
+ DAG.getConstant(0, dl, EltVT));
+ }
+ SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
+ if (Split)
+ ConstsNode = DAG.getBitcast(VT, ConstsNode);
+ return ConstsNode;
+}
+
+static SDValue getConstVector(ArrayRef<APInt> Bits, APInt &Undefs,
+ MVT VT, SelectionDAG &DAG, const SDLoc &dl) {
+ assert(Bits.size() == Undefs.getBitWidth() &&
+ "Unequal constant and undef arrays");
+ SmallVector<SDValue, 32> Ops;
+ bool Split = false;
+
+ MVT ConstVecVT = VT;
+ unsigned NumElts = VT.getVectorNumElements();
+ bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
+ if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
+ ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
+ Split = true;
+ }
+
+ MVT EltVT = ConstVecVT.getVectorElementType();
+ for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
+ if (Undefs[i]) {
+ Ops.append(Split ? 2 : 1, DAG.getUNDEF(EltVT));
+ continue;
+ }
+ const APInt &V = Bits[i];
+ assert(V.getBitWidth() == VT.getScalarSizeInBits() && "Unexpected sizes");
+ if (Split) {
+ Ops.push_back(DAG.getConstant(V.trunc(32), dl, EltVT));
+ Ops.push_back(DAG.getConstant(V.lshr(32).trunc(32), dl, EltVT));
+ } else if (EltVT == MVT::f32) {
+ APFloat FV(APFloat::IEEEsingle(), V);
+ Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
+ } else if (EltVT == MVT::f64) {
+ APFloat FV(APFloat::IEEEdouble(), V);
+ Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
+ } else {
+ Ops.push_back(DAG.getConstant(V, dl, EltVT));
+ }
+ }
+
+ SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
+ return DAG.getBitcast(VT, ConstsNode);
+}
+
+/// Returns a vector of specified type with all zero elements.
+static SDValue getZeroVector(MVT VT, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG, const SDLoc &dl) {
+ assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector() ||
+ VT.getVectorElementType() == MVT::i1) &&
+ "Unexpected vector type");
+
+ // Try to build SSE/AVX zero vectors as <N x i32> bitcasted to their dest
+ // type. This ensures they get CSE'd. But if the integer type is not
+ // available, use a floating-point +0.0 instead.
+ SDValue Vec;
+ if (!Subtarget.hasSSE2() && VT.is128BitVector()) {
+ Vec = DAG.getConstantFP(+0.0, dl, MVT::v4f32);
+ } else if (VT.getVectorElementType() == MVT::i1) {
+ assert((Subtarget.hasBWI() || VT.getVectorNumElements() <= 16) &&
+ "Unexpected vector type");
+ assert((Subtarget.hasVLX() || VT.getVectorNumElements() >= 8) &&
+ "Unexpected vector type");
+ Vec = DAG.getConstant(0, dl, VT);
+ } else {
+ unsigned Num32BitElts = VT.getSizeInBits() / 32;
+ Vec = DAG.getConstant(0, dl, MVT::getVectorVT(MVT::i32, Num32BitElts));
+ }
+ return DAG.getBitcast(VT, Vec);
+}
+
+static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
+ const SDLoc &dl, unsigned vectorWidth) {
+ EVT VT = Vec.getValueType();
+ EVT ElVT = VT.getVectorElementType();
+ unsigned Factor = VT.getSizeInBits()/vectorWidth;
+ EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
+ VT.getVectorNumElements()/Factor);
+
+ // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR
+ unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
+ assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
+
+ // This is the index of the first element of the vectorWidth-bit chunk
+ // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
+ IdxVal &= ~(ElemsPerChunk - 1);
+
+ // If the input is a buildvector just emit a smaller one.
+ if (Vec.getOpcode() == ISD::BUILD_VECTOR)
+ return DAG.getBuildVector(ResultVT, dl,
+ Vec->ops().slice(IdxVal, ElemsPerChunk));
+
+ SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
+}
+
+/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
+/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
+/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
+/// instructions or a simple subregister reference. Idx is an index in the
+/// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes
+/// lowering EXTRACT_VECTOR_ELT operations easier.
+static SDValue extract128BitVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, const SDLoc &dl) {
+ assert((Vec.getValueType().is256BitVector() ||
+ Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
+ return extractSubVector(Vec, IdxVal, DAG, dl, 128);
+}
+
+/// Generate a DAG to grab 256-bits from a 512-bit vector.
+static SDValue extract256BitVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, const SDLoc &dl) {
+ assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
+ return extractSubVector(Vec, IdxVal, DAG, dl, 256);
+}
+
+static SDValue insertSubVector(SDValue Result, SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, const SDLoc &dl,
+ unsigned vectorWidth) {
+ assert((vectorWidth == 128 || vectorWidth == 256) &&
+ "Unsupported vector width");
+ // Inserting UNDEF is Result
+ if (Vec.isUndef())
+ return Result;
+ EVT VT = Vec.getValueType();
+ EVT ElVT = VT.getVectorElementType();
+ EVT ResultVT = Result.getValueType();
+
+ // Insert the relevant vectorWidth bits.
+ unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
+ assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
+
+ // This is the index of the first element of the vectorWidth-bit chunk
+ // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
+ IdxVal &= ~(ElemsPerChunk - 1);
+
+ SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
+}
+
+/// Generate a DAG to put 128-bits into a vector > 128 bits. This
+/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
+/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
+/// simple superregister reference. Idx is an index in the 128 bits
+/// we want. It need not be aligned to a 128-bit boundary. That makes
+/// lowering INSERT_VECTOR_ELT operations easier.
+static SDValue insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, const SDLoc &dl) {
+ assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
+ return insertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
+}
+
+static SDValue insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, const SDLoc &dl) {
+ assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
+ return insertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
+}
+
+// Return true if the instruction zeroes the unused upper part of the
+// destination and accepts mask.
+static bool isMaskedZeroUpperBitsvXi1(unsigned int Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case X86ISD::TESTM:
+ case X86ISD::TESTNM:
+ case X86ISD::PCMPEQM:
+ case X86ISD::PCMPGTM:
+ case X86ISD::CMPM:
+ case X86ISD::CMPMU:
+ case X86ISD::CMPM_RND:
+ return true;
+ }
+}
+
+/// Insert i1-subvector to i1-vector.
+static SDValue insert1BitVector(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ SDValue SubVec = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+
+ if (!isa<ConstantSDNode>(Idx))
+ return SDValue();
+
+ // Inserting undef is a nop. We can just return the original vector.
+ if (SubVec.isUndef())
+ return Vec;
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ if (IdxVal == 0 && Vec.isUndef()) // the operation is legal
+ return Op;
+
+ MVT OpVT = Op.getSimpleValueType();
+ unsigned NumElems = OpVT.getVectorNumElements();
+
+ SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
+
+ // Extend to natively supported kshift.
+ MVT WideOpVT = OpVT;
+ if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8)
+ WideOpVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
+
+ // Inserting into the lsbs of a zero vector is legal. ISel will insert shifts
+ // if necessary.
+ if (IdxVal == 0 && ISD::isBuildVectorAllZeros(Vec.getNode())) {
+ // May need to promote to a legal type.
+ Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
+ getZeroVector(WideOpVT, Subtarget, DAG, dl),
+ SubVec, Idx);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
+ }
+
+ MVT SubVecVT = SubVec.getSimpleValueType();
+ unsigned SubVecNumElems = SubVecVT.getVectorNumElements();
+
+ assert(IdxVal + SubVecNumElems <= NumElems &&
+ IdxVal % SubVecVT.getSizeInBits() == 0 &&
+ "Unexpected index value in INSERT_SUBVECTOR");
+
+ SDValue Undef = DAG.getUNDEF(WideOpVT);
+
+ if (IdxVal == 0) {
+ // Zero lower bits of the Vec
+ SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
+ Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec,
+ ZeroIdx);
+ Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits);
+ Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits);
+ // Merge them together, SubVec should be zero extended.
+ SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
+ getZeroVector(WideOpVT, Subtarget, DAG, dl),
+ SubVec, ZeroIdx);
+ Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
+ }
+
+ SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
+ Undef, SubVec, ZeroIdx);
+
+ if (Vec.isUndef()) {
+ assert(IdxVal != 0 && "Unexpected index");
+ SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
+ }
+
+ if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
+ assert(IdxVal != 0 && "Unexpected index");
+ NumElems = WideOpVT.getVectorNumElements();
+ unsigned ShiftLeft = NumElems - SubVecNumElems;
+ unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
+ SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
+ DAG.getConstant(ShiftLeft, dl, MVT::i8));
+ if (ShiftRight != 0)
+ SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec,
+ DAG.getConstant(ShiftRight, dl, MVT::i8));
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
+ }
+
+ // Simple case when we put subvector in the upper part
+ if (IdxVal + SubVecNumElems == NumElems) {
+ SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+ if (SubVecNumElems * 2 == NumElems) {
+ // Special case, use legal zero extending insert_subvector. This allows
+ // isel to opimitize when bits are known zero.
+ Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVecVT, Vec, ZeroIdx);
+ Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
+ getZeroVector(WideOpVT, Subtarget, DAG, dl),
+ Vec, ZeroIdx);
+ } else {
+ // Otherwise use explicit shifts to zero the bits.
+ Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
+ Undef, Vec, ZeroIdx);
+ NumElems = WideOpVT.getVectorNumElements();
+ SDValue ShiftBits = DAG.getConstant(NumElems - IdxVal, dl, MVT::i8);
+ Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits);
+ Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits);
+ }
+ Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
+ }
+
+ // Inserting into the middle is more complicated.
+
+ NumElems = WideOpVT.getVectorNumElements();
+
+ // Widen the vector if needed.
+ Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx);
+ // Move the current value of the bit to be replace to the lsbs.
+ Op = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+ // Xor with the new bit.
+ Op = DAG.getNode(ISD::XOR, dl, WideOpVT, Op, SubVec);
+ // Shift to MSB, filling bottom bits with 0.
+ unsigned ShiftLeft = NumElems - SubVecNumElems;
+ Op = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Op,
+ DAG.getConstant(ShiftLeft, dl, MVT::i8));
+ // Shift to the final position, filling upper bits with 0.
+ unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
+ Op = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Op,
+ DAG.getConstant(ShiftRight, dl, MVT::i8));
+ // Xor with original vector leaving the new value.
+ Op = DAG.getNode(ISD::XOR, dl, WideOpVT, Vec, Op);
+ // Reduce to original width if needed.
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
+}
+
+/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
+/// instructions. This is used because creating CONCAT_VECTOR nodes of
+/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
+/// large BUILD_VECTORS.
+static SDValue concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
+ unsigned NumElems, SelectionDAG &DAG,
+ const SDLoc &dl) {
+ SDValue V = insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
+ return insert128BitVector(V, V2, NumElems / 2, DAG, dl);
+}
+
+static SDValue concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
+ unsigned NumElems, SelectionDAG &DAG,
+ const SDLoc &dl) {
+ SDValue V = insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
+ return insert256BitVector(V, V2, NumElems / 2, DAG, dl);
+}
+
+/// Returns a vector of specified type with all bits set.
+/// Always build ones vectors as <4 x i32>, <8 x i32> or <16 x i32>.
+/// Then bitcast to their original type, ensuring they get CSE'd.
+static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
+ assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
+ "Expected a 128/256/512-bit vector type");
+
+ APInt Ones = APInt::getAllOnesValue(32);
+ unsigned NumElts = VT.getSizeInBits() / 32;
+ SDValue Vec = DAG.getConstant(Ones, dl, MVT::getVectorVT(MVT::i32, NumElts));
+ return DAG.getBitcast(VT, Vec);
+}
+
+static SDValue getExtendInVec(unsigned Opc, const SDLoc &DL, EVT VT, SDValue In,
+ SelectionDAG &DAG) {
+ EVT InVT = In.getValueType();
+ assert((X86ISD::VSEXT == Opc || X86ISD::VZEXT == Opc) && "Unexpected opcode");
+
+ if (VT.is128BitVector() && InVT.is128BitVector())
+ return X86ISD::VSEXT == Opc ? DAG.getSignExtendVectorInReg(In, DL, VT)
+ : DAG.getZeroExtendVectorInReg(In, DL, VT);
+
+ // For 256-bit vectors, we only need the lower (128-bit) input half.
+ // For 512-bit vectors, we only need the lower input half or quarter.
+ if (VT.getSizeInBits() > 128 && InVT.getSizeInBits() > 128) {
+ int Scale = VT.getScalarSizeInBits() / InVT.getScalarSizeInBits();
+ In = extractSubVector(In, 0, DAG, DL,
+ std::max(128, (int)VT.getSizeInBits() / Scale));
+ }
+
+ return DAG.getNode(Opc, DL, VT, In);
+}
+
+/// Returns a vector_shuffle node for an unpackl operation.
+static SDValue getUnpackl(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
+ SDValue V1, SDValue V2) {
+ SmallVector<int, 8> Mask;
+ createUnpackShuffleMask(VT, Mask, /* Lo = */ true, /* Unary = */ false);
+ return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
+}
+
+/// Returns a vector_shuffle node for an unpackh operation.
+static SDValue getUnpackh(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
+ SDValue V1, SDValue V2) {
+ SmallVector<int, 8> Mask;
+ createUnpackShuffleMask(VT, Mask, /* Lo = */ false, /* Unary = */ false);
+ return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
+}
+
+/// Return a vector_shuffle of the specified vector of zero or undef vector.
+/// This produces a shuffle where the low element of V2 is swizzled into the
+/// zero/undef vector, landing at element Idx.
+/// This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
+static SDValue getShuffleVectorZeroOrUndef(SDValue V2, int Idx,
+ bool IsZero,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = V2.getSimpleValueType();
+ SDValue V1 = IsZero
+ ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
+ int NumElems = VT.getVectorNumElements();
+ SmallVector<int, 16> MaskVec(NumElems);
+ for (int i = 0; i != NumElems; ++i)
+ // If this is the insertion idx, put the low elt of V2 here.
+ MaskVec[i] = (i == Idx) ? NumElems : i;
+ return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, MaskVec);
+}
+
+static SDValue peekThroughBitcasts(SDValue V) {
+ while (V.getNode() && V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+ return V;
+}
+
+static SDValue peekThroughOneUseBitcasts(SDValue V) {
+ while (V.getNode() && V.getOpcode() == ISD::BITCAST &&
+ V.getOperand(0).hasOneUse())
+ V = V.getOperand(0);
+ return V;
+}
+
+static const Constant *getTargetConstantFromNode(SDValue Op) {
+ Op = peekThroughBitcasts(Op);
+
+ auto *Load = dyn_cast<LoadSDNode>(Op);
+ if (!Load)
+ return nullptr;
+
+ SDValue Ptr = Load->getBasePtr();
+ if (Ptr->getOpcode() == X86ISD::Wrapper ||
+ Ptr->getOpcode() == X86ISD::WrapperRIP)
+ Ptr = Ptr->getOperand(0);
+
+ auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
+ if (!CNode || CNode->isMachineConstantPoolEntry())
+ return nullptr;
+
+ return dyn_cast<Constant>(CNode->getConstVal());
+}
+
+// Extract raw constant bits from constant pools.
+static bool getTargetConstantBitsFromNode(SDValue Op, unsigned EltSizeInBits,
+ APInt &UndefElts,
+ SmallVectorImpl<APInt> &EltBits,
+ bool AllowWholeUndefs = true,
+ bool AllowPartialUndefs = true) {
+ assert(EltBits.empty() && "Expected an empty EltBits vector");
+
+ Op = peekThroughBitcasts(Op);
+
+ EVT VT = Op.getValueType();
+ unsigned SizeInBits = VT.getSizeInBits();
+ assert((SizeInBits % EltSizeInBits) == 0 && "Can't split constant!");
+ unsigned NumElts = SizeInBits / EltSizeInBits;
+
+ // Bitcast a source array of element bits to the target size.
+ auto CastBitData = [&](APInt &UndefSrcElts, ArrayRef<APInt> SrcEltBits) {
+ unsigned NumSrcElts = UndefSrcElts.getBitWidth();
+ unsigned SrcEltSizeInBits = SrcEltBits[0].getBitWidth();
+ assert((NumSrcElts * SrcEltSizeInBits) == SizeInBits &&
+ "Constant bit sizes don't match");
+
+ // Don't split if we don't allow undef bits.
+ bool AllowUndefs = AllowWholeUndefs || AllowPartialUndefs;
+ if (UndefSrcElts.getBoolValue() && !AllowUndefs)
+ return false;
+
+ // If we're already the right size, don't bother bitcasting.
+ if (NumSrcElts == NumElts) {
+ UndefElts = UndefSrcElts;
+ EltBits.assign(SrcEltBits.begin(), SrcEltBits.end());
+ return true;
+ }
+
+ // Extract all the undef/constant element data and pack into single bitsets.
+ APInt UndefBits(SizeInBits, 0);
+ APInt MaskBits(SizeInBits, 0);
+
+ for (unsigned i = 0; i != NumSrcElts; ++i) {
+ unsigned BitOffset = i * SrcEltSizeInBits;
+ if (UndefSrcElts[i])
+ UndefBits.setBits(BitOffset, BitOffset + SrcEltSizeInBits);
+ MaskBits.insertBits(SrcEltBits[i], BitOffset);
+ }
+
+ // Split the undef/constant single bitset data into the target elements.
+ UndefElts = APInt(NumElts, 0);
+ EltBits.resize(NumElts, APInt(EltSizeInBits, 0));
+
+ for (unsigned i = 0; i != NumElts; ++i) {
+ unsigned BitOffset = i * EltSizeInBits;
+ APInt UndefEltBits = UndefBits.extractBits(EltSizeInBits, BitOffset);
+
+ // Only treat an element as UNDEF if all bits are UNDEF.
+ if (UndefEltBits.isAllOnesValue()) {
+ if (!AllowWholeUndefs)
+ return false;
+ UndefElts.setBit(i);
+ continue;
+ }
+
+ // If only some bits are UNDEF then treat them as zero (or bail if not
+ // supported).
+ if (UndefEltBits.getBoolValue() && !AllowPartialUndefs)
+ return false;
+
+ APInt Bits = MaskBits.extractBits(EltSizeInBits, BitOffset);
+ EltBits[i] = Bits.getZExtValue();
+ }
+ return true;
+ };
+
+ // Collect constant bits and insert into mask/undef bit masks.
+ auto CollectConstantBits = [](const Constant *Cst, APInt &Mask, APInt &Undefs,
+ unsigned UndefBitIndex) {
+ if (!Cst)
+ return false;
+ if (isa<UndefValue>(Cst)) {
+ Undefs.setBit(UndefBitIndex);
+ return true;
+ }
+ if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
+ Mask = CInt->getValue();
+ return true;
+ }
+ if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
+ Mask = CFP->getValueAPF().bitcastToAPInt();
+ return true;
+ }
+ return false;
+ };
+
+ // Handle UNDEFs.
+ if (Op.isUndef()) {
+ APInt UndefSrcElts = APInt::getAllOnesValue(NumElts);
+ SmallVector<APInt, 64> SrcEltBits(NumElts, APInt(EltSizeInBits, 0));
+ return CastBitData(UndefSrcElts, SrcEltBits);
+ }
+
+ // Extract scalar constant bits.
+ if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) {
+ APInt UndefSrcElts = APInt::getNullValue(1);
+ SmallVector<APInt, 64> SrcEltBits(1, Cst->getAPIntValue());
+ return CastBitData(UndefSrcElts, SrcEltBits);
+ }
+
+ // Extract constant bits from build vector.
+ if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
+ unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
+ unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
+
+ APInt UndefSrcElts(NumSrcElts, 0);
+ SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
+ for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
+ const SDValue &Src = Op.getOperand(i);
+ if (Src.isUndef()) {
+ UndefSrcElts.setBit(i);
+ continue;
+ }
+ auto *Cst = cast<ConstantSDNode>(Src);
+ SrcEltBits[i] = Cst->getAPIntValue().zextOrTrunc(SrcEltSizeInBits);
+ }
+ return CastBitData(UndefSrcElts, SrcEltBits);
+ }
+
+ // Extract constant bits from constant pool vector.
+ if (auto *Cst = getTargetConstantFromNode(Op)) {
+ Type *CstTy = Cst->getType();
+ if (!CstTy->isVectorTy() || (SizeInBits != CstTy->getPrimitiveSizeInBits()))
+ return false;
+
+ unsigned SrcEltSizeInBits = CstTy->getScalarSizeInBits();
+ unsigned NumSrcElts = CstTy->getVectorNumElements();
+
+ APInt UndefSrcElts(NumSrcElts, 0);
+ SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ if (!CollectConstantBits(Cst->getAggregateElement(i), SrcEltBits[i],
+ UndefSrcElts, i))
+ return false;
+
+ return CastBitData(UndefSrcElts, SrcEltBits);
+ }
+
+ // Extract constant bits from a broadcasted constant pool scalar.
+ if (Op.getOpcode() == X86ISD::VBROADCAST &&
+ EltSizeInBits <= VT.getScalarSizeInBits()) {
+ if (auto *Broadcast = getTargetConstantFromNode(Op.getOperand(0))) {
+ unsigned SrcEltSizeInBits = Broadcast->getType()->getScalarSizeInBits();
+ unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
+
+ APInt UndefSrcElts(NumSrcElts, 0);
+ SmallVector<APInt, 64> SrcEltBits(1, APInt(SrcEltSizeInBits, 0));
+ if (CollectConstantBits(Broadcast, SrcEltBits[0], UndefSrcElts, 0)) {
+ if (UndefSrcElts[0])
+ UndefSrcElts.setBits(0, NumSrcElts);
+ SrcEltBits.append(NumSrcElts - 1, SrcEltBits[0]);
+ return CastBitData(UndefSrcElts, SrcEltBits);
+ }
+ }
+ }
+
+ // Extract a rematerialized scalar constant insertion.
+ if (Op.getOpcode() == X86ISD::VZEXT_MOVL &&
+ Op.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ isa<ConstantSDNode>(Op.getOperand(0).getOperand(0))) {
+ unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
+ unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
+
+ APInt UndefSrcElts(NumSrcElts, 0);
+ SmallVector<APInt, 64> SrcEltBits;
+ auto *CN = cast<ConstantSDNode>(Op.getOperand(0).getOperand(0));
+ SrcEltBits.push_back(CN->getAPIntValue().zextOrTrunc(SrcEltSizeInBits));
+ SrcEltBits.append(NumSrcElts - 1, APInt(SrcEltSizeInBits, 0));
+ return CastBitData(UndefSrcElts, SrcEltBits);
+ }
+
+ return false;
+}
+
+static bool getTargetShuffleMaskIndices(SDValue MaskNode,
+ unsigned MaskEltSizeInBits,
+ SmallVectorImpl<uint64_t> &RawMask) {
+ APInt UndefElts;
+ SmallVector<APInt, 64> EltBits;
+
+ // Extract the raw target constant bits.
+ // FIXME: We currently don't support UNDEF bits or mask entries.
+ if (!getTargetConstantBitsFromNode(MaskNode, MaskEltSizeInBits, UndefElts,
+ EltBits, /* AllowWholeUndefs */ false,
+ /* AllowPartialUndefs */ false))
+ return false;
+
+ // Insert the extracted elements into the mask.
+ for (APInt Elt : EltBits)
+ RawMask.push_back(Elt.getZExtValue());
+
+ return true;
+}
+
+/// Create a shuffle mask that matches the PACKSS/PACKUS truncation.
+/// Note: This ignores saturation, so inputs must be checked first.
+static void createPackShuffleMask(MVT VT, SmallVectorImpl<int> &Mask,
+ bool Unary) {
+ assert(Mask.empty() && "Expected an empty shuffle mask vector");
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumLanes = VT.getSizeInBits() / 128;
+ unsigned NumEltsPerLane = 128 / VT.getScalarSizeInBits();
+ unsigned Offset = Unary ? 0 : NumElts;
+
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2)
+ Mask.push_back(Elt + (Lane * NumEltsPerLane));
+ for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2)
+ Mask.push_back(Elt + (Lane * NumEltsPerLane) + Offset);
+ }
+}
+
+/// Calculates the shuffle mask corresponding to the target-specific opcode.
+/// If the mask could be calculated, returns it in \p Mask, returns the shuffle
+/// operands in \p Ops, and returns true.
+/// Sets \p IsUnary to true if only one source is used. Note that this will set
+/// IsUnary for shuffles which use a single input multiple times, and in those
+/// cases it will adjust the mask to only have indices within that single input.
+/// It is an error to call this with non-empty Mask/Ops vectors.
+static bool getTargetShuffleMask(SDNode *N, MVT VT, bool AllowSentinelZero,
+ SmallVectorImpl<SDValue> &Ops,
+ SmallVectorImpl<int> &Mask, bool &IsUnary) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SDValue ImmN;
+
+ assert(Mask.empty() && "getTargetShuffleMask expects an empty Mask vector");
+ assert(Ops.empty() && "getTargetShuffleMask expects an empty Ops vector");
+
+ IsUnary = false;
+ bool IsFakeUnary = false;
+ switch(N->getOpcode()) {
+ case X86ISD::BLENDI:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::SHUFP:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::INSERTPS:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeINSERTPSMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::EXTRQI:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ if (isa<ConstantSDNode>(N->getOperand(1)) &&
+ isa<ConstantSDNode>(N->getOperand(2))) {
+ int BitLen = N->getConstantOperandVal(1);
+ int BitIdx = N->getConstantOperandVal(2);
+ DecodeEXTRQIMask(VT, BitLen, BitIdx, Mask);
+ IsUnary = true;
+ }
+ break;
+ case X86ISD::INSERTQI:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ if (isa<ConstantSDNode>(N->getOperand(2)) &&
+ isa<ConstantSDNode>(N->getOperand(3))) {
+ int BitLen = N->getConstantOperandVal(2);
+ int BitIdx = N->getConstantOperandVal(3);
+ DecodeINSERTQIMask(VT, BitLen, BitIdx, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ }
+ break;
+ case X86ISD::UNPCKH:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ DecodeUNPCKHMask(VT, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::UNPCKL:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ DecodeUNPCKLMask(VT, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::MOVHLPS:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ DecodeMOVHLPSMask(NumElems, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::MOVLHPS:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ DecodeMOVLHPSMask(NumElems, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::PALIGNR:
+ assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(N->getOperand(0));
+ break;
+ case X86ISD::VSHLDQ:
+ assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands() - 1);
+ DecodePSLLDQMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::VSRLDQ:
+ assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands() - 1);
+ DecodePSRLDQMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::PSHUFD:
+ case X86ISD::VPERMILPI:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::PSHUFHW:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::PSHUFLW:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::VZEXT_MOVL:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ DecodeZeroMoveLowMask(VT, Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::VBROADCAST: {
+ SDValue N0 = N->getOperand(0);
+ // See if we're broadcasting from index 0 of an EXTRACT_SUBVECTOR. If so,
+ // add the pre-extracted value to the Ops vector.
+ if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
+ N0.getOperand(0).getValueType() == VT &&
+ N0.getConstantOperandVal(1) == 0)
+ Ops.push_back(N0.getOperand(0));
+
+ // We only decode broadcasts of same-sized vectors, unless the broadcast
+ // came from an extract from the original width. If we found one, we
+ // pushed it the Ops vector above.
+ if (N0.getValueType() == VT || !Ops.empty()) {
+ DecodeVectorBroadcast(VT, Mask);
+ IsUnary = true;
+ break;
+ }
+ return false;
+ }
+ case X86ISD::VPERMILPV: {
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ IsUnary = true;
+ SDValue MaskNode = N->getOperand(1);
+ unsigned MaskEltSize = VT.getScalarSizeInBits();
+ SmallVector<uint64_t, 32> RawMask;
+ if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
+ DecodeVPERMILPMask(VT, RawMask, Mask);
+ break;
+ }
+ if (auto *C = getTargetConstantFromNode(MaskNode)) {
+ DecodeVPERMILPMask(C, MaskEltSize, Mask);
+ break;
+ }
+ return false;
+ }
+ case X86ISD::PSHUFB: {
+ assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ IsUnary = true;
+ SDValue MaskNode = N->getOperand(1);
+ SmallVector<uint64_t, 32> RawMask;
+ if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) {
+ DecodePSHUFBMask(RawMask, Mask);
+ break;
+ }
+ if (auto *C = getTargetConstantFromNode(MaskNode)) {
+ DecodePSHUFBMask(C, Mask);
+ break;
+ }
+ return false;
+ }
+ case X86ISD::VPERMI:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeVPERMMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask);
+ break;
+ case X86ISD::VPERM2X128:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::MOVSLDUP:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ DecodeMOVSLDUPMask(VT, Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::MOVSHDUP:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ DecodeMOVSHDUPMask(VT, Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::MOVDDUP:
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ DecodeMOVDDUPMask(VT, Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::MOVLPD:
+ case X86ISD::MOVLPS:
+ // Not yet implemented
+ return false;
+ case X86ISD::VPERMIL2: {
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ unsigned MaskEltSize = VT.getScalarSizeInBits();
+ SDValue MaskNode = N->getOperand(2);
+ SDValue CtrlNode = N->getOperand(3);
+ if (ConstantSDNode *CtrlOp = dyn_cast<ConstantSDNode>(CtrlNode)) {
+ unsigned CtrlImm = CtrlOp->getZExtValue();
+ SmallVector<uint64_t, 32> RawMask;
+ if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
+ DecodeVPERMIL2PMask(VT, CtrlImm, RawMask, Mask);
+ break;
+ }
+ if (auto *C = getTargetConstantFromNode(MaskNode)) {
+ DecodeVPERMIL2PMask(C, CtrlImm, MaskEltSize, Mask);
+ break;
+ }
+ }
+ return false;
+ }
+ case X86ISD::VPPERM: {
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ SDValue MaskNode = N->getOperand(2);
+ SmallVector<uint64_t, 32> RawMask;
+ if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) {
+ DecodeVPPERMMask(RawMask, Mask);
+ break;
+ }
+ if (auto *C = getTargetConstantFromNode(MaskNode)) {
+ DecodeVPPERMMask(C, Mask);
+ break;
+ }
+ return false;
+ }
+ case X86ISD::VPERMV: {
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ IsUnary = true;
+ // Unlike most shuffle nodes, VPERMV's mask operand is operand 0.
+ Ops.push_back(N->getOperand(1));
+ SDValue MaskNode = N->getOperand(0);
+ SmallVector<uint64_t, 32> RawMask;
+ unsigned MaskEltSize = VT.getScalarSizeInBits();
+ if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
+ DecodeVPERMVMask(RawMask, Mask);
+ break;
+ }
+ if (auto *C = getTargetConstantFromNode(MaskNode)) {
+ DecodeVPERMVMask(C, MaskEltSize, Mask);
+ break;
+ }
+ return false;
+ }
+ case X86ISD::VPERMV3: {
+ assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(2).getValueType() == VT && "Unexpected value type");
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(2);
+ // Unlike most shuffle nodes, VPERMV3's mask operand is the middle one.
+ Ops.push_back(N->getOperand(0));
+ Ops.push_back(N->getOperand(2));
+ SDValue MaskNode = N->getOperand(1);
+ unsigned MaskEltSize = VT.getScalarSizeInBits();
+ if (auto *C = getTargetConstantFromNode(MaskNode)) {
+ DecodeVPERMV3Mask(C, MaskEltSize, Mask);
+ break;
+ }
+ return false;
+ }
+ case X86ISD::VPERMIV3: {
+ assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
+ assert(N->getOperand(2).getValueType() == VT && "Unexpected value type");
+ IsUnary = IsFakeUnary = N->getOperand(1) == N->getOperand(2);
+ // Unlike most shuffle nodes, VPERMIV3's mask operand is the first one.
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(N->getOperand(2));
+ SDValue MaskNode = N->getOperand(0);
+ unsigned MaskEltSize = VT.getScalarSizeInBits();
+ if (auto *C = getTargetConstantFromNode(MaskNode)) {
+ DecodeVPERMV3Mask(C, MaskEltSize, Mask);
+ break;
+ }
+ return false;
+ }
+ default: llvm_unreachable("unknown target shuffle node");
+ }
+
+ // Empty mask indicates the decode failed.
+ if (Mask.empty())
+ return false;
+
+ // Check if we're getting a shuffle mask with zero'd elements.
+ if (!AllowSentinelZero)
+ if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
+ return false;
+
+ // If we have a fake unary shuffle, the shuffle mask is spread across two
+ // inputs that are actually the same node. Re-map the mask to always point
+ // into the first input.
+ if (IsFakeUnary)
+ for (int &M : Mask)
+ if (M >= (int)Mask.size())
+ M -= Mask.size();
+
+ // If we didn't already add operands in the opcode-specific code, default to
+ // adding 1 or 2 operands starting at 0.
+ if (Ops.empty()) {
+ Ops.push_back(N->getOperand(0));
+ if (!IsUnary || IsFakeUnary)
+ Ops.push_back(N->getOperand(1));
+ }
+
+ return true;
+}
+
+/// Check a target shuffle mask's inputs to see if we can set any values to
+/// SM_SentinelZero - this is for elements that are known to be zero
+/// (not just zeroable) from their inputs.
+/// Returns true if the target shuffle mask was decoded.
+static bool setTargetShuffleZeroElements(SDValue N,
+ SmallVectorImpl<int> &Mask,
+ SmallVectorImpl<SDValue> &Ops) {
+ bool IsUnary;
+ if (!isTargetShuffle(N.getOpcode()))
+ return false;
+
+ MVT VT = N.getSimpleValueType();
+ if (!getTargetShuffleMask(N.getNode(), VT, true, Ops, Mask, IsUnary))
+ return false;
+
+ SDValue V1 = Ops[0];
+ SDValue V2 = IsUnary ? V1 : Ops[1];
+
+ V1 = peekThroughBitcasts(V1);
+ V2 = peekThroughBitcasts(V2);
+
+ assert((VT.getSizeInBits() % Mask.size()) == 0 &&
+ "Illegal split of shuffle value type");
+ unsigned EltSizeInBits = VT.getSizeInBits() / Mask.size();
+
+ // Extract known constant input data.
+ APInt UndefSrcElts[2];
+ SmallVector<APInt, 32> SrcEltBits[2];
+ bool IsSrcConstant[2] = {
+ getTargetConstantBitsFromNode(V1, EltSizeInBits, UndefSrcElts[0],
+ SrcEltBits[0], true, false),
+ getTargetConstantBitsFromNode(V2, EltSizeInBits, UndefSrcElts[1],
+ SrcEltBits[1], true, false)};
+
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ int M = Mask[i];
+
+ // Already decoded as SM_SentinelZero / SM_SentinelUndef.
+ if (M < 0)
+ continue;
+
+ // Determine shuffle input and normalize the mask.
+ unsigned SrcIdx = M / Size;
+ SDValue V = M < Size ? V1 : V2;
+ M %= Size;
+
+ // We are referencing an UNDEF input.
+ if (V.isUndef()) {
+ Mask[i] = SM_SentinelUndef;
+ continue;
+ }
+
+ // SCALAR_TO_VECTOR - only the first element is defined, and the rest UNDEF.
+ // TODO: We currently only set UNDEF for integer types - floats use the same
+ // registers as vectors and many of the scalar folded loads rely on the
+ // SCALAR_TO_VECTOR pattern.
+ if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ (Size % V.getValueType().getVectorNumElements()) == 0) {
+ int Scale = Size / V.getValueType().getVectorNumElements();
+ int Idx = M / Scale;
+ if (Idx != 0 && !VT.isFloatingPoint())
+ Mask[i] = SM_SentinelUndef;
+ else if (Idx == 0 && X86::isZeroNode(V.getOperand(0)))
+ Mask[i] = SM_SentinelZero;
+ continue;
+ }
+
+ // Attempt to extract from the source's constant bits.
+ if (IsSrcConstant[SrcIdx]) {
+ if (UndefSrcElts[SrcIdx][M])
+ Mask[i] = SM_SentinelUndef;
+ else if (SrcEltBits[SrcIdx][M] == 0)
+ Mask[i] = SM_SentinelZero;
+ }
+ }
+
+ assert(VT.getVectorNumElements() == Mask.size() &&
+ "Different mask size from vector size!");
+ return true;
+}
+
+// Attempt to decode ops that could be represented as a shuffle mask.
+// The decoded shuffle mask may contain a different number of elements to the
+// destination value type.
+static bool getFauxShuffleMask(SDValue N, SmallVectorImpl<int> &Mask,
+ SmallVectorImpl<SDValue> &Ops,
+ SelectionDAG &DAG) {
+ Mask.clear();
+ Ops.clear();
+
+ MVT VT = N.getSimpleValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumSizeInBits = VT.getSizeInBits();
+ unsigned NumBitsPerElt = VT.getScalarSizeInBits();
+ assert((NumBitsPerElt % 8) == 0 && (NumSizeInBits % 8) == 0 &&
+ "Expected byte aligned value types");
+
+ unsigned Opcode = N.getOpcode();
+ switch (Opcode) {
+ case ISD::AND:
+ case X86ISD::ANDNP: {
+ // Attempt to decode as a per-byte mask.
+ APInt UndefElts;
+ SmallVector<APInt, 32> EltBits;
+ SDValue N0 = N.getOperand(0);
+ SDValue N1 = N.getOperand(1);
+ bool IsAndN = (X86ISD::ANDNP == Opcode);
+ uint64_t ZeroMask = IsAndN ? 255 : 0;
+ if (!getTargetConstantBitsFromNode(IsAndN ? N0 : N1, 8, UndefElts, EltBits))
+ return false;
+ for (int i = 0, e = (int)EltBits.size(); i != e; ++i) {
+ if (UndefElts[i]) {
+ Mask.push_back(SM_SentinelUndef);
+ continue;
+ }
+ uint64_t ByteBits = EltBits[i].getZExtValue();
+ if (ByteBits != 0 && ByteBits != 255)
+ return false;
+ Mask.push_back(ByteBits == ZeroMask ? SM_SentinelZero : i);
+ }
+ Ops.push_back(IsAndN ? N1 : N0);
+ return true;
+ }
+ case ISD::SCALAR_TO_VECTOR: {
+ // Match against a scalar_to_vector of an extract from a vector,
+ // for PEXTRW/PEXTRB we must handle the implicit zext of the scalar.
+ SDValue N0 = N.getOperand(0);
+ SDValue SrcExtract;
+
+ if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ N0.getOperand(0).getValueType() == VT) ||
+ (N0.getOpcode() == X86ISD::PEXTRW &&
+ N0.getOperand(0).getValueType() == MVT::v8i16) ||
+ (N0.getOpcode() == X86ISD::PEXTRB &&
+ N0.getOperand(0).getValueType() == MVT::v16i8)) {
+ SrcExtract = N0;
+ }
+
+ if (!SrcExtract || !isa<ConstantSDNode>(SrcExtract.getOperand(1)))
+ return false;
+
+ SDValue SrcVec = SrcExtract.getOperand(0);
+ EVT SrcVT = SrcVec.getValueType();
+ unsigned NumSrcElts = SrcVT.getVectorNumElements();
+ unsigned NumZeros = (NumBitsPerElt / SrcVT.getScalarSizeInBits()) - 1;
+
+ unsigned SrcIdx = SrcExtract.getConstantOperandVal(1);
+ if (NumSrcElts <= SrcIdx)
+ return false;
+
+ Ops.push_back(SrcVec);
+ Mask.push_back(SrcIdx);
+ Mask.append(NumZeros, SM_SentinelZero);
+ Mask.append(NumSrcElts - Mask.size(), SM_SentinelUndef);
+ return true;
+ }
+ case X86ISD::PINSRB:
+ case X86ISD::PINSRW: {
+ SDValue InVec = N.getOperand(0);
+ SDValue InScl = N.getOperand(1);
+ uint64_t InIdx = N.getConstantOperandVal(2);
+ assert(InIdx < NumElts && "Illegal insertion index");
+
+ // Attempt to recognise a PINSR*(VEC, 0, Idx) shuffle pattern.
+ if (X86::isZeroNode(InScl)) {
+ Ops.push_back(InVec);
+ for (unsigned i = 0; i != NumElts; ++i)
+ Mask.push_back(i == InIdx ? SM_SentinelZero : (int)i);
+ return true;
+ }
+
+ // Attempt to recognise a PINSR*(PEXTR*) shuffle pattern.
+ // TODO: Expand this to support INSERT_VECTOR_ELT/etc.
+ unsigned ExOp =
+ (X86ISD::PINSRB == Opcode ? X86ISD::PEXTRB : X86ISD::PEXTRW);
+ if (InScl.getOpcode() != ExOp)
+ return false;
+
+ SDValue ExVec = InScl.getOperand(0);
+ uint64_t ExIdx = InScl.getConstantOperandVal(1);
+ assert(ExIdx < NumElts && "Illegal extraction index");
+ Ops.push_back(InVec);
+ Ops.push_back(ExVec);
+ for (unsigned i = 0; i != NumElts; ++i)
+ Mask.push_back(i == InIdx ? NumElts + ExIdx : i);
+ return true;
+ }
+ case X86ISD::PACKSS:
+ case X86ISD::PACKUS: {
+ SDValue N0 = N.getOperand(0);
+ SDValue N1 = N.getOperand(1);
+ assert(N0.getValueType().getVectorNumElements() == (NumElts / 2) &&
+ N1.getValueType().getVectorNumElements() == (NumElts / 2) &&
+ "Unexpected input value type");
+
+ // If we know input saturation won't happen we can treat this
+ // as a truncation shuffle.
+ if (Opcode == X86ISD::PACKSS) {
+ if ((!N0.isUndef() && DAG.ComputeNumSignBits(N0) <= NumBitsPerElt) ||
+ (!N1.isUndef() && DAG.ComputeNumSignBits(N1) <= NumBitsPerElt))
+ return false;
+ } else {
+ APInt ZeroMask = APInt::getHighBitsSet(2 * NumBitsPerElt, NumBitsPerElt);
+ if ((!N0.isUndef() && !DAG.MaskedValueIsZero(N0, ZeroMask)) ||
+ (!N1.isUndef() && !DAG.MaskedValueIsZero(N1, ZeroMask)))
+ return false;
+ }
+
+ bool IsUnary = (N0 == N1);
+
+ Ops.push_back(N0);
+ if (!IsUnary)
+ Ops.push_back(N1);
+
+ createPackShuffleMask(VT, Mask, IsUnary);
+ return true;
+ }
+ case X86ISD::VSHLI:
+ case X86ISD::VSRLI: {
+ uint64_t ShiftVal = N.getConstantOperandVal(1);
+ // Out of range bit shifts are guaranteed to be zero.
+ if (NumBitsPerElt <= ShiftVal) {
+ Mask.append(NumElts, SM_SentinelZero);
+ return true;
+ }
+
+ // We can only decode 'whole byte' bit shifts as shuffles.
+ if ((ShiftVal % 8) != 0)
+ break;
+
+ uint64_t ByteShift = ShiftVal / 8;
+ unsigned NumBytes = NumSizeInBits / 8;
+ unsigned NumBytesPerElt = NumBitsPerElt / 8;
+ Ops.push_back(N.getOperand(0));
+
+ // Clear mask to all zeros and insert the shifted byte indices.
+ Mask.append(NumBytes, SM_SentinelZero);
+
+ if (X86ISD::VSHLI == Opcode) {
+ for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
+ for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
+ Mask[i + j] = i + j - ByteShift;
+ } else {
+ for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
+ for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
+ Mask[i + j - ByteShift] = i + j;
+ }
+ return true;
+ }
+ case ISD::ZERO_EXTEND_VECTOR_INREG:
+ case X86ISD::VZEXT: {
+ // TODO - add support for VPMOVZX with smaller input vector types.
+ SDValue Src = N.getOperand(0);
+ MVT SrcVT = Src.getSimpleValueType();
+ if (NumSizeInBits != SrcVT.getSizeInBits())
+ break;
+ DecodeZeroExtendMask(SrcVT.getScalarType(), VT, Mask);
+ Ops.push_back(Src);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// Removes unused shuffle source inputs and adjusts the shuffle mask accordingly.
+static void resolveTargetShuffleInputsAndMask(SmallVectorImpl<SDValue> &Inputs,
+ SmallVectorImpl<int> &Mask) {
+ int MaskWidth = Mask.size();
+ SmallVector<SDValue, 16> UsedInputs;
+ for (int i = 0, e = Inputs.size(); i < e; ++i) {
+ int lo = UsedInputs.size() * MaskWidth;
+ int hi = lo + MaskWidth;
+
+ // Strip UNDEF input usage.
+ if (Inputs[i].isUndef())
+ for (int &M : Mask)
+ if ((lo <= M) && (M < hi))
+ M = SM_SentinelUndef;
+
+ // Check for unused inputs.
+ if (any_of(Mask, [lo, hi](int i) { return (lo <= i) && (i < hi); })) {
+ UsedInputs.push_back(Inputs[i]);
+ continue;
+ }
+ for (int &M : Mask)
+ if (lo <= M)
+ M -= MaskWidth;
+ }
+ Inputs = UsedInputs;
+}
+
+/// Calls setTargetShuffleZeroElements to resolve a target shuffle mask's inputs
+/// and set the SM_SentinelUndef and SM_SentinelZero values. Then check the
+/// remaining input indices in case we now have a unary shuffle and adjust the
+/// inputs accordingly.
+/// Returns true if the target shuffle mask was decoded.
+static bool resolveTargetShuffleInputs(SDValue Op,
+ SmallVectorImpl<SDValue> &Inputs,
+ SmallVectorImpl<int> &Mask,
+ SelectionDAG &DAG) {
+ if (!setTargetShuffleZeroElements(Op, Mask, Inputs))
+ if (!getFauxShuffleMask(Op, Mask, Inputs, DAG))
+ return false;
+
+ resolveTargetShuffleInputsAndMask(Inputs, Mask);
+ return true;
+}
+
+/// Returns the scalar element that will make up the ith
+/// element of the result of the vector shuffle.
+static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
+ unsigned Depth) {
+ if (Depth == 6)
+ return SDValue(); // Limit search depth.
+
+ SDValue V = SDValue(N, 0);
+ EVT VT = V.getValueType();
+ unsigned Opcode = V.getOpcode();
+
+ // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
+ if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
+ int Elt = SV->getMaskElt(Index);
+
+ if (Elt < 0)
+ return DAG.getUNDEF(VT.getVectorElementType());
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
+ : SV->getOperand(1);
+ return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
+ }
+
+ // Recurse into target specific vector shuffles to find scalars.
+ if (isTargetShuffle(Opcode)) {
+ MVT ShufVT = V.getSimpleValueType();
+ MVT ShufSVT = ShufVT.getVectorElementType();
+ int NumElems = (int)ShufVT.getVectorNumElements();
+ SmallVector<int, 16> ShuffleMask;
+ SmallVector<SDValue, 16> ShuffleOps;
+ bool IsUnary;
+
+ if (!getTargetShuffleMask(N, ShufVT, true, ShuffleOps, ShuffleMask, IsUnary))
+ return SDValue();
+
+ int Elt = ShuffleMask[Index];
+ if (Elt == SM_SentinelZero)
+ return ShufSVT.isInteger() ? DAG.getConstant(0, SDLoc(N), ShufSVT)
+ : DAG.getConstantFP(+0.0, SDLoc(N), ShufSVT);
+ if (Elt == SM_SentinelUndef)
+ return DAG.getUNDEF(ShufSVT);
+
+ assert(0 <= Elt && Elt < (2*NumElems) && "Shuffle index out of range");
+ SDValue NewV = (Elt < NumElems) ? ShuffleOps[0] : ShuffleOps[1];
+ return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
+ Depth+1);
+ }
+
+ // Actual nodes that may contain scalar elements
+ if (Opcode == ISD::BITCAST) {
+ V = V.getOperand(0);
+ EVT SrcVT = V.getValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
+ return SDValue();
+ }
+
+ if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
+ return (Index == 0) ? V.getOperand(0)
+ : DAG.getUNDEF(VT.getVectorElementType());
+
+ if (V.getOpcode() == ISD::BUILD_VECTOR)
+ return V.getOperand(Index);
+
+ return SDValue();
+}
+
+// Use PINSRB/PINSRW/PINSRD to create a build vector.
+static SDValue LowerBuildVectorAsInsert(SDValue Op, unsigned NonZeros,
+ unsigned NumNonZero, unsigned NumZero,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+ assert(((VT == MVT::v8i16 && Subtarget.hasSSE2()) ||
+ ((VT == MVT::v16i8 || VT == MVT::v4i32) && Subtarget.hasSSE41())) &&
+ "Illegal vector insertion");
+
+ SDLoc dl(Op);
+ SDValue V;
+ bool First = true;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ bool IsNonZero = (NonZeros & (1 << i)) != 0;
+ if (!IsNonZero)
+ continue;
+
+ // If the build vector contains zeros or our first insertion is not the
+ // first index then insert into zero vector to break any register
+ // dependency else use SCALAR_TO_VECTOR/VZEXT_MOVL.
+ if (First) {
+ First = false;
+ if (NumZero || 0 != i)
+ V = getZeroVector(VT, Subtarget, DAG, dl);
+ else {
+ assert(0 == i && "Expected insertion into zero-index");
+ V = DAG.getAnyExtOrTrunc(Op.getOperand(i), dl, MVT::i32);
+ V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V);
+ V = DAG.getNode(X86ISD::VZEXT_MOVL, dl, MVT::v4i32, V);
+ V = DAG.getBitcast(VT, V);
+ continue;
+ }
+ }
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V, Op.getOperand(i),
+ DAG.getIntPtrConstant(i, dl));
+ }
+
+ return V;
+}
+
+/// Custom lower build_vector of v16i8.
+static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
+ unsigned NumNonZero, unsigned NumZero,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (NumNonZero > 8 && !Subtarget.hasSSE41())
+ return SDValue();
+
+ // SSE4.1 - use PINSRB to insert each byte directly.
+ if (Subtarget.hasSSE41())
+ return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG,
+ Subtarget);
+
+ SDLoc dl(Op);
+ SDValue V;
+ bool First = true;
+
+ // Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
+ for (unsigned i = 0; i < 16; ++i) {
+ bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
+ if (ThisIsNonZero && First) {
+ if (NumZero)
+ V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
+ else
+ V = DAG.getUNDEF(MVT::v8i16);
+ First = false;
+ }
+
+ if ((i & 1) != 0) {
+ // FIXME: Investigate extending to i32 instead of just i16.
+ // FIXME: Investigate combining the first 4 bytes as a i32 instead.
+ SDValue ThisElt, LastElt;
+ bool LastIsNonZero = (NonZeros & (1 << (i - 1))) != 0;
+ if (LastIsNonZero) {
+ LastElt =
+ DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i - 1));
+ }
+ if (ThisIsNonZero) {
+ ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
+ ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, ThisElt,
+ DAG.getConstant(8, dl, MVT::i8));
+ if (LastIsNonZero)
+ ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
+ } else
+ ThisElt = LastElt;
+
+ if (ThisElt) {
+ if (1 == i) {
+ V = NumZero ? DAG.getZExtOrTrunc(ThisElt, dl, MVT::i32)
+ : DAG.getAnyExtOrTrunc(ThisElt, dl, MVT::i32);
+ V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V);
+ V = DAG.getNode(X86ISD::VZEXT_MOVL, dl, MVT::v4i32, V);
+ V = DAG.getBitcast(MVT::v8i16, V);
+ } else {
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
+ DAG.getIntPtrConstant(i / 2, dl));
+ }
+ }
+ }
+ }
+
+ return DAG.getBitcast(MVT::v16i8, V);
+}
+
+/// Custom lower build_vector of v8i16.
+static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
+ unsigned NumNonZero, unsigned NumZero,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (NumNonZero > 4 && !Subtarget.hasSSE41())
+ return SDValue();
+
+ // Use PINSRW to insert each byte directly.
+ return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG,
+ Subtarget);
+}
+
+/// Custom lower build_vector of v4i32 or v4f32.
+static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // Find all zeroable elements.
+ std::bitset<4> Zeroable;
+ for (int i=0; i < 4; ++i) {
+ SDValue Elt = Op->getOperand(i);
+ Zeroable[i] = (Elt.isUndef() || X86::isZeroNode(Elt));
+ }
+ assert(Zeroable.size() - Zeroable.count() > 1 &&
+ "We expect at least two non-zero elements!");
+
+ // We only know how to deal with build_vector nodes where elements are either
+ // zeroable or extract_vector_elt with constant index.
+ SDValue FirstNonZero;
+ unsigned FirstNonZeroIdx;
+ for (unsigned i=0; i < 4; ++i) {
+ if (Zeroable[i])
+ continue;
+ SDValue Elt = Op->getOperand(i);
+ if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isa<ConstantSDNode>(Elt.getOperand(1)))
+ return SDValue();
+ // Make sure that this node is extracting from a 128-bit vector.
+ MVT VT = Elt.getOperand(0).getSimpleValueType();
+ if (!VT.is128BitVector())
+ return SDValue();
+ if (!FirstNonZero.getNode()) {
+ FirstNonZero = Elt;
+ FirstNonZeroIdx = i;
+ }
+ }
+
+ assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
+ SDValue V1 = FirstNonZero.getOperand(0);
+ MVT VT = V1.getSimpleValueType();
+
+ // See if this build_vector can be lowered as a blend with zero.
+ SDValue Elt;
+ unsigned EltMaskIdx, EltIdx;
+ int Mask[4];
+ for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
+ if (Zeroable[EltIdx]) {
+ // The zero vector will be on the right hand side.
+ Mask[EltIdx] = EltIdx+4;
+ continue;
+ }
+
+ Elt = Op->getOperand(EltIdx);
+ // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
+ EltMaskIdx = Elt.getConstantOperandVal(1);
+ if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
+ break;
+ Mask[EltIdx] = EltIdx;
+ }
+
+ if (EltIdx == 4) {
+ // Let the shuffle legalizer deal with blend operations.
+ SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
+ if (V1.getSimpleValueType() != VT)
+ V1 = DAG.getBitcast(VT, V1);
+ return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, Mask);
+ }
+
+ // See if we can lower this build_vector to a INSERTPS.
+ if (!Subtarget.hasSSE41())
+ return SDValue();
+
+ SDValue V2 = Elt.getOperand(0);
+ if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
+ V1 = SDValue();
+
+ bool CanFold = true;
+ for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
+ if (Zeroable[i])
+ continue;
+
+ SDValue Current = Op->getOperand(i);
+ SDValue SrcVector = Current->getOperand(0);
+ if (!V1.getNode())
+ V1 = SrcVector;
+ CanFold = (SrcVector == V1) && (Current.getConstantOperandVal(1) == i);
+ }
+
+ if (!CanFold)
+ return SDValue();
+
+ assert(V1.getNode() && "Expected at least two non-zero elements!");
+ if (V1.getSimpleValueType() != MVT::v4f32)
+ V1 = DAG.getBitcast(MVT::v4f32, V1);
+ if (V2.getSimpleValueType() != MVT::v4f32)
+ V2 = DAG.getBitcast(MVT::v4f32, V2);
+
+ // Ok, we can emit an INSERTPS instruction.
+ unsigned ZMask = Zeroable.to_ulong();
+
+ unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
+ assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
+ SDLoc DL(Op);
+ SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
+ DAG.getIntPtrConstant(InsertPSMask, DL));
+ return DAG.getBitcast(VT, Result);
+}
+
+/// Return a vector logical shift node.
+static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits,
+ SelectionDAG &DAG, const TargetLowering &TLI,
+ const SDLoc &dl) {
+ assert(VT.is128BitVector() && "Unknown type for VShift");
+ MVT ShVT = MVT::v16i8;
+ unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
+ SrcOp = DAG.getBitcast(ShVT, SrcOp);
+ MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), VT);
+ assert(NumBits % 8 == 0 && "Only support byte sized shifts");
+ SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy);
+ return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
+}
+
+static SDValue LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, const SDLoc &dl,
+ SelectionDAG &DAG) {
+
+ // Check if the scalar load can be widened into a vector load. And if
+ // the address is "base + cst" see if the cst can be "absorbed" into
+ // the shuffle mask.
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
+ SDValue Ptr = LD->getBasePtr();
+ if (!ISD::isNormalLoad(LD) || LD->isVolatile())
+ return SDValue();
+ EVT PVT = LD->getValueType(0);
+ if (PVT != MVT::i32 && PVT != MVT::f32)
+ return SDValue();
+
+ int FI = -1;
+ int64_t Offset = 0;
+ if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
+ FI = FINode->getIndex();
+ Offset = 0;
+ } else if (DAG.isBaseWithConstantOffset(Ptr) &&
+ isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
+ FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
+ Offset = Ptr.getConstantOperandVal(1);
+ Ptr = Ptr.getOperand(0);
+ } else {
+ return SDValue();
+ }
+
+ // FIXME: 256-bit vector instructions don't require a strict alignment,
+ // improve this code to support it better.
+ unsigned RequiredAlign = VT.getSizeInBits()/8;
+ SDValue Chain = LD->getChain();
+ // Make sure the stack object alignment is at least 16 or 32.
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
+ if (MFI.isFixedObjectIndex(FI)) {
+ // Can't change the alignment. FIXME: It's possible to compute
+ // the exact stack offset and reference FI + adjust offset instead.
+ // If someone *really* cares about this. That's the way to implement it.
+ return SDValue();
+ } else {
+ MFI.setObjectAlignment(FI, RequiredAlign);
+ }
+ }
+
+ // (Offset % 16 or 32) must be multiple of 4. Then address is then
+ // Ptr + (Offset & ~15).
+ if (Offset < 0)
+ return SDValue();
+ if ((Offset % RequiredAlign) & 3)
+ return SDValue();
+ int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1);
+ if (StartOffset) {
+ SDLoc DL(Ptr);
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(StartOffset, DL, Ptr.getValueType()));
+ }
+
+ int EltNo = (Offset - StartOffset) >> 2;
+ unsigned NumElems = VT.getVectorNumElements();
+
+ EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
+ SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(StartOffset));
+
+ SmallVector<int, 8> Mask(NumElems, EltNo);
+
+ return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), Mask);
+ }
+
+ return SDValue();
+}
+
+/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
+/// elements can be replaced by a single large load which has the same value as
+/// a build_vector or insert_subvector whose loaded operands are 'Elts'.
+///
+/// Example: <load i32 *a, load i32 *a+4, zero, undef> -> zextload a
+static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
+ const SDLoc &DL, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ bool isAfterLegalize) {
+ unsigned NumElems = Elts.size();
+
+ int LastLoadedElt = -1;
+ SmallBitVector LoadMask(NumElems, false);
+ SmallBitVector ZeroMask(NumElems, false);
+ SmallBitVector UndefMask(NumElems, false);
+
+ // For each element in the initializer, see if we've found a load, zero or an
+ // undef.
+ for (unsigned i = 0; i < NumElems; ++i) {
+ SDValue Elt = peekThroughBitcasts(Elts[i]);
+ if (!Elt.getNode())
+ return SDValue();
+
+ if (Elt.isUndef())
+ UndefMask[i] = true;
+ else if (X86::isZeroNode(Elt) || ISD::isBuildVectorAllZeros(Elt.getNode()))
+ ZeroMask[i] = true;
+ else if (ISD::isNON_EXTLoad(Elt.getNode())) {
+ LoadMask[i] = true;
+ LastLoadedElt = i;
+ // Each loaded element must be the correct fractional portion of the
+ // requested vector load.
+ if ((NumElems * Elt.getValueSizeInBits()) != VT.getSizeInBits())
+ return SDValue();
+ } else
+ return SDValue();
+ }
+ assert((ZeroMask | UndefMask | LoadMask).count() == NumElems &&
+ "Incomplete element masks");
+
+ // Handle Special Cases - all undef or undef/zero.
+ if (UndefMask.count() == NumElems)
+ return DAG.getUNDEF(VT);
+
+ // FIXME: Should we return this as a BUILD_VECTOR instead?
+ if ((ZeroMask | UndefMask).count() == NumElems)
+ return VT.isInteger() ? DAG.getConstant(0, DL, VT)
+ : DAG.getConstantFP(0.0, DL, VT);
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ int FirstLoadedElt = LoadMask.find_first();
+ SDValue EltBase = peekThroughBitcasts(Elts[FirstLoadedElt]);
+ LoadSDNode *LDBase = cast<LoadSDNode>(EltBase);
+ EVT LDBaseVT = EltBase.getValueType();
+
+ // Consecutive loads can contain UNDEFS but not ZERO elements.
+ // Consecutive loads with UNDEFs and ZEROs elements require a
+ // an additional shuffle stage to clear the ZERO elements.
+ bool IsConsecutiveLoad = true;
+ bool IsConsecutiveLoadWithZeros = true;
+ for (int i = FirstLoadedElt + 1; i <= LastLoadedElt; ++i) {
+ if (LoadMask[i]) {
+ SDValue Elt = peekThroughBitcasts(Elts[i]);
+ LoadSDNode *LD = cast<LoadSDNode>(Elt);
+ if (!DAG.areNonVolatileConsecutiveLoads(
+ LD, LDBase, Elt.getValueType().getStoreSizeInBits() / 8,
+ i - FirstLoadedElt)) {
+ IsConsecutiveLoad = false;
+ IsConsecutiveLoadWithZeros = false;
+ break;
+ }
+ } else if (ZeroMask[i]) {
+ IsConsecutiveLoad = false;
+ }
+ }
+
+ SmallVector<LoadSDNode *, 8> Loads;
+ for (int i = FirstLoadedElt; i <= LastLoadedElt; ++i)
+ if (LoadMask[i])
+ Loads.push_back(cast<LoadSDNode>(peekThroughBitcasts(Elts[i])));
+
+ auto CreateLoad = [&DAG, &DL, &Loads](EVT VT, LoadSDNode *LDBase) {
+ auto MMOFlags = LDBase->getMemOperand()->getFlags();
+ assert(!(MMOFlags & MachineMemOperand::MOVolatile) &&
+ "Cannot merge volatile loads.");
+ SDValue NewLd =
+ DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
+ LDBase->getPointerInfo(), LDBase->getAlignment(), MMOFlags);
+ for (auto *LD : Loads)
+ DAG.makeEquivalentMemoryOrdering(LD, NewLd);
+ return NewLd;
+ };
+
+ // LOAD - all consecutive load/undefs (must start/end with a load).
+ // If we have found an entire vector of loads and undefs, then return a large
+ // load of the entire vector width starting at the base pointer.
+ // If the vector contains zeros, then attempt to shuffle those elements.
+ if (FirstLoadedElt == 0 && LastLoadedElt == (int)(NumElems - 1) &&
+ (IsConsecutiveLoad || IsConsecutiveLoadWithZeros)) {
+ assert(LDBase && "Did not find base load for merging consecutive loads");
+ EVT EltVT = LDBase->getValueType(0);
+ // Ensure that the input vector size for the merged loads matches the
+ // cumulative size of the input elements.
+ if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems)
+ return SDValue();
+
+ if (isAfterLegalize && !TLI.isOperationLegal(ISD::LOAD, VT))
+ return SDValue();
+
+ // Don't create 256-bit non-temporal aligned loads without AVX2 as these
+ // will lower to regular temporal loads and use the cache.
+ if (LDBase->isNonTemporal() && LDBase->getAlignment() >= 32 &&
+ VT.is256BitVector() && !Subtarget.hasInt256())
+ return SDValue();
+
+ if (IsConsecutiveLoad)
+ return CreateLoad(VT, LDBase);
+
+ // IsConsecutiveLoadWithZeros - we need to create a shuffle of the loaded
+ // vector and a zero vector to clear out the zero elements.
+ if (!isAfterLegalize && NumElems == VT.getVectorNumElements()) {
+ SmallVector<int, 4> ClearMask(NumElems, -1);
+ for (unsigned i = 0; i < NumElems; ++i) {
+ if (ZeroMask[i])
+ ClearMask[i] = i + NumElems;
+ else if (LoadMask[i])
+ ClearMask[i] = i;
+ }
+ SDValue V = CreateLoad(VT, LDBase);
+ SDValue Z = VT.isInteger() ? DAG.getConstant(0, DL, VT)
+ : DAG.getConstantFP(0.0, DL, VT);
+ return DAG.getVectorShuffle(VT, DL, V, Z, ClearMask);
+ }
+ }
+
+ int LoadSize =
+ (1 + LastLoadedElt - FirstLoadedElt) * LDBaseVT.getStoreSizeInBits();
+
+ // VZEXT_LOAD - consecutive 32/64-bit load/undefs followed by zeros/undefs.
+ if (IsConsecutiveLoad && FirstLoadedElt == 0 &&
+ (LoadSize == 32 || LoadSize == 64) &&
+ ((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()))) {
+ MVT VecSVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(LoadSize)
+ : MVT::getIntegerVT(LoadSize);
+ MVT VecVT = MVT::getVectorVT(VecSVT, VT.getSizeInBits() / LoadSize);
+ if (TLI.isTypeLegal(VecVT)) {
+ SDVTList Tys = DAG.getVTList(VecVT, MVT::Other);
+ SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
+ SDValue ResNode =
+ DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, VecSVT,
+ LDBase->getPointerInfo(),
+ LDBase->getAlignment(),
+ MachineMemOperand::MOLoad);
+ for (auto *LD : Loads)
+ DAG.makeEquivalentMemoryOrdering(LD, ResNode);
+ return DAG.getBitcast(VT, ResNode);
+ }
+ }
+
+ return SDValue();
+}
+
+static Constant *getConstantVector(MVT VT, const APInt &SplatValue,
+ unsigned SplatBitSize, LLVMContext &C) {
+ unsigned ScalarSize = VT.getScalarSizeInBits();
+ unsigned NumElm = SplatBitSize / ScalarSize;
+
+ SmallVector<Constant *, 32> ConstantVec;
+ for (unsigned i = 0; i < NumElm; i++) {
+ APInt Val = SplatValue.extractBits(ScalarSize, ScalarSize * i);
+ Constant *Const;
+ if (VT.isFloatingPoint()) {
+ if (ScalarSize == 32) {
+ Const = ConstantFP::get(C, APFloat(APFloat::IEEEsingle(), Val));
+ } else {
+ assert(ScalarSize == 64 && "Unsupported floating point scalar size");
+ Const = ConstantFP::get(C, APFloat(APFloat::IEEEdouble(), Val));
+ }
+ } else
+ Const = Constant::getIntegerValue(Type::getIntNTy(C, ScalarSize), Val);
+ ConstantVec.push_back(Const);
+ }
+ return ConstantVector::get(ArrayRef<Constant *>(ConstantVec));
+}
+
+static bool isUseOfShuffle(SDNode *N) {
+ for (auto *U : N->uses()) {
+ if (isTargetShuffle(U->getOpcode()))
+ return true;
+ if (U->getOpcode() == ISD::BITCAST) // Ignore bitcasts
+ return isUseOfShuffle(U);
+ }
+ return false;
+}
+
+// Check if the current node of build vector is a zero extended vector.
+// // If so, return the value extended.
+// // For example: (0,0,0,a,0,0,0,a,0,0,0,a,0,0,0,a) returns a.
+// // NumElt - return the number of zero extended identical values.
+// // EltType - return the type of the value include the zero extend.
+static SDValue isSplatZeroExtended(const BuildVectorSDNode *Op,
+ unsigned &NumElt, MVT &EltType) {
+ SDValue ExtValue = Op->getOperand(0);
+ unsigned NumElts = Op->getNumOperands();
+ unsigned Delta = NumElts;
+
+ for (unsigned i = 1; i < NumElts; i++) {
+ if (Op->getOperand(i) == ExtValue) {
+ Delta = i;
+ break;
+ }
+ if (!(Op->getOperand(i).isUndef() || isNullConstant(Op->getOperand(i))))
+ return SDValue();
+ }
+ if (!isPowerOf2_32(Delta) || Delta == 1)
+ return SDValue();
+
+ for (unsigned i = Delta; i < NumElts; i++) {
+ if (i % Delta == 0) {
+ if (Op->getOperand(i) != ExtValue)
+ return SDValue();
+ } else if (!(isNullConstant(Op->getOperand(i)) ||
+ Op->getOperand(i).isUndef()))
+ return SDValue();
+ }
+ unsigned EltSize = Op->getSimpleValueType(0).getScalarSizeInBits();
+ unsigned ExtVTSize = EltSize * Delta;
+ EltType = MVT::getIntegerVT(ExtVTSize);
+ NumElt = NumElts / Delta;
+ return ExtValue;
+}
+
+/// Attempt to use the vbroadcast instruction to generate a splat value
+/// from a splat BUILD_VECTOR which uses:
+/// a. A single scalar load, or a constant.
+/// b. Repeated pattern of constants (e.g. <0,1,0,1> or <0,1,2,3,0,1,2,3>).
+///
+/// The VBROADCAST node is returned when a pattern is found,
+/// or SDValue() otherwise.
+static SDValue lowerBuildVectorAsBroadcast(BuildVectorSDNode *BVOp,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ // VBROADCAST requires AVX.
+ // TODO: Splats could be generated for non-AVX CPUs using SSE
+ // instructions, but there's less potential gain for only 128-bit vectors.
+ if (!Subtarget.hasAVX())
+ return SDValue();
+
+ MVT VT = BVOp->getSimpleValueType(0);
+ SDLoc dl(BVOp);
+
+ assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
+ "Unsupported vector type for broadcast.");
+
+ BitVector UndefElements;
+ SDValue Ld = BVOp->getSplatValue(&UndefElements);
+
+ // Attempt to use VBROADCASTM
+ // From this paterrn:
+ // a. t0 = (zext_i64 (bitcast_i8 v2i1 X))
+ // b. t1 = (build_vector t0 t0)
+ //
+ // Create (VBROADCASTM v2i1 X)
+ if (Subtarget.hasCDI() && (VT.is512BitVector() || Subtarget.hasVLX())) {
+ MVT EltType = VT.getScalarType();
+ unsigned NumElts = VT.getVectorNumElements();
+ SDValue BOperand;
+ SDValue ZeroExtended = isSplatZeroExtended(BVOp, NumElts, EltType);
+ if ((ZeroExtended && ZeroExtended.getOpcode() == ISD::BITCAST) ||
+ (Ld && Ld.getOpcode() == ISD::ZERO_EXTEND &&
+ Ld.getOperand(0).getOpcode() == ISD::BITCAST)) {
+ if (ZeroExtended)
+ BOperand = ZeroExtended.getOperand(0);
+ else
+ BOperand = Ld.getOperand(0).getOperand(0);
+ if (BOperand.getValueType().isVector() &&
+ BOperand.getSimpleValueType().getVectorElementType() == MVT::i1) {
+ if ((EltType == MVT::i64 && (VT.getVectorElementType() == MVT::i8 ||
+ NumElts == 8)) || // for broadcastmb2q
+ (EltType == MVT::i32 && (VT.getVectorElementType() == MVT::i16 ||
+ NumElts == 16))) { // for broadcastmw2d
+ SDValue Brdcst =
+ DAG.getNode(X86ISD::VBROADCASTM, dl,
+ MVT::getVectorVT(EltType, NumElts), BOperand);
+ return DAG.getBitcast(VT, Brdcst);
+ }
+ }
+ }
+ }
+
+ // We need a splat of a single value to use broadcast, and it doesn't
+ // make any sense if the value is only in one element of the vector.
+ if (!Ld || (VT.getVectorNumElements() - UndefElements.count()) <= 1) {
+ APInt SplatValue, Undef;
+ unsigned SplatBitSize;
+ bool HasUndef;
+ // Check if this is a repeated constant pattern suitable for broadcasting.
+ if (BVOp->isConstantSplat(SplatValue, Undef, SplatBitSize, HasUndef) &&
+ SplatBitSize > VT.getScalarSizeInBits() &&
+ SplatBitSize < VT.getSizeInBits()) {
+ // Avoid replacing with broadcast when it's a use of a shuffle
+ // instruction to preserve the present custom lowering of shuffles.
+ if (isUseOfShuffle(BVOp) || BVOp->hasOneUse())
+ return SDValue();
+ // replace BUILD_VECTOR with broadcast of the repeated constants.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ LLVMContext *Ctx = DAG.getContext();
+ MVT PVT = TLI.getPointerTy(DAG.getDataLayout());
+ if (Subtarget.hasAVX()) {
+ if (SplatBitSize <= 64 && Subtarget.hasAVX2() &&
+ !(SplatBitSize == 64 && Subtarget.is32Bit())) {
+ // Splatted value can fit in one INTEGER constant in constant pool.
+ // Load the constant and broadcast it.
+ MVT CVT = MVT::getIntegerVT(SplatBitSize);
+ Type *ScalarTy = Type::getIntNTy(*Ctx, SplatBitSize);
+ Constant *C = Constant::getIntegerValue(ScalarTy, SplatValue);
+ SDValue CP = DAG.getConstantPool(C, PVT);
+ unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
+
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ Ld = DAG.getLoad(
+ CVT, dl, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ Alignment);
+ SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
+ MVT::getVectorVT(CVT, Repeat), Ld);
+ return DAG.getBitcast(VT, Brdcst);
+ } else if (SplatBitSize == 32 || SplatBitSize == 64) {
+ // Splatted value can fit in one FLOAT constant in constant pool.
+ // Load the constant and broadcast it.
+ // AVX have support for 32 and 64 bit broadcast for floats only.
+ // No 64bit integer in 32bit subtarget.
+ MVT CVT = MVT::getFloatingPointVT(SplatBitSize);
+ // Lower the splat via APFloat directly, to avoid any conversion.
+ Constant *C =
+ SplatBitSize == 32
+ ? ConstantFP::get(*Ctx,
+ APFloat(APFloat::IEEEsingle(), SplatValue))
+ : ConstantFP::get(*Ctx,
+ APFloat(APFloat::IEEEdouble(), SplatValue));
+ SDValue CP = DAG.getConstantPool(C, PVT);
+ unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
+
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ Ld = DAG.getLoad(
+ CVT, dl, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ Alignment);
+ SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
+ MVT::getVectorVT(CVT, Repeat), Ld);
+ return DAG.getBitcast(VT, Brdcst);
+ } else if (SplatBitSize > 64) {
+ // Load the vector of constants and broadcast it.
+ MVT CVT = VT.getScalarType();
+ Constant *VecC = getConstantVector(VT, SplatValue, SplatBitSize,
+ *Ctx);
+ SDValue VCP = DAG.getConstantPool(VecC, PVT);
+ unsigned NumElm = SplatBitSize / VT.getScalarSizeInBits();
+ unsigned Alignment = cast<ConstantPoolSDNode>(VCP)->getAlignment();
+ Ld = DAG.getLoad(
+ MVT::getVectorVT(CVT, NumElm), dl, DAG.getEntryNode(), VCP,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ Alignment);
+ SDValue Brdcst = DAG.getNode(X86ISD::SUBV_BROADCAST, dl, VT, Ld);
+ return DAG.getBitcast(VT, Brdcst);
+ }
+ }
+ }
+ return SDValue();
+ }
+
+ bool ConstSplatVal =
+ (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP);
+
+ // Make sure that all of the users of a non-constant load are from the
+ // BUILD_VECTOR node.
+ if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
+ return SDValue();
+
+ unsigned ScalarSize = Ld.getValueSizeInBits();
+ bool IsGE256 = (VT.getSizeInBits() >= 256);
+
+ // When optimizing for size, generate up to 5 extra bytes for a broadcast
+ // instruction to save 8 or more bytes of constant pool data.
+ // TODO: If multiple splats are generated to load the same constant,
+ // it may be detrimental to overall size. There needs to be a way to detect
+ // that condition to know if this is truly a size win.
+ bool OptForSize = DAG.getMachineFunction().getFunction().optForSize();
+
+ // Handle broadcasting a single constant scalar from the constant pool
+ // into a vector.
+ // On Sandybridge (no AVX2), it is still better to load a constant vector
+ // from the constant pool and not to broadcast it from a scalar.
+ // But override that restriction when optimizing for size.
+ // TODO: Check if splatting is recommended for other AVX-capable CPUs.
+ if (ConstSplatVal && (Subtarget.hasAVX2() || OptForSize)) {
+ EVT CVT = Ld.getValueType();
+ assert(!CVT.isVector() && "Must not broadcast a vector type");
+
+ // Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
+ // For size optimization, also splat v2f64 and v2i64, and for size opt
+ // with AVX2, also splat i8 and i16.
+ // With pattern matching, the VBROADCAST node may become a VMOVDDUP.
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
+ (OptForSize && (ScalarSize == 64 || Subtarget.hasAVX2()))) {
+ const Constant *C = nullptr;
+ if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
+ C = CI->getConstantIntValue();
+ else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
+ C = CF->getConstantFPValue();
+
+ assert(C && "Invalid constant type");
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue CP =
+ DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ Ld = DAG.getLoad(
+ CVT, dl, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ Alignment);
+
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+ }
+ }
+
+ bool IsLoad = ISD::isNormalLoad(Ld.getNode());
+
+ // Handle AVX2 in-register broadcasts.
+ if (!IsLoad && Subtarget.hasInt256() &&
+ (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+
+ // The scalar source must be a normal load.
+ if (!IsLoad)
+ return SDValue();
+
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
+ (Subtarget.hasVLX() && ScalarSize == 64))
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+
+ // The integer check is needed for the 64-bit into 128-bit so it doesn't match
+ // double since there is no vbroadcastsd xmm
+ if (Subtarget.hasInt256() && Ld.getValueType().isInteger()) {
+ if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+ }
+
+ // Unsupported broadcast.
+ return SDValue();
+}
+
+/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
+/// underlying vector and index.
+///
+/// Modifies \p ExtractedFromVec to the real vector and returns the real
+/// index.
+static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
+ SDValue ExtIdx) {
+ int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
+ if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
+ return Idx;
+
+ // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
+ // lowered this:
+ // (extract_vector_elt (v8f32 %1), Constant<6>)
+ // to:
+ // (extract_vector_elt (vector_shuffle<2,u,u,u>
+ // (extract_subvector (v8f32 %0), Constant<4>),
+ // undef)
+ // Constant<0>)
+ // In this case the vector is the extract_subvector expression and the index
+ // is 2, as specified by the shuffle.
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
+ SDValue ShuffleVec = SVOp->getOperand(0);
+ MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
+ assert(ShuffleVecVT.getVectorElementType() ==
+ ExtractedFromVec.getSimpleValueType().getVectorElementType());
+
+ int ShuffleIdx = SVOp->getMaskElt(Idx);
+ if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
+ ExtractedFromVec = ShuffleVec;
+ return ShuffleIdx;
+ }
+ return Idx;
+}
+
+static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ // Skip if insert_vec_elt is not supported.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
+ return SDValue();
+
+ SDLoc DL(Op);
+ unsigned NumElems = Op.getNumOperands();
+
+ SDValue VecIn1;
+ SDValue VecIn2;
+ SmallVector<unsigned, 4> InsertIndices;
+ SmallVector<int, 8> Mask(NumElems, -1);
+
+ for (unsigned i = 0; i != NumElems; ++i) {
+ unsigned Opc = Op.getOperand(i).getOpcode();
+
+ if (Opc == ISD::UNDEF)
+ continue;
+
+ if (Opc != ISD::EXTRACT_VECTOR_ELT) {
+ // Quit if more than 1 elements need inserting.
+ if (InsertIndices.size() > 1)
+ return SDValue();
+
+ InsertIndices.push_back(i);
+ continue;
+ }
+
+ SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
+ SDValue ExtIdx = Op.getOperand(i).getOperand(1);
+
+ // Quit if non-constant index.
+ if (!isa<ConstantSDNode>(ExtIdx))
+ return SDValue();
+ int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
+
+ // Quit if extracted from vector of different type.
+ if (ExtractedFromVec.getValueType() != VT)
+ return SDValue();
+
+ if (!VecIn1.getNode())
+ VecIn1 = ExtractedFromVec;
+ else if (VecIn1 != ExtractedFromVec) {
+ if (!VecIn2.getNode())
+ VecIn2 = ExtractedFromVec;
+ else if (VecIn2 != ExtractedFromVec)
+ // Quit if more than 2 vectors to shuffle
+ return SDValue();
+ }
+
+ if (ExtractedFromVec == VecIn1)
+ Mask[i] = Idx;
+ else if (ExtractedFromVec == VecIn2)
+ Mask[i] = Idx + NumElems;
+ }
+
+ if (!VecIn1.getNode())
+ return SDValue();
+
+ VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
+ SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, Mask);
+
+ for (unsigned Idx : InsertIndices)
+ NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
+ DAG.getIntPtrConstant(Idx, DL));
+
+ return NV;
+}
+
+static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) {
+ assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
+ Op.getScalarValueSizeInBits() == 1 &&
+ "Can not convert non-constant vector");
+ uint64_t Immediate = 0;
+ for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
+ SDValue In = Op.getOperand(idx);
+ if (!In.isUndef())
+ Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx;
+ }
+ SDLoc dl(Op);
+ MVT VT = MVT::getIntegerVT(std::max((int)Op.getValueSizeInBits(), 8));
+ return DAG.getConstant(Immediate, dl, VT);
+}
+// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
+static SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+
+ MVT VT = Op.getSimpleValueType();
+ assert((VT.getVectorElementType() == MVT::i1) &&
+ "Unexpected type in LowerBUILD_VECTORvXi1!");
+
+ SDLoc dl(Op);
+ if (ISD::isBuildVectorAllZeros(Op.getNode()))
+ return Op;
+
+ if (ISD::isBuildVectorAllOnes(Op.getNode()))
+ return Op;
+
+ if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
+ if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
+ // Split the pieces.
+ SDValue Lower =
+ DAG.getBuildVector(MVT::v32i1, dl, Op.getNode()->ops().slice(0, 32));
+ SDValue Upper =
+ DAG.getBuildVector(MVT::v32i1, dl, Op.getNode()->ops().slice(32, 32));
+ // We have to manually lower both halves so getNode doesn't try to
+ // reassemble the build_vector.
+ Lower = LowerBUILD_VECTORvXi1(Lower, DAG, Subtarget);
+ Upper = LowerBUILD_VECTORvXi1(Upper, DAG, Subtarget);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lower, Upper);
+ }
+ SDValue Imm = ConvertI1VectorToInteger(Op, DAG);
+ if (Imm.getValueSizeInBits() == VT.getSizeInBits())
+ return DAG.getBitcast(VT, Imm);
+ SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ // Vector has one or more non-const elements
+ uint64_t Immediate = 0;
+ SmallVector<unsigned, 16> NonConstIdx;
+ bool IsSplat = true;
+ bool HasConstElts = false;
+ int SplatIdx = -1;
+ for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
+ SDValue In = Op.getOperand(idx);
+ if (In.isUndef())
+ continue;
+ if (!isa<ConstantSDNode>(In))
+ NonConstIdx.push_back(idx);
+ else {
+ Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx;
+ HasConstElts = true;
+ }
+ if (SplatIdx < 0)
+ SplatIdx = idx;
+ else if (In != Op.getOperand(SplatIdx))
+ IsSplat = false;
+ }
+
+ // for splat use " (select i1 splat_elt, all-ones, all-zeroes)"
+ if (IsSplat)
+ return DAG.getSelect(dl, VT, Op.getOperand(SplatIdx),
+ DAG.getConstant(1, dl, VT),
+ DAG.getConstant(0, dl, VT));
+
+ // insert elements one by one
+ SDValue DstVec;
+ SDValue Imm;
+ if (Immediate) {
+ MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8));
+ Imm = DAG.getConstant(Immediate, dl, ImmVT);
+ }
+ else if (HasConstElts)
+ Imm = DAG.getConstant(0, dl, VT);
+ else
+ Imm = DAG.getUNDEF(VT);
+ if (Imm.getValueSizeInBits() == VT.getSizeInBits())
+ DstVec = DAG.getBitcast(VT, Imm);
+ else {
+ SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
+ DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ for (unsigned i = 0, e = NonConstIdx.size(); i != e; ++i) {
+ unsigned InsertIdx = NonConstIdx[i];
+ DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
+ Op.getOperand(InsertIdx),
+ DAG.getIntPtrConstant(InsertIdx, dl));
+ }
+ return DstVec;
+}
+
+/// \brief Return true if \p N implements a horizontal binop and return the
+/// operands for the horizontal binop into V0 and V1.
+///
+/// This is a helper function of LowerToHorizontalOp().
+/// This function checks that the build_vector \p N in input implements a
+/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
+/// operation to match.
+/// For example, if \p Opcode is equal to ISD::ADD, then this function
+/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
+/// is equal to ISD::SUB, then this function checks if this is a horizontal
+/// arithmetic sub.
+///
+/// This function only analyzes elements of \p N whose indices are
+/// in range [BaseIdx, LastIdx).
+static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
+ SelectionDAG &DAG,
+ unsigned BaseIdx, unsigned LastIdx,
+ SDValue &V0, SDValue &V1) {
+ EVT VT = N->getValueType(0);
+
+ assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
+ assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
+ "Invalid Vector in input!");
+
+ bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
+ bool CanFold = true;
+ unsigned ExpectedVExtractIdx = BaseIdx;
+ unsigned NumElts = LastIdx - BaseIdx;
+ V0 = DAG.getUNDEF(VT);
+ V1 = DAG.getUNDEF(VT);
+
+ // Check if N implements a horizontal binop.
+ for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
+ SDValue Op = N->getOperand(i + BaseIdx);
+
+ // Skip UNDEFs.
+ if (Op->isUndef()) {
+ // Update the expected vector extract index.
+ if (i * 2 == NumElts)
+ ExpectedVExtractIdx = BaseIdx;
+ ExpectedVExtractIdx += 2;
+ continue;
+ }
+
+ CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
+
+ if (!CanFold)
+ break;
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // Try to match the following pattern:
+ // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
+ CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ Op0.getOperand(0) == Op1.getOperand(0) &&
+ isa<ConstantSDNode>(Op0.getOperand(1)) &&
+ isa<ConstantSDNode>(Op1.getOperand(1)));
+ if (!CanFold)
+ break;
+
+ unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
+ unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
+
+ if (i * 2 < NumElts) {
+ if (V0.isUndef()) {
+ V0 = Op0.getOperand(0);
+ if (V0.getValueType() != VT)
+ return false;
+ }
+ } else {
+ if (V1.isUndef()) {
+ V1 = Op0.getOperand(0);
+ if (V1.getValueType() != VT)
+ return false;
+ }
+ if (i * 2 == NumElts)
+ ExpectedVExtractIdx = BaseIdx;
+ }
+
+ SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
+ if (I0 == ExpectedVExtractIdx)
+ CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
+ else if (IsCommutable && I1 == ExpectedVExtractIdx) {
+ // Try to match the following dag sequence:
+ // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
+ CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
+ } else
+ CanFold = false;
+
+ ExpectedVExtractIdx += 2;
+ }
+
+ return CanFold;
+}
+
+/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
+/// a concat_vector.
+///
+/// This is a helper function of LowerToHorizontalOp().
+/// This function expects two 256-bit vectors called V0 and V1.
+/// At first, each vector is split into two separate 128-bit vectors.
+/// Then, the resulting 128-bit vectors are used to implement two
+/// horizontal binary operations.
+///
+/// The kind of horizontal binary operation is defined by \p X86Opcode.
+///
+/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
+/// the two new horizontal binop.
+/// When Mode is set, the first horizontal binop dag node would take as input
+/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
+/// horizontal binop dag node would take as input the lower 128-bit of V1
+/// and the upper 128-bit of V1.
+/// Example:
+/// HADD V0_LO, V0_HI
+/// HADD V1_LO, V1_HI
+///
+/// Otherwise, the first horizontal binop dag node takes as input the lower
+/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
+/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1.
+/// Example:
+/// HADD V0_LO, V1_LO
+/// HADD V0_HI, V1_HI
+///
+/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
+/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
+/// the upper 128-bits of the result.
+static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
+ const SDLoc &DL, SelectionDAG &DAG,
+ unsigned X86Opcode, bool Mode,
+ bool isUndefLO, bool isUndefHI) {
+ MVT VT = V0.getSimpleValueType();
+ assert(VT.is256BitVector() && VT == V1.getSimpleValueType() &&
+ "Invalid nodes in input!");
+
+ unsigned NumElts = VT.getVectorNumElements();
+ SDValue V0_LO = extract128BitVector(V0, 0, DAG, DL);
+ SDValue V0_HI = extract128BitVector(V0, NumElts/2, DAG, DL);
+ SDValue V1_LO = extract128BitVector(V1, 0, DAG, DL);
+ SDValue V1_HI = extract128BitVector(V1, NumElts/2, DAG, DL);
+ MVT NewVT = V0_LO.getSimpleValueType();
+
+ SDValue LO = DAG.getUNDEF(NewVT);
+ SDValue HI = DAG.getUNDEF(NewVT);
+
+ if (Mode) {
+ // Don't emit a horizontal binop if the result is expected to be UNDEF.
+ if (!isUndefLO && !V0->isUndef())
+ LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
+ if (!isUndefHI && !V1->isUndef())
+ HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
+ } else {
+ // Don't emit a horizontal binop if the result is expected to be UNDEF.
+ if (!isUndefLO && (!V0_LO->isUndef() || !V1_LO->isUndef()))
+ LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
+
+ if (!isUndefHI && (!V0_HI->isUndef() || !V1_HI->isUndef()))
+ HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
+ }
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
+}
+
+/// Returns true iff \p BV builds a vector with the result equivalent to
+/// the result of ADDSUB operation.
+/// If true is returned then the operands of ADDSUB = Opnd0 +- Opnd1 operation
+/// are written to the parameters \p Opnd0 and \p Opnd1.
+static bool isAddSub(const BuildVectorSDNode *BV,
+ const X86Subtarget &Subtarget, SelectionDAG &DAG,
+ SDValue &Opnd0, SDValue &Opnd1,
+ unsigned &NumExtracts) {
+
+ MVT VT = BV->getSimpleValueType(0);
+ if ((!Subtarget.hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) &&
+ (!Subtarget.hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)) &&
+ (!Subtarget.hasAVX512() || (VT != MVT::v16f32 && VT != MVT::v8f64)))
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ SDValue InVec0 = DAG.getUNDEF(VT);
+ SDValue InVec1 = DAG.getUNDEF(VT);
+
+ NumExtracts = 0;
+
+ // Odd-numbered elements in the input build vector are obtained from
+ // adding two integer/float elements.
+ // Even-numbered elements in the input build vector are obtained from
+ // subtracting two integer/float elements.
+ unsigned ExpectedOpcode = ISD::FSUB;
+ unsigned NextExpectedOpcode = ISD::FADD;
+ bool AddFound = false;
+ bool SubFound = false;
+
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ SDValue Op = BV->getOperand(i);
+
+ // Skip 'undef' values.
+ unsigned Opcode = Op.getOpcode();
+ if (Opcode == ISD::UNDEF) {
+ std::swap(ExpectedOpcode, NextExpectedOpcode);
+ continue;
+ }
+
+ // Early exit if we found an unexpected opcode.
+ if (Opcode != ExpectedOpcode)
+ return false;
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // Try to match the following pattern:
+ // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
+ // Early exit if we cannot match that sequence.
+ if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isa<ConstantSDNode>(Op0.getOperand(1)) ||
+ !isa<ConstantSDNode>(Op1.getOperand(1)) ||
+ Op0.getOperand(1) != Op1.getOperand(1))
+ return false;
+
+ unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
+ if (I0 != i)
+ return false;
+
+ // We found a valid add/sub node. Update the information accordingly.
+ if (i & 1)
+ AddFound = true;
+ else
+ SubFound = true;
+
+ // Update InVec0 and InVec1.
+ if (InVec0.isUndef()) {
+ InVec0 = Op0.getOperand(0);
+ if (InVec0.getSimpleValueType() != VT)
+ return false;
+ }
+ if (InVec1.isUndef()) {
+ InVec1 = Op1.getOperand(0);
+ if (InVec1.getSimpleValueType() != VT)
+ return false;
+ }
+
+ // Make sure that operands in input to each add/sub node always
+ // come from a same pair of vectors.
+ if (InVec0 != Op0.getOperand(0)) {
+ if (ExpectedOpcode == ISD::FSUB)
+ return false;
+
+ // FADD is commutable. Try to commute the operands
+ // and then test again.
+ std::swap(Op0, Op1);
+ if (InVec0 != Op0.getOperand(0))
+ return false;
+ }
+
+ if (InVec1 != Op1.getOperand(0))
+ return false;
+
+ // Update the pair of expected opcodes.
+ std::swap(ExpectedOpcode, NextExpectedOpcode);
+
+ // Increment the number of extractions done.
+ ++NumExtracts;
+ }
+
+ // Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
+ if (!AddFound || !SubFound || InVec0.isUndef() || InVec1.isUndef())
+ return false;
+
+ Opnd0 = InVec0;
+ Opnd1 = InVec1;
+ return true;
+}
+
+/// Returns true if is possible to fold MUL and an idiom that has already been
+/// recognized as ADDSUB/SUBADD(\p Opnd0, \p Opnd1) into
+/// FMADDSUB/FMSUBADD(x, y, \p Opnd1). If (and only if) true is returned, the
+/// operands of FMADDSUB/FMSUBADD are written to parameters \p Opnd0, \p Opnd1, \p Opnd2.
+///
+/// Prior to calling this function it should be known that there is some
+/// SDNode that potentially can be replaced with an X86ISD::ADDSUB operation
+/// using \p Opnd0 and \p Opnd1 as operands. Also, this method is called
+/// before replacement of such SDNode with ADDSUB operation. Thus the number
+/// of \p Opnd0 uses is expected to be equal to 2.
+/// For example, this function may be called for the following IR:
+/// %AB = fmul fast <2 x double> %A, %B
+/// %Sub = fsub fast <2 x double> %AB, %C
+/// %Add = fadd fast <2 x double> %AB, %C
+/// %Addsub = shufflevector <2 x double> %Sub, <2 x double> %Add,
+/// <2 x i32> <i32 0, i32 3>
+/// There is a def for %Addsub here, which potentially can be replaced by
+/// X86ISD::ADDSUB operation:
+/// %Addsub = X86ISD::ADDSUB %AB, %C
+/// and such ADDSUB can further be replaced with FMADDSUB:
+/// %Addsub = FMADDSUB %A, %B, %C.
+///
+/// The main reason why this method is called before the replacement of the
+/// recognized ADDSUB idiom with ADDSUB operation is that such replacement
+/// is illegal sometimes. E.g. 512-bit ADDSUB is not available, while 512-bit
+/// FMADDSUB is.
+static bool isFMAddSubOrFMSubAdd(const X86Subtarget &Subtarget,
+ SelectionDAG &DAG,
+ SDValue &Opnd0, SDValue &Opnd1, SDValue &Opnd2,
+ unsigned ExpectedUses) {
+ if (Opnd0.getOpcode() != ISD::FMUL ||
+ !Opnd0->hasNUsesOfValue(ExpectedUses, 0) || !Subtarget.hasAnyFMA())
+ return false;
+
+ // FIXME: These checks must match the similar ones in
+ // DAGCombiner::visitFADDForFMACombine. It would be good to have one
+ // function that would answer if it is Ok to fuse MUL + ADD to FMADD
+ // or MUL + ADDSUB to FMADDSUB.
+ const TargetOptions &Options = DAG.getTarget().Options;
+ bool AllowFusion =
+ (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
+ if (!AllowFusion)
+ return false;
+
+ Opnd2 = Opnd1;
+ Opnd1 = Opnd0.getOperand(1);
+ Opnd0 = Opnd0.getOperand(0);
+
+ return true;
+}
+
+/// Try to fold a build_vector that performs an 'addsub' or 'fmaddsub' operation
+/// accordingly to X86ISD::ADDSUB or X86ISD::FMADDSUB node.
+static SDValue lowerToAddSubOrFMAddSub(const BuildVectorSDNode *BV,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Opnd0, Opnd1;
+ unsigned NumExtracts;
+ if (!isAddSub(BV, Subtarget, DAG, Opnd0, Opnd1, NumExtracts))
+ return SDValue();
+
+ MVT VT = BV->getSimpleValueType(0);
+ SDLoc DL(BV);
+
+ // Try to generate X86ISD::FMADDSUB node here.
+ SDValue Opnd2;
+ // TODO: According to coverage reports, the FMADDSUB transform is not
+ // triggered by any tests.
+ if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, NumExtracts))
+ return DAG.getNode(X86ISD::FMADDSUB, DL, VT, Opnd0, Opnd1, Opnd2);
+
+ // Do not generate X86ISD::ADDSUB node for 512-bit types even though
+ // the ADDSUB idiom has been successfully recognized. There are no known
+ // X86 targets with 512-bit ADDSUB instructions!
+ // 512-bit ADDSUB idiom recognition was needed only as part of FMADDSUB idiom
+ // recognition.
+ if (VT.is512BitVector())
+ return SDValue();
+
+ return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
+}
+
+/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible.
+static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = BV->getSimpleValueType(0);
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumUndefsLO = 0;
+ unsigned NumUndefsHI = 0;
+ unsigned Half = NumElts/2;
+
+ // Count the number of UNDEF operands in the build_vector in input.
+ for (unsigned i = 0, e = Half; i != e; ++i)
+ if (BV->getOperand(i)->isUndef())
+ NumUndefsLO++;
+
+ for (unsigned i = Half, e = NumElts; i != e; ++i)
+ if (BV->getOperand(i)->isUndef())
+ NumUndefsHI++;
+
+ // Early exit if this is either a build_vector of all UNDEFs or all the
+ // operands but one are UNDEF.
+ if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
+ return SDValue();
+
+ SDLoc DL(BV);
+ SDValue InVec0, InVec1;
+ if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget.hasSSE3()) {
+ // Try to match an SSE3 float HADD/HSUB.
+ if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
+
+ if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
+ } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget.hasSSSE3()) {
+ // Try to match an SSSE3 integer HADD/HSUB.
+ if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
+
+ if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
+ }
+
+ if (!Subtarget.hasAVX())
+ return SDValue();
+
+ if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
+ // Try to match an AVX horizontal add/sub of packed single/double
+ // precision floating point values from 256-bit vectors.
+ SDValue InVec2, InVec3;
+ if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
+ ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
+ return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
+
+ if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
+ ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
+ return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
+ } else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
+ // Try to match an AVX2 horizontal add/sub of signed integers.
+ SDValue InVec2, InVec3;
+ unsigned X86Opcode;
+ bool CanFold = true;
+
+ if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
+ ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
+ X86Opcode = X86ISD::HADD;
+ else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
+ ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
+ X86Opcode = X86ISD::HSUB;
+ else
+ CanFold = false;
+
+ if (CanFold) {
+ // Fold this build_vector into a single horizontal add/sub.
+ // Do this only if the target has AVX2.
+ if (Subtarget.hasAVX2())
+ return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
+
+ // Do not try to expand this build_vector into a pair of horizontal
+ // add/sub if we can emit a pair of scalar add/sub.
+ if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
+ return SDValue();
+
+ // Convert this build_vector into a pair of horizontal binop followed by
+ // a concat vector.
+ bool isUndefLO = NumUndefsLO == Half;
+ bool isUndefHI = NumUndefsHI == Half;
+ return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
+ isUndefLO, isUndefHI);
+ }
+ }
+
+ if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
+ VT == MVT::v16i16) && Subtarget.hasAVX()) {
+ unsigned X86Opcode;
+ if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::HADD;
+ else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::HSUB;
+ else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::FHADD;
+ else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::FHSUB;
+ else
+ return SDValue();
+
+ // Don't try to expand this build_vector into a pair of horizontal add/sub
+ // if we can simply emit a pair of scalar add/sub.
+ if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
+ return SDValue();
+
+ // Convert this build_vector into two horizontal add/sub followed by
+ // a concat vector.
+ bool isUndefLO = NumUndefsLO == Half;
+ bool isUndefHI = NumUndefsHI == Half;
+ return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
+ isUndefLO, isUndefHI);
+ }
+
+ return SDValue();
+}
+
+/// If a BUILD_VECTOR's source elements all apply the same bit operation and
+/// one of their operands is constant, lower to a pair of BUILD_VECTOR and
+/// just apply the bit to the vectors.
+/// NOTE: Its not in our interest to start make a general purpose vectorizer
+/// from this, but enough scalar bit operations are created from the later
+/// legalization + scalarization stages to need basic support.
+static SDValue lowerBuildVectorToBitOp(BuildVectorSDNode *Op,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ MVT VT = Op->getSimpleValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // Check that all elements have the same opcode.
+ // TODO: Should we allow UNDEFS and if so how many?
+ unsigned Opcode = Op->getOperand(0).getOpcode();
+ for (unsigned i = 1; i < NumElems; ++i)
+ if (Opcode != Op->getOperand(i).getOpcode())
+ return SDValue();
+
+ // TODO: We may be able to add support for other Ops (ADD/SUB + shifts).
+ switch (Opcode) {
+ default:
+ return SDValue();
+ case ISD::AND:
+ case ISD::XOR:
+ case ISD::OR:
+ if (!TLI.isOperationLegalOrPromote(Opcode, VT))
+ return SDValue();
+ break;
+ }
+
+ SmallVector<SDValue, 4> LHSElts, RHSElts;
+ for (SDValue Elt : Op->ops()) {
+ SDValue LHS = Elt.getOperand(0);
+ SDValue RHS = Elt.getOperand(1);
+
+ // We expect the canonicalized RHS operand to be the constant.
+ if (!isa<ConstantSDNode>(RHS))
+ return SDValue();
+ LHSElts.push_back(LHS);
+ RHSElts.push_back(RHS);
+ }
+
+ SDValue LHS = DAG.getBuildVector(VT, DL, LHSElts);
+ SDValue RHS = DAG.getBuildVector(VT, DL, RHSElts);
+ return DAG.getNode(Opcode, DL, VT, LHS, RHS);
+}
+
+/// Create a vector constant without a load. SSE/AVX provide the bare minimum
+/// functionality to do this, so it's all zeros, all ones, or some derivation
+/// that is cheap to calculate.
+static SDValue materializeVectorConstant(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ // Vectors containing all zeros can be matched by pxor and xorps.
+ if (ISD::isBuildVectorAllZeros(Op.getNode())) {
+ // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
+ // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
+ if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
+ return Op;
+
+ return getZeroVector(VT, Subtarget, DAG, DL);
+ }
+
+ // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
+ // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
+ // vpcmpeqd on 256-bit vectors.
+ if (Subtarget.hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
+ if (VT == MVT::v4i32 || VT == MVT::v16i32 ||
+ (VT == MVT::v8i32 && Subtarget.hasInt256()))
+ return Op;
+
+ return getOnesVector(VT, DAG, DL);
+ }
+
+ return SDValue();
+}
+
+// Tries to lower a BUILD_VECTOR composed of extract-extract chains that can be
+// reasoned to be a permutation of a vector by indices in a non-constant vector.
+// (build_vector (extract_elt V, (extract_elt I, 0)),
+// (extract_elt V, (extract_elt I, 1)),
+// ...
+// ->
+// (vpermv I, V)
+//
+// TODO: Handle undefs
+// TODO: Utilize pshufb and zero mask blending to support more efficient
+// construction of vectors with constant-0 elements.
+// TODO: Use smaller-element vectors of same width, and "interpolate" the indices,
+// when no native operation available.
+static SDValue
+LowerBUILD_VECTORAsVariablePermute(SDValue V, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // Look for VPERMV and PSHUFB opportunities.
+ MVT VT = V.getSimpleValueType();
+ switch (VT.SimpleTy) {
+ default:
+ return SDValue();
+ case MVT::v16i8:
+ if (!Subtarget.hasSSE3())
+ return SDValue();
+ break;
+ case MVT::v8f32:
+ case MVT::v8i32:
+ if (!Subtarget.hasAVX2())
+ return SDValue();
+ break;
+ case MVT::v4i64:
+ case MVT::v4f64:
+ if (!Subtarget.hasVLX())
+ return SDValue();
+ break;
+ case MVT::v16f32:
+ case MVT::v8f64:
+ case MVT::v16i32:
+ case MVT::v8i64:
+ if (!Subtarget.hasAVX512())
+ return SDValue();
+ break;
+ case MVT::v32i16:
+ if (!Subtarget.hasBWI())
+ return SDValue();
+ break;
+ case MVT::v8i16:
+ case MVT::v16i16:
+ if (!Subtarget.hasVLX() || !Subtarget.hasBWI())
+ return SDValue();
+ break;
+ case MVT::v64i8:
+ if (!Subtarget.hasVBMI())
+ return SDValue();
+ break;
+ case MVT::v32i8:
+ if (!Subtarget.hasVLX() || !Subtarget.hasVBMI())
+ return SDValue();
+ break;
+ }
+ SDValue SrcVec, IndicesVec;
+ // Check for a match of the permute source vector and permute index elements.
+ // This is done by checking that the i-th build_vector operand is of the form:
+ // (extract_elt SrcVec, (extract_elt IndicesVec, i)).
+ for (unsigned Idx = 0, E = V.getNumOperands(); Idx != E; ++Idx) {
+ SDValue Op = V.getOperand(Idx);
+ if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ // If this is the first extract encountered in V, set the source vector,
+ // otherwise verify the extract is from the previously defined source
+ // vector.
+ if (!SrcVec)
+ SrcVec = Op.getOperand(0);
+ else if (SrcVec != Op.getOperand(0))
+ return SDValue();
+ SDValue ExtractedIndex = Op->getOperand(1);
+ // Peek through extends.
+ if (ExtractedIndex.getOpcode() == ISD::ZERO_EXTEND ||
+ ExtractedIndex.getOpcode() == ISD::SIGN_EXTEND)
+ ExtractedIndex = ExtractedIndex.getOperand(0);
+ if (ExtractedIndex.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ // If this is the first extract from the index vector candidate, set the
+ // indices vector, otherwise verify the extract is from the previously
+ // defined indices vector.
+ if (!IndicesVec)
+ IndicesVec = ExtractedIndex.getOperand(0);
+ else if (IndicesVec != ExtractedIndex.getOperand(0))
+ return SDValue();
+
+ auto *PermIdx = dyn_cast<ConstantSDNode>(ExtractedIndex.getOperand(1));
+ if (!PermIdx || PermIdx->getZExtValue() != Idx)
+ return SDValue();
+ }
+ MVT IndicesVT = VT;
+ if (VT.isFloatingPoint())
+ IndicesVT = MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits()),
+ VT.getVectorNumElements());
+ IndicesVec = DAG.getZExtOrTrunc(IndicesVec, SDLoc(IndicesVec), IndicesVT);
+ return DAG.getNode(VT == MVT::v16i8 ? X86ISD::PSHUFB : X86ISD::VPERMV,
+ SDLoc(V), VT, IndicesVec, SrcVec);
+}
+
+SDValue
+X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+
+ MVT VT = Op.getSimpleValueType();
+ MVT ExtVT = VT.getVectorElementType();
+ unsigned NumElems = Op.getNumOperands();
+
+ // Generate vectors for predicate vectors.
+ if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512())
+ return LowerBUILD_VECTORvXi1(Op, DAG, Subtarget);
+
+ if (SDValue VectorConstant = materializeVectorConstant(Op, DAG, Subtarget))
+ return VectorConstant;
+
+ BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode());
+ // TODO: Support FMSUBADD here if we ever get tests for the FMADDSUB
+ // transform here.
+ if (SDValue AddSub = lowerToAddSubOrFMAddSub(BV, Subtarget, DAG))
+ return AddSub;
+ if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG))
+ return HorizontalOp;
+ if (SDValue Broadcast = lowerBuildVectorAsBroadcast(BV, Subtarget, DAG))
+ return Broadcast;
+ if (SDValue BitOp = lowerBuildVectorToBitOp(BV, DAG))
+ return BitOp;
+
+ unsigned EVTBits = ExtVT.getSizeInBits();
+
+ unsigned NumZero = 0;
+ unsigned NumNonZero = 0;
+ uint64_t NonZeros = 0;
+ bool IsAllConstants = true;
+ SmallSet<SDValue, 8> Values;
+ unsigned NumConstants = NumElems;
+ for (unsigned i = 0; i < NumElems; ++i) {
+ SDValue Elt = Op.getOperand(i);
+ if (Elt.isUndef())
+ continue;
+ Values.insert(Elt);
+ if (!isa<ConstantSDNode>(Elt) && !isa<ConstantFPSDNode>(Elt)) {
+ IsAllConstants = false;
+ NumConstants--;
+ }
+ if (X86::isZeroNode(Elt))
+ NumZero++;
+ else {
+ assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range.
+ NonZeros |= ((uint64_t)1 << i);
+ NumNonZero++;
+ }
+ }
+
+ // All undef vector. Return an UNDEF. All zero vectors were handled above.
+ if (NumNonZero == 0)
+ return DAG.getUNDEF(VT);
+
+ // If we are inserting one variable into a vector of non-zero constants, try
+ // to avoid loading each constant element as a scalar. Load the constants as a
+ // vector and then insert the variable scalar element. If insertion is not
+ // supported, we assume that we will fall back to a shuffle to get the scalar
+ // blended with the constants. Insertion into a zero vector is handled as a
+ // special-case somewhere below here.
+ LLVMContext &Context = *DAG.getContext();
+ if (NumConstants == NumElems - 1 && NumNonZero != 1 &&
+ (isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT) ||
+ isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))) {
+ // Create an all-constant vector. The variable element in the old
+ // build vector is replaced by undef in the constant vector. Save the
+ // variable scalar element and its index for use in the insertelement.
+ Type *EltType = Op.getValueType().getScalarType().getTypeForEVT(Context);
+ SmallVector<Constant *, 16> ConstVecOps(NumElems, UndefValue::get(EltType));
+ SDValue VarElt;
+ SDValue InsIndex;
+ for (unsigned i = 0; i != NumElems; ++i) {
+ SDValue Elt = Op.getOperand(i);
+ if (auto *C = dyn_cast<ConstantSDNode>(Elt))
+ ConstVecOps[i] = ConstantInt::get(Context, C->getAPIntValue());
+ else if (auto *C = dyn_cast<ConstantFPSDNode>(Elt))
+ ConstVecOps[i] = ConstantFP::get(Context, C->getValueAPF());
+ else if (!Elt.isUndef()) {
+ assert(!VarElt.getNode() && !InsIndex.getNode() &&
+ "Expected one variable element in this vector");
+ VarElt = Elt;
+ InsIndex = DAG.getConstant(i, dl, getVectorIdxTy(DAG.getDataLayout()));
+ }
+ }
+ Constant *CV = ConstantVector::get(ConstVecOps);
+ SDValue DAGConstVec = DAG.getConstantPool(CV, VT);
+
+ // The constants we just created may not be legal (eg, floating point). We
+ // must lower the vector right here because we can not guarantee that we'll
+ // legalize it before loading it. This is also why we could not just create
+ // a new build vector here. If the build vector contains illegal constants,
+ // it could get split back up into a series of insert elements.
+ // TODO: Improve this by using shorter loads with broadcast/VZEXT_LOAD.
+ SDValue LegalDAGConstVec = LowerConstantPool(DAGConstVec, DAG);
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachinePointerInfo MPI = MachinePointerInfo::getConstantPool(MF);
+ SDValue Ld = DAG.getLoad(VT, dl, DAG.getEntryNode(), LegalDAGConstVec, MPI);
+ return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ld, VarElt, InsIndex);
+ }
+
+ // Special case for single non-zero, non-undef, element.
+ if (NumNonZero == 1) {
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue Item = Op.getOperand(Idx);
+
+ // If this is an insertion of an i64 value on x86-32, and if the top bits of
+ // the value are obviously zero, truncate the value to i32 and do the
+ // insertion that way. Only do this if the value is non-constant or if the
+ // value is a constant being inserted into element 0. It is cheaper to do
+ // a constant pool load than it is to do a movd + shuffle.
+ if (ExtVT == MVT::i64 && !Subtarget.is64Bit() &&
+ (!IsAllConstants || Idx == 0)) {
+ if (DAG.MaskedValueIsZero(Item, APInt::getHighBitsSet(64, 32))) {
+ // Handle SSE only.
+ assert(VT == MVT::v2i64 && "Expected an SSE value type!");
+ MVT VecVT = MVT::v4i32;
+
+ // Truncate the value (which may itself be a constant) to i32, and
+ // convert it to a vector with movd (S2V+shuffle to zero extend).
+ Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
+ return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef(
+ Item, Idx * 2, true, Subtarget, DAG));
+ }
+ }
+
+ // If we have a constant or non-constant insertion into the low element of
+ // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
+ // the rest of the elements. This will be matched as movd/movq/movss/movsd
+ // depending on what the source datatype is.
+ if (Idx == 0) {
+ if (NumZero == 0)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+
+ if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
+ (ExtVT == MVT::i64 && Subtarget.is64Bit())) {
+ assert((VT.is128BitVector() || VT.is256BitVector() ||
+ VT.is512BitVector()) &&
+ "Expected an SSE value type!");
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+ // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
+ return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+ }
+
+ // We can't directly insert an i8 or i16 into a vector, so zero extend
+ // it to i32 first.
+ if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
+ Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
+ if (VT.getSizeInBits() >= 256) {
+ MVT ShufVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
+ if (Subtarget.hasAVX()) {
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShufVT, Item);
+ Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+ } else {
+ // Without AVX, we need to extend to a 128-bit vector and then
+ // insert into the 256-bit vector.
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
+ SDValue ZeroVec = getZeroVector(ShufVT, Subtarget, DAG, dl);
+ Item = insert128BitVector(ZeroVec, Item, 0, DAG, dl);
+ }
+ } else {
+ assert(VT.is128BitVector() && "Expected an SSE value type!");
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
+ Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+ }
+ return DAG.getBitcast(VT, Item);
+ }
+ }
+
+ // Is it a vector logical left shift?
+ if (NumElems == 2 && Idx == 1 &&
+ X86::isZeroNode(Op.getOperand(0)) &&
+ !X86::isZeroNode(Op.getOperand(1))) {
+ unsigned NumBits = VT.getSizeInBits();
+ return getVShift(true, VT,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ VT, Op.getOperand(1)),
+ NumBits/2, DAG, *this, dl);
+ }
+
+ if (IsAllConstants) // Otherwise, it's better to do a constpool load.
+ return SDValue();
+
+ // Otherwise, if this is a vector with i32 or f32 elements, and the element
+ // is a non-constant being inserted into an element other than the low one,
+ // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
+ // movd/movss) to move this into the low element, then shuffle it into
+ // place.
+ if (EVTBits == 32) {
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+ return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
+ }
+ }
+
+ // Splat is obviously ok. Let legalizer expand it to a shuffle.
+ if (Values.size() == 1) {
+ if (EVTBits == 32) {
+ // Instead of a shuffle like this:
+ // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
+ // Check if it's possible to issue this instead.
+ // shuffle (vload ptr)), undef, <1, 1, 1, 1>
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue Item = Op.getOperand(Idx);
+ if (Op.getNode()->isOnlyUserOf(Item.getNode()))
+ return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
+ }
+ return SDValue();
+ }
+
+ // A vector full of immediates; various special cases are already
+ // handled, so this is best done with a single constant-pool load.
+ if (IsAllConstants)
+ return SDValue();
+
+ if (SDValue V = LowerBUILD_VECTORAsVariablePermute(Op, DAG, Subtarget))
+ return V;
+
+ // See if we can use a vector load to get all of the elements.
+ if (VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) {
+ SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems);
+ if (SDValue LD =
+ EltsFromConsecutiveLoads(VT, Ops, dl, DAG, Subtarget, false))
+ return LD;
+ }
+
+ // For AVX-length vectors, build the individual 128-bit pieces and use
+ // shuffles to put them in place.
+ if (VT.is256BitVector() || VT.is512BitVector()) {
+ EVT HVT = EVT::getVectorVT(Context, ExtVT, NumElems/2);
+
+ // Build both the lower and upper subvector.
+ SDValue Lower =
+ DAG.getBuildVector(HVT, dl, Op->ops().slice(0, NumElems / 2));
+ SDValue Upper = DAG.getBuildVector(
+ HVT, dl, Op->ops().slice(NumElems / 2, NumElems /2));
+
+ // Recreate the wider vector with the lower and upper part.
+ if (VT.is256BitVector())
+ return concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
+ return concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
+ }
+
+ // Let legalizer expand 2-wide build_vectors.
+ if (EVTBits == 64) {
+ if (NumNonZero == 1) {
+ // One half is zero or undef.
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
+ Op.getOperand(Idx));
+ return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
+ }
+ return SDValue();
+ }
+
+ // If element VT is < 32 bits, convert it to inserts into a zero vector.
+ if (EVTBits == 8 && NumElems == 16)
+ if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero,
+ DAG, Subtarget))
+ return V;
+
+ if (EVTBits == 16 && NumElems == 8)
+ if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero,
+ DAG, Subtarget))
+ return V;
+
+ // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
+ if (EVTBits == 32 && NumElems == 4)
+ if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget))
+ return V;
+
+ // If element VT is == 32 bits, turn it into a number of shuffles.
+ if (NumElems == 4 && NumZero > 0) {
+ SmallVector<SDValue, 8> Ops(NumElems);
+ for (unsigned i = 0; i < 4; ++i) {
+ bool isZero = !(NonZeros & (1ULL << i));
+ if (isZero)
+ Ops[i] = getZeroVector(VT, Subtarget, DAG, dl);
+ else
+ Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
+ }
+
+ for (unsigned i = 0; i < 2; ++i) {
+ switch ((NonZeros >> (i*2)) & 0x3) {
+ default: llvm_unreachable("Unexpected NonZero count");
+ case 0:
+ Ops[i] = Ops[i*2]; // Must be a zero vector.
+ break;
+ case 1:
+ Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2+1], Ops[i*2]);
+ break;
+ case 2:
+ Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
+ break;
+ case 3:
+ Ops[i] = getUnpackl(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
+ break;
+ }
+ }
+
+ bool Reverse1 = (NonZeros & 0x3) == 2;
+ bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
+ int MaskVec[] = {
+ Reverse1 ? 1 : 0,
+ Reverse1 ? 0 : 1,
+ static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
+ static_cast<int>(Reverse2 ? NumElems : NumElems+1)
+ };
+ return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec);
+ }
+
+ assert(Values.size() > 1 && "Expected non-undef and non-splat vector");
+
+ // Check for a build vector from mostly shuffle plus few inserting.
+ if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
+ return Sh;
+
+ // For SSE 4.1, use insertps to put the high elements into the low element.
+ if (Subtarget.hasSSE41()) {
+ SDValue Result;
+ if (!Op.getOperand(0).isUndef())
+ Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
+ else
+ Result = DAG.getUNDEF(VT);
+
+ for (unsigned i = 1; i < NumElems; ++i) {
+ if (Op.getOperand(i).isUndef()) continue;
+ Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
+ Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
+ }
+ return Result;
+ }
+
+ // Otherwise, expand into a number of unpckl*, start by extending each of
+ // our (non-undef) elements to the full vector width with the element in the
+ // bottom slot of the vector (which generates no code for SSE).
+ SmallVector<SDValue, 8> Ops(NumElems);
+ for (unsigned i = 0; i < NumElems; ++i) {
+ if (!Op.getOperand(i).isUndef())
+ Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
+ else
+ Ops[i] = DAG.getUNDEF(VT);
+ }
+
+ // Next, we iteratively mix elements, e.g. for v4f32:
+ // Step 1: unpcklps 0, 1 ==> X: <?, ?, 1, 0>
+ // : unpcklps 2, 3 ==> Y: <?, ?, 3, 2>
+ // Step 2: unpcklpd X, Y ==> <3, 2, 1, 0>
+ for (unsigned Scale = 1; Scale < NumElems; Scale *= 2) {
+ // Generate scaled UNPCKL shuffle mask.
+ SmallVector<int, 16> Mask;
+ for(unsigned i = 0; i != Scale; ++i)
+ Mask.push_back(i);
+ for (unsigned i = 0; i != Scale; ++i)
+ Mask.push_back(NumElems+i);
+ Mask.append(NumElems - Mask.size(), SM_SentinelUndef);
+
+ for (unsigned i = 0, e = NumElems / (2 * Scale); i != e; ++i)
+ Ops[i] = DAG.getVectorShuffle(VT, dl, Ops[2*i], Ops[(2*i)+1], Mask);
+ }
+ return Ops[0];
+}
+
+// 256-bit AVX can use the vinsertf128 instruction
+// to create 256-bit vectors from two other 128-bit ones.
+static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT ResVT = Op.getSimpleValueType();
+
+ assert((ResVT.is256BitVector() ||
+ ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
+
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ unsigned NumElems = ResVT.getVectorNumElements();
+ if (ResVT.is256BitVector())
+ return concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
+
+ if (Op.getNumOperands() == 4) {
+ MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
+ ResVT.getVectorNumElements()/2);
+ SDValue V3 = Op.getOperand(2);
+ SDValue V4 = Op.getOperand(3);
+ return concat256BitVectors(
+ concat128BitVectors(V1, V2, HalfVT, NumElems / 2, DAG, dl),
+ concat128BitVectors(V3, V4, HalfVT, NumElems / 2, DAG, dl), ResVT,
+ NumElems, DAG, dl);
+ }
+ return concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
+}
+
+// Return true if all the operands of the given CONCAT_VECTORS node are zeros
+// except for the first one. (CONCAT_VECTORS Op, 0, 0,...,0)
+static bool isExpandWithZeros(const SDValue &Op) {
+ assert(Op.getOpcode() == ISD::CONCAT_VECTORS &&
+ "Expand with zeros only possible in CONCAT_VECTORS nodes!");
+
+ for (unsigned i = 1; i < Op.getNumOperands(); i++)
+ if (!ISD::isBuildVectorAllZeros(Op.getOperand(i).getNode()))
+ return false;
+
+ return true;
+}
+
+// Returns true if the given node is a type promotion (by concatenating i1
+// zeros) of the result of a node that already zeros all upper bits of
+// k-register.
+static SDValue isTypePromotionOfi1ZeroUpBits(SDValue Op) {
+ unsigned Opc = Op.getOpcode();
+
+ assert(Opc == ISD::CONCAT_VECTORS &&
+ Op.getSimpleValueType().getVectorElementType() == MVT::i1 &&
+ "Unexpected node to check for type promotion!");
+
+ // As long as we are concatenating zeros to the upper part of a previous node
+ // result, climb up the tree until a node with different opcode is
+ // encountered
+ while (Opc == ISD::INSERT_SUBVECTOR || Opc == ISD::CONCAT_VECTORS) {
+ if (Opc == ISD::INSERT_SUBVECTOR) {
+ if (ISD::isBuildVectorAllZeros(Op.getOperand(0).getNode()) &&
+ Op.getConstantOperandVal(2) == 0)
+ Op = Op.getOperand(1);
+ else
+ return SDValue();
+ } else { // Opc == ISD::CONCAT_VECTORS
+ if (isExpandWithZeros(Op))
+ Op = Op.getOperand(0);
+ else
+ return SDValue();
+ }
+ Opc = Op.getOpcode();
+ }
+
+ // Check if the first inserted node zeroes the upper bits, or an 'and' result
+ // of a node that zeros the upper bits (its masked version).
+ if (isMaskedZeroUpperBitsvXi1(Op.getOpcode()) ||
+ (Op.getOpcode() == ISD::AND &&
+ (isMaskedZeroUpperBitsvXi1(Op.getOperand(0).getOpcode()) ||
+ isMaskedZeroUpperBitsvXi1(Op.getOperand(1).getOpcode())))) {
+ return Op;
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
+ const X86Subtarget &Subtarget,
+ SelectionDAG & DAG) {
+ SDLoc dl(Op);
+ MVT ResVT = Op.getSimpleValueType();
+ unsigned NumOperands = Op.getNumOperands();
+
+ assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&
+ "Unexpected number of operands in CONCAT_VECTORS");
+
+ // If this node promotes - by concatenating zeroes - the type of the result
+ // of a node with instruction that zeroes all upper (irrelevant) bits of the
+ // output register, mark it as legal and catch the pattern in instruction
+ // selection to avoid emitting extra instructions (for zeroing upper bits).
+ if (SDValue Promoted = isTypePromotionOfi1ZeroUpBits(Op)) {
+ SDValue ZeroC = DAG.getIntPtrConstant(0, dl);
+ SDValue AllZeros = getZeroVector(ResVT, Subtarget, DAG, dl);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, AllZeros, Promoted,
+ ZeroC);
+ }
+
+ unsigned NumZero = 0;
+ unsigned NumNonZero = 0;
+ uint64_t NonZeros = 0;
+ for (unsigned i = 0; i != NumOperands; ++i) {
+ SDValue SubVec = Op.getOperand(i);
+ if (SubVec.isUndef())
+ continue;
+ if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
+ ++NumZero;
+ else {
+ assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range.
+ NonZeros |= (uint64_t)1 << i;
+ ++NumNonZero;
+ }
+ }
+
+
+ // If there are zero or one non-zeros we can handle this very simply.
+ if (NumNonZero <= 1) {
+ SDValue Vec = NumZero ? getZeroVector(ResVT, Subtarget, DAG, dl)
+ : DAG.getUNDEF(ResVT);
+ if (!NumNonZero)
+ return Vec;
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue SubVec = Op.getOperand(Idx);
+ unsigned SubVecNumElts = SubVec.getSimpleValueType().getVectorNumElements();
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, SubVec,
+ DAG.getIntPtrConstant(Idx * SubVecNumElts, dl));
+ }
+
+ if (NumOperands > 2) {
+ MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
+ ResVT.getVectorNumElements()/2);
+ ArrayRef<SDUse> Ops = Op->ops();
+ SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
+ Ops.slice(0, NumOperands/2));
+ SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
+ Ops.slice(NumOperands/2));
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
+ }
+
+ assert(NumNonZero == 2 && "Simple cases not handled?");
+
+ if (ResVT.getVectorNumElements() >= 16)
+ return Op; // The operation is legal with KUNPCK
+
+ SDValue Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT,
+ DAG.getUNDEF(ResVT), Op.getOperand(0),
+ DAG.getIntPtrConstant(0, dl));
+ unsigned NumElems = ResVT.getVectorNumElements();
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, Op.getOperand(1),
+ DAG.getIntPtrConstant(NumElems/2, dl));
+}
+
+static SDValue LowerCONCAT_VECTORS(SDValue Op,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ if (VT.getVectorElementType() == MVT::i1)
+ return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
+
+ assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
+ (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
+ Op.getNumOperands() == 4)));
+
+ // AVX can use the vinsertf128 instruction to create 256-bit vectors
+ // from two other 128-bit ones.
+
+ // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
+ return LowerAVXCONCAT_VECTORS(Op, DAG);
+}
+
+//===----------------------------------------------------------------------===//
+// Vector shuffle lowering
+//
+// This is an experimental code path for lowering vector shuffles on x86. It is
+// designed to handle arbitrary vector shuffles and blends, gracefully
+// degrading performance as necessary. It works hard to recognize idiomatic
+// shuffles and lower them to optimal instruction patterns without leaving
+// a framework that allows reasonably efficient handling of all vector shuffle
+// patterns.
+//===----------------------------------------------------------------------===//
+
+/// \brief Tiny helper function to identify a no-op mask.
+///
+/// This is a somewhat boring predicate function. It checks whether the mask
+/// array input, which is assumed to be a single-input shuffle mask of the kind
+/// used by the X86 shuffle instructions (not a fully general
+/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
+/// in-place shuffle are 'no-op's.
+static bool isNoopShuffleMask(ArrayRef<int> Mask) {
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ assert(Mask[i] >= -1 && "Out of bound mask element!");
+ if (Mask[i] >= 0 && Mask[i] != i)
+ return false;
+ }
+ return true;
+}
+
+/// \brief Test whether there are elements crossing 128-bit lanes in this
+/// shuffle mask.
+///
+/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
+/// and we routinely test for these.
+static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
+ int LaneSize = 128 / VT.getScalarSizeInBits();
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
+ return true;
+ return false;
+}
+
+/// \brief Test whether a shuffle mask is equivalent within each sub-lane.
+///
+/// This checks a shuffle mask to see if it is performing the same
+/// lane-relative shuffle in each sub-lane. This trivially implies
+/// that it is also not lane-crossing. It may however involve a blend from the
+/// same lane of a second vector.
+///
+/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
+/// non-trivial to compute in the face of undef lanes. The representation is
+/// suitable for use with existing 128-bit shuffles as entries from the second
+/// vector have been remapped to [LaneSize, 2*LaneSize).
+static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT,
+ ArrayRef<int> Mask,
+ SmallVectorImpl<int> &RepeatedMask) {
+ auto LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
+ RepeatedMask.assign(LaneSize, -1);
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i) {
+ assert(Mask[i] == SM_SentinelUndef || Mask[i] >= 0);
+ if (Mask[i] < 0)
+ continue;
+ if ((Mask[i] % Size) / LaneSize != i / LaneSize)
+ // This entry crosses lanes, so there is no way to model this shuffle.
+ return false;
+
+ // Ok, handle the in-lane shuffles by detecting if and when they repeat.
+ // Adjust second vector indices to start at LaneSize instead of Size.
+ int LocalM = Mask[i] < Size ? Mask[i] % LaneSize
+ : Mask[i] % LaneSize + LaneSize;
+ if (RepeatedMask[i % LaneSize] < 0)
+ // This is the first non-undef entry in this slot of a 128-bit lane.
+ RepeatedMask[i % LaneSize] = LocalM;
+ else if (RepeatedMask[i % LaneSize] != LocalM)
+ // Found a mismatch with the repeated mask.
+ return false;
+ }
+ return true;
+}
+
+/// Test whether a shuffle mask is equivalent within each 128-bit lane.
+static bool
+is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
+ SmallVectorImpl<int> &RepeatedMask) {
+ return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask);
+}
+
+/// Test whether a shuffle mask is equivalent within each 256-bit lane.
+static bool
+is256BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
+ SmallVectorImpl<int> &RepeatedMask) {
+ return isRepeatedShuffleMask(256, VT, Mask, RepeatedMask);
+}
+
+/// Test whether a target shuffle mask is equivalent within each sub-lane.
+/// Unlike isRepeatedShuffleMask we must respect SM_SentinelZero.
+static bool isRepeatedTargetShuffleMask(unsigned LaneSizeInBits, MVT VT,
+ ArrayRef<int> Mask,
+ SmallVectorImpl<int> &RepeatedMask) {
+ int LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
+ RepeatedMask.assign(LaneSize, SM_SentinelUndef);
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i) {
+ assert(isUndefOrZero(Mask[i]) || (Mask[i] >= 0));
+ if (Mask[i] == SM_SentinelUndef)
+ continue;
+ if (Mask[i] == SM_SentinelZero) {
+ if (!isUndefOrZero(RepeatedMask[i % LaneSize]))
+ return false;
+ RepeatedMask[i % LaneSize] = SM_SentinelZero;
+ continue;
+ }
+ if ((Mask[i] % Size) / LaneSize != i / LaneSize)
+ // This entry crosses lanes, so there is no way to model this shuffle.
+ return false;
+
+ // Ok, handle the in-lane shuffles by detecting if and when they repeat.
+ // Adjust second vector indices to start at LaneSize instead of Size.
+ int LocalM =
+ Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
+ if (RepeatedMask[i % LaneSize] == SM_SentinelUndef)
+ // This is the first non-undef entry in this slot of a 128-bit lane.
+ RepeatedMask[i % LaneSize] = LocalM;
+ else if (RepeatedMask[i % LaneSize] != LocalM)
+ // Found a mismatch with the repeated mask.
+ return false;
+ }
+ return true;
+}
+
+/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
+/// arguments.
+///
+/// This is a fast way to test a shuffle mask against a fixed pattern:
+///
+/// if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
+///
+/// It returns true if the mask is exactly as wide as the argument list, and
+/// each element of the mask is either -1 (signifying undef) or the value given
+/// in the argument.
+static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ ArrayRef<int> ExpectedMask) {
+ if (Mask.size() != ExpectedMask.size())
+ return false;
+
+ int Size = Mask.size();
+
+ // If the values are build vectors, we can look through them to find
+ // equivalent inputs that make the shuffles equivalent.
+ auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
+ auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
+
+ for (int i = 0; i < Size; ++i) {
+ assert(Mask[i] >= -1 && "Out of bound mask element!");
+ if (Mask[i] >= 0 && Mask[i] != ExpectedMask[i]) {
+ auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
+ auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
+ if (!MaskBV || !ExpectedBV ||
+ MaskBV->getOperand(Mask[i] % Size) !=
+ ExpectedBV->getOperand(ExpectedMask[i] % Size))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// Checks whether a target shuffle mask is equivalent to an explicit pattern.
+///
+/// The masks must be exactly the same width.
+///
+/// If an element in Mask matches SM_SentinelUndef (-1) then the corresponding
+/// value in ExpectedMask is always accepted. Otherwise the indices must match.
+///
+/// SM_SentinelZero is accepted as a valid negative index but must match in both.
+static bool isTargetShuffleEquivalent(ArrayRef<int> Mask,
+ ArrayRef<int> ExpectedMask) {
+ int Size = Mask.size();
+ if (Size != (int)ExpectedMask.size())
+ return false;
+
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] == SM_SentinelUndef)
+ continue;
+ else if (Mask[i] < 0 && Mask[i] != SM_SentinelZero)
+ return false;
+ else if (Mask[i] != ExpectedMask[i])
+ return false;
+
+ return true;
+}
+
+// Merges a general DAG shuffle mask and zeroable bit mask into a target shuffle
+// mask.
+static SmallVector<int, 64> createTargetShuffleMask(ArrayRef<int> Mask,
+ const APInt &Zeroable) {
+ int NumElts = Mask.size();
+ assert(NumElts == (int)Zeroable.getBitWidth() && "Mismatch mask sizes");
+
+ SmallVector<int, 64> TargetMask(NumElts, SM_SentinelUndef);
+ for (int i = 0; i != NumElts; ++i) {
+ int M = Mask[i];
+ if (M == SM_SentinelUndef)
+ continue;
+ assert(0 <= M && M < (2 * NumElts) && "Out of range shuffle index");
+ TargetMask[i] = (Zeroable[i] ? SM_SentinelZero : M);
+ }
+ return TargetMask;
+}
+
+// Check if the shuffle mask is suitable for the AVX vpunpcklwd or vpunpckhwd
+// instructions.
+static bool isUnpackWdShuffleMask(ArrayRef<int> Mask, MVT VT) {
+ if (VT != MVT::v8i32 && VT != MVT::v8f32)
+ return false;
+
+ SmallVector<int, 8> Unpcklwd;
+ createUnpackShuffleMask(MVT::v8i16, Unpcklwd, /* Lo = */ true,
+ /* Unary = */ false);
+ SmallVector<int, 8> Unpckhwd;
+ createUnpackShuffleMask(MVT::v8i16, Unpckhwd, /* Lo = */ false,
+ /* Unary = */ false);
+ bool IsUnpackwdMask = (isTargetShuffleEquivalent(Mask, Unpcklwd) ||
+ isTargetShuffleEquivalent(Mask, Unpckhwd));
+ return IsUnpackwdMask;
+}
+
+/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
+///
+/// This helper function produces an 8-bit shuffle immediate corresponding to
+/// the ubiquitous shuffle encoding scheme used in x86 instructions for
+/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
+/// example.
+///
+/// NB: We rely heavily on "undef" masks preserving the input lane.
+static unsigned getV4X86ShuffleImm(ArrayRef<int> Mask) {
+ assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
+ assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
+ assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
+ assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
+ assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
+
+ unsigned Imm = 0;
+ Imm |= (Mask[0] < 0 ? 0 : Mask[0]) << 0;
+ Imm |= (Mask[1] < 0 ? 1 : Mask[1]) << 2;
+ Imm |= (Mask[2] < 0 ? 2 : Mask[2]) << 4;
+ Imm |= (Mask[3] < 0 ? 3 : Mask[3]) << 6;
+ return Imm;
+}
+
+static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, const SDLoc &DL,
+ SelectionDAG &DAG) {
+ return DAG.getConstant(getV4X86ShuffleImm(Mask), DL, MVT::i8);
+}
+
+/// \brief Compute whether each element of a shuffle is zeroable.
+///
+/// A "zeroable" vector shuffle element is one which can be lowered to zero.
+/// Either it is an undef element in the shuffle mask, the element of the input
+/// referenced is undef, or the element of the input referenced is known to be
+/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
+/// as many lanes with this technique as possible to simplify the remaining
+/// shuffle.
+static APInt computeZeroableShuffleElements(ArrayRef<int> Mask,
+ SDValue V1, SDValue V2) {
+ APInt Zeroable(Mask.size(), 0);
+ V1 = peekThroughBitcasts(V1);
+ V2 = peekThroughBitcasts(V2);
+
+ bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
+ bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
+
+ int VectorSizeInBits = V1.getValueSizeInBits();
+ int ScalarSizeInBits = VectorSizeInBits / Mask.size();
+ assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size");
+
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ int M = Mask[i];
+ // Handle the easy cases.
+ if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
+ Zeroable.setBit(i);
+ continue;
+ }
+
+ // Determine shuffle input and normalize the mask.
+ SDValue V = M < Size ? V1 : V2;
+ M %= Size;
+
+ // Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements.
+ if (V.getOpcode() != ISD::BUILD_VECTOR)
+ continue;
+
+ // If the BUILD_VECTOR has fewer elements then the bitcasted portion of
+ // the (larger) source element must be UNDEF/ZERO.
+ if ((Size % V.getNumOperands()) == 0) {
+ int Scale = Size / V->getNumOperands();
+ SDValue Op = V.getOperand(M / Scale);
+ if (Op.isUndef() || X86::isZeroNode(Op))
+ Zeroable.setBit(i);
+ else if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
+ APInt Val = Cst->getAPIntValue();
+ Val.lshrInPlace((M % Scale) * ScalarSizeInBits);
+ Val = Val.getLoBits(ScalarSizeInBits);
+ if (Val == 0)
+ Zeroable.setBit(i);
+ } else if (ConstantFPSDNode *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
+ APInt Val = Cst->getValueAPF().bitcastToAPInt();
+ Val.lshrInPlace((M % Scale) * ScalarSizeInBits);
+ Val = Val.getLoBits(ScalarSizeInBits);
+ if (Val == 0)
+ Zeroable.setBit(i);
+ }
+ continue;
+ }
+
+ // If the BUILD_VECTOR has more elements then all the (smaller) source
+ // elements must be UNDEF or ZERO.
+ if ((V.getNumOperands() % Size) == 0) {
+ int Scale = V->getNumOperands() / Size;
+ bool AllZeroable = true;
+ for (int j = 0; j < Scale; ++j) {
+ SDValue Op = V.getOperand((M * Scale) + j);
+ AllZeroable &= (Op.isUndef() || X86::isZeroNode(Op));
+ }
+ if (AllZeroable)
+ Zeroable.setBit(i);
+ continue;
+ }
+ }
+
+ return Zeroable;
+}
+
+// The Shuffle result is as follow:
+// 0*a[0]0*a[1]...0*a[n] , n >=0 where a[] elements in a ascending order.
+// Each Zeroable's element correspond to a particular Mask's element.
+// As described in computeZeroableShuffleElements function.
+//
+// The function looks for a sub-mask that the nonzero elements are in
+// increasing order. If such sub-mask exist. The function returns true.
+static bool isNonZeroElementsInOrder(const APInt &Zeroable,
+ ArrayRef<int> Mask, const EVT &VectorType,
+ bool &IsZeroSideLeft) {
+ int NextElement = -1;
+ // Check if the Mask's nonzero elements are in increasing order.
+ for (int i = 0, e = Mask.size(); i < e; i++) {
+ // Checks if the mask's zeros elements are built from only zeros.
+ assert(Mask[i] >= -1 && "Out of bound mask element!");
+ if (Mask[i] < 0)
+ return false;
+ if (Zeroable[i])
+ continue;
+ // Find the lowest non zero element
+ if (NextElement < 0) {
+ NextElement = Mask[i] != 0 ? VectorType.getVectorNumElements() : 0;
+ IsZeroSideLeft = NextElement != 0;
+ }
+ // Exit if the mask's non zero elements are not in increasing order.
+ if (NextElement != Mask[i])
+ return false;
+ NextElement++;
+ }
+ return true;
+}
+
+/// Try to lower a shuffle with a single PSHUFB of V1 or V2.
+static SDValue lowerVectorShuffleWithPSHUFB(const SDLoc &DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2,
+ const APInt &Zeroable,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ int Size = Mask.size();
+ int LaneSize = 128 / VT.getScalarSizeInBits();
+ const int NumBytes = VT.getSizeInBits() / 8;
+ const int NumEltBytes = VT.getScalarSizeInBits() / 8;
+
+ assert((Subtarget.hasSSSE3() && VT.is128BitVector()) ||
+ (Subtarget.hasAVX2() && VT.is256BitVector()) ||
+ (Subtarget.hasBWI() && VT.is512BitVector()));
+
+ SmallVector<SDValue, 64> PSHUFBMask(NumBytes);
+ // Sign bit set in i8 mask means zero element.
+ SDValue ZeroMask = DAG.getConstant(0x80, DL, MVT::i8);
+
+ SDValue V;
+ for (int i = 0; i < NumBytes; ++i) {
+ int M = Mask[i / NumEltBytes];
+ if (M < 0) {
+ PSHUFBMask[i] = DAG.getUNDEF(MVT::i8);
+ continue;
+ }
+ if (Zeroable[i / NumEltBytes]) {
+ PSHUFBMask[i] = ZeroMask;
+ continue;
+ }
+
+ // We can only use a single input of V1 or V2.
+ SDValue SrcV = (M >= Size ? V2 : V1);
+ if (V && V != SrcV)
+ return SDValue();
+ V = SrcV;
+ M %= Size;
+
+ // PSHUFB can't cross lanes, ensure this doesn't happen.
+ if ((M / LaneSize) != ((i / NumEltBytes) / LaneSize))
+ return SDValue();
+
+ M = M % LaneSize;
+ M = M * NumEltBytes + (i % NumEltBytes);
+ PSHUFBMask[i] = DAG.getConstant(M, DL, MVT::i8);
+ }
+ assert(V && "Failed to find a source input");
+
+ MVT I8VT = MVT::getVectorVT(MVT::i8, NumBytes);
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::PSHUFB, DL, I8VT, DAG.getBitcast(I8VT, V),
+ DAG.getBuildVector(I8VT, DL, PSHUFBMask)));
+}
+
+static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
+ const X86Subtarget &Subtarget, SelectionDAG &DAG,
+ const SDLoc &dl);
+
+// X86 has dedicated shuffle that can be lowered to VEXPAND
+static SDValue lowerVectorShuffleToEXPAND(const SDLoc &DL, MVT VT,
+ const APInt &Zeroable,
+ ArrayRef<int> Mask, SDValue &V1,
+ SDValue &V2, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ bool IsLeftZeroSide = true;
+ if (!isNonZeroElementsInOrder(Zeroable, Mask, V1.getValueType(),
+ IsLeftZeroSide))
+ return SDValue();
+ unsigned VEXPANDMask = (~Zeroable).getZExtValue();
+ MVT IntegerType =
+ MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
+ SDValue MaskNode = DAG.getConstant(VEXPANDMask, DL, IntegerType);
+ unsigned NumElts = VT.getVectorNumElements();
+ assert((NumElts == 4 || NumElts == 8 || NumElts == 16) &&
+ "Unexpected number of vector elements");
+ SDValue VMask = getMaskNode(MaskNode, MVT::getVectorVT(MVT::i1, NumElts),
+ Subtarget, DAG, DL);
+ SDValue ZeroVector = getZeroVector(VT, Subtarget, DAG, DL);
+ SDValue ExpandedVector = IsLeftZeroSide ? V2 : V1;
+ return DAG.getSelect(DL, VT, VMask,
+ DAG.getNode(X86ISD::EXPAND, DL, VT, ExpandedVector),
+ ZeroVector);
+}
+
+static bool matchVectorShuffleWithUNPCK(MVT VT, SDValue &V1, SDValue &V2,
+ unsigned &UnpackOpcode, bool IsUnary,
+ ArrayRef<int> TargetMask, SDLoc &DL,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ int NumElts = VT.getVectorNumElements();
+
+ bool Undef1 = true, Undef2 = true, Zero1 = true, Zero2 = true;
+ for (int i = 0; i != NumElts; i += 2) {
+ int M1 = TargetMask[i + 0];
+ int M2 = TargetMask[i + 1];
+ Undef1 &= (SM_SentinelUndef == M1);
+ Undef2 &= (SM_SentinelUndef == M2);
+ Zero1 &= isUndefOrZero(M1);
+ Zero2 &= isUndefOrZero(M2);
+ }
+ assert(!((Undef1 || Zero1) && (Undef2 || Zero2)) &&
+ "Zeroable shuffle detected");
+
+ // Attempt to match the target mask against the unpack lo/hi mask patterns.
+ SmallVector<int, 64> Unpckl, Unpckh;
+ createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, IsUnary);
+ if (isTargetShuffleEquivalent(TargetMask, Unpckl)) {
+ UnpackOpcode = X86ISD::UNPCKL;
+ V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2));
+ V1 = (Undef1 ? DAG.getUNDEF(VT) : V1);
+ return true;
+ }
+
+ createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, IsUnary);
+ if (isTargetShuffleEquivalent(TargetMask, Unpckh)) {
+ UnpackOpcode = X86ISD::UNPCKH;
+ V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2));
+ V1 = (Undef1 ? DAG.getUNDEF(VT) : V1);
+ return true;
+ }
+
+ // If an unary shuffle, attempt to match as an unpack lo/hi with zero.
+ if (IsUnary && (Zero1 || Zero2)) {
+ // Don't bother if we can blend instead.
+ if ((Subtarget.hasSSE41() || VT == MVT::v2i64 || VT == MVT::v2f64) &&
+ isSequentialOrUndefOrZeroInRange(TargetMask, 0, NumElts, 0))
+ return false;
+
+ bool MatchLo = true, MatchHi = true;
+ for (int i = 0; (i != NumElts) && (MatchLo || MatchHi); ++i) {
+ int M = TargetMask[i];
+
+ // Ignore if the input is known to be zero or the index is undef.
+ if ((((i & 1) == 0) && Zero1) || (((i & 1) == 1) && Zero2) ||
+ (M == SM_SentinelUndef))
+ continue;
+
+ MatchLo &= (M == Unpckl[i]);
+ MatchHi &= (M == Unpckh[i]);
+ }
+
+ if (MatchLo || MatchHi) {
+ UnpackOpcode = MatchLo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
+ V2 = Zero2 ? getZeroVector(VT, Subtarget, DAG, DL) : V1;
+ V1 = Zero1 ? getZeroVector(VT, Subtarget, DAG, DL) : V1;
+ return true;
+ }
+ }
+
+ // If a binary shuffle, commute and try again.
+ if (!IsUnary) {
+ ShuffleVectorSDNode::commuteMask(Unpckl);
+ if (isTargetShuffleEquivalent(TargetMask, Unpckl)) {
+ UnpackOpcode = X86ISD::UNPCKL;
+ std::swap(V1, V2);
+ return true;
+ }
+
+ ShuffleVectorSDNode::commuteMask(Unpckh);
+ if (isTargetShuffleEquivalent(TargetMask, Unpckh)) {
+ UnpackOpcode = X86ISD::UNPCKH;
+ std::swap(V1, V2);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// X86 has dedicated unpack instructions that can handle specific blend
+// operations: UNPCKH and UNPCKL.
+static SDValue lowerVectorShuffleWithUNPCK(const SDLoc &DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
+ SmallVector<int, 8> Unpckl;
+ createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, /* Unary = */ false);
+ if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
+ return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
+
+ SmallVector<int, 8> Unpckh;
+ createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, /* Unary = */ false);
+ if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
+ return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
+
+ // Commute and try again.
+ ShuffleVectorSDNode::commuteMask(Unpckl);
+ if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
+ return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1);
+
+ ShuffleVectorSDNode::commuteMask(Unpckh);
+ if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
+ return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1);
+
+ return SDValue();
+}
+
+// X86 has dedicated pack instructions that can handle specific truncation
+// operations: PACKSS and PACKUS.
+static bool matchVectorShuffleWithPACK(MVT VT, MVT &SrcVT, SDValue &V1,
+ SDValue &V2, unsigned &PackOpcode,
+ ArrayRef<int> TargetMask,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned BitSize = VT.getScalarSizeInBits();
+ MVT PackSVT = MVT::getIntegerVT(BitSize * 2);
+ MVT PackVT = MVT::getVectorVT(PackSVT, NumElts / 2);
+
+ auto MatchPACK = [&](SDValue N1, SDValue N2) {
+ SDValue VV1 = DAG.getBitcast(PackVT, N1);
+ SDValue VV2 = DAG.getBitcast(PackVT, N2);
+ if ((N1.isUndef() || DAG.ComputeNumSignBits(VV1) > BitSize) &&
+ (N2.isUndef() || DAG.ComputeNumSignBits(VV2) > BitSize)) {
+ V1 = VV1;
+ V2 = VV2;
+ SrcVT = PackVT;
+ PackOpcode = X86ISD::PACKSS;
+ return true;
+ }
+
+ if (Subtarget.hasSSE41() || PackSVT == MVT::i16) {
+ APInt ZeroMask = APInt::getHighBitsSet(BitSize * 2, BitSize);
+ if ((N1.isUndef() || DAG.MaskedValueIsZero(VV1, ZeroMask)) &&
+ (N2.isUndef() || DAG.MaskedValueIsZero(VV2, ZeroMask))) {
+ V1 = VV1;
+ V2 = VV2;
+ SrcVT = PackVT;
+ PackOpcode = X86ISD::PACKUS;
+ return true;
+ }
+ }
+
+ return false;
+ };
+
+ // Try binary shuffle.
+ SmallVector<int, 32> BinaryMask;
+ createPackShuffleMask(VT, BinaryMask, false);
+ if (isTargetShuffleEquivalent(TargetMask, BinaryMask))
+ if (MatchPACK(V1, V2))
+ return true;
+
+ // Try unary shuffle.
+ SmallVector<int, 32> UnaryMask;
+ createPackShuffleMask(VT, UnaryMask, true);
+ if (isTargetShuffleEquivalent(TargetMask, UnaryMask))
+ if (MatchPACK(V1, V1))
+ return true;
+
+ return false;
+}
+
+static SDValue lowerVectorShuffleWithPACK(const SDLoc &DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ MVT PackVT;
+ unsigned PackOpcode;
+ if (matchVectorShuffleWithPACK(VT, PackVT, V1, V2, PackOpcode, Mask, DAG,
+ Subtarget))
+ return DAG.getNode(PackOpcode, DL, VT, DAG.getBitcast(PackVT, V1),
+ DAG.getBitcast(PackVT, V2));
+
+ return SDValue();
+}
+
+/// \brief Try to emit a bitmask instruction for a shuffle.
+///
+/// This handles cases where we can model a blend exactly as a bitmask due to
+/// one of the inputs being zeroable.
+static SDValue lowerVectorShuffleAsBitMask(const SDLoc &DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SelectionDAG &DAG) {
+ assert(!VT.isFloatingPoint() && "Floating point types are not supported");
+ MVT EltVT = VT.getVectorElementType();
+ SDValue Zero = DAG.getConstant(0, DL, EltVT);
+ SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT);
+ SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
+ SDValue V;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ if (Zeroable[i])
+ continue;
+ if (Mask[i] % Size != i)
+ return SDValue(); // Not a blend.
+ if (!V)
+ V = Mask[i] < Size ? V1 : V2;
+ else if (V != (Mask[i] < Size ? V1 : V2))
+ return SDValue(); // Can only let one input through the mask.
+
+ VMaskOps[i] = AllOnes;
+ }
+ if (!V)
+ return SDValue(); // No non-zeroable elements!
+
+ SDValue VMask = DAG.getBuildVector(VT, DL, VMaskOps);
+ return DAG.getNode(ISD::AND, DL, VT, V, VMask);
+}
+
+/// \brief Try to emit a blend instruction for a shuffle using bit math.
+///
+/// This is used as a fallback approach when first class blend instructions are
+/// unavailable. Currently it is only suitable for integer vectors, but could
+/// be generalized for floating point vectors if desirable.
+static SDValue lowerVectorShuffleAsBitBlend(const SDLoc &DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(VT.isInteger() && "Only supports integer vector types!");
+ MVT EltVT = VT.getVectorElementType();
+ SDValue Zero = DAG.getConstant(0, DL, EltVT);
+ SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT);
+ SmallVector<SDValue, 16> MaskOps;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ if (Mask[i] >= 0 && Mask[i] != i && Mask[i] != i + Size)
+ return SDValue(); // Shuffled input!
+ MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
+ }
+
+ SDValue V1Mask = DAG.getBuildVector(VT, DL, MaskOps);
+ V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
+ // We have to cast V2 around.
+ MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
+ V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
+ DAG.getBitcast(MaskVT, V1Mask),
+ DAG.getBitcast(MaskVT, V2)));
+ return DAG.getNode(ISD::OR, DL, VT, V1, V2);
+}
+
+static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
+ SDValue PreservedSrc,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG);
+
+static bool matchVectorShuffleAsBlend(SDValue V1, SDValue V2,
+ MutableArrayRef<int> TargetMask,
+ bool &ForceV1Zero, bool &ForceV2Zero,
+ uint64_t &BlendMask) {
+ bool V1IsZeroOrUndef =
+ V1.isUndef() || ISD::isBuildVectorAllZeros(V1.getNode());
+ bool V2IsZeroOrUndef =
+ V2.isUndef() || ISD::isBuildVectorAllZeros(V2.getNode());
+
+ BlendMask = 0;
+ ForceV1Zero = false, ForceV2Zero = false;
+ assert(TargetMask.size() <= 64 && "Shuffle mask too big for blend mask");
+
+ // Attempt to generate the binary blend mask. If an input is zero then
+ // we can use any lane.
+ // TODO: generalize the zero matching to any scalar like isShuffleEquivalent.
+ for (int i = 0, Size = TargetMask.size(); i < Size; ++i) {
+ int M = TargetMask[i];
+ if (M == SM_SentinelUndef)
+ continue;
+ if (M == i)
+ continue;
+ if (M == i + Size) {
+ BlendMask |= 1ull << i;
+ continue;
+ }
+ if (M == SM_SentinelZero) {
+ if (V1IsZeroOrUndef) {
+ ForceV1Zero = true;
+ TargetMask[i] = i;
+ continue;
+ }
+ if (V2IsZeroOrUndef) {
+ ForceV2Zero = true;
+ BlendMask |= 1ull << i;
+ TargetMask[i] = i + Size;
+ continue;
+ }
+ }
+ return false;
+ }
+ return true;
+}
+
+static uint64_t scaleVectorShuffleBlendMask(uint64_t BlendMask, int Size,
+ int Scale) {
+ uint64_t ScaledMask = 0;
+ for (int i = 0; i != Size; ++i)
+ if (BlendMask & (1ull << i))
+ ScaledMask |= ((1ull << Scale) - 1) << (i * Scale);
+ return ScaledMask;
+}
+
+/// \brief Try to emit a blend instruction for a shuffle.
+///
+/// This doesn't do any checks for the availability of instructions for blending
+/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
+/// be matched in the backend with the type given. What it does check for is
+/// that the shuffle mask is a blend, or convertible into a blend with zero.
+static SDValue lowerVectorShuffleAsBlend(const SDLoc &DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Original,
+ const APInt &Zeroable,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SmallVector<int, 64> Mask = createTargetShuffleMask(Original, Zeroable);
+
+ uint64_t BlendMask = 0;
+ bool ForceV1Zero = false, ForceV2Zero = false;
+ if (!matchVectorShuffleAsBlend(V1, V2, Mask, ForceV1Zero, ForceV2Zero,
+ BlendMask))
+ return SDValue();
+
+ // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
+ if (ForceV1Zero)
+ V1 = getZeroVector(VT, Subtarget, DAG, DL);
+ if (ForceV2Zero)
+ V2 = getZeroVector(VT, Subtarget, DAG, DL);
+
+ switch (VT.SimpleTy) {
+ case MVT::v2f64:
+ case MVT::v4f32:
+ case MVT::v4f64:
+ case MVT::v8f32:
+ return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8));
+
+ case MVT::v4i64:
+ case MVT::v8i32:
+ assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
+ LLVM_FALLTHROUGH;
+ case MVT::v2i64:
+ case MVT::v4i32:
+ // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
+ // that instruction.
+ if (Subtarget.hasAVX2()) {
+ // Scale the blend by the number of 32-bit dwords per element.
+ int Scale = VT.getScalarSizeInBits() / 32;
+ BlendMask = scaleVectorShuffleBlendMask(BlendMask, Mask.size(), Scale);
+ MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
+ V1 = DAG.getBitcast(BlendVT, V1);
+ V2 = DAG.getBitcast(BlendVT, V2);
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8)));
+ }
+ LLVM_FALLTHROUGH;
+ case MVT::v8i16: {
+ // For integer shuffles we need to expand the mask and cast the inputs to
+ // v8i16s prior to blending.
+ int Scale = 8 / VT.getVectorNumElements();
+ BlendMask = scaleVectorShuffleBlendMask(BlendMask, Mask.size(), Scale);
+ V1 = DAG.getBitcast(MVT::v8i16, V1);
+ V2 = DAG.getBitcast(MVT::v8i16, V2);
+ return DAG.getBitcast(VT,
+ DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8)));
+ }
+
+ case MVT::v16i16: {
+ assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
+ SmallVector<int, 8> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
+ // We can lower these with PBLENDW which is mirrored across 128-bit lanes.
+ assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
+ BlendMask = 0;
+ for (int i = 0; i < 8; ++i)
+ if (RepeatedMask[i] >= 8)
+ BlendMask |= 1ull << i;
+ return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8));
+ }
+ LLVM_FALLTHROUGH;
+ }
+ case MVT::v16i8:
+ case MVT::v32i8: {
+ assert((VT.is128BitVector() || Subtarget.hasAVX2()) &&
+ "256-bit byte-blends require AVX2 support!");
+
+ if (Subtarget.hasBWI() && Subtarget.hasVLX()) {
+ MVT IntegerType =
+ MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
+ SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType);
+ return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG);
+ }
+
+ // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB.
+ if (SDValue Masked =
+ lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG))
+ return Masked;
+
+ // Scale the blend by the number of bytes per element.
+ int Scale = VT.getScalarSizeInBits() / 8;
+
+ // This form of blend is always done on bytes. Compute the byte vector
+ // type.
+ MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
+
+ // Compute the VSELECT mask. Note that VSELECT is really confusing in the
+ // mix of LLVM's code generator and the x86 backend. We tell the code
+ // generator that boolean values in the elements of an x86 vector register
+ // are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
+ // mapping a select to operand #1, and 'false' mapping to operand #2. The
+ // reality in x86 is that vector masks (pre-AVX-512) use only the high bit
+ // of the element (the remaining are ignored) and 0 in that high bit would
+ // mean operand #1 while 1 in the high bit would mean operand #2. So while
+ // the LLVM model for boolean values in vector elements gets the relevant
+ // bit set, it is set backwards and over constrained relative to x86's
+ // actual model.
+ SmallVector<SDValue, 32> VSELECTMask;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ for (int j = 0; j < Scale; ++j)
+ VSELECTMask.push_back(
+ Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
+ : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
+ MVT::i8));
+
+ V1 = DAG.getBitcast(BlendVT, V1);
+ V2 = DAG.getBitcast(BlendVT, V2);
+ return DAG.getBitcast(
+ VT,
+ DAG.getSelect(DL, BlendVT, DAG.getBuildVector(BlendVT, DL, VSELECTMask),
+ V1, V2));
+ }
+ case MVT::v16f32:
+ case MVT::v8f64:
+ case MVT::v8i64:
+ case MVT::v16i32:
+ case MVT::v32i16:
+ case MVT::v64i8: {
+ MVT IntegerType =
+ MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
+ SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType);
+ return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG);
+ }
+ default:
+ llvm_unreachable("Not a supported integer vector type!");
+ }
+}
+
+/// \brief Try to lower as a blend of elements from two inputs followed by
+/// a single-input permutation.
+///
+/// This matches the pattern where we can blend elements from two inputs and
+/// then reduce the shuffle to a single-input permutation.
+static SDValue lowerVectorShuffleAsBlendAndPermute(const SDLoc &DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ // We build up the blend mask while checking whether a blend is a viable way
+ // to reduce the shuffle.
+ SmallVector<int, 32> BlendMask(Mask.size(), -1);
+ SmallVector<int, 32> PermuteMask(Mask.size(), -1);
+
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
+
+ if (BlendMask[Mask[i] % Size] < 0)
+ BlendMask[Mask[i] % Size] = Mask[i];
+ else if (BlendMask[Mask[i] % Size] != Mask[i])
+ return SDValue(); // Can't blend in the needed input!
+
+ PermuteMask[i] = Mask[i] % Size;
+ }
+
+ SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
+ return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
+}
+
+/// \brief Generic routine to decompose a shuffle and blend into independent
+/// blends and permutes.
+///
+/// This matches the extremely common pattern for handling combined
+/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
+/// operations. It will try to pick the best arrangement of shuffles and
+/// blends.
+static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(const SDLoc &DL,
+ MVT VT, SDValue V1,
+ SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ // Shuffle the input elements into the desired positions in V1 and V2 and
+ // blend them together.
+ SmallVector<int, 32> V1Mask(Mask.size(), -1);
+ SmallVector<int, 32> V2Mask(Mask.size(), -1);
+ SmallVector<int, 32> BlendMask(Mask.size(), -1);
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] >= 0 && Mask[i] < Size) {
+ V1Mask[i] = Mask[i];
+ BlendMask[i] = i;
+ } else if (Mask[i] >= Size) {
+ V2Mask[i] = Mask[i] - Size;
+ BlendMask[i] = i + Size;
+ }
+
+ // Try to lower with the simpler initial blend strategy unless one of the
+ // input shuffles would be a no-op. We prefer to shuffle inputs as the
+ // shuffle may be able to fold with a load or other benefit. However, when
+ // we'll have to do 2x as many shuffles in order to achieve this, blending
+ // first is a better strategy.
+ if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask))
+ if (SDValue BlendPerm =
+ lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG))
+ return BlendPerm;
+
+ V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
+ V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
+ return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
+}
+
+/// \brief Try to lower a vector shuffle as a rotation.
+///
+/// This is used for support PALIGNR for SSSE3 or VALIGND/Q for AVX512.
+static int matchVectorShuffleAsRotate(SDValue &V1, SDValue &V2,
+ ArrayRef<int> Mask) {
+ int NumElts = Mask.size();
+
+ // We need to detect various ways of spelling a rotation:
+ // [11, 12, 13, 14, 15, 0, 1, 2]
+ // [-1, 12, 13, 14, -1, -1, 1, -1]
+ // [-1, -1, -1, -1, -1, -1, 1, 2]
+ // [ 3, 4, 5, 6, 7, 8, 9, 10]
+ // [-1, 4, 5, 6, -1, -1, 9, -1]
+ // [-1, 4, 5, 6, -1, -1, -1, -1]
+ int Rotation = 0;
+ SDValue Lo, Hi;
+ for (int i = 0; i < NumElts; ++i) {
+ int M = Mask[i];
+ assert((M == SM_SentinelUndef || (0 <= M && M < (2*NumElts))) &&
+ "Unexpected mask index.");
+ if (M < 0)
+ continue;
+
+ // Determine where a rotated vector would have started.
+ int StartIdx = i - (M % NumElts);
+ if (StartIdx == 0)
+ // The identity rotation isn't interesting, stop.
+ return -1;
+
+ // If we found the tail of a vector the rotation must be the missing
+ // front. If we found the head of a vector, it must be how much of the
+ // head.
+ int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
+
+ if (Rotation == 0)
+ Rotation = CandidateRotation;
+ else if (Rotation != CandidateRotation)
+ // The rotations don't match, so we can't match this mask.
+ return -1;
+
+ // Compute which value this mask is pointing at.
+ SDValue MaskV = M < NumElts ? V1 : V2;
+
+ // Compute which of the two target values this index should be assigned
+ // to. This reflects whether the high elements are remaining or the low
+ // elements are remaining.
+ SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
+
+ // Either set up this value if we've not encountered it before, or check
+ // that it remains consistent.
+ if (!TargetV)
+ TargetV = MaskV;
+ else if (TargetV != MaskV)
+ // This may be a rotation, but it pulls from the inputs in some
+ // unsupported interleaving.
+ return -1;
+ }
+
+ // Check that we successfully analyzed the mask, and normalize the results.
+ assert(Rotation != 0 && "Failed to locate a viable rotation!");
+ assert((Lo || Hi) && "Failed to find a rotated input vector!");
+ if (!Lo)
+ Lo = Hi;
+ else if (!Hi)
+ Hi = Lo;
+
+ V1 = Lo;
+ V2 = Hi;
+
+ return Rotation;
+}
+
+/// \brief Try to lower a vector shuffle as a byte rotation.
+///
+/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
+/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
+/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
+/// try to generically lower a vector shuffle through such an pattern. It
+/// does not check for the profitability of lowering either as PALIGNR or
+/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
+/// This matches shuffle vectors that look like:
+///
+/// v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
+///
+/// Essentially it concatenates V1 and V2, shifts right by some number of
+/// elements, and takes the low elements as the result. Note that while this is
+/// specified as a *right shift* because x86 is little-endian, it is a *left
+/// rotate* of the vector lanes.
+static int matchVectorShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2,
+ ArrayRef<int> Mask) {
+ // Don't accept any shuffles with zero elements.
+ if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
+ return -1;
+
+ // PALIGNR works on 128-bit lanes.
+ SmallVector<int, 16> RepeatedMask;
+ if (!is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask))
+ return -1;
+
+ int Rotation = matchVectorShuffleAsRotate(V1, V2, RepeatedMask);
+ if (Rotation <= 0)
+ return -1;
+
+ // PALIGNR rotates bytes, so we need to scale the
+ // rotation based on how many bytes are in the vector lane.
+ int NumElts = RepeatedMask.size();
+ int Scale = 16 / NumElts;
+ return Rotation * Scale;
+}
+
+static SDValue lowerVectorShuffleAsByteRotate(const SDLoc &DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
+
+ SDValue Lo = V1, Hi = V2;
+ int ByteRotation = matchVectorShuffleAsByteRotate(VT, Lo, Hi, Mask);
+ if (ByteRotation <= 0)
+ return SDValue();
+
+ // Cast the inputs to i8 vector of correct length to match PALIGNR or
+ // PSLLDQ/PSRLDQ.
+ MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
+ Lo = DAG.getBitcast(ByteVT, Lo);
+ Hi = DAG.getBitcast(ByteVT, Hi);
+
+ // SSSE3 targets can use the palignr instruction.
+ if (Subtarget.hasSSSE3()) {
+ assert((!VT.is512BitVector() || Subtarget.hasBWI()) &&
+ "512-bit PALIGNR requires BWI instructions");
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::PALIGNR, DL, ByteVT, Lo, Hi,
+ DAG.getConstant(ByteRotation, DL, MVT::i8)));
+ }
+
+ assert(VT.is128BitVector() &&
+ "Rotate-based lowering only supports 128-bit lowering!");
+ assert(Mask.size() <= 16 &&
+ "Can shuffle at most 16 bytes in a 128-bit vector!");
+ assert(ByteVT == MVT::v16i8 &&
+ "SSE2 rotate lowering only needed for v16i8!");
+
+ // Default SSE2 implementation
+ int LoByteShift = 16 - ByteRotation;
+ int HiByteShift = ByteRotation;
+
+ SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Lo,
+ DAG.getConstant(LoByteShift, DL, MVT::i8));
+ SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Hi,
+ DAG.getConstant(HiByteShift, DL, MVT::i8));
+ return DAG.getBitcast(VT,
+ DAG.getNode(ISD::OR, DL, MVT::v16i8, LoShift, HiShift));
+}
+
+/// \brief Try to lower a vector shuffle as a dword/qword rotation.
+///
+/// AVX512 has a VALIGND/VALIGNQ instructions that will do an arbitrary
+/// rotation of the concatenation of two vectors; This routine will
+/// try to generically lower a vector shuffle through such an pattern.
+///
+/// Essentially it concatenates V1 and V2, shifts right by some number of
+/// elements, and takes the low elements as the result. Note that while this is
+/// specified as a *right shift* because x86 is little-endian, it is a *left
+/// rotate* of the vector lanes.
+static SDValue lowerVectorShuffleAsRotate(const SDLoc &DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert((VT.getScalarType() == MVT::i32 || VT.getScalarType() == MVT::i64) &&
+ "Only 32-bit and 64-bit elements are supported!");
+
+ // 128/256-bit vectors are only supported with VLX.
+ assert((Subtarget.hasVLX() || (!VT.is128BitVector() && !VT.is256BitVector()))
+ && "VLX required for 128/256-bit vectors");
+
+ SDValue Lo = V1, Hi = V2;
+ int Rotation = matchVectorShuffleAsRotate(Lo, Hi, Mask);
+ if (Rotation <= 0)
+ return SDValue();
+
+ return DAG.getNode(X86ISD::VALIGN, DL, VT, Lo, Hi,
+ DAG.getConstant(Rotation, DL, MVT::i8));
+}
+
+/// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros).
+///
+/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
+/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
+/// matches elements from one of the input vectors shuffled to the left or
+/// right with zeroable elements 'shifted in'. It handles both the strictly
+/// bit-wise element shifts and the byte shift across an entire 128-bit double
+/// quad word lane.
+///
+/// PSHL : (little-endian) left bit shift.
+/// [ zz, 0, zz, 2 ]
+/// [ -1, 4, zz, -1 ]
+/// PSRL : (little-endian) right bit shift.
+/// [ 1, zz, 3, zz]
+/// [ -1, -1, 7, zz]
+/// PSLLDQ : (little-endian) left byte shift
+/// [ zz, 0, 1, 2, 3, 4, 5, 6]
+/// [ zz, zz, -1, -1, 2, 3, 4, -1]
+/// [ zz, zz, zz, zz, zz, zz, -1, 1]
+/// PSRLDQ : (little-endian) right byte shift
+/// [ 5, 6, 7, zz, zz, zz, zz, zz]
+/// [ -1, 5, 6, 7, zz, zz, zz, zz]
+/// [ 1, 2, -1, -1, -1, -1, zz, zz]
+static int matchVectorShuffleAsShift(MVT &ShiftVT, unsigned &Opcode,
+ unsigned ScalarSizeInBits,
+ ArrayRef<int> Mask, int MaskOffset,
+ const APInt &Zeroable,
+ const X86Subtarget &Subtarget) {
+ int Size = Mask.size();
+ unsigned SizeInBits = Size * ScalarSizeInBits;
+
+ auto CheckZeros = [&](int Shift, int Scale, bool Left) {
+ for (int i = 0; i < Size; i += Scale)
+ for (int j = 0; j < Shift; ++j)
+ if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
+ return false;
+
+ return true;
+ };
+
+ auto MatchShift = [&](int Shift, int Scale, bool Left) {
+ for (int i = 0; i != Size; i += Scale) {
+ unsigned Pos = Left ? i + Shift : i;
+ unsigned Low = Left ? i : i + Shift;
+ unsigned Len = Scale - Shift;
+ if (!isSequentialOrUndefInRange(Mask, Pos, Len, Low + MaskOffset))
+ return -1;
+ }
+
+ int ShiftEltBits = ScalarSizeInBits * Scale;
+ bool ByteShift = ShiftEltBits > 64;
+ Opcode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
+ : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
+ int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
+
+ // Normalize the scale for byte shifts to still produce an i64 element
+ // type.
+ Scale = ByteShift ? Scale / 2 : Scale;
+
+ // We need to round trip through the appropriate type for the shift.
+ MVT ShiftSVT = MVT::getIntegerVT(ScalarSizeInBits * Scale);
+ ShiftVT = ByteShift ? MVT::getVectorVT(MVT::i8, SizeInBits / 8)
+ : MVT::getVectorVT(ShiftSVT, Size / Scale);
+ return (int)ShiftAmt;
+ };
+
+ // SSE/AVX supports logical shifts up to 64-bit integers - so we can just
+ // keep doubling the size of the integer elements up to that. We can
+ // then shift the elements of the integer vector by whole multiples of
+ // their width within the elements of the larger integer vector. Test each
+ // multiple to see if we can find a match with the moved element indices
+ // and that the shifted in elements are all zeroable.
+ unsigned MaxWidth = ((SizeInBits == 512) && !Subtarget.hasBWI() ? 64 : 128);
+ for (int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
+ for (int Shift = 1; Shift != Scale; ++Shift)
+ for (bool Left : {true, false})
+ if (CheckZeros(Shift, Scale, Left)) {
+ int ShiftAmt = MatchShift(Shift, Scale, Left);
+ if (0 < ShiftAmt)
+ return ShiftAmt;
+ }
+
+ // no match
+ return -1;
+}
+
+static SDValue lowerVectorShuffleAsShift(const SDLoc &DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ int Size = Mask.size();
+ assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
+
+ MVT ShiftVT;
+ SDValue V = V1;
+ unsigned Opcode;
+
+ // Try to match shuffle against V1 shift.
+ int ShiftAmt = matchVectorShuffleAsShift(
+ ShiftVT, Opcode, VT.getScalarSizeInBits(), Mask, 0, Zeroable, Subtarget);
+
+ // If V1 failed, try to match shuffle against V2 shift.
+ if (ShiftAmt < 0) {
+ ShiftAmt =
+ matchVectorShuffleAsShift(ShiftVT, Opcode, VT.getScalarSizeInBits(),
+ Mask, Size, Zeroable, Subtarget);
+ V = V2;
+ }
+
+ if (ShiftAmt < 0)
+ return SDValue();
+
+ assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
+ "Illegal integer vector type");
+ V = DAG.getBitcast(ShiftVT, V);
+ V = DAG.getNode(Opcode, DL, ShiftVT, V,
+ DAG.getConstant(ShiftAmt, DL, MVT::i8));
+ return DAG.getBitcast(VT, V);
+}
+
+// EXTRQ: Extract Len elements from lower half of source, starting at Idx.
+// Remainder of lower half result is zero and upper half is all undef.
+static bool matchVectorShuffleAsEXTRQ(MVT VT, SDValue &V1, SDValue &V2,
+ ArrayRef<int> Mask, uint64_t &BitLen,
+ uint64_t &BitIdx, const APInt &Zeroable) {
+ int Size = Mask.size();
+ int HalfSize = Size / 2;
+ assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
+ assert(!Zeroable.isAllOnesValue() && "Fully zeroable shuffle mask");
+
+ // Upper half must be undefined.
+ if (!isUndefInRange(Mask, HalfSize, HalfSize))
+ return false;
+
+ // Determine the extraction length from the part of the
+ // lower half that isn't zeroable.
+ int Len = HalfSize;
+ for (; Len > 0; --Len)
+ if (!Zeroable[Len - 1])
+ break;
+ assert(Len > 0 && "Zeroable shuffle mask");
+
+ // Attempt to match first Len sequential elements from the lower half.
+ SDValue Src;
+ int Idx = -1;
+ for (int i = 0; i != Len; ++i) {
+ int M = Mask[i];
+ if (M == SM_SentinelUndef)
+ continue;
+ SDValue &V = (M < Size ? V1 : V2);
+ M = M % Size;
+
+ // The extracted elements must start at a valid index and all mask
+ // elements must be in the lower half.
+ if (i > M || M >= HalfSize)
+ return false;
+
+ if (Idx < 0 || (Src == V && Idx == (M - i))) {
+ Src = V;
+ Idx = M - i;
+ continue;
+ }
+ return false;
+ }
+
+ if (!Src || Idx < 0)
+ return false;
+
+ assert((Idx + Len) <= HalfSize && "Illegal extraction mask");
+ BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
+ BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
+ V1 = Src;
+ return true;
+}
+
+// INSERTQ: Extract lowest Len elements from lower half of second source and
+// insert over first source, starting at Idx.
+// { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... }
+static bool matchVectorShuffleAsINSERTQ(MVT VT, SDValue &V1, SDValue &V2,
+ ArrayRef<int> Mask, uint64_t &BitLen,
+ uint64_t &BitIdx) {
+ int Size = Mask.size();
+ int HalfSize = Size / 2;
+ assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
+
+ // Upper half must be undefined.
+ if (!isUndefInRange(Mask, HalfSize, HalfSize))
+ return false;
+
+ for (int Idx = 0; Idx != HalfSize; ++Idx) {
+ SDValue Base;
+
+ // Attempt to match first source from mask before insertion point.
+ if (isUndefInRange(Mask, 0, Idx)) {
+ /* EMPTY */
+ } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) {
+ Base = V1;
+ } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) {
+ Base = V2;
+ } else {
+ continue;
+ }
+
+ // Extend the extraction length looking to match both the insertion of
+ // the second source and the remaining elements of the first.
+ for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) {
+ SDValue Insert;
+ int Len = Hi - Idx;
+
+ // Match insertion.
+ if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) {
+ Insert = V1;
+ } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) {
+ Insert = V2;
+ } else {
+ continue;
+ }
+
+ // Match the remaining elements of the lower half.
+ if (isUndefInRange(Mask, Hi, HalfSize - Hi)) {
+ /* EMPTY */
+ } else if ((!Base || (Base == V1)) &&
+ isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) {
+ Base = V1;
+ } else if ((!Base || (Base == V2)) &&
+ isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi,
+ Size + Hi)) {
+ Base = V2;
+ } else {
+ continue;
+ }
+
+ BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
+ BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
+ V1 = Base;
+ V2 = Insert;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ.
+static SDValue lowerVectorShuffleWithSSE4A(const SDLoc &DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SelectionDAG &DAG) {
+ uint64_t BitLen, BitIdx;
+ if (matchVectorShuffleAsEXTRQ(VT, V1, V2, Mask, BitLen, BitIdx, Zeroable))
+ return DAG.getNode(X86ISD::EXTRQI, DL, VT, V1,
+ DAG.getConstant(BitLen, DL, MVT::i8),
+ DAG.getConstant(BitIdx, DL, MVT::i8));
+
+ if (matchVectorShuffleAsINSERTQ(VT, V1, V2, Mask, BitLen, BitIdx))
+ return DAG.getNode(X86ISD::INSERTQI, DL, VT, V1 ? V1 : DAG.getUNDEF(VT),
+ V2 ? V2 : DAG.getUNDEF(VT),
+ DAG.getConstant(BitLen, DL, MVT::i8),
+ DAG.getConstant(BitIdx, DL, MVT::i8));
+
+ return SDValue();
+}
+
+/// \brief Lower a vector shuffle as a zero or any extension.
+///
+/// Given a specific number of elements, element bit width, and extension
+/// stride, produce either a zero or any extension based on the available
+/// features of the subtarget. The extended elements are consecutive and
+/// begin and can start from an offsetted element index in the input; to
+/// avoid excess shuffling the offset must either being in the bottom lane
+/// or at the start of a higher lane. All extended elements must be from
+/// the same lane.
+static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
+ const SDLoc &DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV,
+ ArrayRef<int> Mask, const X86Subtarget &Subtarget, SelectionDAG &DAG) {
+ assert(Scale > 1 && "Need a scale to extend.");
+ int EltBits = VT.getScalarSizeInBits();
+ int NumElements = VT.getVectorNumElements();
+ int NumEltsPerLane = 128 / EltBits;
+ int OffsetLane = Offset / NumEltsPerLane;
+ assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
+ "Only 8, 16, and 32 bit elements can be extended.");
+ assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
+ assert(0 <= Offset && "Extension offset must be positive.");
+ assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) &&
+ "Extension offset must be in the first lane or start an upper lane.");
+
+ // Check that an index is in same lane as the base offset.
+ auto SafeOffset = [&](int Idx) {
+ return OffsetLane == (Idx / NumEltsPerLane);
+ };
+
+ // Shift along an input so that the offset base moves to the first element.
+ auto ShuffleOffset = [&](SDValue V) {
+ if (!Offset)
+ return V;
+
+ SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
+ for (int i = 0; i * Scale < NumElements; ++i) {
+ int SrcIdx = i + Offset;
+ ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1;
+ }
+ return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask);
+ };
+
+ // Found a valid zext mask! Try various lowering strategies based on the
+ // input type and available ISA extensions.
+ if (Subtarget.hasSSE41()) {
+ // Not worth offsetting 128-bit vectors if scale == 2, a pattern using
+ // PUNPCK will catch this in a later shuffle match.
+ if (Offset && Scale == 2 && VT.is128BitVector())
+ return SDValue();
+ MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
+ NumElements / Scale);
+ InputV = ShuffleOffset(InputV);
+ InputV = getExtendInVec(X86ISD::VZEXT, DL, ExtVT, InputV, DAG);
+ return DAG.getBitcast(VT, InputV);
+ }
+
+ assert(VT.is128BitVector() && "Only 128-bit vectors can be extended.");
+
+ // For any extends we can cheat for larger element sizes and use shuffle
+ // instructions that can fold with a load and/or copy.
+ if (AnyExt && EltBits == 32) {
+ int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1,
+ -1};
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+ DAG.getBitcast(MVT::v4i32, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+ }
+ if (AnyExt && EltBits == 16 && Scale > 2) {
+ int PSHUFDMask[4] = {Offset / 2, -1,
+ SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1};
+ InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+ DAG.getBitcast(MVT::v4i32, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
+ int PSHUFWMask[4] = {1, -1, -1, -1};
+ unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW);
+ return DAG.getBitcast(
+ VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16,
+ DAG.getBitcast(MVT::v8i16, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG)));
+ }
+
+ // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes
+ // to 64-bits.
+ if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget.hasSSE4A()) {
+ assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!");
+ assert(VT.is128BitVector() && "Unexpected vector width!");
+
+ int LoIdx = Offset * EltBits;
+ SDValue Lo = DAG.getBitcast(
+ MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
+ DAG.getConstant(EltBits, DL, MVT::i8),
+ DAG.getConstant(LoIdx, DL, MVT::i8)));
+
+ if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) ||
+ !SafeOffset(Offset + 1))
+ return DAG.getBitcast(VT, Lo);
+
+ int HiIdx = (Offset + 1) * EltBits;
+ SDValue Hi = DAG.getBitcast(
+ MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
+ DAG.getConstant(EltBits, DL, MVT::i8),
+ DAG.getConstant(HiIdx, DL, MVT::i8)));
+ return DAG.getBitcast(VT,
+ DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi));
+ }
+
+ // If this would require more than 2 unpack instructions to expand, use
+ // pshufb when available. We can only use more than 2 unpack instructions
+ // when zero extending i8 elements which also makes it easier to use pshufb.
+ if (Scale > 4 && EltBits == 8 && Subtarget.hasSSSE3()) {
+ assert(NumElements == 16 && "Unexpected byte vector width!");
+ SDValue PSHUFBMask[16];
+ for (int i = 0; i < 16; ++i) {
+ int Idx = Offset + (i / Scale);
+ PSHUFBMask[i] = DAG.getConstant(
+ (i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8);
+ }
+ InputV = DAG.getBitcast(MVT::v16i8, InputV);
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
+ DAG.getBuildVector(MVT::v16i8, DL, PSHUFBMask)));
+ }
+
+ // If we are extending from an offset, ensure we start on a boundary that
+ // we can unpack from.
+ int AlignToUnpack = Offset % (NumElements / Scale);
+ if (AlignToUnpack) {
+ SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
+ for (int i = AlignToUnpack; i < NumElements; ++i)
+ ShMask[i - AlignToUnpack] = i;
+ InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask);
+ Offset -= AlignToUnpack;
+ }
+
+ // Otherwise emit a sequence of unpacks.
+ do {
+ unsigned UnpackLoHi = X86ISD::UNPCKL;
+ if (Offset >= (NumElements / 2)) {
+ UnpackLoHi = X86ISD::UNPCKH;
+ Offset -= (NumElements / 2);
+ }
+
+ MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
+ SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
+ : getZeroVector(InputVT, Subtarget, DAG, DL);
+ InputV = DAG.getBitcast(InputVT, InputV);
+ InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext);
+ Scale /= 2;
+ EltBits *= 2;
+ NumElements /= 2;
+ } while (Scale > 1);
+ return DAG.getBitcast(VT, InputV);
+}
+
+/// \brief Try to lower a vector shuffle as a zero extension on any microarch.
+///
+/// This routine will try to do everything in its power to cleverly lower
+/// a shuffle which happens to match the pattern of a zero extend. It doesn't
+/// check for the profitability of this lowering, it tries to aggressively
+/// match this pattern. It will use all of the micro-architectural details it
+/// can to emit an efficient lowering. It handles both blends with all-zero
+/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
+/// masking out later).
+///
+/// The reason we have dedicated lowering for zext-style shuffles is that they
+/// are both incredibly common and often quite performance sensitive.
+static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
+ const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const APInt &Zeroable, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ int Bits = VT.getSizeInBits();
+ int NumLanes = Bits / 128;
+ int NumElements = VT.getVectorNumElements();
+ int NumEltsPerLane = NumElements / NumLanes;
+ assert(VT.getScalarSizeInBits() <= 32 &&
+ "Exceeds 32-bit integer zero extension limit");
+ assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
+
+ // Define a helper function to check a particular ext-scale and lower to it if
+ // valid.
+ auto Lower = [&](int Scale) -> SDValue {
+ SDValue InputV;
+ bool AnyExt = true;
+ int Offset = 0;
+ int Matches = 0;
+ for (int i = 0; i < NumElements; ++i) {
+ int M = Mask[i];
+ if (M < 0)
+ continue; // Valid anywhere but doesn't tell us anything.
+ if (i % Scale != 0) {
+ // Each of the extended elements need to be zeroable.
+ if (!Zeroable[i])
+ return SDValue();
+
+ // We no longer are in the anyext case.
+ AnyExt = false;
+ continue;
+ }
+
+ // Each of the base elements needs to be consecutive indices into the
+ // same input vector.
+ SDValue V = M < NumElements ? V1 : V2;
+ M = M % NumElements;
+ if (!InputV) {
+ InputV = V;
+ Offset = M - (i / Scale);
+ } else if (InputV != V)
+ return SDValue(); // Flip-flopping inputs.
+
+ // Offset must start in the lowest 128-bit lane or at the start of an
+ // upper lane.
+ // FIXME: Is it ever worth allowing a negative base offset?
+ if (!((0 <= Offset && Offset < NumEltsPerLane) ||
+ (Offset % NumEltsPerLane) == 0))
+ return SDValue();
+
+ // If we are offsetting, all referenced entries must come from the same
+ // lane.
+ if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane))
+ return SDValue();
+
+ if ((M % NumElements) != (Offset + (i / Scale)))
+ return SDValue(); // Non-consecutive strided elements.
+ Matches++;
+ }
+
+ // If we fail to find an input, we have a zero-shuffle which should always
+ // have already been handled.
+ // FIXME: Maybe handle this here in case during blending we end up with one?
+ if (!InputV)
+ return SDValue();
+
+ // If we are offsetting, don't extend if we only match a single input, we
+ // can always do better by using a basic PSHUF or PUNPCK.
+ if (Offset != 0 && Matches < 2)
+ return SDValue();
+
+ return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
+ DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG);
+ };
+
+ // The widest scale possible for extending is to a 64-bit integer.
+ assert(Bits % 64 == 0 &&
+ "The number of bits in a vector must be divisible by 64 on x86!");
+ int NumExtElements = Bits / 64;
+
+ // Each iteration, try extending the elements half as much, but into twice as
+ // many elements.
+ for (; NumExtElements < NumElements; NumExtElements *= 2) {
+ assert(NumElements % NumExtElements == 0 &&
+ "The input vector size must be divisible by the extended size.");
+ if (SDValue V = Lower(NumElements / NumExtElements))
+ return V;
+ }
+
+ // General extends failed, but 128-bit vectors may be able to use MOVQ.
+ if (Bits != 128)
+ return SDValue();
+
+ // Returns one of the source operands if the shuffle can be reduced to a
+ // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
+ auto CanZExtLowHalf = [&]() {
+ for (int i = NumElements / 2; i != NumElements; ++i)
+ if (!Zeroable[i])
+ return SDValue();
+ if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
+ return V1;
+ if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
+ return V2;
+ return SDValue();
+ };
+
+ if (SDValue V = CanZExtLowHalf()) {
+ V = DAG.getBitcast(MVT::v2i64, V);
+ V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
+ return DAG.getBitcast(VT, V);
+ }
+
+ // No viable ext lowering found.
+ return SDValue();
+}
+
+/// \brief Try to get a scalar value for a specific element of a vector.
+///
+/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
+static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
+ SelectionDAG &DAG) {
+ MVT VT = V.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ V = peekThroughBitcasts(V);
+
+ // If the bitcasts shift the element size, we can't extract an equivalent
+ // element from it.
+ MVT NewVT = V.getSimpleValueType();
+ if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
+ return SDValue();
+
+ if (V.getOpcode() == ISD::BUILD_VECTOR ||
+ (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) {
+ // Ensure the scalar operand is the same size as the destination.
+ // FIXME: Add support for scalar truncation where possible.
+ SDValue S = V.getOperand(Idx);
+ if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits())
+ return DAG.getBitcast(EltVT, S);
+ }
+
+ return SDValue();
+}
+
+/// \brief Helper to test for a load that can be folded with x86 shuffles.
+///
+/// This is particularly important because the set of instructions varies
+/// significantly based on whether the operand is a load or not.
+static bool isShuffleFoldableLoad(SDValue V) {
+ V = peekThroughBitcasts(V);
+ return ISD::isNON_EXTLoad(V.getNode());
+}
+
+/// \brief Try to lower insertion of a single element into a zero vector.
+///
+/// This is a common pattern that we have especially efficient patterns to lower
+/// across all subtarget feature sets.
+static SDValue lowerVectorShuffleAsElementInsertion(
+ const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const APInt &Zeroable, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT ExtVT = VT;
+ MVT EltVT = VT.getVectorElementType();
+
+ int V2Index =
+ find_if(Mask, [&Mask](int M) { return M >= (int)Mask.size(); }) -
+ Mask.begin();
+ bool IsV1Zeroable = true;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (i != V2Index && !Zeroable[i]) {
+ IsV1Zeroable = false;
+ break;
+ }
+
+ // Check for a single input from a SCALAR_TO_VECTOR node.
+ // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
+ // all the smarts here sunk into that routine. However, the current
+ // lowering of BUILD_VECTOR makes that nearly impossible until the old
+ // vector shuffle lowering is dead.
+ SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(),
+ DAG);
+ if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) {
+ // We need to zext the scalar if it is smaller than an i32.
+ V2S = DAG.getBitcast(EltVT, V2S);
+ if (EltVT == MVT::i8 || EltVT == MVT::i16) {
+ // Using zext to expand a narrow element won't work for non-zero
+ // insertions.
+ if (!IsV1Zeroable)
+ return SDValue();
+
+ // Zero-extend directly to i32.
+ ExtVT = MVT::getVectorVT(MVT::i32, ExtVT.getSizeInBits() / 32);
+ V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
+ }
+ V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
+ } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
+ EltVT == MVT::i16) {
+ // Either not inserting from the low element of the input or the input
+ // element size is too small to use VZEXT_MOVL to clear the high bits.
+ return SDValue();
+ }
+
+ if (!IsV1Zeroable) {
+ // If V1 can't be treated as a zero vector we have fewer options to lower
+ // this. We can't support integer vectors or non-zero targets cheaply, and
+ // the V1 elements can't be permuted in any way.
+ assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
+ if (!VT.isFloatingPoint() || V2Index != 0)
+ return SDValue();
+ SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
+ V1Mask[V2Index] = -1;
+ if (!isNoopShuffleMask(V1Mask))
+ return SDValue();
+ if (!VT.is128BitVector())
+ return SDValue();
+
+ // Otherwise, use MOVSD or MOVSS.
+ assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
+ "Only two types of floating point element types to handle!");
+ return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
+ ExtVT, V1, V2);
+ }
+
+ // This lowering only works for the low element with floating point vectors.
+ if (VT.isFloatingPoint() && V2Index != 0)
+ return SDValue();
+
+ V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
+ if (ExtVT != VT)
+ V2 = DAG.getBitcast(VT, V2);
+
+ if (V2Index != 0) {
+ // If we have 4 or fewer lanes we can cheaply shuffle the element into
+ // the desired position. Otherwise it is more efficient to do a vector
+ // shift left. We know that we can do a vector shift left because all
+ // the inputs are zero.
+ if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
+ SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
+ V2Shuffle[V2Index] = 0;
+ V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
+ } else {
+ V2 = DAG.getBitcast(MVT::v16i8, V2);
+ V2 = DAG.getNode(
+ X86ISD::VSHLDQ, DL, MVT::v16i8, V2,
+ DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL,
+ DAG.getTargetLoweringInfo().getScalarShiftAmountTy(
+ DAG.getDataLayout(), VT)));
+ V2 = DAG.getBitcast(VT, V2);
+ }
+ }
+ return V2;
+}
+
+/// Try to lower broadcast of a single - truncated - integer element,
+/// coming from a scalar_to_vector/build_vector node \p V0 with larger elements.
+///
+/// This assumes we have AVX2.
+static SDValue lowerVectorShuffleAsTruncBroadcast(const SDLoc &DL, MVT VT,
+ SDValue V0, int BroadcastIdx,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget.hasAVX2() &&
+ "We can only lower integer broadcasts with AVX2!");
+
+ EVT EltVT = VT.getVectorElementType();
+ EVT V0VT = V0.getValueType();
+
+ assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!");
+ assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!");
+
+ EVT V0EltVT = V0VT.getVectorElementType();
+ if (!V0EltVT.isInteger())
+ return SDValue();
+
+ const unsigned EltSize = EltVT.getSizeInBits();
+ const unsigned V0EltSize = V0EltVT.getSizeInBits();
+
+ // This is only a truncation if the original element type is larger.
+ if (V0EltSize <= EltSize)
+ return SDValue();
+
+ assert(((V0EltSize % EltSize) == 0) &&
+ "Scalar type sizes must all be powers of 2 on x86!");
+
+ const unsigned V0Opc = V0.getOpcode();
+ const unsigned Scale = V0EltSize / EltSize;
+ const unsigned V0BroadcastIdx = BroadcastIdx / Scale;
+
+ if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) &&
+ V0Opc != ISD::BUILD_VECTOR)
+ return SDValue();
+
+ SDValue Scalar = V0.getOperand(V0BroadcastIdx);
+
+ // If we're extracting non-least-significant bits, shift so we can truncate.
+ // Hopefully, we can fold away the trunc/srl/load into the broadcast.
+ // Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer
+ // vpbroadcast+vmovd+shr to vpshufb(m)+vmovd.
+ if (const int OffsetIdx = BroadcastIdx % Scale)
+ Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar,
+ DAG.getConstant(OffsetIdx * EltSize, DL, Scalar.getValueType()));
+
+ return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
+ DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar));
+}
+
+/// \brief Try to lower broadcast of a single element.
+///
+/// For convenience, this code also bundles all of the subtarget feature set
+/// filtering. While a little annoying to re-dispatch on type here, there isn't
+/// a convenient way to factor it out.
+static SDValue lowerVectorShuffleAsBroadcast(const SDLoc &DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ if (!((Subtarget.hasSSE3() && VT == MVT::v2f64) ||
+ (Subtarget.hasAVX() && VT.isFloatingPoint()) ||
+ (Subtarget.hasAVX2() && VT.isInteger())))
+ return SDValue();
+
+ // With MOVDDUP (v2f64) we can broadcast from a register or a load, otherwise
+ // we can only broadcast from a register with AVX2.
+ unsigned NumElts = Mask.size();
+ unsigned Opcode = (VT == MVT::v2f64 && !Subtarget.hasAVX2())
+ ? X86ISD::MOVDDUP
+ : X86ISD::VBROADCAST;
+ bool BroadcastFromReg = (Opcode == X86ISD::MOVDDUP) || Subtarget.hasAVX2();
+
+ // Check that the mask is a broadcast.
+ int BroadcastIdx = -1;
+ for (int i = 0; i != (int)NumElts; ++i) {
+ SmallVector<int, 8> BroadcastMask(NumElts, i);
+ if (isShuffleEquivalent(V1, V2, Mask, BroadcastMask)) {
+ BroadcastIdx = i;
+ break;
+ }
+ }
+
+ if (BroadcastIdx < 0)
+ return SDValue();
+ assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
+ "a sorted mask where the broadcast "
+ "comes from V1.");
+
+ // Go up the chain of (vector) values to find a scalar load that we can
+ // combine with the broadcast.
+ SDValue V = V1;
+ for (;;) {
+ switch (V.getOpcode()) {
+ case ISD::BITCAST: {
+ // Peek through bitcasts as long as BroadcastIdx can be adjusted.
+ SDValue VSrc = V.getOperand(0);
+ unsigned NumEltBits = V.getScalarValueSizeInBits();
+ unsigned NumSrcBits = VSrc.getScalarValueSizeInBits();
+ if ((NumEltBits % NumSrcBits) == 0)
+ BroadcastIdx *= (NumEltBits / NumSrcBits);
+ else if ((NumSrcBits % NumEltBits) == 0 &&
+ (BroadcastIdx % (NumSrcBits / NumEltBits)) == 0)
+ BroadcastIdx /= (NumSrcBits / NumEltBits);
+ else
+ break;
+ V = VSrc;
+ continue;
+ }
+ case ISD::CONCAT_VECTORS: {
+ int OperandSize = Mask.size() / V.getNumOperands();
+ V = V.getOperand(BroadcastIdx / OperandSize);
+ BroadcastIdx %= OperandSize;
+ continue;
+ }
+ case ISD::INSERT_SUBVECTOR: {
+ SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
+ auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
+ if (!ConstantIdx)
+ break;
+
+ int BeginIdx = (int)ConstantIdx->getZExtValue();
+ int EndIdx =
+ BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements();
+ if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
+ BroadcastIdx -= BeginIdx;
+ V = VInner;
+ } else {
+ V = VOuter;
+ }
+ continue;
+ }
+ }
+ break;
+ }
+
+ // Ensure the source vector and BroadcastIdx are for a suitable type.
+ if (VT.getScalarSizeInBits() != V.getScalarValueSizeInBits()) {
+ unsigned NumEltBits = VT.getScalarSizeInBits();
+ unsigned NumSrcBits = V.getScalarValueSizeInBits();
+ if ((NumSrcBits % NumEltBits) == 0)
+ BroadcastIdx *= (NumSrcBits / NumEltBits);
+ else if ((NumEltBits % NumSrcBits) == 0 &&
+ (BroadcastIdx % (NumEltBits / NumSrcBits)) == 0)
+ BroadcastIdx /= (NumEltBits / NumSrcBits);
+ else
+ return SDValue();
+
+ unsigned NumSrcElts = V.getValueSizeInBits() / NumEltBits;
+ MVT SrcVT = MVT::getVectorVT(VT.getScalarType(), NumSrcElts);
+ V = DAG.getBitcast(SrcVT, V);
+ }
+
+ // Check if this is a broadcast of a scalar. We special case lowering
+ // for scalars so that we can more effectively fold with loads.
+ // First, look through bitcast: if the original value has a larger element
+ // type than the shuffle, the broadcast element is in essence truncated.
+ // Make that explicit to ease folding.
+ if (V.getOpcode() == ISD::BITCAST && VT.isInteger())
+ if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast(
+ DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG))
+ return TruncBroadcast;
+
+ MVT BroadcastVT = VT;
+
+ // Peek through any bitcast (only useful for loads).
+ SDValue BC = peekThroughBitcasts(V);
+
+ // Also check the simpler case, where we can directly reuse the scalar.
+ if (V.getOpcode() == ISD::BUILD_VECTOR ||
+ (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
+ V = V.getOperand(BroadcastIdx);
+
+ // If we can't broadcast from a register, check that the input is a load.
+ if (!BroadcastFromReg && !isShuffleFoldableLoad(V))
+ return SDValue();
+ } else if (MayFoldLoad(BC) && !cast<LoadSDNode>(BC)->isVolatile()) {
+ // 32-bit targets need to load i64 as a f64 and then bitcast the result.
+ if (!Subtarget.is64Bit() && VT.getScalarType() == MVT::i64) {
+ BroadcastVT = MVT::getVectorVT(MVT::f64, VT.getVectorNumElements());
+ Opcode = (BroadcastVT.is128BitVector() && !Subtarget.hasAVX2())
+ ? X86ISD::MOVDDUP
+ : Opcode;
+ }
+
+ // If we are broadcasting a load that is only used by the shuffle
+ // then we can reduce the vector load to the broadcasted scalar load.
+ LoadSDNode *Ld = cast<LoadSDNode>(BC);
+ SDValue BaseAddr = Ld->getOperand(1);
+ EVT SVT = BroadcastVT.getScalarType();
+ unsigned Offset = BroadcastIdx * SVT.getStoreSize();
+ SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
+ V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
+ DAG.getMachineFunction().getMachineMemOperand(
+ Ld->getMemOperand(), Offset, SVT.getStoreSize()));
+ DAG.makeEquivalentMemoryOrdering(Ld, V);
+ } else if (!BroadcastFromReg) {
+ // We can't broadcast from a vector register.
+ return SDValue();
+ } else if (BroadcastIdx != 0) {
+ // We can only broadcast from the zero-element of a vector register,
+ // but it can be advantageous to broadcast from the zero-element of a
+ // subvector.
+ if (!VT.is256BitVector() && !VT.is512BitVector())
+ return SDValue();
+
+ // VPERMQ/VPERMPD can perform the cross-lane shuffle directly.
+ if (VT == MVT::v4f64 || VT == MVT::v4i64)
+ return SDValue();
+
+ // Only broadcast the zero-element of a 128-bit subvector.
+ unsigned EltSize = VT.getScalarSizeInBits();
+ if (((BroadcastIdx * EltSize) % 128) != 0)
+ return SDValue();
+
+ // The shuffle input might have been a bitcast we looked through; look at
+ // the original input vector. Emit an EXTRACT_SUBVECTOR of that type; we'll
+ // later bitcast it to BroadcastVT.
+ assert(V.getScalarValueSizeInBits() == BroadcastVT.getScalarSizeInBits() &&
+ "Unexpected vector element size");
+ assert((V.getValueSizeInBits() == 256 || V.getValueSizeInBits() == 512) &&
+ "Unexpected vector size");
+ V = extract128BitVector(V, BroadcastIdx, DAG, DL);
+ }
+
+ if (Opcode == X86ISD::MOVDDUP && !V.getValueType().isVector())
+ V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
+ DAG.getBitcast(MVT::f64, V));
+
+ // Bitcast back to the same scalar type as BroadcastVT.
+ MVT SrcVT = V.getSimpleValueType();
+ if (SrcVT.getScalarType() != BroadcastVT.getScalarType()) {
+ assert(SrcVT.getScalarSizeInBits() == BroadcastVT.getScalarSizeInBits() &&
+ "Unexpected vector element size");
+ if (SrcVT.isVector()) {
+ unsigned NumSrcElts = SrcVT.getVectorNumElements();
+ SrcVT = MVT::getVectorVT(BroadcastVT.getScalarType(), NumSrcElts);
+ } else {
+ SrcVT = BroadcastVT.getScalarType();
+ }
+ V = DAG.getBitcast(SrcVT, V);
+ }
+
+ // 32-bit targets need to load i64 as a f64 and then bitcast the result.
+ if (!Subtarget.is64Bit() && SrcVT == MVT::i64) {
+ V = DAG.getBitcast(MVT::f64, V);
+ unsigned NumBroadcastElts = BroadcastVT.getVectorNumElements();
+ BroadcastVT = MVT::getVectorVT(MVT::f64, NumBroadcastElts);
+ }
+
+ // We only support broadcasting from 128-bit vectors to minimize the
+ // number of patterns we need to deal with in isel. So extract down to
+ // 128-bits, removing as many bitcasts as possible.
+ if (SrcVT.getSizeInBits() > 128) {
+ MVT ExtVT = MVT::getVectorVT(SrcVT.getScalarType(),
+ 128 / SrcVT.getScalarSizeInBits());
+ V = extract128BitVector(peekThroughBitcasts(V), 0, DAG, DL);
+ V = DAG.getBitcast(ExtVT, V);
+ }
+
+ return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, BroadcastVT, V));
+}
+
+// Check for whether we can use INSERTPS to perform the shuffle. We only use
+// INSERTPS when the V1 elements are already in the correct locations
+// because otherwise we can just always use two SHUFPS instructions which
+// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
+// perform INSERTPS if a single V1 element is out of place and all V2
+// elements are zeroable.
+static bool matchVectorShuffleAsInsertPS(SDValue &V1, SDValue &V2,
+ unsigned &InsertPSMask,
+ const APInt &Zeroable,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType().is128BitVector() && "Bad operand type!");
+ assert(V2.getSimpleValueType().is128BitVector() && "Bad operand type!");
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ // Attempt to match INSERTPS with one element from VA or VB being
+ // inserted into VA (or undef). If successful, V1, V2 and InsertPSMask
+ // are updated.
+ auto matchAsInsertPS = [&](SDValue VA, SDValue VB,
+ ArrayRef<int> CandidateMask) {
+ unsigned ZMask = 0;
+ int VADstIndex = -1;
+ int VBDstIndex = -1;
+ bool VAUsedInPlace = false;
+
+ for (int i = 0; i < 4; ++i) {
+ // Synthesize a zero mask from the zeroable elements (includes undefs).
+ if (Zeroable[i]) {
+ ZMask |= 1 << i;
+ continue;
+ }
+
+ // Flag if we use any VA inputs in place.
+ if (i == CandidateMask[i]) {
+ VAUsedInPlace = true;
+ continue;
+ }
+
+ // We can only insert a single non-zeroable element.
+ if (VADstIndex >= 0 || VBDstIndex >= 0)
+ return false;
+
+ if (CandidateMask[i] < 4) {
+ // VA input out of place for insertion.
+ VADstIndex = i;
+ } else {
+ // VB input for insertion.
+ VBDstIndex = i;
+ }
+ }
+
+ // Don't bother if we have no (non-zeroable) element for insertion.
+ if (VADstIndex < 0 && VBDstIndex < 0)
+ return false;
+
+ // Determine element insertion src/dst indices. The src index is from the
+ // start of the inserted vector, not the start of the concatenated vector.
+ unsigned VBSrcIndex = 0;
+ if (VADstIndex >= 0) {
+ // If we have a VA input out of place, we use VA as the V2 element
+ // insertion and don't use the original V2 at all.
+ VBSrcIndex = CandidateMask[VADstIndex];
+ VBDstIndex = VADstIndex;
+ VB = VA;
+ } else {
+ VBSrcIndex = CandidateMask[VBDstIndex] - 4;
+ }
+
+ // If no V1 inputs are used in place, then the result is created only from
+ // the zero mask and the V2 insertion - so remove V1 dependency.
+ if (!VAUsedInPlace)
+ VA = DAG.getUNDEF(MVT::v4f32);
+
+ // Update V1, V2 and InsertPSMask accordingly.
+ V1 = VA;
+ V2 = VB;
+
+ // Insert the V2 element into the desired position.
+ InsertPSMask = VBSrcIndex << 6 | VBDstIndex << 4 | ZMask;
+ assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
+ return true;
+ };
+
+ if (matchAsInsertPS(V1, V2, Mask))
+ return true;
+
+ // Commute and try again.
+ SmallVector<int, 4> CommutedMask(Mask.begin(), Mask.end());
+ ShuffleVectorSDNode::commuteMask(CommutedMask);
+ if (matchAsInsertPS(V2, V1, CommutedMask))
+ return true;
+
+ return false;
+}
+
+static SDValue lowerVectorShuffleAsInsertPS(const SDLoc &DL, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+
+ // Attempt to match the insertps pattern.
+ unsigned InsertPSMask;
+ if (!matchVectorShuffleAsInsertPS(V1, V2, InsertPSMask, Zeroable, Mask, DAG))
+ return SDValue();
+
+ // Insert the V2 element into the desired position.
+ return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
+ DAG.getConstant(InsertPSMask, DL, MVT::i8));
+}
+
+/// \brief Try to lower a shuffle as a permute of the inputs followed by an
+/// UNPCK instruction.
+///
+/// This specifically targets cases where we end up with alternating between
+/// the two inputs, and so can permute them into something that feeds a single
+/// UNPCK instruction. Note that this routine only targets integer vectors
+/// because for floating point vectors we have a generalized SHUFPS lowering
+/// strategy that handles everything that doesn't *exactly* match an unpack,
+/// making this clever lowering unnecessary.
+static SDValue lowerVectorShuffleAsPermuteAndUnpack(const SDLoc &DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(!VT.isFloatingPoint() &&
+ "This routine only supports integer vectors.");
+ assert(VT.is128BitVector() &&
+ "This routine only works on 128-bit vectors.");
+ assert(!V2.isUndef() &&
+ "This routine should only be used when blending two inputs.");
+ assert(Mask.size() >= 2 && "Single element masks are invalid.");
+
+ int Size = Mask.size();
+
+ int NumLoInputs =
+ count_if(Mask, [Size](int M) { return M >= 0 && M % Size < Size / 2; });
+ int NumHiInputs =
+ count_if(Mask, [Size](int M) { return M % Size >= Size / 2; });
+
+ bool UnpackLo = NumLoInputs >= NumHiInputs;
+
+ auto TryUnpack = [&](int ScalarSize, int Scale) {
+ SmallVector<int, 16> V1Mask((unsigned)Size, -1);
+ SmallVector<int, 16> V2Mask((unsigned)Size, -1);
+
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ // Each element of the unpack contains Scale elements from this mask.
+ int UnpackIdx = i / Scale;
+
+ // We only handle the case where V1 feeds the first slots of the unpack.
+ // We rely on canonicalization to ensure this is the case.
+ if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
+ return SDValue();
+
+ // Setup the mask for this input. The indexing is tricky as we have to
+ // handle the unpack stride.
+ SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
+ VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
+ Mask[i] % Size;
+ }
+
+ // If we will have to shuffle both inputs to use the unpack, check whether
+ // we can just unpack first and shuffle the result. If so, skip this unpack.
+ if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
+ !isNoopShuffleMask(V2Mask))
+ return SDValue();
+
+ // Shuffle the inputs into place.
+ V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
+ V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
+
+ // Cast the inputs to the type we will use to unpack them.
+ MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), Size / Scale);
+ V1 = DAG.getBitcast(UnpackVT, V1);
+ V2 = DAG.getBitcast(UnpackVT, V2);
+
+ // Unpack the inputs and cast the result back to the desired type.
+ return DAG.getBitcast(
+ VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
+ UnpackVT, V1, V2));
+ };
+
+ // We try each unpack from the largest to the smallest to try and find one
+ // that fits this mask.
+ int OrigScalarSize = VT.getScalarSizeInBits();
+ for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2)
+ if (SDValue Unpack = TryUnpack(ScalarSize, ScalarSize / OrigScalarSize))
+ return Unpack;
+
+ // If none of the unpack-rooted lowerings worked (or were profitable) try an
+ // initial unpack.
+ if (NumLoInputs == 0 || NumHiInputs == 0) {
+ assert((NumLoInputs > 0 || NumHiInputs > 0) &&
+ "We have to have *some* inputs!");
+ int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
+
+ // FIXME: We could consider the total complexity of the permute of each
+ // possible unpacking. Or at the least we should consider how many
+ // half-crossings are created.
+ // FIXME: We could consider commuting the unpacks.
+
+ SmallVector<int, 32> PermMask((unsigned)Size, -1);
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
+
+ PermMask[i] =
+ 2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
+ }
+ return DAG.getVectorShuffle(
+ VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
+ DL, VT, V1, V2),
+ DAG.getUNDEF(VT), PermMask);
+ }
+
+ return SDValue();
+}
+
+/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
+///
+/// This is the basis function for the 2-lane 64-bit shuffles as we have full
+/// support for floating point shuffles but not integer shuffles. These
+/// instructions will incur a domain crossing penalty on some chips though so
+/// it is better to avoid lowering through this for integer vectors where
+/// possible.
+static SDValue lowerV2F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
+ assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
+
+ if (V2.isUndef()) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
+ DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Straight shuffle of a single input vector. Simulate this by using the
+ // single input as both of the "inputs" to this instruction..
+ unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
+
+ if (Subtarget.hasAVX()) {
+ // If we have AVX, we can use VPERMILPS which will allow folding a load
+ // into the shuffle.
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
+ DAG.getConstant(SHUFPDMask, DL, MVT::i8));
+ }
+
+ return DAG.getNode(
+ X86ISD::SHUFP, DL, MVT::v2f64,
+ Mask[0] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
+ Mask[1] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
+ DAG.getConstant(SHUFPDMask, DL, MVT::i8));
+ }
+ assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
+ assert(Mask[1] >= 2 && "Non-canonicalized blend!");
+
+ // If we have a single input, insert that into V1 if we can do so cheaply.
+ if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v2f64, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return Insertion;
+ // Try inverting the insertion since for v2 masks it is easy to do and we
+ // can't reliably sort the mask one way or the other.
+ int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
+ Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v2f64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
+ return Insertion;
+ }
+
+ // Try to use one of the special instruction patterns to handle two common
+ // blend patterns if a zero-blend above didn't work.
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
+ isShuffleEquivalent(V1, V2, Mask, {1, 3}))
+ if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
+ // We can either use a special instruction to load over the low double or
+ // to move just the low double.
+ return DAG.getNode(
+ isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD,
+ DL, MVT::v2f64, V2,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
+
+ if (Subtarget.hasSSE41())
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG))
+ return V;
+
+ unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2,
+ DAG.getConstant(SHUFPDMask, DL, MVT::i8));
+}
+
+/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
+///
+/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
+/// the integer unit to minimize domain crossing penalties. However, for blends
+/// it falls back to the floating point shuffle operation with appropriate bit
+/// casting.
+static SDValue lowerV2I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
+ assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
+
+ if (V2.isUndef()) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
+ DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Straight shuffle of a single input vector. For everything from SSE2
+ // onward this has a single fast instruction with no scary immediates.
+ // We have to map the mask as it is actually a v4i32 shuffle instruction.
+ V1 = DAG.getBitcast(MVT::v4i32, V1);
+ int WidenedMask[4] = {
+ std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
+ std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
+ return DAG.getBitcast(
+ MVT::v2i64,
+ DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
+ getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
+ }
+ assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
+ assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
+ assert(Mask[0] < 2 && "We sort V1 to be the first input.");
+ assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // When loading a scalar and then shuffling it into a vector we can often do
+ // the insertion cheaply.
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v2i64, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return Insertion;
+ // Try inverting the insertion since for v2 masks it is easy to do and we
+ // can't reliably sort the mask one way or the other.
+ int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v2i64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
+ return Insertion;
+
+ // We have different paths for blend lowering, but they all must use the
+ // *exact* same predicate.
+ bool IsBlendSupported = Subtarget.hasSSE41();
+ if (IsBlendSupported)
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use byte rotation instructions.
+ // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
+ if (Subtarget.hasSSSE3()) {
+ if (Subtarget.hasVLX())
+ if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v2i64, V1, V2,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+ }
+
+ // If we have direct support for blends, we should lower by decomposing into
+ // a permute. That will be faster than the domain cross.
+ if (IsBlendSupported)
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2,
+ Mask, DAG);
+
+ // We implement this with SHUFPD which is pretty lame because it will likely
+ // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
+ // However, all the alternatives are still more cycles and newer chips don't
+ // have this problem. It would be really nice if x86 had better shuffles here.
+ V1 = DAG.getBitcast(MVT::v2f64, V1);
+ V2 = DAG.getBitcast(MVT::v2f64, V2);
+ return DAG.getBitcast(MVT::v2i64,
+ DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
+}
+
+/// \brief Test whether this can be lowered with a single SHUFPS instruction.
+///
+/// This is used to disable more specialized lowerings when the shufps lowering
+/// will happen to be efficient.
+static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
+ // This routine only handles 128-bit shufps.
+ assert(Mask.size() == 4 && "Unsupported mask size!");
+ assert(Mask[0] >= -1 && Mask[0] < 8 && "Out of bound mask element!");
+ assert(Mask[1] >= -1 && Mask[1] < 8 && "Out of bound mask element!");
+ assert(Mask[2] >= -1 && Mask[2] < 8 && "Out of bound mask element!");
+ assert(Mask[3] >= -1 && Mask[3] < 8 && "Out of bound mask element!");
+
+ // To lower with a single SHUFPS we need to have the low half and high half
+ // each requiring a single input.
+ if (Mask[0] >= 0 && Mask[1] >= 0 && (Mask[0] < 4) != (Mask[1] < 4))
+ return false;
+ if (Mask[2] >= 0 && Mask[3] >= 0 && (Mask[2] < 4) != (Mask[3] < 4))
+ return false;
+
+ return true;
+}
+
+/// \brief Lower a vector shuffle using the SHUFPS instruction.
+///
+/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
+/// It makes no assumptions about whether this is the *best* lowering, it simply
+/// uses it.
+static SDValue lowerVectorShuffleWithSHUFPS(const SDLoc &DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
+ SDValue LowV = V1, HighV = V2;
+ int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
+
+ int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
+
+ if (NumV2Elements == 1) {
+ int V2Index = find_if(Mask, [](int M) { return M >= 4; }) - Mask.begin();
+
+ // Compute the index adjacent to V2Index and in the same half by toggling
+ // the low bit.
+ int V2AdjIndex = V2Index ^ 1;
+
+ if (Mask[V2AdjIndex] < 0) {
+ // Handles all the cases where we have a single V2 element and an undef.
+ // This will only ever happen in the high lanes because we commute the
+ // vector otherwise.
+ if (V2Index < 2)
+ std::swap(LowV, HighV);
+ NewMask[V2Index] -= 4;
+ } else {
+ // Handle the case where the V2 element ends up adjacent to a V1 element.
+ // To make this work, blend them together as the first step.
+ int V1Index = V2AdjIndex;
+ int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
+ V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
+ getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
+
+ // Now proceed to reconstruct the final blend as we have the necessary
+ // high or low half formed.
+ if (V2Index < 2) {
+ LowV = V2;
+ HighV = V1;
+ } else {
+ HighV = V2;
+ }
+ NewMask[V1Index] = 2; // We put the V1 element in V2[2].
+ NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
+ }
+ } else if (NumV2Elements == 2) {
+ if (Mask[0] < 4 && Mask[1] < 4) {
+ // Handle the easy case where we have V1 in the low lanes and V2 in the
+ // high lanes.
+ NewMask[2] -= 4;
+ NewMask[3] -= 4;
+ } else if (Mask[2] < 4 && Mask[3] < 4) {
+ // We also handle the reversed case because this utility may get called
+ // when we detect a SHUFPS pattern but can't easily commute the shuffle to
+ // arrange things in the right direction.
+ NewMask[0] -= 4;
+ NewMask[1] -= 4;
+ HighV = V1;
+ LowV = V2;
+ } else {
+ // We have a mixture of V1 and V2 in both low and high lanes. Rather than
+ // trying to place elements directly, just blend them and set up the final
+ // shuffle to place them.
+
+ // The first two blend mask elements are for V1, the second two are for
+ // V2.
+ int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
+ Mask[2] < 4 ? Mask[2] : Mask[3],
+ (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
+ (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
+ V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
+ getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
+
+ // Now we do a normal shuffle of V1 by giving V1 as both operands to
+ // a blend.
+ LowV = HighV = V1;
+ NewMask[0] = Mask[0] < 4 ? 0 : 2;
+ NewMask[1] = Mask[0] < 4 ? 2 : 0;
+ NewMask[2] = Mask[2] < 4 ? 1 : 3;
+ NewMask[3] = Mask[2] < 4 ? 3 : 1;
+ }
+ }
+ return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
+ getV4X86ShuffleImm8ForMask(NewMask, DL, DAG));
+}
+
+/// \brief Lower 4-lane 32-bit floating point shuffles.
+///
+/// Uses instructions exclusively from the floating point unit to minimize
+/// domain crossing penalties, as these are sufficient to implement all v4f32
+/// shuffles.
+static SDValue lowerV4F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
+
+ if (NumV2Elements == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
+ DL, MVT::v4f32, V1, V2, Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Use even/odd duplicate instructions for masks that match their pattern.
+ if (Subtarget.hasSSE3()) {
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
+ return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
+ if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
+ return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
+ }
+
+ if (Subtarget.hasAVX()) {
+ // If we have AVX, we can use VPERMILPS which will allow folding a load
+ // into the shuffle.
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+ }
+
+ // Use MOVLHPS/MOVHLPS to simulate unary shuffles. These are only valid
+ // in SSE1 because otherwise they are widened to v2f64 and never get here.
+ if (!Subtarget.hasSSE2()) {
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1}))
+ return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V1);
+ if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 2, 3}))
+ return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V1, V1);
+ }
+
+ // Otherwise, use a straight shuffle of a single input vector. We pass the
+ // input vector to both operands to simulate this with a SHUFPS.
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+ }
+
+ // There are special ways we can lower some single-element blends. However, we
+ // have custom ways we can lower more complex single-element blends below that
+ // we defer to if both this and BLENDPS fail to match, so restrict this to
+ // when the V2 input is targeting element 0 of the mask -- that is the fast
+ // case here.
+ if (NumV2Elements == 1 && Mask[0] >= 4)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v4f32, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return V;
+
+ if (Subtarget.hasSSE41()) {
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Use INSERTPS if we can complete the shuffle efficiently.
+ if (SDValue V =
+ lowerVectorShuffleAsInsertPS(DL, V1, V2, Mask, Zeroable, DAG))
+ return V;
+
+ if (!isSingleSHUFPSMask(Mask))
+ if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute(
+ DL, MVT::v4f32, V1, V2, Mask, DAG))
+ return BlendPerm;
+ }
+
+ // Use low/high mov instructions. These are only valid in SSE1 because
+ // otherwise they are widened to v2f64 and never get here.
+ if (!Subtarget.hasSSE2()) {
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5}))
+ return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V2);
+ if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 6, 7}))
+ return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V2, V1);
+ }
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG))
+ return V;
+
+ // Otherwise fall back to a SHUFPS lowering strategy.
+ return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
+}
+
+/// \brief Lower 4-lane i32 vector shuffles.
+///
+/// We try to handle these with integer-domain shuffles where we can, but for
+/// blends we use the floating point domain blend instructions.
+static SDValue lowerV4I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return ZExt;
+
+ int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
+
+ if (NumV2Elements == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
+ DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Straight shuffle of a single input vector. For everything from SSE2
+ // onward this has a single fast instruction with no scary immediates.
+ // We coerce the shuffle pattern to be compatible with UNPCK instructions
+ // but we aren't actually going to use the UNPCK instruction because doing
+ // so prevents folding a load into this instruction or making a copy.
+ const int UnpackLoMask[] = {0, 0, 1, 1};
+ const int UnpackHiMask[] = {2, 2, 3, 3};
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
+ Mask = UnpackLoMask;
+ else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
+ Mask = UnpackHiMask;
+
+ return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+ }
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // There are special ways we can lower some single-element blends.
+ if (NumV2Elements == 1)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return V;
+
+ // We have different paths for blend lowering, but they all must use the
+ // *exact* same predicate.
+ bool IsBlendSupported = Subtarget.hasSSE41();
+ if (IsBlendSupported)
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask,
+ Zeroable, DAG))
+ return Masked;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use byte rotation instructions.
+ // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
+ if (Subtarget.hasSSSE3()) {
+ if (Subtarget.hasVLX())
+ if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v4i32, V1, V2,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+ }
+
+ // Assume that a single SHUFPS is faster than an alternative sequence of
+ // multiple instructions (even if the CPU has a domain penalty).
+ // If some CPU is harmed by the domain switch, we can fix it in a later pass.
+ if (!isSingleSHUFPSMask(Mask)) {
+ // If we have direct support for blends, we should lower by decomposing into
+ // a permute. That will be faster than the domain cross.
+ if (IsBlendSupported)
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2,
+ Mask, DAG);
+
+ // Try to lower by permuting the inputs into an unpack instruction.
+ if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
+ DL, MVT::v4i32, V1, V2, Mask, DAG))
+ return Unpack;
+ }
+
+ // We implement this with SHUFPS because it can blend from two vectors.
+ // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
+ // up the inputs, bypassing domain shift penalties that we would incur if we
+ // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
+ // relevant.
+ SDValue CastV1 = DAG.getBitcast(MVT::v4f32, V1);
+ SDValue CastV2 = DAG.getBitcast(MVT::v4f32, V2);
+ SDValue ShufPS = DAG.getVectorShuffle(MVT::v4f32, DL, CastV1, CastV2, Mask);
+ return DAG.getBitcast(MVT::v4i32, ShufPS);
+}
+
+/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
+/// shuffle lowering, and the most complex part.
+///
+/// The lowering strategy is to try to form pairs of input lanes which are
+/// targeted at the same half of the final vector, and then use a dword shuffle
+/// to place them onto the right half, and finally unpack the paired lanes into
+/// their final position.
+///
+/// The exact breakdown of how to form these dword pairs and align them on the
+/// correct sides is really tricky. See the comments within the function for
+/// more of the details.
+///
+/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
+/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
+/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
+/// vector, form the analogous 128-bit 8-element Mask.
+static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
+ const SDLoc &DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
+ const X86Subtarget &Subtarget, SelectionDAG &DAG) {
+ assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!");
+ MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
+
+ assert(Mask.size() == 8 && "Shuffle mask length doesn't match!");
+ MutableArrayRef<int> LoMask = Mask.slice(0, 4);
+ MutableArrayRef<int> HiMask = Mask.slice(4, 4);
+
+ SmallVector<int, 4> LoInputs;
+ copy_if(LoMask, std::back_inserter(LoInputs), [](int M) { return M >= 0; });
+ std::sort(LoInputs.begin(), LoInputs.end());
+ LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
+ SmallVector<int, 4> HiInputs;
+ copy_if(HiMask, std::back_inserter(HiInputs), [](int M) { return M >= 0; });
+ std::sort(HiInputs.begin(), HiInputs.end());
+ HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
+ int NumLToL =
+ std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
+ int NumHToL = LoInputs.size() - NumLToL;
+ int NumLToH =
+ std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
+ int NumHToH = HiInputs.size() - NumLToH;
+ MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
+ MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
+ MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
+ MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
+
+ // If we are splatting two values from one half - one to each half, then
+ // we can shuffle that half so each is splatted to a dword, then splat those
+ // to their respective halves.
+ auto SplatHalfs = [&](int LoInput, int HiInput, unsigned ShufWOp,
+ int DOffset) {
+ int PSHUFHalfMask[] = {LoInput % 4, LoInput % 4, HiInput % 4, HiInput % 4};
+ int PSHUFDMask[] = {DOffset + 0, DOffset + 0, DOffset + 1, DOffset + 1};
+ V = DAG.getNode(ShufWOp, DL, VT, V,
+ getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
+ V = DAG.getBitcast(PSHUFDVT, V);
+ V = DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, V,
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
+ return DAG.getBitcast(VT, V);
+ };
+
+ if (NumLToL == 1 && NumLToH == 1 && (NumHToL + NumHToH) == 0)
+ return SplatHalfs(LToLInputs[0], LToHInputs[0], X86ISD::PSHUFLW, 0);
+ if (NumHToL == 1 && NumHToH == 1 && (NumLToL + NumLToH) == 0)
+ return SplatHalfs(HToLInputs[0], HToHInputs[0], X86ISD::PSHUFHW, 2);
+
+ // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
+ // such inputs we can swap two of the dwords across the half mark and end up
+ // with <=2 inputs to each half in each half. Once there, we can fall through
+ // to the generic code below. For example:
+ //
+ // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
+ // Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
+ //
+ // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
+ // and an existing 2-into-2 on the other half. In this case we may have to
+ // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
+ // 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
+ // Fortunately, we don't have to handle anything but a 2-into-2 pattern
+ // because any other situation (including a 3-into-1 or 1-into-3 in the other
+ // half than the one we target for fixing) will be fixed when we re-enter this
+ // path. We will also combine away any sequence of PSHUFD instructions that
+ // result into a single instruction. Here is an example of the tricky case:
+ //
+ // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
+ // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
+ //
+ // This now has a 1-into-3 in the high half! Instead, we do two shuffles:
+ //
+ // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
+ // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
+ //
+ // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
+ // Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
+ //
+ // The result is fine to be handled by the generic logic.
+ auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
+ ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
+ int AOffset, int BOffset) {
+ assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
+ "Must call this with A having 3 or 1 inputs from the A half.");
+ assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
+ "Must call this with B having 1 or 3 inputs from the B half.");
+ assert(AToAInputs.size() + BToAInputs.size() == 4 &&
+ "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
+
+ bool ThreeAInputs = AToAInputs.size() == 3;
+
+ // Compute the index of dword with only one word among the three inputs in
+ // a half by taking the sum of the half with three inputs and subtracting
+ // the sum of the actual three inputs. The difference is the remaining
+ // slot.
+ int ADWord, BDWord;
+ int &TripleDWord = ThreeAInputs ? ADWord : BDWord;
+ int &OneInputDWord = ThreeAInputs ? BDWord : ADWord;
+ int TripleInputOffset = ThreeAInputs ? AOffset : BOffset;
+ ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs;
+ int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0];
+ int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
+ int TripleNonInputIdx =
+ TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
+ TripleDWord = TripleNonInputIdx / 2;
+
+ // We use xor with one to compute the adjacent DWord to whichever one the
+ // OneInput is in.
+ OneInputDWord = (OneInput / 2) ^ 1;
+
+ // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
+ // and BToA inputs. If there is also such a problem with the BToB and AToB
+ // inputs, we don't try to fix it necessarily -- we'll recurse and see it in
+ // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
+ // is essential that we don't *create* a 3<-1 as then we might oscillate.
+ if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
+ // Compute how many inputs will be flipped by swapping these DWords. We
+ // need
+ // to balance this to ensure we don't form a 3-1 shuffle in the other
+ // half.
+ int NumFlippedAToBInputs =
+ std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
+ std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
+ int NumFlippedBToBInputs =
+ std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
+ std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
+ if ((NumFlippedAToBInputs == 1 &&
+ (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
+ (NumFlippedBToBInputs == 1 &&
+ (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
+ // We choose whether to fix the A half or B half based on whether that
+ // half has zero flipped inputs. At zero, we may not be able to fix it
+ // with that half. We also bias towards fixing the B half because that
+ // will more commonly be the high half, and we have to bias one way.
+ auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
+ ArrayRef<int> Inputs) {
+ int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
+ bool IsFixIdxInput = is_contained(Inputs, PinnedIdx ^ 1);
+ // Determine whether the free index is in the flipped dword or the
+ // unflipped dword based on where the pinned index is. We use this bit
+ // in an xor to conditionally select the adjacent dword.
+ int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
+ bool IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
+ if (IsFixIdxInput == IsFixFreeIdxInput)
+ FixFreeIdx += 1;
+ IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
+ assert(IsFixIdxInput != IsFixFreeIdxInput &&
+ "We need to be changing the number of flipped inputs!");
+ int PSHUFHalfMask[] = {0, 1, 2, 3};
+ std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
+ V = DAG.getNode(
+ FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
+ MVT::getVectorVT(MVT::i16, V.getValueSizeInBits() / 16), V,
+ getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
+
+ for (int &M : Mask)
+ if (M >= 0 && M == FixIdx)
+ M = FixFreeIdx;
+ else if (M >= 0 && M == FixFreeIdx)
+ M = FixIdx;
+ };
+ if (NumFlippedBToBInputs != 0) {
+ int BPinnedIdx =
+ BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
+ FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
+ } else {
+ assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
+ int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput;
+ FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
+ }
+ }
+ }
+
+ int PSHUFDMask[] = {0, 1, 2, 3};
+ PSHUFDMask[ADWord] = BDWord;
+ PSHUFDMask[BDWord] = ADWord;
+ V = DAG.getBitcast(
+ VT,
+ DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+
+ // Adjust the mask to match the new locations of A and B.
+ for (int &M : Mask)
+ if (M >= 0 && M/2 == ADWord)
+ M = 2 * BDWord + M % 2;
+ else if (M >= 0 && M/2 == BDWord)
+ M = 2 * ADWord + M % 2;
+
+ // Recurse back into this routine to re-compute state now that this isn't
+ // a 3 and 1 problem.
+ return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget,
+ DAG);
+ };
+ if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
+ return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
+ if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
+ return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
+
+ // At this point there are at most two inputs to the low and high halves from
+ // each half. That means the inputs can always be grouped into dwords and
+ // those dwords can then be moved to the correct half with a dword shuffle.
+ // We use at most one low and one high word shuffle to collect these paired
+ // inputs into dwords, and finally a dword shuffle to place them.
+ int PSHUFLMask[4] = {-1, -1, -1, -1};
+ int PSHUFHMask[4] = {-1, -1, -1, -1};
+ int PSHUFDMask[4] = {-1, -1, -1, -1};
+
+ // First fix the masks for all the inputs that are staying in their
+ // original halves. This will then dictate the targets of the cross-half
+ // shuffles.
+ auto fixInPlaceInputs =
+ [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
+ MutableArrayRef<int> SourceHalfMask,
+ MutableArrayRef<int> HalfMask, int HalfOffset) {
+ if (InPlaceInputs.empty())
+ return;
+ if (InPlaceInputs.size() == 1) {
+ SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
+ InPlaceInputs[0] - HalfOffset;
+ PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
+ return;
+ }
+ if (IncomingInputs.empty()) {
+ // Just fix all of the in place inputs.
+ for (int Input : InPlaceInputs) {
+ SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
+ PSHUFDMask[Input / 2] = Input / 2;
+ }
+ return;
+ }
+
+ assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
+ SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
+ InPlaceInputs[0] - HalfOffset;
+ // Put the second input next to the first so that they are packed into
+ // a dword. We find the adjacent index by toggling the low bit.
+ int AdjIndex = InPlaceInputs[0] ^ 1;
+ SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
+ std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
+ PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
+ };
+ fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
+ fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
+
+ // Now gather the cross-half inputs and place them into a free dword of
+ // their target half.
+ // FIXME: This operation could almost certainly be simplified dramatically to
+ // look more like the 3-1 fixing operation.
+ auto moveInputsToRightHalf = [&PSHUFDMask](
+ MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
+ MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
+ MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
+ int DestOffset) {
+ auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
+ return SourceHalfMask[Word] >= 0 && SourceHalfMask[Word] != Word;
+ };
+ auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
+ int Word) {
+ int LowWord = Word & ~1;
+ int HighWord = Word | 1;
+ return isWordClobbered(SourceHalfMask, LowWord) ||
+ isWordClobbered(SourceHalfMask, HighWord);
+ };
+
+ if (IncomingInputs.empty())
+ return;
+
+ if (ExistingInputs.empty()) {
+ // Map any dwords with inputs from them into the right half.
+ for (int Input : IncomingInputs) {
+ // If the source half mask maps over the inputs, turn those into
+ // swaps and use the swapped lane.
+ if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
+ if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] < 0) {
+ SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
+ Input - SourceOffset;
+ // We have to swap the uses in our half mask in one sweep.
+ for (int &M : HalfMask)
+ if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
+ M = Input;
+ else if (M == Input)
+ M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
+ } else {
+ assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
+ Input - SourceOffset &&
+ "Previous placement doesn't match!");
+ }
+ // Note that this correctly re-maps both when we do a swap and when
+ // we observe the other side of the swap above. We rely on that to
+ // avoid swapping the members of the input list directly.
+ Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
+ }
+
+ // Map the input's dword into the correct half.
+ if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] < 0)
+ PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
+ else
+ assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
+ Input / 2 &&
+ "Previous placement doesn't match!");
+ }
+
+ // And just directly shift any other-half mask elements to be same-half
+ // as we will have mirrored the dword containing the element into the
+ // same position within that half.
+ for (int &M : HalfMask)
+ if (M >= SourceOffset && M < SourceOffset + 4) {
+ M = M - SourceOffset + DestOffset;
+ assert(M >= 0 && "This should never wrap below zero!");
+ }
+ return;
+ }
+
+ // Ensure we have the input in a viable dword of its current half. This
+ // is particularly tricky because the original position may be clobbered
+ // by inputs being moved and *staying* in that half.
+ if (IncomingInputs.size() == 1) {
+ if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
+ int InputFixed = find(SourceHalfMask, -1) - std::begin(SourceHalfMask) +
+ SourceOffset;
+ SourceHalfMask[InputFixed - SourceOffset] =
+ IncomingInputs[0] - SourceOffset;
+ std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
+ InputFixed);
+ IncomingInputs[0] = InputFixed;
+ }
+ } else if (IncomingInputs.size() == 2) {
+ if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
+ isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
+ // We have two non-adjacent or clobbered inputs we need to extract from
+ // the source half. To do this, we need to map them into some adjacent
+ // dword slot in the source mask.
+ int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
+ IncomingInputs[1] - SourceOffset};
+
+ // If there is a free slot in the source half mask adjacent to one of
+ // the inputs, place the other input in it. We use (Index XOR 1) to
+ // compute an adjacent index.
+ if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
+ SourceHalfMask[InputsFixed[0] ^ 1] < 0) {
+ SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
+ SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
+ InputsFixed[1] = InputsFixed[0] ^ 1;
+ } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
+ SourceHalfMask[InputsFixed[1] ^ 1] < 0) {
+ SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
+ SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
+ InputsFixed[0] = InputsFixed[1] ^ 1;
+ } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] < 0 &&
+ SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] < 0) {
+ // The two inputs are in the same DWord but it is clobbered and the
+ // adjacent DWord isn't used at all. Move both inputs to the free
+ // slot.
+ SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
+ SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
+ InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
+ InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
+ } else {
+ // The only way we hit this point is if there is no clobbering
+ // (because there are no off-half inputs to this half) and there is no
+ // free slot adjacent to one of the inputs. In this case, we have to
+ // swap an input with a non-input.
+ for (int i = 0; i < 4; ++i)
+ assert((SourceHalfMask[i] < 0 || SourceHalfMask[i] == i) &&
+ "We can't handle any clobbers here!");
+ assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
+ "Cannot have adjacent inputs here!");
+
+ SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
+ SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
+
+ // We also have to update the final source mask in this case because
+ // it may need to undo the above swap.
+ for (int &M : FinalSourceHalfMask)
+ if (M == (InputsFixed[0] ^ 1) + SourceOffset)
+ M = InputsFixed[1] + SourceOffset;
+ else if (M == InputsFixed[1] + SourceOffset)
+ M = (InputsFixed[0] ^ 1) + SourceOffset;
+
+ InputsFixed[1] = InputsFixed[0] ^ 1;
+ }
+
+ // Point everything at the fixed inputs.
+ for (int &M : HalfMask)
+ if (M == IncomingInputs[0])
+ M = InputsFixed[0] + SourceOffset;
+ else if (M == IncomingInputs[1])
+ M = InputsFixed[1] + SourceOffset;
+
+ IncomingInputs[0] = InputsFixed[0] + SourceOffset;
+ IncomingInputs[1] = InputsFixed[1] + SourceOffset;
+ }
+ } else {
+ llvm_unreachable("Unhandled input size!");
+ }
+
+ // Now hoist the DWord down to the right half.
+ int FreeDWord = (PSHUFDMask[DestOffset / 2] < 0 ? 0 : 1) + DestOffset / 2;
+ assert(PSHUFDMask[FreeDWord] < 0 && "DWord not free");
+ PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
+ for (int &M : HalfMask)
+ for (int Input : IncomingInputs)
+ if (M == Input)
+ M = FreeDWord * 2 + Input % 2;
+ };
+ moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
+ /*SourceOffset*/ 4, /*DestOffset*/ 0);
+ moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
+ /*SourceOffset*/ 0, /*DestOffset*/ 4);
+
+ // Now enact all the shuffles we've computed to move the inputs into their
+ // target half.
+ if (!isNoopShuffleMask(PSHUFLMask))
+ V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
+ getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG));
+ if (!isNoopShuffleMask(PSHUFHMask))
+ V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
+ getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
+ if (!isNoopShuffleMask(PSHUFDMask))
+ V = DAG.getBitcast(
+ VT,
+ DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+
+ // At this point, each half should contain all its inputs, and we can then
+ // just shuffle them into their final position.
+ assert(count_if(LoMask, [](int M) { return M >= 4; }) == 0 &&
+ "Failed to lift all the high half inputs to the low mask!");
+ assert(count_if(HiMask, [](int M) { return M >= 0 && M < 4; }) == 0 &&
+ "Failed to lift all the low half inputs to the high mask!");
+
+ // Do a half shuffle for the low mask.
+ if (!isNoopShuffleMask(LoMask))
+ V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
+ getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
+
+ // Do a half shuffle with the high mask after shifting its values down.
+ for (int &M : HiMask)
+ if (M >= 0)
+ M -= 4;
+ if (!isNoopShuffleMask(HiMask))
+ V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
+ getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
+
+ return V;
+}
+
+/// Helper to form a PSHUFB-based shuffle+blend, opportunistically avoiding the
+/// blend if only one input is used.
+static SDValue lowerVectorShuffleAsBlendOfPSHUFBs(
+ const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const APInt &Zeroable, SelectionDAG &DAG, bool &V1InUse,
+ bool &V2InUse) {
+ SDValue V1Mask[16];
+ SDValue V2Mask[16];
+ V1InUse = false;
+ V2InUse = false;
+
+ int Size = Mask.size();
+ int Scale = 16 / Size;
+ for (int i = 0; i < 16; ++i) {
+ if (Mask[i / Scale] < 0) {
+ V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
+ } else {
+ const int ZeroMask = 0x80;
+ int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale
+ : ZeroMask;
+ int V2Idx = Mask[i / Scale] < Size
+ ? ZeroMask
+ : (Mask[i / Scale] - Size) * Scale + i % Scale;
+ if (Zeroable[i / Scale])
+ V1Idx = V2Idx = ZeroMask;
+ V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8);
+ V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8);
+ V1InUse |= (ZeroMask != V1Idx);
+ V2InUse |= (ZeroMask != V2Idx);
+ }
+ }
+
+ if (V1InUse)
+ V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
+ DAG.getBitcast(MVT::v16i8, V1),
+ DAG.getBuildVector(MVT::v16i8, DL, V1Mask));
+ if (V2InUse)
+ V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
+ DAG.getBitcast(MVT::v16i8, V2),
+ DAG.getBuildVector(MVT::v16i8, DL, V2Mask));
+
+ // If we need shuffled inputs from both, blend the two.
+ SDValue V;
+ if (V1InUse && V2InUse)
+ V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
+ else
+ V = V1InUse ? V1 : V2;
+
+ // Cast the result back to the correct type.
+ return DAG.getBitcast(VT, V);
+}
+
+/// \brief Generic lowering of 8-lane i16 shuffles.
+///
+/// This handles both single-input shuffles and combined shuffle/blends with
+/// two inputs. The single input shuffles are immediately delegated to
+/// a dedicated lowering routine.
+///
+/// The blends are lowered in one of three fundamental ways. If there are few
+/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
+/// of the input is significantly cheaper when lowered as an interleaving of
+/// the two inputs, try to interleave them. Otherwise, blend the low and high
+/// halves of the inputs separately (making them have relatively few inputs)
+/// and then concatenate them.
+static SDValue lowerV8I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return ZExt;
+
+ int NumV2Inputs = count_if(Mask, [](int M) { return M >= 8; });
+
+ if (NumV2Inputs == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
+ DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
+ return V;
+
+ // Use dedicated pack instructions for masks that match their pattern.
+ if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2,
+ DAG, Subtarget))
+ return V;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Make a copy of the mask so it can be modified.
+ SmallVector<int, 8> MutableMask(Mask.begin(), Mask.end());
+ return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1,
+ MutableMask, Subtarget,
+ DAG);
+ }
+
+ assert(llvm::any_of(Mask, [](int M) { return M >= 0 && M < 8; }) &&
+ "All single-input shuffles should be canonicalized to be V1-input "
+ "shuffles.");
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // See if we can use SSE4A Extraction / Insertion.
+ if (Subtarget.hasSSE4A())
+ if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask,
+ Zeroable, DAG))
+ return V;
+
+ // There are special ways we can lower some single-element blends.
+ if (NumV2Inputs == 1)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return V;
+
+ // We have different paths for blend lowering, but they all must use the
+ // *exact* same predicate.
+ bool IsBlendSupported = Subtarget.hasSSE41();
+ if (IsBlendSupported)
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask,
+ Zeroable, DAG))
+ return Masked;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
+ return V;
+
+ // Use dedicated pack instructions for masks that match their pattern.
+ if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, DAG,
+ Subtarget))
+ return V;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (SDValue BitBlend =
+ lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
+ return BitBlend;
+
+ // Try to lower by permuting the inputs into an unpack instruction.
+ if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1,
+ V2, Mask, DAG))
+ return Unpack;
+
+ // If we can't directly blend but can use PSHUFB, that will be better as it
+ // can both shuffle and set up the inefficient blend.
+ if (!IsBlendSupported && Subtarget.hasSSSE3()) {
+ bool V1InUse, V2InUse;
+ return lowerVectorShuffleAsBlendOfPSHUFBs(DL, MVT::v8i16, V1, V2, Mask,
+ Zeroable, DAG, V1InUse, V2InUse);
+ }
+
+ // We can always bit-blend if we have to so the fallback strategy is to
+ // decompose into single-input permutes and blends.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
+ Mask, DAG);
+}
+
+/// \brief Check whether a compaction lowering can be done by dropping even
+/// elements and compute how many times even elements must be dropped.
+///
+/// This handles shuffles which take every Nth element where N is a power of
+/// two. Example shuffle masks:
+///
+/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14
+/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
+/// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12
+/// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28
+/// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8
+/// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24
+///
+/// Any of these lanes can of course be undef.
+///
+/// This routine only supports N <= 3.
+/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
+/// for larger N.
+///
+/// \returns N above, or the number of times even elements must be dropped if
+/// there is such a number. Otherwise returns zero.
+static int canLowerByDroppingEvenElements(ArrayRef<int> Mask,
+ bool IsSingleInput) {
+ // The modulus for the shuffle vector entries is based on whether this is
+ // a single input or not.
+ int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
+ assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
+ "We should only be called with masks with a power-of-2 size!");
+
+ uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
+
+ // We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
+ // and 2^3 simultaneously. This is because we may have ambiguity with
+ // partially undef inputs.
+ bool ViableForN[3] = {true, true, true};
+
+ for (int i = 0, e = Mask.size(); i < e; ++i) {
+ // Ignore undef lanes, we'll optimistically collapse them to the pattern we
+ // want.
+ if (Mask[i] < 0)
+ continue;
+
+ bool IsAnyViable = false;
+ for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
+ if (ViableForN[j]) {
+ uint64_t N = j + 1;
+
+ // The shuffle mask must be equal to (i * 2^N) % M.
+ if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
+ IsAnyViable = true;
+ else
+ ViableForN[j] = false;
+ }
+ // Early exit if we exhaust the possible powers of two.
+ if (!IsAnyViable)
+ break;
+ }
+
+ for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
+ if (ViableForN[j])
+ return j + 1;
+
+ // Return 0 as there is no viable power of two.
+ return 0;
+}
+
+static SDValue lowerVectorShuffleWithPERMV(const SDLoc &DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
+ MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
+ MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements());
+
+ SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true);
+ if (V2.isUndef())
+ return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1);
+
+ return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2);
+}
+
+/// \brief Generic lowering of v16i8 shuffles.
+///
+/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
+/// detect any complexity reducing interleaving. If that doesn't help, it uses
+/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
+/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
+/// back together.
+static SDValue lowerV16I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Use dedicated pack instructions for masks that match their pattern.
+ if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v16i8, Mask, V1, V2, DAG,
+ Subtarget))
+ return V;
+
+ // Try to use a zext lowering.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return ZExt;
+
+ // See if we can use SSE4A Extraction / Insertion.
+ if (Subtarget.hasSSE4A())
+ if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask,
+ Zeroable, DAG))
+ return V;
+
+ int NumV2Elements = count_if(Mask, [](int M) { return M >= 16; });
+
+ // For single-input shuffles, there are some nicer lowering tricks we can use.
+ if (NumV2Elements == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
+ DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Check whether we can widen this to an i16 shuffle by duplicating bytes.
+ // Notably, this handles splat and partial-splat shuffles more efficiently.
+ // However, it only makes sense if the pre-duplication shuffle simplifies
+ // things significantly. Currently, this means we need to be able to
+ // express the pre-duplication shuffle as an i16 shuffle.
+ //
+ // FIXME: We should check for other patterns which can be widened into an
+ // i16 shuffle as well.
+ auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
+ for (int i = 0; i < 16; i += 2)
+ if (Mask[i] >= 0 && Mask[i + 1] >= 0 && Mask[i] != Mask[i + 1])
+ return false;
+
+ return true;
+ };
+ auto tryToWidenViaDuplication = [&]() -> SDValue {
+ if (!canWidenViaDuplication(Mask))
+ return SDValue();
+ SmallVector<int, 4> LoInputs;
+ copy_if(Mask, std::back_inserter(LoInputs),
+ [](int M) { return M >= 0 && M < 8; });
+ std::sort(LoInputs.begin(), LoInputs.end());
+ LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
+ LoInputs.end());
+ SmallVector<int, 4> HiInputs;
+ copy_if(Mask, std::back_inserter(HiInputs), [](int M) { return M >= 8; });
+ std::sort(HiInputs.begin(), HiInputs.end());
+ HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
+ HiInputs.end());
+
+ bool TargetLo = LoInputs.size() >= HiInputs.size();
+ ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
+ ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
+
+ int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ SmallDenseMap<int, int, 8> LaneMap;
+ for (int I : InPlaceInputs) {
+ PreDupI16Shuffle[I/2] = I/2;
+ LaneMap[I] = I;
+ }
+ int j = TargetLo ? 0 : 4, je = j + 4;
+ for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
+ // Check if j is already a shuffle of this input. This happens when
+ // there are two adjacent bytes after we move the low one.
+ if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
+ // If we haven't yet mapped the input, search for a slot into which
+ // we can map it.
+ while (j < je && PreDupI16Shuffle[j] >= 0)
+ ++j;
+
+ if (j == je)
+ // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
+ return SDValue();
+
+ // Map this input with the i16 shuffle.
+ PreDupI16Shuffle[j] = MovingInputs[i] / 2;
+ }
+
+ // Update the lane map based on the mapping we ended up with.
+ LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
+ }
+ V1 = DAG.getBitcast(
+ MVT::v16i8,
+ DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
+ DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
+
+ // Unpack the bytes to form the i16s that will be shuffled into place.
+ V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
+ MVT::v16i8, V1, V1);
+
+ int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ for (int i = 0; i < 16; ++i)
+ if (Mask[i] >= 0) {
+ int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
+ assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
+ if (PostDupI16Shuffle[i / 2] < 0)
+ PostDupI16Shuffle[i / 2] = MappedMask;
+ else
+ assert(PostDupI16Shuffle[i / 2] == MappedMask &&
+ "Conflicting entries in the original shuffle!");
+ }
+ return DAG.getBitcast(
+ MVT::v16i8,
+ DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
+ DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
+ };
+ if (SDValue V = tryToWidenViaDuplication())
+ return V;
+ }
+
+ if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask,
+ Zeroable, DAG))
+ return Masked;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
+ return V;
+
+ // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
+ // with PSHUFB. It is important to do this before we attempt to generate any
+ // blends but after all of the single-input lowerings. If the single input
+ // lowerings can find an instruction sequence that is faster than a PSHUFB, we
+ // want to preserve that and we can DAG combine any longer sequences into
+ // a PSHUFB in the end. But once we start blending from multiple inputs,
+ // the complexity of DAG combining bad patterns back into PSHUFB is too high,
+ // and there are *very* few patterns that would actually be faster than the
+ // PSHUFB approach because of its ability to zero lanes.
+ //
+ // FIXME: The only exceptions to the above are blends which are exact
+ // interleavings with direct instructions supporting them. We currently don't
+ // handle those well here.
+ if (Subtarget.hasSSSE3()) {
+ bool V1InUse = false;
+ bool V2InUse = false;
+
+ SDValue PSHUFB = lowerVectorShuffleAsBlendOfPSHUFBs(
+ DL, MVT::v16i8, V1, V2, Mask, Zeroable, DAG, V1InUse, V2InUse);
+
+ // If both V1 and V2 are in use and we can use a direct blend or an unpack,
+ // do so. This avoids using them to handle blends-with-zero which is
+ // important as a single pshufb is significantly faster for that.
+ if (V1InUse && V2InUse) {
+ if (Subtarget.hasSSE41())
+ if (SDValue Blend = lowerVectorShuffleAsBlend(
+ DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // We can use an unpack to do the blending rather than an or in some
+ // cases. Even though the or may be (very minorly) more efficient, we
+ // preference this lowering because there are common cases where part of
+ // the complexity of the shuffles goes away when we do the final blend as
+ // an unpack.
+ // FIXME: It might be worth trying to detect if the unpack-feeding
+ // shuffles will both be pshufb, in which case we shouldn't bother with
+ // this.
+ if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
+ DL, MVT::v16i8, V1, V2, Mask, DAG))
+ return Unpack;
+
+ // If we have VBMI we can use one VPERM instead of multiple PSHUFBs.
+ if (Subtarget.hasVBMI() && Subtarget.hasVLX())
+ return lowerVectorShuffleWithPERMV(DL, MVT::v16i8, Mask, V1, V2, DAG);
+ }
+
+ return PSHUFB;
+ }
+
+ // There are special ways we can lower some single-element blends.
+ if (NumV2Elements == 1)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return V;
+
+ if (SDValue BitBlend =
+ lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
+ return BitBlend;
+
+ // Check whether a compaction lowering can be done. This handles shuffles
+ // which take every Nth element for some even N. See the helper function for
+ // details.
+ //
+ // We special case these as they can be particularly efficiently handled with
+ // the PACKUSB instruction on x86 and they show up in common patterns of
+ // rearranging bytes to truncate wide elements.
+ bool IsSingleInput = V2.isUndef();
+ if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask, IsSingleInput)) {
+ // NumEvenDrops is the power of two stride of the elements. Another way of
+ // thinking about it is that we need to drop the even elements this many
+ // times to get the original input.
+
+ // First we need to zero all the dropped bytes.
+ assert(NumEvenDrops <= 3 &&
+ "No support for dropping even elements more than 3 times.");
+ // We use the mask type to pick which bytes are preserved based on how many
+ // elements are dropped.
+ MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
+ SDValue ByteClearMask = DAG.getBitcast(
+ MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1]));
+ V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
+ if (!IsSingleInput)
+ V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
+
+ // Now pack things back together.
+ V1 = DAG.getBitcast(MVT::v8i16, V1);
+ V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
+ SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
+ for (int i = 1; i < NumEvenDrops; ++i) {
+ Result = DAG.getBitcast(MVT::v8i16, Result);
+ Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
+ }
+
+ return Result;
+ }
+
+ // Handle multi-input cases by blending single-input shuffles.
+ if (NumV2Elements > 0)
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2,
+ Mask, DAG);
+
+ // The fallback path for single-input shuffles widens this into two v8i16
+ // vectors with unpacks, shuffles those, and then pulls them back together
+ // with a pack.
+ SDValue V = V1;
+
+ std::array<int, 8> LoBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
+ std::array<int, 8> HiBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
+ for (int i = 0; i < 16; ++i)
+ if (Mask[i] >= 0)
+ (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
+
+ SDValue VLoHalf, VHiHalf;
+ // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
+ // them out and avoid using UNPCK{L,H} to extract the elements of V as
+ // i16s.
+ if (none_of(LoBlendMask, [](int M) { return M >= 0 && M % 2 == 1; }) &&
+ none_of(HiBlendMask, [](int M) { return M >= 0 && M % 2 == 1; })) {
+ // Use a mask to drop the high bytes.
+ VLoHalf = DAG.getBitcast(MVT::v8i16, V);
+ VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
+ DAG.getConstant(0x00FF, DL, MVT::v8i16));
+
+ // This will be a single vector shuffle instead of a blend so nuke VHiHalf.
+ VHiHalf = DAG.getUNDEF(MVT::v8i16);
+
+ // Squash the masks to point directly into VLoHalf.
+ for (int &M : LoBlendMask)
+ if (M >= 0)
+ M /= 2;
+ for (int &M : HiBlendMask)
+ if (M >= 0)
+ M /= 2;
+ } else {
+ // Otherwise just unpack the low half of V into VLoHalf and the high half into
+ // VHiHalf so that we can blend them as i16s.
+ SDValue Zero = getZeroVector(MVT::v16i8, Subtarget, DAG, DL);
+
+ VLoHalf = DAG.getBitcast(
+ MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
+ VHiHalf = DAG.getBitcast(
+ MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
+ }
+
+ SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
+ SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
+
+ return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
+}
+
+/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
+///
+/// This routine breaks down the specific type of 128-bit shuffle and
+/// dispatches to the lowering routines accordingly.
+static SDValue lower128BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ MVT VT, SDValue V1, SDValue V2,
+ const APInt &Zeroable,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ switch (VT.SimpleTy) {
+ case MVT::v2i64:
+ return lowerV2I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v2f64:
+ return lowerV2F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v4i32:
+ return lowerV4I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v4f32:
+ return lowerV4F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v8i16:
+ return lowerV8I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v16i8:
+ return lowerV16I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+
+ default:
+ llvm_unreachable("Unimplemented!");
+ }
+}
+
+/// \brief Generic routine to split vector shuffle into half-sized shuffles.
+///
+/// This routine just extracts two subvectors, shuffles them independently, and
+/// then concatenates them back together. This should work effectively with all
+/// AVX vector shuffle types.
+static SDValue splitAndLowerVectorShuffle(const SDLoc &DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(VT.getSizeInBits() >= 256 &&
+ "Only for 256-bit or wider vector shuffles!");
+ assert(V1.getSimpleValueType() == VT && "Bad operand type!");
+ assert(V2.getSimpleValueType() == VT && "Bad operand type!");
+
+ ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
+ ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
+
+ int NumElements = VT.getVectorNumElements();
+ int SplitNumElements = NumElements / 2;
+ MVT ScalarVT = VT.getVectorElementType();
+ MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
+
+ // Rather than splitting build-vectors, just build two narrower build
+ // vectors. This helps shuffling with splats and zeros.
+ auto SplitVector = [&](SDValue V) {
+ V = peekThroughBitcasts(V);
+
+ MVT OrigVT = V.getSimpleValueType();
+ int OrigNumElements = OrigVT.getVectorNumElements();
+ int OrigSplitNumElements = OrigNumElements / 2;
+ MVT OrigScalarVT = OrigVT.getVectorElementType();
+ MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
+
+ SDValue LoV, HiV;
+
+ auto *BV = dyn_cast<BuildVectorSDNode>(V);
+ if (!BV) {
+ LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
+ DAG.getIntPtrConstant(0, DL));
+ HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
+ DAG.getIntPtrConstant(OrigSplitNumElements, DL));
+ } else {
+
+ SmallVector<SDValue, 16> LoOps, HiOps;
+ for (int i = 0; i < OrigSplitNumElements; ++i) {
+ LoOps.push_back(BV->getOperand(i));
+ HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
+ }
+ LoV = DAG.getBuildVector(OrigSplitVT, DL, LoOps);
+ HiV = DAG.getBuildVector(OrigSplitVT, DL, HiOps);
+ }
+ return std::make_pair(DAG.getBitcast(SplitVT, LoV),
+ DAG.getBitcast(SplitVT, HiV));
+ };
+
+ SDValue LoV1, HiV1, LoV2, HiV2;
+ std::tie(LoV1, HiV1) = SplitVector(V1);
+ std::tie(LoV2, HiV2) = SplitVector(V2);
+
+ // Now create two 4-way blends of these half-width vectors.
+ auto HalfBlend = [&](ArrayRef<int> HalfMask) {
+ bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
+ SmallVector<int, 32> V1BlendMask((unsigned)SplitNumElements, -1);
+ SmallVector<int, 32> V2BlendMask((unsigned)SplitNumElements, -1);
+ SmallVector<int, 32> BlendMask((unsigned)SplitNumElements, -1);
+ for (int i = 0; i < SplitNumElements; ++i) {
+ int M = HalfMask[i];
+ if (M >= NumElements) {
+ if (M >= NumElements + SplitNumElements)
+ UseHiV2 = true;
+ else
+ UseLoV2 = true;
+ V2BlendMask[i] = M - NumElements;
+ BlendMask[i] = SplitNumElements + i;
+ } else if (M >= 0) {
+ if (M >= SplitNumElements)
+ UseHiV1 = true;
+ else
+ UseLoV1 = true;
+ V1BlendMask[i] = M;
+ BlendMask[i] = i;
+ }
+ }
+
+ // Because the lowering happens after all combining takes place, we need to
+ // manually combine these blend masks as much as possible so that we create
+ // a minimal number of high-level vector shuffle nodes.
+
+ // First try just blending the halves of V1 or V2.
+ if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
+ return DAG.getUNDEF(SplitVT);
+ if (!UseLoV2 && !UseHiV2)
+ return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
+ if (!UseLoV1 && !UseHiV1)
+ return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
+
+ SDValue V1Blend, V2Blend;
+ if (UseLoV1 && UseHiV1) {
+ V1Blend =
+ DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
+ } else {
+ // We only use half of V1 so map the usage down into the final blend mask.
+ V1Blend = UseLoV1 ? LoV1 : HiV1;
+ for (int i = 0; i < SplitNumElements; ++i)
+ if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
+ BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
+ }
+ if (UseLoV2 && UseHiV2) {
+ V2Blend =
+ DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
+ } else {
+ // We only use half of V2 so map the usage down into the final blend mask.
+ V2Blend = UseLoV2 ? LoV2 : HiV2;
+ for (int i = 0; i < SplitNumElements; ++i)
+ if (BlendMask[i] >= SplitNumElements)
+ BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
+ }
+ return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
+ };
+ SDValue Lo = HalfBlend(LoMask);
+ SDValue Hi = HalfBlend(HiMask);
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
+}
+
+/// \brief Either split a vector in halves or decompose the shuffles and the
+/// blend.
+///
+/// This is provided as a good fallback for many lowerings of non-single-input
+/// shuffles with more than one 128-bit lane. In those cases, we want to select
+/// between splitting the shuffle into 128-bit components and stitching those
+/// back together vs. extracting the single-input shuffles and blending those
+/// results.
+static SDValue lowerVectorShuffleAsSplitOrBlend(const SDLoc &DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(!V2.isUndef() && "This routine must not be used to lower single-input "
+ "shuffles as it could then recurse on itself.");
+ int Size = Mask.size();
+
+ // If this can be modeled as a broadcast of two elements followed by a blend,
+ // prefer that lowering. This is especially important because broadcasts can
+ // often fold with memory operands.
+ auto DoBothBroadcast = [&] {
+ int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
+ for (int M : Mask)
+ if (M >= Size) {
+ if (V2BroadcastIdx < 0)
+ V2BroadcastIdx = M - Size;
+ else if (M - Size != V2BroadcastIdx)
+ return false;
+ } else if (M >= 0) {
+ if (V1BroadcastIdx < 0)
+ V1BroadcastIdx = M;
+ else if (M != V1BroadcastIdx)
+ return false;
+ }
+ return true;
+ };
+ if (DoBothBroadcast())
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
+ DAG);
+
+ // If the inputs all stem from a single 128-bit lane of each input, then we
+ // split them rather than blending because the split will decompose to
+ // unusually few instructions.
+ int LaneCount = VT.getSizeInBits() / 128;
+ int LaneSize = Size / LaneCount;
+ SmallBitVector LaneInputs[2];
+ LaneInputs[0].resize(LaneCount, false);
+ LaneInputs[1].resize(LaneCount, false);
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0)
+ LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
+ if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+
+ // Otherwise, just fall back to decomposed shuffles and a blend. This requires
+ // that the decomposed single-input shuffles don't end up here.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
+}
+
+/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
+/// a permutation and blend of those lanes.
+///
+/// This essentially blends the out-of-lane inputs to each lane into the lane
+/// from a permuted copy of the vector. This lowering strategy results in four
+/// instructions in the worst case for a single-input cross lane shuffle which
+/// is lower than any other fully general cross-lane shuffle strategy I'm aware
+/// of. Special cases for each particular shuffle pattern should be handled
+/// prior to trying this lowering.
+static SDValue lowerVectorShuffleAsLanePermuteAndBlend(const SDLoc &DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // FIXME: This should probably be generalized for 512-bit vectors as well.
+ assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!");
+ int Size = Mask.size();
+ int LaneSize = Size / 2;
+
+ // If there are only inputs from one 128-bit lane, splitting will in fact be
+ // less expensive. The flags track whether the given lane contains an element
+ // that crosses to another lane.
+ if (!Subtarget.hasAVX2()) {
+ bool LaneCrossing[2] = {false, false};
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
+ LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
+ if (!LaneCrossing[0] || !LaneCrossing[1])
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+ } else {
+ bool LaneUsed[2] = {false, false};
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0)
+ LaneUsed[(Mask[i] / LaneSize)] = true;
+ if (!LaneUsed[0] || !LaneUsed[1])
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+ }
+
+ assert(V2.isUndef() &&
+ "This last part of this routine only works on single input shuffles");
+
+ SmallVector<int, 32> FlippedBlendMask(Size);
+ for (int i = 0; i < Size; ++i)
+ FlippedBlendMask[i] =
+ Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
+ ? Mask[i]
+ : Mask[i] % LaneSize +
+ (i / LaneSize) * LaneSize + Size);
+
+ // Flip the vector, and blend the results which should now be in-lane.
+ MVT PVT = VT.isFloatingPoint() ? MVT::v4f64 : MVT::v4i64;
+ SDValue Flipped = DAG.getBitcast(PVT, V1);
+ Flipped = DAG.getVectorShuffle(PVT, DL, Flipped, DAG.getUNDEF(PVT),
+ { 2, 3, 0, 1 });
+ Flipped = DAG.getBitcast(VT, Flipped);
+ return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
+}
+
+/// \brief Handle lowering 2-lane 128-bit shuffles.
+static SDValue lowerV2X128VectorShuffle(const SDLoc &DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ // With AVX2, use VPERMQ/VPERMPD for unary shuffles to allow memory folding.
+ if (Subtarget.hasAVX2() && V2.isUndef())
+ return SDValue();
+
+ SmallVector<int, 4> WidenedMask;
+ if (!canWidenShuffleElements(Mask, WidenedMask))
+ return SDValue();
+
+ // TODO: If minimizing size and one of the inputs is a zero vector and the
+ // the zero vector has only one use, we could use a VPERM2X128 to save the
+ // instruction bytes needed to explicitly generate the zero vector.
+
+ // Blends are faster and handle all the non-lane-crossing cases.
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ bool IsLowZero = (Zeroable & 0x3) == 0x3;
+ bool IsHighZero = (Zeroable & 0xc) == 0xc;
+
+ // If either input operand is a zero vector, use VPERM2X128 because its mask
+ // allows us to replace the zero input with an implicit zero.
+ if (!IsLowZero && !IsHighZero) {
+ // Check for patterns which can be matched with a single insert of a 128-bit
+ // subvector.
+ bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
+ if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
+
+ // With AVX1, use vperm2f128 (below) to allow load folding. Otherwise,
+ // this will likely become vinsertf128 which can't fold a 256-bit memop.
+ if (!isa<LoadSDNode>(peekThroughBitcasts(V1))) {
+ MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
+ VT.getVectorNumElements() / 2);
+ SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
+ OnlyUsesV1 ? V1 : V2,
+ DAG.getIntPtrConstant(0, DL));
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
+ }
+ }
+
+ // Try to use SHUF128 if possible.
+ if (Subtarget.hasVLX()) {
+ if (WidenedMask[0] < 2 && WidenedMask[1] >= 2) {
+ unsigned PermMask = ((WidenedMask[0] % 2) << 0) |
+ ((WidenedMask[1] % 2) << 1);
+ return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2,
+ DAG.getConstant(PermMask, DL, MVT::i8));
+ }
+ }
+ }
+
+ // Otherwise form a 128-bit permutation. After accounting for undefs,
+ // convert the 64-bit shuffle mask selection values into 128-bit
+ // selection bits by dividing the indexes by 2 and shifting into positions
+ // defined by a vperm2*128 instruction's immediate control byte.
+
+ // The immediate permute control byte looks like this:
+ // [1:0] - select 128 bits from sources for low half of destination
+ // [2] - ignore
+ // [3] - zero low half of destination
+ // [5:4] - select 128 bits from sources for high half of destination
+ // [6] - ignore
+ // [7] - zero high half of destination
+
+ assert(WidenedMask[0] >= 0 && WidenedMask[1] >= 0 && "Undef half?");
+
+ unsigned PermMask = 0;
+ PermMask |= IsLowZero ? 0x08 : (WidenedMask[0] << 0);
+ PermMask |= IsHighZero ? 0x80 : (WidenedMask[1] << 4);
+
+ // Check the immediate mask and replace unused sources with undef.
+ if ((PermMask & 0x0a) != 0x00 && (PermMask & 0xa0) != 0x00)
+ V1 = DAG.getUNDEF(VT);
+ if ((PermMask & 0x0a) != 0x02 && (PermMask & 0xa0) != 0x20)
+ V2 = DAG.getUNDEF(VT);
+
+ return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
+ DAG.getConstant(PermMask, DL, MVT::i8));
+}
+
+/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
+/// shuffling each lane.
+///
+/// This will only succeed when the result of fixing the 128-bit lanes results
+/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
+/// each 128-bit lanes. This handles many cases where we can quickly blend away
+/// the lane crosses early and then use simpler shuffles within each lane.
+///
+/// FIXME: It might be worthwhile at some point to support this without
+/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
+/// in x86 only floating point has interesting non-repeating shuffles, and even
+/// those are still *marginally* more expensive.
+static SDValue lowerVectorShuffleByMerging128BitLanes(
+ const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget &Subtarget, SelectionDAG &DAG) {
+ assert(!V2.isUndef() && "This is only useful with multiple inputs.");
+
+ int Size = Mask.size();
+ int LaneSize = 128 / VT.getScalarSizeInBits();
+ int NumLanes = Size / LaneSize;
+ assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
+
+ // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
+ // check whether the in-128-bit lane shuffles share a repeating pattern.
+ SmallVector<int, 4> Lanes((unsigned)NumLanes, -1);
+ SmallVector<int, 4> InLaneMask((unsigned)LaneSize, -1);
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ int j = i / LaneSize;
+
+ if (Lanes[j] < 0) {
+ // First entry we've seen for this lane.
+ Lanes[j] = Mask[i] / LaneSize;
+ } else if (Lanes[j] != Mask[i] / LaneSize) {
+ // This doesn't match the lane selected previously!
+ return SDValue();
+ }
+
+ // Check that within each lane we have a consistent shuffle mask.
+ int k = i % LaneSize;
+ if (InLaneMask[k] < 0) {
+ InLaneMask[k] = Mask[i] % LaneSize;
+ } else if (InLaneMask[k] != Mask[i] % LaneSize) {
+ // This doesn't fit a repeating in-lane mask.
+ return SDValue();
+ }
+ }
+
+ // First shuffle the lanes into place.
+ MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
+ VT.getSizeInBits() / 64);
+ SmallVector<int, 8> LaneMask((unsigned)NumLanes * 2, -1);
+ for (int i = 0; i < NumLanes; ++i)
+ if (Lanes[i] >= 0) {
+ LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
+ LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
+ }
+
+ V1 = DAG.getBitcast(LaneVT, V1);
+ V2 = DAG.getBitcast(LaneVT, V2);
+ SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
+
+ // Cast it back to the type we actually want.
+ LaneShuffle = DAG.getBitcast(VT, LaneShuffle);
+
+ // Now do a simple shuffle that isn't lane crossing.
+ SmallVector<int, 8> NewMask((unsigned)Size, -1);
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0)
+ NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
+ assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
+ "Must not introduce lane crosses at this point!");
+
+ return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
+}
+
+/// Lower shuffles where an entire half of a 256 or 512-bit vector is UNDEF.
+/// This allows for fast cases such as subvector extraction/insertion
+/// or shuffling smaller vector types which can lower more efficiently.
+static SDValue lowerVectorShuffleWithUndefHalf(const SDLoc &DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert((VT.is256BitVector() || VT.is512BitVector()) &&
+ "Expected 256-bit or 512-bit vector");
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned HalfNumElts = NumElts / 2;
+ MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), HalfNumElts);
+
+ bool UndefLower = isUndefInRange(Mask, 0, HalfNumElts);
+ bool UndefUpper = isUndefInRange(Mask, HalfNumElts, HalfNumElts);
+ if (!UndefLower && !UndefUpper)
+ return SDValue();
+
+ // Upper half is undef and lower half is whole upper subvector.
+ // e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
+ if (UndefUpper &&
+ isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) {
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
+ DAG.getIntPtrConstant(HalfNumElts, DL));
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
+ DAG.getIntPtrConstant(0, DL));
+ }
+
+ // Lower half is undef and upper half is whole lower subvector.
+ // e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
+ if (UndefLower &&
+ isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) {
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
+ DAG.getIntPtrConstant(0, DL));
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
+ DAG.getIntPtrConstant(HalfNumElts, DL));
+ }
+
+ // If the shuffle only uses two of the four halves of the input operands,
+ // then extract them and perform the 'half' shuffle at half width.
+ // e.g. vector_shuffle <X, X, X, X, u, u, u, u> or <X, X, u, u>
+ int HalfIdx1 = -1, HalfIdx2 = -1;
+ SmallVector<int, 8> HalfMask(HalfNumElts);
+ unsigned Offset = UndefLower ? HalfNumElts : 0;
+ for (unsigned i = 0; i != HalfNumElts; ++i) {
+ int M = Mask[i + Offset];
+ if (M < 0) {
+ HalfMask[i] = M;
+ continue;
+ }
+
+ // Determine which of the 4 half vectors this element is from.
+ // i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2.
+ int HalfIdx = M / HalfNumElts;
+
+ // Determine the element index into its half vector source.
+ int HalfElt = M % HalfNumElts;
+
+ // We can shuffle with up to 2 half vectors, set the new 'half'
+ // shuffle mask accordingly.
+ if (HalfIdx1 < 0 || HalfIdx1 == HalfIdx) {
+ HalfMask[i] = HalfElt;
+ HalfIdx1 = HalfIdx;
+ continue;
+ }
+ if (HalfIdx2 < 0 || HalfIdx2 == HalfIdx) {
+ HalfMask[i] = HalfElt + HalfNumElts;
+ HalfIdx2 = HalfIdx;
+ continue;
+ }
+
+ // Too many half vectors referenced.
+ return SDValue();
+ }
+ assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length");
+
+ // Only shuffle the halves of the inputs when useful.
+ int NumLowerHalves =
+ (HalfIdx1 == 0 || HalfIdx1 == 2) + (HalfIdx2 == 0 || HalfIdx2 == 2);
+ int NumUpperHalves =
+ (HalfIdx1 == 1 || HalfIdx1 == 3) + (HalfIdx2 == 1 || HalfIdx2 == 3);
+
+ // uuuuXXXX - don't extract uppers just to insert again.
+ if (UndefLower && NumUpperHalves != 0)
+ return SDValue();
+
+ // XXXXuuuu - don't extract both uppers, instead shuffle and then extract.
+ if (UndefUpper && NumUpperHalves == 2)
+ return SDValue();
+
+ // AVX2 - XXXXuuuu - always extract lowers.
+ if (Subtarget.hasAVX2() && !(UndefUpper && NumUpperHalves == 0)) {
+ // AVX2 supports efficient immediate 64-bit element cross-lane shuffles.
+ if (VT == MVT::v4f64 || VT == MVT::v4i64)
+ return SDValue();
+ // AVX2 supports variable 32-bit element cross-lane shuffles.
+ if (VT == MVT::v8f32 || VT == MVT::v8i32) {
+ // XXXXuuuu - don't extract lowers and uppers.
+ if (UndefUpper && NumLowerHalves != 0 && NumUpperHalves != 0)
+ return SDValue();
+ }
+ }
+
+ // AVX512 - XXXXuuuu - always extract lowers.
+ if (VT.is512BitVector() && !(UndefUpper && NumUpperHalves == 0))
+ return SDValue();
+
+ auto GetHalfVector = [&](int HalfIdx) {
+ if (HalfIdx < 0)
+ return DAG.getUNDEF(HalfVT);
+ SDValue V = (HalfIdx < 2 ? V1 : V2);
+ HalfIdx = (HalfIdx % 2) * HalfNumElts;
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V,
+ DAG.getIntPtrConstant(HalfIdx, DL));
+ };
+
+ SDValue Half1 = GetHalfVector(HalfIdx1);
+ SDValue Half2 = GetHalfVector(HalfIdx2);
+ SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V,
+ DAG.getIntPtrConstant(Offset, DL));
+}
+
+/// \brief Test whether the specified input (0 or 1) is in-place blended by the
+/// given mask.
+///
+/// This returns true if the elements from a particular input are already in the
+/// slot required by the given mask and require no permutation.
+static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
+ assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
+ return false;
+
+ return true;
+}
+
+/// Handle case where shuffle sources are coming from the same 128-bit lane and
+/// every lane can be represented as the same repeating mask - allowing us to
+/// shuffle the sources with the repeating shuffle and then permute the result
+/// to the destination lanes.
+static SDValue lowerShuffleAsRepeatedMaskAndLanePermute(
+ const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget &Subtarget, SelectionDAG &DAG) {
+ int NumElts = VT.getVectorNumElements();
+ int NumLanes = VT.getSizeInBits() / 128;
+ int NumLaneElts = NumElts / NumLanes;
+
+ // On AVX2 we may be able to just shuffle the lowest elements and then
+ // broadcast the result.
+ if (Subtarget.hasAVX2()) {
+ for (unsigned BroadcastSize : {16, 32, 64}) {
+ if (BroadcastSize <= VT.getScalarSizeInBits())
+ continue;
+ int NumBroadcastElts = BroadcastSize / VT.getScalarSizeInBits();
+
+ // Attempt to match a repeating pattern every NumBroadcastElts,
+ // accounting for UNDEFs but only references the lowest 128-bit
+ // lane of the inputs.
+ auto FindRepeatingBroadcastMask = [&](SmallVectorImpl<int> &RepeatMask) {
+ for (int i = 0; i != NumElts; i += NumBroadcastElts)
+ for (int j = 0; j != NumBroadcastElts; ++j) {
+ int M = Mask[i + j];
+ if (M < 0)
+ continue;
+ int &R = RepeatMask[j];
+ if (0 != ((M % NumElts) / NumLaneElts))
+ return false;
+ if (0 <= R && R != M)
+ return false;
+ R = M;
+ }
+ return true;
+ };
+
+ SmallVector<int, 8> RepeatMask((unsigned)NumElts, -1);
+ if (!FindRepeatingBroadcastMask(RepeatMask))
+ continue;
+
+ // Shuffle the (lowest) repeated elements in place for broadcast.
+ SDValue RepeatShuf = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatMask);
+
+ // Shuffle the actual broadcast.
+ SmallVector<int, 8> BroadcastMask((unsigned)NumElts, -1);
+ for (int i = 0; i != NumElts; i += NumBroadcastElts)
+ for (int j = 0; j != NumBroadcastElts; ++j)
+ BroadcastMask[i + j] = j;
+ return DAG.getVectorShuffle(VT, DL, RepeatShuf, DAG.getUNDEF(VT),
+ BroadcastMask);
+ }
+ }
+
+ // Bail if the shuffle mask doesn't cross 128-bit lanes.
+ if (!is128BitLaneCrossingShuffleMask(VT, Mask))
+ return SDValue();
+
+ // Bail if we already have a repeated lane shuffle mask.
+ SmallVector<int, 8> RepeatedShuffleMask;
+ if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedShuffleMask))
+ return SDValue();
+
+ // On AVX2 targets we can permute 256-bit vectors as 64-bit sub-lanes
+ // (with PERMQ/PERMPD), otherwise we can only permute whole 128-bit lanes.
+ int SubLaneScale = Subtarget.hasAVX2() && VT.is256BitVector() ? 2 : 1;
+ int NumSubLanes = NumLanes * SubLaneScale;
+ int NumSubLaneElts = NumLaneElts / SubLaneScale;
+
+ // Check that all the sources are coming from the same lane and see if we can
+ // form a repeating shuffle mask (local to each sub-lane). At the same time,
+ // determine the source sub-lane for each destination sub-lane.
+ int TopSrcSubLane = -1;
+ SmallVector<int, 8> Dst2SrcSubLanes((unsigned)NumSubLanes, -1);
+ SmallVector<int, 8> RepeatedSubLaneMasks[2] = {
+ SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef),
+ SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef)};
+
+ for (int DstSubLane = 0; DstSubLane != NumSubLanes; ++DstSubLane) {
+ // Extract the sub-lane mask, check that it all comes from the same lane
+ // and normalize the mask entries to come from the first lane.
+ int SrcLane = -1;
+ SmallVector<int, 8> SubLaneMask((unsigned)NumSubLaneElts, -1);
+ for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
+ int M = Mask[(DstSubLane * NumSubLaneElts) + Elt];
+ if (M < 0)
+ continue;
+ int Lane = (M % NumElts) / NumLaneElts;
+ if ((0 <= SrcLane) && (SrcLane != Lane))
+ return SDValue();
+ SrcLane = Lane;
+ int LocalM = (M % NumLaneElts) + (M < NumElts ? 0 : NumElts);
+ SubLaneMask[Elt] = LocalM;
+ }
+
+ // Whole sub-lane is UNDEF.
+ if (SrcLane < 0)
+ continue;
+
+ // Attempt to match against the candidate repeated sub-lane masks.
+ for (int SubLane = 0; SubLane != SubLaneScale; ++SubLane) {
+ auto MatchMasks = [NumSubLaneElts](ArrayRef<int> M1, ArrayRef<int> M2) {
+ for (int i = 0; i != NumSubLaneElts; ++i) {
+ if (M1[i] < 0 || M2[i] < 0)
+ continue;
+ if (M1[i] != M2[i])
+ return false;
+ }
+ return true;
+ };
+
+ auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane];
+ if (!MatchMasks(SubLaneMask, RepeatedSubLaneMask))
+ continue;
+
+ // Merge the sub-lane mask into the matching repeated sub-lane mask.
+ for (int i = 0; i != NumSubLaneElts; ++i) {
+ int M = SubLaneMask[i];
+ if (M < 0)
+ continue;
+ assert((RepeatedSubLaneMask[i] < 0 || RepeatedSubLaneMask[i] == M) &&
+ "Unexpected mask element");
+ RepeatedSubLaneMask[i] = M;
+ }
+
+ // Track the top most source sub-lane - by setting the remaining to UNDEF
+ // we can greatly simplify shuffle matching.
+ int SrcSubLane = (SrcLane * SubLaneScale) + SubLane;
+ TopSrcSubLane = std::max(TopSrcSubLane, SrcSubLane);
+ Dst2SrcSubLanes[DstSubLane] = SrcSubLane;
+ break;
+ }
+
+ // Bail if we failed to find a matching repeated sub-lane mask.
+ if (Dst2SrcSubLanes[DstSubLane] < 0)
+ return SDValue();
+ }
+ assert(0 <= TopSrcSubLane && TopSrcSubLane < NumSubLanes &&
+ "Unexpected source lane");
+
+ // Create a repeating shuffle mask for the entire vector.
+ SmallVector<int, 8> RepeatedMask((unsigned)NumElts, -1);
+ for (int SubLane = 0; SubLane <= TopSrcSubLane; ++SubLane) {
+ int Lane = SubLane / SubLaneScale;
+ auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane % SubLaneScale];
+ for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
+ int M = RepeatedSubLaneMask[Elt];
+ if (M < 0)
+ continue;
+ int Idx = (SubLane * NumSubLaneElts) + Elt;
+ RepeatedMask[Idx] = M + (Lane * NumLaneElts);
+ }
+ }
+ SDValue RepeatedShuffle = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatedMask);
+
+ // Shuffle each source sub-lane to its destination.
+ SmallVector<int, 8> SubLaneMask((unsigned)NumElts, -1);
+ for (int i = 0; i != NumElts; i += NumSubLaneElts) {
+ int SrcSubLane = Dst2SrcSubLanes[i / NumSubLaneElts];
+ if (SrcSubLane < 0)
+ continue;
+ for (int j = 0; j != NumSubLaneElts; ++j)
+ SubLaneMask[i + j] = j + (SrcSubLane * NumSubLaneElts);
+ }
+
+ return DAG.getVectorShuffle(VT, DL, RepeatedShuffle, DAG.getUNDEF(VT),
+ SubLaneMask);
+}
+
+static bool matchVectorShuffleWithSHUFPD(MVT VT, SDValue &V1, SDValue &V2,
+ unsigned &ShuffleImm,
+ ArrayRef<int> Mask) {
+ int NumElts = VT.getVectorNumElements();
+ assert(VT.getScalarSizeInBits() == 64 &&
+ (NumElts == 2 || NumElts == 4 || NumElts == 8) &&
+ "Unexpected data type for VSHUFPD");
+
+ // Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, ..
+ // Mask for V4F64; 0/1, 4/5, 2/3, 6/7..
+ ShuffleImm = 0;
+ bool ShufpdMask = true;
+ bool CommutableMask = true;
+ for (int i = 0; i < NumElts; ++i) {
+ if (Mask[i] == SM_SentinelUndef)
+ continue;
+ if (Mask[i] < 0)
+ return false;
+ int Val = (i & 6) + NumElts * (i & 1);
+ int CommutVal = (i & 0xe) + NumElts * ((i & 1) ^ 1);
+ if (Mask[i] < Val || Mask[i] > Val + 1)
+ ShufpdMask = false;
+ if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1)
+ CommutableMask = false;
+ ShuffleImm |= (Mask[i] % 2) << i;
+ }
+
+ if (ShufpdMask)
+ return true;
+ if (CommutableMask) {
+ std::swap(V1, V2);
+ return true;
+ }
+
+ return false;
+}
+
+static SDValue lowerVectorShuffleWithSHUFPD(const SDLoc &DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
+ assert((VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v8f64)&&
+ "Unexpected data type for VSHUFPD");
+
+ unsigned Immediate = 0;
+ if (!matchVectorShuffleWithSHUFPD(VT, V1, V2, Immediate, Mask))
+ return SDValue();
+
+ return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
+ DAG.getConstant(Immediate, DL, MVT::i8));
+}
+
+/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
+///
+/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
+/// isn't available.
+static SDValue lowerV4F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return V;
+
+ if (V2.isUndef()) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
+ DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Use low duplicate instructions for masks that match their pattern.
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
+ return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
+
+ if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
+ // Non-half-crossing single input shuffles can be lowered with an
+ // interleaved permutation.
+ unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
+ ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
+ DAG.getConstant(VPERMILPMask, DL, MVT::i8));
+ }
+
+ // With AVX2 we have direct support for this permutation.
+ if (Subtarget.hasAVX2())
+ return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+
+ // Try to create an in-lane repeating shuffle mask and then shuffle the
+ // the results into the target lanes.
+ if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
+ DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ // Otherwise, fall back.
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
+ DAG, Subtarget);
+ }
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG))
+ return V;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Check if the blend happens to exactly fit that of SHUFPD.
+ if (SDValue Op =
+ lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG))
+ return Op;
+
+ // Try to create an in-lane repeating shuffle mask and then shuffle the
+ // the results into the target lanes.
+ if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
+ DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle. However, if we have AVX2 and either inputs are already in place,
+ // we will be able to shuffle even across lanes the other input in a single
+ // instruction so skip this pattern.
+ if (!(Subtarget.hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
+ isShuffleMaskInputInPlace(1, Mask))))
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+ // If we have VLX support, we can use VEXPAND.
+ if (Subtarget.hasVLX())
+ if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v4f64, Zeroable, Mask,
+ V1, V2, DAG, Subtarget))
+ return V;
+
+ // If we have AVX2 then we always want to lower with a blend because an v4 we
+ // can fully permute the elements.
+ if (Subtarget.hasAVX2())
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
+ Mask, DAG);
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 4-lane 64-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v4i64 shuffling..
+static SDValue lowerV4I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+ assert(Subtarget.hasAVX2() && "We can only lower v4i64 with AVX2!");
+
+ if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return V;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1, V2,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ if (V2.isUndef()) {
+ // When the shuffle is mirrored between the 128-bit lanes of the unit, we
+ // can use lower latency instructions that will operate on both lanes.
+ SmallVector<int, 2> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
+ SmallVector<int, 4> PSHUFDMask;
+ scaleShuffleMask<int>(2, RepeatedMask, PSHUFDMask);
+ return DAG.getBitcast(
+ MVT::v4i64,
+ DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
+ DAG.getBitcast(MVT::v8i32, V1),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+ }
+
+ // AVX2 provides a direct instruction for permuting a single input across
+ // lanes.
+ return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+ }
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // If we have VLX support, we can use VALIGN or VEXPAND.
+ if (Subtarget.hasVLX()) {
+ if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v4i64, V1, V2,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v4i64, Zeroable, Mask,
+ V1, V2, DAG, Subtarget))
+ return V;
+ }
+
+ // Try to use PALIGNR.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v4i64, V1, V2,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle. However, if we have AVX2 and either inputs are already in place,
+ // we will be able to shuffle even across lanes the other input in a single
+ // instruction so skip this pattern.
+ if (!isShuffleMaskInputInPlace(0, Mask) &&
+ !isShuffleMaskInputInPlace(1, Mask))
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic blend lowering.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
+ Mask, DAG);
+}
+
+/// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
+///
+/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
+/// isn't available.
+static SDValue lowerV8F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1, V2,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // If the shuffle mask is repeated in each 128-bit lane, we have many more
+ // options to efficiently lower the shuffle.
+ SmallVector<int, 4> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
+ assert(RepeatedMask.size() == 4 &&
+ "Repeated masks must be half the mask width!");
+
+ // Use even/odd duplicate instructions for masks that match their pattern.
+ if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
+ return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
+ if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
+ return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
+
+ if (V2.isUndef())
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG))
+ return V;
+
+ // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
+ // have already handled any direct blends.
+ return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
+ }
+
+ // Try to create an in-lane repeating shuffle mask and then shuffle the
+ // the results into the target lanes.
+ if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
+ DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ // If we have a single input shuffle with different shuffle patterns in the
+ // two 128-bit lanes use the variable mask to VPERMILPS.
+ if (V2.isUndef()) {
+ SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
+ if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
+ return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, V1, VPermMask);
+
+ if (Subtarget.hasAVX2())
+ return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32, VPermMask, V1);
+
+ // Otherwise, fall back.
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
+ DAG, Subtarget);
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+ // If we have VLX support, we can use VEXPAND.
+ if (Subtarget.hasVLX())
+ if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8f32, Zeroable, Mask,
+ V1, V2, DAG, Subtarget))
+ return V;
+
+ // For non-AVX512 if the Mask is of 16bit elements in lane then try to split
+ // since after split we get a more efficient code using vpunpcklwd and
+ // vpunpckhwd instrs than vblend.
+ if (!Subtarget.hasAVX512() && isUnpackWdShuffleMask(Mask, MVT::v8f32))
+ if (SDValue V = lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2,
+ Mask, DAG))
+ return V;
+
+ // If we have AVX2 then we always want to lower with a blend because at v8 we
+ // can fully permute the elements.
+ if (Subtarget.hasAVX2())
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
+ Mask, DAG);
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 8-lane 32-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v8i32 shuffling..
+static SDValue lowerV8I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+ assert(Subtarget.hasAVX2() && "We can only lower v8i32 with AVX2!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v8i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return ZExt;
+
+ // For non-AVX512 if the Mask is of 16bit elements in lane then try to split
+ // since after split we get a more efficient code than vblend by using
+ // vpunpcklwd and vpunpckhwd instrs.
+ if (isUnpackWdShuffleMask(Mask, MVT::v8i32) && !V2.isUndef() &&
+ !Subtarget.hasAVX512())
+ if (SDValue V =
+ lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8i32, V1, V2, Mask, DAG))
+ return V;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1, V2,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // If the shuffle mask is repeated in each 128-bit lane we can use more
+ // efficient instructions that mirror the shuffles across the two 128-bit
+ // lanes.
+ SmallVector<int, 4> RepeatedMask;
+ bool Is128BitLaneRepeatedShuffle =
+ is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask);
+ if (Is128BitLaneRepeatedShuffle) {
+ assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
+ if (V2.isUndef())
+ return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG))
+ return V;
+ }
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // If we have VLX support, we can use VALIGN or EXPAND.
+ if (Subtarget.hasVLX()) {
+ if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i32, V1, V2,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8i32, Zeroable, Mask,
+ V1, V2, DAG, Subtarget))
+ return V;
+ }
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Try to create an in-lane repeating shuffle mask and then shuffle the
+ // results into the target lanes.
+ if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
+ DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ // If the shuffle patterns aren't repeated but it is a single input, directly
+ // generate a cross-lane VPERMD instruction.
+ if (V2.isUndef()) {
+ SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
+ return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8i32, VPermMask, V1);
+ }
+
+ // Assume that a single SHUFPS is faster than an alternative sequence of
+ // multiple instructions (even if the CPU has a domain penalty).
+ // If some CPU is harmed by the domain switch, we can fix it in a later pass.
+ if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
+ SDValue CastV1 = DAG.getBitcast(MVT::v8f32, V1);
+ SDValue CastV2 = DAG.getBitcast(MVT::v8f32, V2);
+ SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask,
+ CastV1, CastV2, DAG);
+ return DAG.getBitcast(MVT::v8i32, ShufPS);
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic blend lowering.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
+ Mask, DAG);
+}
+
+/// \brief Handle lowering of 16-lane 16-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v16i16 shuffling..
+static SDValue lowerV16I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+ assert(Subtarget.hasAVX2() && "We can only lower v16i16 with AVX2!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v16i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return ZExt;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1, V2,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG))
+ return V;
+
+ // Use dedicated pack instructions for masks that match their pattern.
+ if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v16i16, Mask, V1, V2, DAG,
+ Subtarget))
+ return V;
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Try to create an in-lane repeating shuffle mask and then shuffle the
+ // the results into the target lanes.
+ if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
+ DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ if (V2.isUndef()) {
+ // There are no generalized cross-lane shuffle operations available on i16
+ // element types.
+ if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
+ Mask, DAG, Subtarget);
+
+ SmallVector<int, 8> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
+ // As this is a single-input shuffle, the repeated mask should be
+ // a strictly valid v8i16 mask that we can pass through to the v8i16
+ // lowering to handle even the v16 case.
+ return lowerV8I16GeneralSingleInputVectorShuffle(
+ DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
+ }
+ }
+
+ if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
+ DL, MVT::v16i16, Mask, V1, V2, Zeroable, Subtarget, DAG))
+ return PSHUFB;
+
+ // AVX512BWVL can lower to VPERMW.
+ if (Subtarget.hasBWI() && Subtarget.hasVLX())
+ return lowerVectorShuffleWithPERMV(DL, MVT::v16i16, Mask, V1, V2, DAG);
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 32-lane 8-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v32i8 shuffling..
+static SDValue lowerV32I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
+ assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
+ assert(Subtarget.hasAVX2() && "We can only lower v32i8 with AVX2!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v32i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return ZExt;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1, V2,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG))
+ return V;
+
+ // Use dedicated pack instructions for masks that match their pattern.
+ if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v32i8, Mask, V1, V2, DAG,
+ Subtarget))
+ return V;
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Try to create an in-lane repeating shuffle mask and then shuffle the
+ // the results into the target lanes.
+ if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
+ DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ // There are no generalized cross-lane shuffle operations available on i8
+ // element types.
+ if (V2.isUndef() && is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2, Mask,
+ DAG, Subtarget);
+
+ if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
+ DL, MVT::v32i8, Mask, V1, V2, Zeroable, Subtarget, DAG))
+ return PSHUFB;
+
+ // AVX512VBMIVL can lower to VPERMB.
+ if (Subtarget.hasVBMI() && Subtarget.hasVLX())
+ return lowerVectorShuffleWithPERMV(DL, MVT::v32i8, Mask, V1, V2, DAG);
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
+}
+
+/// \brief High-level routine to lower various 256-bit x86 vector shuffles.
+///
+/// This routine either breaks down the specific type of a 256-bit x86 vector
+/// shuffle or splits it into two 128-bit shuffles and fuses the results back
+/// together based on the available instructions.
+static SDValue lower256BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ MVT VT, SDValue V1, SDValue V2,
+ const APInt &Zeroable,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ // If we have a single input to the zero element, insert that into V1 if we
+ // can do so cheaply.
+ int NumElts = VT.getVectorNumElements();
+ int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
+
+ if (NumV2Elements == 1 && Mask[0] >= NumElts)
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return Insertion;
+
+ // Handle special cases where the lower or upper half is UNDEF.
+ if (SDValue V =
+ lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ // There is a really nice hard cut-over between AVX1 and AVX2 that means we
+ // can check for those subtargets here and avoid much of the subtarget
+ // querying in the per-vector-type lowering routines. With AVX1 we have
+ // essentially *zero* ability to manipulate a 256-bit vector with integer
+ // types. Since we'll use floating point types there eventually, just
+ // immediately cast everything to a float and operate entirely in that domain.
+ if (VT.isInteger() && !Subtarget.hasAVX2()) {
+ int ElementBits = VT.getScalarSizeInBits();
+ if (ElementBits < 32) {
+ // No floating point type available, if we can't use the bit operations
+ // for masking/blending then decompose into 128-bit vectors.
+ if (SDValue V =
+ lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG))
+ return V;
+ if (SDValue V = lowerVectorShuffleAsBitBlend(DL, VT, V1, V2, Mask, DAG))
+ return V;
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+ }
+
+ MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
+ VT.getVectorNumElements());
+ V1 = DAG.getBitcast(FpVT, V1);
+ V2 = DAG.getBitcast(FpVT, V2);
+ return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
+ }
+
+ switch (VT.SimpleTy) {
+ case MVT::v4f64:
+ return lowerV4F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v4i64:
+ return lowerV4I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v8f32:
+ return lowerV8F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v8i32:
+ return lowerV8I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v16i16:
+ return lowerV16I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v32i8:
+ return lowerV32I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+
+ default:
+ llvm_unreachable("Not a valid 256-bit x86 vector type!");
+ }
+}
+
+/// \brief Try to lower a vector shuffle as a 128-bit shuffles.
+static SDValue lowerV4X128VectorShuffle(const SDLoc &DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
+ assert(VT.getScalarSizeInBits() == 64 &&
+ "Unexpected element type size for 128bit shuffle.");
+
+ // To handle 256 bit vector requires VLX and most probably
+ // function lowerV2X128VectorShuffle() is better solution.
+ assert(VT.is512BitVector() && "Unexpected vector size for 512bit shuffle.");
+
+ SmallVector<int, 4> WidenedMask;
+ if (!canWidenShuffleElements(Mask, WidenedMask))
+ return SDValue();
+
+ // Check for patterns which can be matched with a single insert of a 256-bit
+ // subvector.
+ bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask,
+ {0, 1, 2, 3, 0, 1, 2, 3});
+ if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask,
+ {0, 1, 2, 3, 8, 9, 10, 11})) {
+ MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 4);
+ SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
+ OnlyUsesV1 ? V1 : V2,
+ DAG.getIntPtrConstant(0, DL));
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
+ }
+
+ assert(WidenedMask.size() == 4);
+
+ // See if this is an insertion of the lower 128-bits of V2 into V1.
+ bool IsInsert = true;
+ int V2Index = -1;
+ for (int i = 0; i < 4; ++i) {
+ assert(WidenedMask[i] >= -1);
+ if (WidenedMask[i] < 0)
+ continue;
+
+ // Make sure all V1 subvectors are in place.
+ if (WidenedMask[i] < 4) {
+ if (WidenedMask[i] != i) {
+ IsInsert = false;
+ break;
+ }
+ } else {
+ // Make sure we only have a single V2 index and its the lowest 128-bits.
+ if (V2Index >= 0 || WidenedMask[i] != 4) {
+ IsInsert = false;
+ break;
+ }
+ V2Index = i;
+ }
+ }
+ if (IsInsert && V2Index >= 0) {
+ MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
+ SDValue Subvec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2,
+ DAG.getIntPtrConstant(0, DL));
+ return insert128BitVector(V1, Subvec, V2Index * 2, DAG, DL);
+ }
+
+ // Try to lower to to vshuf64x2/vshuf32x4.
+ SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)};
+ unsigned PermMask = 0;
+ // Insure elements came from the same Op.
+ for (int i = 0; i < 4; ++i) {
+ assert(WidenedMask[i] >= -1);
+ if (WidenedMask[i] < 0)
+ continue;
+
+ SDValue Op = WidenedMask[i] >= 4 ? V2 : V1;
+ unsigned OpIndex = i / 2;
+ if (Ops[OpIndex].isUndef())
+ Ops[OpIndex] = Op;
+ else if (Ops[OpIndex] != Op)
+ return SDValue();
+
+ // Convert the 128-bit shuffle mask selection values into 128-bit selection
+ // bits defined by a vshuf64x2 instruction's immediate control byte.
+ PermMask |= (WidenedMask[i] % 4) << (i * 2);
+ }
+
+ return DAG.getNode(X86ISD::SHUF128, DL, VT, Ops[0], Ops[1],
+ DAG.getConstant(PermMask, DL, MVT::i8));
+}
+
+/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
+static SDValue lowerV8F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ if (V2.isUndef()) {
+ // Use low duplicate instructions for masks that match their pattern.
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
+ return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v8f64, V1);
+
+ if (!is128BitLaneCrossingShuffleMask(MVT::v8f64, Mask)) {
+ // Non-half-crossing single input shuffles can be lowered with an
+ // interleaved permutation.
+ unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
+ ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3) |
+ ((Mask[4] == 5) << 4) | ((Mask[5] == 5) << 5) |
+ ((Mask[6] == 7) << 6) | ((Mask[7] == 7) << 7);
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f64, V1,
+ DAG.getConstant(VPERMILPMask, DL, MVT::i8));
+ }
+
+ SmallVector<int, 4> RepeatedMask;
+ if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask))
+ return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8f64, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
+ }
+
+ if (SDValue Shuf128 =
+ lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, V1, V2, DAG))
+ return Shuf128;
+
+ if (SDValue Unpck =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG))
+ return Unpck;
+
+ // Check if the blend happens to exactly fit that of SHUFPD.
+ if (SDValue Op =
+ lowerVectorShuffleWithSHUFPD(DL, MVT::v8f64, Mask, V1, V2, DAG))
+ return Op;
+
+ if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8f64, Zeroable, Mask, V1,
+ V2, DAG, Subtarget))
+ return V;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
+static SDValue lowerV16F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+
+ // If the shuffle mask is repeated in each 128-bit lane, we have many more
+ // options to efficiently lower the shuffle.
+ SmallVector<int, 4> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v16f32, Mask, RepeatedMask)) {
+ assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
+
+ // Use even/odd duplicate instructions for masks that match their pattern.
+ if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
+ return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v16f32, V1);
+ if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
+ return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v16f32, V1);
+
+ if (V2.isUndef())
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v16f32, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue Unpck =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG))
+ return Unpck;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16f32, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // Otherwise, fall back to a SHUFPS sequence.
+ return lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask, V1, V2, DAG);
+ }
+
+ // If we have a single input shuffle with different shuffle patterns in the
+ // 128-bit lanes and don't lane cross, use variable mask VPERMILPS.
+ if (V2.isUndef() &&
+ !is128BitLaneCrossingShuffleMask(MVT::v16f32, Mask)) {
+ SDValue VPermMask = getConstVector(Mask, MVT::v16i32, DAG, DL, true);
+ return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v16f32, V1, VPermMask);
+ }
+
+ // If we have AVX512F support, we can use VEXPAND.
+ if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v16f32, Zeroable, Mask,
+ V1, V2, DAG, Subtarget))
+ return V;
+
+ return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
+static SDValue lowerV8I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ if (V2.isUndef()) {
+ // When the shuffle is mirrored between the 128-bit lanes of the unit, we
+ // can use lower latency instructions that will operate on all four
+ // 128-bit lanes.
+ SmallVector<int, 2> Repeated128Mask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated128Mask)) {
+ SmallVector<int, 4> PSHUFDMask;
+ scaleShuffleMask<int>(2, Repeated128Mask, PSHUFDMask);
+ return DAG.getBitcast(
+ MVT::v8i64,
+ DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32,
+ DAG.getBitcast(MVT::v16i32, V1),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+ }
+
+ SmallVector<int, 4> Repeated256Mask;
+ if (is256BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated256Mask))
+ return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8i64, V1,
+ getV4X86ShuffleImm8ForMask(Repeated256Mask, DL, DAG));
+ }
+
+ if (SDValue Shuf128 =
+ lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, V1, V2, DAG))
+ return Shuf128;
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // Try to use VALIGN.
+ if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i64, V1, V2,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Try to use PALIGNR.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i64, V1, V2,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (SDValue Unpck =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG))
+ return Unpck;
+ // If we have AVX512F support, we can use VEXPAND.
+ if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8i64, Zeroable, Mask, V1,
+ V2, DAG, Subtarget))
+ return V;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i64, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
+static SDValue lowerV16I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v16i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return ZExt;
+
+ // If the shuffle mask is repeated in each 128-bit lane we can use more
+ // efficient instructions that mirror the shuffles across the four 128-bit
+ // lanes.
+ SmallVector<int, 4> RepeatedMask;
+ bool Is128BitLaneRepeatedShuffle =
+ is128BitLaneRepeatedShuffleMask(MVT::v16i32, Mask, RepeatedMask);
+ if (Is128BitLaneRepeatedShuffle) {
+ assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
+ if (V2.isUndef())
+ return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG))
+ return V;
+ }
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i32, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // Try to use VALIGN.
+ if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v16i32, V1, V2,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Try to use byte rotation instructions.
+ if (Subtarget.hasBWI())
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v16i32, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Assume that a single SHUFPS is faster than using a permv shuffle.
+ // If some CPU is harmed by the domain switch, we can fix it in a later pass.
+ if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
+ SDValue CastV1 = DAG.getBitcast(MVT::v16f32, V1);
+ SDValue CastV2 = DAG.getBitcast(MVT::v16f32, V2);
+ SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask,
+ CastV1, CastV2, DAG);
+ return DAG.getBitcast(MVT::v16i32, ShufPS);
+ }
+ // If we have AVX512F support, we can use VEXPAND.
+ if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v16i32, Zeroable, Mask,
+ V1, V2, DAG, Subtarget))
+ return V;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i32, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+ return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
+static SDValue lowerV32I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
+ assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
+ assert(Subtarget.hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v32i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return ZExt;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v32i16, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i16, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v32i16, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (V2.isUndef()) {
+ SmallVector<int, 8> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v32i16, Mask, RepeatedMask)) {
+ // As this is a single-input shuffle, the repeated mask should be
+ // a strictly valid v8i16 mask that we can pass through to the v8i16
+ // lowering to handle even the v32 case.
+ return lowerV8I16GeneralSingleInputVectorShuffle(
+ DL, MVT::v32i16, V1, RepeatedMask, Subtarget, DAG);
+ }
+ }
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i16, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
+ DL, MVT::v32i16, Mask, V1, V2, Zeroable, Subtarget, DAG))
+ return PSHUFB;
+
+ return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 64-lane 8-bit integer shuffles.
+static SDValue lowerV64I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
+ assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
+ assert(Subtarget.hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v64i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return ZExt;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v64i8, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use shift instructions.
+ if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v64i8, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Shift;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB(
+ DL, MVT::v64i8, Mask, V1, V2, Zeroable, Subtarget, DAG))
+ return PSHUFB;
+
+ // VBMI can use VPERMV/VPERMV3 byte shuffles.
+ if (Subtarget.hasVBMI())
+ return lowerVectorShuffleWithPERMV(DL, MVT::v64i8, Mask, V1, V2, DAG);
+
+ // Try to create an in-lane repeating shuffle mask and then shuffle the
+ // the results into the target lanes.
+ if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
+ DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v64i8, V1, V2, Mask,
+ Zeroable, Subtarget, DAG))
+ return Blend;
+
+ // FIXME: Implement direct support for this type!
+ return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
+}
+
+/// \brief High-level routine to lower various 512-bit x86 vector shuffles.
+///
+/// This routine either breaks down the specific type of a 512-bit x86 vector
+/// shuffle or splits it into two 256-bit shuffles and fuses the results back
+/// together based on the available instructions.
+static SDValue lower512BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ MVT VT, SDValue V1, SDValue V2,
+ const APInt &Zeroable,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget.hasAVX512() &&
+ "Cannot lower 512-bit vectors w/ basic ISA!");
+
+ // If we have a single input to the zero element, insert that into V1 if we
+ // can do so cheaply.
+ int NumElts = Mask.size();
+ int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
+
+ if (NumV2Elements == 1 && Mask[0] >= NumElts)
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
+ return Insertion;
+
+ // Handle special cases where the lower or upper half is UNDEF.
+ if (SDValue V =
+ lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast =
+ lowerVectorShuffleAsBroadcast(DL, VT, V1, V2, Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Dispatch to each element type for lowering. If we don't have support for
+ // specific element type shuffles at 512 bits, immediately split them and
+ // lower them. Each lowering routine of a given type is allowed to assume that
+ // the requisite ISA extensions for that element type are available.
+ switch (VT.SimpleTy) {
+ case MVT::v8f64:
+ return lowerV8F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v16f32:
+ return lowerV16F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v8i64:
+ return lowerV8I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v16i32:
+ return lowerV16I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v32i16:
+ return lowerV32I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+ case MVT::v64i8:
+ return lowerV64I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
+
+ default:
+ llvm_unreachable("Not a valid 512-bit x86 vector type!");
+ }
+}
+
+// Lower vXi1 vector shuffles.
+// There is no a dedicated instruction on AVX-512 that shuffles the masks.
+// The only way to shuffle bits is to sign-extend the mask vector to SIMD
+// vector, shuffle and then truncate it back.
+static SDValue lower1BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask,
+ MVT VT, SDValue V1, SDValue V2,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget.hasAVX512() &&
+ "Cannot lower 512-bit vectors w/o basic ISA!");
+ MVT ExtVT;
+ switch (VT.SimpleTy) {
+ default:
+ llvm_unreachable("Expected a vector of i1 elements");
+ case MVT::v2i1:
+ ExtVT = MVT::v2i64;
+ break;
+ case MVT::v4i1:
+ ExtVT = MVT::v4i32;
+ break;
+ case MVT::v8i1:
+ // Take 512-bit type, more shuffles on KNL. If we have VLX use a 256-bit
+ // shuffle.
+ ExtVT = Subtarget.hasVLX() ? MVT::v8i32 : MVT::v8i64;
+ break;
+ case MVT::v16i1:
+ ExtVT = MVT::v16i32;
+ break;
+ case MVT::v32i1:
+ ExtVT = MVT::v32i16;
+ break;
+ case MVT::v64i1:
+ ExtVT = MVT::v64i8;
+ break;
+ }
+
+ if (ISD::isBuildVectorAllZeros(V1.getNode()))
+ V1 = getZeroVector(ExtVT, Subtarget, DAG, DL);
+ else if (ISD::isBuildVectorAllOnes(V1.getNode()))
+ V1 = getOnesVector(ExtVT, DAG, DL);
+ else
+ V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1);
+
+ if (V2.isUndef())
+ V2 = DAG.getUNDEF(ExtVT);
+ else if (ISD::isBuildVectorAllZeros(V2.getNode()))
+ V2 = getZeroVector(ExtVT, Subtarget, DAG, DL);
+ else if (ISD::isBuildVectorAllOnes(V2.getNode()))
+ V2 = getOnesVector(ExtVT, DAG, DL);
+ else
+ V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2);
+
+ SDValue Shuffle = DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask);
+ // i1 was sign extended we can use X86ISD::CVT2MASK.
+ int NumElems = VT.getVectorNumElements();
+ if ((Subtarget.hasBWI() && (NumElems >= 32)) ||
+ (Subtarget.hasDQI() && (NumElems < 32)))
+ return DAG.getNode(X86ISD::CVT2MASK, DL, VT, Shuffle);
+
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, Shuffle);
+}
+
+/// Helper function that returns true if the shuffle mask should be
+/// commuted to improve canonicalization.
+static bool canonicalizeShuffleMaskWithCommute(ArrayRef<int> Mask) {
+ int NumElements = Mask.size();
+
+ int NumV1Elements = 0, NumV2Elements = 0;
+ for (int M : Mask)
+ if (M < 0)
+ continue;
+ else if (M < NumElements)
+ ++NumV1Elements;
+ else
+ ++NumV2Elements;
+
+ // Commute the shuffle as needed such that more elements come from V1 than
+ // V2. This allows us to match the shuffle pattern strictly on how many
+ // elements come from V1 without handling the symmetric cases.
+ if (NumV2Elements > NumV1Elements)
+ return true;
+
+ assert(NumV1Elements > 0 && "No V1 indices");
+
+ if (NumV2Elements == 0)
+ return false;
+
+ // When the number of V1 and V2 elements are the same, try to minimize the
+ // number of uses of V2 in the low half of the vector. When that is tied,
+ // ensure that the sum of indices for V1 is equal to or lower than the sum
+ // indices for V2. When those are equal, try to ensure that the number of odd
+ // indices for V1 is lower than the number of odd indices for V2.
+ if (NumV1Elements == NumV2Elements) {
+ int LowV1Elements = 0, LowV2Elements = 0;
+ for (int M : Mask.slice(0, NumElements / 2))
+ if (M >= NumElements)
+ ++LowV2Elements;
+ else if (M >= 0)
+ ++LowV1Elements;
+ if (LowV2Elements > LowV1Elements)
+ return true;
+ if (LowV2Elements == LowV1Elements) {
+ int SumV1Indices = 0, SumV2Indices = 0;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] >= NumElements)
+ SumV2Indices += i;
+ else if (Mask[i] >= 0)
+ SumV1Indices += i;
+ if (SumV2Indices < SumV1Indices)
+ return true;
+ if (SumV2Indices == SumV1Indices) {
+ int NumV1OddIndices = 0, NumV2OddIndices = 0;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] >= NumElements)
+ NumV2OddIndices += i % 2;
+ else if (Mask[i] >= 0)
+ NumV1OddIndices += i % 2;
+ if (NumV2OddIndices < NumV1OddIndices)
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+/// \brief Top-level lowering for x86 vector shuffles.
+///
+/// This handles decomposition, canonicalization, and lowering of all x86
+/// vector shuffles. Most of the specific lowering strategies are encapsulated
+/// above in helper routines. The canonicalization attempts to widen shuffles
+/// to involve fewer lanes of wider elements, consolidate symmetric patterns
+/// s.t. only one of the two inputs needs to be tested, etc.
+static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ MVT VT = Op.getSimpleValueType();
+ int NumElements = VT.getVectorNumElements();
+ SDLoc DL(Op);
+ bool Is1BitVector = (VT.getVectorElementType() == MVT::i1);
+
+ assert((VT.getSizeInBits() != 64 || Is1BitVector) &&
+ "Can't lower MMX shuffles");
+
+ bool V1IsUndef = V1.isUndef();
+ bool V2IsUndef = V2.isUndef();
+ if (V1IsUndef && V2IsUndef)
+ return DAG.getUNDEF(VT);
+
+ // When we create a shuffle node we put the UNDEF node to second operand,
+ // but in some cases the first operand may be transformed to UNDEF.
+ // In this case we should just commute the node.
+ if (V1IsUndef)
+ return DAG.getCommutedVectorShuffle(*SVOp);
+
+ // Check for non-undef masks pointing at an undef vector and make the masks
+ // undef as well. This makes it easier to match the shuffle based solely on
+ // the mask.
+ if (V2IsUndef)
+ for (int M : Mask)
+ if (M >= NumElements) {
+ SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
+ for (int &M : NewMask)
+ if (M >= NumElements)
+ M = -1;
+ return DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
+ }
+
+ // Check for illegal shuffle mask element index values.
+ int MaskUpperLimit = Mask.size() * (V2IsUndef ? 1 : 2); (void)MaskUpperLimit;
+ assert(llvm::all_of(Mask,
+ [&](int M) { return -1 <= M && M < MaskUpperLimit; }) &&
+ "Out of bounds shuffle index");
+
+ // We actually see shuffles that are entirely re-arrangements of a set of
+ // zero inputs. This mostly happens while decomposing complex shuffles into
+ // simple ones. Directly lower these as a buildvector of zeros.
+ APInt Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+ if (Zeroable.isAllOnesValue())
+ return getZeroVector(VT, Subtarget, DAG, DL);
+
+ // Try to collapse shuffles into using a vector type with fewer elements but
+ // wider element types. We cap this to not form integers or floating point
+ // elements wider than 64 bits, but it might be interesting to form i128
+ // integers to handle flipping the low and high halves of AVX 256-bit vectors.
+ SmallVector<int, 16> WidenedMask;
+ if (VT.getScalarSizeInBits() < 64 && !Is1BitVector &&
+ canWidenShuffleElements(Mask, WidenedMask)) {
+ MVT NewEltVT = VT.isFloatingPoint()
+ ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
+ : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
+ MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
+ // Make sure that the new vector type is legal. For example, v2f64 isn't
+ // legal on SSE1.
+ if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
+ V1 = DAG.getBitcast(NewVT, V1);
+ V2 = DAG.getBitcast(NewVT, V2);
+ return DAG.getBitcast(
+ VT, DAG.getVectorShuffle(NewVT, DL, V1, V2, WidenedMask));
+ }
+ }
+
+ // Commute the shuffle if it will improve canonicalization.
+ if (canonicalizeShuffleMaskWithCommute(Mask))
+ return DAG.getCommutedVectorShuffle(*SVOp);
+
+ // For each vector width, delegate to a specialized lowering routine.
+ if (VT.is128BitVector())
+ return lower128BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
+ DAG);
+
+ if (VT.is256BitVector())
+ return lower256BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
+ DAG);
+
+ if (VT.is512BitVector())
+ return lower512BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget,
+ DAG);
+
+ if (Is1BitVector)
+ return lower1BitVectorShuffle(DL, Mask, VT, V1, V2, Subtarget, DAG);
+
+ llvm_unreachable("Unimplemented!");
+}
+
+/// \brief Try to lower a VSELECT instruction to a vector shuffle.
+static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Cond = Op.getOperand(0);
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
+ return SDValue();
+ auto *CondBV = cast<BuildVectorSDNode>(Cond);
+
+ // Only non-legal VSELECTs reach this lowering, convert those into generic
+ // shuffles and re-use the shuffle lowering path for blends.
+ SmallVector<int, 32> Mask;
+ for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) {
+ SDValue CondElt = CondBV->getOperand(i);
+ Mask.push_back(
+ isa<ConstantSDNode>(CondElt) ? i + (isNullConstant(CondElt) ? Size : 0)
+ : -1);
+ }
+ return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask);
+}
+
+SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
+ // A vselect where all conditions and data are constants can be optimized into
+ // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
+ if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
+ ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
+ ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
+ return SDValue();
+
+ // Try to lower this to a blend-style vector shuffle. This can handle all
+ // constant condition cases.
+ if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
+ return BlendOp;
+
+ // If this VSELECT has a vector if i1 as a mask, it will be directly matched
+ // with patterns on the mask registers on AVX-512.
+ if (Op->getOperand(0).getValueType().getScalarSizeInBits() == 1)
+ return Op;
+
+ // Variable blends are only legal from SSE4.1 onward.
+ if (!Subtarget.hasSSE41())
+ return SDValue();
+
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ // If the VSELECT is on a 512-bit type, we have to convert a non-i1 condition
+ // into an i1 condition so that we can use the mask-based 512-bit blend
+ // instructions.
+ if (VT.getSizeInBits() == 512) {
+ SDValue Cond = Op.getOperand(0);
+ // The vNi1 condition case should be handled above as it can be trivially
+ // lowered.
+ assert(Cond.getValueType().getScalarSizeInBits() ==
+ VT.getScalarSizeInBits() &&
+ "Should have a size-matched integer condition!");
+ // Build a mask by testing the condition against itself (tests for zero).
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ SDValue Mask = DAG.getNode(X86ISD::TESTM, dl, MaskVT, Cond, Cond);
+ // Now return a new VSELECT using the mask.
+ return DAG.getSelect(dl, VT, Mask, Op.getOperand(1), Op.getOperand(2));
+ }
+
+ // Only some types will be legal on some subtargets. If we can emit a legal
+ // VSELECT-matching blend, return Op, and but if we need to expand, return
+ // a null value.
+ switch (VT.SimpleTy) {
+ default:
+ // Most of the vector types have blends past SSE4.1.
+ return Op;
+
+ case MVT::v32i8:
+ // The byte blends for AVX vectors were introduced only in AVX2.
+ if (Subtarget.hasAVX2())
+ return Op;
+
+ return SDValue();
+
+ case MVT::v8i16:
+ case MVT::v16i16:
+ // FIXME: We should custom lower this by fixing the condition and using i8
+ // blends.
+ return SDValue();
+ }
+}
+
+static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
+ return SDValue();
+
+ if (VT.getSizeInBits() == 8) {
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
+ Op.getOperand(0), Op.getOperand(1));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract);
+ }
+
+ if (VT == MVT::f32) {
+ // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
+ // the result back to FR32 register. It's only worth matching if the
+ // result has a single use which is a store or a bitcast to i32. And in
+ // the case of a store, it's not worth it if the index is a constant 0,
+ // because a MOVSSmr can be used instead, which is smaller and faster.
+ if (!Op.hasOneUse())
+ return SDValue();
+ SDNode *User = *Op.getNode()->use_begin();
+ if ((User->getOpcode() != ISD::STORE ||
+ isNullConstant(Op.getOperand(1))) &&
+ (User->getOpcode() != ISD::BITCAST ||
+ User->getValueType(0) != MVT::i32))
+ return SDValue();
+ SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
+ Op.getOperand(1));
+ return DAG.getBitcast(MVT::f32, Extract);
+ }
+
+ if (VT == MVT::i32 || VT == MVT::i64) {
+ // ExtractPS/pextrq works with constant index.
+ if (isa<ConstantSDNode>(Op.getOperand(1)))
+ return Op;
+ }
+
+ return SDValue();
+}
+
+/// Extract one bit from mask vector, like v16i1 or v8i1.
+/// AVX-512 feature.
+static SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDValue Vec = Op.getOperand(0);
+ SDLoc dl(Vec);
+ MVT VecVT = Vec.getSimpleValueType();
+ SDValue Idx = Op.getOperand(1);
+ MVT EltVT = Op.getSimpleValueType();
+
+ assert((VecVT.getVectorNumElements() <= 16 || Subtarget.hasBWI()) &&
+ "Unexpected vector type in ExtractBitFromMaskVector");
+
+ // variable index can't be handled in mask registers,
+ // extend vector to VR512/128
+ if (!isa<ConstantSDNode>(Idx)) {
+ unsigned NumElts = VecVT.getVectorNumElements();
+ // Extending v8i1/v16i1 to 512-bit get better performance on KNL
+ // than extending to 128/256bit.
+ MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8;
+ MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts);
+ SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec);
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ExtEltVT, Ext, Idx);
+ return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
+ }
+
+ // Canonicalize result type to MVT::i32.
+ if (EltVT != MVT::i32) {
+ SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ Vec, Idx);
+ return DAG.getAnyExtOrTrunc(Extract, dl, EltVT);
+ }
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+
+ // Extracts from element 0 are always allowed.
+ if (IdxVal == 0)
+ return Op;
+
+ // If the kshift instructions of the correct width aren't natively supported
+ // then we need to promote the vector to the native size to get the correct
+ // zeroing behavior.
+ if ((!Subtarget.hasDQI() && (VecVT.getVectorNumElements() == 8)) ||
+ (VecVT.getVectorNumElements() < 8)) {
+ VecVT = MVT::v16i1;
+ Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VecVT,
+ DAG.getUNDEF(VecVT),
+ Vec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ // Use kshiftr instruction to move to the lower element.
+ Vec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Vec,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+SDValue
+X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ MVT VecVT = Vec.getSimpleValueType();
+ SDValue Idx = Op.getOperand(1);
+
+ if (VecVT.getVectorElementType() == MVT::i1)
+ return ExtractBitFromMaskVector(Op, DAG, Subtarget);
+
+ if (!isa<ConstantSDNode>(Idx)) {
+ // Its more profitable to go through memory (1 cycles throughput)
+ // than using VMOVD + VPERMV/PSHUFB sequence ( 2/3 cycles throughput)
+ // IACA tool was used to get performance estimation
+ // (https://software.intel.com/en-us/articles/intel-architecture-code-analyzer)
+ //
+ // example : extractelement <16 x i8> %a, i32 %i
+ //
+ // Block Throughput: 3.00 Cycles
+ // Throughput Bottleneck: Port5
+ //
+ // | Num Of | Ports pressure in cycles | |
+ // | Uops | 0 - DV | 5 | 6 | 7 | |
+ // ---------------------------------------------
+ // | 1 | | 1.0 | | | CP | vmovd xmm1, edi
+ // | 1 | | 1.0 | | | CP | vpshufb xmm0, xmm0, xmm1
+ // | 2 | 1.0 | 1.0 | | | CP | vpextrb eax, xmm0, 0x0
+ // Total Num Of Uops: 4
+ //
+ //
+ // Block Throughput: 1.00 Cycles
+ // Throughput Bottleneck: PORT2_AGU, PORT3_AGU, Port4
+ //
+ // | | Ports pressure in cycles | |
+ // |Uops| 1 | 2 - D |3 - D | 4 | 5 | |
+ // ---------------------------------------------------------
+ // |2^ | | 0.5 | 0.5 |1.0| |CP| vmovaps xmmword ptr [rsp-0x18], xmm0
+ // |1 |0.5| | | |0.5| | lea rax, ptr [rsp-0x18]
+ // |1 | |0.5, 0.5|0.5, 0.5| | |CP| mov al, byte ptr [rdi+rax*1]
+ // Total Num Of Uops: 4
+
+ return SDValue();
+ }
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+
+ // If this is a 256-bit vector result, first extract the 128-bit vector and
+ // then extract the element from the 128-bit vector.
+ if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
+ // Get the 128-bit vector.
+ Vec = extract128BitVector(Vec, IdxVal, DAG, dl);
+ MVT EltVT = VecVT.getVectorElementType();
+
+ unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
+ assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
+
+ // Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2
+ // this can be done with a mask.
+ IdxVal &= ElemsPerChunk - 1;
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
+ DAG.getConstant(IdxVal, dl, MVT::i32));
+ }
+
+ assert(VecVT.is128BitVector() && "Unexpected vector length");
+
+ MVT VT = Op.getSimpleValueType();
+
+ if (VT.getSizeInBits() == 16) {
+ // If IdxVal is 0, it's cheaper to do a move instead of a pextrw, unless
+ // we're going to zero extend the register or fold the store (SSE41 only).
+ if (IdxVal == 0 && !MayFoldIntoZeroExtend(Op) &&
+ !(Subtarget.hasSSE41() && MayFoldIntoStore(Op)))
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getBitcast(MVT::v4i32, Vec), Idx));
+
+ // Transform it so it match pextrw which produces a 32-bit result.
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
+ Op.getOperand(0), Op.getOperand(1));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract);
+ }
+
+ if (Subtarget.hasSSE41())
+ if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG))
+ return Res;
+
+ // TODO: We only extract a single element from v16i8, we can probably afford
+ // to be more aggressive here before using the default approach of spilling to
+ // stack.
+ if (VT.getSizeInBits() == 8 && Op->isOnlyUserOf(Vec.getNode())) {
+ // Extract either the lowest i32 or any i16, and extract the sub-byte.
+ int DWordIdx = IdxVal / 4;
+ if (DWordIdx == 0) {
+ SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getBitcast(MVT::v4i32, Vec),
+ DAG.getIntPtrConstant(DWordIdx, dl));
+ int ShiftVal = (IdxVal % 4) * 8;
+ if (ShiftVal != 0)
+ Res = DAG.getNode(ISD::SRL, dl, MVT::i32, Res,
+ DAG.getConstant(ShiftVal, dl, MVT::i32));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
+ }
+
+ int WordIdx = IdxVal / 2;
+ SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
+ DAG.getBitcast(MVT::v8i16, Vec),
+ DAG.getIntPtrConstant(WordIdx, dl));
+ int ShiftVal = (IdxVal % 2) * 8;
+ if (ShiftVal != 0)
+ Res = DAG.getNode(ISD::SRL, dl, MVT::i16, Res,
+ DAG.getConstant(ShiftVal, dl, MVT::i16));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
+ }
+
+ if (VT.getSizeInBits() == 32) {
+ if (IdxVal == 0)
+ return Op;
+
+ // SHUFPS the element to the lowest double word, then movss.
+ int Mask[4] = { static_cast<int>(IdxVal), -1, -1, -1 };
+ Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ if (VT.getSizeInBits() == 64) {
+ // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
+ // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
+ // to match extract_elt for f64.
+ if (IdxVal == 0)
+ return Op;
+
+ // UNPCKHPD the element to the lowest double word, then movsd.
+ // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
+ // to a f64mem, the whole operation is folded into a single MOVHPDmr.
+ int Mask[2] = { 1, -1 };
+ Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ return SDValue();
+}
+
+/// Insert one bit to mask vector, like v16i1 or v8i1.
+/// AVX-512 feature.
+static SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ SDValue Elt = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+ MVT VecVT = Vec.getSimpleValueType();
+
+ if (!isa<ConstantSDNode>(Idx)) {
+ // Non constant index. Extend source and destination,
+ // insert element and then truncate the result.
+ unsigned NumElts = VecVT.getVectorNumElements();
+ MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8;
+ MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts);
+ SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
+ DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec),
+ DAG.getNode(ISD::SIGN_EXTEND, dl, ExtEltVT, Elt), Idx);
+ return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
+ }
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ unsigned NumElems = VecVT.getVectorNumElements();
+
+ // If the kshift instructions of the correct width aren't natively supported
+ // then we need to promote the vector to the native size to get the correct
+ // zeroing behavior.
+ if ((!Subtarget.hasDQI() && NumElems == 8) || (NumElems < 8)) {
+ // Need to promote to v16i1, do the insert, then extract back.
+ Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1,
+ DAG.getUNDEF(MVT::v16i1), Vec,
+ DAG.getIntPtrConstant(0, dl));
+ Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v16i1, Vec, Elt, Idx);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VecVT, Op,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
+
+ if (Vec.isUndef()) {
+ if (IdxVal)
+ EltInVec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, EltInVec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+ return EltInVec;
+ }
+
+ // Insertion of one bit into first position
+ if (IdxVal == 0 ) {
+ // Clean top bits of vector.
+ EltInVec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, EltInVec,
+ DAG.getConstant(NumElems - 1, dl, MVT::i8));
+ EltInVec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, EltInVec,
+ DAG.getConstant(NumElems - 1, dl, MVT::i8));
+ // Clean the first bit in source vector.
+ Vec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec,
+ DAG.getConstant(1 , dl, MVT::i8));
+ Vec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, Vec,
+ DAG.getConstant(1, dl, MVT::i8));
+
+ return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
+ }
+ // Insertion of one bit into last position
+ if (IdxVal == NumElems - 1) {
+ // Move the bit to the last position inside the vector.
+ EltInVec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, EltInVec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+ // Clean the last bit in the source vector.
+ Vec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, Vec,
+ DAG.getConstant(1, dl, MVT::i8));
+ Vec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec,
+ DAG.getConstant(1 , dl, MVT::i8));
+
+ return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
+ }
+
+ // Move the current value of the bit to be replace to bit 0.
+ SDValue Merged = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+ // Xor with the new bit.
+ Merged = DAG.getNode(ISD::XOR, dl, VecVT, Merged, EltInVec);
+ // Shift to MSB, filling bottom bits with 0.
+ Merged = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, Merged,
+ DAG.getConstant(NumElems - 1, dl, MVT::i8));
+ // Shift to the final position, filling upper bits with 0.
+ Merged = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Merged,
+ DAG.getConstant(NumElems - 1 - IdxVal, dl, MVT::i8));
+ // Xor with original vector to cancel out the original bit value that's still
+ // present.
+ return DAG.getNode(ISD::XOR, dl, VecVT, Merged, Vec);
+}
+
+SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ if (EltVT == MVT::i1)
+ return InsertBitToMaskVector(Op, DAG, Subtarget);
+
+ SDLoc dl(Op);
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2 = Op.getOperand(2);
+ if (!isa<ConstantSDNode>(N2))
+ return SDValue();
+ auto *N2C = cast<ConstantSDNode>(N2);
+ unsigned IdxVal = N2C->getZExtValue();
+
+ bool IsZeroElt = X86::isZeroNode(N1);
+ bool IsAllOnesElt = VT.isInteger() && llvm::isAllOnesConstant(N1);
+
+ // If we are inserting a element, see if we can do this more efficiently with
+ // a blend shuffle with a rematerializable vector than a costly integer
+ // insertion.
+ if ((IsZeroElt || IsAllOnesElt) && Subtarget.hasSSE41() &&
+ 16 <= EltVT.getSizeInBits()) {
+ SmallVector<int, 8> BlendMask;
+ for (unsigned i = 0; i != NumElts; ++i)
+ BlendMask.push_back(i == IdxVal ? i + NumElts : i);
+ SDValue CstVector = IsZeroElt ? getZeroVector(VT, Subtarget, DAG, dl)
+ : getOnesVector(VT, DAG, dl);
+ return DAG.getVectorShuffle(VT, dl, N0, CstVector, BlendMask);
+ }
+
+ // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
+ // into that, and then insert the subvector back into the result.
+ if (VT.is256BitVector() || VT.is512BitVector()) {
+ // With a 256-bit vector, we can insert into the zero element efficiently
+ // using a blend if we have AVX or AVX2 and the right data type.
+ if (VT.is256BitVector() && IdxVal == 0) {
+ // TODO: It is worthwhile to cast integer to floating point and back
+ // and incur a domain crossing penalty if that's what we'll end up
+ // doing anyway after extracting to a 128-bit vector.
+ if ((Subtarget.hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
+ (Subtarget.hasAVX2() && EltVT == MVT::i32)) {
+ SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
+ N2 = DAG.getIntPtrConstant(1, dl);
+ return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2);
+ }
+ }
+
+ // Get the desired 128-bit vector chunk.
+ SDValue V = extract128BitVector(N0, IdxVal, DAG, dl);
+
+ // Insert the element into the desired chunk.
+ unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
+ assert(isPowerOf2_32(NumEltsIn128));
+ // Since NumEltsIn128 is a power of 2 we can use mask instead of modulo.
+ unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1);
+
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
+ DAG.getConstant(IdxIn128, dl, MVT::i32));
+
+ // Insert the changed part back into the bigger vector
+ return insert128BitVector(N0, V, IdxVal, DAG, dl);
+ }
+ assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
+
+ // Transform it so it match pinsr{b,w} which expects a GR32 as its second
+ // argument. SSE41 required for pinsrb.
+ if (VT == MVT::v8i16 || (VT == MVT::v16i8 && Subtarget.hasSSE41())) {
+ unsigned Opc;
+ if (VT == MVT::v8i16) {
+ assert(Subtarget.hasSSE2() && "SSE2 required for PINSRW");
+ Opc = X86ISD::PINSRW;
+ } else {
+ assert(VT == MVT::v16i8 && "PINSRB requires v16i8 vector");
+ assert(Subtarget.hasSSE41() && "SSE41 required for PINSRB");
+ Opc = X86ISD::PINSRB;
+ }
+
+ if (N1.getValueType() != MVT::i32)
+ N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
+ if (N2.getValueType() != MVT::i32)
+ N2 = DAG.getIntPtrConstant(IdxVal, dl);
+ return DAG.getNode(Opc, dl, VT, N0, N1, N2);
+ }
+
+ if (Subtarget.hasSSE41()) {
+ if (EltVT == MVT::f32) {
+ // Bits [7:6] of the constant are the source select. This will always be
+ // zero here. The DAG Combiner may combine an extract_elt index into
+ // these bits. For example (insert (extract, 3), 2) could be matched by
+ // putting the '3' into bits [7:6] of X86ISD::INSERTPS.
+ // Bits [5:4] of the constant are the destination select. This is the
+ // value of the incoming immediate.
+ // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
+ // combine either bitwise AND or insert of float 0.0 to set these bits.
+
+ bool MinSize = DAG.getMachineFunction().getFunction().optForMinSize();
+ if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
+ // If this is an insertion of 32-bits into the low 32-bits of
+ // a vector, we prefer to generate a blend with immediate rather
+ // than an insertps. Blends are simpler operations in hardware and so
+ // will always have equal or better performance than insertps.
+ // But if optimizing for size and there's a load folding opportunity,
+ // generate insertps because blendps does not have a 32-bit memory
+ // operand form.
+ N2 = DAG.getIntPtrConstant(1, dl);
+ N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
+ return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2);
+ }
+ N2 = DAG.getIntPtrConstant(IdxVal << 4, dl);
+ // Create this as a scalar to vector..
+ N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
+ return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
+ }
+
+ // PINSR* works with constant index.
+ if (EltVT == MVT::i32 || EltVT == MVT::i64)
+ return Op;
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT OpVT = Op.getSimpleValueType();
+
+ // It's always cheaper to replace a xor+movd with xorps and simplifies further
+ // combines.
+ if (X86::isZeroNode(Op.getOperand(0)))
+ return getZeroVector(OpVT, Subtarget, DAG, dl);
+
+ // If this is a 256-bit vector result, first insert into a 128-bit
+ // vector and then insert into the 256-bit vector.
+ if (!OpVT.is128BitVector()) {
+ // Insert into a 128-bit vector.
+ unsigned SizeFactor = OpVT.getSizeInBits() / 128;
+ MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
+ OpVT.getVectorNumElements() / SizeFactor);
+
+ Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
+
+ // Insert the 128-bit vector.
+ return insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
+ }
+ assert(OpVT.is128BitVector() && "Expected an SSE type!");
+
+ // Pass through a v4i32 SCALAR_TO_VECTOR as that's what we use in tblgen.
+ if (OpVT == MVT::v4i32)
+ return Op;
+
+ SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
+ return DAG.getBitcast(
+ OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
+}
+
+// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
+// simple superregister reference or explicit instructions to insert
+// the upper bits of a vector.
+static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1);
+
+ return insert1BitVector(Op, DAG, Subtarget);
+}
+
+// Returns the appropriate wrapper opcode for a global reference.
+unsigned X86TargetLowering::getGlobalWrapperKind(const GlobalValue *GV) const {
+ // References to absolute symbols are never PC-relative.
+ if (GV && GV->isAbsoluteSymbolRef())
+ return X86ISD::Wrapper;
+
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+ if (Subtarget.isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ return X86ISD::WrapperRIP;
+
+ return X86ISD::Wrapper;
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target counterpart wrapped in the X86ISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOV32ri.
+SDValue
+X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
+
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result = DAG.getTargetConstantPool(
+ CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag);
+ SDLoc DL(CP);
+ Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
+ // With PIC, the address is actually $g + Offset.
+ if (OpFlag) {
+ Result =
+ DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
+ }
+
+ return Result;
+}
+
+SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
+
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
+ SDLoc DL(JT);
+ Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (OpFlag)
+ Result =
+ DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
+ const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
+ unsigned char OpFlag = Subtarget.classifyGlobalReference(nullptr, *Mod);
+
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag);
+
+ SDLoc DL(Op);
+ Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (isPositionIndependent() && !Subtarget.is64Bit()) {
+ Result =
+ DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
+ }
+
+ // For symbols that require a load from a stub to get the address, emit the
+ // load.
+ if (isGlobalStubReference(OpFlag))
+ Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()));
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
+ // Create the TargetBlockAddressAddress node.
+ unsigned char OpFlags =
+ Subtarget.classifyBlockAddressReference();
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
+ SDLoc dl(Op);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
+ Result = DAG.getNode(getGlobalWrapperKind(), dl, PtrVT, Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (isGlobalRelativeToPICBase(OpFlags)) {
+ Result = DAG.getNode(ISD::ADD, dl, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
+ }
+
+ return Result;
+}
+
+SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
+ const SDLoc &dl, int64_t Offset,
+ SelectionDAG &DAG) const {
+ // Create the TargetGlobalAddress node, folding in the constant
+ // offset if it is legal.
+ unsigned char OpFlags = Subtarget.classifyGlobalReference(GV);
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result;
+ if (OpFlags == X86II::MO_NO_FLAG &&
+ X86::isOffsetSuitableForCodeModel(Offset, M)) {
+ // A direct static reference to a global.
+ Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
+ Offset = 0;
+ } else {
+ Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags);
+ }
+
+ Result = DAG.getNode(getGlobalWrapperKind(GV), dl, PtrVT, Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (isGlobalRelativeToPICBase(OpFlags)) {
+ Result = DAG.getNode(ISD::ADD, dl, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
+ }
+
+ // For globals that require a load from a stub to get the address, emit the
+ // load.
+ if (isGlobalStubReference(OpFlags))
+ Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()));
+
+ // If there was a non-zero offset that we didn't fold, create an explicit
+ // addition for it.
+ if (Offset != 0)
+ Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result,
+ DAG.getConstant(Offset, dl, PtrVT));
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
+ return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
+}
+
+static SDValue
+GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
+ SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
+ unsigned char OperandFlags, bool LocalDynamic = false) {
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDLoc dl(GA);
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
+ GA->getValueType(0),
+ GA->getOffset(),
+ OperandFlags);
+
+ X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
+ : X86ISD::TLSADDR;
+
+ if (InFlag) {
+ SDValue Ops[] = { Chain, TGA, *InFlag };
+ Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
+ } else {
+ SDValue Ops[] = { Chain, TGA };
+ Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
+ }
+
+ // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
+ MFI.setAdjustsStack(true);
+ MFI.setHasCalls(true);
+
+ SDValue Flag = Chain.getValue(1);
+ return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
+static SDValue
+LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT) {
+ SDValue InFlag;
+ SDLoc dl(GA); // ? function entry point might be better
+ SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ SDLoc(), PtrVT), InFlag);
+ InFlag = Chain.getValue(1);
+
+ return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
+static SDValue
+LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT) {
+ return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
+ X86::RAX, X86II::MO_TLSGD);
+}
+
+static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG,
+ const EVT PtrVT,
+ bool is64Bit) {
+ SDLoc dl(GA);
+
+ // Get the start address of the TLS block for this module.
+ X86MachineFunctionInfo *MFI = DAG.getMachineFunction()
+ .getInfo<X86MachineFunctionInfo>();
+ MFI->incNumLocalDynamicTLSAccesses();
+
+ SDValue Base;
+ if (is64Bit) {
+ Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
+ X86II::MO_TLSLD, /*LocalDynamic=*/true);
+ } else {
+ SDValue InFlag;
+ SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
+ InFlag = Chain.getValue(1);
+ Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
+ X86II::MO_TLSLDM, /*LocalDynamic=*/true);
+ }
+
+ // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
+ // of Base.
+
+ // Build x@dtpoff.
+ unsigned char OperandFlags = X86II::MO_DTPOFF;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
+ GA->getValueType(0),
+ GA->getOffset(), OperandFlags);
+ SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
+
+ // Add x@dtpoff with the base.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
+static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT, TLSModel::Model model,
+ bool is64Bit, bool isPIC) {
+ SDLoc dl(GA);
+
+ // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
+ Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
+ is64Bit ? 257 : 256));
+
+ SDValue ThreadPointer =
+ DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl),
+ MachinePointerInfo(Ptr));
+
+ unsigned char OperandFlags = 0;
+ // Most TLS accesses are not RIP relative, even on x86-64. One exception is
+ // initialexec.
+ unsigned WrapperKind = X86ISD::Wrapper;
+ if (model == TLSModel::LocalExec) {
+ OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
+ } else if (model == TLSModel::InitialExec) {
+ if (is64Bit) {
+ OperandFlags = X86II::MO_GOTTPOFF;
+ WrapperKind = X86ISD::WrapperRIP;
+ } else {
+ OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
+ }
+ } else {
+ llvm_unreachable("Unexpected model");
+ }
+
+ // emit "addl x@ntpoff,%eax" (local exec)
+ // or "addl x@indntpoff,%eax" (initial exec)
+ // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
+ SDValue TGA =
+ DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
+ GA->getOffset(), OperandFlags);
+ SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
+
+ if (model == TLSModel::InitialExec) {
+ if (isPIC && !is64Bit) {
+ Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
+ Offset);
+ }
+
+ Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()));
+ }
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue
+X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
+
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+
+ if (DAG.getTarget().Options.EmulatedTLS)
+ return LowerToTLSEmulatedModel(GA, DAG);
+
+ const GlobalValue *GV = GA->getGlobal();
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ bool PositionIndependent = isPositionIndependent();
+
+ if (Subtarget.isTargetELF()) {
+ TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
+ switch (model) {
+ case TLSModel::GeneralDynamic:
+ if (Subtarget.is64Bit())
+ return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT);
+ return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT);
+ case TLSModel::LocalDynamic:
+ return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT,
+ Subtarget.is64Bit());
+ case TLSModel::InitialExec:
+ case TLSModel::LocalExec:
+ return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget.is64Bit(),
+ PositionIndependent);
+ }
+ llvm_unreachable("Unknown TLS model.");
+ }
+
+ if (Subtarget.isTargetDarwin()) {
+ // Darwin only has one model of TLS. Lower to that.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = Subtarget.isPICStyleRIPRel() ?
+ X86ISD::WrapperRIP : X86ISD::Wrapper;
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ bool PIC32 = PositionIndependent && !Subtarget.is64Bit();
+ if (PIC32)
+ OpFlag = X86II::MO_TLVP_PIC_BASE;
+ else
+ OpFlag = X86II::MO_TLVP;
+ SDLoc DL(Op);
+ SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
+ GA->getValueType(0),
+ GA->getOffset(), OpFlag);
+ SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result);
+
+ // With PIC32, the address is actually $g + Offset.
+ if (PIC32)
+ Offset = DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
+ Offset);
+
+ // Lowering the machine isd will make sure everything is in the right
+ // location.
+ SDValue Chain = DAG.getEntryNode();
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
+ SDValue Args[] = { Chain, Offset };
+ Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
+ DAG.getIntPtrConstant(0, DL, true),
+ Chain.getValue(1), DL);
+
+ // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setAdjustsStack(true);
+
+ // And our return value (tls address) is in the standard call return value
+ // location.
+ unsigned Reg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
+ return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1));
+ }
+
+ if (Subtarget.isTargetKnownWindowsMSVC() ||
+ Subtarget.isTargetWindowsItanium() ||
+ Subtarget.isTargetWindowsGNU()) {
+ // Just use the implicit TLS architecture
+ // Need to generate something similar to:
+ // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
+ // ; from TEB
+ // mov ecx, dword [rel _tls_index]: Load index (from C runtime)
+ // mov rcx, qword [rdx+rcx*8]
+ // mov eax, .tls$:tlsvar
+ // [rax+rcx] contains the address
+ // Windows 64bit: gs:0x58
+ // Windows 32bit: fs:__tls_array
+
+ SDLoc dl(GA);
+ SDValue Chain = DAG.getEntryNode();
+
+ // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
+ // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
+ // use its literal value of 0x2C.
+ Value *Ptr = Constant::getNullValue(Subtarget.is64Bit()
+ ? Type::getInt8PtrTy(*DAG.getContext(),
+ 256)
+ : Type::getInt32PtrTy(*DAG.getContext(),
+ 257));
+
+ SDValue TlsArray = Subtarget.is64Bit()
+ ? DAG.getIntPtrConstant(0x58, dl)
+ : (Subtarget.isTargetWindowsGNU()
+ ? DAG.getIntPtrConstant(0x2C, dl)
+ : DAG.getExternalSymbol("_tls_array", PtrVT));
+
+ SDValue ThreadPointer =
+ DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr));
+
+ SDValue res;
+ if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) {
+ res = ThreadPointer;
+ } else {
+ // Load the _tls_index variable
+ SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT);
+ if (Subtarget.is64Bit())
+ IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX,
+ MachinePointerInfo(), MVT::i32);
+ else
+ IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo());
+
+ auto &DL = DAG.getDataLayout();
+ SDValue Scale =
+ DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, PtrVT);
+ IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale);
+
+ res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX);
+ }
+
+ res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo());
+
+ // Get the offset of start of .tls section
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
+ GA->getValueType(0),
+ GA->getOffset(), X86II::MO_SECREL);
+ SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset);
+ }
+
+ llvm_unreachable("TLS not implemented for this target.");
+}
+
+/// Lower SRA_PARTS and friends, which return two i32 values
+/// and take a 2 x i32 value to shift plus a shift amount.
+static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ MVT VT = Op.getSimpleValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
+ // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
+ // during isel.
+ SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
+ DAG.getConstant(VTBits - 1, dl, MVT::i8));
+ SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
+ DAG.getConstant(VTBits - 1, dl, MVT::i8))
+ : DAG.getConstant(0, dl, VT);
+
+ SDValue Tmp2, Tmp3;
+ if (Op.getOpcode() == ISD::SHL_PARTS) {
+ Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
+ } else {
+ Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
+ Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
+ }
+
+ // If the shift amount is larger or equal than the width of a part we can't
+ // rely on the results of shld/shrd. Insert a test and select the appropriate
+ // values for large shift amounts.
+ SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
+ DAG.getConstant(VTBits, dl, MVT::i8));
+ SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ AndNode, DAG.getConstant(0, dl, MVT::i8));
+
+ SDValue Hi, Lo;
+ SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
+ SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
+ SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
+
+ if (Op.getOpcode() == ISD::SHL_PARTS) {
+ Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
+ Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
+ } else {
+ Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
+ Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
+ }
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+ MVT SrcVT = Src.getSimpleValueType();
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (SrcVT.isVector()) {
+ if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) {
+ return DAG.getNode(X86ISD::CVTSI2P, dl, VT,
+ DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
+ DAG.getUNDEF(SrcVT)));
+ }
+ if (SrcVT.getVectorElementType() == MVT::i1) {
+ if (SrcVT == MVT::v2i1) {
+ // For v2i1, we need to widen to v4i1 first.
+ assert(VT == MVT::v2f64 && "Unexpected type");
+ Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Src,
+ DAG.getUNDEF(MVT::v2i1));
+ return DAG.getNode(X86ISD::CVTSI2P, dl, Op.getValueType(),
+ DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Src));
+ }
+
+ MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
+ return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
+ DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src));
+ }
+ return SDValue();
+ }
+
+ assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
+ "Unknown SINT_TO_FP to lower!");
+
+ // These are really Legal; return the operand so the caller accepts it as
+ // Legal.
+ if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
+ return Op;
+ if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
+ Subtarget.is64Bit()) {
+ return Op;
+ }
+
+ SDValue ValueToStore = Op.getOperand(0);
+ if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
+ !Subtarget.is64Bit())
+ // Bitcasting to f64 here allows us to do a single 64-bit store from
+ // an SSE register, avoiding the store forwarding penalty that would come
+ // with two 32-bit stores.
+ ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
+
+ unsigned Size = SrcVT.getSizeInBits()/8;
+ MachineFunction &MF = DAG.getMachineFunction();
+ auto PtrVT = getPointerTy(MF.getDataLayout());
+ int SSFI = MF.getFrameInfo().CreateStackObject(Size, Size, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+ SDValue Chain = DAG.getStore(
+ DAG.getEntryNode(), dl, ValueToStore, StackSlot,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
+ return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
+}
+
+SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
+ SDValue StackSlot,
+ SelectionDAG &DAG) const {
+ // Build the FILD
+ SDLoc DL(Op);
+ SDVTList Tys;
+ bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
+ if (useSSE)
+ Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
+ else
+ Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
+
+ unsigned ByteSize = SrcVT.getSizeInBits()/8;
+
+ FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
+ MachineMemOperand *MMO;
+ if (FI) {
+ int SSFI = FI->getIndex();
+ MMO = DAG.getMachineFunction().getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+ MachineMemOperand::MOLoad, ByteSize, ByteSize);
+ } else {
+ MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
+ StackSlot = StackSlot.getOperand(1);
+ }
+ SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
+ SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
+ X86ISD::FILD, DL,
+ Tys, Ops, SrcVT, MMO);
+
+ if (useSSE) {
+ Chain = Result.getValue(1);
+ SDValue InFlag = Result.getValue(2);
+
+ // FIXME: Currently the FST is flagged to the FILD_FLAG. This
+ // shouldn't be necessary except that RFP cannot be live across
+ // multiple blocks. When stackifier is fixed, they can be uncoupled.
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned SSFISize = Op.getValueSizeInBits()/8;
+ int SSFI = MF.getFrameInfo().CreateStackObject(SSFISize, SSFISize, false);
+ auto PtrVT = getPointerTy(MF.getDataLayout());
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+ Tys = DAG.getVTList(MVT::Other);
+ SDValue Ops[] = {
+ Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
+ };
+ MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+ MachineMemOperand::MOStore, SSFISize, SSFISize);
+
+ Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
+ Ops, Op.getValueType(), MMO);
+ Result = DAG.getLoad(
+ Op.getValueType(), DL, Chain, StackSlot,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
+ }
+
+ return Result;
+}
+
+/// 64-bit unsigned integer to double expansion.
+static SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // This algorithm is not obvious. Here it is what we're trying to output:
+ /*
+ movq %rax, %xmm0
+ punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
+ subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
+ #ifdef __SSE3__
+ haddpd %xmm0, %xmm0
+ #else
+ pshufd $0x4e, %xmm0, %xmm1
+ addpd %xmm1, %xmm0
+ #endif
+ */
+
+ SDLoc dl(Op);
+ LLVMContext *Context = DAG.getContext();
+
+ // Build some magic constants.
+ static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
+ Constant *C0 = ConstantDataVector::get(*Context, CV0);
+ auto PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
+ SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16);
+
+ SmallVector<Constant*,2> CV1;
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
+ APInt(64, 0x4330000000000000ULL))));
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
+ APInt(64, 0x4530000000000000ULL))));
+ Constant *C1 = ConstantVector::get(CV1);
+ SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16);
+
+ // Load the 64-bit value into an XMM register.
+ SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
+ Op.getOperand(0));
+ SDValue CLod0 =
+ DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ /* Alignment = */ 16);
+ SDValue Unpck1 =
+ getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
+
+ SDValue CLod1 =
+ DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ /* Alignment = */ 16);
+ SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
+ SDValue Result;
+
+ if (Subtarget.hasSSE3()) {
+ // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
+ Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
+ } else {
+ SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub);
+ SDValue Shuffle = DAG.getVectorShuffle(MVT::v4i32, dl, S2F, S2F, {2,3,0,1});
+ Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
+ DAG.getBitcast(MVT::v2f64, Shuffle), Sub);
+ }
+
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+/// 32-bit unsigned integer to float expansion.
+static SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDLoc dl(Op);
+ // FP constant to bias correct the final result.
+ SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
+ MVT::f64);
+
+ // Load the 32-bit value into an XMM register.
+ SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
+ Op.getOperand(0));
+
+ // Zero out the upper parts of the register.
+ Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
+
+ Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ DAG.getBitcast(MVT::v2f64, Load),
+ DAG.getIntPtrConstant(0, dl));
+
+ // Or the load with the bias.
+ SDValue Or = DAG.getNode(
+ ISD::OR, dl, MVT::v2i64,
+ DAG.getBitcast(MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)),
+ DAG.getBitcast(MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
+ Or =
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
+
+ // Subtract the bias.
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
+
+ // Handle final rounding.
+ return DAG.getFPExtendOrRound(Sub, dl, Op.getSimpleValueType());
+}
+
+static SDValue lowerUINT_TO_FP_v2i32(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget, SDLoc &DL) {
+ if (Op.getSimpleValueType() != MVT::v2f64)
+ return SDValue();
+
+ SDValue N0 = Op.getOperand(0);
+ assert(N0.getSimpleValueType() == MVT::v2i32 && "Unexpected input type");
+
+ // Legalize to v4i32 type.
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
+ DAG.getUNDEF(MVT::v2i32));
+
+ if (Subtarget.hasAVX512())
+ return DAG.getNode(X86ISD::CVTUI2P, DL, MVT::v2f64, N0);
+
+ // Same implementation as VectorLegalizer::ExpandUINT_TO_FLOAT,
+ // but using v2i32 to v2f64 with X86ISD::CVTSI2P.
+ SDValue HalfWord = DAG.getConstant(16, DL, MVT::v4i32);
+ SDValue HalfWordMask = DAG.getConstant(0x0000FFFF, DL, MVT::v4i32);
+
+ // Two to the power of half-word-size.
+ SDValue TWOHW = DAG.getConstantFP(1 << 16, DL, MVT::v2f64);
+
+ // Clear upper part of LO, lower HI.
+ SDValue HI = DAG.getNode(ISD::SRL, DL, MVT::v4i32, N0, HalfWord);
+ SDValue LO = DAG.getNode(ISD::AND, DL, MVT::v4i32, N0, HalfWordMask);
+
+ SDValue fHI = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, HI);
+ fHI = DAG.getNode(ISD::FMUL, DL, MVT::v2f64, fHI, TWOHW);
+ SDValue fLO = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, LO);
+
+ // Add the two halves.
+ return DAG.getNode(ISD::FADD, DL, MVT::v2f64, fHI, fLO);
+}
+
+static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // The algorithm is the following:
+ // #ifdef __SSE4_1__
+ // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
+ // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
+ // (uint4) 0x53000000, 0xaa);
+ // #else
+ // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
+ // uint4 hi = (v >> 16) | (uint4) 0x53000000;
+ // #endif
+ // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
+ // return (float4) lo + fhi;
+
+ // We shouldn't use it when unsafe-fp-math is enabled though: we might later
+ // reassociate the two FADDs, and if we do that, the algorithm fails
+ // spectacularly (PR24512).
+ // FIXME: If we ever have some kind of Machine FMF, this should be marked
+ // as non-fast and always be enabled. Why isn't SDAG FMF enough? Because
+ // there's also the MachineCombiner reassociations happening on Machine IR.
+ if (DAG.getTarget().Options.UnsafeFPMath)
+ return SDValue();
+
+ SDLoc DL(Op);
+ SDValue V = Op->getOperand(0);
+ MVT VecIntVT = V.getSimpleValueType();
+ bool Is128 = VecIntVT == MVT::v4i32;
+ MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
+ // If we convert to something else than the supported type, e.g., to v4f64,
+ // abort early.
+ if (VecFloatVT != Op->getSimpleValueType(0))
+ return SDValue();
+
+ assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
+ "Unsupported custom type");
+
+ // In the #idef/#else code, we have in common:
+ // - The vector of constants:
+ // -- 0x4b000000
+ // -- 0x53000000
+ // - A shift:
+ // -- v >> 16
+
+ // Create the splat vector for 0x4b000000.
+ SDValue VecCstLow = DAG.getConstant(0x4b000000, DL, VecIntVT);
+ // Create the splat vector for 0x53000000.
+ SDValue VecCstHigh = DAG.getConstant(0x53000000, DL, VecIntVT);
+
+ // Create the right shift.
+ SDValue VecCstShift = DAG.getConstant(16, DL, VecIntVT);
+ SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
+
+ SDValue Low, High;
+ if (Subtarget.hasSSE41()) {
+ MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
+ // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
+ SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
+ SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
+ // Low will be bitcasted right away, so do not bother bitcasting back to its
+ // original type.
+ Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
+ VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
+ // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
+ // (uint4) 0x53000000, 0xaa);
+ SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
+ SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
+ // High will be bitcasted right away, so do not bother bitcasting back to
+ // its original type.
+ High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
+ VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
+ } else {
+ SDValue VecCstMask = DAG.getConstant(0xffff, DL, VecIntVT);
+ // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
+ SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
+ Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
+
+ // uint4 hi = (v >> 16) | (uint4) 0x53000000;
+ High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
+ }
+
+ // Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
+ SDValue VecCstFAdd = DAG.getConstantFP(
+ APFloat(APFloat::IEEEsingle(), APInt(32, 0xD3000080)), DL, VecFloatVT);
+
+ // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
+ SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue FHigh =
+ DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
+ // return (float4) lo + fhi;
+ SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
+ return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
+}
+
+static SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDValue N0 = Op.getOperand(0);
+ MVT SrcVT = N0.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (SrcVT.getVectorElementType() == MVT::i1) {
+ if (SrcVT == MVT::v2i1) {
+ // For v2i1, we need to widen to v4i1 first.
+ assert(Op.getValueType() == MVT::v2f64 && "Unexpected type");
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, N0,
+ DAG.getUNDEF(MVT::v2i1));
+ return DAG.getNode(X86ISD::CVTUI2P, dl, MVT::v2f64,
+ DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0));
+ }
+
+ MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
+ return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(),
+ DAG.getNode(ISD::ZERO_EXTEND, dl, IntegerVT, N0));
+ }
+
+ switch (SrcVT.SimpleTy) {
+ default:
+ llvm_unreachable("Custom UINT_TO_FP is not supported!");
+ case MVT::v2i32:
+ return lowerUINT_TO_FP_v2i32(Op, DAG, Subtarget, dl);
+ case MVT::v4i32:
+ case MVT::v8i32:
+ assert(!Subtarget.hasAVX512());
+ return lowerUINT_TO_FP_vXi32(Op, DAG, Subtarget);
+ }
+}
+
+SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue N0 = Op.getOperand(0);
+ SDLoc dl(Op);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ if (Op.getSimpleValueType().isVector())
+ return lowerUINT_TO_FP_vec(Op, DAG, Subtarget);
+
+ MVT SrcVT = N0.getSimpleValueType();
+ MVT DstVT = Op.getSimpleValueType();
+
+ if (Subtarget.hasAVX512() && isScalarFPTypeInSSEReg(DstVT) &&
+ (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget.is64Bit()))) {
+ // Conversions from unsigned i32 to f32/f64 are legal,
+ // using VCVTUSI2SS/SD. Same for i64 in 64-bit mode.
+ return Op;
+ }
+
+ if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
+ return LowerUINT_TO_FP_i64(Op, DAG, Subtarget);
+ if (SrcVT == MVT::i32 && X86ScalarSSEf64)
+ return LowerUINT_TO_FP_i32(Op, DAG, Subtarget);
+ if (Subtarget.is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
+ return SDValue();
+
+ // Make a 64-bit buffer, and use it to build an FILD.
+ SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
+ if (SrcVT == MVT::i32) {
+ SDValue OffsetSlot = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
+ SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
+ StackSlot, MachinePointerInfo());
+ SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32),
+ OffsetSlot, MachinePointerInfo());
+ SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
+ return Fild;
+ }
+
+ assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
+ SDValue ValueToStore = Op.getOperand(0);
+ if (isScalarFPTypeInSSEReg(Op.getValueType()) && !Subtarget.is64Bit())
+ // Bitcasting to f64 here allows us to do a single 64-bit store from
+ // an SSE register, avoiding the store forwarding penalty that would come
+ // with two 32-bit stores.
+ ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, ValueToStore, StackSlot,
+ MachinePointerInfo());
+ // For i64 source, we need to add the appropriate power of 2 if the input
+ // was negative. This is the same as the optimization in
+ // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
+ // we must be careful to do the computation in x87 extended precision, not
+ // in SSE. (The generic code can't know it's OK to do this, or how to.)
+ int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
+ MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+ MachineMemOperand::MOLoad, 8, 8);
+
+ SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
+ SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
+ SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
+ MVT::i64, MMO);
+
+ APInt FF(32, 0x5F800000ULL);
+
+ // Check whether the sign bit is set.
+ SDValue SignSet = DAG.getSetCC(
+ dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
+ Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
+
+ // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
+ SDValue FudgePtr = DAG.getConstantPool(
+ ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT);
+
+ // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
+ SDValue Zero = DAG.getIntPtrConstant(0, dl);
+ SDValue Four = DAG.getIntPtrConstant(4, dl);
+ SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet, Zero, Four);
+ FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset);
+
+ // Load the value out, extending it from f32 to f80.
+ // FIXME: Avoid the extend by constructing the right constant pool?
+ SDValue Fudge = DAG.getExtLoad(
+ ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
+ /* Alignment = */ 4);
+ // Extend everything to 80 bits to force it to be done on x87.
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
+ return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation
+// is legal, or has an fp128 or f16 source (which needs to be promoted to f32),
+// just return an <SDValue(), SDValue()> pair.
+// Otherwise it is assumed to be a conversion from one of f32, f64 or f80
+// to i16, i32 or i64, and we lower it to a legal sequence.
+// If lowered to the final integer result we return a <result, SDValue()> pair.
+// Otherwise we lower it to a sequence ending with a FIST, return a
+// <FIST, StackSlot> pair, and the caller is responsible for loading
+// the final integer result from StackSlot.
+std::pair<SDValue,SDValue>
+X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
+ bool IsSigned, bool IsReplace) const {
+ SDLoc DL(Op);
+
+ EVT DstTy = Op.getValueType();
+ EVT TheVT = Op.getOperand(0).getValueType();
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) {
+ // f16 must be promoted before using the lowering in this routine.
+ // fp128 does not use this lowering.
+ return std::make_pair(SDValue(), SDValue());
+ }
+
+ // If using FIST to compute an unsigned i64, we'll need some fixup
+ // to handle values above the maximum signed i64. A FIST is always
+ // used for the 32-bit subtarget, but also for f80 on a 64-bit target.
+ bool UnsignedFixup = !IsSigned &&
+ DstTy == MVT::i64 &&
+ (!Subtarget.is64Bit() ||
+ !isScalarFPTypeInSSEReg(TheVT));
+
+ if (!IsSigned && DstTy != MVT::i64 && !Subtarget.hasAVX512()) {
+ // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST.
+ // The low 32 bits of the fist result will have the correct uint32 result.
+ assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
+ DstTy = MVT::i64;
+ }
+
+ assert(DstTy.getSimpleVT() <= MVT::i64 &&
+ DstTy.getSimpleVT() >= MVT::i16 &&
+ "Unknown FP_TO_INT to lower!");
+
+ // These are really Legal.
+ if (DstTy == MVT::i32 &&
+ isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
+ return std::make_pair(SDValue(), SDValue());
+ if (Subtarget.is64Bit() &&
+ DstTy == MVT::i64 &&
+ isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
+ return std::make_pair(SDValue(), SDValue());
+
+ // We lower FP->int64 into FISTP64 followed by a load from a temporary
+ // stack slot.
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned MemSize = DstTy.getSizeInBits()/8;
+ int SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+
+ unsigned Opc;
+ switch (DstTy.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
+ case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
+ case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
+ case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
+ }
+
+ SDValue Chain = DAG.getEntryNode();
+ SDValue Value = Op.getOperand(0);
+ SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment.
+
+ if (UnsignedFixup) {
+ //
+ // Conversion to unsigned i64 is implemented with a select,
+ // depending on whether the source value fits in the range
+ // of a signed i64. Let Thresh be the FP equivalent of
+ // 0x8000000000000000ULL.
+ //
+ // Adjust i32 = (Value < Thresh) ? 0 : 0x80000000;
+ // FistSrc = (Value < Thresh) ? Value : (Value - Thresh);
+ // Fist-to-mem64 FistSrc
+ // Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent
+ // to XOR'ing the high 32 bits with Adjust.
+ //
+ // Being a power of 2, Thresh is exactly representable in all FP formats.
+ // For X87 we'd like to use the smallest FP type for this constant, but
+ // for DAG type consistency we have to match the FP operand type.
+
+ APFloat Thresh(APFloat::IEEEsingle(), APInt(32, 0x5f000000));
+ LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK;
+ bool LosesInfo = false;
+ if (TheVT == MVT::f64)
+ // The rounding mode is irrelevant as the conversion should be exact.
+ Status = Thresh.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
+ &LosesInfo);
+ else if (TheVT == MVT::f80)
+ Status = Thresh.convert(APFloat::x87DoubleExtended(),
+ APFloat::rmNearestTiesToEven, &LosesInfo);
+
+ assert(Status == APFloat::opOK && !LosesInfo &&
+ "FP conversion should have been exact");
+
+ SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT);
+
+ SDValue Cmp = DAG.getSetCC(DL,
+ getSetCCResultType(DAG.getDataLayout(),
+ *DAG.getContext(), TheVT),
+ Value, ThreshVal, ISD::SETLT);
+ Adjust = DAG.getSelect(DL, MVT::i32, Cmp,
+ DAG.getConstant(0, DL, MVT::i32),
+ DAG.getConstant(0x80000000, DL, MVT::i32));
+ SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal);
+ Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(),
+ *DAG.getContext(), TheVT),
+ Value, ThreshVal, ISD::SETLT);
+ Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub);
+ }
+
+ // FIXME This causes a redundant load/store if the SSE-class value is already
+ // in memory, such as if it is on the callstack.
+ if (isScalarFPTypeInSSEReg(TheVT)) {
+ assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
+ Chain = DAG.getStore(Chain, DL, Value, StackSlot,
+ MachinePointerInfo::getFixedStack(MF, SSFI));
+ SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
+ SDValue Ops[] = {
+ Chain, StackSlot, DAG.getValueType(TheVT)
+ };
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
+ MachineMemOperand::MOLoad, MemSize, MemSize);
+ Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
+ Chain = Value.getValue(1);
+ SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false);
+ StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+ }
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
+ MachineMemOperand::MOStore, MemSize, MemSize);
+
+ if (UnsignedFixup) {
+
+ // Insert the FIST, load its result as two i32's,
+ // and XOR the high i32 with Adjust.
+
+ SDValue FistOps[] = { Chain, Value, StackSlot };
+ SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
+ FistOps, DstTy, MMO);
+
+ SDValue Low32 =
+ DAG.getLoad(MVT::i32, DL, FIST, StackSlot, MachinePointerInfo());
+ SDValue HighAddr = DAG.getMemBasePlusOffset(StackSlot, 4, DL);
+
+ SDValue High32 =
+ DAG.getLoad(MVT::i32, DL, FIST, HighAddr, MachinePointerInfo());
+ High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust);
+
+ if (Subtarget.is64Bit()) {
+ // Join High32 and Low32 into a 64-bit result.
+ // (High32 << 32) | Low32
+ Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32);
+ High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32);
+ High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32,
+ DAG.getConstant(32, DL, MVT::i8));
+ SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32);
+ return std::make_pair(Result, SDValue());
+ }
+
+ SDValue ResultOps[] = { Low32, High32 };
+
+ SDValue pair = IsReplace
+ ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps)
+ : DAG.getMergeValues(ResultOps, DL);
+ return std::make_pair(pair, SDValue());
+ } else {
+ // Build the FP_TO_INT*_IN_MEM
+ SDValue Ops[] = { Chain, Value, StackSlot };
+ SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
+ Ops, DstTy, MMO);
+ return std::make_pair(FIST, StackSlot);
+ }
+}
+
+static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
+ (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
+ (VT != MVT::v16i16 || InVT != MVT::v16i8) &&
+ (VT != MVT::v8i64 || InVT != MVT::v8i32) &&
+ (VT != MVT::v8i64 || InVT != MVT::v8i16) &&
+ (VT != MVT::v16i32 || InVT != MVT::v16i16) &&
+ (VT != MVT::v16i32 || InVT != MVT::v16i8) &&
+ (VT != MVT::v32i16 || InVT != MVT::v32i8))
+ return SDValue();
+
+ if (Subtarget.hasInt256())
+ return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
+
+ // Optimize vectors in AVX mode:
+ //
+ // v8i16 -> v8i32
+ // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32.
+ // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
+ // Concat upper and lower parts.
+ //
+ // v4i32 -> v4i64
+ // Use vpunpckldq for 4 lower elements v4i32 -> v2i64.
+ // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
+ // Concat upper and lower parts.
+ //
+
+ SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
+ SDValue Undef = DAG.getUNDEF(InVT);
+ bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
+ SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
+ SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
+
+ MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
+ VT.getVectorNumElements()/2);
+
+ OpLo = DAG.getBitcast(HVT, OpLo);
+ OpHi = DAG.getBitcast(HVT, OpHi);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
+}
+
+static SDValue LowerZERO_EXTEND_Mask(SDValue Op,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!");
+ SDLoc DL(Op);
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // Extend VT if the scalar type is v8/v16 and BWI is not supported.
+ MVT ExtVT = VT;
+ if (!Subtarget.hasBWI() &&
+ (VT.getVectorElementType().getSizeInBits() <= 16))
+ ExtVT = MVT::getVectorVT(MVT::i32, NumElts);
+
+ // Widen to 512-bits if VLX is not supported.
+ MVT WideVT = ExtVT;
+ if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) {
+ NumElts *= 512 / ExtVT.getSizeInBits();
+ InVT = MVT::getVectorVT(MVT::i1, NumElts);
+ In = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT, DAG.getUNDEF(InVT),
+ In, DAG.getIntPtrConstant(0, DL));
+ WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(),
+ NumElts);
+ }
+
+ SDValue One = DAG.getConstant(1, DL, WideVT);
+ SDValue Zero = getZeroVector(WideVT, Subtarget, DAG, DL);
+
+ SDValue SelectedVal = DAG.getSelect(DL, WideVT, In, One, Zero);
+
+ // Truncate if we had to extend i16/i8 above.
+ if (VT != ExtVT) {
+ WideVT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
+ SelectedVal = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SelectedVal);
+ }
+
+ // Extract back to 128/256-bit if we widened.
+ if (WideVT != VT)
+ SelectedVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SelectedVal,
+ DAG.getIntPtrConstant(0, DL));
+
+ return SelectedVal;
+}
+
+static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDValue In = Op.getOperand(0);
+ MVT SVT = In.getSimpleValueType();
+
+ if (SVT.getVectorElementType() == MVT::i1)
+ return LowerZERO_EXTEND_Mask(Op, Subtarget, DAG);
+
+ if (Subtarget.hasFp256())
+ if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
+ return Res;
+
+ assert(!Op.getSimpleValueType().is256BitVector() || !SVT.is128BitVector() ||
+ Op.getSimpleValueType().getVectorNumElements() !=
+ SVT.getVectorNumElements());
+ return SDValue();
+}
+
+/// Helper to recursively truncate vector elements in half with PACKSS/PACKUS.
+/// It makes use of the fact that vectors with enough leading sign/zero bits
+/// prevent the PACKSS/PACKUS from saturating the results.
+/// AVX2 (Int256) sub-targets require extra shuffling as the PACK*S operates
+/// within each 128-bit lane.
+static SDValue truncateVectorWithPACK(unsigned Opcode, EVT DstVT, SDValue In,
+ const SDLoc &DL, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ assert((Opcode == X86ISD::PACKSS || Opcode == X86ISD::PACKUS) &&
+ "Unexpected PACK opcode");
+
+ // Requires SSE2 but AVX512 has fast truncate.
+ if (!Subtarget.hasSSE2() || Subtarget.hasAVX512())
+ return SDValue();
+
+ EVT SrcVT = In.getValueType();
+
+ // No truncation required, we might get here due to recursive calls.
+ if (SrcVT == DstVT)
+ return In;
+
+ // We only support vector truncation to 128bits or greater from a
+ // 256bits or greater source.
+ unsigned DstSizeInBits = DstVT.getSizeInBits();
+ unsigned SrcSizeInBits = SrcVT.getSizeInBits();
+ if ((DstSizeInBits % 128) != 0 || (SrcSizeInBits % 256) != 0)
+ return SDValue();
+
+ LLVMContext &Ctx = *DAG.getContext();
+ unsigned NumElems = SrcVT.getVectorNumElements();
+ assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
+ assert(SrcSizeInBits > DstSizeInBits && "Illegal truncation");
+
+ EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
+
+ // Extract lower/upper subvectors.
+ unsigned NumSubElts = NumElems / 2;
+ SDValue Lo = extractSubVector(In, 0 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
+ SDValue Hi = extractSubVector(In, 1 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
+
+ // Pack to the largest type possible:
+ // vXi64/vXi32 -> PACK*SDW and vXi16 -> PACK*SWB.
+ EVT InVT = MVT::i16, OutVT = MVT::i8;
+ if (DstVT.getScalarSizeInBits() > 8 &&
+ (Opcode == X86ISD::PACKSS || Subtarget.hasSSE41())) {
+ InVT = MVT::i32;
+ OutVT = MVT::i16;
+ }
+
+ unsigned SubSizeInBits = SrcSizeInBits / 2;
+ InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
+ OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
+
+ // 256bit -> 128bit truncate - PACK lower/upper 128-bit subvectors.
+ if (SrcVT.is256BitVector()) {
+ Lo = DAG.getBitcast(InVT, Lo);
+ Hi = DAG.getBitcast(InVT, Hi);
+ SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi);
+ return DAG.getBitcast(DstVT, Res);
+ }
+
+ // AVX2: 512bit -> 256bit truncate - PACK lower/upper 256-bit subvectors.
+ // AVX2: 512bit -> 128bit truncate - PACK(PACK, PACK).
+ if (SrcVT.is512BitVector() && Subtarget.hasInt256()) {
+ Lo = DAG.getBitcast(InVT, Lo);
+ Hi = DAG.getBitcast(InVT, Hi);
+ SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi);
+
+ // 256-bit PACK(ARG0, ARG1) leaves us with ((LO0,LO1),(HI0,HI1)),
+ // so we need to shuffle to get ((LO0,HI0),(LO1,HI1)).
+ Res = DAG.getBitcast(MVT::v4i64, Res);
+ Res = DAG.getVectorShuffle(MVT::v4i64, DL, Res, Res, {0, 2, 1, 3});
+
+ if (DstVT.is256BitVector())
+ return DAG.getBitcast(DstVT, Res);
+
+ // If 512bit -> 128bit truncate another stage.
+ EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
+ Res = DAG.getBitcast(PackedVT, Res);
+ return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget);
+ }
+
+ // Recursively pack lower/upper subvectors, concat result and pack again.
+ assert(SrcSizeInBits >= 512 && "Expected 512-bit vector or greater");
+ EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumSubElts);
+ Lo = truncateVectorWithPACK(Opcode, PackedVT, Lo, DL, DAG, Subtarget);
+ Hi = truncateVectorWithPACK(Opcode, PackedVT, Hi, DL, DAG, Subtarget);
+
+ PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
+ SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
+ return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget);
+}
+
+static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+
+ assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type.");
+
+ // Shift LSB to MSB and use VPMOVB/W2M or TESTD/Q.
+ unsigned ShiftInx = InVT.getScalarSizeInBits() - 1;
+ if (InVT.getScalarSizeInBits() <= 16) {
+ if (Subtarget.hasBWI()) {
+ // legal, will go to VPMOVB2M, VPMOVW2M
+ // Shift packed bytes not supported natively, bitcast to word
+ MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16);
+ SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, ExtVT,
+ DAG.getBitcast(ExtVT, In),
+ DAG.getConstant(ShiftInx, DL, ExtVT));
+ ShiftNode = DAG.getBitcast(InVT, ShiftNode);
+ return DAG.getNode(X86ISD::CVT2MASK, DL, VT, ShiftNode);
+ }
+ // Use TESTD/Q, extended vector to packed dword/qword.
+ assert((InVT.is256BitVector() || InVT.is128BitVector()) &&
+ "Unexpected vector type.");
+ unsigned NumElts = InVT.getVectorNumElements();
+ MVT EltVT = Subtarget.hasVLX() ? MVT::i32 : MVT::getIntegerVT(512/NumElts);
+ MVT ExtVT = MVT::getVectorVT(EltVT, NumElts);
+ In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
+ InVT = ExtVT;
+ ShiftInx = InVT.getScalarSizeInBits() - 1;
+ }
+
+ SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, InVT, In,
+ DAG.getConstant(ShiftInx, DL, InVT));
+ return DAG.getNode(X86ISD::TESTM, DL, VT, ShiftNode, ShiftNode);
+}
+
+SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ unsigned InNumEltBits = InVT.getScalarSizeInBits();
+
+ assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
+ "Invalid TRUNCATE operation");
+
+ if (VT.getVectorElementType() == MVT::i1)
+ return LowerTruncateVecI1(Op, DAG, Subtarget);
+
+ // vpmovqb/w/d, vpmovdb/w, vpmovwb
+ if (Subtarget.hasAVX512()) {
+ // word to byte only under BWI
+ if (InVT == MVT::v16i16 && !Subtarget.hasBWI()) // v16i16 -> v16i8
+ return DAG.getNode(X86ISD::VTRUNC, DL, VT,
+ getExtendInVec(X86ISD::VSEXT, DL, MVT::v16i32, In, DAG));
+ return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
+ }
+
+ // Truncate with PACKSS if we are truncating a vector with sign-bits that
+ // extend all the way to the packed/truncated value.
+ unsigned NumPackedBits = std::min<unsigned>(VT.getScalarSizeInBits(), 16);
+ if ((InNumEltBits - NumPackedBits) < DAG.ComputeNumSignBits(In))
+ if (SDValue V =
+ truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget))
+ return V;
+
+ // Truncate with PACKUS if we are truncating a vector with leading zero bits
+ // that extend all the way to the packed/truncated value.
+ // Pre-SSE41 we can only use PACKUSWB.
+ KnownBits Known;
+ DAG.computeKnownBits(In, Known);
+ NumPackedBits = Subtarget.hasSSE41() ? NumPackedBits : 8;
+ if ((InNumEltBits - NumPackedBits) <= Known.countMinLeadingZeros())
+ if (SDValue V =
+ truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget))
+ return V;
+
+ if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
+ // On AVX2, v4i64 -> v4i32 becomes VPERMD.
+ if (Subtarget.hasInt256()) {
+ static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
+ In = DAG.getBitcast(MVT::v8i32, In);
+ In = DAG.getVectorShuffle(MVT::v8i32, DL, In, In, ShufMask);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
+ DAG.getIntPtrConstant(0, DL));
+ }
+
+ SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(2, DL));
+ OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
+ OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
+ static const int ShufMask[] = {0, 2, 4, 6};
+ return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
+ }
+
+ if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
+ // On AVX2, v8i32 -> v8i16 becomes PSHUFB.
+ if (Subtarget.hasInt256()) {
+ In = DAG.getBitcast(MVT::v32i8, In);
+
+ // The PSHUFB mask:
+ static const int ShufMask1[] = { 0, 1, 4, 5, 8, 9, 12, 13,
+ -1, -1, -1, -1, -1, -1, -1, -1,
+ 16, 17, 20, 21, 24, 25, 28, 29,
+ -1, -1, -1, -1, -1, -1, -1, -1 };
+ In = DAG.getVectorShuffle(MVT::v32i8, DL, In, In, ShufMask1);
+ In = DAG.getBitcast(MVT::v4i64, In);
+
+ static const int ShufMask2[] = {0, 2, -1, -1};
+ In = DAG.getVectorShuffle(MVT::v4i64, DL, In, In, ShufMask2);
+ In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(0, DL));
+ return DAG.getBitcast(VT, In);
+ }
+
+ SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
+ DAG.getIntPtrConstant(0, DL));
+
+ SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
+ DAG.getIntPtrConstant(4, DL));
+
+ OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
+ OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
+
+ // The PSHUFB mask:
+ static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
+ -1, -1, -1, -1, -1, -1, -1, -1};
+
+ OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, OpLo, ShufMask1);
+ OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, OpHi, ShufMask1);
+
+ OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
+ OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
+
+ // The MOVLHPS Mask:
+ static const int ShufMask2[] = {0, 1, 4, 5};
+ SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
+ return DAG.getBitcast(MVT::v8i16, res);
+ }
+
+ // Handle truncation of V256 to V128 using shuffles.
+ if (!VT.is128BitVector() || !InVT.is256BitVector())
+ return SDValue();
+
+ assert(Subtarget.hasFp256() && "256-bit vector without AVX!");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
+
+ SmallVector<int, 16> MaskVec(NumElems * 2, -1);
+ // Prepare truncation shuffle mask
+ for (unsigned i = 0; i != NumElems; ++i)
+ MaskVec[i] = i * 2;
+ In = DAG.getBitcast(NVT, In);
+ SDValue V = DAG.getVectorShuffle(NVT, DL, In, In, MaskVec);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
+ DAG.getIntPtrConstant(0, DL));
+}
+
+SDValue X86TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
+ bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT;
+ MVT VT = Op.getSimpleValueType();
+
+ if (VT.isVector()) {
+ assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!");
+ SDValue Src = Op.getOperand(0);
+ SDLoc dl(Op);
+ if (VT == MVT::v2i64 && Src.getSimpleValueType() == MVT::v2f32) {
+ return DAG.getNode(IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI, dl, VT,
+ DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
+ DAG.getUNDEF(MVT::v2f32)));
+ }
+
+ return SDValue();
+ }
+
+ assert(!VT.isVector());
+
+ std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
+ IsSigned, /*IsReplace=*/ false);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
+ if (!FIST.getNode())
+ return Op;
+
+ if (StackSlot.getNode())
+ // Load the result.
+ return DAG.getLoad(VT, SDLoc(Op), FIST, StackSlot, MachinePointerInfo());
+
+ // The node is the result.
+ return FIST;
+}
+
+static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT SVT = In.getSimpleValueType();
+
+ assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
+
+ return DAG.getNode(X86ISD::VFPEXT, DL, VT,
+ DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
+ In, DAG.getUNDEF(SVT)));
+}
+
+/// The only differences between FABS and FNEG are the mask and the logic op.
+/// FNEG also has a folding opportunity for FNEG(FABS(x)).
+static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
+ assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
+ "Wrong opcode for lowering FABS or FNEG.");
+
+ bool IsFABS = (Op.getOpcode() == ISD::FABS);
+
+ // If this is a FABS and it has an FNEG user, bail out to fold the combination
+ // into an FNABS. We'll lower the FABS after that if it is still in use.
+ if (IsFABS)
+ for (SDNode *User : Op->uses())
+ if (User->getOpcode() == ISD::FNEG)
+ return Op;
+
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ bool IsF128 = (VT == MVT::f128);
+
+ // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
+ // decide if we should generate a 16-byte constant mask when we only need 4 or
+ // 8 bytes for the scalar case.
+
+ MVT LogicVT;
+ MVT EltVT;
+
+ if (VT.isVector()) {
+ LogicVT = VT;
+ EltVT = VT.getVectorElementType();
+ } else if (IsF128) {
+ // SSE instructions are used for optimized f128 logical operations.
+ LogicVT = MVT::f128;
+ EltVT = VT;
+ } else {
+ // There are no scalar bitwise logical SSE/AVX instructions, so we
+ // generate a 16-byte vector constant and logic op even for the scalar case.
+ // Using a 16-byte mask allows folding the load of the mask with
+ // the logic op, so it can save (~4 bytes) on code size.
+ LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
+ EltVT = VT;
+ }
+
+ unsigned EltBits = EltVT.getSizeInBits();
+ // For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
+ APInt MaskElt =
+ IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignMask(EltBits);
+ const fltSemantics &Sem =
+ EltVT == MVT::f64 ? APFloat::IEEEdouble() :
+ (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle());
+ SDValue Mask = DAG.getConstantFP(APFloat(Sem, MaskElt), dl, LogicVT);
+
+ SDValue Op0 = Op.getOperand(0);
+ bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
+ unsigned LogicOp =
+ IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
+ SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
+
+ if (VT.isVector() || IsF128)
+ return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
+
+ // For the scalar case extend to a 128-bit vector, perform the logic op,
+ // and extract the scalar result back out.
+ Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand);
+ SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
+ SDValue Mag = Op.getOperand(0);
+ SDValue Sign = Op.getOperand(1);
+ SDLoc dl(Op);
+
+ // If the sign operand is smaller, extend it first.
+ MVT VT = Op.getSimpleValueType();
+ if (Sign.getSimpleValueType().bitsLT(VT))
+ Sign = DAG.getNode(ISD::FP_EXTEND, dl, VT, Sign);
+
+ // And if it is bigger, shrink it first.
+ if (Sign.getSimpleValueType().bitsGT(VT))
+ Sign = DAG.getNode(ISD::FP_ROUND, dl, VT, Sign, DAG.getIntPtrConstant(1, dl));
+
+ // At this point the operands and the result should have the same
+ // type, and that won't be f80 since that is not custom lowered.
+ bool IsF128 = (VT == MVT::f128);
+ assert((VT == MVT::f64 || VT == MVT::f32 || VT == MVT::f128 ||
+ VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
+ VT == MVT::v8f32 || VT == MVT::v8f64 || VT == MVT::v16f32) &&
+ "Unexpected type in LowerFCOPYSIGN");
+
+ MVT EltVT = VT.getScalarType();
+ const fltSemantics &Sem =
+ EltVT == MVT::f64 ? APFloat::IEEEdouble()
+ : (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle());
+
+ // Perform all scalar logic operations as 16-byte vectors because there are no
+ // scalar FP logic instructions in SSE.
+ // TODO: This isn't necessary. If we used scalar types, we might avoid some
+ // unnecessary splats, but we might miss load folding opportunities. Should
+ // this decision be based on OptimizeForSize?
+ bool IsFakeVector = !VT.isVector() && !IsF128;
+ MVT LogicVT = VT;
+ if (IsFakeVector)
+ LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
+
+ // The mask constants are automatically splatted for vector types.
+ unsigned EltSizeInBits = VT.getScalarSizeInBits();
+ SDValue SignMask = DAG.getConstantFP(
+ APFloat(Sem, APInt::getSignMask(EltSizeInBits)), dl, LogicVT);
+ SDValue MagMask = DAG.getConstantFP(
+ APFloat(Sem, ~APInt::getSignMask(EltSizeInBits)), dl, LogicVT);
+
+ // First, clear all bits but the sign bit from the second operand (sign).
+ if (IsFakeVector)
+ Sign = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Sign);
+ SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Sign, SignMask);
+
+ // Next, clear the sign bit from the first operand (magnitude).
+ // TODO: If we had general constant folding for FP logic ops, this check
+ // wouldn't be necessary.
+ SDValue MagBits;
+ if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Mag)) {
+ APFloat APF = Op0CN->getValueAPF();
+ APF.clearSign();
+ MagBits = DAG.getConstantFP(APF, dl, LogicVT);
+ } else {
+ // If the magnitude operand wasn't a constant, we need to AND out the sign.
+ if (IsFakeVector)
+ Mag = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Mag);
+ MagBits = DAG.getNode(X86ISD::FAND, dl, LogicVT, Mag, MagMask);
+ }
+
+ // OR the magnitude value with the sign bit.
+ SDValue Or = DAG.getNode(X86ISD::FOR, dl, LogicVT, MagBits, SignBit);
+ return !IsFakeVector ? Or : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Or,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
+ SDValue N0 = Op.getOperand(0);
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ MVT OpVT = N0.getSimpleValueType();
+ assert((OpVT == MVT::f32 || OpVT == MVT::f64) &&
+ "Unexpected type for FGETSIGN");
+
+ // Lower ISD::FGETSIGN to (AND (X86ISD::MOVMSK ...) 1).
+ MVT VecVT = (OpVT == MVT::f32 ? MVT::v4f32 : MVT::v2f64);
+ SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, N0);
+ Res = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32, Res);
+ Res = DAG.getZExtOrTrunc(Res, dl, VT);
+ Res = DAG.getNode(ISD::AND, dl, VT, Res, DAG.getConstant(1, dl, VT));
+ return Res;
+}
+
+// Check whether an OR'd tree is PTEST-able.
+static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
+
+ if (!Subtarget.hasSSE41())
+ return SDValue();
+
+ if (!Op->hasOneUse())
+ return SDValue();
+
+ SDNode *N = Op.getNode();
+ SDLoc DL(N);
+
+ SmallVector<SDValue, 8> Opnds;
+ DenseMap<SDValue, unsigned> VecInMap;
+ SmallVector<SDValue, 8> VecIns;
+ EVT VT = MVT::Other;
+
+ // Recognize a special case where a vector is casted into wide integer to
+ // test all 0s.
+ Opnds.push_back(N->getOperand(0));
+ Opnds.push_back(N->getOperand(1));
+
+ for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
+ SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
+ // BFS traverse all OR'd operands.
+ if (I->getOpcode() == ISD::OR) {
+ Opnds.push_back(I->getOperand(0));
+ Opnds.push_back(I->getOperand(1));
+ // Re-evaluate the number of nodes to be traversed.
+ e += 2; // 2 more nodes (LHS and RHS) are pushed.
+ continue;
+ }
+
+ // Quit if a non-EXTRACT_VECTOR_ELT
+ if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ // Quit if without a constant index.
+ SDValue Idx = I->getOperand(1);
+ if (!isa<ConstantSDNode>(Idx))
+ return SDValue();
+
+ SDValue ExtractedFromVec = I->getOperand(0);
+ DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
+ if (M == VecInMap.end()) {
+ VT = ExtractedFromVec.getValueType();
+ // Quit if not 128/256-bit vector.
+ if (!VT.is128BitVector() && !VT.is256BitVector())
+ return SDValue();
+ // Quit if not the same type.
+ if (VecInMap.begin() != VecInMap.end() &&
+ VT != VecInMap.begin()->first.getValueType())
+ return SDValue();
+ M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
+ VecIns.push_back(ExtractedFromVec);
+ }
+ M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
+ }
+
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Not extracted from 128-/256-bit vector.");
+
+ unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
+
+ for (DenseMap<SDValue, unsigned>::const_iterator
+ I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
+ // Quit if not all elements are used.
+ if (I->second != FullMask)
+ return SDValue();
+ }
+
+ MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
+
+ // Cast all vectors into TestVT for PTEST.
+ for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
+ VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
+
+ // If more than one full vector is evaluated, OR them first before PTEST.
+ for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
+ // Each iteration will OR 2 nodes and append the result until there is only
+ // 1 node left, i.e. the final OR'd value of all vectors.
+ SDValue LHS = VecIns[Slot];
+ SDValue RHS = VecIns[Slot + 1];
+ VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
+ }
+
+ return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, VecIns.back(), VecIns.back());
+}
+
+/// \brief return true if \c Op has a use that doesn't just read flags.
+static bool hasNonFlagsUse(SDValue Op) {
+ for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
+ ++UI) {
+ SDNode *User = *UI;
+ unsigned UOpNo = UI.getOperandNo();
+ if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
+ // Look pass truncate.
+ UOpNo = User->use_begin().getOperandNo();
+ User = *User->use_begin();
+ }
+
+ if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
+ !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
+ return true;
+ }
+ return false;
+}
+
+// Emit KTEST instruction for bit vectors on AVX-512
+static SDValue EmitKTEST(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (Op.getOpcode() == ISD::BITCAST) {
+ auto hasKTEST = [&](MVT VT) {
+ unsigned SizeInBits = VT.getSizeInBits();
+ return (Subtarget.hasDQI() && (SizeInBits == 8 || SizeInBits == 16)) ||
+ (Subtarget.hasBWI() && (SizeInBits == 32 || SizeInBits == 64));
+ };
+ SDValue Op0 = Op.getOperand(0);
+ MVT Op0VT = Op0.getValueType().getSimpleVT();
+ if (Op0VT.isVector() && Op0VT.getVectorElementType() == MVT::i1 &&
+ hasKTEST(Op0VT))
+ return DAG.getNode(X86ISD::KTEST, SDLoc(Op), Op0VT, Op0, Op0);
+ }
+ return SDValue();
+}
+
+/// Emit nodes that will be selected as "test Op0,Op0", or something
+/// equivalent.
+SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, const SDLoc &dl,
+ SelectionDAG &DAG) const {
+ if (Op.getValueType() == MVT::i1) {
+ SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op);
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp,
+ DAG.getConstant(0, dl, MVT::i8));
+ }
+ // CF and OF aren't always set the way we want. Determine which
+ // of these we need.
+ bool NeedCF = false;
+ bool NeedOF = false;
+ switch (X86CC) {
+ default: break;
+ case X86::COND_A: case X86::COND_AE:
+ case X86::COND_B: case X86::COND_BE:
+ NeedCF = true;
+ break;
+ case X86::COND_G: case X86::COND_GE:
+ case X86::COND_L: case X86::COND_LE:
+ case X86::COND_O: case X86::COND_NO: {
+ // Check if we really need to set the
+ // Overflow flag. If NoSignedWrap is present
+ // that is not actually needed.
+ switch (Op->getOpcode()) {
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::MUL:
+ case ISD::SHL:
+ if (Op.getNode()->getFlags().hasNoSignedWrap())
+ break;
+ LLVM_FALLTHROUGH;
+ default:
+ NeedOF = true;
+ break;
+ }
+ break;
+ }
+ }
+ // See if we can use the EFLAGS value from the operand instead of
+ // doing a separate TEST. TEST always sets OF and CF to 0, so unless
+ // we prove that the arithmetic won't overflow, we can't use OF or CF.
+ if (Op.getResNo() != 0 || NeedOF || NeedCF) {
+ // Emit KTEST for bit vectors
+ if (auto Node = EmitKTEST(Op, DAG, Subtarget))
+ return Node;
+ // Emit a CMP with 0, which is the TEST pattern.
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
+ DAG.getConstant(0, dl, Op.getValueType()));
+ }
+ unsigned Opcode = 0;
+ unsigned NumOperands = 0;
+
+ // Truncate operations may prevent the merge of the SETCC instruction
+ // and the arithmetic instruction before it. Attempt to truncate the operands
+ // of the arithmetic instruction and use a reduced bit-width instruction.
+ bool NeedTruncation = false;
+ SDValue ArithOp = Op;
+ if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
+ SDValue Arith = Op->getOperand(0);
+ // Both the trunc and the arithmetic op need to have one user each.
+ if (Arith->hasOneUse())
+ switch (Arith.getOpcode()) {
+ default: break;
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR: {
+ NeedTruncation = true;
+ ArithOp = Arith;
+ }
+ }
+ }
+
+ // Sometimes flags can be set either with an AND or with an SRL/SHL
+ // instruction. SRL/SHL variant should be preferred for masks longer than this
+ // number of bits.
+ const int ShiftToAndMaxMaskWidth = 32;
+ const bool ZeroCheck = (X86CC == X86::COND_E || X86CC == X86::COND_NE);
+
+ // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
+ // which may be the result of a CAST. We use the variable 'Op', which is the
+ // non-casted variable when we check for possible users.
+ switch (ArithOp.getOpcode()) {
+ case ISD::ADD:
+ // We only want to rewrite this as a target-specific node with attached
+ // flags if there is a reasonable chance of either using that to do custom
+ // instructions selection that can fold some of the memory operands, or if
+ // only the flags are used. If there are other uses, leave the node alone
+ // and emit a test instruction.
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI)
+ if (UI->getOpcode() != ISD::CopyToReg &&
+ UI->getOpcode() != ISD::SETCC &&
+ UI->getOpcode() != ISD::STORE)
+ goto default_case;
+
+ if (auto *C = dyn_cast<ConstantSDNode>(ArithOp.getOperand(1))) {
+ // An add of one will be selected as an INC.
+ if (C->isOne() &&
+ (!Subtarget.slowIncDec() ||
+ DAG.getMachineFunction().getFunction().optForSize())) {
+ Opcode = X86ISD::INC;
+ NumOperands = 1;
+ break;
+ }
+
+ // An add of negative one (subtract of one) will be selected as a DEC.
+ if (C->isAllOnesValue() &&
+ (!Subtarget.slowIncDec() ||
+ DAG.getMachineFunction().getFunction().optForSize())) {
+ Opcode = X86ISD::DEC;
+ NumOperands = 1;
+ break;
+ }
+ }
+
+ // Otherwise use a regular EFLAGS-setting add.
+ Opcode = X86ISD::ADD;
+ NumOperands = 2;
+ break;
+ case ISD::SHL:
+ case ISD::SRL:
+ // If we have a constant logical shift that's only used in a comparison
+ // against zero turn it into an equivalent AND. This allows turning it into
+ // a TEST instruction later.
+ if (ZeroCheck && Op->hasOneUse() &&
+ isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ unsigned ShAmt = Op->getConstantOperandVal(1);
+ if (ShAmt >= BitWidth) // Avoid undefined shifts.
+ break;
+ APInt Mask = ArithOp.getOpcode() == ISD::SRL
+ ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
+ : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
+ if (!Mask.isSignedIntN(ShiftToAndMaxMaskWidth))
+ break;
+ Op = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
+ DAG.getConstant(Mask, dl, VT));
+ }
+ break;
+
+ case ISD::AND:
+ // If the primary 'and' result isn't used, don't bother using X86ISD::AND,
+ // because a TEST instruction will be better. However, AND should be
+ // preferred if the instruction can be combined into ANDN.
+ if (!hasNonFlagsUse(Op)) {
+ SDValue Op0 = ArithOp->getOperand(0);
+ SDValue Op1 = ArithOp->getOperand(1);
+ EVT VT = ArithOp.getValueType();
+ bool isAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1);
+ bool isLegalAndnType = VT == MVT::i32 || VT == MVT::i64;
+ bool isProperAndn = isAndn && isLegalAndnType && Subtarget.hasBMI();
+
+ // If we cannot select an ANDN instruction, check if we can replace
+ // AND+IMM64 with a shift before giving up. This is possible for masks
+ // like 0xFF000000 or 0x00FFFFFF and if we care only about the zero flag.
+ if (!isProperAndn) {
+ if (!ZeroCheck)
+ break;
+
+ assert(!isa<ConstantSDNode>(Op0) && "AND node isn't canonicalized");
+ auto *CN = dyn_cast<ConstantSDNode>(Op1);
+ if (!CN)
+ break;
+
+ const APInt &Mask = CN->getAPIntValue();
+ if (Mask.isSignedIntN(ShiftToAndMaxMaskWidth))
+ break; // Prefer TEST instruction.
+
+ unsigned BitWidth = Mask.getBitWidth();
+ unsigned LeadingOnes = Mask.countLeadingOnes();
+ unsigned TrailingZeros = Mask.countTrailingZeros();
+
+ if (LeadingOnes + TrailingZeros == BitWidth) {
+ assert(TrailingZeros < VT.getSizeInBits() &&
+ "Shift amount should be less than the type width");
+ MVT ShTy = getScalarShiftAmountTy(DAG.getDataLayout(), VT);
+ SDValue ShAmt = DAG.getConstant(TrailingZeros, dl, ShTy);
+ Op = DAG.getNode(ISD::SRL, dl, VT, Op0, ShAmt);
+ break;
+ }
+
+ unsigned LeadingZeros = Mask.countLeadingZeros();
+ unsigned TrailingOnes = Mask.countTrailingOnes();
+
+ if (LeadingZeros + TrailingOnes == BitWidth) {
+ assert(LeadingZeros < VT.getSizeInBits() &&
+ "Shift amount should be less than the type width");
+ MVT ShTy = getScalarShiftAmountTy(DAG.getDataLayout(), VT);
+ SDValue ShAmt = DAG.getConstant(LeadingZeros, dl, ShTy);
+ Op = DAG.getNode(ISD::SHL, dl, VT, Op0, ShAmt);
+ break;
+ }
+
+ break;
+ }
+ }
+ LLVM_FALLTHROUGH;
+ case ISD::SUB:
+ case ISD::OR:
+ case ISD::XOR:
+ // Similar to ISD::ADD above, check if the uses will preclude useful
+ // lowering of the target-specific node.
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI)
+ if (UI->getOpcode() != ISD::CopyToReg &&
+ UI->getOpcode() != ISD::SETCC &&
+ UI->getOpcode() != ISD::STORE)
+ goto default_case;
+
+ // Otherwise use a regular EFLAGS-setting instruction.
+ switch (ArithOp.getOpcode()) {
+ default: llvm_unreachable("unexpected operator!");
+ case ISD::SUB: Opcode = X86ISD::SUB; break;
+ case ISD::XOR: Opcode = X86ISD::XOR; break;
+ case ISD::AND: Opcode = X86ISD::AND; break;
+ case ISD::OR: {
+ if (!NeedTruncation && ZeroCheck) {
+ if (SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG))
+ return EFLAGS;
+ }
+ Opcode = X86ISD::OR;
+ break;
+ }
+ }
+
+ NumOperands = 2;
+ break;
+ case X86ISD::ADD:
+ case X86ISD::SUB:
+ case X86ISD::INC:
+ case X86ISD::DEC:
+ case X86ISD::OR:
+ case X86ISD::XOR:
+ case X86ISD::AND:
+ return SDValue(Op.getNode(), 1);
+ default:
+ default_case:
+ break;
+ }
+
+ // If we found that truncation is beneficial, perform the truncation and
+ // update 'Op'.
+ if (NeedTruncation) {
+ EVT VT = Op.getValueType();
+ SDValue WideVal = Op->getOperand(0);
+ EVT WideVT = WideVal.getValueType();
+ unsigned ConvertedOp = 0;
+ // Use a target machine opcode to prevent further DAGCombine
+ // optimizations that may separate the arithmetic operations
+ // from the setcc node.
+ switch (WideVal.getOpcode()) {
+ default: break;
+ case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
+ case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
+ case ISD::AND: ConvertedOp = X86ISD::AND; break;
+ case ISD::OR: ConvertedOp = X86ISD::OR; break;
+ case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
+ }
+
+ if (ConvertedOp) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
+ SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
+ SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
+ Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
+ }
+ }
+ }
+
+ if (Opcode == 0) {
+ // Emit KTEST for bit vectors
+ if (auto Node = EmitKTEST(Op, DAG, Subtarget))
+ return Node;
+
+ // Emit a CMP with 0, which is the TEST pattern.
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
+ DAG.getConstant(0, dl, Op.getValueType()));
+ }
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
+
+ SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
+ DAG.ReplaceAllUsesWith(Op, New);
+ return SDValue(New.getNode(), 1);
+}
+
+/// Emit nodes that will be selected as "cmp Op0,Op1", or something
+/// equivalent.
+SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
+ const SDLoc &dl, SelectionDAG &DAG) const {
+ if (isNullConstant(Op1))
+ return EmitTest(Op0, X86CC, dl, DAG);
+
+ assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) &&
+ "Unexpected comparison operation for MVT::i1 operands");
+
+ if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
+ Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
+ // Only promote the compare up to I32 if it is a 16 bit operation
+ // with an immediate. 16 bit immediates are to be avoided.
+ if ((Op0.getValueType() == MVT::i16 &&
+ (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1))) &&
+ !DAG.getMachineFunction().getFunction().optForMinSize() &&
+ !Subtarget.isAtom()) {
+ unsigned ExtendOp =
+ isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
+ Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
+ Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
+ }
+ // Use SUB instead of CMP to enable CSE between SUB and CMP.
+ SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
+ SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, Op0, Op1);
+ return SDValue(Sub.getNode(), 1);
+ }
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
+}
+
+/// Convert a comparison if required by the subtarget.
+SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
+ SelectionDAG &DAG) const {
+ // If the subtarget does not support the FUCOMI instruction, floating-point
+ // comparisons have to be converted.
+ if (Subtarget.hasCMov() ||
+ Cmp.getOpcode() != X86ISD::CMP ||
+ !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
+ !Cmp.getOperand(1).getValueType().isFloatingPoint())
+ return Cmp;
+
+ // The instruction selector will select an FUCOM instruction instead of
+ // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
+ // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
+ // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
+ SDLoc dl(Cmp);
+ SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
+ SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
+ SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
+ DAG.getConstant(8, dl, MVT::i8));
+ SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
+
+ // Some 64-bit targets lack SAHF support, but they do support FCOMI.
+ assert(Subtarget.hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?");
+ return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
+}
+
+/// Check if replacement of SQRT with RSQRT should be disabled.
+bool X86TargetLowering::isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+
+ // We never want to use both SQRT and RSQRT instructions for the same input.
+ if (DAG.getNodeIfExists(X86ISD::FRSQRT, DAG.getVTList(VT), Op))
+ return false;
+
+ if (VT.isVector())
+ return Subtarget.hasFastVectorFSQRT();
+ return Subtarget.hasFastScalarFSQRT();
+}
+
+/// The minimum architected relative accuracy is 2^-12. We need one
+/// Newton-Raphson step to have a good float result (24 bits of precision).
+SDValue X86TargetLowering::getSqrtEstimate(SDValue Op,
+ SelectionDAG &DAG, int Enabled,
+ int &RefinementSteps,
+ bool &UseOneConstNR,
+ bool Reciprocal) const {
+ EVT VT = Op.getValueType();
+
+ // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
+ // TODO: Add support for AVX512 (v16f32).
+ // It is likely not profitable to do this for f64 because a double-precision
+ // rsqrt estimate with refinement on x86 prior to FMA requires at least 16
+ // instructions: convert to single, rsqrtss, convert back to double, refine
+ // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
+ // along with FMA, this could be a throughput win.
+ // TODO: SQRT requires SSE2 to prevent the introduction of an illegal v4i32
+ // after legalize types.
+ if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
+ (VT == MVT::v4f32 && Subtarget.hasSSE1() && Reciprocal) ||
+ (VT == MVT::v4f32 && Subtarget.hasSSE2() && !Reciprocal) ||
+ (VT == MVT::v8f32 && Subtarget.hasAVX())) {
+ if (RefinementSteps == ReciprocalEstimate::Unspecified)
+ RefinementSteps = 1;
+
+ UseOneConstNR = false;
+ return DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
+ }
+ return SDValue();
+}
+
+/// The minimum architected relative accuracy is 2^-12. We need one
+/// Newton-Raphson step to have a good float result (24 bits of precision).
+SDValue X86TargetLowering::getRecipEstimate(SDValue Op, SelectionDAG &DAG,
+ int Enabled,
+ int &RefinementSteps) const {
+ EVT VT = Op.getValueType();
+
+ // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
+ // TODO: Add support for AVX512 (v16f32).
+ // It is likely not profitable to do this for f64 because a double-precision
+ // reciprocal estimate with refinement on x86 prior to FMA requires
+ // 15 instructions: convert to single, rcpss, convert back to double, refine
+ // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
+ // along with FMA, this could be a throughput win.
+
+ if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
+ (VT == MVT::v4f32 && Subtarget.hasSSE1()) ||
+ (VT == MVT::v8f32 && Subtarget.hasAVX())) {
+ // Enable estimate codegen with 1 refinement step for vector division.
+ // Scalar division estimates are disabled because they break too much
+ // real-world code. These defaults are intended to match GCC behavior.
+ if (VT == MVT::f32 && Enabled == ReciprocalEstimate::Unspecified)
+ return SDValue();
+
+ if (RefinementSteps == ReciprocalEstimate::Unspecified)
+ RefinementSteps = 1;
+
+ return DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
+ }
+ return SDValue();
+}
+
+/// If we have at least two divisions that use the same divisor, convert to
+/// multiplication by a reciprocal. This may need to be adjusted for a given
+/// CPU if a division's cost is not at least twice the cost of a multiplication.
+/// This is because we still need one division to calculate the reciprocal and
+/// then we need two multiplies by that reciprocal as replacements for the
+/// original divisions.
+unsigned X86TargetLowering::combineRepeatedFPDivisors() const {
+ return 2;
+}
+
+/// Helper for creating a X86ISD::SETCC node.
+static SDValue getSETCC(X86::CondCode Cond, SDValue EFLAGS, const SDLoc &dl,
+ SelectionDAG &DAG) {
+ return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(Cond, dl, MVT::i8), EFLAGS);
+}
+
+/// Create a BT (Bit Test) node - Test bit \p BitNo in \p Src and set condition
+/// according to equal/not-equal condition code \p CC.
+static SDValue getBitTestCondition(SDValue Src, SDValue BitNo, ISD::CondCode CC,
+ const SDLoc &dl, SelectionDAG &DAG) {
+ // If Src is i8, promote it to i32 with any_extend. There is no i8 BT
+ // instruction. Since the shift amount is in-range-or-undefined, we know
+ // that doing a bittest on the i32 value is ok. We extend to i32 because
+ // the encoding for the i16 version is larger than the i32 version.
+ // Also promote i16 to i32 for performance / code size reason.
+ if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16)
+ Src = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Src);
+
+ // See if we can use the 32-bit instruction instead of the 64-bit one for a
+ // shorter encoding. Since the former takes the modulo 32 of BitNo and the
+ // latter takes the modulo 64, this is only valid if the 5th bit of BitNo is
+ // known to be zero.
+ if (Src.getValueType() == MVT::i64 &&
+ DAG.MaskedValueIsZero(BitNo, APInt(BitNo.getValueSizeInBits(), 32)))
+ Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
+
+ // If the operand types disagree, extend the shift amount to match. Since
+ // BT ignores high bits (like shifts) we can use anyextend.
+ if (Src.getValueType() != BitNo.getValueType())
+ BitNo = DAG.getNode(ISD::ANY_EXTEND, dl, Src.getValueType(), BitNo);
+
+ SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, Src, BitNo);
+ X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
+ return getSETCC(Cond, BT, dl , DAG);
+}
+
+/// Result of 'and' is compared against zero. Change to a BT node if possible.
+static SDValue LowerAndToBT(SDValue And, ISD::CondCode CC,
+ const SDLoc &dl, SelectionDAG &DAG) {
+ assert(And.getOpcode() == ISD::AND && "Expected AND node!");
+ SDValue Op0 = And.getOperand(0);
+ SDValue Op1 = And.getOperand(1);
+ if (Op0.getOpcode() == ISD::TRUNCATE)
+ Op0 = Op0.getOperand(0);
+ if (Op1.getOpcode() == ISD::TRUNCATE)
+ Op1 = Op1.getOperand(0);
+
+ SDValue LHS, RHS;
+ if (Op1.getOpcode() == ISD::SHL)
+ std::swap(Op0, Op1);
+ if (Op0.getOpcode() == ISD::SHL) {
+ if (isOneConstant(Op0.getOperand(0))) {
+ // If we looked past a truncate, check that it's only truncating away
+ // known zeros.
+ unsigned BitWidth = Op0.getValueSizeInBits();
+ unsigned AndBitWidth = And.getValueSizeInBits();
+ if (BitWidth > AndBitWidth) {
+ KnownBits Known;
+ DAG.computeKnownBits(Op0, Known);
+ if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth)
+ return SDValue();
+ }
+ LHS = Op1;
+ RHS = Op0.getOperand(1);
+ }
+ } else if (Op1.getOpcode() == ISD::Constant) {
+ ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
+ uint64_t AndRHSVal = AndRHS->getZExtValue();
+ SDValue AndLHS = Op0;
+
+ if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
+ LHS = AndLHS.getOperand(0);
+ RHS = AndLHS.getOperand(1);
+ }
+
+ // Use BT if the immediate can't be encoded in a TEST instruction.
+ if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
+ LHS = AndLHS;
+ RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType());
+ }
+ }
+
+ if (LHS.getNode())
+ return getBitTestCondition(LHS, RHS, CC, dl, DAG);
+
+ return SDValue();
+}
+
+/// Turns an ISD::CondCode into a value suitable for SSE floating-point mask
+/// CMPs.
+static unsigned translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
+ SDValue &Op1) {
+ unsigned SSECC;
+ bool Swap = false;
+
+ // SSE Condition code mapping:
+ // 0 - EQ
+ // 1 - LT
+ // 2 - LE
+ // 3 - UNORD
+ // 4 - NEQ
+ // 5 - NLT
+ // 6 - NLE
+ // 7 - ORD
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETOEQ:
+ case ISD::SETEQ: SSECC = 0; break;
+ case ISD::SETOGT:
+ case ISD::SETGT: Swap = true; LLVM_FALLTHROUGH;
+ case ISD::SETLT:
+ case ISD::SETOLT: SSECC = 1; break;
+ case ISD::SETOGE:
+ case ISD::SETGE: Swap = true; LLVM_FALLTHROUGH;
+ case ISD::SETLE:
+ case ISD::SETOLE: SSECC = 2; break;
+ case ISD::SETUO: SSECC = 3; break;
+ case ISD::SETUNE:
+ case ISD::SETNE: SSECC = 4; break;
+ case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
+ case ISD::SETUGE: SSECC = 5; break;
+ case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
+ case ISD::SETUGT: SSECC = 6; break;
+ case ISD::SETO: SSECC = 7; break;
+ case ISD::SETUEQ: SSECC = 8; break;
+ case ISD::SETONE: SSECC = 12; break;
+ }
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ return SSECC;
+}
+
+/// Break a VSETCC 256-bit integer VSETCC into two new 128 ones and then
+/// concatenate the result back.
+static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
+ "Unsupported value type for operation");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDLoc dl(Op);
+ SDValue CC = Op.getOperand(2);
+
+ // Extract the LHS vectors
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
+ SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
+
+ // Extract the RHS vectors
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
+ SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
+
+ // Issue the operation on the smaller types and concatenate the result back
+ MVT EltVT = VT.getVectorElementType();
+ MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
+}
+
+static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ assert(Op0.getSimpleValueType().getVectorElementType() == MVT::i1 &&
+ "Unexpected type for boolean compare operation");
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0,
+ DAG.getConstant(-1, dl, VT));
+ SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1,
+ DAG.getConstant(-1, dl, VT));
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETEQ:
+ // (x == y) -> ~(x ^ y)
+ return DAG.getNode(ISD::XOR, dl, VT,
+ DAG.getNode(ISD::XOR, dl, VT, Op0, Op1),
+ DAG.getConstant(-1, dl, VT));
+ case ISD::SETNE:
+ // (x != y) -> (x ^ y)
+ return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1);
+ case ISD::SETUGT:
+ case ISD::SETGT:
+ // (x > y) -> (x & ~y)
+ return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1);
+ case ISD::SETULT:
+ case ISD::SETLT:
+ // (x < y) -> (~x & y)
+ return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1);
+ case ISD::SETULE:
+ case ISD::SETLE:
+ // (x <= y) -> (~x | y)
+ return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1);
+ case ISD::SETUGE:
+ case ISD::SETGE:
+ // (x >=y) -> (x | ~y)
+ return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1);
+ }
+}
+
+static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ assert(VT.getVectorElementType() == MVT::i1 &&
+ "Cannot set masked compare for this operation");
+
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ unsigned Opc = 0;
+ bool Unsigned = false;
+ bool Swap = false;
+ unsigned SSECC;
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETNE: SSECC = 4; break;
+ case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break;
+ case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
+ case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
+ case ISD::SETGT: Opc = X86ISD::PCMPGTM; break;
+ case ISD::SETULT: SSECC = 1; Unsigned = true; break;
+ case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
+ case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap
+ case ISD::SETULE: Unsigned = true; LLVM_FALLTHROUGH;
+ case ISD::SETLE: SSECC = 2; break;
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ // See if it is the case of CMP(EQ|NEQ,AND(A,B),ZERO) and change it to TESTM|NM.
+ if ((!Opc && SSECC == 4) || Opc == X86ISD::PCMPEQM) {
+ SDValue A = peekThroughBitcasts(Op0);
+ if ((A.getOpcode() == ISD::AND || A.getOpcode() == X86ISD::FAND) &&
+ ISD::isBuildVectorAllZeros(Op1.getNode())) {
+ MVT VT0 = Op0.getSimpleValueType();
+ SDValue RHS = DAG.getBitcast(VT0, A.getOperand(0));
+ SDValue LHS = DAG.getBitcast(VT0, A.getOperand(1));
+ return DAG.getNode(Opc == X86ISD::PCMPEQM ? X86ISD::TESTNM : X86ISD::TESTM,
+ dl, VT, RHS, LHS);
+ }
+ }
+
+ if (Opc)
+ return DAG.getNode(Opc, dl, VT, Op0, Op1);
+ Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
+ return DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(SSECC, dl, MVT::i8));
+}
+
+/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
+/// operand \p Op1. If non-trivial (for example because it's not constant)
+/// return an empty value.
+static SDValue ChangeVSETULTtoVSETULE(const SDLoc &dl, SDValue Op1,
+ SelectionDAG &DAG) {
+ BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
+ if (!BV)
+ return SDValue();
+
+ MVT VT = Op1.getSimpleValueType();
+ MVT EVT = VT.getVectorElementType();
+ unsigned n = VT.getVectorNumElements();
+ SmallVector<SDValue, 8> ULTOp1;
+
+ for (unsigned i = 0; i < n; ++i) {
+ ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
+ if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT)
+ return SDValue();
+
+ // Avoid underflow.
+ APInt Val = Elt->getAPIntValue();
+ if (Val == 0)
+ return SDValue();
+
+ ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT));
+ }
+
+ return DAG.getBuildVector(VT, dl, ULTOp1);
+}
+
+static SDValue LowerVSETCC(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ MVT VT = Op.getSimpleValueType();
+ ISD::CondCode Cond = cast<CondCodeSDNode>(CC)->get();
+ bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
+ SDLoc dl(Op);
+
+ if (isFP) {
+#ifndef NDEBUG
+ MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
+ assert(EltVT == MVT::f32 || EltVT == MVT::f64);
+#endif
+
+ unsigned Opc;
+ if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) {
+ assert(VT.getVectorNumElements() <= 16);
+ Opc = X86ISD::CMPM;
+ } else {
+ Opc = X86ISD::CMPP;
+ // The SSE/AVX packed FP comparison nodes are defined with a
+ // floating-point vector result that matches the operand type. This allows
+ // them to work with an SSE1 target (integer vector types are not legal).
+ VT = Op0.getSimpleValueType();
+ }
+
+ // In the two cases not handled by SSE compare predicates (SETUEQ/SETONE),
+ // emit two comparisons and a logic op to tie them together.
+ SDValue Cmp;
+ unsigned SSECC = translateX86FSETCC(Cond, Op0, Op1);
+ if (SSECC >= 8 && !Subtarget.hasAVX()) {
+ // LLVM predicate is SETUEQ or SETONE.
+ unsigned CC0, CC1;
+ unsigned CombineOpc;
+ if (Cond == ISD::SETUEQ) {
+ CC0 = 3; // UNORD
+ CC1 = 0; // EQ
+ CombineOpc = X86ISD::FOR;
+ } else {
+ assert(Cond == ISD::SETONE);
+ CC0 = 7; // ORD
+ CC1 = 4; // NEQ
+ CombineOpc = X86ISD::FAND;
+ }
+
+ SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(CC0, dl, MVT::i8));
+ SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(CC1, dl, MVT::i8));
+ Cmp = DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
+ } else {
+ // Handle all other FP comparisons here.
+ Cmp = DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(SSECC, dl, MVT::i8));
+ }
+
+ // If this is SSE/AVX CMPP, bitcast the result back to integer to match the
+ // result type of SETCC. The bitcast is expected to be optimized away
+ // during combining/isel.
+ if (Opc == X86ISD::CMPP)
+ Cmp = DAG.getBitcast(Op.getSimpleValueType(), Cmp);
+
+ return Cmp;
+ }
+
+ MVT VTOp0 = Op0.getSimpleValueType();
+ assert(VTOp0 == Op1.getSimpleValueType() &&
+ "Expected operands with same type!");
+ assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() &&
+ "Invalid number of packed elements for source and destination!");
+
+ if (VT.is128BitVector() && VTOp0.is256BitVector()) {
+ // On non-AVX512 targets, a vector of MVT::i1 is promoted by the type
+ // legalizer to a wider vector type. In the case of 'vsetcc' nodes, the
+ // legalizer firstly checks if the first operand in input to the setcc has
+ // a legal type. If so, then it promotes the return type to that same type.
+ // Otherwise, the return type is promoted to the 'next legal type' which,
+ // for a vector of MVT::i1 is always a 128-bit integer vector type.
+ //
+ // We reach this code only if the following two conditions are met:
+ // 1. Both return type and operand type have been promoted to wider types
+ // by the type legalizer.
+ // 2. The original operand type has been promoted to a 256-bit vector.
+ //
+ // Note that condition 2. only applies for AVX targets.
+ SDValue NewOp = DAG.getSetCC(dl, VTOp0, Op0, Op1, Cond);
+ return DAG.getZExtOrTrunc(NewOp, dl, VT);
+ }
+
+ // The non-AVX512 code below works under the assumption that source and
+ // destination types are the same.
+ assert((Subtarget.hasAVX512() || (VT == VTOp0)) &&
+ "Value types for source and destination must be the same!");
+
+ // Break 256-bit integer vector compare into smaller ones.
+ if (VT.is256BitVector() && !Subtarget.hasInt256())
+ return Lower256IntVSETCC(Op, DAG);
+
+ // Operands are boolean (vectors of i1)
+ MVT OpVT = Op1.getSimpleValueType();
+ if (OpVT.getVectorElementType() == MVT::i1)
+ return LowerBoolVSETCC_AVX512(Op, DAG);
+
+ // The result is boolean, but operands are int/float
+ if (VT.getVectorElementType() == MVT::i1) {
+ // In AVX-512 architecture setcc returns mask with i1 elements,
+ // But there is no compare instruction for i8 and i16 elements in KNL.
+ // In this case use SSE compare
+ bool UseAVX512Inst =
+ (OpVT.is512BitVector() ||
+ OpVT.getScalarSizeInBits() >= 32 ||
+ (Subtarget.hasBWI() && Subtarget.hasVLX()));
+
+ if (UseAVX512Inst)
+ return LowerIntVSETCC_AVX512(Op, DAG);
+
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
+ }
+
+ // Lower using XOP integer comparisons.
+ if ((VT == MVT::v16i8 || VT == MVT::v8i16 ||
+ VT == MVT::v4i32 || VT == MVT::v2i64) && Subtarget.hasXOP()) {
+ // Translate compare code to XOP PCOM compare mode.
+ unsigned CmpMode = 0;
+ switch (Cond) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETULT:
+ case ISD::SETLT: CmpMode = 0x00; break;
+ case ISD::SETULE:
+ case ISD::SETLE: CmpMode = 0x01; break;
+ case ISD::SETUGT:
+ case ISD::SETGT: CmpMode = 0x02; break;
+ case ISD::SETUGE:
+ case ISD::SETGE: CmpMode = 0x03; break;
+ case ISD::SETEQ: CmpMode = 0x04; break;
+ case ISD::SETNE: CmpMode = 0x05; break;
+ }
+
+ // Are we comparing unsigned or signed integers?
+ unsigned Opc =
+ ISD::isUnsignedIntSetCC(Cond) ? X86ISD::VPCOMU : X86ISD::VPCOM;
+
+ return DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(CmpMode, dl, MVT::i8));
+ }
+
+ // (X & Y) != 0 --> (X & Y) == Y iff Y is power-of-2.
+ // Revert part of the simplifySetCCWithAnd combine, to avoid an invert.
+ if (Cond == ISD::SETNE && ISD::isBuildVectorAllZeros(Op1.getNode())) {
+ SDValue BC0 = peekThroughBitcasts(Op0);
+ if (BC0.getOpcode() == ISD::AND) {
+ APInt UndefElts;
+ SmallVector<APInt, 64> EltBits;
+ if (getTargetConstantBitsFromNode(BC0.getOperand(1),
+ VT.getScalarSizeInBits(), UndefElts,
+ EltBits, false, false)) {
+ if (llvm::all_of(EltBits, [](APInt &V) { return V.isPowerOf2(); })) {
+ Cond = ISD::SETEQ;
+ Op1 = DAG.getBitcast(VT, BC0.getOperand(1));
+ }
+ }
+ }
+ }
+
+ // We are handling one of the integer comparisons here. Since SSE only has
+ // GT and EQ comparisons for integer, swapping operands and multiple
+ // operations may be required for some comparisons.
+ unsigned Opc = (Cond == ISD::SETEQ || Cond == ISD::SETNE) ? X86ISD::PCMPEQ
+ : X86ISD::PCMPGT;
+ bool Swap = Cond == ISD::SETLT || Cond == ISD::SETULT ||
+ Cond == ISD::SETGE || Cond == ISD::SETUGE;
+ bool Invert = Cond == ISD::SETNE ||
+ (Cond != ISD::SETEQ && ISD::isTrueWhenEqual(Cond));
+
+ // If both operands are known non-negative, then an unsigned compare is the
+ // same as a signed compare and there's no need to flip signbits.
+ // TODO: We could check for more general simplifications here since we're
+ // computing known bits.
+ bool FlipSigns = ISD::isUnsignedIntSetCC(Cond) &&
+ !(DAG.SignBitIsZero(Op0) && DAG.SignBitIsZero(Op1));
+
+ // Special case: Use min/max operations for SETULE/SETUGE
+ MVT VET = VT.getVectorElementType();
+ bool HasMinMax =
+ (Subtarget.hasAVX512() && VET == MVT::i64) ||
+ (Subtarget.hasSSE41() && (VET == MVT::i16 || VET == MVT::i32)) ||
+ (Subtarget.hasSSE2() && (VET == MVT::i8));
+ bool MinMax = false;
+ if (HasMinMax) {
+ switch (Cond) {
+ default: break;
+ case ISD::SETULE: Opc = ISD::UMIN; MinMax = true; break;
+ case ISD::SETUGE: Opc = ISD::UMAX; MinMax = true; break;
+ }
+
+ if (MinMax)
+ Swap = Invert = FlipSigns = false;
+ }
+
+ bool HasSubus = Subtarget.hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
+ bool Subus = false;
+ if (!MinMax && HasSubus) {
+ // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
+ // Op0 u<= Op1:
+ // t = psubus Op0, Op1
+ // pcmpeq t, <0..0>
+ switch (Cond) {
+ default: break;
+ case ISD::SETULT: {
+ // If the comparison is against a constant we can turn this into a
+ // setule. With psubus, setule does not require a swap. This is
+ // beneficial because the constant in the register is no longer
+ // destructed as the destination so it can be hoisted out of a loop.
+ // Only do this pre-AVX since vpcmp* is no longer destructive.
+ if (Subtarget.hasAVX())
+ break;
+ if (SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG)) {
+ Op1 = ULEOp1;
+ Subus = true; Invert = false; Swap = false;
+ }
+ break;
+ }
+ // Psubus is better than flip-sign because it requires no inversion.
+ case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break;
+ case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
+ }
+
+ if (Subus) {
+ Opc = X86ISD::SUBUS;
+ FlipSigns = false;
+ }
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ // Check that the operation in question is available (most are plain SSE2,
+ // but PCMPGTQ and PCMPEQQ have different requirements).
+ if (VT == MVT::v2i64) {
+ if (Opc == X86ISD::PCMPGT && !Subtarget.hasSSE42()) {
+ assert(Subtarget.hasSSE2() && "Don't know how to lower!");
+
+ // First cast everything to the right type.
+ Op0 = DAG.getBitcast(MVT::v4i32, Op0);
+ Op1 = DAG.getBitcast(MVT::v4i32, Op1);
+
+ // Since SSE has no unsigned integer comparisons, we need to flip the sign
+ // bits of the inputs before performing those operations. The lower
+ // compare is always unsigned.
+ SDValue SB;
+ if (FlipSigns) {
+ SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32);
+ } else {
+ SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32);
+ SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32);
+ SB = DAG.getBuildVector(MVT::v4i32, dl, {Sign, Zero, Sign, Zero});
+ }
+ Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
+ Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
+
+ // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
+ SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
+ SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
+
+ // Create masks for only the low parts/high parts of the 64 bit integers.
+ static const int MaskHi[] = { 1, 1, 3, 3 };
+ static const int MaskLo[] = { 0, 0, 2, 2 };
+ SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
+ SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
+ SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
+
+ SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
+ Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, MVT::v4i32);
+
+ return DAG.getBitcast(VT, Result);
+ }
+
+ if (Opc == X86ISD::PCMPEQ && !Subtarget.hasSSE41()) {
+ // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
+ // pcmpeqd + pshufd + pand.
+ assert(Subtarget.hasSSE2() && !FlipSigns && "Don't know how to lower!");
+
+ // First cast everything to the right type.
+ Op0 = DAG.getBitcast(MVT::v4i32, Op0);
+ Op1 = DAG.getBitcast(MVT::v4i32, Op1);
+
+ // Do the compare.
+ SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
+
+ // Make sure the lower and upper halves are both all-ones.
+ static const int Mask[] = { 1, 0, 3, 2 };
+ SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
+ Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, MVT::v4i32);
+
+ return DAG.getBitcast(VT, Result);
+ }
+ }
+
+ // Since SSE has no unsigned integer comparisons, we need to flip the sign
+ // bits of the inputs before performing those operations.
+ if (FlipSigns) {
+ MVT EltVT = VT.getVectorElementType();
+ SDValue SM = DAG.getConstant(APInt::getSignMask(EltVT.getSizeInBits()), dl,
+ VT);
+ Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SM);
+ Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SM);
+ }
+
+ SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+
+ // If the logical-not of the result is required, perform that now.
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, VT);
+
+ if (MinMax)
+ Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
+
+ if (Subus)
+ Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
+ getZeroVector(VT, Subtarget, DAG, dl));
+
+ return Result;
+}
+
+SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+
+ MVT VT = Op.getSimpleValueType();
+
+ if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
+
+ assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDLoc dl(Op);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+
+ // Optimize to BT if possible.
+ // Lower (X & (1 << N)) == 0 to BT(X, N).
+ // Lower ((X >>u N) & 1) != 0 to BT(X, N).
+ // Lower ((X >>s N) & 1) != 0 to BT(X, N).
+ if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && isNullConstant(Op1) &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ if (SDValue NewSetCC = LowerAndToBT(Op0, CC, dl, DAG))
+ return NewSetCC;
+ }
+
+ // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
+ // these.
+ if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+
+ // If the input is a setcc, then reuse the input setcc or use a new one with
+ // the inverted condition.
+ if (Op0.getOpcode() == X86ISD::SETCC) {
+ X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
+ bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
+ if (!Invert)
+ return Op0;
+
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ return getSETCC(CCode, Op0.getOperand(1), dl, DAG);
+ }
+ }
+
+ bool IsFP = Op1.getSimpleValueType().isFloatingPoint();
+ X86::CondCode X86CC = TranslateX86CC(CC, dl, IsFP, Op0, Op1, DAG);
+ if (X86CC == X86::COND_INVALID)
+ return SDValue();
+
+ SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
+ EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
+ return getSETCC(X86CC, EFLAGS, dl, DAG);
+}
+
+SDValue X86TargetLowering::LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue Carry = Op.getOperand(2);
+ SDValue Cond = Op.getOperand(3);
+ SDLoc DL(Op);
+
+ assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
+ X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get());
+
+ // Recreate the carry if needed.
+ EVT CarryVT = Carry.getValueType();
+ APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits());
+ Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32),
+ Carry, DAG.getConstant(NegOne, DL, CarryVT));
+
+ SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
+ SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry.getValue(1));
+ return getSETCC(CC, Cmp.getValue(1), DL, DAG);
+}
+
+/// Return true if opcode is a X86 logical comparison.
+static bool isX86LogicalCmp(SDValue Op) {
+ unsigned Opc = Op.getOpcode();
+ if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
+ Opc == X86ISD::SAHF)
+ return true;
+ if (Op.getResNo() == 1 &&
+ (Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC ||
+ Opc == X86ISD::SBB || Opc == X86ISD::SMUL ||
+ Opc == X86ISD::INC || Opc == X86ISD::DEC || Opc == X86ISD::OR ||
+ Opc == X86ISD::XOR || Opc == X86ISD::AND))
+ return true;
+
+ if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
+ return true;
+
+ return false;
+}
+
+static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
+ if (V.getOpcode() != ISD::TRUNCATE)
+ return false;
+
+ SDValue VOp0 = V.getOperand(0);
+ unsigned InBits = VOp0.getValueSizeInBits();
+ unsigned Bits = V.getValueSizeInBits();
+ return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
+}
+
+SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ bool AddTest = true;
+ SDValue Cond = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue Op2 = Op.getOperand(2);
+ SDLoc DL(Op);
+ MVT VT = Op1.getSimpleValueType();
+ SDValue CC;
+
+ // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
+ // are available or VBLENDV if AVX is available.
+ // Otherwise FP cmovs get lowered into a less efficient branch sequence later.
+ if (Cond.getOpcode() == ISD::SETCC &&
+ ((Subtarget.hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
+ (Subtarget.hasSSE1() && VT == MVT::f32)) &&
+ VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) {
+ SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
+ unsigned SSECC = translateX86FSETCC(
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
+
+ if (Subtarget.hasAVX512()) {
+ SDValue Cmp = DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CondOp0,
+ CondOp1, DAG.getConstant(SSECC, DL, MVT::i8));
+ assert(!VT.isVector() && "Not a scalar type?");
+ return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2);
+ }
+
+ if (SSECC < 8 || Subtarget.hasAVX()) {
+ SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
+ DAG.getConstant(SSECC, DL, MVT::i8));
+
+ // If we have AVX, we can use a variable vector select (VBLENDV) instead
+ // of 3 logic instructions for size savings and potentially speed.
+ // Unfortunately, there is no scalar form of VBLENDV.
+
+ // If either operand is a constant, don't try this. We can expect to
+ // optimize away at least one of the logic instructions later in that
+ // case, so that sequence would be faster than a variable blend.
+
+ // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
+ // uses XMM0 as the selection register. That may need just as many
+ // instructions as the AND/ANDN/OR sequence due to register moves, so
+ // don't bother.
+
+ if (Subtarget.hasAVX() &&
+ !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) {
+
+ // Convert to vectors, do a VSELECT, and convert back to scalar.
+ // All of the conversions should be optimized away.
+
+ MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
+ SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
+ SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
+ SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
+
+ MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
+ VCmp = DAG.getBitcast(VCmpVT, VCmp);
+
+ SDValue VSel = DAG.getSelect(DL, VecVT, VCmp, VOp1, VOp2);
+
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
+ VSel, DAG.getIntPtrConstant(0, DL));
+ }
+ SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
+ SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
+ return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
+ }
+ }
+
+ // AVX512 fallback is to lower selects of scalar floats to masked moves.
+ if ((VT == MVT::f64 || VT == MVT::f32) && Subtarget.hasAVX512()) {
+ SDValue Cmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1, Cond);
+ return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2);
+ }
+
+ if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
+ SDValue Op1Scalar;
+ if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode()))
+ Op1Scalar = ConvertI1VectorToInteger(Op1, DAG);
+ else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0))
+ Op1Scalar = Op1.getOperand(0);
+ SDValue Op2Scalar;
+ if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode()))
+ Op2Scalar = ConvertI1VectorToInteger(Op2, DAG);
+ else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
+ Op2Scalar = Op2.getOperand(0);
+ if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
+ SDValue newSelect = DAG.getSelect(DL, Op1Scalar.getValueType(), Cond,
+ Op1Scalar, Op2Scalar);
+ if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
+ return DAG.getBitcast(VT, newSelect);
+ SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
+ DAG.getIntPtrConstant(0, DL));
+ }
+ }
+
+ if (VT == MVT::v4i1 || VT == MVT::v2i1) {
+ SDValue zeroConst = DAG.getIntPtrConstant(0, DL);
+ Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
+ DAG.getUNDEF(MVT::v8i1), Op1, zeroConst);
+ Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
+ DAG.getUNDEF(MVT::v8i1), Op2, zeroConst);
+ SDValue newSelect = DAG.getSelect(DL, MVT::v8i1, Cond, Op1, Op2);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst);
+ }
+
+ if (Cond.getOpcode() == ISD::SETCC) {
+ if (SDValue NewCond = LowerSETCC(Cond, DAG)) {
+ Cond = NewCond;
+ // If the condition was updated, it's possible that the operands of the
+ // select were also updated (for example, EmitTest has a RAUW). Refresh
+ // the local references to the select operands in case they got stale.
+ Op1 = Op.getOperand(1);
+ Op2 = Op.getOperand(2);
+ }
+ }
+
+ // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
+ // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
+ // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
+ // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
+ // (select (and (x , 0x1) == 0), y, (z ^ y) ) -> (-(and (x , 0x1)) & z ) ^ y
+ // (select (and (x , 0x1) == 0), y, (z | y) ) -> (-(and (x , 0x1)) & z ) | y
+ if (Cond.getOpcode() == X86ISD::SETCC &&
+ Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
+ isNullConstant(Cond.getOperand(1).getOperand(1))) {
+ SDValue Cmp = Cond.getOperand(1);
+ unsigned CondCode =
+ cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
+
+ if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
+ (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
+ SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
+ SDValue CmpOp0 = Cmp.getOperand(0);
+
+ // Apply further optimizations for special cases
+ // (select (x != 0), -1, 0) -> neg & sbb
+ // (select (x == 0), 0, -1) -> neg & sbb
+ if (isNullConstant(Y) &&
+ (isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) {
+ SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
+ SDValue Zero = DAG.getConstant(0, DL, CmpOp0.getValueType());
+ SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, Zero, CmpOp0);
+ SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, DL, MVT::i8),
+ SDValue(Neg.getNode(), 1));
+ return Res;
+ }
+
+ Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
+ CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType()));
+ Cmp = ConvertCmpIfNecessary(Cmp, DAG);
+
+ SDValue Res = // Res = 0 or -1.
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp);
+
+ if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E))
+ Res = DAG.getNOT(DL, Res, Res.getValueType());
+
+ if (!isNullConstant(Op2))
+ Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
+ return Res;
+ } else if (!Subtarget.hasCMov() && CondCode == X86::COND_E &&
+ Cmp.getOperand(0).getOpcode() == ISD::AND &&
+ isOneConstant(Cmp.getOperand(0).getOperand(1))) {
+ SDValue CmpOp0 = Cmp.getOperand(0);
+ SDValue Src1, Src2;
+ // true if Op2 is XOR or OR operator and one of its operands
+ // is equal to Op1
+ // ( a , a op b) || ( b , a op b)
+ auto isOrXorPattern = [&]() {
+ if ((Op2.getOpcode() == ISD::XOR || Op2.getOpcode() == ISD::OR) &&
+ (Op2.getOperand(0) == Op1 || Op2.getOperand(1) == Op1)) {
+ Src1 =
+ Op2.getOperand(0) == Op1 ? Op2.getOperand(1) : Op2.getOperand(0);
+ Src2 = Op1;
+ return true;
+ }
+ return false;
+ };
+
+ if (isOrXorPattern()) {
+ SDValue Neg;
+ unsigned int CmpSz = CmpOp0.getSimpleValueType().getSizeInBits();
+ // we need mask of all zeros or ones with same size of the other
+ // operands.
+ if (CmpSz > VT.getSizeInBits())
+ Neg = DAG.getNode(ISD::TRUNCATE, DL, VT, CmpOp0);
+ else if (CmpSz < VT.getSizeInBits())
+ Neg = DAG.getNode(ISD::AND, DL, VT,
+ DAG.getNode(ISD::ANY_EXTEND, DL, VT, CmpOp0.getOperand(0)),
+ DAG.getConstant(1, DL, VT));
+ else
+ Neg = CmpOp0;
+ SDValue Mask = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
+ Neg); // -(and (x, 0x1))
+ SDValue And = DAG.getNode(ISD::AND, DL, VT, Mask, Src1); // Mask & z
+ return DAG.getNode(Op2.getOpcode(), DL, VT, And, Src2); // And Op y
+ }
+ }
+ }
+
+ // Look past (and (setcc_carry (cmp ...)), 1).
+ if (Cond.getOpcode() == ISD::AND &&
+ Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
+ isOneConstant(Cond.getOperand(1)))
+ Cond = Cond.getOperand(0);
+
+ // If condition flag is set by a X86ISD::CMP, then use it as the condition
+ // setting operand in place of the X86ISD::SETCC.
+ unsigned CondOpcode = Cond.getOpcode();
+ if (CondOpcode == X86ISD::SETCC ||
+ CondOpcode == X86ISD::SETCC_CARRY) {
+ CC = Cond.getOperand(0);
+
+ SDValue Cmp = Cond.getOperand(1);
+ unsigned Opc = Cmp.getOpcode();
+ MVT VT = Op.getSimpleValueType();
+
+ bool IllegalFPCMov = false;
+ if (VT.isFloatingPoint() && !VT.isVector() &&
+ !isScalarFPTypeInSSEReg(VT)) // FPStack?
+ IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
+
+ if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
+ Opc == X86ISD::BT) { // FIXME
+ Cond = Cmp;
+ AddTest = false;
+ }
+ } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
+ CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
+ ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
+ Cond.getOperand(0).getValueType() != MVT::i8)) {
+ SDValue LHS = Cond.getOperand(0);
+ SDValue RHS = Cond.getOperand(1);
+ unsigned X86Opcode;
+ unsigned X86Cond;
+ SDVTList VTs;
+ switch (CondOpcode) {
+ case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
+ case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
+ case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
+ case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
+ case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
+ case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
+ default: llvm_unreachable("unexpected overflowing operator");
+ }
+ if (CondOpcode == ISD::UMULO)
+ VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
+ MVT::i32);
+ else
+ VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
+
+ SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
+
+ if (CondOpcode == ISD::UMULO)
+ Cond = X86Op.getValue(2);
+ else
+ Cond = X86Op.getValue(1);
+
+ CC = DAG.getConstant(X86Cond, DL, MVT::i8);
+ AddTest = false;
+ }
+
+ if (AddTest) {
+ // Look past the truncate if the high bits are known zero.
+ if (isTruncWithZeroHighBitsInput(Cond, DAG))
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ if (SDValue NewSetCC = LowerAndToBT(Cond, ISD::SETNE, DL, DAG)) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ AddTest = false;
+ }
+ }
+ }
+
+ if (AddTest) {
+ CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8);
+ Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
+ }
+
+ // a < b ? -1 : 0 -> RES = ~setcc_carry
+ // a < b ? 0 : -1 -> RES = setcc_carry
+ // a >= b ? -1 : 0 -> RES = setcc_carry
+ // a >= b ? 0 : -1 -> RES = ~setcc_carry
+ if (Cond.getOpcode() == X86ISD::SUB) {
+ Cond = ConvertCmpIfNecessary(Cond, DAG);
+ unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
+
+ if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
+ (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
+ (isNullConstant(Op1) || isNullConstant(Op2))) {
+ SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, DL, MVT::i8),
+ Cond);
+ if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B))
+ return DAG.getNOT(DL, Res, Res.getValueType());
+ return Res;
+ }
+ }
+
+ // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
+ // widen the cmov and push the truncate through. This avoids introducing a new
+ // branch during isel and doesn't add any extensions.
+ if (Op.getValueType() == MVT::i8 &&
+ Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
+ SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
+ if (T1.getValueType() == T2.getValueType() &&
+ // Blacklist CopyFromReg to avoid partial register stalls.
+ T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
+ SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, T1.getValueType(), T2, T1,
+ CC, Cond);
+ return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
+ }
+ }
+
+ // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
+ // condition is true.
+ SDValue Ops[] = { Op2, Op1, CC, Cond };
+ return DAG.getNode(X86ISD::CMOV, DL, Op.getValueType(), Ops);
+}
+
+static SDValue LowerSIGN_EXTEND_Mask(SDValue Op,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!");
+ MVT VTElt = VT.getVectorElementType();
+ SDLoc dl(Op);
+
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // Extend VT if the scalar type is v8/v16 and BWI is not supported.
+ MVT ExtVT = VT;
+ if (!Subtarget.hasBWI() && VTElt.getSizeInBits() <= 16)
+ ExtVT = MVT::getVectorVT(MVT::i32, NumElts);
+
+ // Widen to 512-bits if VLX is not supported.
+ MVT WideVT = ExtVT;
+ if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) {
+ NumElts *= 512 / ExtVT.getSizeInBits();
+ InVT = MVT::getVectorVT(MVT::i1, NumElts);
+ In = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, InVT, DAG.getUNDEF(InVT),
+ In, DAG.getIntPtrConstant(0, dl));
+ WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(), NumElts);
+ }
+
+ SDValue V;
+ MVT WideEltVT = WideVT.getVectorElementType();
+ if ((Subtarget.hasDQI() && WideEltVT.getSizeInBits() >= 32) ||
+ (Subtarget.hasBWI() && WideEltVT.getSizeInBits() <= 16)) {
+ V = getExtendInVec(X86ISD::VSEXT, dl, WideVT, In, DAG);
+ } else {
+ SDValue NegOne = getOnesVector(WideVT, DAG, dl);
+ SDValue Zero = getZeroVector(WideVT, Subtarget, DAG, dl);
+ V = DAG.getSelect(dl, WideVT, In, NegOne, Zero);
+ }
+
+ // Truncate if we had to extend i16/i8 above.
+ if (VT != ExtVT) {
+ WideVT = MVT::getVectorVT(VTElt, NumElts);
+ V = DAG.getNode(ISD::TRUNCATE, dl, WideVT, V);
+ }
+
+ // Extract back to 128/256-bit if we widened.
+ if (WideVT != VT)
+ V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, V,
+ DAG.getIntPtrConstant(0, dl));
+
+ return V;
+}
+
+static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+
+ if (InVT.getVectorElementType() == MVT::i1)
+ return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG);
+
+ if (Subtarget.hasFp256())
+ if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
+ return Res;
+
+ return SDValue();
+}
+
+// Lowering for SIGN_EXTEND_VECTOR_INREG and ZERO_EXTEND_VECTOR_INREG.
+// For sign extend this needs to handle all vector sizes and SSE4.1 and
+// non-SSE4.1 targets. For zero extend this should only handle inputs of
+// MVT::v64i8 when BWI is not supported, but AVX512 is.
+static SDValue LowerEXTEND_VECTOR_INREG(SDValue Op,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDValue In = Op->getOperand(0);
+ MVT VT = Op->getSimpleValueType(0);
+ MVT InVT = In.getSimpleValueType();
+ assert(VT.getSizeInBits() == InVT.getSizeInBits());
+
+ MVT SVT = VT.getVectorElementType();
+ MVT InSVT = InVT.getVectorElementType();
+ assert(SVT.getSizeInBits() > InSVT.getSizeInBits());
+
+ if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
+ return SDValue();
+ if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
+ return SDValue();
+ if (!(VT.is128BitVector() && Subtarget.hasSSE2()) &&
+ !(VT.is256BitVector() && Subtarget.hasInt256()) &&
+ !(VT.is512BitVector() && Subtarget.hasAVX512()))
+ return SDValue();
+
+ SDLoc dl(Op);
+
+ // For 256-bit vectors, we only need the lower (128-bit) half of the input.
+ // For 512-bit vectors, we need 128-bits or 256-bits.
+ if (VT.getSizeInBits() > 128) {
+ // Input needs to be at least the same number of elements as output, and
+ // at least 128-bits.
+ int InSize = InSVT.getSizeInBits() * VT.getVectorNumElements();
+ In = extractSubVector(In, 0, DAG, dl, std::max(InSize, 128));
+ }
+
+ assert((Op.getOpcode() != ISD::ZERO_EXTEND_VECTOR_INREG ||
+ InVT == MVT::v64i8) && "Zero extend only for v64i8 input!");
+
+ // SSE41 targets can use the pmovsx* instructions directly for 128-bit results,
+ // so are legal and shouldn't occur here. AVX2/AVX512 pmovsx* instructions still
+ // need to be handled here for 256/512-bit results.
+ if (Subtarget.hasInt256()) {
+ assert(VT.getSizeInBits() > 128 && "Unexpected 128-bit vector extension");
+ unsigned ExtOpc = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ?
+ X86ISD::VSEXT : X86ISD::VZEXT;
+ return DAG.getNode(ExtOpc, dl, VT, In);
+ }
+
+ // We should only get here for sign extend.
+ assert(Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG &&
+ "Unexpected opcode!");
+
+ // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI.
+ SDValue Curr = In;
+ MVT CurrVT = InVT;
+
+ // As SRAI is only available on i16/i32 types, we expand only up to i32
+ // and handle i64 separately.
+ while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) {
+ Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr);
+ MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2);
+ CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2);
+ Curr = DAG.getBitcast(CurrVT, Curr);
+ }
+
+ SDValue SignExt = Curr;
+ if (CurrVT != InVT) {
+ unsigned SignExtShift =
+ CurrVT.getScalarSizeInBits() - InSVT.getSizeInBits();
+ SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
+ DAG.getConstant(SignExtShift, dl, MVT::i8));
+ }
+
+ if (CurrVT == VT)
+ return SignExt;
+
+ if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) {
+ SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
+ DAG.getConstant(31, dl, MVT::i8));
+ SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5});
+ return DAG.getBitcast(VT, Ext);
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (InVT.getVectorElementType() == MVT::i1)
+ return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG);
+
+ if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
+ (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
+ (VT != MVT::v16i16 || InVT != MVT::v16i8) &&
+ (VT != MVT::v8i64 || InVT != MVT::v8i32) &&
+ (VT != MVT::v8i64 || InVT != MVT::v8i16) &&
+ (VT != MVT::v16i32 || InVT != MVT::v16i16) &&
+ (VT != MVT::v16i32 || InVT != MVT::v16i8) &&
+ (VT != MVT::v32i16 || InVT != MVT::v32i8))
+ return SDValue();
+
+ if (Subtarget.hasInt256())
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+
+ // Optimize vectors in AVX mode
+ // Sign extend v8i16 to v8i32 and
+ // v4i32 to v4i64
+ //
+ // Divide input vector into two parts
+ // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
+ // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
+ // concat the vectors to original VT
+
+ unsigned NumElems = InVT.getVectorNumElements();
+ SDValue Undef = DAG.getUNDEF(InVT);
+
+ SmallVector<int,8> ShufMask1(NumElems, -1);
+ for (unsigned i = 0; i != NumElems/2; ++i)
+ ShufMask1[i] = i;
+
+ SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask1);
+
+ SmallVector<int,8> ShufMask2(NumElems, -1);
+ for (unsigned i = 0; i != NumElems/2; ++i)
+ ShufMask2[i] = i + NumElems/2;
+
+ SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask2);
+
+ MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(),
+ VT.getVectorNumElements() / 2);
+
+ OpLo = DAG.getSignExtendVectorInReg(OpLo, dl, HalfVT);
+ OpHi = DAG.getSignExtendVectorInReg(OpHi, dl, HalfVT);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
+}
+
+// Lower truncating store. We need a special lowering to vXi1 vectors
+static SDValue LowerTruncatingStore(SDValue StOp, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ StoreSDNode *St = cast<StoreSDNode>(StOp.getNode());
+ SDLoc dl(St);
+ EVT MemVT = St->getMemoryVT();
+ assert(St->isTruncatingStore() && "We only custom truncating store.");
+ assert(MemVT.isVector() && MemVT.getVectorElementType() == MVT::i1 &&
+ "Expected truncstore of i1 vector");
+
+ SDValue Op = St->getValue();
+ MVT OpVT = Op.getValueType().getSimpleVT();
+ unsigned NumElts = OpVT.getVectorNumElements();
+ if ((Subtarget.hasVLX() && Subtarget.hasBWI() && Subtarget.hasDQI()) ||
+ NumElts == 16) {
+ // Truncate and store - everything is legal
+ Op = DAG.getNode(ISD::TRUNCATE, dl, MemVT, Op);
+ if (MemVT.getSizeInBits() < 8)
+ Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
+ DAG.getUNDEF(MVT::v8i1), Op,
+ DAG.getIntPtrConstant(0, dl));
+ return DAG.getStore(St->getChain(), dl, Op, St->getBasePtr(),
+ St->getMemOperand());
+ }
+
+ // A subset, assume that we have only AVX-512F
+ if (NumElts <= 8) {
+ if (NumElts < 8) {
+ // Extend to 8-elts vector
+ MVT ExtVT = MVT::getVectorVT(OpVT.getScalarType(), 8);
+ Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ExtVT,
+ DAG.getUNDEF(ExtVT), Op, DAG.getIntPtrConstant(0, dl));
+ }
+ Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i1, Op);
+ return DAG.getStore(St->getChain(), dl, Op, St->getBasePtr(),
+ St->getMemOperand());
+ }
+ // v32i8
+ assert(OpVT == MVT::v32i8 && "Unexpected operand type");
+ // Divide the vector into 2 parts and store each part separately
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, Op,
+ DAG.getIntPtrConstant(0, dl));
+ Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::v16i1, Lo);
+ SDValue BasePtr = St->getBasePtr();
+ SDValue StLo = DAG.getStore(St->getChain(), dl, Lo, BasePtr,
+ St->getMemOperand());
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, Op,
+ DAG.getIntPtrConstant(16, dl));
+ Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::v16i1, Hi);
+
+ SDValue BasePtrHi =
+ DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
+ DAG.getConstant(2, dl, BasePtr.getValueType()));
+
+ SDValue StHi = DAG.getStore(St->getChain(), dl, Hi,
+ BasePtrHi, St->getMemOperand());
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StLo, StHi);
+}
+
+static SDValue LowerExtended1BitVectorLoad(SDValue Op,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+
+ LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
+ SDLoc dl(Ld);
+ EVT MemVT = Ld->getMemoryVT();
+ assert(MemVT.isVector() && MemVT.getScalarType() == MVT::i1 &&
+ "Expected i1 vector load");
+ unsigned ExtOpcode = Ld->getExtensionType() == ISD::ZEXTLOAD ?
+ ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
+ MVT VT = Op.getValueType().getSimpleVT();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ if ((Subtarget.hasBWI() && NumElts >= 32) ||
+ (Subtarget.hasDQI() && NumElts < 16) ||
+ NumElts == 16) {
+ // Load and extend - everything is legal
+ if (NumElts < 8) {
+ SDValue Load = DAG.getLoad(MVT::v8i1, dl, Ld->getChain(),
+ Ld->getBasePtr(),
+ Ld->getMemOperand());
+ // Replace chain users with the new chain.
+ assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
+ if (Subtarget.hasVLX()) {
+ // Extract to v4i1/v2i1.
+ SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Load,
+ DAG.getIntPtrConstant(0, dl));
+ // Finally, do a normal sign-extend to the desired register.
+ return DAG.getNode(ExtOpcode, dl, Op.getValueType(), Extract);
+ }
+
+ MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 8);
+ SDValue ExtVec = DAG.getNode(ExtOpcode, dl, ExtVT, Load);
+
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+ SDValue Load = DAG.getLoad(MemVT, dl, Ld->getChain(),
+ Ld->getBasePtr(),
+ Ld->getMemOperand());
+ // Replace chain users with the new chain.
+ assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
+
+ // Finally, do a normal sign-extend to the desired register.
+ return DAG.getNode(ExtOpcode, dl, Op.getValueType(), Load);
+ }
+
+ if (NumElts <= 8) {
+ // A subset, assume that we have only AVX-512F
+ SDValue Load = DAG.getLoad(MVT::i8, dl, Ld->getChain(),
+ Ld->getBasePtr(),
+ Ld->getMemOperand());
+ // Replace chain users with the new chain.
+ assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
+
+ SDValue BitVec = DAG.getBitcast(MVT::v8i1, Load);
+
+ if (NumElts == 8)
+ return DAG.getNode(ExtOpcode, dl, VT, BitVec);
+
+ if (Subtarget.hasVLX()) {
+ // Extract to v4i1/v2i1.
+ SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, BitVec,
+ DAG.getIntPtrConstant(0, dl));
+ // Finally, do a normal sign-extend to the desired register.
+ return DAG.getNode(ExtOpcode, dl, Op.getValueType(), Extract);
+ }
+
+ MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 8);
+ SDValue ExtVec = DAG.getNode(ExtOpcode, dl, ExtVT, BitVec);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ assert(VT == MVT::v32i8 && "Unexpected extload type");
+
+ SDValue BasePtr = Ld->getBasePtr();
+ SDValue LoadLo = DAG.getLoad(MVT::v16i1, dl, Ld->getChain(),
+ Ld->getBasePtr(),
+ Ld->getMemOperand());
+
+ SDValue BasePtrHi = DAG.getMemBasePlusOffset(BasePtr, 2, dl);
+
+ SDValue LoadHi = DAG.getLoad(MVT::v16i1, dl, Ld->getChain(), BasePtrHi,
+ Ld->getPointerInfo().getWithOffset(2),
+ MinAlign(Ld->getAlignment(), 2U),
+ Ld->getMemOperand()->getFlags());
+
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ LoadLo.getValue(1), LoadHi.getValue(1));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
+
+ SDValue Lo = DAG.getNode(ExtOpcode, dl, MVT::v16i8, LoadLo);
+ SDValue Hi = DAG.getNode(ExtOpcode, dl, MVT::v16i8, LoadHi);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v32i8, Lo, Hi);
+}
+
+// Lower vector extended loads using a shuffle. If SSSE3 is not available we
+// may emit an illegal shuffle but the expansion is still better than scalar
+// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
+// we'll emit a shuffle and a arithmetic shift.
+// FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
+// TODO: It is possible to support ZExt by zeroing the undef values during
+// the shuffle phase or after the shuffle.
+static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT RegVT = Op.getSimpleValueType();
+ assert(RegVT.isVector() && "We only custom lower vector sext loads.");
+ assert(RegVT.isInteger() &&
+ "We only custom lower integer vector sext loads.");
+
+ // Nothing useful we can do without SSE2 shuffles.
+ assert(Subtarget.hasSSE2() && "We only custom lower sext loads with SSE2.");
+
+ LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
+ SDLoc dl(Ld);
+ EVT MemVT = Ld->getMemoryVT();
+ if (MemVT.getScalarType() == MVT::i1)
+ return LowerExtended1BitVectorLoad(Op, Subtarget, DAG);
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned RegSz = RegVT.getSizeInBits();
+
+ ISD::LoadExtType Ext = Ld->getExtensionType();
+
+ assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
+ && "Only anyext and sext are currently implemented.");
+ assert(MemVT != RegVT && "Cannot extend to the same type");
+ assert(MemVT.isVector() && "Must load a vector from memory");
+
+ unsigned NumElems = RegVT.getVectorNumElements();
+ unsigned MemSz = MemVT.getSizeInBits();
+ assert(RegSz > MemSz && "Register size must be greater than the mem size");
+
+ if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget.hasInt256()) {
+ // The only way in which we have a legal 256-bit vector result but not the
+ // integer 256-bit operations needed to directly lower a sextload is if we
+ // have AVX1 but not AVX2. In that case, we can always emit a sextload to
+ // a 128-bit vector and a normal sign_extend to 256-bits that should get
+ // correctly legalized. We do this late to allow the canonical form of
+ // sextload to persist throughout the rest of the DAG combiner -- it wants
+ // to fold together any extensions it can, and so will fuse a sign_extend
+ // of an sextload into a sextload targeting a wider value.
+ SDValue Load;
+ if (MemSz == 128) {
+ // Just switch this to a normal load.
+ assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
+ "it must be a legal 128-bit vector "
+ "type!");
+ Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
+ Ld->getPointerInfo(), Ld->getAlignment(),
+ Ld->getMemOperand()->getFlags());
+ } else {
+ assert(MemSz < 128 &&
+ "Can't extend a type wider than 128 bits to a 256 bit vector!");
+ // Do an sext load to a 128-bit vector type. We want to use the same
+ // number of elements, but elements half as wide. This will end up being
+ // recursively lowered by this routine, but will succeed as we definitely
+ // have all the necessary features if we're using AVX1.
+ EVT HalfEltVT =
+ EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
+ EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
+ Load =
+ DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
+ Ld->getPointerInfo(), MemVT, Ld->getAlignment(),
+ Ld->getMemOperand()->getFlags());
+ }
+
+ // Replace chain users with the new chain.
+ assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
+
+ // Finally, do a normal sign-extend to the desired register.
+ return DAG.getSExtOrTrunc(Load, dl, RegVT);
+ }
+
+ // All sizes must be a power of two.
+ assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
+ "Non-power-of-two elements are not custom lowered!");
+
+ // Attempt to load the original value using scalar loads.
+ // Find the largest scalar type that divides the total loaded size.
+ MVT SclrLoadTy = MVT::i8;
+ for (MVT Tp : MVT::integer_valuetypes()) {
+ if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
+ SclrLoadTy = Tp;
+ }
+ }
+
+ // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
+ if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
+ (64 <= MemSz))
+ SclrLoadTy = MVT::f64;
+
+ // Calculate the number of scalar loads that we need to perform
+ // in order to load our vector from memory.
+ unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
+
+ assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
+ "Can only lower sext loads with a single scalar load!");
+
+ unsigned loadRegZize = RegSz;
+ if (Ext == ISD::SEXTLOAD && RegSz >= 256)
+ loadRegZize = 128;
+
+ // If we don't have BWI we won't be able to create the shuffle needed for
+ // v8i8->v8i64.
+ if (Ext == ISD::EXTLOAD && !Subtarget.hasBWI() && RegVT == MVT::v8i64 &&
+ MemVT == MVT::v8i8)
+ loadRegZize = 128;
+
+ // Represent our vector as a sequence of elements which are the
+ // largest scalar that we can load.
+ EVT LoadUnitVecVT = EVT::getVectorVT(
+ *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
+
+ // Represent the data using the same element type that is stored in
+ // memory. In practice, we ''widen'' MemVT.
+ EVT WideVecVT =
+ EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
+ loadRegZize / MemVT.getScalarSizeInBits());
+
+ assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
+ "Invalid vector type");
+
+ // We can't shuffle using an illegal type.
+ assert(TLI.isTypeLegal(WideVecVT) &&
+ "We only lower types that form legal widened vector types");
+
+ SmallVector<SDValue, 8> Chains;
+ SDValue Ptr = Ld->getBasePtr();
+ SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl,
+ TLI.getPointerTy(DAG.getDataLayout()));
+ SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
+
+ for (unsigned i = 0; i < NumLoads; ++i) {
+ // Perform a single load.
+ SDValue ScalarLoad =
+ DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
+ Ld->getAlignment(), Ld->getMemOperand()->getFlags());
+ Chains.push_back(ScalarLoad.getValue(1));
+ // Create the first element type using SCALAR_TO_VECTOR in order to avoid
+ // another round of DAGCombining.
+ if (i == 0)
+ Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
+ else
+ Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
+ ScalarLoad, DAG.getIntPtrConstant(i, dl));
+
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ }
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
+
+ // Bitcast the loaded value to a vector of the original element type, in
+ // the size of the target vector type.
+ SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res);
+ unsigned SizeRatio = RegSz / MemSz;
+
+ if (Ext == ISD::SEXTLOAD) {
+ // If we have SSE4.1, we can directly emit a VSEXT node.
+ if (Subtarget.hasSSE41()) {
+ SDValue Sext = getExtendInVec(X86ISD::VSEXT, dl, RegVT, SlicedVec, DAG);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Sext;
+ }
+
+ // Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest
+ // lanes.
+ assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) &&
+ "We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!");
+
+ SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Shuff;
+ }
+
+ if (Ext == ISD::EXTLOAD && !Subtarget.hasBWI() && RegVT == MVT::v8i64 &&
+ MemVT == MVT::v8i8) {
+ SDValue Sext = getExtendInVec(X86ISD::VZEXT, dl, RegVT, SlicedVec, DAG);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Sext;
+ }
+
+ // Redistribute the loaded elements into the different locations.
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i * SizeRatio] = i;
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
+ DAG.getUNDEF(WideVecVT), ShuffleVec);
+
+ // Bitcast to the requested type.
+ Shuff = DAG.getBitcast(RegVT, Shuff);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Shuff;
+}
+
+/// Return true if node is an ISD::AND or ISD::OR of two X86ISD::SETCC nodes
+/// each of which has no other use apart from the AND / OR.
+static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
+ Opc = Op.getOpcode();
+ if (Opc != ISD::OR && Opc != ISD::AND)
+ return false;
+ return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(0).hasOneUse() &&
+ Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(1).hasOneUse());
+}
+
+/// Return true if node is an ISD::XOR of a X86ISD::SETCC and 1 and that the
+/// SETCC node has a single use.
+static bool isXor1OfSetCC(SDValue Op) {
+ if (Op.getOpcode() != ISD::XOR)
+ return false;
+ if (isOneConstant(Op.getOperand(1)))
+ return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(0).hasOneUse();
+ return false;
+}
+
+SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
+ bool addTest = true;
+ SDValue Chain = Op.getOperand(0);
+ SDValue Cond = Op.getOperand(1);
+ SDValue Dest = Op.getOperand(2);
+ SDLoc dl(Op);
+ SDValue CC;
+ bool Inverted = false;
+
+ if (Cond.getOpcode() == ISD::SETCC) {
+ // Check for setcc([su]{add,sub,mul}o == 0).
+ if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
+ isNullConstant(Cond.getOperand(1)) &&
+ Cond.getOperand(0).getResNo() == 1 &&
+ (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
+ Cond.getOperand(0).getOpcode() == ISD::UADDO ||
+ Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
+ Cond.getOperand(0).getOpcode() == ISD::USUBO ||
+ Cond.getOperand(0).getOpcode() == ISD::SMULO ||
+ Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
+ Inverted = true;
+ Cond = Cond.getOperand(0);
+ } else {
+ if (SDValue NewCond = LowerSETCC(Cond, DAG))
+ Cond = NewCond;
+ }
+ }
+#if 0
+ // FIXME: LowerXALUO doesn't handle these!!
+ else if (Cond.getOpcode() == X86ISD::ADD ||
+ Cond.getOpcode() == X86ISD::SUB ||
+ Cond.getOpcode() == X86ISD::SMUL ||
+ Cond.getOpcode() == X86ISD::UMUL)
+ Cond = LowerXALUO(Cond, DAG);
+#endif
+
+ // Look pass (and (setcc_carry (cmp ...)), 1).
+ if (Cond.getOpcode() == ISD::AND &&
+ Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
+ isOneConstant(Cond.getOperand(1)))
+ Cond = Cond.getOperand(0);
+
+ // If condition flag is set by a X86ISD::CMP, then use it as the condition
+ // setting operand in place of the X86ISD::SETCC.
+ unsigned CondOpcode = Cond.getOpcode();
+ if (CondOpcode == X86ISD::SETCC ||
+ CondOpcode == X86ISD::SETCC_CARRY) {
+ CC = Cond.getOperand(0);
+
+ SDValue Cmp = Cond.getOperand(1);
+ unsigned Opc = Cmp.getOpcode();
+ // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
+ if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
+ Cond = Cmp;
+ addTest = false;
+ } else {
+ switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
+ default: break;
+ case X86::COND_O:
+ case X86::COND_B:
+ // These can only come from an arithmetic instruction with overflow,
+ // e.g. SADDO, UADDO.
+ Cond = Cond.getOperand(1);
+ addTest = false;
+ break;
+ }
+ }
+ }
+ CondOpcode = Cond.getOpcode();
+ if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
+ CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
+ ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
+ Cond.getOperand(0).getValueType() != MVT::i8)) {
+ SDValue LHS = Cond.getOperand(0);
+ SDValue RHS = Cond.getOperand(1);
+ unsigned X86Opcode;
+ unsigned X86Cond;
+ SDVTList VTs;
+ // Keep this in sync with LowerXALUO, otherwise we might create redundant
+ // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
+ // X86ISD::INC).
+ switch (CondOpcode) {
+ case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
+ case ISD::SADDO:
+ if (isOneConstant(RHS)) {
+ X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
+ break;
+ }
+ X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
+ case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
+ case ISD::SSUBO:
+ if (isOneConstant(RHS)) {
+ X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
+ break;
+ }
+ X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
+ case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
+ case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
+ default: llvm_unreachable("unexpected overflowing operator");
+ }
+ if (Inverted)
+ X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
+ if (CondOpcode == ISD::UMULO)
+ VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
+ MVT::i32);
+ else
+ VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
+
+ SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
+
+ if (CondOpcode == ISD::UMULO)
+ Cond = X86Op.getValue(2);
+ else
+ Cond = X86Op.getValue(1);
+
+ CC = DAG.getConstant(X86Cond, dl, MVT::i8);
+ addTest = false;
+ } else {
+ unsigned CondOpc;
+ if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
+ SDValue Cmp = Cond.getOperand(0).getOperand(1);
+ if (CondOpc == ISD::OR) {
+ // Also, recognize the pattern generated by an FCMP_UNE. We can emit
+ // two branches instead of an explicit OR instruction with a
+ // separate test.
+ if (Cmp == Cond.getOperand(1).getOperand(1) &&
+ isX86LogicalCmp(Cmp)) {
+ CC = Cond.getOperand(0).getOperand(0);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = Cond.getOperand(1).getOperand(0);
+ Cond = Cmp;
+ addTest = false;
+ }
+ } else { // ISD::AND
+ // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Cmp == Cond.getOperand(1).getOperand(1) &&
+ isX86LogicalCmp(Cmp) &&
+ Op.getNode()->hasOneUse()) {
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, dl, MVT::i8);
+ SDNode *User = *Op.getNode()->use_begin();
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_OEQ.
+ if (User->getOpcode() == ISD::BR) {
+ SDValue FalseBB = User->getOperand(1);
+ SDNode *NewBR =
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
+ assert(NewBR == User);
+ (void)NewBR;
+ Dest = FalseBB;
+
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, dl, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ }
+ }
+ }
+ } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
+ // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
+ // It should be transformed during dag combiner except when the condition
+ // is set by a arithmetics with overflow node.
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, dl, MVT::i8);
+ Cond = Cond.getOperand(0).getOperand(1);
+ addTest = false;
+ } else if (Cond.getOpcode() == ISD::SETCC &&
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
+ // For FCMP_OEQ, we can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Op.getNode()->hasOneUse()) {
+ SDNode *User = *Op.getNode()->use_begin();
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_OEQ.
+ if (User->getOpcode() == ISD::BR) {
+ SDValue FalseBB = User->getOperand(1);
+ SDNode *NewBR =
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
+ assert(NewBR == User);
+ (void)NewBR;
+ Dest = FalseBB;
+
+ SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ Cond.getOperand(0), Cond.getOperand(1));
+ Cmp = ConvertCmpIfNecessary(Cmp, DAG);
+ CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = DAG.getConstant(X86::COND_P, dl, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ }
+ }
+ } else if (Cond.getOpcode() == ISD::SETCC &&
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
+ // For FCMP_UNE, we can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Op.getNode()->hasOneUse()) {
+ SDNode *User = *Op.getNode()->use_begin();
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_UNE.
+ if (User->getOpcode() == ISD::BR) {
+ SDValue FalseBB = User->getOperand(1);
+ SDNode *NewBR =
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
+ assert(NewBR == User);
+ (void)NewBR;
+
+ SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ Cond.getOperand(0), Cond.getOperand(1));
+ Cmp = ConvertCmpIfNecessary(Cmp, DAG);
+ CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ Dest = FalseBB;
+ }
+ }
+ }
+ }
+
+ if (addTest) {
+ // Look pass the truncate if the high bits are known zero.
+ if (isTruncWithZeroHighBitsInput(Cond, DAG))
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ if (SDValue NewSetCC = LowerAndToBT(Cond, ISD::SETNE, dl, DAG)) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ addTest = false;
+ }
+ }
+ }
+
+ if (addTest) {
+ X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
+ CC = DAG.getConstant(X86Cond, dl, MVT::i8);
+ Cond = EmitTest(Cond, X86Cond, dl, DAG);
+ }
+ Cond = ConvertCmpIfNecessary(Cond, DAG);
+ return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cond);
+}
+
+// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
+// Calls to _alloca are needed to probe the stack when allocating more than 4k
+// bytes in one go. Touching the stack at 4K increments is necessary to ensure
+// that the guard pages used by the OS virtual memory manager are allocated in
+// correct sequence.
+SDValue
+X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool SplitStack = MF.shouldSplitStack();
+ bool EmitStackProbe = !getStackProbeSymbolName(MF).empty();
+ bool Lower = (Subtarget.isOSWindows() && !Subtarget.isTargetMachO()) ||
+ SplitStack || EmitStackProbe;
+ SDLoc dl(Op);
+
+ // Get the inputs.
+ SDNode *Node = Op.getNode();
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ EVT VT = Node->getValueType(0);
+
+ // Chain the dynamic stack allocation so that it doesn't modify the stack
+ // pointer when other instructions are using the stack.
+ Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
+
+ bool Is64Bit = Subtarget.is64Bit();
+ MVT SPTy = getPointerTy(DAG.getDataLayout());
+
+ SDValue Result;
+ if (!Lower) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
+ assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
+ " not tell us which reg is the stack pointer!");
+
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
+ Chain = SP.getValue(1);
+ const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
+ unsigned StackAlign = TFI.getStackAlignment();
+ Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
+ if (Align > StackAlign)
+ Result = DAG.getNode(ISD::AND, dl, VT, Result,
+ DAG.getConstant(-(uint64_t)Align, dl, VT));
+ Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain
+ } else if (SplitStack) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ if (Is64Bit) {
+ // The 64 bit implementation of segmented stacks needs to clobber both r10
+ // r11. This makes it impossible to use it along with nested parameters.
+ const Function &F = MF.getFunction();
+ for (const auto &A : F.args()) {
+ if (A.hasNestAttr())
+ report_fatal_error("Cannot use segmented stacks with functions that "
+ "have nested arguments.");
+ }
+ }
+
+ const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
+ unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
+ Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
+ Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
+ DAG.getRegister(Vreg, SPTy));
+ } else {
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Size);
+ MF.getInfo<X86MachineFunctionInfo>()->setHasWinAlloca(true);
+
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ unsigned SPReg = RegInfo->getStackRegister();
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
+ Chain = SP.getValue(1);
+
+ if (Align) {
+ SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
+ DAG.getConstant(-(uint64_t)Align, dl, VT));
+ Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
+ }
+
+ Result = SP;
+ }
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
+ DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
+
+ SDValue Ops[2] = {Result, Chain};
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ auto PtrVT = getPointerTy(MF.getDataLayout());
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ SDLoc DL(Op);
+
+ if (!Subtarget.is64Bit() ||
+ Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv())) {
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
+ MachinePointerInfo(SV));
+ }
+
+ // __va_list_tag:
+ // gp_offset (0 - 6 * 8)
+ // fp_offset (48 - 48 + 8 * 16)
+ // overflow_arg_area (point to parameters coming in memory).
+ // reg_save_area
+ SmallVector<SDValue, 8> MemOps;
+ SDValue FIN = Op.getOperand(1);
+ // Store gp_offset
+ SDValue Store = DAG.getStore(
+ Op.getOperand(0), DL,
+ DAG.getConstant(FuncInfo->getVarArgsGPOffset(), DL, MVT::i32), FIN,
+ MachinePointerInfo(SV));
+ MemOps.push_back(Store);
+
+ // Store fp_offset
+ FIN = DAG.getMemBasePlusOffset(FIN, 4, DL);
+ Store = DAG.getStore(
+ Op.getOperand(0), DL,
+ DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32), FIN,
+ MachinePointerInfo(SV, 4));
+ MemOps.push_back(Store);
+
+ // Store ptr to overflow_arg_area
+ FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
+ SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ Store =
+ DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8));
+ MemOps.push_back(Store);
+
+ // Store ptr to reg_save_area.
+ FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(
+ Subtarget.isTarget64BitLP64() ? 8 : 4, DL));
+ SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT);
+ Store = DAG.getStore(
+ Op.getOperand(0), DL, RSFIN, FIN,
+ MachinePointerInfo(SV, Subtarget.isTarget64BitLP64() ? 16 : 12));
+ MemOps.push_back(Store);
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
+}
+
+SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget.is64Bit() &&
+ "LowerVAARG only handles 64-bit va_arg!");
+ assert(Op.getNumOperands() == 4);
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ if (Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()))
+ // The Win64 ABI uses char* instead of a structure.
+ return DAG.expandVAArg(Op.getNode());
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue SrcPtr = Op.getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ unsigned Align = Op.getConstantOperandVal(3);
+ SDLoc dl(Op);
+
+ EVT ArgVT = Op.getNode()->getValueType(0);
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+ uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
+ uint8_t ArgMode;
+
+ // Decide which area this value should be read from.
+ // TODO: Implement the AMD64 ABI in its entirety. This simple
+ // selection mechanism works only for the basic types.
+ if (ArgVT == MVT::f80) {
+ llvm_unreachable("va_arg for f80 not yet implemented");
+ } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
+ ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
+ } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
+ ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
+ } else {
+ llvm_unreachable("Unhandled argument type in LowerVAARG");
+ }
+
+ if (ArgMode == 2) {
+ // Sanity Check: Make sure using fp_offset makes sense.
+ assert(!Subtarget.useSoftFloat() &&
+ !(MF.getFunction().hasFnAttribute(Attribute::NoImplicitFloat)) &&
+ Subtarget.hasSSE1());
+ }
+
+ // Insert VAARG_64 node into the DAG
+ // VAARG_64 returns two values: Variable Argument Address, Chain
+ SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32),
+ DAG.getConstant(ArgMode, dl, MVT::i8),
+ DAG.getConstant(Align, dl, MVT::i32)};
+ SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other);
+ SDValue VAARG = DAG.getMemIntrinsicNode(
+ X86ISD::VAARG_64, dl,
+ VTs, InstOps, MVT::i64,
+ MachinePointerInfo(SV),
+ /*Align=*/0,
+ MachineMemOperand::MOLoad | MachineMemOperand::MOStore);
+ Chain = VAARG.getValue(1);
+
+ // Load the next argument and return it
+ return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo());
+}
+
+static SDValue LowerVACOPY(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows,
+ // where a va_list is still an i8*.
+ assert(Subtarget.is64Bit() && "This code only handles 64-bit va_copy!");
+ if (Subtarget.isCallingConvWin64(
+ DAG.getMachineFunction().getFunction().getCallingConv()))
+ // Probably a Win64 va_copy.
+ return DAG.expandVACopy(Op.getNode());
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue DstPtr = Op.getOperand(1);
+ SDValue SrcPtr = Op.getOperand(2);
+ const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+ const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+ SDLoc DL(Op);
+
+ return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
+ DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false,
+ false, false,
+ MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
+}
+
+/// Handle vector element shifts where the shift amount is a constant.
+/// Takes immediate version of shift as input.
+static SDValue getTargetVShiftByConstNode(unsigned Opc, const SDLoc &dl, MVT VT,
+ SDValue SrcOp, uint64_t ShiftAmt,
+ SelectionDAG &DAG) {
+ MVT ElementType = VT.getVectorElementType();
+
+ // Bitcast the source vector to the output type, this is mainly necessary for
+ // vXi8/vXi64 shifts.
+ if (VT != SrcOp.getSimpleValueType())
+ SrcOp = DAG.getBitcast(VT, SrcOp);
+
+ // Fold this packed shift into its first operand if ShiftAmt is 0.
+ if (ShiftAmt == 0)
+ return SrcOp;
+
+ // Check for ShiftAmt >= element width
+ if (ShiftAmt >= ElementType.getSizeInBits()) {
+ if (Opc == X86ISD::VSRAI)
+ ShiftAmt = ElementType.getSizeInBits() - 1;
+ else
+ return DAG.getConstant(0, dl, VT);
+ }
+
+ assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
+ && "Unknown target vector shift-by-constant node");
+
+ // Fold this packed vector shift into a build vector if SrcOp is a
+ // vector of Constants or UNDEFs.
+ if (ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
+ SmallVector<SDValue, 8> Elts;
+ unsigned NumElts = SrcOp->getNumOperands();
+ ConstantSDNode *ND;
+
+ switch(Opc) {
+ default: llvm_unreachable("Unknown opcode!");
+ case X86ISD::VSHLI:
+ for (unsigned i=0; i!=NumElts; ++i) {
+ SDValue CurrentOp = SrcOp->getOperand(i);
+ if (CurrentOp->isUndef()) {
+ Elts.push_back(CurrentOp);
+ continue;
+ }
+ ND = cast<ConstantSDNode>(CurrentOp);
+ const APInt &C = ND->getAPIntValue();
+ Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType));
+ }
+ break;
+ case X86ISD::VSRLI:
+ for (unsigned i=0; i!=NumElts; ++i) {
+ SDValue CurrentOp = SrcOp->getOperand(i);
+ if (CurrentOp->isUndef()) {
+ Elts.push_back(CurrentOp);
+ continue;
+ }
+ ND = cast<ConstantSDNode>(CurrentOp);
+ const APInt &C = ND->getAPIntValue();
+ Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType));
+ }
+ break;
+ case X86ISD::VSRAI:
+ for (unsigned i=0; i!=NumElts; ++i) {
+ SDValue CurrentOp = SrcOp->getOperand(i);
+ if (CurrentOp->isUndef()) {
+ Elts.push_back(CurrentOp);
+ continue;
+ }
+ ND = cast<ConstantSDNode>(CurrentOp);
+ const APInt &C = ND->getAPIntValue();
+ Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType));
+ }
+ break;
+ }
+
+ return DAG.getBuildVector(VT, dl, Elts);
+ }
+
+ return DAG.getNode(Opc, dl, VT, SrcOp,
+ DAG.getConstant(ShiftAmt, dl, MVT::i8));
+}
+
+/// Handle vector element shifts where the shift amount may or may not be a
+/// constant. Takes immediate version of shift as input.
+static SDValue getTargetVShiftNode(unsigned Opc, const SDLoc &dl, MVT VT,
+ SDValue SrcOp, SDValue ShAmt,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT SVT = ShAmt.getSimpleValueType();
+ assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
+
+ // Catch shift-by-constant.
+ if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
+ return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
+ CShAmt->getZExtValue(), DAG);
+
+ // Change opcode to non-immediate version
+ switch (Opc) {
+ default: llvm_unreachable("Unknown target vector shift node");
+ case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
+ case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
+ case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
+ }
+
+ // Need to build a vector containing shift amount.
+ // SSE/AVX packed shifts only use the lower 64-bit of the shift count.
+ // +=================+============+=======================================+
+ // | ShAmt is | HasSSE4.1? | Construct ShAmt vector as |
+ // +=================+============+=======================================+
+ // | i64 | Yes, No | Use ShAmt as lowest elt |
+ // | i32 | Yes | zero-extend in-reg |
+ // | (i32 zext(i16)) | Yes | zero-extend in-reg |
+ // | i16/i32 | No | v4i32 build_vector(ShAmt, 0, ud, ud)) |
+ // +=================+============+=======================================+
+
+ if (SVT == MVT::i64)
+ ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v2i64, ShAmt);
+ else if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
+ ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) {
+ ShAmt = ShAmt.getOperand(0);
+ ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v8i16, ShAmt);
+ ShAmt = DAG.getZeroExtendVectorInReg(ShAmt, SDLoc(ShAmt), MVT::v2i64);
+ } else if (Subtarget.hasSSE41() &&
+ ShAmt.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v4i32, ShAmt);
+ ShAmt = DAG.getZeroExtendVectorInReg(ShAmt, SDLoc(ShAmt), MVT::v2i64);
+ } else {
+ SDValue ShOps[4] = {ShAmt, DAG.getConstant(0, dl, SVT),
+ DAG.getUNDEF(SVT), DAG.getUNDEF(SVT)};
+ ShAmt = DAG.getBuildVector(MVT::v4i32, dl, ShOps);
+ }
+
+ // The return type has to be a 128-bit type with the same element
+ // type as the input type.
+ MVT EltVT = VT.getVectorElementType();
+ MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
+
+ ShAmt = DAG.getBitcast(ShVT, ShAmt);
+ return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
+}
+
+/// \brief Return Mask with the necessary casting or extending
+/// for \p Mask according to \p MaskVT when lowering masking intrinsics
+static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
+ const X86Subtarget &Subtarget, SelectionDAG &DAG,
+ const SDLoc &dl) {
+
+ if (isAllOnesConstant(Mask))
+ return DAG.getConstant(1, dl, MaskVT);
+ if (X86::isZeroNode(Mask))
+ return DAG.getConstant(0, dl, MaskVT);
+
+ if (MaskVT.bitsGT(Mask.getSimpleValueType())) {
+ // Mask should be extended
+ Mask = DAG.getNode(ISD::ANY_EXTEND, dl,
+ MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask);
+ }
+
+ if (Mask.getSimpleValueType() == MVT::i64 && Subtarget.is32Bit()) {
+ if (MaskVT == MVT::v64i1) {
+ assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
+ // In case 32bit mode, bitcast i64 is illegal, extend/split it.
+ SDValue Lo, Hi;
+ Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
+ DAG.getConstant(0, dl, MVT::i32));
+ Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
+ DAG.getConstant(1, dl, MVT::i32));
+
+ Lo = DAG.getBitcast(MVT::v32i1, Lo);
+ Hi = DAG.getBitcast(MVT::v32i1, Hi);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
+ } else {
+ // MaskVT require < 64bit. Truncate mask (should succeed in any case),
+ // and bitcast.
+ MVT TruncVT = MVT::getIntegerVT(MaskVT.getSizeInBits());
+ return DAG.getBitcast(MaskVT,
+ DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Mask));
+ }
+
+ } else {
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+ // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+ // are extracted by EXTRACT_SUBVECTOR.
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getBitcast(BitcastVT, Mask),
+ DAG.getIntPtrConstant(0, dl));
+ }
+}
+
+/// \brief Return (and \p Op, \p Mask) for compare instructions or
+/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
+/// necessary casting or extending for \p Mask when lowering masking intrinsics
+static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
+ SDValue PreservedSrc,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ unsigned OpcodeSelect = ISD::VSELECT;
+ SDLoc dl(Op);
+
+ if (isAllOnesConstant(Mask))
+ return Op;
+
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+
+ switch (Op.getOpcode()) {
+ default: break;
+ case X86ISD::CMPM:
+ case X86ISD::CMPM_RND:
+ case X86ISD::CMPMU:
+ case X86ISD::VPSHUFBITQMB:
+ return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
+ case X86ISD::VFPCLASS:
+ return DAG.getNode(ISD::OR, dl, VT, Op, VMask);
+ case X86ISD::VTRUNC:
+ case X86ISD::VTRUNCS:
+ case X86ISD::VTRUNCUS:
+ case X86ISD::CVTPS2PH:
+ // We can't use ISD::VSELECT here because it is not always "Legal"
+ // for the destination type. For example vpmovqb require only AVX512
+ // and vselect that can operate on byte element type require BWI
+ OpcodeSelect = X86ISD::SELECT;
+ break;
+ }
+ if (PreservedSrc.isUndef())
+ PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc);
+}
+
+/// \brief Creates an SDNode for a predicated scalar operation.
+/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
+/// The mask is coming as MVT::i8 and it should be transformed
+/// to MVT::v1i1 while lowering masking intrinsics.
+/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
+/// "X86select" instead of "vselect". We just can't create the "vselect" node
+/// for a scalar instruction.
+static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
+ SDValue PreservedSrc,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+
+ if (auto *MaskConst = dyn_cast<ConstantSDNode>(Mask))
+ if (MaskConst->getZExtValue() & 0x1)
+ return Op;
+
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ SDValue IMask = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i1, Mask);
+ if (Op.getOpcode() == X86ISD::FSETCCM ||
+ Op.getOpcode() == X86ISD::FSETCCM_RND)
+ return DAG.getNode(ISD::AND, dl, VT, Op, IMask);
+ if (Op.getOpcode() == X86ISD::VFPCLASSS)
+ return DAG.getNode(ISD::OR, dl, VT, Op, IMask);
+
+ if (PreservedSrc.isUndef())
+ PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(X86ISD::SELECTS, dl, VT, IMask, Op, PreservedSrc);
+}
+
+static int getSEHRegistrationNodeSize(const Function *Fn) {
+ if (!Fn->hasPersonalityFn())
+ report_fatal_error(
+ "querying registration node size for function without personality");
+ // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See
+ // WinEHStatePass for the full struct definition.
+ switch (classifyEHPersonality(Fn->getPersonalityFn())) {
+ case EHPersonality::MSVC_X86SEH: return 24;
+ case EHPersonality::MSVC_CXX: return 16;
+ default: break;
+ }
+ report_fatal_error(
+ "can only recover FP for 32-bit MSVC EH personality functions");
+}
+
+/// When the MSVC runtime transfers control to us, either to an outlined
+/// function or when returning to a parent frame after catching an exception, we
+/// recover the parent frame pointer by doing arithmetic on the incoming EBP.
+/// Here's the math:
+/// RegNodeBase = EntryEBP - RegNodeSize
+/// ParentFP = RegNodeBase - ParentFrameOffset
+/// Subtracting RegNodeSize takes us to the offset of the registration node, and
+/// subtracting the offset (negative on x86) takes us back to the parent FP.
+static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn,
+ SDValue EntryEBP) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDLoc dl;
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
+
+ // It's possible that the parent function no longer has a personality function
+ // if the exceptional code was optimized away, in which case we just return
+ // the incoming EBP.
+ if (!Fn->hasPersonalityFn())
+ return EntryEBP;
+
+ // Get an MCSymbol that will ultimately resolve to the frame offset of the EH
+ // registration, or the .set_setframe offset.
+ MCSymbol *OffsetSym =
+ MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol(
+ GlobalValue::dropLLVMManglingEscape(Fn->getName()));
+ SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT);
+ SDValue ParentFrameOffset =
+ DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal);
+
+ // Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after
+ // prologue to RBP in the parent function.
+ const X86Subtarget &Subtarget =
+ static_cast<const X86Subtarget &>(DAG.getSubtarget());
+ if (Subtarget.is64Bit())
+ return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset);
+
+ int RegNodeSize = getSEHRegistrationNodeSize(Fn);
+ // RegNodeBase = EntryEBP - RegNodeSize
+ // ParentFP = RegNodeBase - ParentFrameOffset
+ SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP,
+ DAG.getConstant(RegNodeSize, dl, PtrVT));
+ return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset);
+}
+
+SDValue X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ // Helper to detect if the operand is CUR_DIRECTION rounding mode.
+ auto isRoundModeCurDirection = [](SDValue Rnd) {
+ if (!isa<ConstantSDNode>(Rnd))
+ return false;
+
+ unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
+ return Round == X86::STATIC_ROUNDING::CUR_DIRECTION;
+ };
+
+ SDLoc dl(Op);
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ MVT VT = Op.getSimpleValueType();
+ const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
+ if (IntrData) {
+ switch(IntrData->Type) {
+ case INTR_TYPE_1OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
+ case INTR_TYPE_2OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2));
+ case INTR_TYPE_3OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3));
+ case INTR_TYPE_4OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
+ case INTR_TYPE_1OP_MASK_RM: {
+ SDValue Src = Op.getOperand(1);
+ SDValue PassThru = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue RoundingMode;
+ // We always add rounding mode to the Node.
+ // If the rounding mode is not specified, we add the
+ // "current direction" mode.
+ if (Op.getNumOperands() == 4)
+ RoundingMode =
+ DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+ else
+ RoundingMode = Op.getOperand(4);
+ assert(IntrData->Opc1 == 0 && "Unexpected second opcode!");
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
+ RoundingMode),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_1OP_MASK: {
+ SDValue Src = Op.getOperand(1);
+ SDValue PassThru = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ // We add rounding mode to the Node when
+ // - RM Opcode is specified and
+ // - RM is not "current direction".
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(4);
+ if (!isRoundModeCurDirection(Rnd)) {
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ }
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_SCALAR_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue passThru = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ // There are 2 kinds of intrinsics in this group:
+ // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
+ // (2) With rounding mode and sae - 7 operands.
+ bool HasRounding = IntrWithRoundingModeOpcode != 0;
+ if (Op.getNumOperands() == (5U + HasRounding)) {
+ if (HasRounding) {
+ SDValue Rnd = Op.getOperand(5);
+ if (!isRoundModeCurDirection(Rnd))
+ return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, VT, Src1, Src2, Rnd),
+ Mask, passThru, Subtarget, DAG);
+ }
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
+ Src2),
+ Mask, passThru, Subtarget, DAG);
+ }
+
+ assert(Op.getNumOperands() == (6U + HasRounding) &&
+ "Unexpected intrinsic form");
+ SDValue RoundingMode = Op.getOperand(5);
+ if (HasRounding) {
+ SDValue Sae = Op.getOperand(6);
+ if (!isRoundModeCurDirection(Sae))
+ return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, VT, Src1, Src2,
+ RoundingMode, Sae),
+ Mask, passThru, Subtarget, DAG);
+ }
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
+ Src2, RoundingMode),
+ Mask, passThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_SCALAR_MASK_RM: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src0 = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ // There are 2 kinds of intrinsics in this group:
+ // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
+ // (2) With rounding mode and sae - 7 operands.
+ if (Op.getNumOperands() == 6) {
+ SDValue Sae = Op.getOperand(5);
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
+ Sae),
+ Mask, Src0, Subtarget, DAG);
+ }
+ assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form");
+ SDValue RoundingMode = Op.getOperand(5);
+ SDValue Sae = Op.getOperand(6);
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
+ RoundingMode, Sae),
+ Mask, Src0, Subtarget, DAG);
+ }
+ case INTR_TYPE_2OP_MASK:
+ case INTR_TYPE_2OP_IMM8_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue PassThru = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+
+ if (IntrData->Type == INTR_TYPE_2OP_IMM8_MASK)
+ Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2);
+
+ // We specify 2 possible opcodes for intrinsics with rounding modes.
+ // First, we check if the intrinsic may have non-default rounding mode,
+ // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(5);
+ if (!isRoundModeCurDirection(Rnd)) {
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src1, Src2, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ }
+ // TODO: Intrinsics should have fast-math-flags to propagate.
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_2OP_MASK_RM: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue PassThru = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ // We specify 2 possible modes for intrinsics, with/without rounding
+ // modes.
+ // First, we check if the intrinsic have rounding mode (6 operands),
+ // if not, we set rounding mode to "current".
+ SDValue Rnd;
+ if (Op.getNumOperands() == 6)
+ Rnd = Op.getOperand(5);
+ else
+ Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_3OP_SCALAR_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue PassThru = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(6);
+ if (!isRoundModeCurDirection(Rnd))
+ return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, VT, Src1, Src2, Src3, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
+ Src2, Src3),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_3OP_MASK_RM: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Imm = Op.getOperand(3);
+ SDValue PassThru = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+ // We specify 2 possible modes for intrinsics, with/without rounding
+ // modes.
+ // First, we check if the intrinsic have rounding mode (7 operands),
+ // if not, we set rounding mode to "current".
+ SDValue Rnd;
+ if (Op.getNumOperands() == 7)
+ Rnd = Op.getOperand(6);
+ else
+ Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Imm, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_3OP_IMM8_MASK:
+ case INTR_TYPE_3OP_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue PassThru = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+
+ if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK)
+ Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3);
+
+ // We specify 2 possible opcodes for intrinsics with rounding modes.
+ // First, we check if the intrinsic may have non-default rounding mode,
+ // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(6);
+ if (!isRoundModeCurDirection(Rnd)) {
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src1, Src2, Src3, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ }
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Src3),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case VPERM_2OP_MASK : {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue PassThru = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+
+ // Swap Src1 and Src2 in the node creation
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src2, Src1),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case VPERM_3OP_MASKZ:
+ case VPERM_3OP_MASK:{
+ MVT VT = Op.getSimpleValueType();
+ // Src2 is the PassThru
+ SDValue Src1 = Op.getOperand(1);
+ // PassThru needs to be the same type as the destination in order
+ // to pattern match correctly.
+ SDValue Src2 = DAG.getBitcast(VT, Op.getOperand(2));
+ SDValue Src3 = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ SDValue PassThru = SDValue();
+
+ // set PassThru element
+ if (IntrData->Type == VPERM_3OP_MASKZ)
+ PassThru = getZeroVector(VT, Subtarget, DAG, dl);
+ else
+ PassThru = Src2;
+
+ // Swap Src1 and Src2 in the node creation
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
+ dl, Op.getValueType(),
+ Src2, Src1, Src3),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case FMA_OP_MASK3:
+ case FMA_OP_MASKZ:
+ case FMA_OP_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ MVT VT = Op.getSimpleValueType();
+ SDValue PassThru = SDValue();
+
+ // set PassThru element
+ if (IntrData->Type == FMA_OP_MASKZ)
+ PassThru = getZeroVector(VT, Subtarget, DAG, dl);
+ else if (IntrData->Type == FMA_OP_MASK3)
+ PassThru = Src3;
+ else
+ PassThru = Src1;
+
+ // We specify 2 possible opcodes for intrinsics with rounding modes.
+ // First, we check if the intrinsic may have non-default rounding mode,
+ // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(5);
+ if (!isRoundModeCurDirection(Rnd))
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src1, Src2, Src3, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
+ dl, Op.getValueType(),
+ Src1, Src2, Src3),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case FMA_OP_SCALAR_MASK:
+ case FMA_OP_SCALAR_MASK3:
+ case FMA_OP_SCALAR_MASKZ: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ MVT VT = Op.getSimpleValueType();
+ SDValue PassThru = SDValue();
+
+ // set PassThru element
+ if (IntrData->Type == FMA_OP_SCALAR_MASKZ)
+ PassThru = getZeroVector(VT, Subtarget, DAG, dl);
+ else if (IntrData->Type == FMA_OP_SCALAR_MASK3)
+ PassThru = Src3;
+ else
+ PassThru = Src1;
+
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(5);
+ if (!isRoundModeCurDirection(Rnd))
+ return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, dl,
+ Op.getValueType(), Src1, Src2,
+ Src3, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl,
+ Op.getValueType(), Src1, Src2,
+ Src3),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case IFMA_OP_MASKZ:
+ case IFMA_OP_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ MVT VT = Op.getSimpleValueType();
+ SDValue PassThru = Src1;
+
+ // set PassThru element
+ if (IntrData->Type == IFMA_OP_MASKZ)
+ PassThru = getZeroVector(VT, Subtarget, DAG, dl);
+
+ // Node we need to swizzle the operands to pass the multiply operands
+ // first.
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
+ dl, Op.getValueType(),
+ Src2, Src3, Src1),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case TERLOG_OP_MASK:
+ case TERLOG_OP_MASKZ: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue Src4 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(4));
+ SDValue Mask = Op.getOperand(5);
+ MVT VT = Op.getSimpleValueType();
+ SDValue PassThru = Src1;
+ // Set PassThru element.
+ if (IntrData->Type == TERLOG_OP_MASKZ)
+ PassThru = getZeroVector(VT, Subtarget, DAG, dl);
+
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Src3, Src4),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case CVTPD2PS:
+ // ISD::FP_ROUND has a second argument that indicates if the truncation
+ // does not change the value. Set it to 0 since it can change.
+ return DAG.getNode(IntrData->Opc0, dl, VT, Op.getOperand(1),
+ DAG.getIntPtrConstant(0, dl));
+ case CVTPD2PS_MASK: {
+ SDValue Src = Op.getOperand(1);
+ SDValue PassThru = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ // We add rounding mode to the Node when
+ // - RM Opcode is specified and
+ // - RM is not "current direction".
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(4);
+ if (!isRoundModeCurDirection(Rnd)) {
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ }
+ assert(IntrData->Opc0 == ISD::FP_ROUND && "Unexpected opcode!");
+ // ISD::FP_ROUND has a second argument that indicates if the truncation
+ // does not change the value. Set it to 0 since it can change.
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
+ DAG.getIntPtrConstant(0, dl)),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case FPCLASS: {
+ // FPclass intrinsics with mask
+ SDValue Src1 = Op.getOperand(1);
+ MVT VT = Src1.getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ SDValue Imm = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+ SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm);
+ SDValue FPclassMask = getVectorMaskingNode(FPclass, Mask, SDValue(),
+ Subtarget, DAG);
+ SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
+ DAG.getUNDEF(BitcastVT), FPclassMask,
+ DAG.getIntPtrConstant(0, dl));
+ return DAG.getBitcast(Op.getValueType(), Res);
+ }
+ case FPCLASSS: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Imm = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Imm);
+ SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask, SDValue(),
+ Subtarget, DAG);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, FPclassMask,
+ DAG.getIntPtrConstant(0, dl));
+ }
+ case CMP_MASK:
+ case CMP_MASK_CC: {
+ // Comparison intrinsics with masks.
+ // Example of transformation:
+ // (i8 (int_x86_avx512_mask_pcmpeq_q_128
+ // (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
+ // (i8 (bitcast
+ // (v8i1 (insert_subvector undef,
+ // (v2i1 (and (PCMPEQM %a, %b),
+ // (extract_subvector
+ // (v8i1 (bitcast %mask)), 0))), 0))))
+ MVT VT = Op.getOperand(1).getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+ SDValue Cmp;
+ if (IntrData->Type == CMP_MASK_CC) {
+ SDValue CC = Op.getOperand(3);
+ CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC);
+ // We specify 2 possible opcodes for intrinsics with rounding modes.
+ // First, we check if the intrinsic may have non-default rounding mode,
+ // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+ if (IntrData->Opc1 != 0) {
+ SDValue Rnd = Op.getOperand(5);
+ if (!isRoundModeCurDirection(Rnd))
+ Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1),
+ Op.getOperand(2), CC, Rnd);
+ }
+ //default rounding mode
+ if(!Cmp.getNode())
+ Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
+ Op.getOperand(2), CC);
+
+ } else {
+ assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
+ Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
+ Op.getOperand(2));
+ }
+ SDValue CmpMask = getVectorMaskingNode(Cmp, Mask, SDValue(),
+ Subtarget, DAG);
+ SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
+ DAG.getUNDEF(BitcastVT), CmpMask,
+ DAG.getIntPtrConstant(0, dl));
+ return DAG.getBitcast(Op.getValueType(), Res);
+ }
+ case CMP_MASK_SCALAR_CC: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3));
+ SDValue Mask = Op.getOperand(4);
+
+ SDValue Cmp;
+ if (IntrData->Opc1 != 0) {
+ SDValue Rnd = Op.getOperand(5);
+ if (!isRoundModeCurDirection(Rnd))
+ Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::v1i1, Src1, Src2, CC, Rnd);
+ }
+ //default rounding mode
+ if(!Cmp.getNode())
+ Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Src2, CC);
+
+ SDValue CmpMask = getScalarMaskingNode(Cmp, Mask, SDValue(),
+ Subtarget, DAG);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, CmpMask,
+ DAG.getIntPtrConstant(0, dl));
+ }
+ case COMI: { // Comparison intrinsics
+ ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ SDValue Comi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
+ SDValue InvComi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, RHS, LHS);
+ SDValue SetCC;
+ switch (CC) {
+ case ISD::SETEQ: { // (ZF = 0 and PF = 0)
+ SetCC = getSETCC(X86::COND_E, Comi, dl, DAG);
+ SDValue SetNP = getSETCC(X86::COND_NP, Comi, dl, DAG);
+ SetCC = DAG.getNode(ISD::AND, dl, MVT::i8, SetCC, SetNP);
+ break;
+ }
+ case ISD::SETNE: { // (ZF = 1 or PF = 1)
+ SetCC = getSETCC(X86::COND_NE, Comi, dl, DAG);
+ SDValue SetP = getSETCC(X86::COND_P, Comi, dl, DAG);
+ SetCC = DAG.getNode(ISD::OR, dl, MVT::i8, SetCC, SetP);
+ break;
+ }
+ case ISD::SETGT: // (CF = 0 and ZF = 0)
+ SetCC = getSETCC(X86::COND_A, Comi, dl, DAG);
+ break;
+ case ISD::SETLT: { // The condition is opposite to GT. Swap the operands.
+ SetCC = getSETCC(X86::COND_A, InvComi, dl, DAG);
+ break;
+ }
+ case ISD::SETGE: // CF = 0
+ SetCC = getSETCC(X86::COND_AE, Comi, dl, DAG);
+ break;
+ case ISD::SETLE: // The condition is opposite to GE. Swap the operands.
+ SetCC = getSETCC(X86::COND_AE, InvComi, dl, DAG);
+ break;
+ default:
+ llvm_unreachable("Unexpected illegal condition!");
+ }
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+ case COMI_RM: { // Comparison intrinsics with Sae
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ unsigned CondVal = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
+ SDValue Sae = Op.getOperand(4);
+
+ SDValue FCmp;
+ if (isRoundModeCurDirection(Sae))
+ FCmp = DAG.getNode(X86ISD::FSETCCM, dl, MVT::v1i1, LHS, RHS,
+ DAG.getConstant(CondVal, dl, MVT::i8));
+ else
+ FCmp = DAG.getNode(X86ISD::FSETCCM_RND, dl, MVT::v1i1, LHS, RHS,
+ DAG.getConstant(CondVal, dl, MVT::i8), Sae);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, FCmp,
+ DAG.getIntPtrConstant(0, dl));
+ }
+ case VSHIFT:
+ return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
+ Op.getOperand(1), Op.getOperand(2), Subtarget,
+ DAG);
+ case COMPRESS_EXPAND_IN_REG: {
+ SDValue Mask = Op.getOperand(3);
+ SDValue DataToCompress = Op.getOperand(1);
+ SDValue PassThru = Op.getOperand(2);
+ if (isAllOnesConstant(Mask)) // return data as is
+ return Op.getOperand(1);
+
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ DataToCompress),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case BROADCASTM: {
+ SDValue Mask = Op.getOperand(1);
+ MVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+ Mask = DAG.getBitcast(MaskVT, Mask);
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Mask);
+ }
+ case MASK_BINOP: {
+ MVT VT = Op.getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits());
+
+ SDValue Src1 = getMaskNode(Op.getOperand(1), MaskVT, Subtarget, DAG, dl);
+ SDValue Src2 = getMaskNode(Op.getOperand(2), MaskVT, Subtarget, DAG, dl);
+ SDValue Res = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Src2);
+ return DAG.getBitcast(VT, Res);
+ }
+ case FIXUPIMMS:
+ case FIXUPIMMS_MASKZ:
+ case FIXUPIMM:
+ case FIXUPIMM_MASKZ:{
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue Imm = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+ SDValue Passthru = (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMMS ) ?
+ Src1 : getZeroVector(VT, Subtarget, DAG, dl);
+ // We specify 2 possible modes for intrinsics, with/without rounding
+ // modes.
+ // First, we check if the intrinsic have rounding mode (7 operands),
+ // if not, we set rounding mode to "current".
+ SDValue Rnd;
+ if (Op.getNumOperands() == 7)
+ Rnd = Op.getOperand(6);
+ else
+ Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+ if (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMM_MASKZ)
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Src3, Imm, Rnd),
+ Mask, Passthru, Subtarget, DAG);
+ else // Scalar - FIXUPIMMS, FIXUPIMMS_MASKZ
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Src3, Imm, Rnd),
+ Mask, Passthru, Subtarget, DAG);
+ }
+ case CONVERT_TO_MASK: {
+ MVT SrcVT = Op.getOperand(1).getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements());
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits());
+
+ SDValue CvtMask = DAG.getNode(IntrData->Opc0, dl, MaskVT,
+ Op.getOperand(1));
+ SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
+ DAG.getUNDEF(BitcastVT), CvtMask,
+ DAG.getIntPtrConstant(0, dl));
+ return DAG.getBitcast(Op.getValueType(), Res);
+ }
+ case ROUNDP: {
+ assert(IntrData->Opc0 == X86ISD::VRNDSCALE && "Unexpected opcode");
+ // Clear the upper bits of the rounding immediate so that the legacy
+ // intrinsic can't trigger the scaling behavior of VRNDSCALE.
+ SDValue RoundingMode = DAG.getNode(ISD::AND, dl, MVT::i32,
+ Op.getOperand(2),
+ DAG.getConstant(0xf, dl, MVT::i32));
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
+ Op.getOperand(1), RoundingMode);
+ }
+ case ROUNDS: {
+ assert(IntrData->Opc0 == X86ISD::VRNDSCALES && "Unexpected opcode");
+ // Clear the upper bits of the rounding immediate so that the legacy
+ // intrinsic can't trigger the scaling behavior of VRNDSCALE.
+ SDValue RoundingMode = DAG.getNode(ISD::AND, dl, MVT::i32,
+ Op.getOperand(3),
+ DAG.getConstant(0xf, dl, MVT::i32));
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2), RoundingMode);
+ }
+ default:
+ break;
+ }
+ }
+
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
+
+ case Intrinsic::x86_avx2_permd:
+ case Intrinsic::x86_avx2_permps:
+ // Operands intentionally swapped. Mask is last operand to intrinsic,
+ // but second operand for node/instruction.
+ return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
+ Op.getOperand(2), Op.getOperand(1));
+
+ // ptest and testp intrinsics. The intrinsic these come from are designed to
+ // return an integer value, not just an instruction so lower it to the ptest
+ // or testp pattern and a setcc for the result.
+ case Intrinsic::x86_sse41_ptestz:
+ case Intrinsic::x86_sse41_ptestc:
+ case Intrinsic::x86_sse41_ptestnzc:
+ case Intrinsic::x86_avx_ptestz_256:
+ case Intrinsic::x86_avx_ptestc_256:
+ case Intrinsic::x86_avx_ptestnzc_256:
+ case Intrinsic::x86_avx_vtestz_ps:
+ case Intrinsic::x86_avx_vtestc_ps:
+ case Intrinsic::x86_avx_vtestnzc_ps:
+ case Intrinsic::x86_avx_vtestz_pd:
+ case Intrinsic::x86_avx_vtestc_pd:
+ case Intrinsic::x86_avx_vtestnzc_pd:
+ case Intrinsic::x86_avx_vtestz_ps_256:
+ case Intrinsic::x86_avx_vtestc_ps_256:
+ case Intrinsic::x86_avx_vtestnzc_ps_256:
+ case Intrinsic::x86_avx_vtestz_pd_256:
+ case Intrinsic::x86_avx_vtestc_pd_256:
+ case Intrinsic::x86_avx_vtestnzc_pd_256: {
+ bool IsTestPacked = false;
+ X86::CondCode X86CC;
+ switch (IntNo) {
+ default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
+ case Intrinsic::x86_avx_vtestz_ps:
+ case Intrinsic::x86_avx_vtestz_pd:
+ case Intrinsic::x86_avx_vtestz_ps_256:
+ case Intrinsic::x86_avx_vtestz_pd_256:
+ IsTestPacked = true;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::x86_sse41_ptestz:
+ case Intrinsic::x86_avx_ptestz_256:
+ // ZF = 1
+ X86CC = X86::COND_E;
+ break;
+ case Intrinsic::x86_avx_vtestc_ps:
+ case Intrinsic::x86_avx_vtestc_pd:
+ case Intrinsic::x86_avx_vtestc_ps_256:
+ case Intrinsic::x86_avx_vtestc_pd_256:
+ IsTestPacked = true;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::x86_sse41_ptestc:
+ case Intrinsic::x86_avx_ptestc_256:
+ // CF = 1
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_avx_vtestnzc_ps:
+ case Intrinsic::x86_avx_vtestnzc_pd:
+ case Intrinsic::x86_avx_vtestnzc_ps_256:
+ case Intrinsic::x86_avx_vtestnzc_pd_256:
+ IsTestPacked = true;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::x86_sse41_ptestnzc:
+ case Intrinsic::x86_avx_ptestnzc_256:
+ // ZF and CF = 0
+ X86CC = X86::COND_A;
+ break;
+ }
+
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
+ SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = getSETCC(X86CC, Test, dl, DAG);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+ case Intrinsic::x86_avx512_kortestz_w:
+ case Intrinsic::x86_avx512_kortestc_w: {
+ X86::CondCode X86CC =
+ (IntNo == Intrinsic::x86_avx512_kortestz_w) ? X86::COND_E : X86::COND_B;
+ SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
+ SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2));
+ SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = getSETCC(X86CC, Test, dl, DAG);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+
+ case Intrinsic::x86_avx512_knot_w: {
+ SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
+ SDValue RHS = DAG.getConstant(1, dl, MVT::v16i1);
+ SDValue Res = DAG.getNode(ISD::XOR, dl, MVT::v16i1, LHS, RHS);
+ return DAG.getBitcast(MVT::i16, Res);
+ }
+
+ case Intrinsic::x86_avx512_kandn_w: {
+ SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
+ // Invert LHS for the not.
+ LHS = DAG.getNode(ISD::XOR, dl, MVT::v16i1, LHS,
+ DAG.getConstant(1, dl, MVT::v16i1));
+ SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2));
+ SDValue Res = DAG.getNode(ISD::AND, dl, MVT::v16i1, LHS, RHS);
+ return DAG.getBitcast(MVT::i16, Res);
+ }
+
+ case Intrinsic::x86_avx512_kxnor_w: {
+ SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
+ SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2));
+ SDValue Res = DAG.getNode(ISD::XOR, dl, MVT::v16i1, LHS, RHS);
+ // Invert result for the not.
+ Res = DAG.getNode(ISD::XOR, dl, MVT::v16i1, Res,
+ DAG.getConstant(1, dl, MVT::v16i1));
+ return DAG.getBitcast(MVT::i16, Res);
+ }
+
+ case Intrinsic::x86_sse42_pcmpistria128:
+ case Intrinsic::x86_sse42_pcmpestria128:
+ case Intrinsic::x86_sse42_pcmpistric128:
+ case Intrinsic::x86_sse42_pcmpestric128:
+ case Intrinsic::x86_sse42_pcmpistrio128:
+ case Intrinsic::x86_sse42_pcmpestrio128:
+ case Intrinsic::x86_sse42_pcmpistris128:
+ case Intrinsic::x86_sse42_pcmpestris128:
+ case Intrinsic::x86_sse42_pcmpistriz128:
+ case Intrinsic::x86_sse42_pcmpestriz128: {
+ unsigned Opcode;
+ X86::CondCode X86CC;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse42_pcmpistria128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_A;
+ break;
+ case Intrinsic::x86_sse42_pcmpestria128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_A;
+ break;
+ case Intrinsic::x86_sse42_pcmpistric128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_sse42_pcmpestric128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_sse42_pcmpistrio128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_O;
+ break;
+ case Intrinsic::x86_sse42_pcmpestrio128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_O;
+ break;
+ case Intrinsic::x86_sse42_pcmpistris128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_S;
+ break;
+ case Intrinsic::x86_sse42_pcmpestris128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_S;
+ break;
+ case Intrinsic::x86_sse42_pcmpistriz128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_E;
+ break;
+ case Intrinsic::x86_sse42_pcmpestriz128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_E;
+ break;
+ }
+ SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
+ SDValue SetCC = getSETCC(X86CC, SDValue(PCMP.getNode(), 1), dl, DAG);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+
+ case Intrinsic::x86_sse42_pcmpistri128:
+ case Intrinsic::x86_sse42_pcmpestri128: {
+ unsigned Opcode;
+ if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
+ Opcode = X86ISD::PCMPISTRI;
+ else
+ Opcode = X86ISD::PCMPESTRI;
+
+ SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ return DAG.getNode(Opcode, dl, VTs, NewOps);
+ }
+
+ case Intrinsic::eh_sjlj_lsda: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
+ auto &Context = MF.getMMI().getContext();
+ MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
+ Twine(MF.getFunctionNumber()));
+ return DAG.getNode(getGlobalWrapperKind(), dl, VT,
+ DAG.getMCSymbol(S, PtrVT));
+ }
+
+ case Intrinsic::x86_seh_lsda: {
+ // Compute the symbol for the LSDA. We know it'll get emitted later.
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDValue Op1 = Op.getOperand(1);
+ auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
+ MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
+ GlobalValue::dropLLVMManglingEscape(Fn->getName()));
+
+ // Generate a simple absolute symbol reference. This intrinsic is only
+ // supported on 32-bit Windows, which isn't PIC.
+ SDValue Result = DAG.getMCSymbol(LSDASym, VT);
+ return DAG.getNode(X86ISD::Wrapper, dl, VT, Result);
+ }
+
+ case Intrinsic::x86_seh_recoverfp: {
+ SDValue FnOp = Op.getOperand(1);
+ SDValue IncomingFPOp = Op.getOperand(2);
+ GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
+ auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
+ if (!Fn)
+ report_fatal_error(
+ "llvm.x86.seh.recoverfp must take a function as the first argument");
+ return recoverFramePointer(DAG, Fn, IncomingFPOp);
+ }
+
+ case Intrinsic::localaddress: {
+ // Returns one of the stack, base, or frame pointer registers, depending on
+ // which is used to reference local variables.
+ MachineFunction &MF = DAG.getMachineFunction();
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ unsigned Reg;
+ if (RegInfo->hasBasePointer(MF))
+ Reg = RegInfo->getBaseRegister();
+ else // This function handles the SP or FP case.
+ Reg = RegInfo->getPtrSizedFrameRegister(MF);
+ return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
+ }
+ }
+}
+
+static SDValue getAVX2GatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Mask, SDValue Base,
+ SDValue Index, SDValue ScaleOp, SDValue Chain,
+ const X86Subtarget &Subtarget) {
+ SDLoc dl(Op);
+ auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ // Scale must be constant.
+ if (!C)
+ return SDValue();
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
+ EVT MaskVT = Mask.getValueType();
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
+ SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ // If source is undef or we know it won't be used, use a zero vector
+ // to break register dependency.
+ // TODO: use undef instead and let ExecutionDepsFix deal with it?
+ if (Src.isUndef() || ISD::isBuildVectorAllOnes(Mask.getNode()))
+ Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
+ SDValue Ops[] = {Src, Base, Scale, Index, Disp, Segment, Mask, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
+ return DAG.getMergeValues(RetOps, dl);
+}
+
+static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Mask, SDValue Base,
+ SDValue Index, SDValue ScaleOp, SDValue Chain,
+ const X86Subtarget &Subtarget) {
+ SDLoc dl(Op);
+ auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ // Scale must be constant.
+ if (!C)
+ return SDValue();
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
+ MVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getSimpleValueType().getVectorNumElements());
+
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
+ SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ // If source is undef or we know it won't be used, use a zero vector
+ // to break register dependency.
+ // TODO: use undef instead and let ExecutionDepsFix deal with it?
+ if (Src.isUndef() || ISD::isBuildVectorAllOnes(VMask.getNode()))
+ Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
+ SDValue Ops[] = {Src, VMask, Base, Scale, Index, Disp, Segment, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
+ return DAG.getMergeValues(RetOps, dl);
+}
+
+static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Mask, SDValue Base,
+ SDValue Index, SDValue ScaleOp, SDValue Chain,
+ const X86Subtarget &Subtarget) {
+ SDLoc dl(Op);
+ auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ // Scale must be constant.
+ if (!C)
+ return SDValue();
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
+ SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ MVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getSimpleValueType().getVectorNumElements());
+
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+ SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
+ SDValue Ops[] = {Base, Scale, Index, Disp, Segment, VMask, Src, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ return SDValue(Res, 1);
+}
+
+static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Mask, SDValue Base, SDValue Index,
+ SDValue ScaleOp, SDValue Chain,
+ const X86Subtarget &Subtarget) {
+ SDLoc dl(Op);
+ auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ // Scale must be constant.
+ if (!C)
+ return SDValue();
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
+ SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ MVT MaskVT =
+ MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+ SDValue Ops[] = {VMask, Base, Scale, Index, Disp, Segment, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
+ return SDValue(Res, 0);
+}
+
+/// Handles the lowering of builtin intrinsic that return the value
+/// of the extended control register.
+static void getExtendedControlRegister(SDNode *N, const SDLoc &DL,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ SmallVectorImpl<SDValue> &Results) {
+ assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue LO, HI;
+
+ // The ECX register is used to select the index of the XCR register to
+ // return.
+ SDValue Chain =
+ DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, N->getOperand(2));
+ SDNode *N1 = DAG.getMachineNode(X86::XGETBV, DL, Tys, Chain);
+ Chain = SDValue(N1, 0);
+
+ // Reads the content of XCR and returns it in registers EDX:EAX.
+ if (Subtarget.is64Bit()) {
+ LO = DAG.getCopyFromReg(Chain, DL, X86::RAX, MVT::i64, SDValue(N1, 1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
+ LO.getValue(2));
+ } else {
+ LO = DAG.getCopyFromReg(Chain, DL, X86::EAX, MVT::i32, SDValue(N1, 1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
+ LO.getValue(2));
+ }
+ Chain = HI.getValue(1);
+
+ if (Subtarget.is64Bit()) {
+ // Merge the two 32-bit values into a 64-bit one..
+ SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
+ DAG.getConstant(32, DL, MVT::i8));
+ Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
+ Results.push_back(Chain);
+ return;
+ }
+
+ // Use a buildpair to merge the two 32-bit values into a 64-bit one.
+ SDValue Ops[] = { LO, HI };
+ SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
+ Results.push_back(Pair);
+ Results.push_back(Chain);
+}
+
+/// Handles the lowering of builtin intrinsics that read performance monitor
+/// counters (x86_rdpmc).
+static void getReadPerformanceCounter(SDNode *N, const SDLoc &DL,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ SmallVectorImpl<SDValue> &Results) {
+ assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue LO, HI;
+
+ // The ECX register is used to select the index of the performance counter
+ // to read.
+ SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
+ N->getOperand(2));
+ SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
+
+ // Reads the content of a 64-bit performance counter and returns it in the
+ // registers EDX:EAX.
+ if (Subtarget.is64Bit()) {
+ LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
+ LO.getValue(2));
+ } else {
+ LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
+ LO.getValue(2));
+ }
+ Chain = HI.getValue(1);
+
+ if (Subtarget.is64Bit()) {
+ // The EAX register is loaded with the low-order 32 bits. The EDX register
+ // is loaded with the supported high-order bits of the counter.
+ SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
+ DAG.getConstant(32, DL, MVT::i8));
+ Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
+ Results.push_back(Chain);
+ return;
+ }
+
+ // Use a buildpair to merge the two 32-bit values into a 64-bit one.
+ SDValue Ops[] = { LO, HI };
+ SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
+ Results.push_back(Pair);
+ Results.push_back(Chain);
+}
+
+/// Handles the lowering of builtin intrinsics that read the time stamp counter
+/// (x86_rdtsc and x86_rdtscp). This function is also used to custom lower
+/// READCYCLECOUNTER nodes.
+static void getReadTimeStampCounter(SDNode *N, const SDLoc &DL, unsigned Opcode,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ SmallVectorImpl<SDValue> &Results) {
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
+ SDValue LO, HI;
+
+ // The processor's time-stamp counter (a 64-bit MSR) is stored into the
+ // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
+ // and the EAX register is loaded with the low-order 32 bits.
+ if (Subtarget.is64Bit()) {
+ LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
+ LO.getValue(2));
+ } else {
+ LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
+ LO.getValue(2));
+ }
+ SDValue Chain = HI.getValue(1);
+
+ if (Opcode == X86ISD::RDTSCP_DAG) {
+ assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
+
+ // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
+ // the ECX register. Add 'ecx' explicitly to the chain.
+ SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
+ HI.getValue(2));
+ // Explicitly store the content of ECX at the location passed in input
+ // to the 'rdtscp' intrinsic.
+ Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
+ MachinePointerInfo());
+ }
+
+ if (Subtarget.is64Bit()) {
+ // The EDX register is loaded with the high-order 32 bits of the MSR, and
+ // the EAX register is loaded with the low-order 32 bits.
+ SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
+ DAG.getConstant(32, DL, MVT::i8));
+ Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
+ Results.push_back(Chain);
+ return;
+ }
+
+ // Use a buildpair to merge the two 32-bit values into a 64-bit one.
+ SDValue Ops[] = { LO, HI };
+ SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
+ Results.push_back(Pair);
+ Results.push_back(Chain);
+}
+
+static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SmallVector<SDValue, 2> Results;
+ SDLoc DL(Op);
+ getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
+ Results);
+ return DAG.getMergeValues(Results, DL);
+}
+
+static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDValue Chain = Op.getOperand(0);
+ SDValue RegNode = Op.getOperand(2);
+ WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
+ if (!EHInfo)
+ report_fatal_error("EH registrations only live in functions using WinEH");
+
+ // Cast the operand to an alloca, and remember the frame index.
+ auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode);
+ if (!FINode)
+ report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca");
+ EHInfo->EHRegNodeFrameIndex = FINode->getIndex();
+
+ // Return the chain operand without making any DAG nodes.
+ return Chain;
+}
+
+static SDValue MarkEHGuard(SDValue Op, SelectionDAG &DAG) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDValue Chain = Op.getOperand(0);
+ SDValue EHGuard = Op.getOperand(2);
+ WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
+ if (!EHInfo)
+ report_fatal_error("EHGuard only live in functions using WinEH");
+
+ // Cast the operand to an alloca, and remember the frame index.
+ auto *FINode = dyn_cast<FrameIndexSDNode>(EHGuard);
+ if (!FINode)
+ report_fatal_error("llvm.x86.seh.ehguard expects a static alloca");
+ EHInfo->EHGuardFrameIndex = FINode->getIndex();
+
+ // Return the chain operand without making any DAG nodes.
+ return Chain;
+}
+
+/// Emit Truncating Store with signed or unsigned saturation.
+static SDValue
+EmitTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl, SDValue Val,
+ SDValue Ptr, EVT MemVT, MachineMemOperand *MMO,
+ SelectionDAG &DAG) {
+
+ SDVTList VTs = DAG.getVTList(MVT::Other);
+ SDValue Undef = DAG.getUNDEF(Ptr.getValueType());
+ SDValue Ops[] = { Chain, Val, Ptr, Undef };
+ return SignedSat ?
+ DAG.getTargetMemSDNode<TruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
+ DAG.getTargetMemSDNode<TruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
+}
+
+/// Emit Masked Truncating Store with signed or unsigned saturation.
+static SDValue
+EmitMaskedTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl,
+ SDValue Val, SDValue Ptr, SDValue Mask, EVT MemVT,
+ MachineMemOperand *MMO, SelectionDAG &DAG) {
+
+ SDVTList VTs = DAG.getVTList(MVT::Other);
+ SDValue Ops[] = { Chain, Ptr, Mask, Val };
+ return SignedSat ?
+ DAG.getTargetMemSDNode<MaskedTruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
+ DAG.getTargetMemSDNode<MaskedTruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
+}
+
+static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+
+ const IntrinsicData *IntrData = getIntrinsicWithChain(IntNo);
+ if (!IntrData) {
+ switch (IntNo) {
+ case llvm::Intrinsic::x86_seh_ehregnode:
+ return MarkEHRegistrationNode(Op, DAG);
+ case llvm::Intrinsic::x86_seh_ehguard:
+ return MarkEHGuard(Op, DAG);
+ case llvm::Intrinsic::x86_flags_read_u32:
+ case llvm::Intrinsic::x86_flags_read_u64:
+ case llvm::Intrinsic::x86_flags_write_u32:
+ case llvm::Intrinsic::x86_flags_write_u64: {
+ // We need a frame pointer because this will get lowered to a PUSH/POP
+ // sequence.
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setHasCopyImplyingStackAdjustment(true);
+ // Don't do anything here, we will expand these intrinsics out later
+ // during ExpandISelPseudos in EmitInstrWithCustomInserter.
+ return SDValue();
+ }
+ case Intrinsic::x86_lwpins32:
+ case Intrinsic::x86_lwpins64: {
+ SDLoc dl(Op);
+ SDValue Chain = Op->getOperand(0);
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
+ SDValue LwpIns =
+ DAG.getNode(X86ISD::LWPINS, dl, VTs, Chain, Op->getOperand(2),
+ Op->getOperand(3), Op->getOperand(4));
+ SDValue SetCC = getSETCC(X86::COND_B, LwpIns.getValue(0), dl, DAG);
+ SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, SetCC);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result,
+ LwpIns.getValue(1));
+ }
+ }
+ return SDValue();
+ }
+
+ SDLoc dl(Op);
+ switch(IntrData->Type) {
+ default: llvm_unreachable("Unknown Intrinsic Type");
+ case RDSEED:
+ case RDRAND: {
+ // Emit the node with the right value type.
+ SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32, MVT::Other);
+ SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
+
+ // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
+ // Otherwise return the value from Rand, which is always 0, casted to i32.
+ SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
+ DAG.getConstant(1, dl, Op->getValueType(1)),
+ DAG.getConstant(X86::COND_B, dl, MVT::i8),
+ SDValue(Result.getNode(), 1) };
+ SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, Op->getValueType(1), Ops);
+
+ // Return { result, isValid, chain }.
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
+ SDValue(Result.getNode(), 2));
+ }
+ case GATHER_AVX2: {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Src = Op.getOperand(2);
+ SDValue Base = Op.getOperand(3);
+ SDValue Index = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+ SDValue Scale = Op.getOperand(6);
+ return getAVX2GatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
+ Scale, Chain, Subtarget);
+ }
+ case GATHER: {
+ //gather(v1, mask, index, base, scale);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Src = Op.getOperand(2);
+ SDValue Base = Op.getOperand(3);
+ SDValue Index = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+ SDValue Scale = Op.getOperand(6);
+ return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale,
+ Chain, Subtarget);
+ }
+ case SCATTER: {
+ //scatter(base, mask, index, v1, scale);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Base = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue Index = Op.getOperand(4);
+ SDValue Src = Op.getOperand(5);
+ SDValue Scale = Op.getOperand(6);
+ return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
+ Scale, Chain, Subtarget);
+ }
+ case PREFETCH: {
+ SDValue Hint = Op.getOperand(6);
+ unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue();
+ assert((HintVal == 2 || HintVal == 3) &&
+ "Wrong prefetch hint in intrinsic: should be 2 or 3");
+ unsigned Opcode = (HintVal == 2 ? IntrData->Opc1 : IntrData->Opc0);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Mask = Op.getOperand(2);
+ SDValue Index = Op.getOperand(3);
+ SDValue Base = Op.getOperand(4);
+ SDValue Scale = Op.getOperand(5);
+ return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain,
+ Subtarget);
+ }
+ // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
+ case RDTSC: {
+ SmallVector<SDValue, 2> Results;
+ getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget,
+ Results);
+ return DAG.getMergeValues(Results, dl);
+ }
+ // Read Performance Monitoring Counters.
+ case RDPMC: {
+ SmallVector<SDValue, 2> Results;
+ getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
+ return DAG.getMergeValues(Results, dl);
+ }
+ // Get Extended Control Register.
+ case XGETBV: {
+ SmallVector<SDValue, 2> Results;
+ getExtendedControlRegister(Op.getNode(), dl, DAG, Subtarget, Results);
+ return DAG.getMergeValues(Results, dl);
+ }
+ // XTEST intrinsics.
+ case XTEST: {
+ SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
+ SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
+
+ SDValue SetCC = getSETCC(X86::COND_NE, InTrans, dl, DAG);
+ SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
+ Ret, SDValue(InTrans.getNode(), 1));
+ }
+ // ADC/ADCX/SBB
+ case ADX: {
+ SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
+ SDVTList VTs = DAG.getVTList(Op.getOperand(3).getValueType(), MVT::i32);
+ SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
+ DAG.getConstant(-1, dl, MVT::i8));
+ SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
+ Op.getOperand(4), GenCF.getValue(1));
+ SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
+ Op.getOperand(5), MachinePointerInfo());
+ SDValue SetCC = getSETCC(X86::COND_B, Res.getValue(1), dl, DAG);
+ SDValue Results[] = { SetCC, Store };
+ return DAG.getMergeValues(Results, dl);
+ }
+ case COMPRESS_TO_MEM: {
+ SDValue Mask = Op.getOperand(4);
+ SDValue DataToCompress = Op.getOperand(3);
+ SDValue Addr = Op.getOperand(2);
+ SDValue Chain = Op.getOperand(0);
+ MVT VT = DataToCompress.getSimpleValueType();
+
+ MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
+ assert(MemIntr && "Expected MemIntrinsicSDNode!");
+
+ if (isAllOnesConstant(Mask)) // return just a store
+ return DAG.getStore(Chain, dl, DataToCompress, Addr,
+ MemIntr->getMemOperand());
+
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+
+ return DAG.getMaskedStore(Chain, dl, DataToCompress, Addr, VMask, VT,
+ MemIntr->getMemOperand(),
+ false /* truncating */, true /* compressing */);
+ }
+ case TRUNCATE_TO_MEM_VI8:
+ case TRUNCATE_TO_MEM_VI16:
+ case TRUNCATE_TO_MEM_VI32: {
+ SDValue Mask = Op.getOperand(4);
+ SDValue DataToTruncate = Op.getOperand(3);
+ SDValue Addr = Op.getOperand(2);
+ SDValue Chain = Op.getOperand(0);
+
+ MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
+ assert(MemIntr && "Expected MemIntrinsicSDNode!");
+
+ EVT MemVT = MemIntr->getMemoryVT();
+
+ uint16_t TruncationOp = IntrData->Opc0;
+ switch (TruncationOp) {
+ case X86ISD::VTRUNC: {
+ if (isAllOnesConstant(Mask)) // return just a truncate store
+ return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, MemVT,
+ MemIntr->getMemOperand());
+
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+
+ return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, VMask, MemVT,
+ MemIntr->getMemOperand(), true /* truncating */);
+ }
+ case X86ISD::VTRUNCUS:
+ case X86ISD::VTRUNCS: {
+ bool IsSigned = (TruncationOp == X86ISD::VTRUNCS);
+ if (isAllOnesConstant(Mask))
+ return EmitTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr, MemVT,
+ MemIntr->getMemOperand(), DAG);
+
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+
+ return EmitMaskedTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr,
+ VMask, MemVT, MemIntr->getMemOperand(), DAG);
+ }
+ default:
+ llvm_unreachable("Unsupported truncstore intrinsic");
+ }
+ }
+
+ case EXPAND_FROM_MEM: {
+ SDValue Mask = Op.getOperand(4);
+ SDValue PassThru = Op.getOperand(3);
+ SDValue Addr = Op.getOperand(2);
+ SDValue Chain = Op.getOperand(0);
+ MVT VT = Op.getSimpleValueType();
+
+ MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
+ assert(MemIntr && "Expected MemIntrinsicSDNode!");
+
+ if (isAllOnesConstant(Mask)) // Return a regular (unmasked) vector load.
+ return DAG.getLoad(VT, dl, Chain, Addr, MemIntr->getMemOperand());
+ if (X86::isZeroNode(Mask))
+ return DAG.getUNDEF(VT);
+
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+ return DAG.getMaskedLoad(VT, dl, Chain, Addr, VMask, PassThru, VT,
+ MemIntr->getMemOperand(), ISD::NON_EXTLOAD,
+ true /* expanding */);
+ }
+ }
+}
+
+SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI.setReturnAddressIsTaken(true);
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDLoc dl(Op);
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+
+ if (Depth > 0) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
+ MachinePointerInfo());
+ }
+
+ // Just load the return address.
+ SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
+ MachinePointerInfo());
+}
+
+SDValue X86TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ DAG.getMachineFunction().getFrameInfo().setReturnAddressIsTaken(true);
+ return getReturnAddressFrameIndex(DAG);
+}
+
+SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ EVT VT = Op.getValueType();
+
+ MFI.setFrameAddressIsTaken(true);
+
+ if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
+ // Depth > 0 makes no sense on targets which use Windows unwind codes. It
+ // is not possible to crawl up the stack without looking at the unwind codes
+ // simultaneously.
+ int FrameAddrIndex = FuncInfo->getFAIndex();
+ if (!FrameAddrIndex) {
+ // Set up a frame object for the return address.
+ unsigned SlotSize = RegInfo->getSlotSize();
+ FrameAddrIndex = MF.getFrameInfo().CreateFixedObject(
+ SlotSize, /*Offset=*/0, /*IsImmutable=*/false);
+ FuncInfo->setFAIndex(FrameAddrIndex);
+ }
+ return DAG.getFrameIndex(FrameAddrIndex, VT);
+ }
+
+ unsigned FrameReg =
+ RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
+ SDLoc dl(Op); // FIXME probably not meaningful
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
+ (FrameReg == X86::EBP && VT == MVT::i32)) &&
+ "Invalid Frame Register!");
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo());
+ return FrameAddr;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT,
+ SelectionDAG &DAG) const {
+ const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
+ const MachineFunction &MF = DAG.getMachineFunction();
+
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("esp", X86::ESP)
+ .Case("rsp", X86::RSP)
+ .Case("ebp", X86::EBP)
+ .Case("rbp", X86::RBP)
+ .Default(0);
+
+ if (Reg == X86::EBP || Reg == X86::RBP) {
+ if (!TFI.hasFP(MF))
+ report_fatal_error("register " + StringRef(RegName) +
+ " is allocatable: function has no frame pointer");
+#ifndef NDEBUG
+ else {
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ unsigned FrameReg =
+ RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
+ assert((FrameReg == X86::EBP || FrameReg == X86::RBP) &&
+ "Invalid Frame Register!");
+ }
+#endif
+ }
+
+ if (Reg)
+ return Reg;
+
+ report_fatal_error("Invalid register name global variable");
+}
+
+SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
+ SelectionDAG &DAG) const {
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op));
+}
+
+unsigned X86TargetLowering::getExceptionPointerRegister(
+ const Constant *PersonalityFn) const {
+ if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR)
+ return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
+
+ return Subtarget.isTarget64BitLP64() ? X86::RAX : X86::EAX;
+}
+
+unsigned X86TargetLowering::getExceptionSelectorRegister(
+ const Constant *PersonalityFn) const {
+ // Funclet personalities don't use selectors (the runtime does the selection).
+ assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)));
+ return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
+}
+
+bool X86TargetLowering::needsFixedCatchObjects() const {
+ return Subtarget.isTargetWin64();
+}
+
+SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ SDLoc dl (Op);
+
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
+ assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
+ (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
+ "Invalid Frame Register!");
+ SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
+ unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
+
+ SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
+ DAG.getIntPtrConstant(RegInfo->getSlotSize(),
+ dl));
+ StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
+ Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
+ Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
+
+ return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
+ DAG.getRegister(StoreAddrReg, PtrVT));
+}
+
+SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ // If the subtarget is not 64bit, we may need the global base reg
+ // after isel expand pseudo, i.e., after CGBR pass ran.
+ // Therefore, ask for the GlobalBaseReg now, so that the pass
+ // inserts the code for us in case we need it.
+ // Otherwise, we will end up in a situation where we will
+ // reference a virtual register that is not defined!
+ if (!Subtarget.is64Bit()) {
+ const X86InstrInfo *TII = Subtarget.getInstrInfo();
+ (void)TII->getGlobalBaseReg(&DAG.getMachineFunction());
+ }
+ return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
+ DAG.getVTList(MVT::i32, MVT::Other),
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+SDValue X86TargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(X86ISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other,
+ Op.getOperand(0));
+}
+
+static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
+ return Op.getOperand(0);
+}
+
+SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Root = Op.getOperand(0);
+ SDValue Trmp = Op.getOperand(1); // trampoline
+ SDValue FPtr = Op.getOperand(2); // nested function
+ SDValue Nest = Op.getOperand(3); // 'nest' parameter value
+ SDLoc dl (Op);
+
+ const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+
+ if (Subtarget.is64Bit()) {
+ SDValue OutChains[6];
+
+ // Large code-model.
+ const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
+ const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
+
+ const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
+ const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
+
+ const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
+
+ // Load the pointer to the nested function into R11.
+ unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
+ SDValue Addr = Trmp;
+ OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
+ Addr, MachinePointerInfo(TrmpAddr));
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(2, dl, MVT::i64));
+ OutChains[1] =
+ DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2),
+ /* Alignment = */ 2);
+
+ // Load the 'nest' parameter value into R10.
+ // R10 is specified in X86CallingConv.td
+ OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(10, dl, MVT::i64));
+ OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
+ Addr, MachinePointerInfo(TrmpAddr, 10));
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(12, dl, MVT::i64));
+ OutChains[3] =
+ DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12),
+ /* Alignment = */ 2);
+
+ // Jump to the nested function.
+ OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(20, dl, MVT::i64));
+ OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
+ Addr, MachinePointerInfo(TrmpAddr, 20));
+
+ unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(22, dl, MVT::i64));
+ OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8),
+ Addr, MachinePointerInfo(TrmpAddr, 22));
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ } else {
+ const Function *Func =
+ cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
+ CallingConv::ID CC = Func->getCallingConv();
+ unsigned NestReg;
+
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::X86_StdCall: {
+ // Pass 'nest' parameter in ECX.
+ // Must be kept in sync with X86CallingConv.td
+ NestReg = X86::ECX;
+
+ // Check that ECX wasn't needed by an 'inreg' parameter.
+ FunctionType *FTy = Func->getFunctionType();
+ const AttributeList &Attrs = Func->getAttributes();
+
+ if (!Attrs.isEmpty() && !Func->isVarArg()) {
+ unsigned InRegCount = 0;
+ unsigned Idx = 1;
+
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I, ++Idx)
+ if (Attrs.hasAttribute(Idx, Attribute::InReg)) {
+ auto &DL = DAG.getDataLayout();
+ // FIXME: should only count parameters that are lowered to integers.
+ InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32;
+ }
+
+ if (InRegCount > 2) {
+ report_fatal_error("Nest register in use - reduce number of inreg"
+ " parameters!");
+ }
+ }
+ break;
+ }
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_ThisCall:
+ case CallingConv::Fast:
+ // Pass 'nest' parameter in EAX.
+ // Must be kept in sync with X86CallingConv.td
+ NestReg = X86::EAX;
+ break;
+ }
+
+ SDValue OutChains[4];
+ SDValue Addr, Disp;
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(10, dl, MVT::i32));
+ Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
+
+ // This is storing the opcode for MOV32ri.
+ const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
+ const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
+ OutChains[0] =
+ DAG.getStore(Root, dl, DAG.getConstant(MOV32ri | N86Reg, dl, MVT::i8),
+ Trmp, MachinePointerInfo(TrmpAddr));
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(1, dl, MVT::i32));
+ OutChains[1] =
+ DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1),
+ /* Alignment = */ 1);
+
+ const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(5, dl, MVT::i32));
+ OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8),
+ Addr, MachinePointerInfo(TrmpAddr, 5),
+ /* Alignment = */ 1);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(6, dl, MVT::i32));
+ OutChains[3] =
+ DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6),
+ /* Alignment = */ 1);
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ }
+}
+
+SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+ SelectionDAG &DAG) const {
+ /*
+ The rounding mode is in bits 11:10 of FPSR, and has the following
+ settings:
+ 00 Round to nearest
+ 01 Round to -inf
+ 10 Round to +inf
+ 11 Round to 0
+
+ FLT_ROUNDS, on the other hand, expects the following:
+ -1 Undefined
+ 0 Round to 0
+ 1 Round to nearest
+ 2 Round to +inf
+ 3 Round to -inf
+
+ To perform the conversion, we do:
+ (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
+ */
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
+ unsigned StackAlignment = TFI.getStackAlignment();
+ MVT VT = Op.getSimpleValueType();
+ SDLoc DL(Op);
+
+ // Save FP Control Word to stack slot
+ int SSFI = MF.getFrameInfo().CreateStackObject(2, StackAlignment, false);
+ SDValue StackSlot =
+ DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout()));
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
+ MachineMemOperand::MOStore, 2, 2);
+
+ SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
+ SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
+ DAG.getVTList(MVT::Other),
+ Ops, MVT::i16, MMO);
+
+ // Load FP Control Word from stack slot
+ SDValue CWD =
+ DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo());
+
+ // Transform as necessary
+ SDValue CWD1 =
+ DAG.getNode(ISD::SRL, DL, MVT::i16,
+ DAG.getNode(ISD::AND, DL, MVT::i16,
+ CWD, DAG.getConstant(0x800, DL, MVT::i16)),
+ DAG.getConstant(11, DL, MVT::i8));
+ SDValue CWD2 =
+ DAG.getNode(ISD::SRL, DL, MVT::i16,
+ DAG.getNode(ISD::AND, DL, MVT::i16,
+ CWD, DAG.getConstant(0x400, DL, MVT::i16)),
+ DAG.getConstant(9, DL, MVT::i8));
+
+ SDValue RetVal =
+ DAG.getNode(ISD::AND, DL, MVT::i16,
+ DAG.getNode(ISD::ADD, DL, MVT::i16,
+ DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
+ DAG.getConstant(1, DL, MVT::i16)),
+ DAG.getConstant(3, DL, MVT::i16));
+
+ return DAG.getNode((VT.getSizeInBits() < 16 ?
+ ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
+}
+
+// Split an unary integer op into 2 half sized ops.
+static SDValue LowerVectorIntUnary(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+ unsigned SizeInBits = VT.getSizeInBits();
+
+ // Extract the Lo/Hi vectors
+ SDLoc dl(Op);
+ SDValue Src = Op.getOperand(0);
+ SDValue Lo = extractSubVector(Src, 0, DAG, dl, SizeInBits / 2);
+ SDValue Hi = extractSubVector(Src, NumElems / 2, DAG, dl, SizeInBits / 2);
+
+ MVT EltVT = VT.getVectorElementType();
+ MVT NewVT = MVT::getVectorVT(EltVT, NumElems / 2);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, NewVT, Lo),
+ DAG.getNode(Op.getOpcode(), dl, NewVT, Hi));
+}
+
+// Decompose 256-bit ops into smaller 128-bit ops.
+static SDValue Lower256IntUnary(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType().is256BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 256-bit vector integer operation");
+ return LowerVectorIntUnary(Op, DAG);
+}
+
+// Decompose 512-bit ops into smaller 256-bit ops.
+static SDValue Lower512IntUnary(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType().is512BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 512-bit vector integer operation");
+ return LowerVectorIntUnary(Op, DAG);
+}
+
+/// \brief Lower a vector CTLZ using native supported vector CTLZ instruction.
+//
+// i8/i16 vector implemented using dword LZCNT vector instruction
+// ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal,
+// split the vector, perform operation on it's Lo a Hi part and
+// concatenate the results.
+static SDValue LowerVectorCTLZ_AVX512CDI(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getOpcode() == ISD::CTLZ);
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ unsigned NumElems = VT.getVectorNumElements();
+
+ assert((EltVT == MVT::i8 || EltVT == MVT::i16) &&
+ "Unsupported element type");
+
+ // Split vector, it's Lo and Hi parts will be handled in next iteration.
+ if (16 < NumElems)
+ return LowerVectorIntUnary(Op, DAG);
+
+ MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
+ assert((NewVT.is256BitVector() || NewVT.is512BitVector()) &&
+ "Unsupported value type for operation");
+
+ // Use native supported vector instruction vplzcntd.
+ Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0));
+ SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op);
+ SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode);
+ SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT);
+
+ return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta);
+}
+
+// Lower CTLZ using a PSHUFB lookup table implementation.
+static SDValue LowerVectorCTLZInRegLUT(SDValue Op, const SDLoc &DL,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ int NumElts = VT.getVectorNumElements();
+ int NumBytes = NumElts * (VT.getScalarSizeInBits() / 8);
+ MVT CurrVT = MVT::getVectorVT(MVT::i8, NumBytes);
+
+ // Per-nibble leading zero PSHUFB lookup table.
+ const int LUT[16] = {/* 0 */ 4, /* 1 */ 3, /* 2 */ 2, /* 3 */ 2,
+ /* 4 */ 1, /* 5 */ 1, /* 6 */ 1, /* 7 */ 1,
+ /* 8 */ 0, /* 9 */ 0, /* a */ 0, /* b */ 0,
+ /* c */ 0, /* d */ 0, /* e */ 0, /* f */ 0};
+
+ SmallVector<SDValue, 64> LUTVec;
+ for (int i = 0; i < NumBytes; ++i)
+ LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
+ SDValue InRegLUT = DAG.getBuildVector(CurrVT, DL, LUTVec);
+
+ // Begin by bitcasting the input to byte vector, then split those bytes
+ // into lo/hi nibbles and use the PSHUFB LUT to perform CLTZ on each of them.
+ // If the hi input nibble is zero then we add both results together, otherwise
+ // we just take the hi result (by masking the lo result to zero before the
+ // add).
+ SDValue Op0 = DAG.getBitcast(CurrVT, Op.getOperand(0));
+ SDValue Zero = getZeroVector(CurrVT, Subtarget, DAG, DL);
+
+ SDValue NibbleMask = DAG.getConstant(0xF, DL, CurrVT);
+ SDValue NibbleShift = DAG.getConstant(0x4, DL, CurrVT);
+ SDValue Lo = DAG.getNode(ISD::AND, DL, CurrVT, Op0, NibbleMask);
+ SDValue Hi = DAG.getNode(ISD::SRL, DL, CurrVT, Op0, NibbleShift);
+ SDValue HiZ;
+ if (CurrVT.is512BitVector()) {
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements());
+ HiZ = DAG.getSetCC(DL, MaskVT, Hi, Zero, ISD::SETEQ);
+ HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ);
+ } else {
+ HiZ = DAG.getSetCC(DL, CurrVT, Hi, Zero, ISD::SETEQ);
+ }
+
+ Lo = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Lo);
+ Hi = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Hi);
+ Lo = DAG.getNode(ISD::AND, DL, CurrVT, Lo, HiZ);
+ SDValue Res = DAG.getNode(ISD::ADD, DL, CurrVT, Lo, Hi);
+
+ // Merge result back from vXi8 back to VT, working on the lo/hi halves
+ // of the current vector width in the same way we did for the nibbles.
+ // If the upper half of the input element is zero then add the halves'
+ // leading zero counts together, otherwise just use the upper half's.
+ // Double the width of the result until we are at target width.
+ while (CurrVT != VT) {
+ int CurrScalarSizeInBits = CurrVT.getScalarSizeInBits();
+ int CurrNumElts = CurrVT.getVectorNumElements();
+ MVT NextSVT = MVT::getIntegerVT(CurrScalarSizeInBits * 2);
+ MVT NextVT = MVT::getVectorVT(NextSVT, CurrNumElts / 2);
+ SDValue Shift = DAG.getConstant(CurrScalarSizeInBits, DL, NextVT);
+
+ // Check if the upper half of the input element is zero.
+ if (CurrVT.is512BitVector()) {
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements());
+ HiZ = DAG.getSetCC(DL, MaskVT, DAG.getBitcast(CurrVT, Op0),
+ DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
+ HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ);
+ } else {
+ HiZ = DAG.getSetCC(DL, CurrVT, DAG.getBitcast(CurrVT, Op0),
+ DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
+ }
+ HiZ = DAG.getBitcast(NextVT, HiZ);
+
+ // Move the upper/lower halves to the lower bits as we'll be extending to
+ // NextVT. Mask the lower result to zero if HiZ is true and add the results
+ // together.
+ SDValue ResNext = Res = DAG.getBitcast(NextVT, Res);
+ SDValue R0 = DAG.getNode(ISD::SRL, DL, NextVT, ResNext, Shift);
+ SDValue R1 = DAG.getNode(ISD::SRL, DL, NextVT, HiZ, Shift);
+ R1 = DAG.getNode(ISD::AND, DL, NextVT, ResNext, R1);
+ Res = DAG.getNode(ISD::ADD, DL, NextVT, R0, R1);
+ CurrVT = NextVT;
+ }
+
+ return Res;
+}
+
+static SDValue LowerVectorCTLZ(SDValue Op, const SDLoc &DL,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ if (Subtarget.hasCDI())
+ return LowerVectorCTLZ_AVX512CDI(Op, DAG);
+
+ // Decompose 256-bit ops into smaller 128-bit ops.
+ if (VT.is256BitVector() && !Subtarget.hasInt256())
+ return Lower256IntUnary(Op, DAG);
+
+ // Decompose 512-bit ops into smaller 256-bit ops.
+ if (VT.is512BitVector() && !Subtarget.hasBWI())
+ return Lower512IntUnary(Op, DAG);
+
+ assert(Subtarget.hasSSSE3() && "Expected SSSE3 support for PSHUFB");
+ return LowerVectorCTLZInRegLUT(Op, DL, Subtarget, DAG);
+}
+
+static SDValue LowerCTLZ(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ MVT OpVT = VT;
+ unsigned NumBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ unsigned Opc = Op.getOpcode();
+
+ if (VT.isVector())
+ return LowerVectorCTLZ(Op, dl, Subtarget, DAG);
+
+ Op = Op.getOperand(0);
+ if (VT == MVT::i8) {
+ // Zero extend to i32 since there is not an i8 bsr.
+ OpVT = MVT::i32;
+ Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
+ }
+
+ // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
+
+ if (Opc == ISD::CTLZ) {
+ // If src is zero (i.e. bsr sets ZF), returns NumBits.
+ SDValue Ops[] = {
+ Op,
+ DAG.getConstant(NumBits + NumBits - 1, dl, OpVT),
+ DAG.getConstant(X86::COND_E, dl, MVT::i8),
+ Op.getValue(1)
+ };
+ Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
+ }
+
+ // Finally xor with NumBits-1.
+ Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
+ DAG.getConstant(NumBits - 1, dl, OpVT));
+
+ if (VT == MVT::i8)
+ Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
+ return Op;
+}
+
+static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ unsigned NumBits = VT.getScalarSizeInBits();
+ SDLoc dl(Op);
+
+ if (VT.isVector()) {
+ SDValue N0 = Op.getOperand(0);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+
+ // lsb(x) = (x & -x)
+ SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0,
+ DAG.getNode(ISD::SUB, dl, VT, Zero, N0));
+
+ // cttz_undef(x) = (width - 1) - ctlz(lsb)
+ if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
+ SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT);
+ return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne,
+ DAG.getNode(ISD::CTLZ, dl, VT, LSB));
+ }
+
+ // cttz(x) = ctpop(lsb - 1)
+ SDValue One = DAG.getConstant(1, dl, VT);
+ return DAG.getNode(ISD::CTPOP, dl, VT,
+ DAG.getNode(ISD::SUB, dl, VT, LSB, One));
+ }
+
+ assert(Op.getOpcode() == ISD::CTTZ &&
+ "Only scalar CTTZ requires custom lowering");
+
+ // Issue a bsf (scan bits forward) which also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0));
+
+ // If src is zero (i.e. bsf sets ZF), returns NumBits.
+ SDValue Ops[] = {
+ Op,
+ DAG.getConstant(NumBits, dl, VT),
+ DAG.getConstant(X86::COND_E, dl, MVT::i8),
+ Op.getValue(1)
+ };
+ return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
+}
+
+/// Break a 256-bit integer operation into two new 128-bit ones and then
+/// concatenate the result back.
+static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ assert(VT.is256BitVector() && VT.isInteger() &&
+ "Unsupported value type for operation");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDLoc dl(Op);
+
+ // Extract the LHS vectors
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
+ SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
+
+ // Extract the RHS vectors
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
+ SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
+
+ MVT EltVT = VT.getVectorElementType();
+ MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
+}
+
+/// Break a 512-bit integer operation into two new 256-bit ones and then
+/// concatenate the result back.
+static SDValue Lower512IntArith(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ assert(VT.is512BitVector() && VT.isInteger() &&
+ "Unsupported value type for operation");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDLoc dl(Op);
+
+ // Extract the LHS vectors
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS1 = extract256BitVector(LHS, 0, DAG, dl);
+ SDValue LHS2 = extract256BitVector(LHS, NumElems / 2, DAG, dl);
+
+ // Extract the RHS vectors
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS1 = extract256BitVector(RHS, 0, DAG, dl);
+ SDValue RHS2 = extract256BitVector(RHS, NumElems / 2, DAG, dl);
+
+ MVT EltVT = VT.getVectorElementType();
+ MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
+}
+
+static SDValue LowerADD_SUB(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ if (VT.getScalarType() == MVT::i1)
+ return DAG.getNode(ISD::XOR, SDLoc(Op), VT,
+ Op.getOperand(0), Op.getOperand(1));
+ assert(Op.getSimpleValueType().is256BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 256-bit vector integer operation");
+ return Lower256IntArith(Op, DAG);
+}
+
+static SDValue LowerABS(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) {
+ // Since X86 does not have CMOV for 8-bit integer, we don't convert
+ // 8-bit integer abs to NEG and CMOV.
+ SDLoc DL(Op);
+ SDValue N0 = Op.getOperand(0);
+ SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
+ DAG.getConstant(0, DL, VT), N0);
+ SDValue Ops[] = {N0, Neg, DAG.getConstant(X86::COND_GE, DL, MVT::i8),
+ SDValue(Neg.getNode(), 1)};
+ return DAG.getNode(X86ISD::CMOV, DL, VT, Ops);
+ }
+
+ assert(Op.getSimpleValueType().is256BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 256-bit vector integer operation");
+ return Lower256IntUnary(Op, DAG);
+}
+
+static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType().is256BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 256-bit vector integer operation");
+ return Lower256IntArith(Op, DAG);
+}
+
+static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ if (VT.getScalarType() == MVT::i1)
+ return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
+
+ // Decompose 256-bit ops into smaller 128-bit ops.
+ if (VT.is256BitVector() && !Subtarget.hasInt256())
+ return Lower256IntArith(Op, DAG);
+
+ SDValue A = Op.getOperand(0);
+ SDValue B = Op.getOperand(1);
+
+ // Lower v16i8/v32i8/v64i8 mul as sign-extension to v8i16/v16i16/v32i16
+ // vector pairs, multiply and truncate.
+ if (VT == MVT::v16i8 || VT == MVT::v32i8 || VT == MVT::v64i8) {
+ if (Subtarget.hasInt256()) {
+ // For 512-bit vectors, split into 256-bit vectors to allow the
+ // sign-extension to occur.
+ if (VT == MVT::v64i8)
+ return Lower512IntArith(Op, DAG);
+
+ // For 256-bit vectors, split into 128-bit vectors to allow the
+ // sign-extension to occur. We don't need this on AVX512BW as we can
+ // safely sign-extend to v32i16.
+ if (VT == MVT::v32i8 && !Subtarget.hasBWI())
+ return Lower256IntArith(Op, DAG);
+
+ MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
+ return DAG.getNode(
+ ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::MUL, dl, ExVT,
+ DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A),
+ DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B)));
+ }
+
+ assert(VT == MVT::v16i8 &&
+ "Pre-AVX2 support only supports v16i8 multiplication");
+ MVT ExVT = MVT::v8i16;
+
+ // Extract the lo parts and sign extend to i16
+ SDValue ALo, BLo;
+ if (Subtarget.hasSSE41()) {
+ ALo = DAG.getSignExtendVectorInReg(A, dl, ExVT);
+ BLo = DAG.getSignExtendVectorInReg(B, dl, ExVT);
+ } else {
+ const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
+ -1, 4, -1, 5, -1, 6, -1, 7};
+ ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+ BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+ ALo = DAG.getBitcast(ExVT, ALo);
+ BLo = DAG.getBitcast(ExVT, BLo);
+ ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
+ BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
+ }
+
+ // Extract the hi parts and sign extend to i16
+ SDValue AHi, BHi;
+ if (Subtarget.hasSSE41()) {
+ const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15,
+ -1, -1, -1, -1, -1, -1, -1, -1};
+ AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+ BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+ AHi = DAG.getSignExtendVectorInReg(AHi, dl, ExVT);
+ BHi = DAG.getSignExtendVectorInReg(BHi, dl, ExVT);
+ } else {
+ const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11,
+ -1, 12, -1, 13, -1, 14, -1, 15};
+ AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+ BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+ AHi = DAG.getBitcast(ExVT, AHi);
+ BHi = DAG.getBitcast(ExVT, BHi);
+ AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
+ BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
+ }
+
+ // Multiply, mask the lower 8bits of the lo/hi results and pack
+ SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
+ SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
+ RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT));
+ RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT));
+ return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
+ }
+
+ // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
+ if (VT == MVT::v4i32) {
+ assert(Subtarget.hasSSE2() && !Subtarget.hasSSE41() &&
+ "Should not custom lower when pmulld is available!");
+
+ // If the upper 17 bits of each element are zero then we can use PMADD.
+ APInt Mask17 = APInt::getHighBitsSet(32, 17);
+ if (DAG.MaskedValueIsZero(A, Mask17) && DAG.MaskedValueIsZero(B, Mask17))
+ return DAG.getNode(X86ISD::VPMADDWD, dl, VT,
+ DAG.getBitcast(MVT::v8i16, A),
+ DAG.getBitcast(MVT::v8i16, B));
+
+ // Extract the odd parts.
+ static const int UnpackMask[] = { 1, -1, 3, -1 };
+ SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
+ SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
+
+ // Multiply the even parts.
+ SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
+ // Now multiply odd parts.
+ SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
+
+ Evens = DAG.getBitcast(VT, Evens);
+ Odds = DAG.getBitcast(VT, Odds);
+
+ // Merge the two vectors back together with a shuffle. This expands into 2
+ // shuffles.
+ static const int ShufMask[] = { 0, 4, 2, 6 };
+ return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
+ }
+
+ assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
+ "Only know how to lower V2I64/V4I64/V8I64 multiply");
+
+ // 32-bit vector types used for MULDQ/MULUDQ.
+ MVT MulVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits() / 32);
+
+ // MULDQ returns the 64-bit result of the signed multiplication of the lower
+ // 32-bits. We can lower with this if the sign bits stretch that far.
+ if (Subtarget.hasSSE41() && DAG.ComputeNumSignBits(A) > 32 &&
+ DAG.ComputeNumSignBits(B) > 32) {
+ return DAG.getNode(X86ISD::PMULDQ, dl, VT, DAG.getBitcast(MulVT, A),
+ DAG.getBitcast(MulVT, B));
+ }
+
+ // Ahi = psrlqi(a, 32);
+ // Bhi = psrlqi(b, 32);
+ //
+ // AloBlo = pmuludq(a, b);
+ // AloBhi = pmuludq(a, Bhi);
+ // AhiBlo = pmuludq(Ahi, b);
+ //
+ // Hi = psllqi(AloBhi + AhiBlo, 32);
+ // return AloBlo + Hi;
+ APInt LowerBitsMask = APInt::getLowBitsSet(64, 32);
+ bool ALoIsZero = DAG.MaskedValueIsZero(A, LowerBitsMask);
+ bool BLoIsZero = DAG.MaskedValueIsZero(B, LowerBitsMask);
+
+ APInt UpperBitsMask = APInt::getHighBitsSet(64, 32);
+ bool AHiIsZero = DAG.MaskedValueIsZero(A, UpperBitsMask);
+ bool BHiIsZero = DAG.MaskedValueIsZero(B, UpperBitsMask);
+
+ // If DQI is supported we can use MULLQ, but MULUDQ is still better if the
+ // the high bits are known to be zero.
+ if (Subtarget.hasDQI() && (!AHiIsZero || !BHiIsZero))
+ return Op;
+
+ // Bit cast to 32-bit vectors for MULUDQ.
+ SDValue Alo = DAG.getBitcast(MulVT, A);
+ SDValue Blo = DAG.getBitcast(MulVT, B);
+
+ SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl);
+
+ // Only multiply lo/hi halves that aren't known to be zero.
+ SDValue AloBlo = Zero;
+ if (!ALoIsZero && !BLoIsZero)
+ AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Alo, Blo);
+
+ SDValue AloBhi = Zero;
+ if (!ALoIsZero && !BHiIsZero) {
+ SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
+ Bhi = DAG.getBitcast(MulVT, Bhi);
+ AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Alo, Bhi);
+ }
+
+ SDValue AhiBlo = Zero;
+ if (!AHiIsZero && !BLoIsZero) {
+ SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
+ Ahi = DAG.getBitcast(MulVT, Ahi);
+ AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, Blo);
+ }
+
+ SDValue Hi = DAG.getNode(ISD::ADD, dl, VT, AloBhi, AhiBlo);
+ Hi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Hi, 32, DAG);
+
+ return DAG.getNode(ISD::ADD, dl, VT, AloBlo, Hi);
+}
+
+static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ // Decompose 256-bit ops into smaller 128-bit ops.
+ if (VT.is256BitVector() && !Subtarget.hasInt256())
+ return Lower256IntArith(Op, DAG);
+
+ // Only i8 vectors should need custom lowering after this.
+ assert((VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget.hasInt256()) ||
+ (VT == MVT::v64i8 && Subtarget.hasBWI())) &&
+ "Unsupported vector type");
+
+ // Lower v16i8/v32i8 as extension to v8i16/v16i16 vector pairs, multiply,
+ // logical shift down the upper half and pack back to i8.
+ SDValue A = Op.getOperand(0);
+ SDValue B = Op.getOperand(1);
+
+ // With SSE41 we can use sign/zero extend, but for pre-SSE41 we unpack
+ // and then ashr/lshr the upper bits down to the lower bits before multiply.
+ unsigned Opcode = Op.getOpcode();
+ unsigned ExShift = (ISD::MULHU == Opcode ? ISD::SRL : ISD::SRA);
+ unsigned ExAVX = (ISD::MULHU == Opcode ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
+
+ // For 512-bit vectors, split into 256-bit vectors to allow the
+ // sign-extension to occur.
+ if (VT == MVT::v64i8)
+ return Lower512IntArith(Op, DAG);
+
+ // AVX2 implementations - extend xmm subvectors to ymm.
+ if (Subtarget.hasInt256()) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SDValue Lo = DAG.getIntPtrConstant(0, dl);
+ SDValue Hi = DAG.getIntPtrConstant(NumElems / 2, dl);
+
+ if (VT == MVT::v32i8) {
+ if (Subtarget.hasBWI()) {
+ SDValue ExA = DAG.getNode(ExAVX, dl, MVT::v32i16, A);
+ SDValue ExB = DAG.getNode(ExAVX, dl, MVT::v32i16, B);
+ SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v32i16, ExA, ExB);
+ Mul = DAG.getNode(ISD::SRL, dl, MVT::v32i16, Mul,
+ DAG.getConstant(8, dl, MVT::v32i16));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
+ }
+ SDValue ALo = extract128BitVector(A, 0, DAG, dl);
+ SDValue BLo = extract128BitVector(B, 0, DAG, dl);
+ SDValue AHi = extract128BitVector(A, NumElems / 2, DAG, dl);
+ SDValue BHi = extract128BitVector(B, NumElems / 2, DAG, dl);
+ ALo = DAG.getNode(ExAVX, dl, MVT::v16i16, ALo);
+ BLo = DAG.getNode(ExAVX, dl, MVT::v16i16, BLo);
+ AHi = DAG.getNode(ExAVX, dl, MVT::v16i16, AHi);
+ BHi = DAG.getNode(ExAVX, dl, MVT::v16i16, BHi);
+ Lo = DAG.getNode(ISD::SRL, dl, MVT::v16i16,
+ DAG.getNode(ISD::MUL, dl, MVT::v16i16, ALo, BLo),
+ DAG.getConstant(8, dl, MVT::v16i16));
+ Hi = DAG.getNode(ISD::SRL, dl, MVT::v16i16,
+ DAG.getNode(ISD::MUL, dl, MVT::v16i16, AHi, BHi),
+ DAG.getConstant(8, dl, MVT::v16i16));
+ // The ymm variant of PACKUS treats the 128-bit lanes separately, so before
+ // using PACKUS we need to permute the inputs to the correct lo/hi xmm lane.
+ const int LoMask[] = {0, 1, 2, 3, 4, 5, 6, 7,
+ 16, 17, 18, 19, 20, 21, 22, 23};
+ const int HiMask[] = {8, 9, 10, 11, 12, 13, 14, 15,
+ 24, 25, 26, 27, 28, 29, 30, 31};
+ return DAG.getNode(X86ISD::PACKUS, dl, VT,
+ DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, LoMask),
+ DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, HiMask));
+ }
+
+ assert(VT == MVT::v16i8 && "Unexpected VT");
+
+ SDValue ExA = DAG.getNode(ExAVX, dl, MVT::v16i16, A);
+ SDValue ExB = DAG.getNode(ExAVX, dl, MVT::v16i16, B);
+ SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v16i16, ExA, ExB);
+ Mul = DAG.getNode(ISD::SRL, dl, MVT::v16i16, Mul,
+ DAG.getConstant(8, dl, MVT::v16i16));
+ // If we have BWI we can use truncate instruction.
+ if (Subtarget.hasBWI())
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
+ Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, Mul, Lo);
+ Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, Mul, Hi);
+ return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
+ }
+
+ assert(VT == MVT::v16i8 &&
+ "Pre-AVX2 support only supports v16i8 multiplication");
+ MVT ExVT = MVT::v8i16;
+ unsigned ExSSE41 = (ISD::MULHU == Opcode ? X86ISD::VZEXT : X86ISD::VSEXT);
+
+ // Extract the lo parts and zero/sign extend to i16.
+ SDValue ALo, BLo;
+ if (Subtarget.hasSSE41()) {
+ ALo = getExtendInVec(ExSSE41, dl, ExVT, A, DAG);
+ BLo = getExtendInVec(ExSSE41, dl, ExVT, B, DAG);
+ } else {
+ const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
+ -1, 4, -1, 5, -1, 6, -1, 7};
+ ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+ BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+ ALo = DAG.getBitcast(ExVT, ALo);
+ BLo = DAG.getBitcast(ExVT, BLo);
+ ALo = DAG.getNode(ExShift, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
+ BLo = DAG.getNode(ExShift, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
+ }
+
+ // Extract the hi parts and zero/sign extend to i16.
+ SDValue AHi, BHi;
+ if (Subtarget.hasSSE41()) {
+ const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15,
+ -1, -1, -1, -1, -1, -1, -1, -1};
+ AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+ BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+ AHi = getExtendInVec(ExSSE41, dl, ExVT, AHi, DAG);
+ BHi = getExtendInVec(ExSSE41, dl, ExVT, BHi, DAG);
+ } else {
+ const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11,
+ -1, 12, -1, 13, -1, 14, -1, 15};
+ AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+ BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+ AHi = DAG.getBitcast(ExVT, AHi);
+ BHi = DAG.getBitcast(ExVT, BHi);
+ AHi = DAG.getNode(ExShift, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
+ BHi = DAG.getNode(ExShift, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
+ }
+
+ // Multiply, lshr the upper 8bits to the lower 8bits of the lo/hi results and
+ // pack back to v16i8.
+ SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
+ SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
+ RLo = DAG.getNode(ISD::SRL, dl, ExVT, RLo, DAG.getConstant(8, dl, ExVT));
+ RHi = DAG.getNode(ISD::SRL, dl, ExVT, RHi, DAG.getConstant(8, dl, ExVT));
+ return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
+}
+
+SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget.isTargetWin64() && "Unexpected target");
+ EVT VT = Op.getValueType();
+ assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
+ "Unexpected return type for lowering");
+
+ RTLIB::Libcall LC;
+ bool isSigned;
+ switch (Op->getOpcode()) {
+ default: llvm_unreachable("Unexpected request for libcall!");
+ case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break;
+ case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break;
+ case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break;
+ case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break;
+ case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break;
+ case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break;
+ }
+
+ SDLoc dl(Op);
+ SDValue InChain = DAG.getEntryNode();
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
+ EVT ArgVT = Op->getOperand(i).getValueType();
+ assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
+ "Unexpected argument type for lowering");
+ SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
+ Entry.Node = StackPtr;
+ InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr,
+ MachinePointerInfo(), /* Alignment = */ 16);
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+ Entry.Ty = PointerType::get(ArgTy,0);
+ Entry.IsSExt = false;
+ Entry.IsZExt = false;
+ Args.push_back(Entry);
+ }
+
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
+ getPointerTy(DAG.getDataLayout()));
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl)
+ .setChain(InChain)
+ .setLibCallee(
+ getLibcallCallingConv(LC),
+ static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()), Callee,
+ std::move(Args))
+ .setInRegister()
+ .setSExtResult(isSigned)
+ .setZExtResult(!isSigned);
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+ return DAG.getBitcast(VT, CallInfo.first);
+}
+
+static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
+ MVT VT = Op0.getSimpleValueType();
+ SDLoc dl(Op);
+
+ // Decompose 256-bit ops into smaller 128-bit ops.
+ if (VT.is256BitVector() && !Subtarget.hasInt256()) {
+ unsigned Opcode = Op.getOpcode();
+ unsigned NumElems = VT.getVectorNumElements();
+ MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), NumElems / 2);
+ SDValue Lo0 = extract128BitVector(Op0, 0, DAG, dl);
+ SDValue Lo1 = extract128BitVector(Op1, 0, DAG, dl);
+ SDValue Hi0 = extract128BitVector(Op0, NumElems / 2, DAG, dl);
+ SDValue Hi1 = extract128BitVector(Op1, NumElems / 2, DAG, dl);
+ SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Lo0, Lo1);
+ SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Hi0, Hi1);
+ SDValue Ops[] = {
+ DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(0), Hi.getValue(0)),
+ DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(1), Hi.getValue(1))
+ };
+ return DAG.getMergeValues(Ops, dl);
+ }
+
+ assert((VT == MVT::v4i32 && Subtarget.hasSSE2()) ||
+ (VT == MVT::v8i32 && Subtarget.hasInt256()) ||
+ (VT == MVT::v16i32 && Subtarget.hasAVX512()));
+
+ int NumElts = VT.getVectorNumElements();
+
+ // PMULxD operations multiply each even value (starting at 0) of LHS with
+ // the related value of RHS and produce a widen result.
+ // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
+ // => <2 x i64> <ae|cg>
+ //
+ // In other word, to have all the results, we need to perform two PMULxD:
+ // 1. one with the even values.
+ // 2. one with the odd values.
+ // To achieve #2, with need to place the odd values at an even position.
+ //
+ // Place the odd value at an even position (basically, shift all values 1
+ // step to the left):
+ const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1, 9, -1, 11, -1, 13, -1, 15, -1};
+ // <a|b|c|d> => <b|undef|d|undef>
+ SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0,
+ makeArrayRef(&Mask[0], NumElts));
+ // <e|f|g|h> => <f|undef|h|undef>
+ SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1,
+ makeArrayRef(&Mask[0], NumElts));
+
+ // Emit two multiplies, one for the lower 2 ints and one for the higher 2
+ // ints.
+ MVT MulVT = MVT::getVectorVT(MVT::i64, NumElts / 2);
+ bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
+ unsigned Opcode =
+ (!IsSigned || !Subtarget.hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
+ // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
+ // => <2 x i64> <ae|cg>
+ SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
+ // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
+ // => <2 x i64> <bf|dh>
+ SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
+
+ // Shuffle it back into the right order.
+ SmallVector<int, 16> HighMask(NumElts);
+ SmallVector<int, 16> LowMask(NumElts);
+ for (int i = 0; i != NumElts; ++i) {
+ HighMask[i] = (i / 2) * 2 + ((i % 2) * NumElts) + 1;
+ LowMask[i] = (i / 2) * 2 + ((i % 2) * NumElts);
+ }
+
+ SDValue Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
+ SDValue Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
+
+ // If we have a signed multiply but no PMULDQ fix up the high parts of a
+ // unsigned multiply.
+ if (IsSigned && !Subtarget.hasSSE41()) {
+ SDValue ShAmt = DAG.getConstant(
+ 31, dl,
+ DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout()));
+ SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
+ SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
+
+ SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
+ Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
+ }
+
+ // The first result of MUL_LOHI is actually the low value, followed by the
+ // high value.
+ SDValue Ops[] = {Lows, Highs};
+ return DAG.getMergeValues(Ops, dl);
+}
+
+// Return true if the required (according to Opcode) shift-imm form is natively
+// supported by the Subtarget
+static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget &Subtarget,
+ unsigned Opcode) {
+ if (VT.getScalarSizeInBits() < 16)
+ return false;
+
+ if (VT.is512BitVector() && Subtarget.hasAVX512() &&
+ (VT.getScalarSizeInBits() > 16 || Subtarget.hasBWI()))
+ return true;
+
+ bool LShift = (VT.is128BitVector() && Subtarget.hasSSE2()) ||
+ (VT.is256BitVector() && Subtarget.hasInt256());
+
+ bool AShift = LShift && (Subtarget.hasAVX512() ||
+ (VT != MVT::v2i64 && VT != MVT::v4i64));
+ return (Opcode == ISD::SRA) ? AShift : LShift;
+}
+
+// The shift amount is a variable, but it is the same for all vector lanes.
+// These instructions are defined together with shift-immediate.
+static
+bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget &Subtarget,
+ unsigned Opcode) {
+ return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
+}
+
+// Return true if the required (according to Opcode) variable-shift form is
+// natively supported by the Subtarget
+static bool SupportedVectorVarShift(MVT VT, const X86Subtarget &Subtarget,
+ unsigned Opcode) {
+
+ if (!Subtarget.hasInt256() || VT.getScalarSizeInBits() < 16)
+ return false;
+
+ // vXi16 supported only on AVX-512, BWI
+ if (VT.getScalarSizeInBits() == 16 && !Subtarget.hasBWI())
+ return false;
+
+ if (Subtarget.hasAVX512())
+ return true;
+
+ bool LShift = VT.is128BitVector() || VT.is256BitVector();
+ bool AShift = LShift && VT != MVT::v2i64 && VT != MVT::v4i64;
+ return (Opcode == ISD::SRA) ? AShift : LShift;
+}
+
+static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+
+ unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
+ (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
+
+ auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) {
+ assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type");
+ MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2);
+ SDValue Ex = DAG.getBitcast(ExVT, R);
+
+ // ashr(R, 63) === cmp_slt(R, 0)
+ if (ShiftAmt == 63 && Subtarget.hasSSE42()) {
+ assert((VT != MVT::v4i64 || Subtarget.hasInt256()) &&
+ "Unsupported PCMPGT op");
+ return DAG.getNode(X86ISD::PCMPGT, dl, VT,
+ getZeroVector(VT, Subtarget, DAG, dl), R);
+ }
+
+ if (ShiftAmt >= 32) {
+ // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32.
+ SDValue Upper =
+ getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG);
+ SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
+ ShiftAmt - 32, DAG);
+ if (VT == MVT::v2i64)
+ Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3});
+ if (VT == MVT::v4i64)
+ Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
+ {9, 1, 11, 3, 13, 5, 15, 7});
+ } else {
+ // SRA upper i32, SHL whole i64 and select lower i32.
+ SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
+ ShiftAmt, DAG);
+ SDValue Lower =
+ getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG);
+ Lower = DAG.getBitcast(ExVT, Lower);
+ if (VT == MVT::v2i64)
+ Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3});
+ if (VT == MVT::v4i64)
+ Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
+ {8, 1, 10, 3, 12, 5, 14, 7});
+ }
+ return DAG.getBitcast(VT, Ex);
+ };
+
+ // Optimize shl/srl/sra with constant shift amount.
+ if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
+ if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
+ uint64_t ShiftAmt = ShiftConst->getZExtValue();
+
+ if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
+ return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
+
+ // i64 SRA needs to be performed as partial shifts.
+ if (((!Subtarget.hasXOP() && VT == MVT::v2i64) ||
+ (Subtarget.hasInt256() && VT == MVT::v4i64)) &&
+ Op.getOpcode() == ISD::SRA)
+ return ArithmeticShiftRight64(ShiftAmt);
+
+ if (VT == MVT::v16i8 ||
+ (Subtarget.hasInt256() && VT == MVT::v32i8) ||
+ VT == MVT::v64i8) {
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
+
+ // Simple i8 add case
+ if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1)
+ return DAG.getNode(ISD::ADD, dl, VT, R, R);
+
+ // ashr(R, 7) === cmp_slt(R, 0)
+ if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) {
+ SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
+ if (VT.is512BitVector()) {
+ assert(VT == MVT::v64i8 && "Unexpected element type!");
+ SDValue CMP = DAG.getNode(X86ISD::PCMPGTM, dl, MVT::v64i1, Zeros, R);
+ return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, CMP);
+ }
+ return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
+ }
+
+ // XOP can shift v16i8 directly instead of as shift v8i16 + mask.
+ if (VT == MVT::v16i8 && Subtarget.hasXOP())
+ return SDValue();
+
+ if (Op.getOpcode() == ISD::SHL) {
+ // Make a large shift.
+ SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
+ R, ShiftAmt, DAG);
+ SHL = DAG.getBitcast(VT, SHL);
+ // Zero out the rightmost bits.
+ return DAG.getNode(ISD::AND, dl, VT, SHL,
+ DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, VT));
+ }
+ if (Op.getOpcode() == ISD::SRL) {
+ // Make a large shift.
+ SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
+ R, ShiftAmt, DAG);
+ SRL = DAG.getBitcast(VT, SRL);
+ // Zero out the leftmost bits.
+ return DAG.getNode(ISD::AND, dl, VT, SRL,
+ DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT));
+ }
+ if (Op.getOpcode() == ISD::SRA) {
+ // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask)
+ SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
+
+ SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT);
+ Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
+ Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
+ return Res;
+ }
+ llvm_unreachable("Unknown shift opcode.");
+ }
+ }
+ }
+
+ // Check cases (mainly 32-bit) where i64 is expanded into high and low parts.
+ // TODO: Replace constant extraction with getTargetConstantBitsFromNode.
+ if (!Subtarget.hasXOP() &&
+ (VT == MVT::v2i64 || (Subtarget.hasInt256() && VT == MVT::v4i64) ||
+ (Subtarget.hasAVX512() && VT == MVT::v8i64))) {
+
+ // AVX1 targets maybe extracting a 128-bit vector from a 256-bit constant.
+ unsigned SubVectorScale = 1;
+ if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
+ SubVectorScale =
+ Amt.getOperand(0).getValueSizeInBits() / Amt.getValueSizeInBits();
+ Amt = Amt.getOperand(0);
+ }
+
+ // Peek through any splat that was introduced for i64 shift vectorization.
+ int SplatIndex = -1;
+ if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode()))
+ if (SVN->isSplat()) {
+ SplatIndex = SVN->getSplatIndex();
+ Amt = Amt.getOperand(0);
+ assert(SplatIndex < (int)VT.getVectorNumElements() &&
+ "Splat shuffle referencing second operand");
+ }
+
+ if (Amt.getOpcode() != ISD::BITCAST ||
+ Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR)
+ return SDValue();
+
+ Amt = Amt.getOperand(0);
+ unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
+ (SubVectorScale * VT.getVectorNumElements());
+ unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
+ uint64_t ShiftAmt = 0;
+ unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio);
+ for (unsigned i = 0; i != Ratio; ++i) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp));
+ if (!C)
+ return SDValue();
+ // 6 == Log2(64)
+ ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
+ }
+
+ // Check remaining shift amounts (if not a splat).
+ if (SplatIndex < 0) {
+ for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
+ uint64_t ShAmt = 0;
+ for (unsigned j = 0; j != Ratio; ++j) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
+ if (!C)
+ return SDValue();
+ // 6 == Log2(64)
+ ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
+ }
+ if (ShAmt != ShiftAmt)
+ return SDValue();
+ }
+ }
+
+ if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
+ return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
+
+ if (Op.getOpcode() == ISD::SRA)
+ return ArithmeticShiftRight64(ShiftAmt);
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+
+ unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
+ (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
+
+ unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL :
+ (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA;
+
+ if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) {
+ SDValue BaseShAmt;
+ MVT EltVT = VT.getVectorElementType();
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) {
+ // Check if this build_vector node is doing a splat.
+ // If so, then set BaseShAmt equal to the splat value.
+ BaseShAmt = BV->getSplatValue();
+ if (BaseShAmt && BaseShAmt.isUndef())
+ BaseShAmt = SDValue();
+ } else {
+ if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
+ Amt = Amt.getOperand(0);
+
+ ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt);
+ if (SVN && SVN->isSplat()) {
+ unsigned SplatIdx = (unsigned)SVN->getSplatIndex();
+ SDValue InVec = Amt.getOperand(0);
+ if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
+ assert((SplatIdx < InVec.getSimpleValueType().getVectorNumElements()) &&
+ "Unexpected shuffle index found!");
+ BaseShAmt = InVec.getOperand(SplatIdx);
+ } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
+ if (C->getZExtValue() == SplatIdx)
+ BaseShAmt = InVec.getOperand(1);
+ }
+ }
+
+ if (!BaseShAmt)
+ // Avoid introducing an extract element from a shuffle.
+ BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec,
+ DAG.getIntPtrConstant(SplatIdx, dl));
+ }
+ }
+
+ if (BaseShAmt.getNode()) {
+ assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
+ if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
+ BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
+ else if (EltVT.bitsLT(MVT::i32))
+ BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
+
+ return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, Subtarget, DAG);
+ }
+ }
+
+ // Check cases (mainly 32-bit) where i64 is expanded into high and low parts.
+ if (VT == MVT::v2i64 && Amt.getOpcode() == ISD::BITCAST &&
+ Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
+ Amt = Amt.getOperand(0);
+ unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
+ VT.getVectorNumElements();
+ std::vector<SDValue> Vals(Ratio);
+ for (unsigned i = 0; i != Ratio; ++i)
+ Vals[i] = Amt.getOperand(i);
+ for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
+ for (unsigned j = 0; j != Ratio; ++j)
+ if (Vals[j] != Amt.getOperand(i + j))
+ return SDValue();
+ }
+
+ if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode()))
+ return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1));
+ }
+ return SDValue();
+}
+
+static SDValue LowerShift(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+ bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
+
+ assert(VT.isVector() && "Custom lowering only for vector shifts!");
+ assert(Subtarget.hasSSE2() && "Only custom lower when we have SSE2!");
+
+ if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
+ return V;
+
+ if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
+ return V;
+
+ if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode()))
+ return Op;
+
+ // XOP has 128-bit variable logical/arithmetic shifts.
+ // +ve/-ve Amt = shift left/right.
+ if (Subtarget.hasXOP() &&
+ (VT == MVT::v2i64 || VT == MVT::v4i32 ||
+ VT == MVT::v8i16 || VT == MVT::v16i8)) {
+ if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) {
+ SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl);
+ Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt);
+ }
+ if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL)
+ return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt);
+ if (Op.getOpcode() == ISD::SRA)
+ return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt);
+ }
+
+ // 2i64 vector logical shifts can efficiently avoid scalarization - do the
+ // shifts per-lane and then shuffle the partial results back together.
+ if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) {
+ // Splat the shift amounts so the scalar shifts above will catch it.
+ SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
+ SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
+ SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0);
+ SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1);
+ return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
+ }
+
+ // i64 vector arithmetic shift can be emulated with the transform:
+ // M = lshr(SIGN_MASK, Amt)
+ // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M)
+ if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget.hasInt256())) &&
+ Op.getOpcode() == ISD::SRA) {
+ SDValue S = DAG.getConstant(APInt::getSignMask(64), dl, VT);
+ SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt);
+ R = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
+ R = DAG.getNode(ISD::XOR, dl, VT, R, M);
+ R = DAG.getNode(ISD::SUB, dl, VT, R, M);
+ return R;
+ }
+
+ // If possible, lower this packed shift into a vector multiply instead of
+ // expanding it into a sequence of scalar shifts.
+ // Do this only if the vector shift count is a constant build_vector.
+ if (ConstantAmt && Op.getOpcode() == ISD::SHL &&
+ (VT == MVT::v8i16 || VT == MVT::v4i32 ||
+ (Subtarget.hasInt256() && VT == MVT::v16i16))) {
+ SmallVector<SDValue, 8> Elts;
+ MVT SVT = VT.getVectorElementType();
+ unsigned SVTBits = SVT.getSizeInBits();
+ APInt One(SVTBits, 1);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ for (unsigned i=0; i !=NumElems; ++i) {
+ SDValue Op = Amt->getOperand(i);
+ if (Op->isUndef()) {
+ Elts.push_back(Op);
+ continue;
+ }
+
+ ConstantSDNode *ND = cast<ConstantSDNode>(Op);
+ APInt C(SVTBits, ND->getAPIntValue().getZExtValue());
+ uint64_t ShAmt = C.getZExtValue();
+ if (ShAmt >= SVTBits) {
+ Elts.push_back(DAG.getUNDEF(SVT));
+ continue;
+ }
+ Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT));
+ }
+ SDValue BV = DAG.getBuildVector(VT, dl, Elts);
+ return DAG.getNode(ISD::MUL, dl, VT, R, BV);
+ }
+
+ // Lower SHL with variable shift amount.
+ if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
+ Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT));
+
+ Op = DAG.getNode(ISD::ADD, dl, VT, Op,
+ DAG.getConstant(0x3f800000U, dl, VT));
+ Op = DAG.getBitcast(MVT::v4f32, Op);
+ Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
+ return DAG.getNode(ISD::MUL, dl, VT, Op, R);
+ }
+
+ // If possible, lower this shift as a sequence of two shifts by
+ // constant plus a MOVSS/MOVSD/PBLEND instead of scalarizing it.
+ // Example:
+ // (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
+ //
+ // Could be rewritten as:
+ // (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
+ //
+ // The advantage is that the two shifts from the example would be
+ // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
+ // the vector shift into four scalar shifts plus four pairs of vector
+ // insert/extract.
+ if (ConstantAmt && (VT == MVT::v8i16 || VT == MVT::v4i32)) {
+ bool UseMOVSD = false;
+ bool CanBeSimplified;
+ // The splat value for the first packed shift (the 'X' from the example).
+ SDValue Amt1 = Amt->getOperand(0);
+ // The splat value for the second packed shift (the 'Y' from the example).
+ SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) : Amt->getOperand(2);
+
+ // See if it is possible to replace this node with a sequence of
+ // two shifts followed by a MOVSS/MOVSD/PBLEND.
+ if (VT == MVT::v4i32) {
+ // Check if it is legal to use a MOVSS.
+ CanBeSimplified = Amt2 == Amt->getOperand(2) &&
+ Amt2 == Amt->getOperand(3);
+ if (!CanBeSimplified) {
+ // Otherwise, check if we can still simplify this node using a MOVSD.
+ CanBeSimplified = Amt1 == Amt->getOperand(1) &&
+ Amt->getOperand(2) == Amt->getOperand(3);
+ UseMOVSD = true;
+ Amt2 = Amt->getOperand(2);
+ }
+ } else {
+ // Do similar checks for the case where the machine value type
+ // is MVT::v8i16.
+ CanBeSimplified = Amt1 == Amt->getOperand(1);
+ for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
+ CanBeSimplified = Amt2 == Amt->getOperand(i);
+
+ if (!CanBeSimplified) {
+ UseMOVSD = true;
+ CanBeSimplified = true;
+ Amt2 = Amt->getOperand(4);
+ for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
+ CanBeSimplified = Amt1 == Amt->getOperand(i);
+ for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
+ CanBeSimplified = Amt2 == Amt->getOperand(j);
+ }
+ }
+
+ if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
+ isa<ConstantSDNode>(Amt2)) {
+ // Replace this node with two shifts followed by a MOVSS/MOVSD/PBLEND.
+ SDValue Splat1 =
+ DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT);
+ SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
+ SDValue Splat2 =
+ DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT);
+ SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
+ SDValue BitCast1 = DAG.getBitcast(MVT::v4i32, Shift1);
+ SDValue BitCast2 = DAG.getBitcast(MVT::v4i32, Shift2);
+ if (UseMOVSD)
+ return DAG.getBitcast(VT, DAG.getVectorShuffle(MVT::v4i32, dl, BitCast1,
+ BitCast2, {0, 1, 6, 7}));
+ return DAG.getBitcast(VT, DAG.getVectorShuffle(MVT::v4i32, dl, BitCast1,
+ BitCast2, {0, 5, 6, 7}));
+ }
+ }
+
+ // v4i32 Non Uniform Shifts.
+ // If the shift amount is constant we can shift each lane using the SSE2
+ // immediate shifts, else we need to zero-extend each lane to the lower i64
+ // and shift using the SSE2 variable shifts.
+ // The separate results can then be blended together.
+ if (VT == MVT::v4i32) {
+ unsigned Opc = Op.getOpcode();
+ SDValue Amt0, Amt1, Amt2, Amt3;
+ if (ConstantAmt) {
+ Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0});
+ Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1});
+ Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2});
+ Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3});
+ } else {
+ // ISD::SHL is handled above but we include it here for completeness.
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unknown target vector shift node");
+ case ISD::SHL:
+ Opc = X86ISD::VSHL;
+ break;
+ case ISD::SRL:
+ Opc = X86ISD::VSRL;
+ break;
+ case ISD::SRA:
+ Opc = X86ISD::VSRA;
+ break;
+ }
+ // The SSE2 shifts use the lower i64 as the same shift amount for
+ // all lanes and the upper i64 is ignored. These shuffle masks
+ // optimally zero-extend each lanes on SSE2/SSE41/AVX targets.
+ SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
+ Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1});
+ Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1});
+ Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1});
+ Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1});
+ }
+
+ SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0);
+ SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1);
+ SDValue R2 = DAG.getNode(Opc, dl, VT, R, Amt2);
+ SDValue R3 = DAG.getNode(Opc, dl, VT, R, Amt3);
+ SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1});
+ SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7});
+ return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7});
+ }
+
+ // It's worth extending once and using the vXi16/vXi32 shifts for smaller
+ // types, but without AVX512 the extra overheads to get from vXi8 to vXi32
+ // make the existing SSE solution better.
+ if ((Subtarget.hasInt256() && VT == MVT::v8i16) ||
+ (Subtarget.hasAVX512() && VT == MVT::v16i16) ||
+ (Subtarget.hasAVX512() && VT == MVT::v16i8) ||
+ (Subtarget.hasBWI() && VT == MVT::v32i8)) {
+ assert((!Subtarget.hasBWI() || VT == MVT::v32i8 || VT == MVT::v16i8) &&
+ "Unexpected vector type");
+ MVT EvtSVT = Subtarget.hasBWI() ? MVT::i16 : MVT::i32;
+ MVT ExtVT = MVT::getVectorVT(EvtSVT, VT.getVectorNumElements());
+ unsigned ExtOpc =
+ Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ R = DAG.getNode(ExtOpc, dl, ExtVT, R);
+ Amt = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Amt);
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt));
+ }
+
+ if (VT == MVT::v16i8 ||
+ (VT == MVT::v32i8 && Subtarget.hasInt256() && !Subtarget.hasXOP()) ||
+ (VT == MVT::v64i8 && Subtarget.hasBWI())) {
+ MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
+ unsigned ShiftOpcode = Op->getOpcode();
+
+ auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
+ if (VT.is512BitVector()) {
+ // On AVX512BW targets we make use of the fact that VSELECT lowers
+ // to a masked blend which selects bytes based just on the sign bit
+ // extracted to a mask.
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ V0 = DAG.getBitcast(VT, V0);
+ V1 = DAG.getBitcast(VT, V1);
+ Sel = DAG.getBitcast(VT, Sel);
+ Sel = DAG.getNode(X86ISD::CVT2MASK, dl, MaskVT, Sel);
+ return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1));
+ } else if (Subtarget.hasSSE41()) {
+ // On SSE41 targets we make use of the fact that VSELECT lowers
+ // to PBLENDVB which selects bytes based just on the sign bit.
+ V0 = DAG.getBitcast(VT, V0);
+ V1 = DAG.getBitcast(VT, V1);
+ Sel = DAG.getBitcast(VT, Sel);
+ return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1));
+ }
+ // On pre-SSE41 targets we test for the sign bit by comparing to
+ // zero - a negative value will set all bits of the lanes to true
+ // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
+ SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl);
+ SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel);
+ return DAG.getSelect(dl, SelVT, C, V0, V1);
+ };
+
+ // Turn 'a' into a mask suitable for VSELECT: a = a << 5;
+ // We can safely do this using i16 shifts as we're only interested in
+ // the 3 lower bits of each byte.
+ Amt = DAG.getBitcast(ExtVT, Amt);
+ Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT));
+ Amt = DAG.getBitcast(VT, Amt);
+
+ if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) {
+ // r = VSELECT(r, shift(r, 4), a);
+ SDValue M =
+ DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
+ R = SignBitSelect(VT, Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // r = VSELECT(r, shift(r, 2), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
+ R = SignBitSelect(VT, Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // return VSELECT(r, shift(r, 1), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
+ R = SignBitSelect(VT, Amt, M, R);
+ return R;
+ }
+
+ if (Op->getOpcode() == ISD::SRA) {
+ // For SRA we need to unpack each byte to the higher byte of a i16 vector
+ // so we can correctly sign extend. We don't care what happens to the
+ // lower byte.
+ SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt);
+ SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt);
+ SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R);
+ SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R);
+ ALo = DAG.getBitcast(ExtVT, ALo);
+ AHi = DAG.getBitcast(ExtVT, AHi);
+ RLo = DAG.getBitcast(ExtVT, RLo);
+ RHi = DAG.getBitcast(ExtVT, RHi);
+
+ // r = VSELECT(r, shift(r, 4), a);
+ SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
+ DAG.getConstant(4, dl, ExtVT));
+ SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
+ DAG.getConstant(4, dl, ExtVT));
+ RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
+ RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
+
+ // a += a
+ ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
+ AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
+
+ // r = VSELECT(r, shift(r, 2), a);
+ MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
+ DAG.getConstant(2, dl, ExtVT));
+ MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
+ DAG.getConstant(2, dl, ExtVT));
+ RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
+ RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
+
+ // a += a
+ ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
+ AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
+
+ // r = VSELECT(r, shift(r, 1), a);
+ MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
+ DAG.getConstant(1, dl, ExtVT));
+ MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
+ DAG.getConstant(1, dl, ExtVT));
+ RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
+ RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
+
+ // Logical shift the result back to the lower byte, leaving a zero upper
+ // byte
+ // meaning that we can safely pack with PACKUSWB.
+ RLo =
+ DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT));
+ RHi =
+ DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT));
+ return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
+ }
+ }
+
+ if (Subtarget.hasInt256() && !Subtarget.hasXOP() && VT == MVT::v16i16) {
+ MVT ExtVT = MVT::v8i32;
+ SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
+ SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z);
+ SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z);
+ SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Z, R);
+ SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Z, R);
+ ALo = DAG.getBitcast(ExtVT, ALo);
+ AHi = DAG.getBitcast(ExtVT, AHi);
+ RLo = DAG.getBitcast(ExtVT, RLo);
+ RHi = DAG.getBitcast(ExtVT, RHi);
+ SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo);
+ SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi);
+ Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT));
+ Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT));
+ return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
+ }
+
+ if (VT == MVT::v8i16) {
+ unsigned ShiftOpcode = Op->getOpcode();
+
+ // If we have a constant shift amount, the non-SSE41 path is best as
+ // avoiding bitcasts make it easier to constant fold and reduce to PBLENDW.
+ bool UseSSE41 = Subtarget.hasSSE41() &&
+ !ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
+
+ auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) {
+ // On SSE41 targets we make use of the fact that VSELECT lowers
+ // to PBLENDVB which selects bytes based just on the sign bit.
+ if (UseSSE41) {
+ MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
+ V0 = DAG.getBitcast(ExtVT, V0);
+ V1 = DAG.getBitcast(ExtVT, V1);
+ Sel = DAG.getBitcast(ExtVT, Sel);
+ return DAG.getBitcast(VT, DAG.getSelect(dl, ExtVT, Sel, V0, V1));
+ }
+ // On pre-SSE41 targets we splat the sign bit - a negative value will
+ // set all bits of the lanes to true and VSELECT uses that in
+ // its OR(AND(V0,C),AND(V1,~C)) lowering.
+ SDValue C =
+ DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT));
+ return DAG.getSelect(dl, VT, C, V0, V1);
+ };
+
+ // Turn 'a' into a mask suitable for VSELECT: a = a << 12;
+ if (UseSSE41) {
+ // On SSE41 targets we need to replicate the shift mask in both
+ // bytes for PBLENDVB.
+ Amt = DAG.getNode(
+ ISD::OR, dl, VT,
+ DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)),
+ DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)));
+ } else {
+ Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT));
+ }
+
+ // r = VSELECT(r, shift(r, 8), a);
+ SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT));
+ R = SignBitSelect(Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // r = VSELECT(r, shift(r, 4), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
+ R = SignBitSelect(Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // r = VSELECT(r, shift(r, 2), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
+ R = SignBitSelect(Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // return VSELECT(r, shift(r, 1), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
+ R = SignBitSelect(Amt, M, R);
+ return R;
+ }
+
+ // Decompose 256-bit shifts into smaller 128-bit shifts.
+ if (VT.is256BitVector())
+ return Lower256IntArith(Op, DAG);
+
+ return SDValue();
+}
+
+static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc DL(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+ unsigned Opcode = Op.getOpcode();
+ unsigned EltSizeInBits = VT.getScalarSizeInBits();
+
+ if (Subtarget.hasAVX512()) {
+ // Attempt to rotate by immediate.
+ APInt UndefElts;
+ SmallVector<APInt, 16> EltBits;
+ if (getTargetConstantBitsFromNode(Amt, EltSizeInBits, UndefElts, EltBits)) {
+ if (!UndefElts && llvm::all_of(EltBits, [EltBits](APInt &V) {
+ return EltBits[0] == V;
+ })) {
+ unsigned Op = (Opcode == ISD::ROTL ? X86ISD::VROTLI : X86ISD::VROTRI);
+ uint64_t RotateAmt = EltBits[0].urem(EltSizeInBits);
+ return DAG.getNode(Op, DL, VT, R,
+ DAG.getConstant(RotateAmt, DL, MVT::i8));
+ }
+ }
+
+ // Else, fall-back on VPROLV/VPRORV.
+ return Op;
+ }
+
+ assert(VT.isVector() && "Custom lowering only for vector rotates!");
+ assert(Subtarget.hasXOP() && "XOP support required for vector rotates!");
+ assert((Opcode == ISD::ROTL) && "Only ROTL supported");
+
+ // XOP has 128-bit vector variable + immediate rotates.
+ // +ve/-ve Amt = rotate left/right - just need to handle ISD::ROTL.
+
+ // Split 256-bit integers.
+ if (VT.is256BitVector())
+ return Lower256IntArith(Op, DAG);
+
+ assert(VT.is128BitVector() && "Only rotate 128-bit vectors!");
+
+ // Attempt to rotate by immediate.
+ if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
+ if (auto *RotateConst = BVAmt->getConstantSplatNode()) {
+ uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue();
+ assert(RotateAmt < EltSizeInBits && "Rotation out of range");
+ return DAG.getNode(X86ISD::VROTLI, DL, VT, R,
+ DAG.getConstant(RotateAmt, DL, MVT::i8));
+ }
+ }
+
+ // Use general rotate by variable (per-element).
+ return Op;
+}
+
+static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
+ // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
+ // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
+ // looks for this combo and may remove the "setcc" instruction if the "setcc"
+ // has only one use.
+ SDNode *N = Op.getNode();
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ unsigned BaseOp = 0;
+ X86::CondCode Cond;
+ SDLoc DL(Op);
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Unknown ovf instruction!");
+ case ISD::SADDO:
+ // A subtract of one will be selected as a INC. Note that INC doesn't
+ // set CF, so we can't do this for UADDO.
+ if (isOneConstant(RHS)) {
+ BaseOp = X86ISD::INC;
+ Cond = X86::COND_O;
+ break;
+ }
+ BaseOp = X86ISD::ADD;
+ Cond = X86::COND_O;
+ break;
+ case ISD::UADDO:
+ BaseOp = X86ISD::ADD;
+ Cond = X86::COND_B;
+ break;
+ case ISD::SSUBO:
+ // A subtract of one will be selected as a DEC. Note that DEC doesn't
+ // set CF, so we can't do this for USUBO.
+ if (isOneConstant(RHS)) {
+ BaseOp = X86ISD::DEC;
+ Cond = X86::COND_O;
+ break;
+ }
+ BaseOp = X86ISD::SUB;
+ Cond = X86::COND_O;
+ break;
+ case ISD::USUBO:
+ BaseOp = X86ISD::SUB;
+ Cond = X86::COND_B;
+ break;
+ case ISD::SMULO:
+ BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
+ Cond = X86::COND_O;
+ break;
+ case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
+ if (N->getValueType(0) == MVT::i8) {
+ BaseOp = X86ISD::UMUL8;
+ Cond = X86::COND_O;
+ break;
+ }
+ SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
+ MVT::i32);
+ SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
+
+ SDValue SetCC = getSETCC(X86::COND_O, SDValue(Sum.getNode(), 2), DL, DAG);
+
+ if (N->getValueType(1) == MVT::i1)
+ SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
+
+ return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
+ }
+ }
+
+ // Also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
+ SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
+
+ SDValue SetCC = getSETCC(Cond, SDValue(Sum.getNode(), 1), DL, DAG);
+
+ if (N->getValueType(1) == MVT::i1)
+ SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
+
+ return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
+}
+
+/// Returns true if the operand type is exactly twice the native width, and
+/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
+/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
+/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
+bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const {
+ unsigned OpWidth = MemType->getPrimitiveSizeInBits();
+
+ if (OpWidth == 64)
+ return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
+ else if (OpWidth == 128)
+ return Subtarget.hasCmpxchg16b();
+ else
+ return false;
+}
+
+bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
+ return needsCmpXchgNb(SI->getValueOperand()->getType());
+}
+
+// Note: this turns large loads into lock cmpxchg8b/16b.
+// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
+TargetLowering::AtomicExpansionKind
+X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
+ auto PTy = cast<PointerType>(LI->getPointerOperandType());
+ return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg
+ : AtomicExpansionKind::None;
+}
+
+TargetLowering::AtomicExpansionKind
+X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
+ unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
+ Type *MemType = AI->getType();
+
+ // If the operand is too big, we must see if cmpxchg8/16b is available
+ // and default to library calls otherwise.
+ if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
+ return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
+ : AtomicExpansionKind::None;
+ }
+
+ AtomicRMWInst::BinOp Op = AI->getOperation();
+ switch (Op) {
+ default:
+ llvm_unreachable("Unknown atomic operation");
+ case AtomicRMWInst::Xchg:
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ // It's better to use xadd, xsub or xchg for these in all cases.
+ return AtomicExpansionKind::None;
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Xor:
+ // If the atomicrmw's result isn't actually used, we can just add a "lock"
+ // prefix to a normal instruction for these operations.
+ return !AI->use_empty() ? AtomicExpansionKind::CmpXChg
+ : AtomicExpansionKind::None;
+ case AtomicRMWInst::Nand:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ // These always require a non-trivial set of data operations on x86. We must
+ // use a cmpxchg loop.
+ return AtomicExpansionKind::CmpXChg;
+ }
+}
+
+LoadInst *
+X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
+ unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
+ Type *MemType = AI->getType();
+ // Accesses larger than the native width are turned into cmpxchg/libcalls, so
+ // there is no benefit in turning such RMWs into loads, and it is actually
+ // harmful as it introduces a mfence.
+ if (MemType->getPrimitiveSizeInBits() > NativeWidth)
+ return nullptr;
+
+ auto Builder = IRBuilder<>(AI);
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ auto SSID = AI->getSyncScopeID();
+ // We must restrict the ordering to avoid generating loads with Release or
+ // ReleaseAcquire orderings.
+ auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
+ auto Ptr = AI->getPointerOperand();
+
+ // Before the load we need a fence. Here is an example lifted from
+ // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
+ // is required:
+ // Thread 0:
+ // x.store(1, relaxed);
+ // r1 = y.fetch_add(0, release);
+ // Thread 1:
+ // y.fetch_add(42, acquire);
+ // r2 = x.load(relaxed);
+ // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
+ // lowered to just a load without a fence. A mfence flushes the store buffer,
+ // making the optimization clearly correct.
+ // FIXME: it is required if isReleaseOrStronger(Order) but it is not clear
+ // otherwise, we might be able to be more aggressive on relaxed idempotent
+ // rmw. In practice, they do not look useful, so we don't try to be
+ // especially clever.
+ if (SSID == SyncScope::SingleThread)
+ // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
+ // the IR level, so we must wrap it in an intrinsic.
+ return nullptr;
+
+ if (!Subtarget.hasMFence())
+ // FIXME: it might make sense to use a locked operation here but on a
+ // different cache-line to prevent cache-line bouncing. In practice it
+ // is probably a small win, and x86 processors without mfence are rare
+ // enough that we do not bother.
+ return nullptr;
+
+ Function *MFence =
+ llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence);
+ Builder.CreateCall(MFence, {});
+
+ // Finally we can emit the atomic load.
+ LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
+ AI->getType()->getPrimitiveSizeInBits());
+ Loaded->setAtomic(Order, SSID);
+ AI->replaceAllUsesWith(Loaded);
+ AI->eraseFromParent();
+ return Loaded;
+}
+
+static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
+ cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
+ SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
+ cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
+
+ // The only fence that needs an instruction is a sequentially-consistent
+ // cross-thread fence.
+ if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
+ FenceSSID == SyncScope::System) {
+ if (Subtarget.hasMFence())
+ return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
+ SDValue Ops[] = {
+ DAG.getRegister(X86::ESP, MVT::i32), // Base
+ DAG.getTargetConstant(1, dl, MVT::i8), // Scale
+ DAG.getRegister(0, MVT::i32), // Index
+ DAG.getTargetConstant(0, dl, MVT::i32), // Disp
+ DAG.getRegister(0, MVT::i32), // Segment.
+ Zero,
+ Chain
+ };
+ SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
+ return SDValue(Res, 0);
+ }
+
+ // MEMBARRIER is a compiler barrier; it codegens to a no-op.
+ return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
+}
+
+static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT T = Op.getSimpleValueType();
+ SDLoc DL(Op);
+ unsigned Reg = 0;
+ unsigned size = 0;
+ switch(T.SimpleTy) {
+ default: llvm_unreachable("Invalid value type!");
+ case MVT::i8: Reg = X86::AL; size = 1; break;
+ case MVT::i16: Reg = X86::AX; size = 2; break;
+ case MVT::i32: Reg = X86::EAX; size = 4; break;
+ case MVT::i64:
+ assert(Subtarget.is64Bit() && "Node not type legal!");
+ Reg = X86::RAX; size = 8;
+ break;
+ }
+ SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
+ Op.getOperand(2), SDValue());
+ SDValue Ops[] = { cpIn.getValue(0),
+ Op.getOperand(1),
+ Op.getOperand(3),
+ DAG.getTargetConstant(size, DL, MVT::i8),
+ cpIn.getValue(1) };
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
+ SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
+ Ops, T, MMO);
+
+ SDValue cpOut =
+ DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
+ SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
+ MVT::i32, cpOut.getValue(2));
+ SDValue Success = getSETCC(X86::COND_E, EFLAGS, DL, DAG);
+
+ DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
+ DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
+ DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
+ return SDValue();
+}
+
+static SDValue LowerBITCAST(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT SrcVT = Op.getOperand(0).getSimpleValueType();
+ MVT DstVT = Op.getSimpleValueType();
+
+ if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8 ||
+ SrcVT == MVT::i64) {
+ assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
+ if (DstVT != MVT::f64)
+ // This conversion needs to be expanded.
+ return SDValue();
+
+ SDValue Op0 = Op->getOperand(0);
+ SmallVector<SDValue, 16> Elts;
+ SDLoc dl(Op);
+ unsigned NumElts;
+ MVT SVT;
+ if (SrcVT.isVector()) {
+ NumElts = SrcVT.getVectorNumElements();
+ SVT = SrcVT.getVectorElementType();
+
+ // Widen the vector in input in the case of MVT::v2i32.
+ // Example: from MVT::v2i32 to MVT::v4i32.
+ for (unsigned i = 0, e = NumElts; i != e; ++i)
+ Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, Op0,
+ DAG.getIntPtrConstant(i, dl)));
+ } else {
+ assert(SrcVT == MVT::i64 && !Subtarget.is64Bit() &&
+ "Unexpected source type in LowerBITCAST");
+ Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op0,
+ DAG.getIntPtrConstant(0, dl)));
+ Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op0,
+ DAG.getIntPtrConstant(1, dl)));
+ NumElts = 2;
+ SVT = MVT::i32;
+ }
+ // Explicitly mark the extra elements as Undef.
+ Elts.append(NumElts, DAG.getUNDEF(SVT));
+
+ EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
+ SDValue BV = DAG.getBuildVector(NewVT, dl, Elts);
+ SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ assert(Subtarget.is64Bit() && !Subtarget.hasSSE2() &&
+ Subtarget.hasMMX() && "Unexpected custom BITCAST");
+ assert((DstVT == MVT::i64 ||
+ (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
+ "Unexpected custom BITCAST");
+ // i64 <=> MMX conversions are Legal.
+ if (SrcVT==MVT::i64 && DstVT.isVector())
+ return Op;
+ if (DstVT==MVT::i64 && SrcVT.isVector())
+ return Op;
+ // MMX <=> MMX conversions are Legal.
+ if (SrcVT.isVector() && DstVT.isVector())
+ return Op;
+ // All other conversions need to be expanded.
+ return SDValue();
+}
+
+/// Compute the horizontal sum of bytes in V for the elements of VT.
+///
+/// Requires V to be a byte vector and VT to be an integer vector type with
+/// wider elements than V's type. The width of the elements of VT determines
+/// how many bytes of V are summed horizontally to produce each element of the
+/// result.
+static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(V);
+ MVT ByteVecVT = V.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
+ "Expected value to have byte element type.");
+ assert(EltVT != MVT::i8 &&
+ "Horizontal byte sum only makes sense for wider elements!");
+ unsigned VecSize = VT.getSizeInBits();
+ assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
+
+ // PSADBW instruction horizontally add all bytes and leave the result in i64
+ // chunks, thus directly computes the pop count for v2i64 and v4i64.
+ if (EltVT == MVT::i64) {
+ SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
+ MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
+ V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros);
+ return DAG.getBitcast(VT, V);
+ }
+
+ if (EltVT == MVT::i32) {
+ // We unpack the low half and high half into i32s interleaved with zeros so
+ // that we can use PSADBW to horizontally sum them. The most useful part of
+ // this is that it lines up the results of two PSADBW instructions to be
+ // two v2i64 vectors which concatenated are the 4 population counts. We can
+ // then use PACKUSWB to shrink and concatenate them into a v4i32 again.
+ SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL);
+ SDValue V32 = DAG.getBitcast(VT, V);
+ SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V32, Zeros);
+ SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V32, Zeros);
+
+ // Do the horizontal sums into two v2i64s.
+ Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
+ MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
+ Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
+ DAG.getBitcast(ByteVecVT, Low), Zeros);
+ High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
+ DAG.getBitcast(ByteVecVT, High), Zeros);
+
+ // Merge them together.
+ MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
+ V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
+ DAG.getBitcast(ShortVecVT, Low),
+ DAG.getBitcast(ShortVecVT, High));
+
+ return DAG.getBitcast(VT, V);
+ }
+
+ // The only element type left is i16.
+ assert(EltVT == MVT::i16 && "Unknown how to handle type");
+
+ // To obtain pop count for each i16 element starting from the pop count for
+ // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
+ // right by 8. It is important to shift as i16s as i8 vector shift isn't
+ // directly supported.
+ SDValue ShifterV = DAG.getConstant(8, DL, VT);
+ SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
+ V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
+ DAG.getBitcast(ByteVecVT, V));
+ return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
+}
+
+static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, const SDLoc &DL,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ unsigned VecSize = VT.getSizeInBits();
+
+ // Implement a lookup table in register by using an algorithm based on:
+ // http://wm.ite.pl/articles/sse-popcount.html
+ //
+ // The general idea is that every lower byte nibble in the input vector is an
+ // index into a in-register pre-computed pop count table. We then split up the
+ // input vector in two new ones: (1) a vector with only the shifted-right
+ // higher nibbles for each byte and (2) a vector with the lower nibbles (and
+ // masked out higher ones) for each byte. PSHUFB is used separately with both
+ // to index the in-register table. Next, both are added and the result is a
+ // i8 vector where each element contains the pop count for input byte.
+ //
+ // To obtain the pop count for elements != i8, we follow up with the same
+ // approach and use additional tricks as described below.
+ //
+ const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
+ /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
+ /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
+ /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
+
+ int NumByteElts = VecSize / 8;
+ MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts);
+ SDValue In = DAG.getBitcast(ByteVecVT, Op);
+ SmallVector<SDValue, 64> LUTVec;
+ for (int i = 0; i < NumByteElts; ++i)
+ LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
+ SDValue InRegLUT = DAG.getBuildVector(ByteVecVT, DL, LUTVec);
+ SDValue M0F = DAG.getConstant(0x0F, DL, ByteVecVT);
+
+ // High nibbles
+ SDValue FourV = DAG.getConstant(4, DL, ByteVecVT);
+ SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV);
+
+ // Low nibbles
+ SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F);
+
+ // The input vector is used as the shuffle mask that index elements into the
+ // LUT. After counting low and high nibbles, add the vector to obtain the
+ // final pop count per i8 element.
+ SDValue HighPopCnt =
+ DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles);
+ SDValue LowPopCnt =
+ DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles);
+ SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt);
+
+ if (EltVT == MVT::i8)
+ return PopCnt;
+
+ return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG);
+}
+
+static SDValue LowerVectorCTPOPBitmath(SDValue Op, const SDLoc &DL,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ assert(VT.is128BitVector() &&
+ "Only 128-bit vector bitmath lowering supported.");
+
+ int VecSize = VT.getSizeInBits();
+ MVT EltVT = VT.getVectorElementType();
+ int Len = EltVT.getSizeInBits();
+
+ // This is the vectorized version of the "best" algorithm from
+ // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
+ // with a minor tweak to use a series of adds + shifts instead of vector
+ // multiplications. Implemented for all integer vector types. We only use
+ // this when we don't have SSSE3 which allows a LUT-based lowering that is
+ // much faster, even faster than using native popcnt instructions.
+
+ auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) {
+ MVT VT = V.getSimpleValueType();
+ SDValue ShifterV = DAG.getConstant(Shifter, DL, VT);
+ return DAG.getNode(OpCode, DL, VT, V, ShifterV);
+ };
+ auto GetMask = [&](SDValue V, APInt Mask) {
+ MVT VT = V.getSimpleValueType();
+ SDValue MaskV = DAG.getConstant(Mask, DL, VT);
+ return DAG.getNode(ISD::AND, DL, VT, V, MaskV);
+ };
+
+ // We don't want to incur the implicit masks required to SRL vNi8 vectors on
+ // x86, so set the SRL type to have elements at least i16 wide. This is
+ // correct because all of our SRLs are followed immediately by a mask anyways
+ // that handles any bits that sneak into the high bits of the byte elements.
+ MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16);
+
+ SDValue V = Op;
+
+ // v = v - ((v >> 1) & 0x55555555...)
+ SDValue Srl =
+ DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1));
+ SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55)));
+ V = DAG.getNode(ISD::SUB, DL, VT, V, And);
+
+ // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
+ SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33)));
+ Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2));
+ SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33)));
+ V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS);
+
+ // v = (v + (v >> 4)) & 0x0F0F0F0F...
+ Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4));
+ SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl);
+ V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F)));
+
+ // At this point, V contains the byte-wise population count, and we are
+ // merely doing a horizontal sum if necessary to get the wider element
+ // counts.
+ if (EltVT == MVT::i8)
+ return V;
+
+ return LowerHorizontalByteSum(
+ DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget,
+ DAG);
+}
+
+// Please ensure that any codegen change from LowerVectorCTPOP is reflected in
+// updated cost models in X86TTIImpl::getIntrinsicInstrCost.
+static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ assert((VT.is512BitVector() || VT.is256BitVector() || VT.is128BitVector()) &&
+ "Unknown CTPOP type to handle");
+ SDLoc DL(Op.getNode());
+ SDValue Op0 = Op.getOperand(0);
+
+ // TRUNC(CTPOP(ZEXT(X))) to make use of vXi32/vXi64 VPOPCNT instructions.
+ if (Subtarget.hasVPOPCNTDQ()) {
+ unsigned NumElems = VT.getVectorNumElements();
+ assert((VT.getVectorElementType() == MVT::i8 ||
+ VT.getVectorElementType() == MVT::i16) && "Unexpected type");
+ if (NumElems <= 16) {
+ MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
+ Op = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, Op0);
+ Op = DAG.getNode(ISD::CTPOP, DL, NewVT, Op);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
+ }
+ }
+
+ if (!Subtarget.hasSSSE3()) {
+ // We can't use the fast LUT approach, so fall back on vectorized bitmath.
+ assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!");
+ return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG);
+ }
+
+ // Decompose 256-bit ops into smaller 128-bit ops.
+ if (VT.is256BitVector() && !Subtarget.hasInt256())
+ return Lower256IntUnary(Op, DAG);
+
+ // Decompose 512-bit ops into smaller 256-bit ops.
+ if (VT.is512BitVector() && !Subtarget.hasBWI())
+ return Lower512IntUnary(Op, DAG);
+
+ return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
+}
+
+static SDValue LowerCTPOP(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType().isVector() &&
+ "We only do custom lowering for vector population count.");
+ return LowerVectorCTPOP(Op, Subtarget, DAG);
+}
+
+static SDValue LowerBITREVERSE_XOP(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ SDLoc DL(Op);
+
+ // For scalars, its still beneficial to transfer to/from the SIMD unit to
+ // perform the BITREVERSE.
+ if (!VT.isVector()) {
+ MVT VecVT = MVT::getVectorVT(VT, 128 / VT.getSizeInBits());
+ SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, In);
+ Res = DAG.getNode(ISD::BITREVERSE, DL, VecVT, Res);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Res,
+ DAG.getIntPtrConstant(0, DL));
+ }
+
+ int NumElts = VT.getVectorNumElements();
+ int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
+
+ // Decompose 256-bit ops into smaller 128-bit ops.
+ if (VT.is256BitVector())
+ return Lower256IntUnary(Op, DAG);
+
+ assert(VT.is128BitVector() &&
+ "Only 128-bit vector bitreverse lowering supported.");
+
+ // VPPERM reverses the bits of a byte with the permute Op (2 << 5), and we
+ // perform the BSWAP in the shuffle.
+ // Its best to shuffle using the second operand as this will implicitly allow
+ // memory folding for multiple vectors.
+ SmallVector<SDValue, 16> MaskElts;
+ for (int i = 0; i != NumElts; ++i) {
+ for (int j = ScalarSizeInBytes - 1; j >= 0; --j) {
+ int SourceByte = 16 + (i * ScalarSizeInBytes) + j;
+ int PermuteByte = SourceByte | (2 << 5);
+ MaskElts.push_back(DAG.getConstant(PermuteByte, DL, MVT::i8));
+ }
+ }
+
+ SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, MaskElts);
+ SDValue Res = DAG.getBitcast(MVT::v16i8, In);
+ Res = DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, DAG.getUNDEF(MVT::v16i8),
+ Res, Mask);
+ return DAG.getBitcast(VT, Res);
+}
+
+static SDValue LowerBITREVERSE(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ if (Subtarget.hasXOP() && !VT.is512BitVector())
+ return LowerBITREVERSE_XOP(Op, DAG);
+
+ assert(Subtarget.hasSSSE3() && "SSSE3 required for BITREVERSE");
+
+ SDValue In = Op.getOperand(0);
+ SDLoc DL(Op);
+
+ unsigned NumElts = VT.getVectorNumElements();
+ assert(VT.getScalarType() == MVT::i8 &&
+ "Only byte vector BITREVERSE supported");
+
+ // Decompose 256-bit ops into smaller 128-bit ops on pre-AVX2.
+ if (VT.is256BitVector() && !Subtarget.hasInt256())
+ return Lower256IntUnary(Op, DAG);
+
+ // Perform BITREVERSE using PSHUFB lookups. Each byte is split into
+ // two nibbles and a PSHUFB lookup to find the bitreverse of each
+ // 0-15 value (moved to the other nibble).
+ SDValue NibbleMask = DAG.getConstant(0xF, DL, VT);
+ SDValue Lo = DAG.getNode(ISD::AND, DL, VT, In, NibbleMask);
+ SDValue Hi = DAG.getNode(ISD::SRL, DL, VT, In, DAG.getConstant(4, DL, VT));
+
+ const int LoLUT[16] = {
+ /* 0 */ 0x00, /* 1 */ 0x80, /* 2 */ 0x40, /* 3 */ 0xC0,
+ /* 4 */ 0x20, /* 5 */ 0xA0, /* 6 */ 0x60, /* 7 */ 0xE0,
+ /* 8 */ 0x10, /* 9 */ 0x90, /* a */ 0x50, /* b */ 0xD0,
+ /* c */ 0x30, /* d */ 0xB0, /* e */ 0x70, /* f */ 0xF0};
+ const int HiLUT[16] = {
+ /* 0 */ 0x00, /* 1 */ 0x08, /* 2 */ 0x04, /* 3 */ 0x0C,
+ /* 4 */ 0x02, /* 5 */ 0x0A, /* 6 */ 0x06, /* 7 */ 0x0E,
+ /* 8 */ 0x01, /* 9 */ 0x09, /* a */ 0x05, /* b */ 0x0D,
+ /* c */ 0x03, /* d */ 0x0B, /* e */ 0x07, /* f */ 0x0F};
+
+ SmallVector<SDValue, 16> LoMaskElts, HiMaskElts;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ LoMaskElts.push_back(DAG.getConstant(LoLUT[i % 16], DL, MVT::i8));
+ HiMaskElts.push_back(DAG.getConstant(HiLUT[i % 16], DL, MVT::i8));
+ }
+
+ SDValue LoMask = DAG.getBuildVector(VT, DL, LoMaskElts);
+ SDValue HiMask = DAG.getBuildVector(VT, DL, HiMaskElts);
+ Lo = DAG.getNode(X86ISD::PSHUFB, DL, VT, LoMask, Lo);
+ Hi = DAG.getNode(X86ISD::PSHUFB, DL, VT, HiMask, Hi);
+ return DAG.getNode(ISD::OR, DL, VT, Lo, Hi);
+}
+
+static SDValue lowerAtomicArithWithLOCK(SDValue N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ bool AllowIncDec = true) {
+ unsigned NewOpc = 0;
+ switch (N->getOpcode()) {
+ case ISD::ATOMIC_LOAD_ADD:
+ NewOpc = X86ISD::LADD;
+ break;
+ case ISD::ATOMIC_LOAD_SUB:
+ NewOpc = X86ISD::LSUB;
+ break;
+ case ISD::ATOMIC_LOAD_OR:
+ NewOpc = X86ISD::LOR;
+ break;
+ case ISD::ATOMIC_LOAD_XOR:
+ NewOpc = X86ISD::LXOR;
+ break;
+ case ISD::ATOMIC_LOAD_AND:
+ NewOpc = X86ISD::LAND;
+ break;
+ default:
+ llvm_unreachable("Unknown ATOMIC_LOAD_ opcode");
+ }
+
+ MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand();
+
+ if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
+ // Convert to inc/dec if they aren't slow or we are optimizing for size.
+ if (AllowIncDec && (!Subtarget.slowIncDec() ||
+ DAG.getMachineFunction().getFunction().optForSize())) {
+ if ((NewOpc == X86ISD::LADD && C->isOne()) ||
+ (NewOpc == X86ISD::LSUB && C->isAllOnesValue()))
+ return DAG.getMemIntrinsicNode(X86ISD::LINC, SDLoc(N),
+ DAG.getVTList(MVT::i32, MVT::Other),
+ {N->getOperand(0), N->getOperand(1)},
+ /*MemVT=*/N->getSimpleValueType(0), MMO);
+ if ((NewOpc == X86ISD::LSUB && C->isOne()) ||
+ (NewOpc == X86ISD::LADD && C->isAllOnesValue()))
+ return DAG.getMemIntrinsicNode(X86ISD::LDEC, SDLoc(N),
+ DAG.getVTList(MVT::i32, MVT::Other),
+ {N->getOperand(0), N->getOperand(1)},
+ /*MemVT=*/N->getSimpleValueType(0), MMO);
+ }
+ }
+
+ return DAG.getMemIntrinsicNode(
+ NewOpc, SDLoc(N), DAG.getVTList(MVT::i32, MVT::Other),
+ {N->getOperand(0), N->getOperand(1), N->getOperand(2)},
+ /*MemVT=*/N->getSimpleValueType(0), MMO);
+}
+
+/// Lower atomic_load_ops into LOCK-prefixed operations.
+static SDValue lowerAtomicArith(SDValue N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDValue Chain = N->getOperand(0);
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ unsigned Opc = N->getOpcode();
+ MVT VT = N->getSimpleValueType(0);
+ SDLoc DL(N);
+
+ // We can lower atomic_load_add into LXADD. However, any other atomicrmw op
+ // can only be lowered when the result is unused. They should have already
+ // been transformed into a cmpxchg loop in AtomicExpand.
+ if (N->hasAnyUseOfValue(0)) {
+ // Handle (atomic_load_sub p, v) as (atomic_load_add p, -v), to be able to
+ // select LXADD if LOCK_SUB can't be selected.
+ if (Opc == ISD::ATOMIC_LOAD_SUB) {
+ AtomicSDNode *AN = cast<AtomicSDNode>(N.getNode());
+ RHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS);
+ return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, VT, Chain, LHS,
+ RHS, AN->getMemOperand());
+ }
+ assert(Opc == ISD::ATOMIC_LOAD_ADD &&
+ "Used AtomicRMW ops other than Add should have been expanded!");
+ return N;
+ }
+
+ SDValue LockOp = lowerAtomicArithWithLOCK(N, DAG, Subtarget);
+ // RAUW the chain, but don't worry about the result, as it's unused.
+ assert(!N->hasAnyUseOfValue(0));
+ DAG.ReplaceAllUsesOfValueWith(N.getValue(1), LockOp.getValue(1));
+ return SDValue();
+}
+
+static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
+ SDNode *Node = Op.getNode();
+ SDLoc dl(Node);
+ EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
+
+ // Convert seq_cst store -> xchg
+ // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
+ // FIXME: On 32-bit, store -> fist or movq would be more efficient
+ // (The only way to get a 16-byte store is cmpxchg16b)
+ // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
+ if (cast<AtomicSDNode>(Node)->getOrdering() ==
+ AtomicOrdering::SequentiallyConsistent ||
+ !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
+ SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
+ cast<AtomicSDNode>(Node)->getMemoryVT(),
+ Node->getOperand(0),
+ Node->getOperand(1), Node->getOperand(2),
+ cast<AtomicSDNode>(Node)->getMemOperand());
+ return Swap.getValue(1);
+ }
+ // Other atomic stores have a simple pattern.
+ return Op;
+}
+
+static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
+ SDNode *N = Op.getNode();
+ MVT VT = N->getSimpleValueType(0);
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+ SDLoc DL(N);
+
+ // Set the carry flag.
+ SDValue Carry = Op.getOperand(2);
+ EVT CarryVT = Carry.getValueType();
+ APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits());
+ Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32),
+ Carry, DAG.getConstant(NegOne, DL, CarryVT));
+
+ unsigned Opc = Op.getOpcode() == ISD::ADDCARRY ? X86ISD::ADC : X86ISD::SBB;
+ SDValue Sum = DAG.getNode(Opc, DL, VTs, Op.getOperand(0),
+ Op.getOperand(1), Carry.getValue(1));
+
+ SDValue SetCC = getSETCC(X86::COND_B, Sum.getValue(1), DL, DAG);
+ if (N->getValueType(1) == MVT::i1)
+ SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
+
+ return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
+}
+
+static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget.isTargetDarwin() && Subtarget.is64Bit());
+
+ // For MacOSX, we want to call an alternative entry point: __sincos_stret,
+ // which returns the values as { float, float } (in XMM0) or
+ // { double, double } (which is returned in XMM0, XMM1).
+ SDLoc dl(Op);
+ SDValue Arg = Op.getOperand(0);
+ EVT ArgVT = Arg.getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Node = Arg;
+ Entry.Ty = ArgTy;
+ Entry.IsSExt = false;
+ Entry.IsZExt = false;
+ Args.push_back(Entry);
+
+ bool isF64 = ArgVT == MVT::f64;
+ // Only optimize x86_64 for now. i386 is a bit messy. For f32,
+ // the small struct {f32, f32} is returned in (eax, edx). For f64,
+ // the results are returned via SRet in memory.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ RTLIB::Libcall LC = isF64 ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
+ const char *LibcallName = TLI.getLibcallName(LC);
+ SDValue Callee =
+ DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout()));
+
+ Type *RetTy = isF64 ? (Type *)StructType::get(ArgTy, ArgTy)
+ : (Type *)VectorType::get(ArgTy, 4);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl)
+ .setChain(DAG.getEntryNode())
+ .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args));
+
+ std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
+
+ if (isF64)
+ // Returned in xmm0 and xmm1.
+ return CallResult.first;
+
+ // Returned in bits 0:31 and 32:64 xmm0.
+ SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
+ CallResult.first, DAG.getIntPtrConstant(0, dl));
+ SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
+ CallResult.first, DAG.getIntPtrConstant(1, dl));
+ SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
+}
+
+/// Widen a vector input to a vector of NVT. The
+/// input vector must have the same element type as NVT.
+static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG,
+ bool FillWithZeroes = false) {
+ // Check if InOp already has the right width.
+ MVT InVT = InOp.getSimpleValueType();
+ if (InVT == NVT)
+ return InOp;
+
+ if (InOp.isUndef())
+ return DAG.getUNDEF(NVT);
+
+ assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
+ "input and widen element type must match");
+
+ unsigned InNumElts = InVT.getVectorNumElements();
+ unsigned WidenNumElts = NVT.getVectorNumElements();
+ assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 &&
+ "Unexpected request for vector widening");
+
+ SDLoc dl(InOp);
+ if (InOp.getOpcode() == ISD::CONCAT_VECTORS &&
+ InOp.getNumOperands() == 2) {
+ SDValue N1 = InOp.getOperand(1);
+ if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) ||
+ N1.isUndef()) {
+ InOp = InOp.getOperand(0);
+ InVT = InOp.getSimpleValueType();
+ InNumElts = InVT.getVectorNumElements();
+ }
+ }
+ if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) ||
+ ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) {
+ SmallVector<SDValue, 16> Ops;
+ for (unsigned i = 0; i < InNumElts; ++i)
+ Ops.push_back(InOp.getOperand(i));
+
+ EVT EltVT = InOp.getOperand(0).getValueType();
+
+ SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
+ DAG.getUNDEF(EltVT);
+ for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i)
+ Ops.push_back(FillVal);
+ return DAG.getBuildVector(NVT, dl, Ops);
+ }
+ SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) :
+ DAG.getUNDEF(NVT);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal,
+ InOp, DAG.getIntPtrConstant(0, dl));
+}
+
+static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget.hasAVX512() &&
+ "MGATHER/MSCATTER are supported on AVX-512 arch only");
+
+ MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode());
+ SDValue Src = N->getValue();
+ MVT VT = Src.getSimpleValueType();
+ assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op");
+ SDLoc dl(Op);
+
+ SDValue Index = N->getIndex();
+ SDValue Mask = N->getMask();
+ SDValue Chain = N->getChain();
+ SDValue BasePtr = N->getBasePtr();
+ MVT MemVT = N->getMemoryVT().getSimpleVT();
+ MVT IndexVT = Index.getSimpleValueType();
+ MVT MaskVT = Mask.getSimpleValueType();
+
+ if (MemVT.getScalarSizeInBits() < VT.getScalarSizeInBits()) {
+ // The v2i32 value was promoted to v2i64.
+ // Now we "redo" the type legalizer's work and widen the original
+ // v2i32 value to v4i32. The original v2i32 is retrieved from v2i64
+ // with a shuffle.
+ assert((MemVT == MVT::v2i32 && VT == MVT::v2i64) &&
+ "Unexpected memory type");
+ int ShuffleMask[] = {0, 2, -1, -1};
+ Src = DAG.getVectorShuffle(MVT::v4i32, dl, DAG.getBitcast(MVT::v4i32, Src),
+ DAG.getUNDEF(MVT::v4i32), ShuffleMask);
+ // Now we have 4 elements instead of 2.
+ // Expand the index.
+ MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), 4);
+ Index = ExtendToType(Index, NewIndexVT, DAG);
+
+ // Expand the mask with zeroes
+ // Mask may be <2 x i64> or <2 x i1> at this moment
+ assert((MaskVT == MVT::v2i1 || MaskVT == MVT::v2i64) &&
+ "Unexpected mask type");
+ MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), 4);
+ Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
+ VT = MVT::v4i32;
+ }
+
+ unsigned NumElts = VT.getVectorNumElements();
+ if (!Subtarget.hasVLX() && !VT.is512BitVector() &&
+ !Index.getSimpleValueType().is512BitVector()) {
+ // AVX512F supports only 512-bit vectors. Or data or index should
+ // be 512 bit wide. If now the both index and data are 256-bit, but
+ // the vector contains 8 elements, we just sign-extend the index
+ if (IndexVT == MVT::v8i32)
+ // Just extend index
+ Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+ else {
+ // The minimal number of elts in scatter is 8
+ NumElts = 8;
+ // Index
+ MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
+ // Use original index here, do not modify the index twice
+ Index = ExtendToType(N->getIndex(), NewIndexVT, DAG);
+ if (IndexVT.getScalarType() == MVT::i32)
+ Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+
+ // Mask
+ // At this point we have promoted mask operand
+ assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
+ MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
+ // Use the original mask here, do not modify the mask twice
+ Mask = ExtendToType(N->getMask(), ExtMaskVT, DAG, true);
+
+ // The value that should be stored
+ MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
+ Src = ExtendToType(Src, NewVT, DAG);
+ }
+ }
+ // If the mask is "wide" at this point - truncate it to i1 vector
+ MVT BitMaskVT = MVT::getVectorVT(MVT::i1, NumElts);
+ Mask = DAG.getNode(ISD::TRUNCATE, dl, BitMaskVT, Mask);
+
+ // The mask is killed by scatter, add it to the values
+ SDVTList VTs = DAG.getVTList(BitMaskVT, MVT::Other);
+ SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index};
+ SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
+ VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand());
+ DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1));
+ return SDValue(NewScatter.getNode(), 1);
+}
+
+static SDValue LowerMLOAD(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+
+ MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
+ MVT VT = Op.getSimpleValueType();
+ MVT ScalarVT = VT.getScalarType();
+ SDValue Mask = N->getMask();
+ SDLoc dl(Op);
+
+ assert((!N->isExpandingLoad() || Subtarget.hasAVX512()) &&
+ "Expanding masked load is supported on AVX-512 target only!");
+
+ assert((!N->isExpandingLoad() || ScalarVT.getSizeInBits() >= 32) &&
+ "Expanding masked load is supported for 32 and 64-bit types only!");
+
+ // 4x32, 4x64 and 2x64 vectors of non-expanding loads are legal regardless of
+ // VLX. These types for exp-loads are handled here.
+ if (!N->isExpandingLoad() && VT.getVectorNumElements() <= 4)
+ return Op;
+
+ assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
+ "Cannot lower masked load op.");
+
+ assert((ScalarVT.getSizeInBits() >= 32 ||
+ (Subtarget.hasBWI() &&
+ (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
+ "Unsupported masked load op.");
+
+ // This operation is legal for targets with VLX, but without
+ // VLX the vector should be widened to 512 bit
+ unsigned NumEltsInWideVec = 512 / VT.getScalarSizeInBits();
+ MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
+ SDValue Src0 = N->getSrc0();
+ Src0 = ExtendToType(Src0, WideDataVT, DAG);
+
+ // Mask element has to be i1.
+ MVT MaskEltTy = Mask.getSimpleValueType().getScalarType();
+ assert((MaskEltTy == MVT::i1 || VT.getVectorNumElements() <= 4) &&
+ "We handle 4x32, 4x64 and 2x64 vectors only in this case");
+
+ MVT WideMaskVT = MVT::getVectorVT(MaskEltTy, NumEltsInWideVec);
+
+ Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
+ if (MaskEltTy != MVT::i1)
+ Mask = DAG.getNode(ISD::TRUNCATE, dl,
+ MVT::getVectorVT(MVT::i1, NumEltsInWideVec), Mask);
+ SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(),
+ N->getBasePtr(), Mask, Src0,
+ N->getMemoryVT(), N->getMemOperand(),
+ N->getExtensionType(),
+ N->isExpandingLoad());
+
+ SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ NewLoad.getValue(0),
+ DAG.getIntPtrConstant(0, dl));
+ SDValue RetOps[] = {Exract, NewLoad.getValue(1)};
+ return DAG.getMergeValues(RetOps, dl);
+}
+
+static SDValue LowerMSTORE(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode());
+ SDValue DataToStore = N->getValue();
+ MVT VT = DataToStore.getSimpleValueType();
+ MVT ScalarVT = VT.getScalarType();
+ SDValue Mask = N->getMask();
+ SDLoc dl(Op);
+
+ assert((!N->isCompressingStore() || Subtarget.hasAVX512()) &&
+ "Expanding masked load is supported on AVX-512 target only!");
+
+ assert((!N->isCompressingStore() || ScalarVT.getSizeInBits() >= 32) &&
+ "Expanding masked load is supported for 32 and 64-bit types only!");
+
+ // 4x32 and 2x64 vectors of non-compressing stores are legal regardless to VLX.
+ if (!N->isCompressingStore() && VT.getVectorNumElements() <= 4)
+ return Op;
+
+ assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
+ "Cannot lower masked store op.");
+
+ assert((ScalarVT.getSizeInBits() >= 32 ||
+ (Subtarget.hasBWI() &&
+ (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
+ "Unsupported masked store op.");
+
+ // This operation is legal for targets with VLX, but without
+ // VLX the vector should be widened to 512 bit
+ unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
+ MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
+
+ // Mask element has to be i1.
+ MVT MaskEltTy = Mask.getSimpleValueType().getScalarType();
+ assert((MaskEltTy == MVT::i1 || VT.getVectorNumElements() <= 4) &&
+ "We handle 4x32, 4x64 and 2x64 vectors only in this case");
+
+ MVT WideMaskVT = MVT::getVectorVT(MaskEltTy, NumEltsInWideVec);
+
+ DataToStore = ExtendToType(DataToStore, WideDataVT, DAG);
+ Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
+ if (MaskEltTy != MVT::i1)
+ Mask = DAG.getNode(ISD::TRUNCATE, dl,
+ MVT::getVectorVT(MVT::i1, NumEltsInWideVec), Mask);
+ return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(),
+ Mask, N->getMemoryVT(), N->getMemOperand(),
+ N->isTruncatingStore(), N->isCompressingStore());
+}
+
+static SDValue LowerMGATHER(SDValue Op, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget.hasAVX2() &&
+ "MGATHER/MSCATTER are supported on AVX-512/AVX-2 arch only");
+
+ MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode());
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue Index = N->getIndex();
+ SDValue Mask = N->getMask();
+ SDValue Src0 = N->getValue();
+ MVT IndexVT = Index.getSimpleValueType();
+ MVT MaskVT = Mask.getSimpleValueType();
+
+ unsigned NumElts = VT.getVectorNumElements();
+ assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op");
+
+ // If the index is v2i32, we're being called by type legalization.
+ if (IndexVT == MVT::v2i32)
+ return SDValue();
+
+ if (Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
+ !Index.getSimpleValueType().is512BitVector()) {
+ // AVX512F supports only 512-bit vectors. Or data or index should
+ // be 512 bit wide. If now the both index and data are 256-bit, but
+ // the vector contains 8 elements, we just sign-extend the index
+ if (NumElts == 8) {
+ Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+ SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
+ SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
+ DAG.getVTList(VT, MaskVT, MVT::Other), Ops, dl, N->getMemoryVT(),
+ N->getMemOperand());
+ return DAG.getMergeValues({NewGather, NewGather.getValue(2)}, dl);
+ }
+
+ // Minimal number of elements in Gather
+ NumElts = 8;
+ // Index
+ MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
+ Index = ExtendToType(Index, NewIndexVT, DAG);
+ if (IndexVT.getScalarType() == MVT::i32)
+ Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+
+ // Mask
+ MVT MaskBitVT = MVT::getVectorVT(MVT::i1, NumElts);
+ // At this point we have promoted mask operand
+ assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
+ MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
+ Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
+ Mask = DAG.getNode(ISD::TRUNCATE, dl, MaskBitVT, Mask);
+
+ // The pass-through value
+ MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
+ Src0 = ExtendToType(Src0, NewVT, DAG);
+
+ SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
+ SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
+ DAG.getVTList(NewVT, MaskBitVT, MVT::Other), Ops, dl, N->getMemoryVT(),
+ N->getMemOperand());
+ SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ NewGather.getValue(0),
+ DAG.getIntPtrConstant(0, dl));
+ SDValue RetOps[] = {Extract, NewGather.getValue(2)};
+ return DAG.getMergeValues(RetOps, dl);
+ }
+
+ SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
+ SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
+ DAG.getVTList(VT, MaskVT, MVT::Other), Ops, dl, N->getMemoryVT(),
+ N->getMemOperand());
+ return DAG.getMergeValues({NewGather, NewGather.getValue(2)}, dl);
+}
+
+SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op,
+ SelectionDAG &DAG) const {
+ // TODO: Eventually, the lowering of these nodes should be informed by or
+ // deferred to the GC strategy for the function in which they appear. For
+ // now, however, they must be lowered to something. Since they are logically
+ // no-ops in the case of a null GC strategy (or a GC strategy which does not
+ // require special handling for these nodes), lower them as literal NOOPs for
+ // the time being.
+ SmallVector<SDValue, 2> Ops;
+
+ Ops.push_back(Op.getOperand(0));
+ if (Op->getGluedNode())
+ Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
+
+ SDLoc OpDL(Op);
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
+
+ return NOOP;
+}
+
+SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op,
+ SelectionDAG &DAG) const {
+ // TODO: Eventually, the lowering of these nodes should be informed by or
+ // deferred to the GC strategy for the function in which they appear. For
+ // now, however, they must be lowered to something. Since they are logically
+ // no-ops in the case of a null GC strategy (or a GC strategy which does not
+ // require special handling for these nodes), lower them as literal NOOPs for
+ // the time being.
+ SmallVector<SDValue, 2> Ops;
+
+ Ops.push_back(Op.getOperand(0));
+ if (Op->getGluedNode())
+ Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
+
+ SDLoc OpDL(Op);
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
+
+ return NOOP;
+}
+
+/// Provide custom lowering hooks for some operations.
+SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Should not custom lower this!");
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG);
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
+ return LowerCMP_SWAP(Op, Subtarget, DAG);
+ case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG);
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_AND: return lowerAtomicArith(Op, DAG, Subtarget);
+ case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
+ case ISD::BITREVERSE: return LowerBITREVERSE(Op, Subtarget, DAG);
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
+ case ISD::VECTOR_SHUFFLE: return lowerVectorShuffle(Op, Subtarget, DAG);
+ case ISD::VSELECT: return LowerVSELECT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
+ case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, Subtarget,DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::SHL_PARTS:
+ case ISD::SRA_PARTS:
+ case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
+ case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
+ case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
+ case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG);
+ case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG);
+ case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG);
+ case ISD::ZERO_EXTEND_VECTOR_INREG:
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ return LowerEXTEND_VECTOR_INREG(Op, Subtarget, DAG);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
+ case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
+ case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG);
+ case ISD::FABS:
+ case ISD::FNEG: return LowerFABSorFNEG(Op, DAG);
+ case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
+ case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::VAARG: return LowerVAARG(Op, DAG);
+ case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::ADDROFRETURNADDR: return LowerADDROFRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::FRAME_TO_ARGS_OFFSET:
+ return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
+ case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
+ case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
+ case ISD::EH_SJLJ_SETUP_DISPATCH:
+ return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
+ case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
+ case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
+ case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
+ case ISD::CTLZ:
+ case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ(Op, Subtarget, DAG);
+ case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, Subtarget, DAG);
+ case ISD::MULHS:
+ case ISD::MULHU: return LowerMULH(Op, Subtarget, DAG);
+ case ISD::UMUL_LOHI:
+ case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG);
+ case ISD::ROTL:
+ case ISD::ROTR: return LowerRotate(Op, Subtarget, DAG);
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::SHL: return LowerShift(Op, Subtarget, DAG);
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO: return LowerXALUO(Op, DAG);
+ case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
+ case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG);
+ case ISD::ADDCARRY:
+ case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
+ case ISD::ADD:
+ case ISD::SUB: return LowerADD_SUB(Op, DAG);
+ case ISD::SMAX:
+ case ISD::SMIN:
+ case ISD::UMAX:
+ case ISD::UMIN: return LowerMINMAX(Op, DAG);
+ case ISD::ABS: return LowerABS(Op, DAG);
+ case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG);
+ case ISD::MLOAD: return LowerMLOAD(Op, Subtarget, DAG);
+ case ISD::MSTORE: return LowerMSTORE(Op, Subtarget, DAG);
+ case ISD::MGATHER: return LowerMGATHER(Op, Subtarget, DAG);
+ case ISD::MSCATTER: return LowerMSCATTER(Op, Subtarget, DAG);
+ case ISD::GC_TRANSITION_START:
+ return LowerGC_TRANSITION_START(Op, DAG);
+ case ISD::GC_TRANSITION_END: return LowerGC_TRANSITION_END(Op, DAG);
+ case ISD::STORE: return LowerTruncatingStore(Op, Subtarget, DAG);
+ }
+}
+
+/// Places new result values for the node in Results (their number
+/// and types must exactly match those of the original return values of
+/// the node), or leaves Results empty, which indicates that the node is not
+/// to be custom lowered after all.
+void X86TargetLowering::LowerOperationWrapper(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ SDValue Res = LowerOperation(SDValue(N, 0), DAG);
+
+ if (!Res.getNode())
+ return;
+
+ assert((N->getNumValues() <= Res->getNumValues()) &&
+ "Lowering returned the wrong number of results!");
+
+ // Places new result values base on N result number.
+ // In some cases (LowerSINT_TO_FP for example) Res has more result values
+ // than original node, chain should be dropped(last value).
+ for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
+ Results.push_back(Res.getValue(I));
+}
+
+/// Replace a node with an illegal result type with a new node built out of
+/// custom code.
+void X86TargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ SDLoc dl(N);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Do not know how to custom type legalize this operation!");
+ case X86ISD::AVG: {
+ // Legalize types for X86ISD::AVG by expanding vectors.
+ assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
+
+ auto InVT = N->getValueType(0);
+ auto InVTSize = InVT.getSizeInBits();
+ const unsigned RegSize =
+ (InVTSize > 128) ? ((InVTSize > 256) ? 512 : 256) : 128;
+ assert((Subtarget.hasBWI() || RegSize < 512) &&
+ "512-bit vector requires AVX512BW");
+ assert((Subtarget.hasAVX2() || RegSize < 256) &&
+ "256-bit vector requires AVX2");
+
+ auto ElemVT = InVT.getVectorElementType();
+ auto RegVT = EVT::getVectorVT(*DAG.getContext(), ElemVT,
+ RegSize / ElemVT.getSizeInBits());
+ assert(RegSize % InVT.getSizeInBits() == 0);
+ unsigned NumConcat = RegSize / InVT.getSizeInBits();
+
+ SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
+ Ops[0] = N->getOperand(0);
+ SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
+ Ops[0] = N->getOperand(1);
+ SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
+
+ SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1);
+ if (!ExperimentalVectorWideningLegalization)
+ Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res,
+ DAG.getIntPtrConstant(0, dl));
+ Results.push_back(Res);
+ return;
+ }
+ // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
+ case X86ISD::FMINC:
+ case X86ISD::FMIN:
+ case X86ISD::FMAXC:
+ case X86ISD::FMAX: {
+ EVT VT = N->getValueType(0);
+ assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX.");
+ SDValue UNDEF = DAG.getUNDEF(VT);
+ SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
+ N->getOperand(0), UNDEF);
+ SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
+ N->getOperand(1), UNDEF);
+ Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
+ return;
+ }
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::SREM:
+ case ISD::UREM:
+ case ISD::SDIVREM:
+ case ISD::UDIVREM: {
+ SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
+ Results.push_back(V);
+ return;
+ }
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: {
+ bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
+
+ if (N->getValueType(0) == MVT::v2i32) {
+ assert((IsSigned || Subtarget.hasAVX512()) &&
+ "Can only handle signed conversion without AVX512");
+ assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
+ SDValue Src = N->getOperand(0);
+ if (Src.getValueType() == MVT::v2f64) {
+ MVT ResVT = MVT::v4i32;
+ unsigned Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
+ if (!IsSigned && !Subtarget.hasVLX()) {
+ // Widen to 512-bits.
+ ResVT = MVT::v8i32;
+ Opc = ISD::FP_TO_UINT;
+ Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8f64,
+ DAG.getUNDEF(MVT::v8f64),
+ Src, DAG.getIntPtrConstant(0, dl));
+ }
+ SDValue Res = DAG.getNode(Opc, dl, ResVT, Src);
+ ResVT = ExperimentalVectorWideningLegalization ? MVT::v4i32
+ : MVT::v2i32;
+ Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResVT, Res,
+ DAG.getIntPtrConstant(0, dl));
+ Results.push_back(Res);
+ return;
+ }
+ if (Src.getValueType() == MVT::v2f32) {
+ SDValue Idx = DAG.getIntPtrConstant(0, dl);
+ SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
+ DAG.getUNDEF(MVT::v2f32));
+ Res = DAG.getNode(IsSigned ? ISD::FP_TO_SINT
+ : ISD::FP_TO_UINT, dl, MVT::v4i32, Res);
+ if (!ExperimentalVectorWideningLegalization)
+ Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, Idx);
+ Results.push_back(Res);
+ return;
+ }
+
+ // The FP_TO_INTHelper below only handles f32/f64/f80 scalar inputs,
+ // so early out here.
+ return;
+ }
+
+ std::pair<SDValue,SDValue> Vals =
+ FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ if (FIST.getNode()) {
+ EVT VT = N->getValueType(0);
+ // Return a load from the stack slot.
+ if (StackSlot.getNode())
+ Results.push_back(
+ DAG.getLoad(VT, dl, FIST, StackSlot, MachinePointerInfo()));
+ else
+ Results.push_back(FIST);
+ }
+ return;
+ }
+ case ISD::SINT_TO_FP: {
+ assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!");
+ SDValue Src = N->getOperand(0);
+ if (N->getValueType(0) != MVT::v2f32 || Src.getValueType() != MVT::v2i64)
+ return;
+ Results.push_back(DAG.getNode(X86ISD::CVTSI2P, dl, MVT::v4f32, Src));
+ return;
+ }
+ case ISD::UINT_TO_FP: {
+ assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::v2f32)
+ return;
+ SDValue Src = N->getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ if (Subtarget.hasDQI() && Subtarget.hasVLX() && SrcVT == MVT::v2i64) {
+ Results.push_back(DAG.getNode(X86ISD::CVTUI2P, dl, MVT::v4f32, Src));
+ return;
+ }
+ if (SrcVT != MVT::v2i32)
+ return;
+ SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, Src);
+ SDValue VBias =
+ DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::v2f64);
+ SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
+ DAG.getBitcast(MVT::v2i64, VBias));
+ Or = DAG.getBitcast(MVT::v2f64, Or);
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
+ Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
+ return;
+ }
+ case ISD::FP_ROUND: {
+ if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
+ return;
+ SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
+ Results.push_back(V);
+ return;
+ }
+ case ISD::FP_EXTEND: {
+ // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
+ // No other ValueType for FP_EXTEND should reach this point.
+ assert(N->getValueType(0) == MVT::v2f32 &&
+ "Do not know how to legalize this Node");
+ return;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default : llvm_unreachable("Do not know how to custom type "
+ "legalize this intrinsic operation!");
+ case Intrinsic::x86_rdtsc:
+ return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
+ Results);
+ case Intrinsic::x86_rdtscp:
+ return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
+ Results);
+ case Intrinsic::x86_rdpmc:
+ return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
+
+ case Intrinsic::x86_xgetbv:
+ return getExtendedControlRegister(N, dl, DAG, Subtarget, Results);
+ }
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG))
+ Results.push_back(V);
+ return;
+ }
+ case ISD::READCYCLECOUNTER: {
+ return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
+ Results);
+ }
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
+ EVT T = N->getValueType(0);
+ assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
+ bool Regs64bit = T == MVT::i128;
+ MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
+ SDValue cpInL, cpInH;
+ cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
+ DAG.getConstant(0, dl, HalfT));
+ cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
+ DAG.getConstant(1, dl, HalfT));
+ cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
+ Regs64bit ? X86::RAX : X86::EAX,
+ cpInL, SDValue());
+ cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
+ Regs64bit ? X86::RDX : X86::EDX,
+ cpInH, cpInL.getValue(1));
+ SDValue swapInL, swapInH;
+ swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
+ DAG.getConstant(0, dl, HalfT));
+ swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
+ DAG.getConstant(1, dl, HalfT));
+ swapInH =
+ DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX,
+ swapInH, cpInH.getValue(1));
+ // If the current function needs the base pointer, RBX,
+ // we shouldn't use cmpxchg directly.
+ // Indeed the lowering of that instruction will clobber
+ // that register and since RBX will be a reserved register
+ // the register allocator will not make sure its value will
+ // be properly saved and restored around this live-range.
+ const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
+ SDValue Result;
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ unsigned BasePtr = TRI->getBaseRegister();
+ MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
+ if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
+ (BasePtr == X86::RBX || BasePtr == X86::EBX)) {
+ // ISel prefers the LCMPXCHG64 variant.
+ // If that assert breaks, that means it is not the case anymore,
+ // and we need to teach LCMPXCHG8_SAVE_EBX_DAG how to save RBX,
+ // not just EBX. This is a matter of accepting i64 input for that
+ // pseudo, and restoring into the register of the right wide
+ // in expand pseudo. Everything else should just work.
+ assert(((Regs64bit == (BasePtr == X86::RBX)) || BasePtr == X86::EBX) &&
+ "Saving only half of the RBX");
+ unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_SAVE_RBX_DAG
+ : X86ISD::LCMPXCHG8_SAVE_EBX_DAG;
+ SDValue RBXSave = DAG.getCopyFromReg(swapInH.getValue(0), dl,
+ Regs64bit ? X86::RBX : X86::EBX,
+ HalfT, swapInH.getValue(1));
+ SDValue Ops[] = {/*Chain*/ RBXSave.getValue(1), N->getOperand(1), swapInL,
+ RBXSave,
+ /*Glue*/ RBXSave.getValue(2)};
+ Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
+ } else {
+ unsigned Opcode =
+ Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG;
+ swapInL = DAG.getCopyToReg(swapInH.getValue(0), dl,
+ Regs64bit ? X86::RBX : X86::EBX, swapInL,
+ swapInH.getValue(1));
+ SDValue Ops[] = {swapInL.getValue(0), N->getOperand(1),
+ swapInL.getValue(1)};
+ Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
+ }
+ SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
+ Regs64bit ? X86::RAX : X86::EAX,
+ HalfT, Result.getValue(1));
+ SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
+ Regs64bit ? X86::RDX : X86::EDX,
+ HalfT, cpOutL.getValue(2));
+ SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
+
+ SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
+ MVT::i32, cpOutH.getValue(2));
+ SDValue Success = getSETCC(X86::COND_E, EFLAGS, dl, DAG);
+ Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
+
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
+ Results.push_back(Success);
+ Results.push_back(EFLAGS.getValue(1));
+ return;
+ }
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX:
+ case ISD::ATOMIC_LOAD: {
+ // Delegate to generic TypeLegalization. Situations we can really handle
+ // should have already been dealt with by AtomicExpandPass.cpp.
+ break;
+ }
+ case ISD::BITCAST: {
+ assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
+ EVT DstVT = N->getValueType(0);
+ EVT SrcVT = N->getOperand(0).getValueType();
+
+ if (SrcVT != MVT::f64 ||
+ (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
+ return;
+
+ unsigned NumElts = DstVT.getVectorNumElements();
+ EVT SVT = DstVT.getVectorElementType();
+ EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
+ SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ MVT::v2f64, N->getOperand(0));
+ SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded);
+
+ if (ExperimentalVectorWideningLegalization) {
+ // If we are legalizing vectors by widening, we already have the desired
+ // legal vector type, just return it.
+ Results.push_back(ToVecInt);
+ return;
+ }
+
+ SmallVector<SDValue, 8> Elts;
+ for (unsigned i = 0, e = NumElts; i != e; ++i)
+ Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
+ ToVecInt, DAG.getIntPtrConstant(i, dl)));
+
+ Results.push_back(DAG.getBuildVector(DstVT, dl, Elts));
+ return;
+ }
+ case ISD::MGATHER: {
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::v2f32 && (Subtarget.hasVLX() || !Subtarget.hasAVX512())) {
+ auto *Gather = cast<MaskedGatherSDNode>(N);
+ SDValue Index = Gather->getIndex();
+ if (Index.getValueType() != MVT::v2i64)
+ return;
+ SDValue Mask = Gather->getMask();
+ assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
+ SDValue Src0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
+ Gather->getValue(),
+ DAG.getUNDEF(MVT::v2f32));
+ if (!Subtarget.hasVLX()) {
+ // We need to widen the mask, but the instruction will only use 2
+ // of its elements. So we can use undef.
+ Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask,
+ DAG.getUNDEF(MVT::v2i1));
+ Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask);
+ }
+ SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(),
+ Index };
+ SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
+ DAG.getVTList(MVT::v4f32, Mask.getValueType(), MVT::Other), Ops, dl,
+ Gather->getMemoryVT(), Gather->getMemOperand());
+ Results.push_back(Res);
+ Results.push_back(Res.getValue(2));
+ return;
+ }
+ if (VT == MVT::v2i32) {
+ auto *Gather = cast<MaskedGatherSDNode>(N);
+ SDValue Index = Gather->getIndex();
+ SDValue Mask = Gather->getMask();
+ assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
+ SDValue Src0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32,
+ Gather->getValue(),
+ DAG.getUNDEF(MVT::v2i32));
+ // If the index is v2i64 we can use it directly.
+ if (Index.getValueType() == MVT::v2i64 &&
+ (Subtarget.hasVLX() || !Subtarget.hasAVX512())) {
+ if (!Subtarget.hasVLX()) {
+ // We need to widen the mask, but the instruction will only use 2
+ // of its elements. So we can use undef.
+ Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask,
+ DAG.getUNDEF(MVT::v2i1));
+ Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask);
+ }
+ SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(),
+ Index };
+ SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
+ DAG.getVTList(MVT::v4i32, Mask.getValueType(), MVT::Other), Ops, dl,
+ Gather->getMemoryVT(), Gather->getMemOperand());
+ SDValue Chain = Res.getValue(2);
+ if (!ExperimentalVectorWideningLegalization)
+ Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res,
+ DAG.getIntPtrConstant(0, dl));
+ Results.push_back(Res);
+ Results.push_back(Chain);
+ return;
+ }
+ EVT IndexVT = Index.getValueType();
+ EVT NewIndexVT = EVT::getVectorVT(*DAG.getContext(),
+ IndexVT.getScalarType(), 4);
+ // Otherwise we need to custom widen everything to avoid promotion.
+ Index = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewIndexVT, Index,
+ DAG.getUNDEF(IndexVT));
+ Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask,
+ DAG.getConstant(0, dl, MVT::v2i1));
+ SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(),
+ Index };
+ SDValue Res = DAG.getMaskedGather(DAG.getVTList(MVT::v4i32, MVT::Other),
+ Gather->getMemoryVT(), dl, Ops,
+ Gather->getMemOperand());
+ SDValue Chain = Res.getValue(1);
+ if (!ExperimentalVectorWideningLegalization)
+ Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res,
+ DAG.getIntPtrConstant(0, dl));
+ Results.push_back(Res);
+ Results.push_back(Chain);
+ return;
+ }
+ break;
+ }
+ }
+}
+
+const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch ((X86ISD::NodeType)Opcode) {
+ case X86ISD::FIRST_NUMBER: break;
+ case X86ISD::BSF: return "X86ISD::BSF";
+ case X86ISD::BSR: return "X86ISD::BSR";
+ case X86ISD::SHLD: return "X86ISD::SHLD";
+ case X86ISD::SHRD: return "X86ISD::SHRD";
+ case X86ISD::FAND: return "X86ISD::FAND";
+ case X86ISD::FANDN: return "X86ISD::FANDN";
+ case X86ISD::FOR: return "X86ISD::FOR";
+ case X86ISD::FXOR: return "X86ISD::FXOR";
+ case X86ISD::FILD: return "X86ISD::FILD";
+ case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
+ case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
+ case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
+ case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
+ case X86ISD::FLD: return "X86ISD::FLD";
+ case X86ISD::FST: return "X86ISD::FST";
+ case X86ISD::CALL: return "X86ISD::CALL";
+ case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
+ case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG";
+ case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG";
+ case X86ISD::BT: return "X86ISD::BT";
+ case X86ISD::CMP: return "X86ISD::CMP";
+ case X86ISD::COMI: return "X86ISD::COMI";
+ case X86ISD::UCOMI: return "X86ISD::UCOMI";
+ case X86ISD::CMPM: return "X86ISD::CMPM";
+ case X86ISD::CMPMU: return "X86ISD::CMPMU";
+ case X86ISD::CMPM_RND: return "X86ISD::CMPM_RND";
+ case X86ISD::SETCC: return "X86ISD::SETCC";
+ case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
+ case X86ISD::FSETCC: return "X86ISD::FSETCC";
+ case X86ISD::FSETCCM: return "X86ISD::FSETCCM";
+ case X86ISD::FSETCCM_RND: return "X86ISD::FSETCCM_RND";
+ case X86ISD::CMOV: return "X86ISD::CMOV";
+ case X86ISD::BRCOND: return "X86ISD::BRCOND";
+ case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
+ case X86ISD::IRET: return "X86ISD::IRET";
+ case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
+ case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
+ case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
+ case X86ISD::Wrapper: return "X86ISD::Wrapper";
+ case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
+ case X86ISD::MOVDQ2Q: return "X86ISD::MOVDQ2Q";
+ case X86ISD::MMX_MOVD2W: return "X86ISD::MMX_MOVD2W";
+ case X86ISD::MMX_MOVW2D: return "X86ISD::MMX_MOVW2D";
+ case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
+ case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
+ case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
+ case X86ISD::PINSRB: return "X86ISD::PINSRB";
+ case X86ISD::PINSRW: return "X86ISD::PINSRW";
+ case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
+ case X86ISD::ANDNP: return "X86ISD::ANDNP";
+ case X86ISD::BLENDI: return "X86ISD::BLENDI";
+ case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND";
+ case X86ISD::ADDUS: return "X86ISD::ADDUS";
+ case X86ISD::SUBUS: return "X86ISD::SUBUS";
+ case X86ISD::HADD: return "X86ISD::HADD";
+ case X86ISD::HSUB: return "X86ISD::HSUB";
+ case X86ISD::FHADD: return "X86ISD::FHADD";
+ case X86ISD::FHSUB: return "X86ISD::FHSUB";
+ case X86ISD::CONFLICT: return "X86ISD::CONFLICT";
+ case X86ISD::FMAX: return "X86ISD::FMAX";
+ case X86ISD::FMAXS: return "X86ISD::FMAXS";
+ case X86ISD::FMAX_RND: return "X86ISD::FMAX_RND";
+ case X86ISD::FMAXS_RND: return "X86ISD::FMAX_RND";
+ case X86ISD::FMIN: return "X86ISD::FMIN";
+ case X86ISD::FMINS: return "X86ISD::FMINS";
+ case X86ISD::FMIN_RND: return "X86ISD::FMIN_RND";
+ case X86ISD::FMINS_RND: return "X86ISD::FMINS_RND";
+ case X86ISD::FMAXC: return "X86ISD::FMAXC";
+ case X86ISD::FMINC: return "X86ISD::FMINC";
+ case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
+ case X86ISD::FRCP: return "X86ISD::FRCP";
+ case X86ISD::EXTRQI: return "X86ISD::EXTRQI";
+ case X86ISD::INSERTQI: return "X86ISD::INSERTQI";
+ case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
+ case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR";
+ case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
+ case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP";
+ case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP";
+ case X86ISD::EH_SJLJ_SETUP_DISPATCH:
+ return "X86ISD::EH_SJLJ_SETUP_DISPATCH";
+ case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
+ case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
+ case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
+ case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r";
+ case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
+ case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
+ case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG";
+ case X86ISD::LCMPXCHG8_SAVE_EBX_DAG:
+ return "X86ISD::LCMPXCHG8_SAVE_EBX_DAG";
+ case X86ISD::LCMPXCHG16_SAVE_RBX_DAG:
+ return "X86ISD::LCMPXCHG16_SAVE_RBX_DAG";
+ case X86ISD::LADD: return "X86ISD::LADD";
+ case X86ISD::LSUB: return "X86ISD::LSUB";
+ case X86ISD::LOR: return "X86ISD::LOR";
+ case X86ISD::LXOR: return "X86ISD::LXOR";
+ case X86ISD::LAND: return "X86ISD::LAND";
+ case X86ISD::LINC: return "X86ISD::LINC";
+ case X86ISD::LDEC: return "X86ISD::LDEC";
+ case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
+ case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
+ case X86ISD::VZEXT: return "X86ISD::VZEXT";
+ case X86ISD::VSEXT: return "X86ISD::VSEXT";
+ case X86ISD::VTRUNC: return "X86ISD::VTRUNC";
+ case X86ISD::VTRUNCS: return "X86ISD::VTRUNCS";
+ case X86ISD::VTRUNCUS: return "X86ISD::VTRUNCUS";
+ case X86ISD::VTRUNCSTORES: return "X86ISD::VTRUNCSTORES";
+ case X86ISD::VTRUNCSTOREUS: return "X86ISD::VTRUNCSTOREUS";
+ case X86ISD::VMTRUNCSTORES: return "X86ISD::VMTRUNCSTORES";
+ case X86ISD::VMTRUNCSTOREUS: return "X86ISD::VMTRUNCSTOREUS";
+ case X86ISD::VFPEXT: return "X86ISD::VFPEXT";
+ case X86ISD::VFPEXT_RND: return "X86ISD::VFPEXT_RND";
+ case X86ISD::VFPEXTS_RND: return "X86ISD::VFPEXTS_RND";
+ case X86ISD::VFPROUND: return "X86ISD::VFPROUND";
+ case X86ISD::VFPROUND_RND: return "X86ISD::VFPROUND_RND";
+ case X86ISD::VFPROUNDS_RND: return "X86ISD::VFPROUNDS_RND";
+ case X86ISD::CVT2MASK: return "X86ISD::CVT2MASK";
+ case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
+ case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
+ case X86ISD::VSHL: return "X86ISD::VSHL";
+ case X86ISD::VSRL: return "X86ISD::VSRL";
+ case X86ISD::VSRA: return "X86ISD::VSRA";
+ case X86ISD::VSHLI: return "X86ISD::VSHLI";
+ case X86ISD::VSRLI: return "X86ISD::VSRLI";
+ case X86ISD::VSRAI: return "X86ISD::VSRAI";
+ case X86ISD::VSRAV: return "X86ISD::VSRAV";
+ case X86ISD::VROTLI: return "X86ISD::VROTLI";
+ case X86ISD::VROTRI: return "X86ISD::VROTRI";
+ case X86ISD::VPPERM: return "X86ISD::VPPERM";
+ case X86ISD::CMPP: return "X86ISD::CMPP";
+ case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
+ case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
+ case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM";
+ case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM";
+ case X86ISD::PHMINPOS: return "X86ISD::PHMINPOS";
+ case X86ISD::ADD: return "X86ISD::ADD";
+ case X86ISD::SUB: return "X86ISD::SUB";
+ case X86ISD::ADC: return "X86ISD::ADC";
+ case X86ISD::SBB: return "X86ISD::SBB";
+ case X86ISD::SMUL: return "X86ISD::SMUL";
+ case X86ISD::UMUL: return "X86ISD::UMUL";
+ case X86ISD::SMUL8: return "X86ISD::SMUL8";
+ case X86ISD::UMUL8: return "X86ISD::UMUL8";
+ case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
+ case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
+ case X86ISD::INC: return "X86ISD::INC";
+ case X86ISD::DEC: return "X86ISD::DEC";
+ case X86ISD::OR: return "X86ISD::OR";
+ case X86ISD::XOR: return "X86ISD::XOR";
+ case X86ISD::AND: return "X86ISD::AND";
+ case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
+ case X86ISD::MOVMSK: return "X86ISD::MOVMSK";
+ case X86ISD::PTEST: return "X86ISD::PTEST";
+ case X86ISD::TESTP: return "X86ISD::TESTP";
+ case X86ISD::TESTM: return "X86ISD::TESTM";
+ case X86ISD::TESTNM: return "X86ISD::TESTNM";
+ case X86ISD::KORTEST: return "X86ISD::KORTEST";
+ case X86ISD::KTEST: return "X86ISD::KTEST";
+ case X86ISD::KSHIFTL: return "X86ISD::KSHIFTL";
+ case X86ISD::KSHIFTR: return "X86ISD::KSHIFTR";
+ case X86ISD::PACKSS: return "X86ISD::PACKSS";
+ case X86ISD::PACKUS: return "X86ISD::PACKUS";
+ case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
+ case X86ISD::VALIGN: return "X86ISD::VALIGN";
+ case X86ISD::VSHLD: return "X86ISD::VSHLD";
+ case X86ISD::VSHRD: return "X86ISD::VSHRD";
+ case X86ISD::VSHLDV: return "X86ISD::VSHLDV";
+ case X86ISD::VSHRDV: return "X86ISD::VSHRDV";
+ case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
+ case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
+ case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
+ case X86ISD::SHUFP: return "X86ISD::SHUFP";
+ case X86ISD::SHUF128: return "X86ISD::SHUF128";
+ case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
+ case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
+ case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
+ case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
+ case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
+ case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
+ case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
+ case X86ISD::MOVSD: return "X86ISD::MOVSD";
+ case X86ISD::MOVSS: return "X86ISD::MOVSS";
+ case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
+ case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
+ case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
+ case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
+ case X86ISD::SUBV_BROADCAST: return "X86ISD::SUBV_BROADCAST";
+ case X86ISD::VPERMILPV: return "X86ISD::VPERMILPV";
+ case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI";
+ case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
+ case X86ISD::VPERMV: return "X86ISD::VPERMV";
+ case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
+ case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3";
+ case X86ISD::VPERMI: return "X86ISD::VPERMI";
+ case X86ISD::VPTERNLOG: return "X86ISD::VPTERNLOG";
+ case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM";
+ case X86ISD::VFIXUPIMMS: return "X86ISD::VFIXUPIMMS";
+ case X86ISD::VRANGE: return "X86ISD::VRANGE";
+ case X86ISD::VRANGE_RND: return "X86ISD::VRANGE_RND";
+ case X86ISD::VRANGES: return "X86ISD::VRANGES";
+ case X86ISD::VRANGES_RND: return "X86ISD::VRANGES_RND";
+ case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
+ case X86ISD::PMULDQ: return "X86ISD::PMULDQ";
+ case X86ISD::PSADBW: return "X86ISD::PSADBW";
+ case X86ISD::DBPSADBW: return "X86ISD::DBPSADBW";
+ case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
+ case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
+ case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
+ case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
+ case X86ISD::MFENCE: return "X86ISD::MFENCE";
+ case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
+ case X86ISD::SAHF: return "X86ISD::SAHF";
+ case X86ISD::RDRAND: return "X86ISD::RDRAND";
+ case X86ISD::RDSEED: return "X86ISD::RDSEED";
+ case X86ISD::VPMADDUBSW: return "X86ISD::VPMADDUBSW";
+ case X86ISD::VPMADDWD: return "X86ISD::VPMADDWD";
+ case X86ISD::VPSHA: return "X86ISD::VPSHA";
+ case X86ISD::VPSHL: return "X86ISD::VPSHL";
+ case X86ISD::VPCOM: return "X86ISD::VPCOM";
+ case X86ISD::VPCOMU: return "X86ISD::VPCOMU";
+ case X86ISD::VPERMIL2: return "X86ISD::VPERMIL2";
+ case X86ISD::FMSUB: return "X86ISD::FMSUB";
+ case X86ISD::FNMADD: return "X86ISD::FNMADD";
+ case X86ISD::FNMSUB: return "X86ISD::FNMSUB";
+ case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB";
+ case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD";
+ case X86ISD::FMADD_RND: return "X86ISD::FMADD_RND";
+ case X86ISD::FNMADD_RND: return "X86ISD::FNMADD_RND";
+ case X86ISD::FMSUB_RND: return "X86ISD::FMSUB_RND";
+ case X86ISD::FNMSUB_RND: return "X86ISD::FNMSUB_RND";
+ case X86ISD::FMADDSUB_RND: return "X86ISD::FMADDSUB_RND";
+ case X86ISD::FMSUBADD_RND: return "X86ISD::FMSUBADD_RND";
+ case X86ISD::FMADDS1: return "X86ISD::FMADDS1";
+ case X86ISD::FNMADDS1: return "X86ISD::FNMADDS1";
+ case X86ISD::FMSUBS1: return "X86ISD::FMSUBS1";
+ case X86ISD::FNMSUBS1: return "X86ISD::FNMSUBS1";
+ case X86ISD::FMADDS1_RND: return "X86ISD::FMADDS1_RND";
+ case X86ISD::FNMADDS1_RND: return "X86ISD::FNMADDS1_RND";
+ case X86ISD::FMSUBS1_RND: return "X86ISD::FMSUBS1_RND";
+ case X86ISD::FNMSUBS1_RND: return "X86ISD::FNMSUBS1_RND";
+ case X86ISD::FMADDS3: return "X86ISD::FMADDS3";
+ case X86ISD::FNMADDS3: return "X86ISD::FNMADDS3";
+ case X86ISD::FMSUBS3: return "X86ISD::FMSUBS3";
+ case X86ISD::FNMSUBS3: return "X86ISD::FNMSUBS3";
+ case X86ISD::FMADDS3_RND: return "X86ISD::FMADDS3_RND";
+ case X86ISD::FNMADDS3_RND: return "X86ISD::FNMADDS3_RND";
+ case X86ISD::FMSUBS3_RND: return "X86ISD::FMSUBS3_RND";
+ case X86ISD::FNMSUBS3_RND: return "X86ISD::FNMSUBS3_RND";
+ case X86ISD::FMADD4S: return "X86ISD::FMADD4S";
+ case X86ISD::FNMADD4S: return "X86ISD::FNMADD4S";
+ case X86ISD::FMSUB4S: return "X86ISD::FMSUB4S";
+ case X86ISD::FNMSUB4S: return "X86ISD::FNMSUB4S";
+ case X86ISD::VPMADD52H: return "X86ISD::VPMADD52H";
+ case X86ISD::VPMADD52L: return "X86ISD::VPMADD52L";
+ case X86ISD::VRNDSCALE: return "X86ISD::VRNDSCALE";
+ case X86ISD::VRNDSCALE_RND: return "X86ISD::VRNDSCALE_RND";
+ case X86ISD::VRNDSCALES: return "X86ISD::VRNDSCALES";
+ case X86ISD::VRNDSCALES_RND: return "X86ISD::VRNDSCALES_RND";
+ case X86ISD::VREDUCE: return "X86ISD::VREDUCE";
+ case X86ISD::VREDUCE_RND: return "X86ISD::VREDUCE_RND";
+ case X86ISD::VREDUCES: return "X86ISD::VREDUCES";
+ case X86ISD::VREDUCES_RND: return "X86ISD::VREDUCES_RND";
+ case X86ISD::VGETMANT: return "X86ISD::VGETMANT";
+ case X86ISD::VGETMANT_RND: return "X86ISD::VGETMANT_RND";
+ case X86ISD::VGETMANTS: return "X86ISD::VGETMANTS";
+ case X86ISD::VGETMANTS_RND: return "X86ISD::VGETMANTS_RND";
+ case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI";
+ case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI";
+ case X86ISD::XTEST: return "X86ISD::XTEST";
+ case X86ISD::COMPRESS: return "X86ISD::COMPRESS";
+ case X86ISD::EXPAND: return "X86ISD::EXPAND";
+ case X86ISD::SELECT: return "X86ISD::SELECT";
+ case X86ISD::SELECTS: return "X86ISD::SELECTS";
+ case X86ISD::ADDSUB: return "X86ISD::ADDSUB";
+ case X86ISD::RCP14: return "X86ISD::RCP14";
+ case X86ISD::RCP14S: return "X86ISD::RCP14S";
+ case X86ISD::RCP28: return "X86ISD::RCP28";
+ case X86ISD::RCP28S: return "X86ISD::RCP28S";
+ case X86ISD::EXP2: return "X86ISD::EXP2";
+ case X86ISD::RSQRT14: return "X86ISD::RSQRT14";
+ case X86ISD::RSQRT14S: return "X86ISD::RSQRT14S";
+ case X86ISD::RSQRT28: return "X86ISD::RSQRT28";
+ case X86ISD::RSQRT28S: return "X86ISD::RSQRT28S";
+ case X86ISD::FADD_RND: return "X86ISD::FADD_RND";
+ case X86ISD::FADDS_RND: return "X86ISD::FADDS_RND";
+ case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND";
+ case X86ISD::FSUBS_RND: return "X86ISD::FSUBS_RND";
+ case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND";
+ case X86ISD::FMULS_RND: return "X86ISD::FMULS_RND";
+ case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND";
+ case X86ISD::FDIVS_RND: return "X86ISD::FDIVS_RND";
+ case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND";
+ case X86ISD::FSQRTS_RND: return "X86ISD::FSQRTS_RND";
+ case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND";
+ case X86ISD::FGETEXPS_RND: return "X86ISD::FGETEXPS_RND";
+ case X86ISD::SCALEF: return "X86ISD::SCALEF";
+ case X86ISD::SCALEFS: return "X86ISD::SCALEFS";
+ case X86ISD::ADDS: return "X86ISD::ADDS";
+ case X86ISD::SUBS: return "X86ISD::SUBS";
+ case X86ISD::AVG: return "X86ISD::AVG";
+ case X86ISD::MULHRS: return "X86ISD::MULHRS";
+ case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND";
+ case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND";
+ case X86ISD::CVTTP2SI: return "X86ISD::CVTTP2SI";
+ case X86ISD::CVTTP2UI: return "X86ISD::CVTTP2UI";
+ case X86ISD::CVTTP2SI_RND: return "X86ISD::CVTTP2SI_RND";
+ case X86ISD::CVTTP2UI_RND: return "X86ISD::CVTTP2UI_RND";
+ case X86ISD::CVTTS2SI_RND: return "X86ISD::CVTTS2SI_RND";
+ case X86ISD::CVTTS2UI_RND: return "X86ISD::CVTTS2UI_RND";
+ case X86ISD::CVTSI2P: return "X86ISD::CVTSI2P";
+ case X86ISD::CVTUI2P: return "X86ISD::CVTUI2P";
+ case X86ISD::VFPCLASS: return "X86ISD::VFPCLASS";
+ case X86ISD::VFPCLASSS: return "X86ISD::VFPCLASSS";
+ case X86ISD::MULTISHIFT: return "X86ISD::MULTISHIFT";
+ case X86ISD::SCALAR_SINT_TO_FP_RND: return "X86ISD::SCALAR_SINT_TO_FP_RND";
+ case X86ISD::SCALAR_UINT_TO_FP_RND: return "X86ISD::SCALAR_UINT_TO_FP_RND";
+ case X86ISD::CVTPS2PH: return "X86ISD::CVTPS2PH";
+ case X86ISD::CVTPH2PS: return "X86ISD::CVTPH2PS";
+ case X86ISD::CVTPH2PS_RND: return "X86ISD::CVTPH2PS_RND";
+ case X86ISD::CVTP2SI: return "X86ISD::CVTP2SI";
+ case X86ISD::CVTP2UI: return "X86ISD::CVTP2UI";
+ case X86ISD::CVTP2SI_RND: return "X86ISD::CVTP2SI_RND";
+ case X86ISD::CVTP2UI_RND: return "X86ISD::CVTP2UI_RND";
+ case X86ISD::CVTS2SI_RND: return "X86ISD::CVTS2SI_RND";
+ case X86ISD::CVTS2UI_RND: return "X86ISD::CVTS2UI_RND";
+ case X86ISD::LWPINS: return "X86ISD::LWPINS";
+ case X86ISD::MGATHER: return "X86ISD::MGATHER";
+ case X86ISD::MSCATTER: return "X86ISD::MSCATTER";
+ case X86ISD::VPDPBUSD: return "X86ISD::VPDPBUSD";
+ case X86ISD::VPDPBUSDS: return "X86ISD::VPDPBUSDS";
+ case X86ISD::VPDPWSSD: return "X86ISD::VPDPWSSD";
+ case X86ISD::VPDPWSSDS: return "X86ISD::VPDPWSSDS";
+ case X86ISD::VPSHUFBITQMB: return "X86ISD::VPSHUFBITQMB";
+ case X86ISD::GF2P8MULB: return "X86ISD::GF2P8MULB";
+ case X86ISD::GF2P8AFFINEQB: return "X86ISD::GF2P8AFFINEQB";
+ case X86ISD::GF2P8AFFINEINVQB: return "X86ISD::GF2P8AFFINEINVQB";
+ }
+ return nullptr;
+}
+
+/// Return true if the addressing mode represented by AM is legal for this
+/// target, for a load/store of the specified type.
+bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS,
+ Instruction *I) const {
+ // X86 supports extremely general addressing modes.
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+
+ // X86 allows a sign-extended 32-bit immediate field as a displacement.
+ if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
+ return false;
+
+ if (AM.BaseGV) {
+ unsigned GVFlags = Subtarget.classifyGlobalReference(AM.BaseGV);
+
+ // If a reference to this global requires an extra load, we can't fold it.
+ if (isGlobalStubReference(GVFlags))
+ return false;
+
+ // If BaseGV requires a register for the PIC base, we cannot also have a
+ // BaseReg specified.
+ if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
+ return false;
+
+ // If lower 4G is not available, then we must use rip-relative addressing.
+ if ((M != CodeModel::Small || isPositionIndependent()) &&
+ Subtarget.is64Bit() && (AM.BaseOffs || AM.Scale > 1))
+ return false;
+ }
+
+ switch (AM.Scale) {
+ case 0:
+ case 1:
+ case 2:
+ case 4:
+ case 8:
+ // These scales always work.
+ break;
+ case 3:
+ case 5:
+ case 9:
+ // These scales are formed with basereg+scalereg. Only accept if there is
+ // no basereg yet.
+ if (AM.HasBaseReg)
+ return false;
+ break;
+ default: // Other stuff never works.
+ return false;
+ }
+
+ return true;
+}
+
+bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
+ unsigned Bits = Ty->getScalarSizeInBits();
+
+ // 8-bit shifts are always expensive, but versions with a scalar amount aren't
+ // particularly cheaper than those without.
+ if (Bits == 8)
+ return false;
+
+ // AVX2 has vpsllv[dq] instructions (and other shifts) that make variable
+ // shifts just as cheap as scalar ones.
+ if (Subtarget.hasAVX2() && (Bits == 32 || Bits == 64))
+ return false;
+
+ // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
+ // fully general vector.
+ return true;
+}
+
+bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+ unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
+ unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
+ return NumBits1 > NumBits2;
+}
+
+bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+
+ if (!isTypeLegal(EVT::getEVT(Ty1)))
+ return false;
+
+ assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
+
+ // Assuming the caller doesn't have a zeroext or signext return parameter,
+ // truncation all the way down to i1 is valid.
+ return true;
+}
+
+bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ return isInt<32>(Imm);
+}
+
+bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
+ // Can also use sub to handle negated immediates.
+ return isInt<32>(Imm);
+}
+
+bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isInteger() || !VT2.isInteger())
+ return false;
+ unsigned NumBits1 = VT1.getSizeInBits();
+ unsigned NumBits2 = VT2.getSizeInBits();
+ return NumBits1 > NumBits2;
+}
+
+bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
+ // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
+ return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget.is64Bit();
+}
+
+bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
+ // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
+ return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget.is64Bit();
+}
+
+bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ EVT VT1 = Val.getValueType();
+ if (isZExtFree(VT1, VT2))
+ return true;
+
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ if (!VT1.isSimple() || !VT1.isInteger() ||
+ !VT2.isSimple() || !VT2.isInteger())
+ return false;
+
+ switch (VT1.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ // X86 has 8, 16, and 32-bit zero-extending loads.
+ return true;
+ }
+
+ return false;
+}
+
+bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; }
+
+bool
+X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ if (!Subtarget.hasAnyFMA())
+ return false;
+
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
+ // i16 instructions are longer (0x66 prefix) and potentially slower.
+ return !(VT1 == MVT::i32 && VT2 == MVT::i16);
+}
+
+/// Targets can use this to indicate that they only support *some*
+/// VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool X86TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
+ if (!VT.isSimple())
+ return false;
+
+ // Not for i1 vectors
+ if (VT.getSimpleVT().getScalarType() == MVT::i1)
+ return false;
+
+ // Very little shuffling can be done for 64-bit vectors right now.
+ if (VT.getSimpleVT().getSizeInBits() == 64)
+ return false;
+
+ // We only care that the types being shuffled are legal. The lowering can
+ // handle any possible shuffle mask that results.
+ return isTypeLegal(VT.getSimpleVT());
+}
+
+bool
+X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
+ EVT VT) const {
+ // Just delegate to the generic legality, clear masks aren't special.
+ return isShuffleMaskLegal(Mask, VT);
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+/// Utility function to emit xbegin specifying the start of an RTM region.
+static MachineBasicBlock *emitXBegin(MachineInstr &MI, MachineBasicBlock *MBB,
+ const TargetInstrInfo *TII) {
+ DebugLoc DL = MI.getDebugLoc();
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator I = ++MBB->getIterator();
+
+ // For the v = xbegin(), we generate
+ //
+ // thisMBB:
+ // xbegin sinkMBB
+ //
+ // mainMBB:
+ // s0 = -1
+ //
+ // fallBB:
+ // eax = # XABORT_DEF
+ // s1 = eax
+ //
+ // sinkMBB:
+ // v = phi(s0/mainBB, s1/fallBB)
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineFunction *MF = MBB->getParent();
+ MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(I, mainMBB);
+ MF->insert(I, fallMBB);
+ MF->insert(I, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ unsigned DstReg = MI.getOperand(0).getReg();
+ const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
+ unsigned mainDstReg = MRI.createVirtualRegister(RC);
+ unsigned fallDstReg = MRI.createVirtualRegister(RC);
+
+ // thisMBB:
+ // xbegin fallMBB
+ // # fallthrough to mainMBB
+ // # abortion to fallMBB
+ BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(fallMBB);
+ thisMBB->addSuccessor(mainMBB);
+ thisMBB->addSuccessor(fallMBB);
+
+ // mainMBB:
+ // mainDstReg := -1
+ BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), mainDstReg).addImm(-1);
+ BuildMI(mainMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
+ mainMBB->addSuccessor(sinkMBB);
+
+ // fallMBB:
+ // ; pseudo instruction to model hardware's definition from XABORT
+ // EAX := XABORT_DEF
+ // fallDstReg := EAX
+ BuildMI(fallMBB, DL, TII->get(X86::XABORT_DEF));
+ BuildMI(fallMBB, DL, TII->get(TargetOpcode::COPY), fallDstReg)
+ .addReg(X86::EAX);
+ fallMBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // DstReg := phi(mainDstReg/mainBB, fallDstReg/fallBB)
+ BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), DstReg)
+ .addReg(mainDstReg).addMBB(mainMBB)
+ .addReg(fallDstReg).addMBB(fallMBB);
+
+ MI.eraseFromParent();
+ return sinkMBB;
+}
+
+// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
+// or XMM0_V32I8 in AVX all of this code can be replaced with that
+// in the .td file.
+static MachineBasicBlock *emitPCMPSTRM(MachineInstr &MI, MachineBasicBlock *BB,
+ const TargetInstrInfo *TII) {
+ unsigned Opc;
+ switch (MI.getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break;
+ case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
+ case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break;
+ case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
+ case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break;
+ case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
+ case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break;
+ case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
+ }
+
+ DebugLoc dl = MI.getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
+
+ unsigned NumArgs = MI.getNumOperands();
+ for (unsigned i = 1; i < NumArgs; ++i) {
+ MachineOperand &Op = MI.getOperand(i);
+ if (!(Op.isReg() && Op.isImplicit()))
+ MIB.add(Op);
+ }
+ if (MI.hasOneMemOperand())
+ MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg())
+ .addReg(X86::XMM0);
+
+ MI.eraseFromParent();
+ return BB;
+}
+
+// FIXME: Custom handling because TableGen doesn't support multiple implicit
+// defs in an instruction pattern
+static MachineBasicBlock *emitPCMPSTRI(MachineInstr &MI, MachineBasicBlock *BB,
+ const TargetInstrInfo *TII) {
+ unsigned Opc;
+ switch (MI.getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break;
+ case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
+ case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break;
+ case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
+ case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break;
+ case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
+ case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break;
+ case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
+ }
+
+ DebugLoc dl = MI.getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
+
+ unsigned NumArgs = MI.getNumOperands(); // remove the results
+ for (unsigned i = 1; i < NumArgs; ++i) {
+ MachineOperand &Op = MI.getOperand(i);
+ if (!(Op.isReg() && Op.isImplicit()))
+ MIB.add(Op);
+ }
+ if (MI.hasOneMemOperand())
+ MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
+
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg())
+ .addReg(X86::ECX);
+
+ MI.eraseFromParent();
+ return BB;
+}
+
+static MachineBasicBlock *emitWRPKRU(MachineInstr &MI, MachineBasicBlock *BB,
+ const X86Subtarget &Subtarget) {
+ DebugLoc dl = MI.getDebugLoc();
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+
+ // insert input VAL into EAX
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
+ .addReg(MI.getOperand(0).getReg());
+ // insert zero to ECX
+ BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX);
+
+ // insert zero to EDX
+ BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::EDX);
+
+ // insert WRPKRU instruction
+ BuildMI(*BB, MI, dl, TII->get(X86::WRPKRUr));
+
+ MI.eraseFromParent(); // The pseudo is gone now.
+ return BB;
+}
+
+static MachineBasicBlock *emitRDPKRU(MachineInstr &MI, MachineBasicBlock *BB,
+ const X86Subtarget &Subtarget) {
+ DebugLoc dl = MI.getDebugLoc();
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+
+ // insert zero to ECX
+ BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX);
+
+ // insert RDPKRU instruction
+ BuildMI(*BB, MI, dl, TII->get(X86::RDPKRUr));
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg())
+ .addReg(X86::EAX);
+
+ MI.eraseFromParent(); // The pseudo is gone now.
+ return BB;
+}
+
+static MachineBasicBlock *emitMonitor(MachineInstr &MI, MachineBasicBlock *BB,
+ const X86Subtarget &Subtarget,
+ unsigned Opc) {
+ DebugLoc dl = MI.getDebugLoc();
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ // Address into RAX/EAX, other two args into ECX, EDX.
+ unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r;
+ unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
+ for (int i = 0; i < X86::AddrNumOperands; ++i)
+ MIB.add(MI.getOperand(i));
+
+ unsigned ValOps = X86::AddrNumOperands;
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
+ .addReg(MI.getOperand(ValOps).getReg());
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
+ .addReg(MI.getOperand(ValOps + 1).getReg());
+
+ // The instruction doesn't actually take any operands though.
+ BuildMI(*BB, MI, dl, TII->get(Opc));
+
+ MI.eraseFromParent(); // The pseudo is gone now.
+ return BB;
+}
+
+static MachineBasicBlock *emitClzero(MachineInstr *MI, MachineBasicBlock *BB,
+ const X86Subtarget &Subtarget) {
+ DebugLoc dl = MI->getDebugLoc();
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ // Address into RAX/EAX
+ unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r;
+ unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
+ for (int i = 0; i < X86::AddrNumOperands; ++i)
+ MIB.add(MI->getOperand(i));
+
+ // The instruction doesn't actually take any operands though.
+ BuildMI(*BB, MI, dl, TII->get(X86::CLZEROr));
+
+ MI->eraseFromParent(); // The pseudo is gone now.
+ return BB;
+}
+
+
+
+MachineBasicBlock *
+X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr &MI,
+ MachineBasicBlock *MBB) const {
+ // Emit va_arg instruction on X86-64.
+
+ // Operands to this pseudo-instruction:
+ // 0 ) Output : destination address (reg)
+ // 1-5) Input : va_list address (addr, i64mem)
+ // 6 ) ArgSize : Size (in bytes) of vararg type
+ // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
+ // 8 ) Align : Alignment of type
+ // 9 ) EFLAGS (implicit-def)
+
+ assert(MI.getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
+ static_assert(X86::AddrNumOperands == 5,
+ "VAARG_64 assumes 5 address operands");
+
+ unsigned DestReg = MI.getOperand(0).getReg();
+ MachineOperand &Base = MI.getOperand(1);
+ MachineOperand &Scale = MI.getOperand(2);
+ MachineOperand &Index = MI.getOperand(3);
+ MachineOperand &Disp = MI.getOperand(4);
+ MachineOperand &Segment = MI.getOperand(5);
+ unsigned ArgSize = MI.getOperand(6).getImm();
+ unsigned ArgMode = MI.getOperand(7).getImm();
+ unsigned Align = MI.getOperand(8).getImm();
+
+ // Memory Reference
+ assert(MI.hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
+ MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
+
+ // Machine Information
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
+ const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
+ DebugLoc DL = MI.getDebugLoc();
+
+ // struct va_list {
+ // i32 gp_offset
+ // i32 fp_offset
+ // i64 overflow_area (address)
+ // i64 reg_save_area (address)
+ // }
+ // sizeof(va_list) = 24
+ // alignment(va_list) = 8
+
+ unsigned TotalNumIntRegs = 6;
+ unsigned TotalNumXMMRegs = 8;
+ bool UseGPOffset = (ArgMode == 1);
+ bool UseFPOffset = (ArgMode == 2);
+ unsigned MaxOffset = TotalNumIntRegs * 8 +
+ (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
+
+ /* Align ArgSize to a multiple of 8 */
+ unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
+ bool NeedsAlign = (Align > 8);
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *overflowMBB;
+ MachineBasicBlock *offsetMBB;
+ MachineBasicBlock *endMBB;
+
+ unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
+ unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
+ unsigned OffsetReg = 0;
+
+ if (!UseGPOffset && !UseFPOffset) {
+ // If we only pull from the overflow region, we don't create a branch.
+ // We don't need to alter control flow.
+ OffsetDestReg = 0; // unused
+ OverflowDestReg = DestReg;
+
+ offsetMBB = nullptr;
+ overflowMBB = thisMBB;
+ endMBB = thisMBB;
+ } else {
+ // First emit code to check if gp_offset (or fp_offset) is below the bound.
+ // If so, pull the argument from reg_save_area. (branch to offsetMBB)
+ // If not, pull from overflow_area. (branch to overflowMBB)
+ //
+ // thisMBB
+ // | .
+ // | .
+ // offsetMBB overflowMBB
+ // | .
+ // | .
+ // endMBB
+
+ // Registers for the PHI in endMBB
+ OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
+ OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
+
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction *MF = MBB->getParent();
+ overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+
+ MachineFunction::iterator MBBIter = ++MBB->getIterator();
+
+ // Insert the new basic blocks
+ MF->insert(MBBIter, offsetMBB);
+ MF->insert(MBBIter, overflowMBB);
+ MF->insert(MBBIter, endMBB);
+
+ // Transfer the remainder of MBB and its successor edges to endMBB.
+ endMBB->splice(endMBB->begin(), thisMBB,
+ std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
+ endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
+
+ // Make offsetMBB and overflowMBB successors of thisMBB
+ thisMBB->addSuccessor(offsetMBB);
+ thisMBB->addSuccessor(overflowMBB);
+
+ // endMBB is a successor of both offsetMBB and overflowMBB
+ offsetMBB->addSuccessor(endMBB);
+ overflowMBB->addSuccessor(endMBB);
+
+ // Load the offset value into a register
+ OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
+ BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
+ .add(Base)
+ .add(Scale)
+ .add(Index)
+ .addDisp(Disp, UseFPOffset ? 4 : 0)
+ .add(Segment)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // Check if there is enough room left to pull this argument.
+ BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
+ .addReg(OffsetReg)
+ .addImm(MaxOffset + 8 - ArgSizeA8);
+
+ // Branch to "overflowMBB" if offset >= max
+ // Fall through to "offsetMBB" otherwise
+ BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
+ .addMBB(overflowMBB);
+ }
+
+ // In offsetMBB, emit code to use the reg_save_area.
+ if (offsetMBB) {
+ assert(OffsetReg != 0);
+
+ // Read the reg_save_area address.
+ unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
+ .add(Base)
+ .add(Scale)
+ .add(Index)
+ .addDisp(Disp, 16)
+ .add(Segment)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // Zero-extend the offset
+ unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
+ .addImm(0)
+ .addReg(OffsetReg)
+ .addImm(X86::sub_32bit);
+
+ // Add the offset to the reg_save_area to get the final address.
+ BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
+ .addReg(OffsetReg64)
+ .addReg(RegSaveReg);
+
+ // Compute the offset for the next argument
+ unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
+ BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
+ .addReg(OffsetReg)
+ .addImm(UseFPOffset ? 16 : 8);
+
+ // Store it back into the va_list.
+ BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
+ .add(Base)
+ .add(Scale)
+ .add(Index)
+ .addDisp(Disp, UseFPOffset ? 4 : 0)
+ .add(Segment)
+ .addReg(NextOffsetReg)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // Jump to endMBB
+ BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
+ .addMBB(endMBB);
+ }
+
+ //
+ // Emit code to use overflow area
+ //
+
+ // Load the overflow_area address into a register.
+ unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
+ .add(Base)
+ .add(Scale)
+ .add(Index)
+ .addDisp(Disp, 8)
+ .add(Segment)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // If we need to align it, do so. Otherwise, just copy the address
+ // to OverflowDestReg.
+ if (NeedsAlign) {
+ // Align the overflow address
+ assert(isPowerOf2_32(Align) && "Alignment must be a power of 2");
+ unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
+
+ // aligned_addr = (addr + (align-1)) & ~(align-1)
+ BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
+ .addReg(OverflowAddrReg)
+ .addImm(Align-1);
+
+ BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
+ .addReg(TmpReg)
+ .addImm(~(uint64_t)(Align-1));
+ } else {
+ BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
+ .addReg(OverflowAddrReg);
+ }
+
+ // Compute the next overflow address after this argument.
+ // (the overflow address should be kept 8-byte aligned)
+ unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
+ .addReg(OverflowDestReg)
+ .addImm(ArgSizeA8);
+
+ // Store the new overflow address.
+ BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
+ .add(Base)
+ .add(Scale)
+ .add(Index)
+ .addDisp(Disp, 8)
+ .add(Segment)
+ .addReg(NextAddrReg)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // If we branched, emit the PHI to the front of endMBB.
+ if (offsetMBB) {
+ BuildMI(*endMBB, endMBB->begin(), DL,
+ TII->get(X86::PHI), DestReg)
+ .addReg(OffsetDestReg).addMBB(offsetMBB)
+ .addReg(OverflowDestReg).addMBB(overflowMBB);
+ }
+
+ // Erase the pseudo instruction
+ MI.eraseFromParent();
+
+ return endMBB;
+}
+
+MachineBasicBlock *X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
+ MachineInstr &MI, MachineBasicBlock *MBB) const {
+ // Emit code to save XMM registers to the stack. The ABI says that the
+ // number of registers to save is given in %al, so it's theoretically
+ // possible to do an indirect jump trick to avoid saving all of them,
+ // however this code takes a simpler approach and just executes all
+ // of the stores if %al is non-zero. It's less code, and it's probably
+ // easier on the hardware branch predictor, and stores aren't all that
+ // expensive anyway.
+
+ // Create the new basic blocks. One block contains all the XMM stores,
+ // and one block is the final destination regardless of whether any
+ // stores were performed.
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction *F = MBB->getParent();
+ MachineFunction::iterator MBBIter = ++MBB->getIterator();
+ MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(MBBIter, XMMSaveMBB);
+ F->insert(MBBIter, EndMBB);
+
+ // Transfer the remainder of MBB and its successor edges to EndMBB.
+ EndMBB->splice(EndMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // The original block will now fall through to the XMM save block.
+ MBB->addSuccessor(XMMSaveMBB);
+ // The XMMSaveMBB will fall through to the end block.
+ XMMSaveMBB->addSuccessor(EndMBB);
+
+ // Now add the instructions.
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ unsigned CountReg = MI.getOperand(0).getReg();
+ int64_t RegSaveFrameIndex = MI.getOperand(1).getImm();
+ int64_t VarArgsFPOffset = MI.getOperand(2).getImm();
+
+ if (!Subtarget.isCallingConvWin64(F->getFunction().getCallingConv())) {
+ // If %al is 0, branch around the XMM save block.
+ BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
+ BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
+ MBB->addSuccessor(EndMBB);
+ }
+
+ // Make sure the last operand is EFLAGS, which gets clobbered by the branch
+ // that was just emitted, but clearly shouldn't be "saved".
+ assert((MI.getNumOperands() <= 3 ||
+ !MI.getOperand(MI.getNumOperands() - 1).isReg() ||
+ MI.getOperand(MI.getNumOperands() - 1).getReg() == X86::EFLAGS) &&
+ "Expected last argument to be EFLAGS");
+ unsigned MOVOpc = Subtarget.hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
+ // In the XMM save block, save all the XMM argument registers.
+ for (int i = 3, e = MI.getNumOperands() - 1; i != e; ++i) {
+ int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
+ MachineMemOperand *MMO = F->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset),
+ MachineMemOperand::MOStore,
+ /*Size=*/16, /*Align=*/16);
+ BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
+ .addFrameIndex(RegSaveFrameIndex)
+ .addImm(/*Scale=*/1)
+ .addReg(/*IndexReg=*/0)
+ .addImm(/*Disp=*/Offset)
+ .addReg(/*Segment=*/0)
+ .addReg(MI.getOperand(i).getReg())
+ .addMemOperand(MMO);
+ }
+
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+
+ return EndMBB;
+}
+
+// The EFLAGS operand of SelectItr might be missing a kill marker
+// because there were multiple uses of EFLAGS, and ISel didn't know
+// which to mark. Figure out whether SelectItr should have had a
+// kill marker, and set it if it should. Returns the correct kill
+// marker value.
+static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
+ MachineBasicBlock* BB,
+ const TargetRegisterInfo* TRI) {
+ // Scan forward through BB for a use/def of EFLAGS.
+ MachineBasicBlock::iterator miI(std::next(SelectItr));
+ for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
+ const MachineInstr& mi = *miI;
+ if (mi.readsRegister(X86::EFLAGS))
+ return false;
+ if (mi.definesRegister(X86::EFLAGS))
+ break; // Should have kill-flag - update below.
+ }
+
+ // If we hit the end of the block, check whether EFLAGS is live into a
+ // successor.
+ if (miI == BB->end()) {
+ for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
+ sEnd = BB->succ_end();
+ sItr != sEnd; ++sItr) {
+ MachineBasicBlock* succ = *sItr;
+ if (succ->isLiveIn(X86::EFLAGS))
+ return false;
+ }
+ }
+
+ // We found a def, or hit the end of the basic block and EFLAGS wasn't live
+ // out. SelectMI should have a kill flag on EFLAGS.
+ SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
+ return true;
+}
+
+// Return true if it is OK for this CMOV pseudo-opcode to be cascaded
+// together with other CMOV pseudo-opcodes into a single basic-block with
+// conditional jump around it.
+static bool isCMOVPseudo(MachineInstr &MI) {
+ switch (MI.getOpcode()) {
+ case X86::CMOV_FR32:
+ case X86::CMOV_FR64:
+ case X86::CMOV_GR8:
+ case X86::CMOV_GR16:
+ case X86::CMOV_GR32:
+ case X86::CMOV_RFP32:
+ case X86::CMOV_RFP64:
+ case X86::CMOV_RFP80:
+ case X86::CMOV_V2F64:
+ case X86::CMOV_V2I64:
+ case X86::CMOV_V4F32:
+ case X86::CMOV_V4F64:
+ case X86::CMOV_V4I64:
+ case X86::CMOV_V16F32:
+ case X86::CMOV_V8F32:
+ case X86::CMOV_V8F64:
+ case X86::CMOV_V8I64:
+ case X86::CMOV_V8I1:
+ case X86::CMOV_V16I1:
+ case X86::CMOV_V32I1:
+ case X86::CMOV_V64I1:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+// Helper function, which inserts PHI functions into SinkMBB:
+// %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
+// where %FalseValue(i) and %TrueValue(i) are taken from the consequent CMOVs
+// in [MIItBegin, MIItEnd) range. It returns the last MachineInstrBuilder for
+// the last PHI function inserted.
+static MachineInstrBuilder createPHIsForCMOVsInSinkBB(
+ MachineBasicBlock::iterator MIItBegin, MachineBasicBlock::iterator MIItEnd,
+ MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB,
+ MachineBasicBlock *SinkMBB) {
+ MachineFunction *MF = TrueMBB->getParent();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+ DebugLoc DL = MIItBegin->getDebugLoc();
+
+ X86::CondCode CC = X86::CondCode(MIItBegin->getOperand(3).getImm());
+ X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
+
+ MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
+
+ // As we are creating the PHIs, we have to be careful if there is more than
+ // one. Later CMOVs may reference the results of earlier CMOVs, but later
+ // PHIs have to reference the individual true/false inputs from earlier PHIs.
+ // That also means that PHI construction must work forward from earlier to
+ // later, and that the code must maintain a mapping from earlier PHI's
+ // destination registers, and the registers that went into the PHI.
+ DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
+ MachineInstrBuilder MIB;
+
+ for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
+ unsigned DestReg = MIIt->getOperand(0).getReg();
+ unsigned Op1Reg = MIIt->getOperand(1).getReg();
+ unsigned Op2Reg = MIIt->getOperand(2).getReg();
+
+ // If this CMOV we are generating is the opposite condition from
+ // the jump we generated, then we have to swap the operands for the
+ // PHI that is going to be generated.
+ if (MIIt->getOperand(3).getImm() == OppCC)
+ std::swap(Op1Reg, Op2Reg);
+
+ if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
+ Op1Reg = RegRewriteTable[Op1Reg].first;
+
+ if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
+ Op2Reg = RegRewriteTable[Op2Reg].second;
+
+ MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
+ .addReg(Op1Reg)
+ .addMBB(FalseMBB)
+ .addReg(Op2Reg)
+ .addMBB(TrueMBB);
+
+ // Add this PHI to the rewrite table.
+ RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
+ }
+
+ return MIB;
+}
+
+// Lower cascaded selects in form of (SecondCmov (FirstCMOV F, T, cc1), T, cc2).
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredCascadedSelect(MachineInstr &FirstCMOV,
+ MachineInstr &SecondCascadedCMOV,
+ MachineBasicBlock *ThisMBB) const {
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = FirstCMOV.getDebugLoc();
+
+ // We lower cascaded CMOVs such as
+ //
+ // (SecondCascadedCMOV (FirstCMOV F, T, cc1), T, cc2)
+ //
+ // to two successive branches.
+ //
+ // Without this, we would add a PHI between the two jumps, which ends up
+ // creating a few copies all around. For instance, for
+ //
+ // (sitofp (zext (fcmp une)))
+ //
+ // we would generate:
+ //
+ // ucomiss %xmm1, %xmm0
+ // movss <1.0f>, %xmm0
+ // movaps %xmm0, %xmm1
+ // jne .LBB5_2
+ // xorps %xmm1, %xmm1
+ // .LBB5_2:
+ // jp .LBB5_4
+ // movaps %xmm1, %xmm0
+ // .LBB5_4:
+ // retq
+ //
+ // because this custom-inserter would have generated:
+ //
+ // A
+ // | \
+ // | B
+ // | /
+ // C
+ // | \
+ // | D
+ // | /
+ // E
+ //
+ // A: X = ...; Y = ...
+ // B: empty
+ // C: Z = PHI [X, A], [Y, B]
+ // D: empty
+ // E: PHI [X, C], [Z, D]
+ //
+ // If we lower both CMOVs in a single step, we can instead generate:
+ //
+ // A
+ // | \
+ // | C
+ // | /|
+ // |/ |
+ // | |
+ // | D
+ // | /
+ // E
+ //
+ // A: X = ...; Y = ...
+ // D: empty
+ // E: PHI [X, A], [X, C], [Y, D]
+ //
+ // Which, in our sitofp/fcmp example, gives us something like:
+ //
+ // ucomiss %xmm1, %xmm0
+ // movss <1.0f>, %xmm0
+ // jne .LBB5_4
+ // jp .LBB5_4
+ // xorps %xmm0, %xmm0
+ // .LBB5_4:
+ // retq
+ //
+
+ // We lower cascaded CMOV into two successive branches to the same block.
+ // EFLAGS is used by both, so mark it as live in the second.
+ const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
+ MachineFunction *F = ThisMBB->getParent();
+ MachineBasicBlock *FirstInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *SecondInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+
+ MachineFunction::iterator It = ++ThisMBB->getIterator();
+ F->insert(It, FirstInsertedMBB);
+ F->insert(It, SecondInsertedMBB);
+ F->insert(It, SinkMBB);
+
+ // For a cascaded CMOV, we lower it to two successive branches to
+ // the same block (SinkMBB). EFLAGS is used by both, so mark it as live in
+ // the FirstInsertedMBB.
+ FirstInsertedMBB->addLiveIn(X86::EFLAGS);
+
+ // If the EFLAGS register isn't dead in the terminator, then claim that it's
+ // live into the sink and copy blocks.
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ if (!SecondCascadedCMOV.killsRegister(X86::EFLAGS) &&
+ !checkAndUpdateEFLAGSKill(SecondCascadedCMOV, ThisMBB, TRI)) {
+ SecondInsertedMBB->addLiveIn(X86::EFLAGS);
+ SinkMBB->addLiveIn(X86::EFLAGS);
+ }
+
+ // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
+ SinkMBB->splice(SinkMBB->begin(), ThisMBB,
+ std::next(MachineBasicBlock::iterator(FirstCMOV)),
+ ThisMBB->end());
+ SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
+
+ // Fallthrough block for ThisMBB.
+ ThisMBB->addSuccessor(FirstInsertedMBB);
+ // The true block target of the first branch is always SinkMBB.
+ ThisMBB->addSuccessor(SinkMBB);
+ // Fallthrough block for FirstInsertedMBB.
+ FirstInsertedMBB->addSuccessor(SecondInsertedMBB);
+ // The true block for the branch of FirstInsertedMBB.
+ FirstInsertedMBB->addSuccessor(SinkMBB);
+ // This is fallthrough.
+ SecondInsertedMBB->addSuccessor(SinkMBB);
+
+ // Create the conditional branch instructions.
+ X86::CondCode FirstCC = X86::CondCode(FirstCMOV.getOperand(3).getImm());
+ unsigned Opc = X86::GetCondBranchFromCond(FirstCC);
+ BuildMI(ThisMBB, DL, TII->get(Opc)).addMBB(SinkMBB);
+
+ X86::CondCode SecondCC =
+ X86::CondCode(SecondCascadedCMOV.getOperand(3).getImm());
+ unsigned Opc2 = X86::GetCondBranchFromCond(SecondCC);
+ BuildMI(FirstInsertedMBB, DL, TII->get(Opc2)).addMBB(SinkMBB);
+
+ // SinkMBB:
+ // %Result = phi [ %FalseValue, SecondInsertedMBB ], [ %TrueValue, ThisMBB ]
+ unsigned DestReg = FirstCMOV.getOperand(0).getReg();
+ unsigned Op1Reg = FirstCMOV.getOperand(1).getReg();
+ unsigned Op2Reg = FirstCMOV.getOperand(2).getReg();
+ MachineInstrBuilder MIB =
+ BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(X86::PHI), DestReg)
+ .addReg(Op1Reg)
+ .addMBB(SecondInsertedMBB)
+ .addReg(Op2Reg)
+ .addMBB(ThisMBB);
+
+ // The second SecondInsertedMBB provides the same incoming value as the
+ // FirstInsertedMBB (the True operand of the SELECT_CC/CMOV nodes).
+ MIB.addReg(FirstCMOV.getOperand(2).getReg()).addMBB(FirstInsertedMBB);
+ // Copy the PHI result to the register defined by the second CMOV.
+ BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), DL,
+ TII->get(TargetOpcode::COPY),
+ SecondCascadedCMOV.getOperand(0).getReg())
+ .addReg(FirstCMOV.getOperand(0).getReg());
+
+ // Now remove the CMOVs.
+ FirstCMOV.eraseFromParent();
+ SecondCascadedCMOV.eraseFromParent();
+
+ return SinkMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredSelect(MachineInstr &MI,
+ MachineBasicBlock *ThisMBB) const {
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between and a branch opcode to use.
+
+ // ThisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> FalseMBB
+
+ // This code lowers all pseudo-CMOV instructions. Generally it lowers these
+ // as described above, by inserting a BB, and then making a PHI at the join
+ // point to select the true and false operands of the CMOV in the PHI.
+ //
+ // The code also handles two different cases of multiple CMOV opcodes
+ // in a row.
+ //
+ // Case 1:
+ // In this case, there are multiple CMOVs in a row, all which are based on
+ // the same condition setting (or the exact opposite condition setting).
+ // In this case we can lower all the CMOVs using a single inserted BB, and
+ // then make a number of PHIs at the join point to model the CMOVs. The only
+ // trickiness here, is that in a case like:
+ //
+ // t2 = CMOV cond1 t1, f1
+ // t3 = CMOV cond1 t2, f2
+ //
+ // when rewriting this into PHIs, we have to perform some renaming on the
+ // temps since you cannot have a PHI operand refer to a PHI result earlier
+ // in the same block. The "simple" but wrong lowering would be:
+ //
+ // t2 = PHI t1(BB1), f1(BB2)
+ // t3 = PHI t2(BB1), f2(BB2)
+ //
+ // but clearly t2 is not defined in BB1, so that is incorrect. The proper
+ // renaming is to note that on the path through BB1, t2 is really just a
+ // copy of t1, and do that renaming, properly generating:
+ //
+ // t2 = PHI t1(BB1), f1(BB2)
+ // t3 = PHI t1(BB1), f2(BB2)
+ //
+ // Case 2:
+ // CMOV ((CMOV F, T, cc1), T, cc2) is checked here and handled by a separate
+ // function - EmitLoweredCascadedSelect.
+
+ X86::CondCode CC = X86::CondCode(MI.getOperand(3).getImm());
+ X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
+ MachineInstr *LastCMOV = &MI;
+ MachineBasicBlock::iterator NextMIIt =
+ std::next(MachineBasicBlock::iterator(MI));
+
+ // Check for case 1, where there are multiple CMOVs with the same condition
+ // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the
+ // number of jumps the most.
+
+ if (isCMOVPseudo(MI)) {
+ // See if we have a string of CMOVS with the same condition.
+ while (NextMIIt != ThisMBB->end() && isCMOVPseudo(*NextMIIt) &&
+ (NextMIIt->getOperand(3).getImm() == CC ||
+ NextMIIt->getOperand(3).getImm() == OppCC)) {
+ LastCMOV = &*NextMIIt;
+ ++NextMIIt;
+ }
+ }
+
+ // This checks for case 2, but only do this if we didn't already find
+ // case 1, as indicated by LastCMOV == MI.
+ if (LastCMOV == &MI && NextMIIt != ThisMBB->end() &&
+ NextMIIt->getOpcode() == MI.getOpcode() &&
+ NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() &&
+ NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() &&
+ NextMIIt->getOperand(1).isKill()) {
+ return EmitLoweredCascadedSelect(MI, *NextMIIt, ThisMBB);
+ }
+
+ const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
+ MachineFunction *F = ThisMBB->getParent();
+ MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+
+ MachineFunction::iterator It = ++ThisMBB->getIterator();
+ F->insert(It, FalseMBB);
+ F->insert(It, SinkMBB);
+
+ // If the EFLAGS register isn't dead in the terminator, then claim that it's
+ // live into the sink and copy blocks.
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ if (!LastCMOV->killsRegister(X86::EFLAGS) &&
+ !checkAndUpdateEFLAGSKill(LastCMOV, ThisMBB, TRI)) {
+ FalseMBB->addLiveIn(X86::EFLAGS);
+ SinkMBB->addLiveIn(X86::EFLAGS);
+ }
+
+ // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
+ SinkMBB->splice(SinkMBB->begin(), ThisMBB,
+ std::next(MachineBasicBlock::iterator(LastCMOV)),
+ ThisMBB->end());
+ SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
+
+ // Fallthrough block for ThisMBB.
+ ThisMBB->addSuccessor(FalseMBB);
+ // The true block target of the first (or only) branch is always a SinkMBB.
+ ThisMBB->addSuccessor(SinkMBB);
+ // Fallthrough block for FalseMBB.
+ FalseMBB->addSuccessor(SinkMBB);
+
+ // Create the conditional branch instruction.
+ unsigned Opc = X86::GetCondBranchFromCond(CC);
+ BuildMI(ThisMBB, DL, TII->get(Opc)).addMBB(SinkMBB);
+
+ // SinkMBB:
+ // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, ThisMBB ]
+ // ...
+ MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
+ MachineBasicBlock::iterator MIItEnd =
+ std::next(MachineBasicBlock::iterator(LastCMOV));
+ createPHIsForCMOVsInSinkBB(MIItBegin, MIItEnd, ThisMBB, FalseMBB, SinkMBB);
+
+ // Now remove the CMOV(s).
+ ThisMBB->erase(MIItBegin, MIItEnd);
+
+ return SinkMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredAtomicFP(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ // Combine the following atomic floating-point modification pattern:
+ // a.store(reg OP a.load(acquire), release)
+ // Transform them into:
+ // OPss (%gpr), %xmm
+ // movss %xmm, (%gpr)
+ // Or sd equivalent for 64-bit operations.
+ unsigned MOp, FOp;
+ switch (MI.getOpcode()) {
+ default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP");
+ case X86::RELEASE_FADD32mr:
+ FOp = X86::ADDSSrm;
+ MOp = X86::MOVSSmr;
+ break;
+ case X86::RELEASE_FADD64mr:
+ FOp = X86::ADDSDrm;
+ MOp = X86::MOVSDmr;
+ break;
+ }
+ const X86InstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ unsigned ValOpIdx = X86::AddrNumOperands;
+ unsigned VSrc = MI.getOperand(ValOpIdx).getReg();
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, MI, DL, TII->get(FOp),
+ MRI.createVirtualRegister(MRI.getRegClass(VSrc)))
+ .addReg(VSrc);
+ for (int i = 0; i < X86::AddrNumOperands; ++i) {
+ MachineOperand &Operand = MI.getOperand(i);
+ // Clear any kill flags on register operands as we'll create a second
+ // instruction using the same address operands.
+ if (Operand.isReg())
+ Operand.setIsKill(false);
+ MIB.add(Operand);
+ }
+ MachineInstr *FOpMI = MIB;
+ MIB = BuildMI(*BB, MI, DL, TII->get(MOp));
+ for (int i = 0; i < X86::AddrNumOperands; ++i)
+ MIB.add(MI.getOperand(i));
+ MIB.addReg(FOpMI->getOperand(0).getReg(), RegState::Kill);
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredSegAlloca(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ MachineFunction *MF = BB->getParent();
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+
+ assert(MF->shouldSplitStack());
+
+ const bool Is64Bit = Subtarget.is64Bit();
+ const bool IsLP64 = Subtarget.isTarget64BitLP64();
+
+ const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
+ const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
+
+ // BB:
+ // ... [Till the alloca]
+ // If stacklet is not large enough, jump to mallocMBB
+ //
+ // bumpMBB:
+ // Allocate by subtracting from RSP
+ // Jump to continueMBB
+ //
+ // mallocMBB:
+ // Allocate by call to runtime
+ //
+ // continueMBB:
+ // ...
+ // [rest of original BB]
+ //
+
+ MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ const TargetRegisterClass *AddrRegClass =
+ getRegClassFor(getPointerTy(MF->getDataLayout()));
+
+ unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
+ bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
+ tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
+ SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
+ sizeVReg = MI.getOperand(1).getReg(),
+ physSPReg =
+ IsLP64 || Subtarget.isTargetNaCl64() ? X86::RSP : X86::ESP;
+
+ MachineFunction::iterator MBBIter = ++BB->getIterator();
+
+ MF->insert(MBBIter, bumpMBB);
+ MF->insert(MBBIter, mallocMBB);
+ MF->insert(MBBIter, continueMBB);
+
+ continueMBB->splice(continueMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ continueMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add code to the main basic block to check if the stack limit has been hit,
+ // and if so, jump to mallocMBB otherwise to bumpMBB.
+ BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
+ BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
+ .addReg(tmpSPVReg).addReg(sizeVReg);
+ BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
+ .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
+ .addReg(SPLimitVReg);
+ BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB);
+
+ // bumpMBB simply decreases the stack pointer, since we know the current
+ // stacklet has enough space.
+ BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
+ .addReg(SPLimitVReg);
+ BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
+ .addReg(SPLimitVReg);
+ BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
+
+ // Calls into a routine in libgcc to allocate more space from the heap.
+ const uint32_t *RegMask =
+ Subtarget.getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
+ if (IsLP64) {
+ BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
+ .addReg(sizeVReg);
+ BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack_allocate_stack_space")
+ .addRegMask(RegMask)
+ .addReg(X86::RDI, RegState::Implicit)
+ .addReg(X86::RAX, RegState::ImplicitDefine);
+ } else if (Is64Bit) {
+ BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
+ .addReg(sizeVReg);
+ BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack_allocate_stack_space")
+ .addRegMask(RegMask)
+ .addReg(X86::EDI, RegState::Implicit)
+ .addReg(X86::EAX, RegState::ImplicitDefine);
+ } else {
+ BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
+ .addImm(12);
+ BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
+ BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
+ .addExternalSymbol("__morestack_allocate_stack_space")
+ .addRegMask(RegMask)
+ .addReg(X86::EAX, RegState::ImplicitDefine);
+ }
+
+ if (!Is64Bit)
+ BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
+ .addImm(16);
+
+ BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
+ .addReg(IsLP64 ? X86::RAX : X86::EAX);
+ BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
+
+ // Set up the CFG correctly.
+ BB->addSuccessor(bumpMBB);
+ BB->addSuccessor(mallocMBB);
+ mallocMBB->addSuccessor(continueMBB);
+ bumpMBB->addSuccessor(continueMBB);
+
+ // Take care of the PHI nodes.
+ BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
+ MI.getOperand(0).getReg())
+ .addReg(mallocPtrVReg)
+ .addMBB(mallocMBB)
+ .addReg(bumpSPPtrVReg)
+ .addMBB(bumpMBB);
+
+ // Delete the original pseudo instruction.
+ MI.eraseFromParent();
+
+ // And we're done.
+ return continueMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredCatchRet(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ MachineFunction *MF = BB->getParent();
+ const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
+ MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
+ DebugLoc DL = MI.getDebugLoc();
+
+ assert(!isAsynchronousEHPersonality(
+ classifyEHPersonality(MF->getFunction().getPersonalityFn())) &&
+ "SEH does not use catchret!");
+
+ // Only 32-bit EH needs to worry about manually restoring stack pointers.
+ if (!Subtarget.is32Bit())
+ return BB;
+
+ // C++ EH creates a new target block to hold the restore code, and wires up
+ // the new block to the return destination with a normal JMP_4.
+ MachineBasicBlock *RestoreMBB =
+ MF->CreateMachineBasicBlock(BB->getBasicBlock());
+ assert(BB->succ_size() == 1);
+ MF->insert(std::next(BB->getIterator()), RestoreMBB);
+ RestoreMBB->transferSuccessorsAndUpdatePHIs(BB);
+ BB->addSuccessor(RestoreMBB);
+ MI.getOperand(0).setMBB(RestoreMBB);
+
+ auto RestoreMBBI = RestoreMBB->begin();
+ BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE));
+ BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB);
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredCatchPad(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ MachineFunction *MF = BB->getParent();
+ const Constant *PerFn = MF->getFunction().getPersonalityFn();
+ bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn));
+ // Only 32-bit SEH requires special handling for catchpad.
+ if (IsSEH && Subtarget.is32Bit()) {
+ const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+ BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE));
+ }
+ MI.eraseFromParent();
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredTLSAddr(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ // So, here we replace TLSADDR with the sequence:
+ // adjust_stackdown -> TLSADDR -> adjust_stackup.
+ // We need this because TLSADDR is lowered into calls
+ // inside MC, therefore without the two markers shrink-wrapping
+ // may push the prologue/epilogue pass them.
+ const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+ MachineFunction &MF = *BB->getParent();
+
+ // Emit CALLSEQ_START right before the instruction.
+ unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+ MachineInstrBuilder CallseqStart =
+ BuildMI(MF, DL, TII.get(AdjStackDown)).addImm(0).addImm(0).addImm(0);
+ BB->insert(MachineBasicBlock::iterator(MI), CallseqStart);
+
+ // Emit CALLSEQ_END right after the instruction.
+ // We don't call erase from parent because we want to keep the
+ // original instruction around.
+ unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+ MachineInstrBuilder CallseqEnd =
+ BuildMI(MF, DL, TII.get(AdjStackUp)).addImm(0).addImm(0);
+ BB->insertAfter(MachineBasicBlock::iterator(MI), CallseqEnd);
+
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredTLSCall(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ // This is pretty easy. We're taking the value that we received from
+ // our load from the relocation, sticking it in either RDI (x86-64)
+ // or EAX and doing an indirect call. The return value will then
+ // be in the normal return register.
+ MachineFunction *F = BB->getParent();
+ const X86InstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ assert(Subtarget.isTargetDarwin() && "Darwin only instr emitted?");
+ assert(MI.getOperand(3).isGlobal() && "This should be a global");
+
+ // Get a register mask for the lowered call.
+ // FIXME: The 32-bit calls have non-standard calling conventions. Use a
+ // proper register mask.
+ const uint32_t *RegMask =
+ Subtarget.is64Bit() ?
+ Subtarget.getRegisterInfo()->getDarwinTLSCallPreservedMask() :
+ Subtarget.getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
+ if (Subtarget.is64Bit()) {
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI)
+ .addReg(X86::RIP)
+ .addImm(0)
+ .addReg(0)
+ .addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
+ MI.getOperand(3).getTargetFlags())
+ .addReg(0);
+ MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
+ addDirectMem(MIB, X86::RDI);
+ MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
+ } else if (!isPositionIndependent()) {
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
+ .addReg(0)
+ .addImm(0)
+ .addReg(0)
+ .addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
+ MI.getOperand(3).getTargetFlags())
+ .addReg(0);
+ MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
+ addDirectMem(MIB, X86::EAX);
+ MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
+ } else {
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
+ .addReg(TII->getGlobalBaseReg(F))
+ .addImm(0)
+ .addReg(0)
+ .addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
+ MI.getOperand(3).getTargetFlags())
+ .addReg(0);
+ MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
+ addDirectMem(MIB, X86::EAX);
+ MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
+ }
+
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI.getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator I = ++MBB->getIterator();
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
+
+ unsigned DstReg;
+ unsigned MemOpndSlot = 0;
+
+ unsigned CurOp = 0;
+
+ DstReg = MI.getOperand(CurOp++).getReg();
+ const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
+ assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
+ (void)TRI;
+ unsigned mainDstReg = MRI.createVirtualRegister(RC);
+ unsigned restoreDstReg = MRI.createVirtualRegister(RC);
+
+ MemOpndSlot = CurOp;
+
+ MVT PVT = getPointerTy(MF->getDataLayout());
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+
+ // For v = setjmp(buf), we generate
+ //
+ // thisMBB:
+ // buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB
+ // SjLjSetup restoreMBB
+ //
+ // mainMBB:
+ // v_main = 0
+ //
+ // sinkMBB:
+ // v = phi(main, restore)
+ //
+ // restoreMBB:
+ // if base pointer being used, load it from frame
+ // v_restore = 1
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(I, mainMBB);
+ MF->insert(I, sinkMBB);
+ MF->push_back(restoreMBB);
+ restoreMBB->setHasAddressTaken();
+
+ MachineInstrBuilder MIB;
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // thisMBB:
+ unsigned PtrStoreOpc = 0;
+ unsigned LabelReg = 0;
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
+ !isPositionIndependent();
+
+ // Prepare IP either in reg or imm.
+ if (!UseImmLabel) {
+ PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
+ const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
+ LabelReg = MRI.createVirtualRegister(PtrRC);
+ if (Subtarget.is64Bit()) {
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
+ .addReg(X86::RIP)
+ .addImm(0)
+ .addReg(0)
+ .addMBB(restoreMBB)
+ .addReg(0);
+ } else {
+ const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
+ .addReg(XII->getGlobalBaseReg(MF))
+ .addImm(0)
+ .addReg(0)
+ .addMBB(restoreMBB, Subtarget.classifyBlockAddressReference())
+ .addReg(0);
+ }
+ } else
+ PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
+ // Store IP
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
+ if (i == X86::AddrDisp)
+ MIB.addDisp(MI.getOperand(MemOpndSlot + i), LabelOffset);
+ else
+ MIB.add(MI.getOperand(MemOpndSlot + i));
+ }
+ if (!UseImmLabel)
+ MIB.addReg(LabelReg);
+ else
+ MIB.addMBB(restoreMBB);
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Setup
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
+ .addMBB(restoreMBB);
+
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ MIB.addRegMask(RegInfo->getNoPreservedMask());
+ thisMBB->addSuccessor(mainMBB);
+ thisMBB->addSuccessor(restoreMBB);
+
+ // mainMBB:
+ // EAX = 0
+ BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
+ mainMBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ BuildMI(*sinkMBB, sinkMBB->begin(), DL,
+ TII->get(X86::PHI), DstReg)
+ .addReg(mainDstReg).addMBB(mainMBB)
+ .addReg(restoreDstReg).addMBB(restoreMBB);
+
+ // restoreMBB:
+ if (RegInfo->hasBasePointer(*MF)) {
+ const bool Uses64BitFramePtr =
+ Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
+ X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
+ X86FI->setRestoreBasePointer(MF);
+ unsigned FramePtr = RegInfo->getFrameRegister(*MF);
+ unsigned BasePtr = RegInfo->getBaseRegister();
+ unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
+ addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
+ FramePtr, true, X86FI->getRestoreBasePointerOffset())
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
+ BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
+ restoreMBB->addSuccessor(sinkMBB);
+
+ MI.eraseFromParent();
+ return sinkMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI.getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
+
+ MVT PVT = getPointerTy(MF->getDataLayout());
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+
+ const TargetRegisterClass *RC =
+ (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
+ unsigned Tmp = MRI.createVirtualRegister(RC);
+ // Since FP is only updated here but NOT referenced, it's treated as GPR.
+ const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
+ unsigned SP = RegInfo->getStackRegister();
+
+ MachineInstrBuilder MIB;
+
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ const int64_t SPOffset = 2 * PVT.getStoreSize();
+
+ unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
+ unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
+
+ // Reload FP
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
+ MIB.add(MI.getOperand(i));
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Reload IP
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
+ if (i == X86::AddrDisp)
+ MIB.addDisp(MI.getOperand(i), LabelOffset);
+ else
+ MIB.add(MI.getOperand(i));
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Reload SP
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
+ if (i == X86::AddrDisp)
+ MIB.addDisp(MI.getOperand(i), SPOffset);
+ else
+ MIB.add(MI.getOperand(i));
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Jump
+ BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
+
+ MI.eraseFromParent();
+ return MBB;
+}
+
+void X86TargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *DispatchBB,
+ int FI) const {
+ DebugLoc DL = MI.getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ const X86InstrInfo *TII = Subtarget.getInstrInfo();
+
+ MVT PVT = getPointerTy(MF->getDataLayout());
+ assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!");
+
+ unsigned Op = 0;
+ unsigned VR = 0;
+
+ bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
+ !isPositionIndependent();
+
+ if (UseImmLabel) {
+ Op = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
+ } else {
+ const TargetRegisterClass *TRC =
+ (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
+ VR = MRI->createVirtualRegister(TRC);
+ Op = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
+
+ if (Subtarget.is64Bit())
+ BuildMI(*MBB, MI, DL, TII->get(X86::LEA64r), VR)
+ .addReg(X86::RIP)
+ .addImm(1)
+ .addReg(0)
+ .addMBB(DispatchBB)
+ .addReg(0);
+ else
+ BuildMI(*MBB, MI, DL, TII->get(X86::LEA32r), VR)
+ .addReg(0) /* TII->getGlobalBaseReg(MF) */
+ .addImm(1)
+ .addReg(0)
+ .addMBB(DispatchBB, Subtarget.classifyBlockAddressReference())
+ .addReg(0);
+ }
+
+ MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(Op));
+ addFrameReference(MIB, FI, Subtarget.is64Bit() ? 56 : 36);
+ if (UseImmLabel)
+ MIB.addMBB(DispatchBB);
+ else
+ MIB.addReg(VR);
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ DebugLoc DL = MI.getDebugLoc();
+ MachineFunction *MF = BB->getParent();
+ MachineFrameInfo &MFI = MF->getFrameInfo();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ const X86InstrInfo *TII = Subtarget.getInstrInfo();
+ int FI = MFI.getFunctionContextIndex();
+
+ // Get a mapping of the call site numbers to all of the landing pads they're
+ // associated with.
+ DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad;
+ unsigned MaxCSNum = 0;
+ for (auto &MBB : *MF) {
+ if (!MBB.isEHPad())
+ continue;
+
+ MCSymbol *Sym = nullptr;
+ for (const auto &MI : MBB) {
+ if (MI.isDebugValue())
+ continue;
+
+ assert(MI.isEHLabel() && "expected EH_LABEL");
+ Sym = MI.getOperand(0).getMCSymbol();
+ break;
+ }
+
+ if (!MF->hasCallSiteLandingPad(Sym))
+ continue;
+
+ for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) {
+ CallSiteNumToLPad[CSI].push_back(&MBB);
+ MaxCSNum = std::max(MaxCSNum, CSI);
+ }
+ }
+
+ // Get an ordered list of the machine basic blocks for the jump table.
+ std::vector<MachineBasicBlock *> LPadList;
+ SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs;
+ LPadList.reserve(CallSiteNumToLPad.size());
+
+ for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) {
+ for (auto &LP : CallSiteNumToLPad[CSI]) {
+ LPadList.push_back(LP);
+ InvokeBBs.insert(LP->pred_begin(), LP->pred_end());
+ }
+ }
+
+ assert(!LPadList.empty() &&
+ "No landing pad destinations for the dispatch jump table!");
+
+ // Create the MBBs for the dispatch code.
+
+ // Shove the dispatch's address into the return slot in the function context.
+ MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
+ DispatchBB->setIsEHPad(true);
+
+ MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
+ BuildMI(TrapBB, DL, TII->get(X86::TRAP));
+ DispatchBB->addSuccessor(TrapBB);
+
+ MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
+ DispatchBB->addSuccessor(DispContBB);
+
+ // Insert MBBs.
+ MF->push_back(DispatchBB);
+ MF->push_back(DispContBB);
+ MF->push_back(TrapBB);
+
+ // Insert code into the entry block that creates and registers the function
+ // context.
+ SetupEntryBlockForSjLj(MI, BB, DispatchBB, FI);
+
+ // Create the jump table and associated information
+ unsigned JTE = getJumpTableEncoding();
+ MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE);
+ unsigned MJTI = JTI->createJumpTableIndex(LPadList);
+
+ const X86RegisterInfo &RI = TII->getRegisterInfo();
+ // Add a register mask with no preserved registers. This results in all
+ // registers being marked as clobbered.
+ if (RI.hasBasePointer(*MF)) {
+ const bool FPIs64Bit =
+ Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
+ X86MachineFunctionInfo *MFI = MF->getInfo<X86MachineFunctionInfo>();
+ MFI->setRestoreBasePointer(MF);
+
+ unsigned FP = RI.getFrameRegister(*MF);
+ unsigned BP = RI.getBaseRegister();
+ unsigned Op = FPIs64Bit ? X86::MOV64rm : X86::MOV32rm;
+ addRegOffset(BuildMI(DispatchBB, DL, TII->get(Op), BP), FP, true,
+ MFI->getRestoreBasePointerOffset())
+ .addRegMask(RI.getNoPreservedMask());
+ } else {
+ BuildMI(DispatchBB, DL, TII->get(X86::NOOP))
+ .addRegMask(RI.getNoPreservedMask());
+ }
+
+ // IReg is used as an index in a memory operand and therefore can't be SP
+ unsigned IReg = MRI->createVirtualRegister(&X86::GR32_NOSPRegClass);
+ addFrameReference(BuildMI(DispatchBB, DL, TII->get(X86::MOV32rm), IReg), FI,
+ Subtarget.is64Bit() ? 8 : 4);
+ BuildMI(DispatchBB, DL, TII->get(X86::CMP32ri))
+ .addReg(IReg)
+ .addImm(LPadList.size());
+ BuildMI(DispatchBB, DL, TII->get(X86::JAE_1)).addMBB(TrapBB);
+
+ if (Subtarget.is64Bit()) {
+ unsigned BReg = MRI->createVirtualRegister(&X86::GR64RegClass);
+ unsigned IReg64 = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
+
+ // leaq .LJTI0_0(%rip), BReg
+ BuildMI(DispContBB, DL, TII->get(X86::LEA64r), BReg)
+ .addReg(X86::RIP)
+ .addImm(1)
+ .addReg(0)
+ .addJumpTableIndex(MJTI)
+ .addReg(0);
+ // movzx IReg64, IReg
+ BuildMI(DispContBB, DL, TII->get(TargetOpcode::SUBREG_TO_REG), IReg64)
+ .addImm(0)
+ .addReg(IReg)
+ .addImm(X86::sub_32bit);
+
+ switch (JTE) {
+ case MachineJumpTableInfo::EK_BlockAddress:
+ // jmpq *(BReg,IReg64,8)
+ BuildMI(DispContBB, DL, TII->get(X86::JMP64m))
+ .addReg(BReg)
+ .addImm(8)
+ .addReg(IReg64)
+ .addImm(0)
+ .addReg(0);
+ break;
+ case MachineJumpTableInfo::EK_LabelDifference32: {
+ unsigned OReg = MRI->createVirtualRegister(&X86::GR32RegClass);
+ unsigned OReg64 = MRI->createVirtualRegister(&X86::GR64RegClass);
+ unsigned TReg = MRI->createVirtualRegister(&X86::GR64RegClass);
+
+ // movl (BReg,IReg64,4), OReg
+ BuildMI(DispContBB, DL, TII->get(X86::MOV32rm), OReg)
+ .addReg(BReg)
+ .addImm(4)
+ .addReg(IReg64)
+ .addImm(0)
+ .addReg(0);
+ // movsx OReg64, OReg
+ BuildMI(DispContBB, DL, TII->get(X86::MOVSX64rr32), OReg64).addReg(OReg);
+ // addq BReg, OReg64, TReg
+ BuildMI(DispContBB, DL, TII->get(X86::ADD64rr), TReg)
+ .addReg(OReg64)
+ .addReg(BReg);
+ // jmpq *TReg
+ BuildMI(DispContBB, DL, TII->get(X86::JMP64r)).addReg(TReg);
+ break;
+ }
+ default:
+ llvm_unreachable("Unexpected jump table encoding");
+ }
+ } else {
+ // jmpl *.LJTI0_0(,IReg,4)
+ BuildMI(DispContBB, DL, TII->get(X86::JMP32m))
+ .addReg(0)
+ .addImm(4)
+ .addReg(IReg)
+ .addJumpTableIndex(MJTI)
+ .addReg(0);
+ }
+
+ // Add the jump table entries as successors to the MBB.
+ SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs;
+ for (auto &LP : LPadList)
+ if (SeenMBBs.insert(LP).second)
+ DispContBB->addSuccessor(LP);
+
+ // N.B. the order the invoke BBs are processed in doesn't matter here.
+ SmallVector<MachineBasicBlock *, 64> MBBLPads;
+ const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs();
+ for (MachineBasicBlock *MBB : InvokeBBs) {
+ // Remove the landing pad successor from the invoke block and replace it
+ // with the new dispatch block.
+ // Keep a copy of Successors since it's modified inside the loop.
+ SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(),
+ MBB->succ_rend());
+ // FIXME: Avoid quadratic complexity.
+ for (auto MBBS : Successors) {
+ if (MBBS->isEHPad()) {
+ MBB->removeSuccessor(MBBS);
+ MBBLPads.push_back(MBBS);
+ }
+ }
+
+ MBB->addSuccessor(DispatchBB);
+
+ // Find the invoke call and mark all of the callee-saved registers as
+ // 'implicit defined' so that they're spilled. This prevents code from
+ // moving instructions to before the EH block, where they will never be
+ // executed.
+ for (auto &II : reverse(*MBB)) {
+ if (!II.isCall())
+ continue;
+
+ DenseMap<unsigned, bool> DefRegs;
+ for (auto &MOp : II.operands())
+ if (MOp.isReg())
+ DefRegs[MOp.getReg()] = true;
+
+ MachineInstrBuilder MIB(*MF, &II);
+ for (unsigned RI = 0; SavedRegs[RI]; ++RI) {
+ unsigned Reg = SavedRegs[RI];
+ if (!DefRegs[Reg])
+ MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
+ }
+
+ break;
+ }
+ }
+
+ // Mark all former landing pads as non-landing pads. The dispatch is the only
+ // landing pad now.
+ for (auto &LP : MBBLPads)
+ LP->setIsEHPad(false);
+
+ // The instruction is gone now.
+ MI.eraseFromParent();
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
+ MachineBasicBlock *BB) const {
+ MachineFunction *MF = BB->getParent();
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ DebugLoc DL = MI.getDebugLoc();
+
+ switch (MI.getOpcode()) {
+ default: llvm_unreachable("Unexpected instr type to insert");
+ case X86::TAILJMPd64:
+ case X86::TAILJMPr64:
+ case X86::TAILJMPm64:
+ case X86::TAILJMPr64_REX:
+ case X86::TAILJMPm64_REX:
+ llvm_unreachable("TAILJMP64 would not be touched here.");
+ case X86::TCRETURNdi64:
+ case X86::TCRETURNri64:
+ case X86::TCRETURNmi64:
+ return BB;
+ case X86::TLS_addr32:
+ case X86::TLS_addr64:
+ case X86::TLS_base_addr32:
+ case X86::TLS_base_addr64:
+ return EmitLoweredTLSAddr(MI, BB);
+ case X86::CATCHRET:
+ return EmitLoweredCatchRet(MI, BB);
+ case X86::CATCHPAD:
+ return EmitLoweredCatchPad(MI, BB);
+ case X86::SEG_ALLOCA_32:
+ case X86::SEG_ALLOCA_64:
+ return EmitLoweredSegAlloca(MI, BB);
+ case X86::TLSCall_32:
+ case X86::TLSCall_64:
+ return EmitLoweredTLSCall(MI, BB);
+ case X86::CMOV_FR32:
+ case X86::CMOV_FR64:
+ case X86::CMOV_FR128:
+ case X86::CMOV_GR8:
+ case X86::CMOV_GR16:
+ case X86::CMOV_GR32:
+ case X86::CMOV_RFP32:
+ case X86::CMOV_RFP64:
+ case X86::CMOV_RFP80:
+ case X86::CMOV_V2F64:
+ case X86::CMOV_V2I64:
+ case X86::CMOV_V4F32:
+ case X86::CMOV_V4F64:
+ case X86::CMOV_V4I64:
+ case X86::CMOV_V16F32:
+ case X86::CMOV_V8F32:
+ case X86::CMOV_V8F64:
+ case X86::CMOV_V8I64:
+ case X86::CMOV_V8I1:
+ case X86::CMOV_V16I1:
+ case X86::CMOV_V32I1:
+ case X86::CMOV_V64I1:
+ return EmitLoweredSelect(MI, BB);
+
+ case X86::RDFLAGS32:
+ case X86::RDFLAGS64: {
+ unsigned PushF =
+ MI.getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64;
+ unsigned Pop = MI.getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r;
+ MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF));
+ // Permit reads of the FLAGS register without it being defined.
+ // This intrinsic exists to read external processor state in flags, such as
+ // the trap flag, interrupt flag, and direction flag, none of which are
+ // modeled by the backend.
+ Push->getOperand(2).setIsUndef();
+ BuildMI(*BB, MI, DL, TII->get(Pop), MI.getOperand(0).getReg());
+
+ MI.eraseFromParent(); // The pseudo is gone now.
+ return BB;
+ }
+
+ case X86::WRFLAGS32:
+ case X86::WRFLAGS64: {
+ unsigned Push =
+ MI.getOpcode() == X86::WRFLAGS32 ? X86::PUSH32r : X86::PUSH64r;
+ unsigned PopF =
+ MI.getOpcode() == X86::WRFLAGS32 ? X86::POPF32 : X86::POPF64;
+ BuildMI(*BB, MI, DL, TII->get(Push)).addReg(MI.getOperand(0).getReg());
+ BuildMI(*BB, MI, DL, TII->get(PopF));
+
+ MI.eraseFromParent(); // The pseudo is gone now.
+ return BB;
+ }
+
+ case X86::RELEASE_FADD32mr:
+ case X86::RELEASE_FADD64mr:
+ return EmitLoweredAtomicFP(MI, BB);
+
+ case X86::FP32_TO_INT16_IN_MEM:
+ case X86::FP32_TO_INT32_IN_MEM:
+ case X86::FP32_TO_INT64_IN_MEM:
+ case X86::FP64_TO_INT16_IN_MEM:
+ case X86::FP64_TO_INT32_IN_MEM:
+ case X86::FP64_TO_INT64_IN_MEM:
+ case X86::FP80_TO_INT16_IN_MEM:
+ case X86::FP80_TO_INT32_IN_MEM:
+ case X86::FP80_TO_INT64_IN_MEM: {
+ // Change the floating point control register to use "round towards zero"
+ // mode when truncating to an integer value.
+ int CWFrameIdx = MF->getFrameInfo().CreateStackObject(2, 2, false);
+ addFrameReference(BuildMI(*BB, MI, DL,
+ TII->get(X86::FNSTCW16m)), CWFrameIdx);
+
+ // Load the old value of the high byte of the control word...
+ unsigned OldCW =
+ MF->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
+ addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
+ CWFrameIdx);
+
+ // Set the high part to be round to zero...
+ addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
+ .addImm(0xC7F);
+
+ // Reload the modified control word now...
+ addFrameReference(BuildMI(*BB, MI, DL,
+ TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+ // Restore the memory image of control word to original value
+ addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
+ .addReg(OldCW);
+
+ // Get the X86 opcode to use.
+ unsigned Opc;
+ switch (MI.getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
+ case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
+ case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
+ case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
+ case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
+ case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
+ case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
+ case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
+ case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
+ }
+
+ X86AddressMode AM = getAddressFromInstr(&MI, 0);
+ addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
+ .addReg(MI.getOperand(X86::AddrNumOperands).getReg());
+
+ // Reload the original control word now.
+ addFrameReference(BuildMI(*BB, MI, DL,
+ TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+ MI.eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+ }
+ // String/text processing lowering.
+ case X86::PCMPISTRM128REG:
+ case X86::VPCMPISTRM128REG:
+ case X86::PCMPISTRM128MEM:
+ case X86::VPCMPISTRM128MEM:
+ case X86::PCMPESTRM128REG:
+ case X86::VPCMPESTRM128REG:
+ case X86::PCMPESTRM128MEM:
+ case X86::VPCMPESTRM128MEM:
+ assert(Subtarget.hasSSE42() &&
+ "Target must have SSE4.2 or AVX features enabled");
+ return emitPCMPSTRM(MI, BB, Subtarget.getInstrInfo());
+
+ // String/text processing lowering.
+ case X86::PCMPISTRIREG:
+ case X86::VPCMPISTRIREG:
+ case X86::PCMPISTRIMEM:
+ case X86::VPCMPISTRIMEM:
+ case X86::PCMPESTRIREG:
+ case X86::VPCMPESTRIREG:
+ case X86::PCMPESTRIMEM:
+ case X86::VPCMPESTRIMEM:
+ assert(Subtarget.hasSSE42() &&
+ "Target must have SSE4.2 or AVX features enabled");
+ return emitPCMPSTRI(MI, BB, Subtarget.getInstrInfo());
+
+ // Thread synchronization.
+ case X86::MONITOR:
+ return emitMonitor(MI, BB, Subtarget, X86::MONITORrrr);
+ case X86::MONITORX:
+ return emitMonitor(MI, BB, Subtarget, X86::MONITORXrrr);
+
+ // Cache line zero
+ case X86::CLZERO:
+ return emitClzero(&MI, BB, Subtarget);
+
+ // PKU feature
+ case X86::WRPKRU:
+ return emitWRPKRU(MI, BB, Subtarget);
+ case X86::RDPKRU:
+ return emitRDPKRU(MI, BB, Subtarget);
+ // xbegin
+ case X86::XBEGIN:
+ return emitXBegin(MI, BB, Subtarget.getInstrInfo());
+
+ case X86::VASTART_SAVE_XMM_REGS:
+ return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
+
+ case X86::VAARG_64:
+ return EmitVAARG64WithCustomInserter(MI, BB);
+
+ case X86::EH_SjLj_SetJmp32:
+ case X86::EH_SjLj_SetJmp64:
+ return emitEHSjLjSetJmp(MI, BB);
+
+ case X86::EH_SjLj_LongJmp32:
+ case X86::EH_SjLj_LongJmp64:
+ return emitEHSjLjLongJmp(MI, BB);
+
+ case X86::Int_eh_sjlj_setup_dispatch:
+ return EmitSjLjDispatchBlock(MI, BB);
+
+ case TargetOpcode::STATEPOINT:
+ // As an implementation detail, STATEPOINT shares the STACKMAP format at
+ // this point in the process. We diverge later.
+ return emitPatchPoint(MI, BB);
+
+ case TargetOpcode::STACKMAP:
+ case TargetOpcode::PATCHPOINT:
+ return emitPatchPoint(MI, BB);
+
+ case TargetOpcode::PATCHABLE_EVENT_CALL:
+ // Do nothing here, handle in xray instrumentation pass.
+ return BB;
+
+ case X86::LCMPXCHG8B: {
+ const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
+ // In addition to 4 E[ABCD] registers implied by encoding, CMPXCHG8B
+ // requires a memory operand. If it happens that current architecture is
+ // i686 and for current function we need a base pointer
+ // - which is ESI for i686 - register allocator would not be able to
+ // allocate registers for an address in form of X(%reg, %reg, Y)
+ // - there never would be enough unreserved registers during regalloc
+ // (without the need for base ptr the only option would be X(%edi, %esi, Y).
+ // We are giving a hand to register allocator by precomputing the address in
+ // a new vreg using LEA.
+
+ // If it is not i686 or there is no base pointer - nothing to do here.
+ if (!Subtarget.is32Bit() || !TRI->hasBasePointer(*MF))
+ return BB;
+
+ // Even though this code does not necessarily needs the base pointer to
+ // be ESI, we check for that. The reason: if this assert fails, there are
+ // some changes happened in the compiler base pointer handling, which most
+ // probably have to be addressed somehow here.
+ assert(TRI->getBaseRegister() == X86::ESI &&
+ "LCMPXCHG8B custom insertion for i686 is written with X86::ESI as a "
+ "base pointer in mind");
+
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ MVT SPTy = getPointerTy(MF->getDataLayout());
+ const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
+ unsigned computedAddrVReg = MRI.createVirtualRegister(AddrRegClass);
+
+ X86AddressMode AM = getAddressFromInstr(&MI, 0);
+ // Regalloc does not need any help when the memory operand of CMPXCHG8B
+ // does not use index register.
+ if (AM.IndexReg == X86::NoRegister)
+ return BB;
+
+ // After X86TargetLowering::ReplaceNodeResults CMPXCHG8B is glued to its
+ // four operand definitions that are E[ABCD] registers. We skip them and
+ // then insert the LEA.
+ MachineBasicBlock::iterator MBBI(MI);
+ while (MBBI->definesRegister(X86::EAX) || MBBI->definesRegister(X86::EBX) ||
+ MBBI->definesRegister(X86::ECX) || MBBI->definesRegister(X86::EDX))
+ --MBBI;
+ addFullAddress(
+ BuildMI(*BB, *MBBI, DL, TII->get(X86::LEA32r), computedAddrVReg), AM);
+
+ setDirectAddressInInstr(&MI, 0, computedAddrVReg);
+
+ return BB;
+ }
+ case X86::LCMPXCHG16B:
+ return BB;
+ case X86::LCMPXCHG8B_SAVE_EBX:
+ case X86::LCMPXCHG16B_SAVE_RBX: {
+ unsigned BasePtr =
+ MI.getOpcode() == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
+ if (!BB->isLiveIn(BasePtr))
+ BB->addLiveIn(BasePtr);
+ return BB;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ KnownBits &Known,
+ const APInt &DemandedElts,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ unsigned BitWidth = Known.getBitWidth();
+ unsigned Opc = Op.getOpcode();
+ EVT VT = Op.getValueType();
+ assert((Opc >= ISD::BUILTIN_OP_END ||
+ Opc == ISD::INTRINSIC_WO_CHAIN ||
+ Opc == ISD::INTRINSIC_W_CHAIN ||
+ Opc == ISD::INTRINSIC_VOID) &&
+ "Should use MaskedValueIsZero if you don't know whether Op"
+ " is a target node!");
+
+ Known.resetAll();
+ switch (Opc) {
+ default: break;
+ case X86ISD::SETCC:
+ Known.Zero.setBitsFrom(1);
+ break;
+ case X86ISD::MOVMSK: {
+ unsigned NumLoBits = Op.getOperand(0).getValueType().getVectorNumElements();
+ Known.Zero.setBitsFrom(NumLoBits);
+ break;
+ }
+ case X86ISD::PEXTRB:
+ case X86ISD::PEXTRW: {
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ APInt DemandedElt = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
+ Op.getConstantOperandVal(1));
+ DAG.computeKnownBits(Src, Known, DemandedElt, Depth + 1);
+ Known = Known.zextOrTrunc(BitWidth);
+ Known.Zero.setBitsFrom(SrcVT.getScalarSizeInBits());
+ break;
+ }
+ case X86ISD::VSHLI:
+ case X86ISD::VSRLI: {
+ if (auto *ShiftImm = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ if (ShiftImm->getAPIntValue().uge(VT.getScalarSizeInBits())) {
+ Known.setAllZero();
+ break;
+ }
+
+ DAG.computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
+ unsigned ShAmt = ShiftImm->getZExtValue();
+ if (Opc == X86ISD::VSHLI) {
+ Known.Zero <<= ShAmt;
+ Known.One <<= ShAmt;
+ // Low bits are known zero.
+ Known.Zero.setLowBits(ShAmt);
+ } else {
+ Known.Zero.lshrInPlace(ShAmt);
+ Known.One.lshrInPlace(ShAmt);
+ // High bits are known zero.
+ Known.Zero.setHighBits(ShAmt);
+ }
+ }
+ break;
+ }
+ case X86ISD::VZEXT: {
+ // TODO: Add DemandedElts support.
+ SDValue N0 = Op.getOperand(0);
+ unsigned NumElts = VT.getVectorNumElements();
+
+ EVT SrcVT = N0.getValueType();
+ unsigned InNumElts = SrcVT.getVectorNumElements();
+ unsigned InBitWidth = SrcVT.getScalarSizeInBits();
+ assert(InNumElts >= NumElts && "Illegal VZEXT input");
+
+ Known = KnownBits(InBitWidth);
+ APInt DemandedSrcElts = APInt::getLowBitsSet(InNumElts, NumElts);
+ DAG.computeKnownBits(N0, Known, DemandedSrcElts, Depth + 1);
+ Known = Known.zext(BitWidth);
+ Known.Zero.setBitsFrom(InBitWidth);
+ break;
+ }
+ case X86ISD::CMOV: {
+ DAG.computeKnownBits(Op.getOperand(1), Known, Depth+1);
+ // If we don't know any bits, early out.
+ if (Known.isUnknown())
+ break;
+ KnownBits Known2;
+ DAG.computeKnownBits(Op.getOperand(0), Known2, Depth+1);
+
+ // Only known if known in both the LHS and RHS.
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ break;
+ }
+ case X86ISD::UDIVREM8_ZEXT_HREG:
+ // TODO: Support more than just the zero extended bits?
+ if (Op.getResNo() != 1)
+ break;
+ // The remainder is zero extended.
+ Known.Zero.setBitsFrom(8);
+ break;
+ }
+}
+
+unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
+ SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
+ unsigned Depth) const {
+ unsigned VTBits = Op.getScalarValueSizeInBits();
+ unsigned Opcode = Op.getOpcode();
+ switch (Opcode) {
+ case X86ISD::SETCC_CARRY:
+ // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
+ return VTBits;
+
+ case X86ISD::VSEXT: {
+ // TODO: Add DemandedElts support.
+ SDValue Src = Op.getOperand(0);
+ unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1);
+ Tmp += VTBits - Src.getScalarValueSizeInBits();
+ return Tmp;
+ }
+
+ case X86ISD::VTRUNC: {
+ // TODO: Add DemandedElts support.
+ SDValue Src = Op.getOperand(0);
+ unsigned NumSrcBits = Src.getScalarValueSizeInBits();
+ assert(VTBits < NumSrcBits && "Illegal truncation input type");
+ unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1);
+ if (Tmp > (NumSrcBits - VTBits))
+ return Tmp - (NumSrcBits - VTBits);
+ return 1;
+ }
+
+ case X86ISD::PACKSS: {
+ // PACKSS is just a truncation if the sign bits extend to the packed size.
+ // TODO: Add DemandedElts support.
+ unsigned SrcBits = Op.getOperand(0).getScalarValueSizeInBits();
+ unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth + 1);
+ unsigned Tmp = std::min(Tmp0, Tmp1);
+ if (Tmp > (SrcBits - VTBits))
+ return Tmp - (SrcBits - VTBits);
+ return 1;
+ }
+
+ case X86ISD::VSHLI: {
+ SDValue Src = Op.getOperand(0);
+ APInt ShiftVal = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue();
+ if (ShiftVal.uge(VTBits))
+ return VTBits; // Shifted all bits out --> zero.
+ unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1);
+ if (ShiftVal.uge(Tmp))
+ return 1; // Shifted all sign bits out --> unknown.
+ return Tmp - ShiftVal.getZExtValue();
+ }
+
+ case X86ISD::VSRAI: {
+ SDValue Src = Op.getOperand(0);
+ APInt ShiftVal = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue();
+ if (ShiftVal.uge(VTBits - 1))
+ return VTBits; // Sign splat.
+ unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1);
+ ShiftVal += Tmp;
+ return ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
+ }
+
+ case X86ISD::PCMPGT:
+ case X86ISD::PCMPEQ:
+ case X86ISD::CMPP:
+ case X86ISD::VPCOM:
+ case X86ISD::VPCOMU:
+ // Vector compares return zero/all-bits result values.
+ return VTBits;
+
+ case X86ISD::CMOV: {
+ unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ if (Tmp0 == 1) return 1; // Early out.
+ unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth+1);
+ return std::min(Tmp0, Tmp1);
+ }
+ case X86ISD::SDIVREM8_SEXT_HREG:
+ // TODO: Support more than just the sign extended bits?
+ if (Op.getResNo() != 1)
+ break;
+ // The remainder is sign extended.
+ return VTBits - 7;
+ }
+
+ // Fallback case.
+ return 1;
+}
+
+SDValue X86TargetLowering::unwrapAddress(SDValue N) const {
+ if (N->getOpcode() == X86ISD::Wrapper || N->getOpcode() == X86ISD::WrapperRIP)
+ return N->getOperand(0);
+ return N;
+}
+
+/// Returns true (and the GlobalValue and the offset) if the node is a
+/// GlobalAddress + offset.
+bool X86TargetLowering::isGAPlusOffset(SDNode *N,
+ const GlobalValue* &GA,
+ int64_t &Offset) const {
+ if (N->getOpcode() == X86ISD::Wrapper) {
+ if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
+ GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
+ Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
+ return true;
+ }
+ }
+ return TargetLowering::isGAPlusOffset(N, GA, Offset);
+}
+
+// Attempt to match a combined shuffle mask against supported unary shuffle
+// instructions.
+// TODO: Investigate sharing more of this with shuffle lowering.
+static bool matchUnaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
+ bool AllowFloatDomain, bool AllowIntDomain,
+ SDValue &V1, SDLoc &DL, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ unsigned &Shuffle, MVT &SrcVT, MVT &DstVT) {
+ unsigned NumMaskElts = Mask.size();
+ unsigned MaskEltSize = MaskVT.getScalarSizeInBits();
+
+ // Match against a ZERO_EXTEND_VECTOR_INREG/VZEXT instruction.
+ // TODO: Add 512-bit vector support (split AVX512F and AVX512BW).
+ if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE41()) ||
+ (MaskVT.is256BitVector() && Subtarget.hasInt256()))) {
+ unsigned MaxScale = 64 / MaskEltSize;
+ for (unsigned Scale = 2; Scale <= MaxScale; Scale *= 2) {
+ bool Match = true;
+ unsigned NumDstElts = NumMaskElts / Scale;
+ for (unsigned i = 0; i != NumDstElts && Match; ++i) {
+ Match &= isUndefOrEqual(Mask[i * Scale], (int)i);
+ Match &= isUndefOrZeroInRange(Mask, (i * Scale) + 1, Scale - 1);
+ }
+ if (Match) {
+ unsigned SrcSize = std::max(128u, NumDstElts * MaskEltSize);
+ MVT ScalarTy = MaskVT.isInteger() ? MaskVT.getScalarType() :
+ MVT::getIntegerVT(MaskEltSize);
+ SrcVT = MVT::getVectorVT(ScalarTy, SrcSize / MaskEltSize);
+
+ if (SrcVT.getSizeInBits() != MaskVT.getSizeInBits()) {
+ V1 = extractSubVector(V1, 0, DAG, DL, SrcSize);
+ Shuffle = unsigned(X86ISD::VZEXT);
+ } else
+ Shuffle = unsigned(ISD::ZERO_EXTEND_VECTOR_INREG);
+
+ DstVT = MVT::getIntegerVT(Scale * MaskEltSize);
+ DstVT = MVT::getVectorVT(DstVT, NumDstElts);
+ return true;
+ }
+ }
+ }
+
+ // Match against a VZEXT_MOVL instruction, SSE1 only supports 32-bits (MOVSS).
+ if (((MaskEltSize == 32) || (MaskEltSize == 64 && Subtarget.hasSSE2())) &&
+ isUndefOrEqual(Mask[0], 0) &&
+ isUndefOrZeroInRange(Mask, 1, NumMaskElts - 1)) {
+ Shuffle = X86ISD::VZEXT_MOVL;
+ SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT;
+ return true;
+ }
+
+ // Check if we have SSE3 which will let us use MOVDDUP etc. The
+ // instructions are no slower than UNPCKLPD but has the option to
+ // fold the input operand into even an unaligned memory load.
+ if (MaskVT.is128BitVector() && Subtarget.hasSSE3() && AllowFloatDomain) {
+ if (!Subtarget.hasAVX2() && isTargetShuffleEquivalent(Mask, {0, 0})) {
+ Shuffle = X86ISD::MOVDDUP;
+ SrcVT = DstVT = MVT::v2f64;
+ return true;
+ }
+ if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
+ Shuffle = X86ISD::MOVSLDUP;
+ SrcVT = DstVT = MVT::v4f32;
+ return true;
+ }
+ if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3})) {
+ Shuffle = X86ISD::MOVSHDUP;
+ SrcVT = DstVT = MVT::v4f32;
+ return true;
+ }
+ }
+
+ if (MaskVT.is256BitVector() && AllowFloatDomain) {
+ assert(Subtarget.hasAVX() && "AVX required for 256-bit vector shuffles");
+ if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
+ Shuffle = X86ISD::MOVDDUP;
+ SrcVT = DstVT = MVT::v4f64;
+ return true;
+ }
+ if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
+ Shuffle = X86ISD::MOVSLDUP;
+ SrcVT = DstVT = MVT::v8f32;
+ return true;
+ }
+ if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3, 5, 5, 7, 7})) {
+ Shuffle = X86ISD::MOVSHDUP;
+ SrcVT = DstVT = MVT::v8f32;
+ return true;
+ }
+ }
+
+ if (MaskVT.is512BitVector() && AllowFloatDomain) {
+ assert(Subtarget.hasAVX512() &&
+ "AVX512 required for 512-bit vector shuffles");
+ if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
+ Shuffle = X86ISD::MOVDDUP;
+ SrcVT = DstVT = MVT::v8f64;
+ return true;
+ }
+ if (isTargetShuffleEquivalent(
+ Mask, {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14})) {
+ Shuffle = X86ISD::MOVSLDUP;
+ SrcVT = DstVT = MVT::v16f32;
+ return true;
+ }
+ if (isTargetShuffleEquivalent(
+ Mask, {1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15})) {
+ Shuffle = X86ISD::MOVSHDUP;
+ SrcVT = DstVT = MVT::v16f32;
+ return true;
+ }
+ }
+
+ // Attempt to match against broadcast-from-vector.
+ if (Subtarget.hasAVX2()) {
+ SmallVector<int, 64> BroadcastMask(NumMaskElts, 0);
+ if (isTargetShuffleEquivalent(Mask, BroadcastMask)) {
+ SrcVT = DstVT = MaskVT;
+ Shuffle = X86ISD::VBROADCAST;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Attempt to match a combined shuffle mask against supported unary immediate
+// permute instructions.
+// TODO: Investigate sharing more of this with shuffle lowering.
+static bool matchUnaryPermuteVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ bool AllowFloatDomain,
+ bool AllowIntDomain,
+ const X86Subtarget &Subtarget,
+ unsigned &Shuffle, MVT &ShuffleVT,
+ unsigned &PermuteImm) {
+ unsigned NumMaskElts = Mask.size();
+ unsigned InputSizeInBits = MaskVT.getSizeInBits();
+ unsigned MaskScalarSizeInBits = InputSizeInBits / NumMaskElts;
+ MVT MaskEltVT = MVT::getIntegerVT(MaskScalarSizeInBits);
+
+ bool ContainsZeros =
+ llvm::any_of(Mask, [](int M) { return M == SM_SentinelZero; });
+
+ // Handle VPERMI/VPERMILPD vXi64/vXi64 patterns.
+ if (!ContainsZeros && MaskScalarSizeInBits == 64) {
+ // Check for lane crossing permutes.
+ if (is128BitLaneCrossingShuffleMask(MaskEltVT, Mask)) {
+ // PERMPD/PERMQ permutes within a 256-bit vector (AVX2+).
+ if (Subtarget.hasAVX2() && MaskVT.is256BitVector()) {
+ Shuffle = X86ISD::VPERMI;
+ ShuffleVT = (AllowFloatDomain ? MVT::v4f64 : MVT::v4i64);
+ PermuteImm = getV4X86ShuffleImm(Mask);
+ return true;
+ }
+ if (Subtarget.hasAVX512() && MaskVT.is512BitVector()) {
+ SmallVector<int, 4> RepeatedMask;
+ if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask)) {
+ Shuffle = X86ISD::VPERMI;
+ ShuffleVT = (AllowFloatDomain ? MVT::v8f64 : MVT::v8i64);
+ PermuteImm = getV4X86ShuffleImm(RepeatedMask);
+ return true;
+ }
+ }
+ } else if (AllowFloatDomain && Subtarget.hasAVX()) {
+ // VPERMILPD can permute with a non-repeating shuffle.
+ Shuffle = X86ISD::VPERMILPI;
+ ShuffleVT = MVT::getVectorVT(MVT::f64, Mask.size());
+ PermuteImm = 0;
+ for (int i = 0, e = Mask.size(); i != e; ++i) {
+ int M = Mask[i];
+ if (M == SM_SentinelUndef)
+ continue;
+ assert(((M / 2) == (i / 2)) && "Out of range shuffle mask index");
+ PermuteImm |= (M & 1) << i;
+ }
+ return true;
+ }
+ }
+
+ // Handle PSHUFD/VPERMILPI vXi32/vXf32 repeated patterns.
+ // AVX introduced the VPERMILPD/VPERMILPS float permutes, before then we
+ // had to use 2-input SHUFPD/SHUFPS shuffles (not handled here).
+ if ((MaskScalarSizeInBits == 64 || MaskScalarSizeInBits == 32) &&
+ !ContainsZeros && (AllowIntDomain || Subtarget.hasAVX())) {
+ SmallVector<int, 4> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) {
+ // Narrow the repeated mask to create 32-bit element permutes.
+ SmallVector<int, 4> WordMask = RepeatedMask;
+ if (MaskScalarSizeInBits == 64)
+ scaleShuffleMask<int>(2, RepeatedMask, WordMask);
+
+ Shuffle = (AllowIntDomain ? X86ISD::PSHUFD : X86ISD::VPERMILPI);
+ ShuffleVT = (AllowIntDomain ? MVT::i32 : MVT::f32);
+ ShuffleVT = MVT::getVectorVT(ShuffleVT, InputSizeInBits / 32);
+ PermuteImm = getV4X86ShuffleImm(WordMask);
+ return true;
+ }
+ }
+
+ // Handle PSHUFLW/PSHUFHW vXi16 repeated patterns.
+ if (!ContainsZeros && AllowIntDomain && MaskScalarSizeInBits == 16) {
+ SmallVector<int, 4> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) {
+ ArrayRef<int> LoMask(Mask.data() + 0, 4);
+ ArrayRef<int> HiMask(Mask.data() + 4, 4);
+
+ // PSHUFLW: permute lower 4 elements only.
+ if (isUndefOrInRange(LoMask, 0, 4) &&
+ isSequentialOrUndefInRange(HiMask, 0, 4, 4)) {
+ Shuffle = X86ISD::PSHUFLW;
+ ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
+ PermuteImm = getV4X86ShuffleImm(LoMask);
+ return true;
+ }
+
+ // PSHUFHW: permute upper 4 elements only.
+ if (isUndefOrInRange(HiMask, 4, 8) &&
+ isSequentialOrUndefInRange(LoMask, 0, 4, 0)) {
+ // Offset the HiMask so that we can create the shuffle immediate.
+ int OffsetHiMask[4];
+ for (int i = 0; i != 4; ++i)
+ OffsetHiMask[i] = (HiMask[i] < 0 ? HiMask[i] : HiMask[i] - 4);
+
+ Shuffle = X86ISD::PSHUFHW;
+ ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
+ PermuteImm = getV4X86ShuffleImm(OffsetHiMask);
+ return true;
+ }
+ }
+ }
+
+ // Attempt to match against byte/bit shifts.
+ // FIXME: Add 512-bit support.
+ if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
+ (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
+ int ShiftAmt = matchVectorShuffleAsShift(ShuffleVT, Shuffle,
+ MaskScalarSizeInBits, Mask,
+ 0, Zeroable, Subtarget);
+ if (0 < ShiftAmt) {
+ PermuteImm = (unsigned)ShiftAmt;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Attempt to match a combined unary shuffle mask against supported binary
+// shuffle instructions.
+// TODO: Investigate sharing more of this with shuffle lowering.
+static bool matchBinaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
+ bool AllowFloatDomain, bool AllowIntDomain,
+ SDValue &V1, SDValue &V2, SDLoc &DL,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ unsigned &Shuffle, MVT &SrcVT, MVT &DstVT,
+ bool IsUnary) {
+ unsigned EltSizeInBits = MaskVT.getScalarSizeInBits();
+
+ if (MaskVT.is128BitVector()) {
+ if (isTargetShuffleEquivalent(Mask, {0, 0}) && AllowFloatDomain) {
+ V2 = V1;
+ Shuffle = X86ISD::MOVLHPS;
+ SrcVT = DstVT = MVT::v4f32;
+ return true;
+ }
+ if (isTargetShuffleEquivalent(Mask, {1, 1}) && AllowFloatDomain) {
+ V2 = V1;
+ Shuffle = X86ISD::MOVHLPS;
+ SrcVT = DstVT = MVT::v4f32;
+ return true;
+ }
+ if (isTargetShuffleEquivalent(Mask, {0, 3}) && Subtarget.hasSSE2() &&
+ (AllowFloatDomain || !Subtarget.hasSSE41())) {
+ std::swap(V1, V2);
+ Shuffle = X86ISD::MOVSD;
+ SrcVT = DstVT = MaskVT;
+ return true;
+ }
+ if (isTargetShuffleEquivalent(Mask, {4, 1, 2, 3}) &&
+ (AllowFloatDomain || !Subtarget.hasSSE41())) {
+ Shuffle = X86ISD::MOVSS;
+ SrcVT = DstVT = MaskVT;
+ return true;
+ }
+ }
+
+ // Attempt to match against either a unary or binary PACKSS/PACKUS shuffle.
+ // TODO add support for 256/512-bit types.
+ if ((MaskVT == MVT::v8i16 || MaskVT == MVT::v16i8) && Subtarget.hasSSE2()) {
+ if (matchVectorShuffleWithPACK(MaskVT, SrcVT, V1, V2, Shuffle, Mask, DAG,
+ Subtarget)) {
+ DstVT = MaskVT;
+ return true;
+ }
+ }
+
+ // Attempt to match against either a unary or binary UNPCKL/UNPCKH shuffle.
+ if ((MaskVT == MVT::v4f32 && Subtarget.hasSSE1()) ||
+ (MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
+ (MaskVT.is256BitVector() && 32 <= EltSizeInBits && Subtarget.hasAVX()) ||
+ (MaskVT.is256BitVector() && Subtarget.hasAVX2()) ||
+ (MaskVT.is512BitVector() && Subtarget.hasAVX512())) {
+ if (matchVectorShuffleWithUNPCK(MaskVT, V1, V2, Shuffle, IsUnary, Mask, DL,
+ DAG, Subtarget)) {
+ SrcVT = DstVT = MaskVT;
+ if (MaskVT.is256BitVector() && !Subtarget.hasAVX2())
+ SrcVT = DstVT = (32 == EltSizeInBits ? MVT::v8f32 : MVT::v4f64);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool matchBinaryPermuteVectorShuffle(MVT MaskVT, ArrayRef<int> Mask,
+ const APInt &Zeroable,
+ bool AllowFloatDomain,
+ bool AllowIntDomain,
+ SDValue &V1, SDValue &V2, SDLoc &DL,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ unsigned &Shuffle, MVT &ShuffleVT,
+ unsigned &PermuteImm) {
+ unsigned NumMaskElts = Mask.size();
+ unsigned EltSizeInBits = MaskVT.getScalarSizeInBits();
+
+ // Attempt to match against PALIGNR byte rotate.
+ if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSSE3()) ||
+ (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
+ int ByteRotation = matchVectorShuffleAsByteRotate(MaskVT, V1, V2, Mask);
+ if (0 < ByteRotation) {
+ Shuffle = X86ISD::PALIGNR;
+ ShuffleVT = MVT::getVectorVT(MVT::i8, MaskVT.getSizeInBits() / 8);
+ PermuteImm = ByteRotation;
+ return true;
+ }
+ }
+
+ // Attempt to combine to X86ISD::BLENDI.
+ if ((NumMaskElts <= 8 && ((Subtarget.hasSSE41() && MaskVT.is128BitVector()) ||
+ (Subtarget.hasAVX() && MaskVT.is256BitVector()))) ||
+ (MaskVT == MVT::v16i16 && Subtarget.hasAVX2())) {
+ uint64_t BlendMask = 0;
+ bool ForceV1Zero = false, ForceV2Zero = false;
+ SmallVector<int, 8> TargetMask(Mask.begin(), Mask.end());
+ if (matchVectorShuffleAsBlend(V1, V2, TargetMask, ForceV1Zero, ForceV2Zero,
+ BlendMask)) {
+ if (MaskVT == MVT::v16i16) {
+ // We can only use v16i16 PBLENDW if the lanes are repeated.
+ SmallVector<int, 8> RepeatedMask;
+ if (isRepeatedTargetShuffleMask(128, MaskVT, TargetMask,
+ RepeatedMask)) {
+ assert(RepeatedMask.size() == 8 &&
+ "Repeated mask size doesn't match!");
+ PermuteImm = 0;
+ for (int i = 0; i < 8; ++i)
+ if (RepeatedMask[i] >= 8)
+ PermuteImm |= 1 << i;
+ V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
+ V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
+ Shuffle = X86ISD::BLENDI;
+ ShuffleVT = MaskVT;
+ return true;
+ }
+ } else {
+ // Determine a type compatible with X86ISD::BLENDI.
+ ShuffleVT = MaskVT;
+ if (Subtarget.hasAVX2()) {
+ if (ShuffleVT == MVT::v4i64)
+ ShuffleVT = MVT::v8i32;
+ else if (ShuffleVT == MVT::v2i64)
+ ShuffleVT = MVT::v4i32;
+ } else {
+ if (ShuffleVT == MVT::v2i64 || ShuffleVT == MVT::v4i32)
+ ShuffleVT = MVT::v8i16;
+ else if (ShuffleVT == MVT::v4i64)
+ ShuffleVT = MVT::v4f64;
+ else if (ShuffleVT == MVT::v8i32)
+ ShuffleVT = MVT::v8f32;
+ }
+
+ if (!ShuffleVT.isFloatingPoint()) {
+ int Scale = EltSizeInBits / ShuffleVT.getScalarSizeInBits();
+ BlendMask =
+ scaleVectorShuffleBlendMask(BlendMask, NumMaskElts, Scale);
+ ShuffleVT = MVT::getIntegerVT(EltSizeInBits / Scale);
+ ShuffleVT = MVT::getVectorVT(ShuffleVT, NumMaskElts * Scale);
+ }
+
+ V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
+ V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
+ PermuteImm = (unsigned)BlendMask;
+ Shuffle = X86ISD::BLENDI;
+ return true;
+ }
+ }
+ }
+
+ // Attempt to combine to INSERTPS.
+ if (AllowFloatDomain && EltSizeInBits == 32 && Subtarget.hasSSE41() &&
+ MaskVT.is128BitVector()) {
+ if (Zeroable.getBoolValue() &&
+ matchVectorShuffleAsInsertPS(V1, V2, PermuteImm, Zeroable, Mask, DAG)) {
+ Shuffle = X86ISD::INSERTPS;
+ ShuffleVT = MVT::v4f32;
+ return true;
+ }
+ }
+
+ // Attempt to combine to SHUFPD.
+ if (AllowFloatDomain && EltSizeInBits == 64 &&
+ ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
+ (MaskVT.is256BitVector() && Subtarget.hasAVX()) ||
+ (MaskVT.is512BitVector() && Subtarget.hasAVX512()))) {
+ if (matchVectorShuffleWithSHUFPD(MaskVT, V1, V2, PermuteImm, Mask)) {
+ Shuffle = X86ISD::SHUFP;
+ ShuffleVT = MVT::getVectorVT(MVT::f64, MaskVT.getSizeInBits() / 64);
+ return true;
+ }
+ }
+
+ // Attempt to combine to SHUFPS.
+ if (AllowFloatDomain && EltSizeInBits == 32 &&
+ ((MaskVT.is128BitVector() && Subtarget.hasSSE1()) ||
+ (MaskVT.is256BitVector() && Subtarget.hasAVX()) ||
+ (MaskVT.is512BitVector() && Subtarget.hasAVX512()))) {
+ SmallVector<int, 4> RepeatedMask;
+ if (isRepeatedTargetShuffleMask(128, MaskVT, Mask, RepeatedMask)) {
+ // Match each half of the repeated mask, to determine if its just
+ // referencing one of the vectors, is zeroable or entirely undef.
+ auto MatchHalf = [&](unsigned Offset, int &S0, int &S1) {
+ int M0 = RepeatedMask[Offset];
+ int M1 = RepeatedMask[Offset + 1];
+
+ if (isUndefInRange(RepeatedMask, Offset, 2)) {
+ return DAG.getUNDEF(MaskVT);
+ } else if (isUndefOrZeroInRange(RepeatedMask, Offset, 2)) {
+ S0 = (SM_SentinelUndef == M0 ? -1 : 0);
+ S1 = (SM_SentinelUndef == M1 ? -1 : 1);
+ return getZeroVector(MaskVT, Subtarget, DAG, DL);
+ } else if (isUndefOrInRange(M0, 0, 4) && isUndefOrInRange(M1, 0, 4)) {
+ S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
+ S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
+ return V1;
+ } else if (isUndefOrInRange(M0, 4, 8) && isUndefOrInRange(M1, 4, 8)) {
+ S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
+ S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
+ return V2;
+ }
+
+ return SDValue();
+ };
+
+ int ShufMask[4] = {-1, -1, -1, -1};
+ SDValue Lo = MatchHalf(0, ShufMask[0], ShufMask[1]);
+ SDValue Hi = MatchHalf(2, ShufMask[2], ShufMask[3]);
+
+ if (Lo && Hi) {
+ V1 = Lo;
+ V2 = Hi;
+ Shuffle = X86ISD::SHUFP;
+ ShuffleVT = MVT::getVectorVT(MVT::f32, MaskVT.getSizeInBits() / 32);
+ PermuteImm = getV4X86ShuffleImm(ShufMask);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+/// \brief Combine an arbitrary chain of shuffles into a single instruction if
+/// possible.
+///
+/// This is the leaf of the recursive combine below. When we have found some
+/// chain of single-use x86 shuffle instructions and accumulated the combined
+/// shuffle mask represented by them, this will try to pattern match that mask
+/// into either a single instruction if there is a special purpose instruction
+/// for this operation, or into a PSHUFB instruction which is a fully general
+/// instruction but should only be used to replace chains over a certain depth.
+static SDValue combineX86ShuffleChain(ArrayRef<SDValue> Inputs, SDValue Root,
+ ArrayRef<int> BaseMask, int Depth,
+ bool HasVariableMask, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ assert(!BaseMask.empty() && "Cannot combine an empty shuffle mask!");
+ assert((Inputs.size() == 1 || Inputs.size() == 2) &&
+ "Unexpected number of shuffle inputs!");
+
+ // Find the inputs that enter the chain. Note that multiple uses are OK
+ // here, we're not going to remove the operands we find.
+ bool UnaryShuffle = (Inputs.size() == 1);
+ SDValue V1 = peekThroughBitcasts(Inputs[0]);
+ SDValue V2 = (UnaryShuffle ? DAG.getUNDEF(V1.getValueType())
+ : peekThroughBitcasts(Inputs[1]));
+
+ MVT VT1 = V1.getSimpleValueType();
+ MVT VT2 = V2.getSimpleValueType();
+ MVT RootVT = Root.getSimpleValueType();
+ assert(VT1.getSizeInBits() == RootVT.getSizeInBits() &&
+ VT2.getSizeInBits() == RootVT.getSizeInBits() &&
+ "Vector size mismatch");
+
+ SDLoc DL(Root);
+ SDValue Res;
+
+ unsigned NumBaseMaskElts = BaseMask.size();
+ if (NumBaseMaskElts == 1) {
+ assert(BaseMask[0] == 0 && "Invalid shuffle index found!");
+ return DAG.getBitcast(RootVT, V1);
+ }
+
+ unsigned RootSizeInBits = RootVT.getSizeInBits();
+ unsigned NumRootElts = RootVT.getVectorNumElements();
+ unsigned BaseMaskEltSizeInBits = RootSizeInBits / NumBaseMaskElts;
+ bool FloatDomain = VT1.isFloatingPoint() || VT2.isFloatingPoint() ||
+ (RootVT.is256BitVector() && !Subtarget.hasAVX2());
+
+ // Don't combine if we are a AVX512/EVEX target and the mask element size
+ // is different from the root element size - this would prevent writemasks
+ // from being reused.
+ // TODO - this currently prevents all lane shuffles from occurring.
+ // TODO - check for writemasks usage instead of always preventing combining.
+ // TODO - attempt to narrow Mask back to writemask size.
+ bool IsEVEXShuffle =
+ RootSizeInBits == 512 || (Subtarget.hasVLX() && RootSizeInBits >= 128);
+
+ // TODO - handle 128/256-bit lane shuffles of 512-bit vectors.
+
+ // Handle 128-bit lane shuffles of 256-bit vectors.
+ // If we have AVX2, prefer to use VPERMQ/VPERMPD for unary shuffles unless
+ // we need to use the zeroing feature.
+ // TODO - this should support binary shuffles.
+ if (UnaryShuffle && RootVT.is256BitVector() && NumBaseMaskElts == 2 &&
+ !(Subtarget.hasAVX2() && BaseMask[0] >= -1 && BaseMask[1] >= -1) &&
+ !isSequentialOrUndefOrZeroInRange(BaseMask, 0, 2, 0)) {
+ if (Depth == 1 && Root.getOpcode() == X86ISD::VPERM2X128)
+ return SDValue(); // Nothing to do!
+ MVT ShuffleVT = (FloatDomain ? MVT::v4f64 : MVT::v4i64);
+ unsigned PermMask = 0;
+ PermMask |= ((BaseMask[0] < 0 ? 0x8 : (BaseMask[0] & 1)) << 0);
+ PermMask |= ((BaseMask[1] < 0 ? 0x8 : (BaseMask[1] & 1)) << 4);
+
+ Res = DAG.getBitcast(ShuffleVT, V1);
+ DCI.AddToWorklist(Res.getNode());
+ Res = DAG.getNode(X86ISD::VPERM2X128, DL, ShuffleVT, Res,
+ DAG.getUNDEF(ShuffleVT),
+ DAG.getConstant(PermMask, DL, MVT::i8));
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ // For masks that have been widened to 128-bit elements or more,
+ // narrow back down to 64-bit elements.
+ SmallVector<int, 64> Mask;
+ if (BaseMaskEltSizeInBits > 64) {
+ assert((BaseMaskEltSizeInBits % 64) == 0 && "Illegal mask size");
+ int MaskScale = BaseMaskEltSizeInBits / 64;
+ scaleShuffleMask<int>(MaskScale, BaseMask, Mask);
+ } else {
+ Mask = SmallVector<int, 64>(BaseMask.begin(), BaseMask.end());
+ }
+
+ unsigned NumMaskElts = Mask.size();
+ unsigned MaskEltSizeInBits = RootSizeInBits / NumMaskElts;
+
+ // Determine the effective mask value type.
+ FloatDomain &= (32 <= MaskEltSizeInBits);
+ MVT MaskVT = FloatDomain ? MVT::getFloatingPointVT(MaskEltSizeInBits)
+ : MVT::getIntegerVT(MaskEltSizeInBits);
+ MaskVT = MVT::getVectorVT(MaskVT, NumMaskElts);
+
+ // Only allow legal mask types.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(MaskVT))
+ return SDValue();
+
+ // Attempt to match the mask against known shuffle patterns.
+ MVT ShuffleSrcVT, ShuffleVT;
+ unsigned Shuffle, PermuteImm;
+
+ // Which shuffle domains are permitted?
+ // Permit domain crossing at higher combine depths.
+ bool AllowFloatDomain = FloatDomain || (Depth > 3);
+ bool AllowIntDomain = (!FloatDomain || (Depth > 3)) && Subtarget.hasSSE2() &&
+ (!MaskVT.is256BitVector() || Subtarget.hasAVX2());
+
+ // Determine zeroable mask elements.
+ APInt Zeroable(NumMaskElts, 0);
+ for (unsigned i = 0; i != NumMaskElts; ++i)
+ if (isUndefOrZero(Mask[i]))
+ Zeroable.setBit(i);
+
+ if (UnaryShuffle) {
+ // If we are shuffling a X86ISD::VZEXT_LOAD then we can use the load
+ // directly if we don't shuffle the lower element and we shuffle the upper
+ // (zero) elements within themselves.
+ if (V1.getOpcode() == X86ISD::VZEXT_LOAD &&
+ (V1.getScalarValueSizeInBits() % MaskEltSizeInBits) == 0) {
+ unsigned Scale = V1.getScalarValueSizeInBits() / MaskEltSizeInBits;
+ ArrayRef<int> HiMask(Mask.data() + Scale, NumMaskElts - Scale);
+ if (isSequentialOrUndefInRange(Mask, 0, Scale, 0) &&
+ isUndefOrZeroOrInRange(HiMask, Scale, NumMaskElts)) {
+ return DAG.getBitcast(RootVT, V1);
+ }
+ }
+
+ if (matchUnaryVectorShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain,
+ V1, DL, DAG, Subtarget, Shuffle, ShuffleSrcVT,
+ ShuffleVT) &&
+ (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
+ if (Depth == 1 && Root.getOpcode() == Shuffle)
+ return SDValue(); // Nothing to do!
+ Res = DAG.getBitcast(ShuffleSrcVT, V1);
+ DCI.AddToWorklist(Res.getNode());
+ Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res);
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ if (matchUnaryPermuteVectorShuffle(MaskVT, Mask, Zeroable, AllowFloatDomain,
+ AllowIntDomain, Subtarget, Shuffle,
+ ShuffleVT, PermuteImm) &&
+ (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
+ if (Depth == 1 && Root.getOpcode() == Shuffle)
+ return SDValue(); // Nothing to do!
+ Res = DAG.getBitcast(ShuffleVT, V1);
+ DCI.AddToWorklist(Res.getNode());
+ Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res,
+ DAG.getConstant(PermuteImm, DL, MVT::i8));
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+ }
+
+ if (matchBinaryVectorShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain,
+ V1, V2, DL, DAG, Subtarget, Shuffle,
+ ShuffleSrcVT, ShuffleVT, UnaryShuffle) &&
+ (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
+ if (Depth == 1 && Root.getOpcode() == Shuffle)
+ return SDValue(); // Nothing to do!
+ V1 = DAG.getBitcast(ShuffleSrcVT, V1);
+ DCI.AddToWorklist(V1.getNode());
+ V2 = DAG.getBitcast(ShuffleSrcVT, V2);
+ DCI.AddToWorklist(V2.getNode());
+ Res = DAG.getNode(Shuffle, DL, ShuffleVT, V1, V2);
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ if (matchBinaryPermuteVectorShuffle(MaskVT, Mask, Zeroable, AllowFloatDomain,
+ AllowIntDomain, V1, V2, DL, DAG,
+ Subtarget, Shuffle, ShuffleVT,
+ PermuteImm) &&
+ (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
+ if (Depth == 1 && Root.getOpcode() == Shuffle)
+ return SDValue(); // Nothing to do!
+ V1 = DAG.getBitcast(ShuffleVT, V1);
+ DCI.AddToWorklist(V1.getNode());
+ V2 = DAG.getBitcast(ShuffleVT, V2);
+ DCI.AddToWorklist(V2.getNode());
+ Res = DAG.getNode(Shuffle, DL, ShuffleVT, V1, V2,
+ DAG.getConstant(PermuteImm, DL, MVT::i8));
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ // Typically from here on, we need an integer version of MaskVT.
+ MVT IntMaskVT = MVT::getIntegerVT(MaskEltSizeInBits);
+ IntMaskVT = MVT::getVectorVT(IntMaskVT, NumMaskElts);
+
+ // Annoyingly, SSE4A instructions don't map into the above match helpers.
+ if (Subtarget.hasSSE4A() && AllowIntDomain && RootSizeInBits == 128) {
+ uint64_t BitLen, BitIdx;
+ if (matchVectorShuffleAsEXTRQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx,
+ Zeroable)) {
+ if (Depth == 1 && Root.getOpcode() == X86ISD::EXTRQI)
+ return SDValue(); // Nothing to do!
+ V1 = DAG.getBitcast(IntMaskVT, V1);
+ DCI.AddToWorklist(V1.getNode());
+ Res = DAG.getNode(X86ISD::EXTRQI, DL, IntMaskVT, V1,
+ DAG.getConstant(BitLen, DL, MVT::i8),
+ DAG.getConstant(BitIdx, DL, MVT::i8));
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ if (matchVectorShuffleAsINSERTQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx)) {
+ if (Depth == 1 && Root.getOpcode() == X86ISD::INSERTQI)
+ return SDValue(); // Nothing to do!
+ V1 = DAG.getBitcast(IntMaskVT, V1);
+ DCI.AddToWorklist(V1.getNode());
+ V2 = DAG.getBitcast(IntMaskVT, V2);
+ DCI.AddToWorklist(V2.getNode());
+ Res = DAG.getNode(X86ISD::INSERTQI, DL, IntMaskVT, V1, V2,
+ DAG.getConstant(BitLen, DL, MVT::i8),
+ DAG.getConstant(BitIdx, DL, MVT::i8));
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+ }
+
+ // Don't try to re-form single instruction chains under any circumstances now
+ // that we've done encoding canonicalization for them.
+ if (Depth < 2)
+ return SDValue();
+
+ // Depth threshold above which we can efficiently use variable mask shuffles.
+ int VariableShuffleDepth = Subtarget.hasFastVariableShuffle() ? 2 : 3;
+ bool AllowVariableMask = (Depth >= VariableShuffleDepth) || HasVariableMask;
+
+ bool MaskContainsZeros =
+ any_of(Mask, [](int M) { return M == SM_SentinelZero; });
+
+ if (is128BitLaneCrossingShuffleMask(MaskVT, Mask)) {
+ // If we have a single input lane-crossing shuffle then lower to VPERMV.
+ if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
+ ((Subtarget.hasAVX2() &&
+ (MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
+ (Subtarget.hasAVX512() &&
+ (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
+ MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
+ (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
+ (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
+ (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
+ (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
+ SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
+ DCI.AddToWorklist(VPermMask.getNode());
+ Res = DAG.getBitcast(MaskVT, V1);
+ DCI.AddToWorklist(Res.getNode());
+ Res = DAG.getNode(X86ISD::VPERMV, DL, MaskVT, VPermMask, Res);
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ // Lower a unary+zero lane-crossing shuffle as VPERMV3 with a zero
+ // vector as the second source.
+ if (UnaryShuffle && AllowVariableMask &&
+ ((Subtarget.hasAVX512() &&
+ (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
+ MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
+ (Subtarget.hasVLX() &&
+ (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
+ MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
+ (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
+ (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
+ (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
+ (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
+ // Adjust shuffle mask - replace SM_SentinelZero with second source index.
+ for (unsigned i = 0; i != NumMaskElts; ++i)
+ if (Mask[i] == SM_SentinelZero)
+ Mask[i] = NumMaskElts + i;
+
+ SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
+ DCI.AddToWorklist(VPermMask.getNode());
+ Res = DAG.getBitcast(MaskVT, V1);
+ DCI.AddToWorklist(Res.getNode());
+ SDValue Zero = getZeroVector(MaskVT, Subtarget, DAG, DL);
+ DCI.AddToWorklist(Zero.getNode());
+ Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, Res, VPermMask, Zero);
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ // If we have a dual input lane-crossing shuffle then lower to VPERMV3.
+ if (AllowVariableMask && !MaskContainsZeros &&
+ ((Subtarget.hasAVX512() &&
+ (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
+ MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
+ (Subtarget.hasVLX() &&
+ (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
+ MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
+ (Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
+ (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
+ (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
+ (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
+ SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
+ DCI.AddToWorklist(VPermMask.getNode());
+ V1 = DAG.getBitcast(MaskVT, V1);
+ DCI.AddToWorklist(V1.getNode());
+ V2 = DAG.getBitcast(MaskVT, V2);
+ DCI.AddToWorklist(V2.getNode());
+ Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, V1, VPermMask, V2);
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+ return SDValue();
+ }
+
+ // See if we can combine a single input shuffle with zeros to a bit-mask,
+ // which is much simpler than any shuffle.
+ if (UnaryShuffle && MaskContainsZeros && AllowVariableMask &&
+ isSequentialOrUndefOrZeroInRange(Mask, 0, NumMaskElts, 0) &&
+ DAG.getTargetLoweringInfo().isTypeLegal(MaskVT)) {
+ APInt Zero = APInt::getNullValue(MaskEltSizeInBits);
+ APInt AllOnes = APInt::getAllOnesValue(MaskEltSizeInBits);
+ APInt UndefElts(NumMaskElts, 0);
+ SmallVector<APInt, 64> EltBits(NumMaskElts, Zero);
+ for (unsigned i = 0; i != NumMaskElts; ++i) {
+ int M = Mask[i];
+ if (M == SM_SentinelUndef) {
+ UndefElts.setBit(i);
+ continue;
+ }
+ if (M == SM_SentinelZero)
+ continue;
+ EltBits[i] = AllOnes;
+ }
+ SDValue BitMask = getConstVector(EltBits, UndefElts, MaskVT, DAG, DL);
+ DCI.AddToWorklist(BitMask.getNode());
+ Res = DAG.getBitcast(MaskVT, V1);
+ DCI.AddToWorklist(Res.getNode());
+ unsigned AndOpcode =
+ FloatDomain ? unsigned(X86ISD::FAND) : unsigned(ISD::AND);
+ Res = DAG.getNode(AndOpcode, DL, MaskVT, Res, BitMask);
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ // If we have a single input shuffle with different shuffle patterns in the
+ // the 128-bit lanes use the variable mask to VPERMILPS.
+ // TODO Combine other mask types at higher depths.
+ if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
+ ((MaskVT == MVT::v8f32 && Subtarget.hasAVX()) ||
+ (MaskVT == MVT::v16f32 && Subtarget.hasAVX512()))) {
+ SmallVector<SDValue, 16> VPermIdx;
+ for (int M : Mask) {
+ SDValue Idx =
+ M < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(M % 4, DL, MVT::i32);
+ VPermIdx.push_back(Idx);
+ }
+ SDValue VPermMask = DAG.getBuildVector(IntMaskVT, DL, VPermIdx);
+ DCI.AddToWorklist(VPermMask.getNode());
+ Res = DAG.getBitcast(MaskVT, V1);
+ DCI.AddToWorklist(Res.getNode());
+ Res = DAG.getNode(X86ISD::VPERMILPV, DL, MaskVT, Res, VPermMask);
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ // With XOP, binary shuffles of 128/256-bit floating point vectors can combine
+ // to VPERMIL2PD/VPERMIL2PS.
+ if (AllowVariableMask && Subtarget.hasXOP() &&
+ (MaskVT == MVT::v2f64 || MaskVT == MVT::v4f64 || MaskVT == MVT::v4f32 ||
+ MaskVT == MVT::v8f32)) {
+ // VPERMIL2 Operation.
+ // Bits[3] - Match Bit.
+ // Bits[2:1] - (Per Lane) PD Shuffle Mask.
+ // Bits[2:0] - (Per Lane) PS Shuffle Mask.
+ unsigned NumLanes = MaskVT.getSizeInBits() / 128;
+ unsigned NumEltsPerLane = NumMaskElts / NumLanes;
+ SmallVector<int, 8> VPerm2Idx;
+ unsigned M2ZImm = 0;
+ for (int M : Mask) {
+ if (M == SM_SentinelUndef) {
+ VPerm2Idx.push_back(-1);
+ continue;
+ }
+ if (M == SM_SentinelZero) {
+ M2ZImm = 2;
+ VPerm2Idx.push_back(8);
+ continue;
+ }
+ int Index = (M % NumEltsPerLane) + ((M / NumMaskElts) * NumEltsPerLane);
+ Index = (MaskVT.getScalarSizeInBits() == 64 ? Index << 1 : Index);
+ VPerm2Idx.push_back(Index);
+ }
+ V1 = DAG.getBitcast(MaskVT, V1);
+ DCI.AddToWorklist(V1.getNode());
+ V2 = DAG.getBitcast(MaskVT, V2);
+ DCI.AddToWorklist(V2.getNode());
+ SDValue VPerm2MaskOp = getConstVector(VPerm2Idx, IntMaskVT, DAG, DL, true);
+ DCI.AddToWorklist(VPerm2MaskOp.getNode());
+ Res = DAG.getNode(X86ISD::VPERMIL2, DL, MaskVT, V1, V2, VPerm2MaskOp,
+ DAG.getConstant(M2ZImm, DL, MVT::i8));
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ // If we have 3 or more shuffle instructions or a chain involving a variable
+ // mask, we can replace them with a single PSHUFB instruction profitably.
+ // Intel's manuals suggest only using PSHUFB if doing so replacing 5
+ // instructions, but in practice PSHUFB tends to be *very* fast so we're
+ // more aggressive.
+ if (UnaryShuffle && AllowVariableMask &&
+ ((RootVT.is128BitVector() && Subtarget.hasSSSE3()) ||
+ (RootVT.is256BitVector() && Subtarget.hasAVX2()) ||
+ (RootVT.is512BitVector() && Subtarget.hasBWI()))) {
+ SmallVector<SDValue, 16> PSHUFBMask;
+ int NumBytes = RootVT.getSizeInBits() / 8;
+ int Ratio = NumBytes / NumMaskElts;
+ for (int i = 0; i < NumBytes; ++i) {
+ int M = Mask[i / Ratio];
+ if (M == SM_SentinelUndef) {
+ PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
+ continue;
+ }
+ if (M == SM_SentinelZero) {
+ PSHUFBMask.push_back(DAG.getConstant(255, DL, MVT::i8));
+ continue;
+ }
+ M = Ratio * M + i % Ratio;
+ assert((M / 16) == (i / 16) && "Lane crossing detected");
+ PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
+ }
+ MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
+ Res = DAG.getBitcast(ByteVT, V1);
+ DCI.AddToWorklist(Res.getNode());
+ SDValue PSHUFBMaskOp = DAG.getBuildVector(ByteVT, DL, PSHUFBMask);
+ DCI.AddToWorklist(PSHUFBMaskOp.getNode());
+ Res = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Res, PSHUFBMaskOp);
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ // With XOP, if we have a 128-bit binary input shuffle we can always combine
+ // to VPPERM. We match the depth requirement of PSHUFB - VPPERM is never
+ // slower than PSHUFB on targets that support both.
+ if (AllowVariableMask && RootVT.is128BitVector() && Subtarget.hasXOP()) {
+ // VPPERM Mask Operation
+ // Bits[4:0] - Byte Index (0 - 31)
+ // Bits[7:5] - Permute Operation (0 - Source byte, 4 - ZERO)
+ SmallVector<SDValue, 16> VPPERMMask;
+ int NumBytes = 16;
+ int Ratio = NumBytes / NumMaskElts;
+ for (int i = 0; i < NumBytes; ++i) {
+ int M = Mask[i / Ratio];
+ if (M == SM_SentinelUndef) {
+ VPPERMMask.push_back(DAG.getUNDEF(MVT::i8));
+ continue;
+ }
+ if (M == SM_SentinelZero) {
+ VPPERMMask.push_back(DAG.getConstant(128, DL, MVT::i8));
+ continue;
+ }
+ M = Ratio * M + i % Ratio;
+ VPPERMMask.push_back(DAG.getConstant(M, DL, MVT::i8));
+ }
+ MVT ByteVT = MVT::v16i8;
+ V1 = DAG.getBitcast(ByteVT, V1);
+ DCI.AddToWorklist(V1.getNode());
+ V2 = DAG.getBitcast(ByteVT, V2);
+ DCI.AddToWorklist(V2.getNode());
+ SDValue VPPERMMaskOp = DAG.getBuildVector(ByteVT, DL, VPPERMMask);
+ DCI.AddToWorklist(VPPERMMaskOp.getNode());
+ Res = DAG.getNode(X86ISD::VPPERM, DL, ByteVT, V1, V2, VPPERMMaskOp);
+ DCI.AddToWorklist(Res.getNode());
+ return DAG.getBitcast(RootVT, Res);
+ }
+
+ // Failed to find any combines.
+ return SDValue();
+}
+
+// Attempt to constant fold all of the constant source ops.
+// Returns true if the entire shuffle is folded to a constant.
+// TODO: Extend this to merge multiple constant Ops and update the mask.
+static SDValue combineX86ShufflesConstants(const SmallVectorImpl<SDValue> &Ops,
+ ArrayRef<int> Mask, SDValue Root,
+ bool HasVariableMask,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ MVT VT = Root.getSimpleValueType();
+
+ unsigned SizeInBits = VT.getSizeInBits();
+ unsigned NumMaskElts = Mask.size();
+ unsigned MaskSizeInBits = SizeInBits / NumMaskElts;
+ unsigned NumOps = Ops.size();
+
+ // Extract constant bits from each source op.
+ bool OneUseConstantOp = false;
+ SmallVector<APInt, 16> UndefEltsOps(NumOps);
+ SmallVector<SmallVector<APInt, 16>, 16> RawBitsOps(NumOps);
+ for (unsigned i = 0; i != NumOps; ++i) {
+ SDValue SrcOp = Ops[i];
+ OneUseConstantOp |= SrcOp.hasOneUse();
+ if (!getTargetConstantBitsFromNode(SrcOp, MaskSizeInBits, UndefEltsOps[i],
+ RawBitsOps[i]))
+ return SDValue();
+ }
+
+ // Only fold if at least one of the constants is only used once or
+ // the combined shuffle has included a variable mask shuffle, this
+ // is to avoid constant pool bloat.
+ if (!OneUseConstantOp && !HasVariableMask)
+ return SDValue();
+
+ // Shuffle the constant bits according to the mask.
+ APInt UndefElts(NumMaskElts, 0);
+ APInt ZeroElts(NumMaskElts, 0);
+ APInt ConstantElts(NumMaskElts, 0);
+ SmallVector<APInt, 8> ConstantBitData(NumMaskElts,
+ APInt::getNullValue(MaskSizeInBits));
+ for (unsigned i = 0; i != NumMaskElts; ++i) {
+ int M = Mask[i];
+ if (M == SM_SentinelUndef) {
+ UndefElts.setBit(i);
+ continue;
+ } else if (M == SM_SentinelZero) {
+ ZeroElts.setBit(i);
+ continue;
+ }
+ assert(0 <= M && M < (int)(NumMaskElts * NumOps));
+
+ unsigned SrcOpIdx = (unsigned)M / NumMaskElts;
+ unsigned SrcMaskIdx = (unsigned)M % NumMaskElts;
+
+ auto &SrcUndefElts = UndefEltsOps[SrcOpIdx];
+ if (SrcUndefElts[SrcMaskIdx]) {
+ UndefElts.setBit(i);
+ continue;
+ }
+
+ auto &SrcEltBits = RawBitsOps[SrcOpIdx];
+ APInt &Bits = SrcEltBits[SrcMaskIdx];
+ if (!Bits) {
+ ZeroElts.setBit(i);
+ continue;
+ }
+
+ ConstantElts.setBit(i);
+ ConstantBitData[i] = Bits;
+ }
+ assert((UndefElts | ZeroElts | ConstantElts).isAllOnesValue());
+
+ // Create the constant data.
+ MVT MaskSVT;
+ if (VT.isFloatingPoint() && (MaskSizeInBits == 32 || MaskSizeInBits == 64))
+ MaskSVT = MVT::getFloatingPointVT(MaskSizeInBits);
+ else
+ MaskSVT = MVT::getIntegerVT(MaskSizeInBits);
+
+ MVT MaskVT = MVT::getVectorVT(MaskSVT, NumMaskElts);
+
+ SDLoc DL(Root);
+ SDValue CstOp = getConstVector(ConstantBitData, UndefElts, MaskVT, DAG, DL);
+ DCI.AddToWorklist(CstOp.getNode());
+ return DAG.getBitcast(VT, CstOp);
+}
+
+/// \brief Fully generic combining of x86 shuffle instructions.
+///
+/// This should be the last combine run over the x86 shuffle instructions. Once
+/// they have been fully optimized, this will recursively consider all chains
+/// of single-use shuffle instructions, build a generic model of the cumulative
+/// shuffle operation, and check for simpler instructions which implement this
+/// operation. We use this primarily for two purposes:
+///
+/// 1) Collapse generic shuffles to specialized single instructions when
+/// equivalent. In most cases, this is just an encoding size win, but
+/// sometimes we will collapse multiple generic shuffles into a single
+/// special-purpose shuffle.
+/// 2) Look for sequences of shuffle instructions with 3 or more total
+/// instructions, and replace them with the slightly more expensive SSSE3
+/// PSHUFB instruction if available. We do this as the last combining step
+/// to ensure we avoid using PSHUFB if we can implement the shuffle with
+/// a suitable short sequence of other instructions. The PSHUFB will either
+/// use a register or have to read from memory and so is slightly (but only
+/// slightly) more expensive than the other shuffle instructions.
+///
+/// Because this is inherently a quadratic operation (for each shuffle in
+/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
+/// This should never be an issue in practice as the shuffle lowering doesn't
+/// produce sequences of more than 8 instructions.
+///
+/// FIXME: We will currently miss some cases where the redundant shuffling
+/// would simplify under the threshold for PSHUFB formation because of
+/// combine-ordering. To fix this, we should do the redundant instruction
+/// combining in this recursive walk.
+static SDValue combineX86ShufflesRecursively(
+ ArrayRef<SDValue> SrcOps, int SrcOpIndex, SDValue Root,
+ ArrayRef<int> RootMask, ArrayRef<const SDNode *> SrcNodes, int Depth,
+ bool HasVariableMask, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget &Subtarget) {
+ // Bound the depth of our recursive combine because this is ultimately
+ // quadratic in nature.
+ if (Depth > 8)
+ return SDValue();
+
+ // Directly rip through bitcasts to find the underlying operand.
+ SDValue Op = SrcOps[SrcOpIndex];
+ Op = peekThroughOneUseBitcasts(Op);
+
+ MVT VT = Op.getSimpleValueType();
+ if (!VT.isVector())
+ return SDValue(); // Bail if we hit a non-vector.
+
+ assert(Root.getSimpleValueType().isVector() &&
+ "Shuffles operate on vector types!");
+ assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
+ "Can only combine shuffles of the same vector register size.");
+
+ // Extract target shuffle mask and resolve sentinels and inputs.
+ SmallVector<int, 64> OpMask;
+ SmallVector<SDValue, 2> OpInputs;
+ if (!resolveTargetShuffleInputs(Op, OpInputs, OpMask, DAG))
+ return SDValue();
+
+ assert(OpInputs.size() <= 2 && "Too many shuffle inputs");
+ SDValue Input0 = (OpInputs.size() > 0 ? OpInputs[0] : SDValue());
+ SDValue Input1 = (OpInputs.size() > 1 ? OpInputs[1] : SDValue());
+
+ // Add the inputs to the Ops list, avoiding duplicates.
+ SmallVector<SDValue, 16> Ops(SrcOps.begin(), SrcOps.end());
+
+ int InputIdx0 = -1, InputIdx1 = -1;
+ for (int i = 0, e = Ops.size(); i < e; ++i) {
+ SDValue BC = peekThroughBitcasts(Ops[i]);
+ if (Input0 && BC == peekThroughBitcasts(Input0))
+ InputIdx0 = i;
+ if (Input1 && BC == peekThroughBitcasts(Input1))
+ InputIdx1 = i;
+ }
+
+ if (Input0 && InputIdx0 < 0) {
+ InputIdx0 = SrcOpIndex;
+ Ops[SrcOpIndex] = Input0;
+ }
+ if (Input1 && InputIdx1 < 0) {
+ InputIdx1 = Ops.size();
+ Ops.push_back(Input1);
+ }
+
+ assert(((RootMask.size() > OpMask.size() &&
+ RootMask.size() % OpMask.size() == 0) ||
+ (OpMask.size() > RootMask.size() &&
+ OpMask.size() % RootMask.size() == 0) ||
+ OpMask.size() == RootMask.size()) &&
+ "The smaller number of elements must divide the larger.");
+
+ // This function can be performance-critical, so we rely on the power-of-2
+ // knowledge that we have about the mask sizes to replace div/rem ops with
+ // bit-masks and shifts.
+ assert(isPowerOf2_32(RootMask.size()) && "Non-power-of-2 shuffle mask sizes");
+ assert(isPowerOf2_32(OpMask.size()) && "Non-power-of-2 shuffle mask sizes");
+ unsigned RootMaskSizeLog2 = countTrailingZeros(RootMask.size());
+ unsigned OpMaskSizeLog2 = countTrailingZeros(OpMask.size());
+
+ unsigned MaskWidth = std::max<unsigned>(OpMask.size(), RootMask.size());
+ unsigned RootRatio = std::max<unsigned>(1, OpMask.size() >> RootMaskSizeLog2);
+ unsigned OpRatio = std::max<unsigned>(1, RootMask.size() >> OpMaskSizeLog2);
+ assert((RootRatio == 1 || OpRatio == 1) &&
+ "Must not have a ratio for both incoming and op masks!");
+
+ assert(isPowerOf2_32(MaskWidth) && "Non-power-of-2 shuffle mask sizes");
+ assert(isPowerOf2_32(RootRatio) && "Non-power-of-2 shuffle mask sizes");
+ assert(isPowerOf2_32(OpRatio) && "Non-power-of-2 shuffle mask sizes");
+ unsigned RootRatioLog2 = countTrailingZeros(RootRatio);
+ unsigned OpRatioLog2 = countTrailingZeros(OpRatio);
+
+ SmallVector<int, 64> Mask(MaskWidth, SM_SentinelUndef);
+
+ // Merge this shuffle operation's mask into our accumulated mask. Note that
+ // this shuffle's mask will be the first applied to the input, followed by the
+ // root mask to get us all the way to the root value arrangement. The reason
+ // for this order is that we are recursing up the operation chain.
+ for (unsigned i = 0; i < MaskWidth; ++i) {
+ unsigned RootIdx = i >> RootRatioLog2;
+ if (RootMask[RootIdx] < 0) {
+ // This is a zero or undef lane, we're done.
+ Mask[i] = RootMask[RootIdx];
+ continue;
+ }
+
+ unsigned RootMaskedIdx =
+ RootRatio == 1
+ ? RootMask[RootIdx]
+ : (RootMask[RootIdx] << RootRatioLog2) + (i & (RootRatio - 1));
+
+ // Just insert the scaled root mask value if it references an input other
+ // than the SrcOp we're currently inserting.
+ if ((RootMaskedIdx < (SrcOpIndex * MaskWidth)) ||
+ (((SrcOpIndex + 1) * MaskWidth) <= RootMaskedIdx)) {
+ Mask[i] = RootMaskedIdx;
+ continue;
+ }
+
+ RootMaskedIdx = RootMaskedIdx & (MaskWidth - 1);
+ unsigned OpIdx = RootMaskedIdx >> OpRatioLog2;
+ if (OpMask[OpIdx] < 0) {
+ // The incoming lanes are zero or undef, it doesn't matter which ones we
+ // are using.
+ Mask[i] = OpMask[OpIdx];
+ continue;
+ }
+
+ // Ok, we have non-zero lanes, map them through to one of the Op's inputs.
+ unsigned OpMaskedIdx =
+ OpRatio == 1
+ ? OpMask[OpIdx]
+ : (OpMask[OpIdx] << OpRatioLog2) + (RootMaskedIdx & (OpRatio - 1));
+
+ OpMaskedIdx = OpMaskedIdx & (MaskWidth - 1);
+ if (OpMask[OpIdx] < (int)OpMask.size()) {
+ assert(0 <= InputIdx0 && "Unknown target shuffle input");
+ OpMaskedIdx += InputIdx0 * MaskWidth;
+ } else {
+ assert(0 <= InputIdx1 && "Unknown target shuffle input");
+ OpMaskedIdx += InputIdx1 * MaskWidth;
+ }
+
+ Mask[i] = OpMaskedIdx;
+ }
+
+ // Handle the all undef/zero cases early.
+ if (all_of(Mask, [](int Idx) { return Idx == SM_SentinelUndef; }))
+ return DAG.getUNDEF(Root.getValueType());
+
+ // TODO - should we handle the mixed zero/undef case as well? Just returning
+ // a zero mask will lose information on undef elements possibly reducing
+ // future combine possibilities.
+ if (all_of(Mask, [](int Idx) { return Idx < 0; }))
+ return getZeroVector(Root.getSimpleValueType(), Subtarget, DAG,
+ SDLoc(Root));
+
+ // Remove unused shuffle source ops.
+ resolveTargetShuffleInputsAndMask(Ops, Mask);
+ assert(!Ops.empty() && "Shuffle with no inputs detected");
+
+ HasVariableMask |= isTargetShuffleVariableMask(Op.getOpcode());
+
+ // Update the list of shuffle nodes that have been combined so far.
+ SmallVector<const SDNode *, 16> CombinedNodes(SrcNodes.begin(),
+ SrcNodes.end());
+ CombinedNodes.push_back(Op.getNode());
+
+ // See if we can recurse into each shuffle source op (if it's a target
+ // shuffle). The source op should only be combined if it either has a
+ // single use (i.e. current Op) or all its users have already been combined.
+ for (int i = 0, e = Ops.size(); i < e; ++i)
+ if (Ops[i].getNode()->hasOneUse() ||
+ SDNode::areOnlyUsersOf(CombinedNodes, Ops[i].getNode()))
+ if (SDValue Res = combineX86ShufflesRecursively(
+ Ops, i, Root, Mask, CombinedNodes, Depth + 1, HasVariableMask,
+ DAG, DCI, Subtarget))
+ return Res;
+
+ // Attempt to constant fold all of the constant source ops.
+ if (SDValue Cst = combineX86ShufflesConstants(
+ Ops, Mask, Root, HasVariableMask, DAG, DCI, Subtarget))
+ return Cst;
+
+ // We can only combine unary and binary shuffle mask cases.
+ if (Ops.size() > 2)
+ return SDValue();
+
+ // Minor canonicalization of the accumulated shuffle mask to make it easier
+ // to match below. All this does is detect masks with sequential pairs of
+ // elements, and shrink them to the half-width mask. It does this in a loop
+ // so it will reduce the size of the mask to the minimal width mask which
+ // performs an equivalent shuffle.
+ SmallVector<int, 64> WidenedMask;
+ while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
+ Mask = std::move(WidenedMask);
+ }
+
+ // Canonicalization of binary shuffle masks to improve pattern matching by
+ // commuting the inputs.
+ if (Ops.size() == 2 && canonicalizeShuffleMaskWithCommute(Mask)) {
+ ShuffleVectorSDNode::commuteMask(Mask);
+ std::swap(Ops[0], Ops[1]);
+ }
+
+ // Finally, try to combine into a single shuffle instruction.
+ return combineX86ShuffleChain(Ops, Root, Mask, Depth, HasVariableMask, DAG,
+ DCI, Subtarget);
+}
+
+/// \brief Get the PSHUF-style mask from PSHUF node.
+///
+/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
+/// PSHUF-style masks that can be reused with such instructions.
+static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
+ MVT VT = N.getSimpleValueType();
+ SmallVector<int, 4> Mask;
+ SmallVector<SDValue, 2> Ops;
+ bool IsUnary;
+ bool HaveMask =
+ getTargetShuffleMask(N.getNode(), VT, false, Ops, Mask, IsUnary);
+ (void)HaveMask;
+ assert(HaveMask);
+
+ // If we have more than 128-bits, only the low 128-bits of shuffle mask
+ // matter. Check that the upper masks are repeats and remove them.
+ if (VT.getSizeInBits() > 128) {
+ int LaneElts = 128 / VT.getScalarSizeInBits();
+#ifndef NDEBUG
+ for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
+ for (int j = 0; j < LaneElts; ++j)
+ assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
+ "Mask doesn't repeat in high 128-bit lanes!");
+#endif
+ Mask.resize(LaneElts);
+ }
+
+ switch (N.getOpcode()) {
+ case X86ISD::PSHUFD:
+ return Mask;
+ case X86ISD::PSHUFLW:
+ Mask.resize(4);
+ return Mask;
+ case X86ISD::PSHUFHW:
+ Mask.erase(Mask.begin(), Mask.begin() + 4);
+ for (int &M : Mask)
+ M -= 4;
+ return Mask;
+ default:
+ llvm_unreachable("No valid shuffle instruction found!");
+ }
+}
+
+/// \brief Search for a combinable shuffle across a chain ending in pshufd.
+///
+/// We walk up the chain and look for a combinable shuffle, skipping over
+/// shuffles that we could hoist this shuffle's transformation past without
+/// altering anything.
+static SDValue
+combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(N.getOpcode() == X86ISD::PSHUFD &&
+ "Called with something other than an x86 128-bit half shuffle!");
+ SDLoc DL(N);
+
+ // Walk up a single-use chain looking for a combinable shuffle. Keep a stack
+ // of the shuffles in the chain so that we can form a fresh chain to replace
+ // this one.
+ SmallVector<SDValue, 8> Chain;
+ SDValue V = N.getOperand(0);
+ for (; V.hasOneUse(); V = V.getOperand(0)) {
+ switch (V.getOpcode()) {
+ default:
+ return SDValue(); // Nothing combined!
+
+ case ISD::BITCAST:
+ // Skip bitcasts as we always know the type for the target specific
+ // instructions.
+ continue;
+
+ case X86ISD::PSHUFD:
+ // Found another dword shuffle.
+ break;
+
+ case X86ISD::PSHUFLW:
+ // Check that the low words (being shuffled) are the identity in the
+ // dword shuffle, and the high words are self-contained.
+ if (Mask[0] != 0 || Mask[1] != 1 ||
+ !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
+ return SDValue();
+
+ Chain.push_back(V);
+ continue;
+
+ case X86ISD::PSHUFHW:
+ // Check that the high words (being shuffled) are the identity in the
+ // dword shuffle, and the low words are self-contained.
+ if (Mask[2] != 2 || Mask[3] != 3 ||
+ !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
+ return SDValue();
+
+ Chain.push_back(V);
+ continue;
+
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
+ // shuffle into a preceding word shuffle.
+ if (V.getSimpleValueType().getVectorElementType() != MVT::i8 &&
+ V.getSimpleValueType().getVectorElementType() != MVT::i16)
+ return SDValue();
+
+ // Search for a half-shuffle which we can combine with.
+ unsigned CombineOp =
+ V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
+ if (V.getOperand(0) != V.getOperand(1) ||
+ !V->isOnlyUserOf(V.getOperand(0).getNode()))
+ return SDValue();
+ Chain.push_back(V);
+ V = V.getOperand(0);
+ do {
+ switch (V.getOpcode()) {
+ default:
+ return SDValue(); // Nothing to combine.
+
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ if (V.getOpcode() == CombineOp)
+ break;
+
+ Chain.push_back(V);
+
+ LLVM_FALLTHROUGH;
+ case ISD::BITCAST:
+ V = V.getOperand(0);
+ continue;
+ }
+ break;
+ } while (V.hasOneUse());
+ break;
+ }
+ // Break out of the loop if we break out of the switch.
+ break;
+ }
+
+ if (!V.hasOneUse())
+ // We fell out of the loop without finding a viable combining instruction.
+ return SDValue();
+
+ // Merge this node's mask and our incoming mask.
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ for (int &M : Mask)
+ M = VMask[M];
+ V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+
+ // Rebuild the chain around this new shuffle.
+ while (!Chain.empty()) {
+ SDValue W = Chain.pop_back_val();
+
+ if (V.getValueType() != W.getOperand(0).getValueType())
+ V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
+
+ switch (W.getOpcode()) {
+ default:
+ llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
+
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
+ break;
+
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
+ break;
+ }
+ }
+ if (V.getValueType() != N.getValueType())
+ V = DAG.getBitcast(N.getValueType(), V);
+
+ // Return the new chain to replace N.
+ return V;
+}
+
+/// \brief Search for a combinable shuffle across a chain ending in pshuflw or
+/// pshufhw.
+///
+/// We walk up the chain, skipping shuffles of the other half and looking
+/// through shuffles which switch halves trying to find a shuffle of the same
+/// pair of dwords.
+static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ assert(
+ (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
+ "Called with something other than an x86 128-bit half shuffle!");
+ SDLoc DL(N);
+ unsigned CombineOpcode = N.getOpcode();
+
+ // Walk up a single-use chain looking for a combinable shuffle.
+ SDValue V = N.getOperand(0);
+ for (; V.hasOneUse(); V = V.getOperand(0)) {
+ switch (V.getOpcode()) {
+ default:
+ return false; // Nothing combined!
+
+ case ISD::BITCAST:
+ // Skip bitcasts as we always know the type for the target specific
+ // instructions.
+ continue;
+
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ if (V.getOpcode() == CombineOpcode)
+ break;
+
+ // Other-half shuffles are no-ops.
+ continue;
+ }
+ // Break out of the loop if we break out of the switch.
+ break;
+ }
+
+ if (!V.hasOneUse())
+ // We fell out of the loop without finding a viable combining instruction.
+ return false;
+
+ // Combine away the bottom node as its shuffle will be accumulated into
+ // a preceding shuffle.
+ DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
+
+ // Record the old value.
+ SDValue Old = V;
+
+ // Merge this node's mask and our incoming mask (adjusted to account for all
+ // the pshufd instructions encountered).
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ for (int &M : Mask)
+ M = VMask[M];
+ V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+
+ // Check that the shuffles didn't cancel each other out. If not, we need to
+ // combine to the new one.
+ if (Old != V)
+ // Replace the combinable shuffle with the combined one, updating all users
+ // so that we re-evaluate the chain here.
+ DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
+
+ return true;
+}
+
+/// \brief Try to combine x86 target specific shuffles.
+static SDValue combineTargetShuffle(SDValue N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ SDLoc DL(N);
+ MVT VT = N.getSimpleValueType();
+ SmallVector<int, 4> Mask;
+ unsigned Opcode = N.getOpcode();
+
+ // Combine binary shuffle of 2 similar 'Horizontal' instructions into a
+ // single instruction.
+ if (VT.getScalarSizeInBits() == 64 &&
+ (Opcode == X86ISD::MOVSD || Opcode == X86ISD::UNPCKH ||
+ Opcode == X86ISD::UNPCKL)) {
+ auto BC0 = peekThroughBitcasts(N.getOperand(0));
+ auto BC1 = peekThroughBitcasts(N.getOperand(1));
+ EVT VT0 = BC0.getValueType();
+ EVT VT1 = BC1.getValueType();
+ unsigned Opcode0 = BC0.getOpcode();
+ unsigned Opcode1 = BC1.getOpcode();
+ if (Opcode0 == Opcode1 && VT0 == VT1 &&
+ (Opcode0 == X86ISD::FHADD || Opcode0 == X86ISD::HADD ||
+ Opcode0 == X86ISD::FHSUB || Opcode0 == X86ISD::HSUB ||
+ Opcode0 == X86ISD::PACKSS || Opcode0 == X86ISD::PACKUS)) {
+ SDValue Lo, Hi;
+ if (Opcode == X86ISD::MOVSD) {
+ Lo = BC1.getOperand(0);
+ Hi = BC0.getOperand(1);
+ } else {
+ Lo = BC0.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0);
+ Hi = BC1.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0);
+ }
+ SDValue Horiz = DAG.getNode(Opcode0, DL, VT0, Lo, Hi);
+ DCI.AddToWorklist(Horiz.getNode());
+ return DAG.getBitcast(VT, Horiz);
+ }
+ }
+
+ switch (Opcode) {
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ Mask = getPSHUFShuffleMask(N);
+ assert(Mask.size() == 4);
+ break;
+ case X86ISD::UNPCKL: {
+ // Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in
+ // which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE
+ // moves upper half elements into the lower half part. For example:
+ //
+ // t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1,
+ // undef:v16i8
+ // t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2
+ //
+ // will be combined to:
+ //
+ // t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1
+
+ // This is only for 128-bit vectors. From SSE4.1 onward this combine may not
+ // happen due to advanced instructions.
+ if (!VT.is128BitVector())
+ return SDValue();
+
+ auto Op0 = N.getOperand(0);
+ auto Op1 = N.getOperand(1);
+ if (Op0.isUndef() && Op1.getOpcode() == ISD::VECTOR_SHUFFLE) {
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask();
+
+ unsigned NumElts = VT.getVectorNumElements();
+ SmallVector<int, 8> ExpectedMask(NumElts, -1);
+ std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2,
+ NumElts / 2);
+
+ auto ShufOp = Op1.getOperand(0);
+ if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask))
+ return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp);
+ }
+ return SDValue();
+ }
+ case X86ISD::BLENDI: {
+ SDValue V0 = N->getOperand(0);
+ SDValue V1 = N->getOperand(1);
+ assert(VT == V0.getSimpleValueType() && VT == V1.getSimpleValueType() &&
+ "Unexpected input vector types");
+
+ // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector
+ // operands and changing the mask to 1. This saves us a bunch of
+ // pattern-matching possibilities related to scalar math ops in SSE/AVX.
+ // x86InstrInfo knows how to commute this back after instruction selection
+ // if it would help register allocation.
+
+ // TODO: If optimizing for size or a processor that doesn't suffer from
+ // partial register update stalls, this should be transformed into a MOVSD
+ // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD.
+
+ if (VT == MVT::v2f64)
+ if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2)))
+ if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) {
+ SDValue NewMask = DAG.getConstant(1, DL, MVT::i8);
+ return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask);
+ }
+
+ return SDValue();
+ }
+ case X86ISD::MOVSD:
+ case X86ISD::MOVSS: {
+ SDValue V0 = peekThroughBitcasts(N->getOperand(0));
+ SDValue V1 = peekThroughBitcasts(N->getOperand(1));
+ bool isZero0 = ISD::isBuildVectorAllZeros(V0.getNode());
+ bool isZero1 = ISD::isBuildVectorAllZeros(V1.getNode());
+ if (isZero0 && isZero1)
+ return SDValue();
+
+ // We often lower to MOVSD/MOVSS from integer as well as native float
+ // types; remove unnecessary domain-crossing bitcasts if we can to make it
+ // easier to combine shuffles later on. We've already accounted for the
+ // domain switching cost when we decided to lower with it.
+ bool isFloat = VT.isFloatingPoint();
+ bool isFloat0 = V0.getSimpleValueType().isFloatingPoint();
+ bool isFloat1 = V1.getSimpleValueType().isFloatingPoint();
+ if ((isFloat != isFloat0 || isZero0) && (isFloat != isFloat1 || isZero1)) {
+ MVT NewVT = isFloat ? (X86ISD::MOVSD == Opcode ? MVT::v2i64 : MVT::v4i32)
+ : (X86ISD::MOVSD == Opcode ? MVT::v2f64 : MVT::v4f32);
+ V0 = DAG.getBitcast(NewVT, V0);
+ V1 = DAG.getBitcast(NewVT, V1);
+ return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, NewVT, V0, V1));
+ }
+
+ return SDValue();
+ }
+ case X86ISD::INSERTPS: {
+ assert(VT == MVT::v4f32 && "INSERTPS ValueType must be MVT::v4f32");
+ SDValue Op0 = N.getOperand(0);
+ SDValue Op1 = N.getOperand(1);
+ SDValue Op2 = N.getOperand(2);
+ unsigned InsertPSMask = cast<ConstantSDNode>(Op2)->getZExtValue();
+ unsigned SrcIdx = (InsertPSMask >> 6) & 0x3;
+ unsigned DstIdx = (InsertPSMask >> 4) & 0x3;
+ unsigned ZeroMask = InsertPSMask & 0xF;
+
+ // If we zero out all elements from Op0 then we don't need to reference it.
+ if (((ZeroMask | (1u << DstIdx)) == 0xF) && !Op0.isUndef())
+ return DAG.getNode(X86ISD::INSERTPS, DL, VT, DAG.getUNDEF(VT), Op1,
+ DAG.getConstant(InsertPSMask, DL, MVT::i8));
+
+ // If we zero out the element from Op1 then we don't need to reference it.
+ if ((ZeroMask & (1u << DstIdx)) && !Op1.isUndef())
+ return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
+ DAG.getConstant(InsertPSMask, DL, MVT::i8));
+
+ // Attempt to merge insertps Op1 with an inner target shuffle node.
+ SmallVector<int, 8> TargetMask1;
+ SmallVector<SDValue, 2> Ops1;
+ if (setTargetShuffleZeroElements(Op1, TargetMask1, Ops1)) {
+ int M = TargetMask1[SrcIdx];
+ if (isUndefOrZero(M)) {
+ // Zero/UNDEF insertion - zero out element and remove dependency.
+ InsertPSMask |= (1u << DstIdx);
+ return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
+ DAG.getConstant(InsertPSMask, DL, MVT::i8));
+ }
+ // Update insertps mask srcidx and reference the source input directly.
+ assert(0 <= M && M < 8 && "Shuffle index out of range");
+ InsertPSMask = (InsertPSMask & 0x3f) | ((M & 0x3) << 6);
+ Op1 = Ops1[M < 4 ? 0 : 1];
+ return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
+ DAG.getConstant(InsertPSMask, DL, MVT::i8));
+ }
+
+ // Attempt to merge insertps Op0 with an inner target shuffle node.
+ SmallVector<int, 8> TargetMask0;
+ SmallVector<SDValue, 2> Ops0;
+ if (!setTargetShuffleZeroElements(Op0, TargetMask0, Ops0))
+ return SDValue();
+
+ bool Updated = false;
+ bool UseInput00 = false;
+ bool UseInput01 = false;
+ for (int i = 0; i != 4; ++i) {
+ int M = TargetMask0[i];
+ if ((InsertPSMask & (1u << i)) || (i == (int)DstIdx)) {
+ // No change if element is already zero or the inserted element.
+ continue;
+ } else if (isUndefOrZero(M)) {
+ // If the target mask is undef/zero then we must zero the element.
+ InsertPSMask |= (1u << i);
+ Updated = true;
+ continue;
+ }
+
+ // The input vector element must be inline.
+ if (M != i && M != (i + 4))
+ return SDValue();
+
+ // Determine which inputs of the target shuffle we're using.
+ UseInput00 |= (0 <= M && M < 4);
+ UseInput01 |= (4 <= M);
+ }
+
+ // If we're not using both inputs of the target shuffle then use the
+ // referenced input directly.
+ if (UseInput00 && !UseInput01) {
+ Updated = true;
+ Op0 = Ops0[0];
+ } else if (!UseInput00 && UseInput01) {
+ Updated = true;
+ Op0 = Ops0[1];
+ }
+
+ if (Updated)
+ return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
+ DAG.getConstant(InsertPSMask, DL, MVT::i8));
+
+ return SDValue();
+ }
+ default:
+ return SDValue();
+ }
+
+ // Nuke no-op shuffles that show up after combining.
+ if (isNoopShuffleMask(Mask))
+ return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
+
+ // Look for simplifications involving one or two shuffle instructions.
+ SDValue V = N.getOperand(0);
+ switch (N.getOpcode()) {
+ default:
+ break;
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!");
+
+ if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
+ return SDValue(); // We combined away this shuffle, so we're done.
+
+ // See if this reduces to a PSHUFD which is no more expensive and can
+ // combine with more operations. Note that it has to at least flip the
+ // dwords as otherwise it would have been removed as a no-op.
+ if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
+ int DMask[] = {0, 1, 2, 3};
+ int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
+ DMask[DOffset + 0] = DOffset + 1;
+ DMask[DOffset + 1] = DOffset + 0;
+ MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
+ V = DAG.getBitcast(DVT, V);
+ DCI.AddToWorklist(V.getNode());
+ V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
+ getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getBitcast(VT, V);
+ }
+
+ // Look for shuffle patterns which can be implemented as a single unpack.
+ // FIXME: This doesn't handle the location of the PSHUFD generically, and
+ // only works when we have a PSHUFD followed by two half-shuffles.
+ if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
+ (V.getOpcode() == X86ISD::PSHUFLW ||
+ V.getOpcode() == X86ISD::PSHUFHW) &&
+ V.getOpcode() != N.getOpcode() &&
+ V.hasOneUse()) {
+ SDValue D = peekThroughOneUseBitcasts(V.getOperand(0));
+ if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
+ int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
+ int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
+ int WordMask[8];
+ for (int i = 0; i < 4; ++i) {
+ WordMask[i + NOffset] = Mask[i] + NOffset;
+ WordMask[i + VOffset] = VMask[i] + VOffset;
+ }
+ // Map the word mask through the DWord mask.
+ int MappedMask[8];
+ for (int i = 0; i < 8; ++i)
+ MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
+ if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
+ makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
+ // We can replace all three shuffles with an unpack.
+ V = DAG.getBitcast(VT, D.getOperand(0));
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
+ : X86ISD::UNPCKH,
+ DL, VT, V, V);
+ }
+ }
+ }
+
+ break;
+
+ case X86ISD::PSHUFD:
+ if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG))
+ return NewN;
+
+ break;
+ }
+
+ return SDValue();
+}
+
+/// Returns true iff the shuffle node \p N can be replaced with ADDSUB(SUBADD)
+/// operation. If true is returned then the operands of ADDSUB(SUBADD) operation
+/// are written to the parameters \p Opnd0 and \p Opnd1.
+///
+/// We combine shuffle to ADDSUB(SUBADD) directly on the abstract vector shuffle nodes
+/// so it is easier to generically match. We also insert dummy vector shuffle
+/// nodes for the operands which explicitly discard the lanes which are unused
+/// by this operation to try to flow through the rest of the combiner
+/// the fact that they're unused.
+static bool isAddSubOrSubAdd(SDNode *N, const X86Subtarget &Subtarget,
+ SDValue &Opnd0, SDValue &Opnd1,
+ bool matchSubAdd = false) {
+
+ EVT VT = N->getValueType(0);
+ if ((!Subtarget.hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) &&
+ (!Subtarget.hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)) &&
+ (!Subtarget.hasAVX512() || (VT != MVT::v16f32 && VT != MVT::v8f64)))
+ return false;
+
+ // We only handle target-independent shuffles.
+ // FIXME: It would be easy and harmless to use the target shuffle mask
+ // extraction tool to support more.
+ if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
+ return false;
+
+ ArrayRef<int> OrigMask = cast<ShuffleVectorSDNode>(N)->getMask();
+ SmallVector<int, 16> Mask(OrigMask.begin(), OrigMask.end());
+
+ SDValue V1 = N->getOperand(0);
+ SDValue V2 = N->getOperand(1);
+
+ unsigned ExpectedOpcode = matchSubAdd ? ISD::FADD : ISD::FSUB;
+ unsigned NextExpectedOpcode = matchSubAdd ? ISD::FSUB : ISD::FADD;
+
+ // We require the first shuffle operand to be the ExpectedOpcode node,
+ // and the second to be the NextExpectedOpcode node.
+ if (V1.getOpcode() == NextExpectedOpcode && V2.getOpcode() == ExpectedOpcode) {
+ ShuffleVectorSDNode::commuteMask(Mask);
+ std::swap(V1, V2);
+ } else if (V1.getOpcode() != ExpectedOpcode || V2.getOpcode() != NextExpectedOpcode)
+ return false;
+
+ // If there are other uses of these operations we can't fold them.
+ if (!V1->hasOneUse() || !V2->hasOneUse())
+ return false;
+
+ // Ensure that both operations have the same operands. Note that we can
+ // commute the FADD operands.
+ SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
+ if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
+ (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
+ return false;
+
+ // We're looking for blends between FADD and FSUB nodes. We insist on these
+ // nodes being lined up in a specific expected pattern.
+ if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
+ isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) ||
+ isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15}) ||
+ isShuffleEquivalent(V1, V2, Mask, {0, 17, 2, 19, 4, 21, 6, 23,
+ 8, 25, 10, 27, 12, 29, 14, 31})))
+ return false;
+
+ Opnd0 = LHS;
+ Opnd1 = RHS;
+ return true;
+}
+
+/// \brief Try to combine a shuffle into a target-specific add-sub or
+/// mul-add-sub node.
+static SDValue combineShuffleToAddSubOrFMAddSub(SDNode *N,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Opnd0, Opnd1;
+ if (!isAddSubOrSubAdd(N, Subtarget, Opnd0, Opnd1))
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // Try to generate X86ISD::FMADDSUB node here.
+ SDValue Opnd2;
+ if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, 2))
+ return DAG.getNode(X86ISD::FMADDSUB, DL, VT, Opnd0, Opnd1, Opnd2);
+
+ // Do not generate X86ISD::ADDSUB node for 512-bit types even though
+ // the ADDSUB idiom has been successfully recognized. There are no known
+ // X86 targets with 512-bit ADDSUB instructions!
+ if (VT.is512BitVector())
+ return SDValue();
+
+ return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
+}
+
+/// \brief Try to combine a shuffle into a target-specific
+/// mul-sub-add node.
+static SDValue combineShuffleToFMSubAdd(SDNode *N,
+ const X86Subtarget &Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Opnd0, Opnd1;
+ if (!isAddSubOrSubAdd(N, Subtarget, Opnd0, Opnd1, true))
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // Try to generate X86ISD::FMSUBADD node here.
+ SDValue Opnd2;
+ if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, 2))
+ return DAG.getNode(X86ISD::FMSUBADD, DL, VT, Opnd0, Opnd1, Opnd2);
+
+ return SDValue();
+}
+
+// We are looking for a shuffle where both sources are concatenated with undef
+// and have a width that is half of the output's width. AVX2 has VPERMD/Q, so
+// if we can express this as a single-source shuffle, that's preferable.
+static SDValue combineShuffleOfConcatUndef(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (!Subtarget.hasAVX2() || !isa<ShuffleVectorSDNode>(N))
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+
+ // We only care about shuffles of 128/256-bit vectors of 32/64-bit values.
+ if (!VT.is128BitVector() && !VT.is256BitVector())
+ return SDValue();
+
+ if (VT.getVectorElementType() != MVT::i32 &&
+ VT.getVectorElementType() != MVT::i64 &&
+ VT.getVectorElementType() != MVT::f32 &&
+ VT.getVectorElementType() != MVT::f64)
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // Check that both sources are concats with undef.
+ if (N0.getOpcode() != ISD::CONCAT_VECTORS ||
+ N1.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
+ N1.getNumOperands() != 2 || !N0.getOperand(1).isUndef() ||
+ !N1.getOperand(1).isUndef())
+ return SDValue();
+
+ // Construct the new shuffle mask. Elements from the first source retain their
+ // index, but elements from the second source no longer need to skip an undef.
+ SmallVector<int, 8> Mask;
+ int NumElts = VT.getVectorNumElements();
+
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ for (int Elt : SVOp->getMask())
+ Mask.push_back(Elt < NumElts ? Elt : (Elt - NumElts / 2));
+
+ SDLoc DL(N);
+ SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, N0.getOperand(0),
+ N1.getOperand(0));
+ return DAG.getVectorShuffle(VT, DL, Concat, DAG.getUNDEF(VT), Mask);
+}
+
+/// Eliminate a redundant shuffle of a horizontal math op.
+static SDValue foldShuffleOfHorizOp(SDNode *N) {
+ if (N->getOpcode() != ISD::VECTOR_SHUFFLE || !N->getOperand(1).isUndef())
+ return SDValue();
+
+ SDValue HOp = N->getOperand(0);
+ if (HOp.getOpcode() != X86ISD::HADD && HOp.getOpcode() != X86ISD::FHADD &&
+ HOp.getOpcode() != X86ISD::HSUB && HOp.getOpcode() != X86ISD::FHSUB)
+ return SDValue();
+
+ // 128-bit horizontal math instructions are defined to operate on adjacent
+ // lanes of each operand as:
+ // v4X32: A[0] + A[1] , A[2] + A[3] , B[0] + B[1] , B[2] + B[3]
+ // ...similarly for v2f64 and v8i16.
+ // TODO: 256-bit is not the same because...x86.
+ if (HOp.getOperand(0) != HOp.getOperand(1) || HOp.getValueSizeInBits() != 128)
+ return SDValue();
+
+ // When the operands of a horizontal math op are identical, the low half of
+ // the result is the same as the high half. If the shuffle is also replicating
+ // low and high halves, we don't need the shuffle.
+ // shuffle (hadd X, X), undef, [low half...high half] --> hadd X, X
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
+ // TODO: Other mask possibilities like {1,1} and {1,0} could be added here,
+ // but this should be tied to whatever horizontal op matching and shuffle
+ // canonicalization are producing.
+ if (isTargetShuffleEquivalent(Mask, { 0, 0 }) ||
+ isTargetShuffleEquivalent(Mask, { 0, 1, 0, 1 }) ||
+ isTargetShuffleEquivalent(Mask, { 0, 1, 2, 3, 0, 1, 2, 3 }))
+ return HOp;
+
+ return SDValue();
+}
+
+static SDValue combineShuffle(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ // If we have legalized the vector types, look for blends of FADD and FSUB
+ // nodes that we can fuse into an ADDSUB, FMADDSUB, or FMSUBADD node.
+ if (TLI.isTypeLegal(VT)) {
+ if (SDValue AddSub = combineShuffleToAddSubOrFMAddSub(N, Subtarget, DAG))
+ return AddSub;
+
+ if (SDValue FMSubAdd = combineShuffleToFMSubAdd(N, Subtarget, DAG))
+ return FMSubAdd;
+
+ if (SDValue HAddSub = foldShuffleOfHorizOp(N))
+ return HAddSub;
+ }
+
+ // During Type Legalization, when promoting illegal vector types,
+ // the backend might introduce new shuffle dag nodes and bitcasts.
+ //
+ // This code performs the following transformation:
+ // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
+ // (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
+ //
+ // We do this only if both the bitcast and the BINOP dag nodes have
+ // one use. Also, perform this transformation only if the new binary
+ // operation is legal. This is to avoid introducing dag nodes that
+ // potentially need to be further expanded (or custom lowered) into a
+ // less optimal sequence of dag nodes.
+ if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
+ N->getOpcode() == ISD::VECTOR_SHUFFLE &&
+ N->getOperand(0).getOpcode() == ISD::BITCAST &&
+ N->getOperand(1).isUndef() && N->getOperand(0).hasOneUse()) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ SDValue BC0 = N0.getOperand(0);
+ EVT SVT = BC0.getValueType();
+ unsigned Opcode = BC0.getOpcode();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ if (BC0.hasOneUse() && SVT.isVector() &&
+ SVT.getVectorNumElements() * 2 == NumElts &&
+ TLI.isOperationLegal(Opcode, VT)) {
+ bool CanFold = false;
+ switch (Opcode) {
+ default : break;
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::MUL:
+ // isOperationLegal lies for integer ops on floating point types.
+ CanFold = VT.isInteger();
+ break;
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ // isOperationLegal lies for floating point ops on integer types.
+ CanFold = VT.isFloatingPoint();
+ break;
+ }
+
+ unsigned SVTNumElts = SVT.getVectorNumElements();
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
+ CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
+ for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
+ CanFold = SVOp->getMaskElt(i) < 0;
+
+ if (CanFold) {
+ SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0));
+ SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1));
+ SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
+ return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, SVOp->getMask());
+ }
+ }
+ }
+
+ // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
+ // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
+ // consecutive, non-overlapping, and in the right order.
+ SmallVector<SDValue, 16> Elts;
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
+ if (SDValue Elt = getShuffleScalarElt(N, i, DAG, 0)) {
+ Elts.push_back(Elt);
+ continue;
+ }
+ Elts.clear();
+ break;
+ }
+
+ if (Elts.size() == VT.getVectorNumElements())
+ if (SDValue LD =
+ EltsFromConsecutiveLoads(VT, Elts, dl, DAG, Subtarget, true))
+ return LD;
+
+ // For AVX2, we sometimes want to combine
+ // (vector_shuffle <mask> (concat_vectors t1, undef)
+ // (concat_vectors t2, undef))
+ // Into:
+ // (vector_shuffle <mask> (concat_vectors t1, t2), undef)
+ // Since the latter can be efficiently lowered with VPERMD/VPERMQ
+ if (SDValue ShufConcat = combineShuffleOfConcatUndef(N, DAG, Subtarget))
+ return ShufConcat;
+
+ if (isTargetShuffle(N->getOpcode())) {
+ SDValue Op(N, 0);
+ if (SDValue Shuffle = combineTargetShuffle(Op, DAG, DCI, Subtarget))
+ return Shuffle;
+
+ // Try recursively combining arbitrary sequences of x86 shuffle
+ // instructions into higher-order shuffles. We do this after combining
+ // specific PSHUF instruction sequences into their minimal form so that we
+ // can evaluate how many specialized shuffle instructions are involved in
+ // a particular chain.
+ if (SDValue Res = combineX86ShufflesRecursively(
+ {Op}, 0, Op, {0}, {}, /*Depth*/ 1,
+ /*HasVarMask*/ false, DAG, DCI, Subtarget)) {
+ DCI.CombineTo(N, Res);
+ return SDValue();
+ }
+ }
+
+ return SDValue();
+}
+
+/// Check if a vector extract from a target-specific shuffle of a load can be
+/// folded into a single element load.
+/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
+/// shuffles have been custom lowered so we need to handle those here.
+static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue InVec = N->getOperand(0);
+ SDValue EltNo = N->getOperand(1);
+ EVT EltVT = N->getValueType(0);
+
+ if (!isa<ConstantSDNode>(EltNo))
+ return SDValue();
+
+ EVT OriginalVT = InVec.getValueType();
+
+ // Peek through bitcasts, don't duplicate a load with other uses.
+ InVec = peekThroughOneUseBitcasts(InVec);
+
+ EVT CurrentVT = InVec.getValueType();
+ if (!CurrentVT.isVector() ||
+ CurrentVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
+ return SDValue();
+
+ if (!isTargetShuffle(InVec.getOpcode()))
+ return SDValue();
+
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+
+ SmallVector<int, 16> ShuffleMask;
+ SmallVector<SDValue, 2> ShuffleOps;
+ bool UnaryShuffle;
+ if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), true,
+ ShuffleOps, ShuffleMask, UnaryShuffle))
+ return SDValue();
+
+ // Select the input vector, guarding against out of range extract vector.
+ unsigned NumElems = CurrentVT.getVectorNumElements();
+ int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+ int Idx = (Elt > (int)NumElems) ? SM_SentinelUndef : ShuffleMask[Elt];
+
+ if (Idx == SM_SentinelZero)
+ return EltVT.isInteger() ? DAG.getConstant(0, SDLoc(N), EltVT)
+ : DAG.getConstantFP(+0.0, SDLoc(N), EltVT);
+ if (Idx == SM_SentinelUndef)
+ return DAG.getUNDEF(EltVT);
+
+ assert(0 <= Idx && Idx < (int)(2 * NumElems) && "Shuffle index out of range");
+ SDValue LdNode = (Idx < (int)NumElems) ? ShuffleOps[0]
+ : ShuffleOps[1];
+
+ // If inputs to shuffle are the same for both ops, then allow 2 uses
+ unsigned AllowedUses =
+ (ShuffleOps.size() > 1 && ShuffleOps[0] == ShuffleOps[1]) ? 2 : 1;
+
+ if (LdNode.getOpcode() == ISD::BITCAST) {
+ // Don't duplicate a load with other uses.
+ if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
+ return SDValue();
+
+ AllowedUses = 1; // only allow 1 load use if we have a bitcast
+ LdNode = LdNode.getOperand(0);
+ }
+
+ if (!ISD::isNormalLoad(LdNode.getNode()))
+ return SDValue();
+
+ LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
+
+ if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
+ return SDValue();
+
+ // If there's a bitcast before the shuffle, check if the load type and
+ // alignment is valid.
+ unsigned Align = LN0->getAlignment();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
+ EltVT.getTypeForEVT(*DAG.getContext()));
+
+ if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
+ return SDValue();
+
+ // All checks match so transform back to vector_shuffle so that DAG combiner
+ // can finish the job
+ SDLoc dl(N);
+
+ // Create shuffle node taking into account the case that its a unary shuffle
+ SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) : ShuffleOps[1];
+ Shuffle = DAG.getVectorShuffle(CurrentVT, dl, ShuffleOps[0], Shuffle,
+ ShuffleMask);
+ Shuffle = DAG.getBitcast(OriginalVT, Shuffle);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
+ EltNo);
+}
+
+// Try to match patterns such as
+// (i16 bitcast (v16i1 x))
+// ->
+// (i16 movmsk (16i8 sext (v16i1 x)))
+// before the illegal vector is scalarized on subtargets that don't have legal
+// vxi1 types.
+static SDValue combineBitcastvxi1(SelectionDAG &DAG, SDValue BitCast,
+ const X86Subtarget &Subtarget) {
+ EVT VT = BitCast.getValueType();
+ SDValue N0 = BitCast.getOperand(0);
+ EVT VecVT = N0->getValueType(0);
+
+ if (VT.isVector() && VecVT.isScalarInteger() && Subtarget.hasAVX512() &&
+ N0->getOpcode() == ISD::OR) {
+ SDValue Op0 = N0->getOperand(0);
+ SDValue Op1 = N0->getOperand(1);
+ MVT TrunckVT;
+ MVT BitcastVT;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ return SDValue();
+ case MVT::v16i1:
+ TrunckVT = MVT::i8;
+ BitcastVT = MVT::v8i1;
+ break;
+ case MVT::v32i1:
+ TrunckVT = MVT::i16;
+ BitcastVT = MVT::v16i1;
+ break;
+ case MVT::v64i1:
+ TrunckVT = MVT::i32;
+ BitcastVT = MVT::v32i1;
+ break;
+ }
+ bool isArg0UndefRight = Op0->getOpcode() == ISD::SHL;
+ bool isArg0UndefLeft =
+ Op0->getOpcode() == ISD::ZERO_EXTEND || Op0->getOpcode() == ISD::AND;
+ bool isArg1UndefRight = Op1->getOpcode() == ISD::SHL;
+ bool isArg1UndefLeft =
+ Op1->getOpcode() == ISD::ZERO_EXTEND || Op1->getOpcode() == ISD::AND;
+ SDValue OpLeft;
+ SDValue OpRight;
+ if (isArg0UndefRight && isArg1UndefLeft) {
+ OpLeft = Op0;
+ OpRight = Op1;
+ } else if (isArg1UndefRight && isArg0UndefLeft) {
+ OpLeft = Op1;
+ OpRight = Op0;
+ } else
+ return SDValue();
+ SDLoc DL(BitCast);
+ SDValue Shr = OpLeft->getOperand(0);
+ SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, TrunckVT, Shr);
+ SDValue Bitcast1 = DAG.getBitcast(BitcastVT, Trunc1);
+ SDValue Trunc2 = DAG.getNode(ISD::TRUNCATE, DL, TrunckVT, OpRight);
+ SDValue Bitcast2 = DAG.getBitcast(BitcastVT, Trunc2);
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Bitcast1, Bitcast2);
+ }
+
+ if (!VT.isScalarInteger() || !VecVT.isSimple())
+ return SDValue();
+
+ // With AVX512 vxi1 types are legal and we prefer using k-regs.
+ // MOVMSK is supported in SSE2 or later.
+ if (Subtarget.hasAVX512() || !Subtarget.hasSSE2())
+ return SDValue();
+
+ // There are MOVMSK flavors for types v16i8, v32i8, v4f32, v8f32, v4f64 and
+ // v8f64. So all legal 128-bit and 256-bit vectors are covered except for
+ // v8i16 and v16i16.
+ // For these two cases, we can shuffle the upper element bytes to a
+ // consecutive sequence at the start of the vector and treat the results as
+ // v16i8 or v32i8, and for v16i8 this is the preferable solution. However,
+ // for v16i16 this is not the case, because the shuffle is expensive, so we
+ // avoid sign-extending to this type entirely.
+ // For example, t0 := (v8i16 sext(v8i1 x)) needs to be shuffled as:
+ // (v16i8 shuffle <0,2,4,6,8,10,12,14,u,u,...,u> (v16i8 bitcast t0), undef)
+ MVT SExtVT;
+ MVT FPCastVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
+ switch (VecVT.getSimpleVT().SimpleTy) {
+ default:
+ return SDValue();
+ case MVT::v2i1:
+ SExtVT = MVT::v2i64;
+ FPCastVT = MVT::v2f64;
+ break;
+ case MVT::v4i1:
+ SExtVT = MVT::v4i32;
+ FPCastVT = MVT::v4f32;
+ // For cases such as (i4 bitcast (v4i1 setcc v4i64 v1, v2))
+ // sign-extend to a 256-bit operation to avoid truncation.
+ if (N0->getOpcode() == ISD::SETCC && Subtarget.hasAVX() &&
+ N0->getOperand(0).getValueType().is256BitVector()) {
+ SExtVT = MVT::v4i64;
+ FPCastVT = MVT::v4f64;
+ }
+ break;
+ case MVT::v8i1:
+ SExtVT = MVT::v8i16;
+ // For cases such as (i8 bitcast (v8i1 setcc v8i32 v1, v2)),
+ // sign-extend to a 256-bit operation to match the compare.
+ // If the setcc operand is 128-bit, prefer sign-extending to 128-bit over
+ // 256-bit because the shuffle is cheaper than sign extending the result of
+ // the compare.
+ if (N0->getOpcode() == ISD::SETCC && Subtarget.hasAVX() &&
+ (N0->getOperand(0).getValueType().is256BitVector() ||
+ N0->getOperand(0).getValueType().is512BitVector())) {
+ SExtVT = MVT::v8i32;
+ FPCastVT = MVT::v8f32;
+ }
+ break;
+ case MVT::v16i1:
+ SExtVT = MVT::v16i8;
+ // For the case (i16 bitcast (v16i1 setcc v16i16 v1, v2)),
+ // it is not profitable to sign-extend to 256-bit because this will
+ // require an extra cross-lane shuffle which is more expensive than
+ // truncating the result of the compare to 128-bits.
+ break;
+ case MVT::v32i1:
+ SExtVT = MVT::v32i8;
+ break;
+ };
+
+ SDLoc DL(BitCast);
+ SDValue V = DAG.getSExtOrTrunc(N0, DL, SExtVT);
+
+ if (SExtVT == MVT::v32i8 && !Subtarget.hasInt256()) {
+ // Handle pre-AVX2 cases by splitting to two v16i1's.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ MVT ShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), MVT::i32);
+ SDValue Lo = extract128BitVector(V, 0, DAG, DL);
+ SDValue Hi = extract128BitVector(V, 16, DAG, DL);
+ Lo = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Lo);
+ Hi = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Hi);
+ Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
+ DAG.getConstant(16, DL, ShiftTy));
+ V = DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi);
+ return DAG.getZExtOrTrunc(V, DL, VT);
+ }
+
+ if (SExtVT == MVT::v8i16) {
+ assert(16 == DAG.ComputeNumSignBits(V) && "Expected all/none bit vector");
+ V = DAG.getNode(X86ISD::PACKSS, DL, MVT::v16i8, V,
+ DAG.getUNDEF(MVT::v8i16));
+ } else
+ assert(SExtVT.getScalarType() != MVT::i16 &&
+ "Vectors of i16 must be packed");
+ if (FPCastVT != MVT::INVALID_SIMPLE_VALUE_TYPE)
+ V = DAG.getBitcast(FPCastVT, V);
+ V = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V);
+ return DAG.getZExtOrTrunc(V, DL, VT);
+}
+
+static SDValue combineBitcast(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT SrcVT = N0.getValueType();
+
+ // Try to match patterns such as
+ // (i16 bitcast (v16i1 x))
+ // ->
+ // (i16 movmsk (16i8 sext (v16i1 x)))
+ // before the setcc result is scalarized on subtargets that don't have legal
+ // vxi1 types.
+ if (DCI.isBeforeLegalize())
+ if (SDValue V = combineBitcastvxi1(DAG, SDValue(N, 0), Subtarget))
+ return V;
+ // Since MMX types are special and don't usually play with other vector types,
+ // it's better to handle them early to be sure we emit efficient code by
+ // avoiding store-load conversions.
+
+ // Detect bitcasts between i32 to x86mmx low word.
+ if (VT == MVT::x86mmx && N0.getOpcode() == ISD::BUILD_VECTOR &&
+ SrcVT == MVT::v2i32 && isNullConstant(N0.getOperand(1))) {
+ SDValue N00 = N0->getOperand(0);
+ if (N00.getValueType() == MVT::i32)
+ return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(N00), VT, N00);
+ }
+
+ // Detect bitcasts between element or subvector extraction to x86mmx.
+ if (VT == MVT::x86mmx &&
+ (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
+ N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) &&
+ isNullConstant(N0.getOperand(1))) {
+ SDValue N00 = N0->getOperand(0);
+ if (N00.getValueType().is128BitVector())
+ return DAG.getNode(X86ISD::MOVDQ2Q, SDLoc(N00), VT,
+ DAG.getBitcast(MVT::v2i64, N00));
+ }
+
+ // Detect bitcasts from FP_TO_SINT to x86mmx.
+ if (VT == MVT::x86mmx && SrcVT == MVT::v2i32 &&
+ N0.getOpcode() == ISD::FP_TO_SINT) {
+ SDLoc DL(N0);
+ SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
+ DAG.getUNDEF(MVT::v2i32));
+ return DAG.getNode(X86ISD::MOVDQ2Q, DL, VT,
+ DAG.getBitcast(MVT::v2i64, Res));
+ }
+
+ // Convert a bitcasted integer logic operation that has one bitcasted
+ // floating-point operand into a floating-point logic operation. This may
+ // create a load of a constant, but that is cheaper than materializing the
+ // constant in an integer register and transferring it to an SSE register or
+ // transferring the SSE operand to integer register and back.
+ unsigned FPOpcode;
+ switch (N0.getOpcode()) {
+ case ISD::AND: FPOpcode = X86ISD::FAND; break;
+ case ISD::OR: FPOpcode = X86ISD::FOR; break;
+ case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
+ default: return SDValue();
+ }
+
+ if (!((Subtarget.hasSSE1() && VT == MVT::f32) ||
+ (Subtarget.hasSSE2() && VT == MVT::f64)))
+ return SDValue();
+
+ SDValue LogicOp0 = N0.getOperand(0);
+ SDValue LogicOp1 = N0.getOperand(1);
+ SDLoc DL0(N0);
+
+ // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
+ if (N0.hasOneUse() && LogicOp0.getOpcode() == ISD::BITCAST &&
+ LogicOp0.hasOneUse() && LogicOp0.getOperand(0).getValueType() == VT &&
+ !isa<ConstantSDNode>(LogicOp0.getOperand(0))) {
+ SDValue CastedOp1 = DAG.getBitcast(VT, LogicOp1);
+ return DAG.getNode(FPOpcode, DL0, VT, LogicOp0.getOperand(0), CastedOp1);
+ }
+ // bitcast(logic(X, bitcast(Y))) --> logic'(bitcast(X), Y)
+ if (N0.hasOneUse() && LogicOp1.getOpcode() == ISD::BITCAST &&
+ LogicOp1.hasOneUse() && LogicOp1.getOperand(0).getValueType() == VT &&
+ !isa<ConstantSDNode>(LogicOp1.getOperand(0))) {
+ SDValue CastedOp0 = DAG.getBitcast(VT, LogicOp0);
+ return DAG.getNode(FPOpcode, DL0, VT, LogicOp1.getOperand(0), CastedOp0);
+ }
+
+ return SDValue();
+}
+
+// Match a binop + shuffle pyramid that represents a horizontal reduction over
+// the elements of a vector.
+// Returns the vector that is being reduced on, or SDValue() if a reduction
+// was not matched.
+static SDValue matchBinOpReduction(SDNode *Extract, unsigned &BinOp,
+ ArrayRef<ISD::NodeType> CandidateBinOps) {
+ // The pattern must end in an extract from index 0.
+ if ((Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) ||
+ !isNullConstant(Extract->getOperand(1)))
+ return SDValue();
+
+ SDValue Op = Extract->getOperand(0);
+ unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
+
+ // Match against one of the candidate binary ops.
+ if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
+ return Op.getOpcode() == unsigned(BinOp);
+ }))
+ return SDValue();
+
+ // At each stage, we're looking for something that looks like:
+ // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
+ // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
+ // i32 undef, i32 undef, i32 undef, i32 undef>
+ // %a = binop <8 x i32> %op, %s
+ // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
+ // we expect something like:
+ // <4,5,6,7,u,u,u,u>
+ // <2,3,u,u,u,u,u,u>
+ // <1,u,u,u,u,u,u,u>
+ unsigned CandidateBinOp = Op.getOpcode();
+ for (unsigned i = 0; i < Stages; ++i) {
+ if (Op.getOpcode() != CandidateBinOp)
+ return SDValue();
+
+ ShuffleVectorSDNode *Shuffle =
+ dyn_cast<ShuffleVectorSDNode>(Op.getOperand(0).getNode());
+ if (Shuffle) {
+ Op = Op.getOperand(1);
+ } else {
+ Shuffle = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(1).getNode());
+ Op = Op.getOperand(0);
+ }
+
+ // The first operand of the shuffle should be the same as the other operand
+ // of the binop.
+ if (!Shuffle || Shuffle->getOperand(0) != Op)
+ return SDValue();
+
+ // Verify the shuffle has the expected (at this stage of the pyramid) mask.
+ for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index)
+ if (Shuffle->getMaskElt(Index) != MaskEnd + Index)
+ return SDValue();
+ }
+
+ BinOp = CandidateBinOp;
+ return Op;
+}
+
+// Given a select, detect the following pattern:
+// 1: %2 = zext <N x i8> %0 to <N x i32>
+// 2: %3 = zext <N x i8> %1 to <N x i32>
+// 3: %4 = sub nsw <N x i32> %2, %3
+// 4: %5 = icmp sgt <N x i32> %4, [0 x N] or [-1 x N]
+// 5: %6 = sub nsw <N x i32> zeroinitializer, %4
+// 6: %7 = select <N x i1> %5, <N x i32> %4, <N x i32> %6
+// This is useful as it is the input into a SAD pattern.
+static bool detectZextAbsDiff(const SDValue &Select, SDValue &Op0,
+ SDValue &Op1) {
+ // Check the condition of the select instruction is greater-than.
+ SDValue SetCC = Select->getOperand(0);
+ if (SetCC.getOpcode() != ISD::SETCC)
+ return false;
+ ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
+ if (CC != ISD::SETGT && CC != ISD::SETLT)
+ return false;
+
+ SDValue SelectOp1 = Select->getOperand(1);
+ SDValue SelectOp2 = Select->getOperand(2);
+
+ // The following instructions assume SelectOp1 is the subtraction operand
+ // and SelectOp2 is the negation operand.
+ // In the case of SETLT this is the other way around.
+ if (CC == ISD::SETLT)
+ std::swap(SelectOp1, SelectOp2);
+
+ // The second operand of the select should be the negation of the first
+ // operand, which is implemented as 0 - SelectOp1.
+ if (!(SelectOp2.getOpcode() == ISD::SUB &&
+ ISD::isBuildVectorAllZeros(SelectOp2.getOperand(0).getNode()) &&
+ SelectOp2.getOperand(1) == SelectOp1))
+ return false;
+
+ // The first operand of SetCC is the first operand of the select, which is the
+ // difference between the two input vectors.
+ if (SetCC.getOperand(0) != SelectOp1)
+ return false;
+
+ // In SetLT case, The second operand of the comparison can be either 1 or 0.
+ APInt SplatVal;
+ if ((CC == ISD::SETLT) &&
+ !((ISD::isConstantSplatVector(SetCC.getOperand(1).getNode(), SplatVal) &&
+ SplatVal.isOneValue()) ||
+ (ISD::isBuildVectorAllZeros(SetCC.getOperand(1).getNode()))))
+ return false;
+
+ // In SetGT case, The second operand of the comparison can be either -1 or 0.
+ if ((CC == ISD::SETGT) &&
+ !(ISD::isBuildVectorAllZeros(SetCC.getOperand(1).getNode()) ||
+ ISD::isBuildVectorAllOnes(SetCC.getOperand(1).getNode())))
+ return false;
+
+ // The first operand of the select is the difference between the two input
+ // vectors.
+ if (SelectOp1.getOpcode() != ISD::SUB)
+ return false;
+
+ Op0 = SelectOp1.getOperand(0);
+ Op1 = SelectOp1.getOperand(1);
+
+ // Check if the operands of the sub are zero-extended from vectors of i8.
+ if (Op0.getOpcode() != ISD::ZERO_EXTEND ||
+ Op0.getOperand(0).getValueType().getVectorElementType() != MVT::i8 ||
+ Op1.getOpcode() != ISD::ZERO_EXTEND ||
+ Op1.getOperand(0).getValueType().getVectorElementType() != MVT::i8)
+ return false;
+
+ return true;
+}
+
+// Given two zexts of <k x i8> to <k x i32>, create a PSADBW of the inputs
+// to these zexts.
+static SDValue createPSADBW(SelectionDAG &DAG, const SDValue &Zext0,
+ const SDValue &Zext1, const SDLoc &DL) {
+
+ // Find the appropriate width for the PSADBW.
+ EVT InVT = Zext0.getOperand(0).getValueType();
+ unsigned RegSize = std::max(128u, InVT.getSizeInBits());
+
+ // "Zero-extend" the i8 vectors. This is not a per-element zext, rather we
+ // fill in the missing vector elements with 0.
+ unsigned NumConcat = RegSize / InVT.getSizeInBits();
+ SmallVector<SDValue, 16> Ops(NumConcat, DAG.getConstant(0, DL, InVT));
+ Ops[0] = Zext0.getOperand(0);
+ MVT ExtendedVT = MVT::getVectorVT(MVT::i8, RegSize / 8);
+ SDValue SadOp0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
+ Ops[0] = Zext1.getOperand(0);
+ SDValue SadOp1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
+
+ // Actually build the SAD
+ MVT SadVT = MVT::getVectorVT(MVT::i64, RegSize / 64);
+ return DAG.getNode(X86ISD::PSADBW, DL, SadVT, SadOp0, SadOp1);
+}
+
+// Attempt to replace an min/max v8i16/v16i8 horizontal reduction with
+// PHMINPOSUW.
+static SDValue combineHorizontalMinMaxResult(SDNode *Extract, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // Bail without SSE41.
+ if (!Subtarget.hasSSE41())
+ return SDValue();
+
+ EVT ExtractVT = Extract->getValueType(0);
+ if (ExtractVT != MVT::i16 && ExtractVT != MVT::i8)
+ return SDValue();
+
+ // Check for SMAX/SMIN/UMAX/UMIN horizontal reduction patterns.
+ unsigned BinOp;
+ SDValue Src = matchBinOpReduction(
+ Extract, BinOp, {ISD::SMAX, ISD::SMIN, ISD::UMAX, ISD::UMIN});
+ if (!Src)
+ return SDValue();
+
+ EVT SrcVT = Src.getValueType();
+ EVT SrcSVT = SrcVT.getScalarType();
+ if (SrcSVT != ExtractVT || (SrcVT.getSizeInBits() % 128) != 0)
+ return SDValue();
+
+ SDLoc DL(Extract);
+ SDValue MinPos = Src;
+
+ // First, reduce the source down to 128-bit, applying BinOp to lo/hi.
+ while (SrcVT.getSizeInBits() > 128) {
+ unsigned NumElts = SrcVT.getVectorNumElements();
+ unsigned NumSubElts = NumElts / 2;
+ SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcSVT, NumSubElts);
+ unsigned SubSizeInBits = SrcVT.getSizeInBits();
+ SDValue Lo = extractSubVector(MinPos, 0, DAG, DL, SubSizeInBits);
+ SDValue Hi = extractSubVector(MinPos, NumSubElts, DAG, DL, SubSizeInBits);
+ MinPos = DAG.getNode(BinOp, DL, SrcVT, Lo, Hi);
+ }
+ assert(((SrcVT == MVT::v8i16 && ExtractVT == MVT::i16) ||
+ (SrcVT == MVT::v16i8 && ExtractVT == MVT::i8)) &&
+ "Unexpected value type");
+
+ // PHMINPOSUW applies to UMIN(v8i16), for SMIN/SMAX/UMAX we must apply a mask
+ // to flip the value accordingly.
+ SDValue Mask;
+ unsigned MaskEltsBits = ExtractVT.getSizeInBits();
+ if (BinOp == ISD::SMAX)
+ Mask = DAG.getConstant(APInt::getSignedMaxValue(MaskEltsBits), DL, SrcVT);
+ else if (BinOp == ISD::SMIN)
+ Mask = DAG.getConstant(APInt::getSignedMinValue(MaskEltsBits), DL, SrcVT);
+ else if (BinOp == ISD::UMAX)
+ Mask = DAG.getConstant(APInt::getAllOnesValue(MaskEltsBits), DL, SrcVT);
+
+ if (Mask)
+ MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos);
+
+ // For v16i8 cases we need to perform UMIN on pairs of byte elements,
+ // shuffling each upper element down and insert zeros. This means that the
+ // v16i8 UMIN will leave the upper element as zero, performing zero-extension
+ // ready for the PHMINPOS.
+ if (ExtractVT == MVT::i8) {
+ SDValue Upper = DAG.getVectorShuffle(
+ SrcVT, DL, MinPos, getZeroVector(MVT::v16i8, Subtarget, DAG, DL),
+ {1, 16, 3, 16, 5, 16, 7, 16, 9, 16, 11, 16, 13, 16, 15, 16});
+ MinPos = DAG.getNode(ISD::UMIN, DL, SrcVT, MinPos, Upper);
+ }
+
+ // Perform the PHMINPOS on a v8i16 vector,
+ MinPos = DAG.getBitcast(MVT::v8i16, MinPos);
+ MinPos = DAG.getNode(X86ISD::PHMINPOS, DL, MVT::v8i16, MinPos);
+ MinPos = DAG.getBitcast(SrcVT, MinPos);
+
+ if (Mask)
+ MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos);
+
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractVT, MinPos,
+ DAG.getIntPtrConstant(0, DL));
+}
+
+// Attempt to replace an all_of/any_of style horizontal reduction with a MOVMSK.
+static SDValue combineHorizontalPredicateResult(SDNode *Extract,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // Bail without SSE2 or with AVX512VL (which uses predicate registers).
+ if (!Subtarget.hasSSE2() || Subtarget.hasVLX())
+ return SDValue();
+
+ EVT ExtractVT = Extract->getValueType(0);
+ unsigned BitWidth = ExtractVT.getSizeInBits();
+ if (ExtractVT != MVT::i64 && ExtractVT != MVT::i32 && ExtractVT != MVT::i16 &&
+ ExtractVT != MVT::i8)
+ return SDValue();
+
+ // Check for OR(any_of) and AND(all_of) horizontal reduction patterns.
+ unsigned BinOp = 0;
+ SDValue Match = matchBinOpReduction(Extract, BinOp, {ISD::OR, ISD::AND});
+ if (!Match)
+ return SDValue();
+
+ // EXTRACT_VECTOR_ELT can require implicit extension of the vector element
+ // which we can't support here for now.
+ if (Match.getScalarValueSizeInBits() != BitWidth)
+ return SDValue();
+
+ // We require AVX2 for PMOVMSKB for v16i16/v32i8;
+ unsigned MatchSizeInBits = Match.getValueSizeInBits();
+ if (!(MatchSizeInBits == 128 ||
+ (MatchSizeInBits == 256 &&
+ ((Subtarget.hasAVX() && BitWidth >= 32) || Subtarget.hasAVX2()))))
+ return SDValue();
+
+ // Don't bother performing this for 2-element vectors.
+ if (Match.getValueType().getVectorNumElements() <= 2)
+ return SDValue();
+
+ // Check that we are extracting a reduction of all sign bits.
+ if (DAG.ComputeNumSignBits(Match) != BitWidth)
+ return SDValue();
+
+ // For 32/64 bit comparisons use MOVMSKPS/MOVMSKPD, else PMOVMSKB.
+ MVT MaskVT;
+ if (64 == BitWidth || 32 == BitWidth)
+ MaskVT = MVT::getVectorVT(MVT::getFloatingPointVT(BitWidth),
+ MatchSizeInBits / BitWidth);
+ else
+ MaskVT = MVT::getVectorVT(MVT::i8, MatchSizeInBits / 8);
+
+ APInt CompareBits;
+ ISD::CondCode CondCode;
+ if (BinOp == ISD::OR) {
+ // any_of -> MOVMSK != 0
+ CompareBits = APInt::getNullValue(32);
+ CondCode = ISD::CondCode::SETNE;
+ } else {
+ // all_of -> MOVMSK == ((1 << NumElts) - 1)
+ CompareBits = APInt::getLowBitsSet(32, MaskVT.getVectorNumElements());
+ CondCode = ISD::CondCode::SETEQ;
+ }
+
+ // Perform the select as i32/i64 and then truncate to avoid partial register
+ // stalls.
+ unsigned ResWidth = std::max(BitWidth, 32u);
+ EVT ResVT = EVT::getIntegerVT(*DAG.getContext(), ResWidth);
+ SDLoc DL(Extract);
+ SDValue Zero = DAG.getConstant(0, DL, ResVT);
+ SDValue Ones = DAG.getAllOnesConstant(DL, ResVT);
+ SDValue Res = DAG.getBitcast(MaskVT, Match);
+ Res = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Res);
+ Res = DAG.getSelectCC(DL, Res, DAG.getConstant(CompareBits, DL, MVT::i32),
+ Ones, Zero, CondCode);
+ return DAG.getSExtOrTrunc(Res, DL, ExtractVT);
+}
+
+static SDValue combineBasicSADPattern(SDNode *Extract, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // PSADBW is only supported on SSE2 and up.
+ if (!Subtarget.hasSSE2())
+ return SDValue();
+
+ // Verify the type we're extracting from is any integer type above i16.
+ EVT VT = Extract->getOperand(0).getValueType();
+ if (!VT.isSimple() || !(VT.getVectorElementType().getSizeInBits() > 16))
+ return SDValue();
+
+ unsigned RegSize = 128;
+ if (Subtarget.hasBWI())
+ RegSize = 512;
+ else if (Subtarget.hasAVX2())
+ RegSize = 256;
+
+ // We handle upto v16i* for SSE2 / v32i* for AVX2 / v64i* for AVX512.
+ // TODO: We should be able to handle larger vectors by splitting them before
+ // feeding them into several SADs, and then reducing over those.
+ if (RegSize / VT.getVectorNumElements() < 8)
+ return SDValue();
+
+ // Match shuffle + add pyramid.
+ unsigned BinOp = 0;
+ SDValue Root = matchBinOpReduction(Extract, BinOp, {ISD::ADD});
+
+ // The operand is expected to be zero extended from i8
+ // (verified in detectZextAbsDiff).
+ // In order to convert to i64 and above, additional any/zero/sign
+ // extend is expected.
+ // The zero extend from 32 bit has no mathematical effect on the result.
+ // Also the sign extend is basically zero extend
+ // (extends the sign bit which is zero).
+ // So it is correct to skip the sign/zero extend instruction.
+ if (Root && (Root.getOpcode() == ISD::SIGN_EXTEND ||
+ Root.getOpcode() == ISD::ZERO_EXTEND ||
+ Root.getOpcode() == ISD::ANY_EXTEND))
+ Root = Root.getOperand(0);
+
+ // If there was a match, we want Root to be a select that is the root of an
+ // abs-diff pattern.
+ if (!Root || (Root.getOpcode() != ISD::VSELECT))
+ return SDValue();
+
+ // Check whether we have an abs-diff pattern feeding into the select.
+ SDValue Zext0, Zext1;
+ if (!detectZextAbsDiff(Root, Zext0, Zext1))
+ return SDValue();
+
+ // Create the SAD instruction.
+ SDLoc DL(Extract);
+ SDValue SAD = createPSADBW(DAG, Zext0, Zext1, DL);
+
+ // If the original vector was wider than 8 elements, sum over the results
+ // in the SAD vector.
+ unsigned Stages = Log2_32(VT.getVectorNumElements());
+ MVT SadVT = SAD.getSimpleValueType();
+ if (Stages > 3) {
+ unsigned SadElems = SadVT.getVectorNumElements();
+
+ for(unsigned i = Stages - 3; i > 0; --i) {
+ SmallVector<int, 16> Mask(SadElems, -1);
+ for(unsigned j = 0, MaskEnd = 1 << (i - 1); j < MaskEnd; ++j)
+ Mask[j] = MaskEnd + j;
+
+ SDValue Shuffle =
+ DAG.getVectorShuffle(SadVT, DL, SAD, DAG.getUNDEF(SadVT), Mask);
+ SAD = DAG.getNode(ISD::ADD, DL, SadVT, SAD, Shuffle);
+ }
+ }
+
+ MVT Type = Extract->getSimpleValueType(0);
+ unsigned TypeSizeInBits = Type.getSizeInBits();
+ // Return the lowest TypeSizeInBits bits.
+ MVT ResVT = MVT::getVectorVT(Type, SadVT.getSizeInBits() / TypeSizeInBits);
+ SAD = DAG.getBitcast(ResVT, SAD);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Type, SAD,
+ Extract->getOperand(1));
+}
+
+// Attempt to peek through a target shuffle and extract the scalar from the
+// source.
+static SDValue combineExtractWithShuffle(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue Src = N->getOperand(0);
+ SDValue Idx = N->getOperand(1);
+
+ EVT VT = N->getValueType(0);
+ EVT SrcVT = Src.getValueType();
+ EVT SrcSVT = SrcVT.getVectorElementType();
+ unsigned NumSrcElts = SrcVT.getVectorNumElements();
+
+ // Don't attempt this for boolean mask vectors or unknown extraction indices.
+ if (SrcSVT == MVT::i1 || !isa<ConstantSDNode>(Idx))
+ return SDValue();
+
+ // Resolve the target shuffle inputs and mask.
+ SmallVector<int, 16> Mask;
+ SmallVector<SDValue, 2> Ops;
+ if (!resolveTargetShuffleInputs(peekThroughBitcasts(Src), Ops, Mask, DAG))
+ return SDValue();
+
+ // Attempt to narrow/widen the shuffle mask to the correct size.
+ if (Mask.size() != NumSrcElts) {
+ if ((NumSrcElts % Mask.size()) == 0) {
+ SmallVector<int, 16> ScaledMask;
+ int Scale = NumSrcElts / Mask.size();
+ scaleShuffleMask<int>(Scale, Mask, ScaledMask);
+ Mask = std::move(ScaledMask);
+ } else if ((Mask.size() % NumSrcElts) == 0) {
+ SmallVector<int, 16> WidenedMask;
+ while (Mask.size() > NumSrcElts &&
+ canWidenShuffleElements(Mask, WidenedMask))
+ Mask = std::move(WidenedMask);
+ // TODO - investigate support for wider shuffle masks with known upper
+ // undef/zero elements for implicit zero-extension.
+ }
+ }
+
+ // Check if narrowing/widening failed.
+ if (Mask.size() != NumSrcElts)
+ return SDValue();
+
+ int SrcIdx = Mask[N->getConstantOperandVal(1)];
+ SDLoc dl(N);
+
+ // If the shuffle source element is undef/zero then we can just accept it.
+ if (SrcIdx == SM_SentinelUndef)
+ return DAG.getUNDEF(VT);
+
+ if (SrcIdx == SM_SentinelZero)
+ return VT.isFloatingPoint() ? DAG.getConstantFP(0.0, dl, VT)
+ : DAG.getConstant(0, dl, VT);
+
+ SDValue SrcOp = Ops[SrcIdx / Mask.size()];
+ SrcOp = DAG.getBitcast(SrcVT, SrcOp);
+ SrcIdx = SrcIdx % Mask.size();
+
+ // We can only extract other elements from 128-bit vectors and in certain
+ // circumstances, depending on SSE-level.
+ // TODO: Investigate using extract_subvector for larger vectors.
+ // TODO: Investigate float/double extraction if it will be just stored.
+ if ((SrcVT == MVT::v4i32 || SrcVT == MVT::v2i64) &&
+ ((SrcIdx == 0 && Subtarget.hasSSE2()) || Subtarget.hasSSE41())) {
+ assert(SrcSVT == VT && "Unexpected extraction type");
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcSVT, SrcOp,
+ DAG.getIntPtrConstant(SrcIdx, dl));
+ }
+
+ if ((SrcVT == MVT::v8i16 && Subtarget.hasSSE2()) ||
+ (SrcVT == MVT::v16i8 && Subtarget.hasSSE41())) {
+ assert(VT.getSizeInBits() >= SrcSVT.getSizeInBits() &&
+ "Unexpected extraction type");
+ unsigned OpCode = (SrcVT == MVT::v8i16 ? X86ISD::PEXTRW : X86ISD::PEXTRB);
+ SDValue ExtOp = DAG.getNode(OpCode, dl, MVT::i32, SrcOp,
+ DAG.getIntPtrConstant(SrcIdx, dl));
+ return DAG.getZExtOrTrunc(ExtOp, dl, VT);
+ }
+
+ return SDValue();
+}
+
+/// Detect vector gather/scatter index generation and convert it from being a
+/// bunch of shuffles and extracts into a somewhat faster sequence.
+/// For i686, the best sequence is apparently storing the value and loading
+/// scalars back, while for x64 we should use 64-bit extracts and shifts.
+static SDValue combineExtractVectorElt(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ if (SDValue NewOp = combineExtractWithShuffle(N, DAG, DCI, Subtarget))
+ return NewOp;
+
+ // TODO - Remove this once we can handle the implicit zero-extension of
+ // X86ISD::PEXTRW/X86ISD::PEXTRB in:
+ // XFormVExtractWithShuffleIntoLoad, combineHorizontalPredicateResult and
+ // combineBasicSADPattern.
+ if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI))
+ return NewOp;
+
+ SDValue InputVector = N->getOperand(0);
+ SDValue EltIdx = N->getOperand(1);
+
+ EVT SrcVT = InputVector.getValueType();
+ EVT VT = N->getValueType(0);
+ SDLoc dl(InputVector);
+
+ // Detect mmx extraction of all bits as a i64. It works better as a bitcast.
+ if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
+ VT == MVT::i64 && SrcVT == MVT::v1i64 && isNullConstant(EltIdx)) {
+ SDValue MMXSrc = InputVector.getOperand(0);
+
+ // The bitcast source is a direct mmx result.
+ if (MMXSrc.getValueType() == MVT::x86mmx)
+ return DAG.getBitcast(VT, InputVector);
+ }
+
+ // Detect mmx to i32 conversion through a v2i32 elt extract.
+ if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
+ VT == MVT::i32 && SrcVT == MVT::v2i32 && isNullConstant(EltIdx)) {
+ SDValue MMXSrc = InputVector.getOperand(0);
+
+ // The bitcast source is a direct mmx result.
+ if (MMXSrc.getValueType() == MVT::x86mmx)
+ return DAG.getNode(X86ISD::MMX_MOVD2W, dl, MVT::i32, MMXSrc);
+ }
+
+ if (VT == MVT::i1 && InputVector.getOpcode() == ISD::BITCAST &&
+ isa<ConstantSDNode>(EltIdx) &&
+ isa<ConstantSDNode>(InputVector.getOperand(0))) {
+ uint64_t ExtractedElt = N->getConstantOperandVal(1);
+ uint64_t InputValue = InputVector.getConstantOperandVal(0);
+ uint64_t Res = (InputValue >> ExtractedElt) & 1;
+ return DAG.getConstant(Res, dl, MVT::i1);
+ }
+
+ // Check whether this extract is the root of a sum of absolute differences
+ // pattern. This has to be done here because we really want it to happen
+ // pre-legalization,
+ if (SDValue SAD = combineBasicSADPattern(N, DAG, Subtarget))
+ return SAD;
+
+ // Attempt to replace an all_of/any_of horizontal reduction with a MOVMSK.
+ if (SDValue Cmp = combineHorizontalPredicateResult(N, DAG, Subtarget))
+ return Cmp;
+
+ // Attempt to replace min/max v8i16/v16i8 reductions with PHMINPOSUW.
+ if (SDValue MinMax = combineHorizontalMinMaxResult(N, DAG, Subtarget))
+ return MinMax;
+
+ // Only operate on vectors of 4 elements, where the alternative shuffling
+ // gets to be more expensive.
+ if (SrcVT != MVT::v4i32)
+ return SDValue();
+
+ // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
+ // single use which is a sign-extend or zero-extend, and all elements are
+ // used.
+ SmallVector<SDNode *, 4> Uses;
+ unsigned ExtractedElements = 0;
+ for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
+ UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI.getUse().getResNo() != InputVector.getResNo())
+ return SDValue();
+
+ SDNode *Extract = *UI;
+ if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ if (Extract->getValueType(0) != MVT::i32)
+ return SDValue();
+ if (!Extract->hasOneUse())
+ return SDValue();
+ if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
+ Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
+ return SDValue();
+ if (!isa<ConstantSDNode>(Extract->getOperand(1)))
+ return SDValue();
+
+ // Record which element was extracted.
+ ExtractedElements |= 1 << Extract->getConstantOperandVal(1);
+ Uses.push_back(Extract);
+ }
+
+ // If not all the elements were used, this may not be worthwhile.
+ if (ExtractedElements != 15)
+ return SDValue();
+
+ // Ok, we've now decided to do the transformation.
+ // If 64-bit shifts are legal, use the extract-shift sequence,
+ // otherwise bounce the vector off the cache.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Vals[4];
+
+ if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
+ SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector);
+ auto &DL = DAG.getDataLayout();
+ EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(DL);
+ SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
+ DAG.getConstant(0, dl, VecIdxTy));
+ SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
+ DAG.getConstant(1, dl, VecIdxTy));
+
+ SDValue ShAmt = DAG.getConstant(
+ 32, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64, DL));
+ Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf);
+ Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
+ DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt));
+ Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf);
+ Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
+ DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt));
+ } else {
+ // Store the value to a temporary stack slot.
+ SDValue StackPtr = DAG.CreateStackTemporary(SrcVT);
+ SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
+ MachinePointerInfo());
+
+ EVT ElementType = SrcVT.getVectorElementType();
+ unsigned EltSize = ElementType.getSizeInBits() / 8;
+
+ // Replace each use (extract) with a load of the appropriate element.
+ for (unsigned i = 0; i < 4; ++i) {
+ uint64_t Offset = EltSize * i;
+ auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
+ SDValue OffsetVal = DAG.getConstant(Offset, dl, PtrVT);
+
+ SDValue ScalarAddr =
+ DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, OffsetVal);
+
+ // Load the scalar.
+ Vals[i] =
+ DAG.getLoad(ElementType, dl, Ch, ScalarAddr, MachinePointerInfo());
+ }
+ }
+
+ // Replace the extracts
+ for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
+ UE = Uses.end(); UI != UE; ++UI) {
+ SDNode *Extract = *UI;
+
+ uint64_t IdxVal = Extract->getConstantOperandVal(1);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]);
+ }
+
+ // The replacement was made in place; return N so it won't be revisited.
+ return SDValue(N, 0);
+}
+
+/// If a vector select has an operand that is -1 or 0, try to simplify the
+/// select to a bitwise logic operation.
+/// TODO: Move to DAGCombiner, possibly using TargetLowering::hasAndNot()?
+static SDValue
+combineVSelectWithAllOnesOrZeros(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ SDValue Cond = N->getOperand(0);
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ EVT VT = LHS.getValueType();
+ EVT CondVT = Cond.getValueType();
+ SDLoc DL(N);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ if (N->getOpcode() != ISD::VSELECT)
+ return SDValue();
+
+ assert(CondVT.isVector() && "Vector select expects a vector selector!");
+
+ bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
+ // Check if the first operand is all zeros and Cond type is vXi1.
+ // This situation only applies to avx512.
+ if (TValIsAllZeros && Subtarget.hasAVX512() && Cond.hasOneUse() &&
+ CondVT.getVectorElementType() == MVT::i1) {
+ // Invert the cond to not(cond) : xor(op,allones)=not(op)
+ SDValue CondNew = DAG.getNode(ISD::XOR, DL, CondVT, Cond,
+ DAG.getAllOnesConstant(DL, CondVT));
+ // Vselect cond, op1, op2 = Vselect not(cond), op2, op1
+ return DAG.getSelect(DL, VT, CondNew, RHS, LHS);
+ }
+
+ // To use the condition operand as a bitwise mask, it must have elements that
+ // are the same size as the select elements. Ie, the condition operand must
+ // have already been promoted from the IR select condition type <N x i1>.
+ // Don't check if the types themselves are equal because that excludes
+ // vector floating-point selects.
+ if (CondVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
+ return SDValue();
+
+ bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
+ bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
+
+ // Try to invert the condition if true value is not all 1s and false value is
+ // not all 0s.
+ if (!TValIsAllOnes && !FValIsAllZeros &&
+ // Check if the selector will be produced by CMPP*/PCMP*.
+ Cond.getOpcode() == ISD::SETCC &&
+ // Check if SETCC has already been promoted.
+ TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
+ CondVT) {
+ bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
+
+ if (TValIsAllZeros || FValIsAllOnes) {
+ SDValue CC = Cond.getOperand(2);
+ ISD::CondCode NewCC =
+ ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
+ Cond.getOperand(0).getValueType().isInteger());
+ Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1),
+ NewCC);
+ std::swap(LHS, RHS);
+ TValIsAllOnes = FValIsAllOnes;
+ FValIsAllZeros = TValIsAllZeros;
+ }
+ }
+
+ // Cond value must be 'sign splat' to be converted to a logical op.
+ if (DAG.ComputeNumSignBits(Cond) != CondVT.getScalarSizeInBits())
+ return SDValue();
+
+ // vselect Cond, 111..., 000... -> Cond
+ if (TValIsAllOnes && FValIsAllZeros)
+ return DAG.getBitcast(VT, Cond);
+
+ if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(CondVT))
+ return SDValue();
+
+ // vselect Cond, 111..., X -> or Cond, X
+ if (TValIsAllOnes) {
+ SDValue CastRHS = DAG.getBitcast(CondVT, RHS);
+ SDValue Or = DAG.getNode(ISD::OR, DL, CondVT, Cond, CastRHS);
+ return DAG.getBitcast(VT, Or);
+ }
+
+ // vselect Cond, X, 000... -> and Cond, X
+ if (FValIsAllZeros) {
+ SDValue CastLHS = DAG.getBitcast(CondVT, LHS);
+ SDValue And = DAG.getNode(ISD::AND, DL, CondVT, Cond, CastLHS);
+ return DAG.getBitcast(VT, And);
+ }
+
+ // vselect Cond, 000..., X -> andn Cond, X
+ if (TValIsAllZeros) {
+ MVT AndNVT = MVT::getVectorVT(MVT::i64, CondVT.getSizeInBits() / 64);
+ SDValue CastCond = DAG.getBitcast(AndNVT, Cond);
+ SDValue CastRHS = DAG.getBitcast(AndNVT, RHS);
+ SDValue AndN = DAG.getNode(X86ISD::ANDNP, DL, AndNVT, CastCond, CastRHS);
+ return DAG.getBitcast(VT, AndN);
+ }
+
+ return SDValue();
+}
+
+static SDValue combineSelectOfTwoConstants(SDNode *N, SelectionDAG &DAG) {
+ SDValue Cond = N->getOperand(0);
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ SDLoc DL(N);
+
+ auto *TrueC = dyn_cast<ConstantSDNode>(LHS);
+ auto *FalseC = dyn_cast<ConstantSDNode>(RHS);
+ if (!TrueC || !FalseC)
+ return SDValue();
+
+ // Don't do this for crazy integer types.
+ EVT VT = N->getValueType(0);
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ // We're going to use the condition bit in math or logic ops. We could allow
+ // this with a wider condition value (post-legalization it becomes an i8),
+ // but if nothing is creating selects that late, it doesn't matter.
+ if (Cond.getValueType() != MVT::i1)
+ return SDValue();
+
+ // A power-of-2 multiply is just a shift. LEA also cheaply handles multiply by
+ // 3, 5, or 9 with i32/i64, so those get transformed too.
+ // TODO: For constants that overflow or do not differ by power-of-2 or small
+ // multiplier, convert to 'and' + 'add'.
+ const APInt &TrueVal = TrueC->getAPIntValue();
+ const APInt &FalseVal = FalseC->getAPIntValue();
+ bool OV;
+ APInt Diff = TrueVal.ssub_ov(FalseVal, OV);
+ if (OV)
+ return SDValue();
+
+ APInt AbsDiff = Diff.abs();
+ if (AbsDiff.isPowerOf2() ||
+ ((VT == MVT::i32 || VT == MVT::i64) &&
+ (AbsDiff == 3 || AbsDiff == 5 || AbsDiff == 9))) {
+
+ // We need a positive multiplier constant for shift/LEA codegen. The 'not'
+ // of the condition can usually be folded into a compare predicate, but even
+ // without that, the sequence should be cheaper than a CMOV alternative.
+ if (TrueVal.slt(FalseVal)) {
+ Cond = DAG.getNOT(DL, Cond, MVT::i1);
+ std::swap(TrueC, FalseC);
+ }
+
+ // select Cond, TC, FC --> (zext(Cond) * (TC - FC)) + FC
+ SDValue R = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
+
+ // Multiply condition by the difference if non-one.
+ if (!AbsDiff.isOneValue())
+ R = DAG.getNode(ISD::MUL, DL, VT, R, DAG.getConstant(AbsDiff, DL, VT));
+
+ // Add the base if non-zero.
+ if (!FalseC->isNullValue())
+ R = DAG.getNode(ISD::ADD, DL, VT, R, SDValue(FalseC, 0));
+
+ return R;
+ }
+
+ return SDValue();
+}
+
+// If this is a bitcasted op that can be represented as another type, push the
+// the bitcast to the inputs. This allows more opportunities for pattern
+// matching masked instructions. This is called when we know that the operation
+// is used as one of the inputs of a vselect.
+static bool combineBitcastForMaskedOp(SDValue OrigOp, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // Make sure we have a bitcast.
+ if (OrigOp.getOpcode() != ISD::BITCAST)
+ return false;
+
+ SDValue Op = OrigOp.getOperand(0);
+
+ // If the operation is used by anything other than the bitcast, we shouldn't
+ // do this combine as that would replicate the operation.
+ if (!Op.hasOneUse())
+ return false;
+
+ MVT VT = OrigOp.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ SDLoc DL(Op.getNode());
+
+ auto BitcastAndCombineShuffle = [&](unsigned Opcode, SDValue Op0, SDValue Op1,
+ SDValue Op2) {
+ Op0 = DAG.getBitcast(VT, Op0);
+ DCI.AddToWorklist(Op0.getNode());
+ Op1 = DAG.getBitcast(VT, Op1);
+ DCI.AddToWorklist(Op1.getNode());
+ DCI.CombineTo(OrigOp.getNode(),
+ DAG.getNode(Opcode, DL, VT, Op0, Op1, Op2));
+ return true;
+ };
+
+ unsigned Opcode = Op.getOpcode();
+ switch (Opcode) {
+ case X86ISD::SHUF128: {
+ if (EltVT.getSizeInBits() != 32 && EltVT.getSizeInBits() != 64)
+ return false;
+ // Only change element size, not type.
+ if (VT.isInteger() != Op.getSimpleValueType().isInteger())
+ return false;
+ return BitcastAndCombineShuffle(Opcode, Op.getOperand(0), Op.getOperand(1),
+ Op.getOperand(2));
+ }
+ case X86ISD::SUBV_BROADCAST: {
+ unsigned EltSize = EltVT.getSizeInBits();
+ if (EltSize != 32 && EltSize != 64)
+ return false;
+ // Only change element size, not type.
+ if (VT.isInteger() != Op.getSimpleValueType().isInteger())
+ return false;
+ SDValue Op0 = Op.getOperand(0);
+ MVT Op0VT = MVT::getVectorVT(EltVT,
+ Op0.getSimpleValueType().getSizeInBits() / EltSize);
+ Op0 = DAG.getBitcast(Op0VT, Op.getOperand(0));
+ DCI.AddToWorklist(Op0.getNode());
+ DCI.CombineTo(OrigOp.getNode(),
+ DAG.getNode(Opcode, DL, VT, Op0));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// Do target-specific dag combines on SELECT and VSELECT nodes.
+static SDValue combineSelect(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ SDLoc DL(N);
+ SDValue Cond = N->getOperand(0);
+ // Get the LHS/RHS of the select.
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ EVT VT = LHS.getValueType();
+ EVT CondVT = Cond.getValueType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // If we have SSE[12] support, try to form min/max nodes. SSE min/max
+ // instructions match the semantics of the common C idiom x<y?x:y but not
+ // x<=y?x:y, because of how they handle negative zero (which can be
+ // ignored in unsafe-math mode).
+ // We also try to create v2f32 min/max nodes, which we later widen to v4f32.
+ if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
+ VT != MVT::f80 && VT != MVT::f128 &&
+ (TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
+ (Subtarget.hasSSE2() ||
+ (Subtarget.hasSSE1() && VT.getScalarType() == MVT::f32))) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+
+ unsigned Opcode = 0;
+ // Check for x CC y ? x : y.
+ if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(1))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETULT:
+ // Converting this to a min would handle NaNs incorrectly, and swapping
+ // the operands would cause it to handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETOLE:
+ // Converting this to a min would handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
+ break;
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETULE:
+ // Converting this to a min would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opcode = X86ISD::FMIN;
+ break;
+
+ case ISD::SETOGE:
+ // Converting this to a max would handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
+ break;
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETUGT:
+ // Converting this to a max would handle NaNs incorrectly, and swapping
+ // the operands would cause it to handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETUGE:
+ // Converting this to a max would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opcode = X86ISD::FMAX;
+ break;
+ }
+ // Check for x CC y ? y : x -- a min/max with reversed arms.
+ } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(0))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETOGE:
+ // Converting this to a min would handle comparisons between positive
+ // and negative zero incorrectly, and swapping the operands would
+ // cause it to handle NaNs incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETUGT:
+ // Converting this to a min would handle NaNs incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
+ break;
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETUGE:
+ // Converting this to a min would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opcode = X86ISD::FMIN;
+ break;
+
+ case ISD::SETULT:
+ // Converting this to a max would handle NaNs incorrectly.
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
+ break;
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETOLE:
+ // Converting this to a max would handle comparisons between positive
+ // and negative zero incorrectly, and swapping the operands would
+ // cause it to handle NaNs incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETULE:
+ // Converting this to a max would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ LLVM_FALLTHROUGH;
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opcode = X86ISD::FMAX;
+ break;
+ }
+ }
+
+ if (Opcode)
+ return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
+ }
+
+ // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
+ // lowering on KNL. In this case we convert it to
+ // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
+ // The same situation for all 128 and 256-bit vectors of i8 and i16.
+ // Since SKX these selects have a proper lowering.
+ if (Subtarget.hasAVX512() && CondVT.isVector() &&
+ CondVT.getVectorElementType() == MVT::i1 &&
+ (VT.is128BitVector() || VT.is256BitVector()) &&
+ (VT.getVectorElementType() == MVT::i8 ||
+ VT.getVectorElementType() == MVT::i16) &&
+ !(Subtarget.hasBWI() && Subtarget.hasVLX())) {
+ Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
+ DCI.AddToWorklist(Cond.getNode());
+ return DAG.getNode(N->getOpcode(), DL, VT, Cond, LHS, RHS);
+ }
+
+ if (SDValue V = combineSelectOfTwoConstants(N, DAG))
+ return V;
+
+ // Canonicalize max and min:
+ // (x > y) ? x : y -> (x >= y) ? x : y
+ // (x < y) ? x : y -> (x <= y) ? x : y
+ // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
+ // the need for an extra compare
+ // against zero. e.g.
+ // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
+ // subl %esi, %edi
+ // testl %edi, %edi
+ // movl $0, %eax
+ // cmovgl %edi, %eax
+ // =>
+ // xorl %eax, %eax
+ // subl %esi, $edi
+ // cmovsl %eax, %edi
+ if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
+ DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(1))) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+ switch (CC) {
+ default: break;
+ case ISD::SETLT:
+ case ISD::SETGT: {
+ ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
+ Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
+ Cond.getOperand(0), Cond.getOperand(1), NewCC);
+ return DAG.getSelect(DL, VT, Cond, LHS, RHS);
+ }
+ }
+ }
+
+ // Early exit check
+ if (!TLI.isTypeLegal(VT))
+ return SDValue();
+
+ // Match VSELECTs into subs with unsigned saturation.
+ if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
+ // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
+ ((Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
+ (Subtarget.hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+
+ // Check if one of the arms of the VSELECT is a zero vector. If it's on the
+ // left side invert the predicate to simplify logic below.
+ SDValue Other;
+ if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
+ Other = RHS;
+ CC = ISD::getSetCCInverse(CC, true);
+ } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
+ Other = LHS;
+ }
+
+ if (Other.getNode() && Other->getNumOperands() == 2 &&
+ DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
+ SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
+ SDValue CondRHS = Cond->getOperand(1);
+
+ // Look for a general sub with unsigned saturation first.
+ // x >= y ? x-y : 0 --> subus x, y
+ // x > y ? x-y : 0 --> subus x, y
+ if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
+ Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
+ return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
+
+ if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
+ if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
+ if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
+ if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
+ // If the RHS is a constant we have to reverse the const
+ // canonicalization.
+ // x > C-1 ? x+-C : 0 --> subus x, C
+ if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
+ CondRHSConst->getAPIntValue() ==
+ (-OpRHSConst->getAPIntValue() - 1))
+ return DAG.getNode(
+ X86ISD::SUBUS, DL, VT, OpLHS,
+ DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT));
+
+ // Another special case: If C was a sign bit, the sub has been
+ // canonicalized into a xor.
+ // FIXME: Would it be better to use computeKnownBits to determine
+ // whether it's safe to decanonicalize the xor?
+ // x s< 0 ? x^C : 0 --> subus x, C
+ if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
+ ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
+ OpRHSConst->getAPIntValue().isSignMask())
+ // Note that we have to rebuild the RHS constant here to ensure we
+ // don't rely on particular values of undef lanes.
+ return DAG.getNode(
+ X86ISD::SUBUS, DL, VT, OpLHS,
+ DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT));
+ }
+ }
+ }
+
+ if (SDValue V = combineVSelectWithAllOnesOrZeros(N, DAG, DCI, Subtarget))
+ return V;
+
+ // If this is a *dynamic* select (non-constant condition) and we can match
+ // this node with one of the variable blend instructions, restructure the
+ // condition so that blends can use the high (sign) bit of each element and
+ // use SimplifyDemandedBits to simplify the condition operand.
+ if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
+ !DCI.isBeforeLegalize() &&
+ !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
+ unsigned BitWidth = Cond.getScalarValueSizeInBits();
+
+ // Don't optimize vector selects that map to mask-registers.
+ if (BitWidth == 1)
+ return SDValue();
+
+ // We can only handle the cases where VSELECT is directly legal on the
+ // subtarget. We custom lower VSELECT nodes with constant conditions and
+ // this makes it hard to see whether a dynamic VSELECT will correctly
+ // lower, so we both check the operation's status and explicitly handle the
+ // cases where a *dynamic* blend will fail even though a constant-condition
+ // blend could be custom lowered.
+ // FIXME: We should find a better way to handle this class of problems.
+ // Potentially, we should combine constant-condition vselect nodes
+ // pre-legalization into shuffles and not mark as many types as custom
+ // lowered.
+ if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
+ return SDValue();
+ // FIXME: We don't support i16-element blends currently. We could and
+ // should support them by making *all* the bits in the condition be set
+ // rather than just the high bit and using an i8-element blend.
+ if (VT.getVectorElementType() == MVT::i16)
+ return SDValue();
+ // Dynamic blending was only available from SSE4.1 onward.
+ if (VT.is128BitVector() && !Subtarget.hasSSE41())
+ return SDValue();
+ // Byte blends are only available in AVX2
+ if (VT == MVT::v32i8 && !Subtarget.hasAVX2())
+ return SDValue();
+ // There are no 512-bit blend instructions that use sign bits.
+ if (VT.is512BitVector())
+ return SDValue();
+
+ assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
+ APInt DemandedMask(APInt::getSignMask(BitWidth));
+ KnownBits Known;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ if (TLI.ShrinkDemandedConstant(Cond, DemandedMask, TLO) ||
+ TLI.SimplifyDemandedBits(Cond, DemandedMask, Known, TLO)) {
+ // If we changed the computation somewhere in the DAG, this change will
+ // affect all users of Cond. Make sure it is fine and update all the nodes
+ // so that we do not use the generic VSELECT anymore. Otherwise, we may
+ // perform wrong optimizations as we messed with the actual expectation
+ // for the vector boolean values.
+ if (Cond != TLO.Old) {
+ // Check all uses of the condition operand to check whether it will be
+ // consumed by non-BLEND instructions. Those may require that all bits
+ // are set properly.
+ for (SDNode *U : Cond->uses()) {
+ // TODO: Add other opcodes eventually lowered into BLEND.
+ if (U->getOpcode() != ISD::VSELECT)
+ return SDValue();
+ }
+
+ // Update all users of the condition before committing the change, so
+ // that the VSELECT optimizations that expect the correct vector boolean
+ // value will not be triggered.
+ for (SDNode *U : Cond->uses()) {
+ SDValue SB = DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(U),
+ U->getValueType(0), Cond, U->getOperand(1),
+ U->getOperand(2));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(U, 0), SB);
+ }
+ DCI.CommitTargetLoweringOpt(TLO);
+ return SDValue();
+ }
+ // Only Cond (rather than other nodes in the computation chain) was
+ // changed. Change the condition just for N to keep the opportunity to
+ // optimize all other users their own way.
+ SDValue SB = DAG.getNode(X86ISD::SHRUNKBLEND, DL, VT, TLO.New, LHS, RHS);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), SB);
+ return SDValue();
+ }
+ }
+
+ // Look for vselects with LHS/RHS being bitcasted from an operation that
+ // can be executed on another type. Push the bitcast to the inputs of
+ // the operation. This exposes opportunities for using masking instructions.
+ if (N->getOpcode() == ISD::VSELECT && DCI.isAfterLegalizeVectorOps() &&
+ CondVT.getVectorElementType() == MVT::i1) {
+ if (combineBitcastForMaskedOp(LHS, DAG, DCI))
+ return SDValue(N, 0);
+ if (combineBitcastForMaskedOp(RHS, DAG, DCI))
+ return SDValue(N, 0);
+ }
+
+ // Custom action for SELECT MMX
+ if (VT == MVT::x86mmx) {
+ LHS = DAG.getBitcast(MVT::i64, LHS);
+ RHS = DAG.getBitcast(MVT::i64, RHS);
+ SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::i64, Cond, LHS, RHS);
+ return DAG.getBitcast(VT, newSelect);
+ }
+
+ return SDValue();
+}
+
+/// Combine:
+/// (brcond/cmov/setcc .., (cmp (atomic_load_add x, 1), 0), COND_S)
+/// to:
+/// (brcond/cmov/setcc .., (LADD x, 1), COND_LE)
+/// i.e., reusing the EFLAGS produced by the LOCKed instruction.
+/// Note that this is only legal for some op/cc combinations.
+static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // This combine only operates on CMP-like nodes.
+ if (!(Cmp.getOpcode() == X86ISD::CMP ||
+ (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
+ return SDValue();
+
+ // Can't replace the cmp if it has more uses than the one we're looking at.
+ // FIXME: We would like to be able to handle this, but would need to make sure
+ // all uses were updated.
+ if (!Cmp.hasOneUse())
+ return SDValue();
+
+ // This only applies to variations of the common case:
+ // (icmp slt x, 0) -> (icmp sle (add x, 1), 0)
+ // (icmp sge x, 0) -> (icmp sgt (add x, 1), 0)
+ // (icmp sle x, 0) -> (icmp slt (sub x, 1), 0)
+ // (icmp sgt x, 0) -> (icmp sge (sub x, 1), 0)
+ // Using the proper condcodes (see below), overflow is checked for.
+
+ // FIXME: We can generalize both constraints:
+ // - XOR/OR/AND (if they were made to survive AtomicExpand)
+ // - LHS != 1
+ // if the result is compared.
+
+ SDValue CmpLHS = Cmp.getOperand(0);
+ SDValue CmpRHS = Cmp.getOperand(1);
+
+ if (!CmpLHS.hasOneUse())
+ return SDValue();
+
+ unsigned Opc = CmpLHS.getOpcode();
+ if (Opc != ISD::ATOMIC_LOAD_ADD && Opc != ISD::ATOMIC_LOAD_SUB)
+ return SDValue();
+
+ SDValue OpRHS = CmpLHS.getOperand(2);
+ auto *OpRHSC = dyn_cast<ConstantSDNode>(OpRHS);
+ if (!OpRHSC)
+ return SDValue();
+
+ APInt Addend = OpRHSC->getAPIntValue();
+ if (Opc == ISD::ATOMIC_LOAD_SUB)
+ Addend = -Addend;
+
+ auto *CmpRHSC = dyn_cast<ConstantSDNode>(CmpRHS);
+ if (!CmpRHSC)
+ return SDValue();
+
+ APInt Comparison = CmpRHSC->getAPIntValue();
+
+ // If the addend is the negation of the comparison value, then we can do
+ // a full comparison by emitting the atomic arithmetic as a locked sub.
+ if (Comparison == -Addend) {
+ // The CC is fine, but we need to rewrite the LHS of the comparison as an
+ // atomic sub.
+ auto *AN = cast<AtomicSDNode>(CmpLHS.getNode());
+ auto AtomicSub = DAG.getAtomic(
+ ISD::ATOMIC_LOAD_SUB, SDLoc(CmpLHS), CmpLHS.getValueType(),
+ /*Chain*/ CmpLHS.getOperand(0), /*LHS*/ CmpLHS.getOperand(1),
+ /*RHS*/ DAG.getConstant(-Addend, SDLoc(CmpRHS), CmpRHS.getValueType()),
+ AN->getMemOperand());
+ // If the comparision uses the CF flag we can't use INC/DEC instructions.
+ bool NeedCF = false;
+ switch (CC) {
+ default: break;
+ case X86::COND_A: case X86::COND_AE:
+ case X86::COND_B: case X86::COND_BE:
+ NeedCF = true;
+ break;
+ }
+ auto LockOp = lowerAtomicArithWithLOCK(AtomicSub, DAG, Subtarget, !NeedCF);
+ DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
+ DAG.getUNDEF(CmpLHS.getValueType()));
+ DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
+ return LockOp;
+ }
+
+ // We can handle comparisons with zero in a number of cases by manipulating
+ // the CC used.
+ if (!Comparison.isNullValue())
+ return SDValue();
+
+ if (CC == X86::COND_S && Addend == 1)
+ CC = X86::COND_LE;
+ else if (CC == X86::COND_NS && Addend == 1)
+ CC = X86::COND_G;
+ else if (CC == X86::COND_G && Addend == -1)
+ CC = X86::COND_GE;
+ else if (CC == X86::COND_LE && Addend == -1)
+ CC = X86::COND_L;
+ else
+ return SDValue();
+
+ SDValue LockOp = lowerAtomicArithWithLOCK(CmpLHS, DAG, Subtarget);
+ DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
+ DAG.getUNDEF(CmpLHS.getValueType()));
+ DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
+ return LockOp;
+}
+
+// Check whether a boolean test is testing a boolean value generated by
+// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
+// code.
+//
+// Simplify the following patterns:
+// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
+// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
+// to (Op EFLAGS Cond)
+//
+// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
+// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
+// to (Op EFLAGS !Cond)
+//
+// where Op could be BRCOND or CMOV.
+//
+static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
+ // This combine only operates on CMP-like nodes.
+ if (!(Cmp.getOpcode() == X86ISD::CMP ||
+ (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
+ return SDValue();
+
+ // Quit if not used as a boolean value.
+ if (CC != X86::COND_E && CC != X86::COND_NE)
+ return SDValue();
+
+ // Check CMP operands. One of them should be 0 or 1 and the other should be
+ // an SetCC or extended from it.
+ SDValue Op1 = Cmp.getOperand(0);
+ SDValue Op2 = Cmp.getOperand(1);
+
+ SDValue SetCC;
+ const ConstantSDNode* C = nullptr;
+ bool needOppositeCond = (CC == X86::COND_E);
+ bool checkAgainstTrue = false; // Is it a comparison against 1?
+
+ if ((C = dyn_cast<ConstantSDNode>(Op1)))
+ SetCC = Op2;
+ else if ((C = dyn_cast<ConstantSDNode>(Op2)))
+ SetCC = Op1;
+ else // Quit if all operands are not constants.
+ return SDValue();
+
+ if (C->getZExtValue() == 1) {
+ needOppositeCond = !needOppositeCond;
+ checkAgainstTrue = true;
+ } else if (C->getZExtValue() != 0)
+ // Quit if the constant is neither 0 or 1.
+ return SDValue();
+
+ bool truncatedToBoolWithAnd = false;
+ // Skip (zext $x), (trunc $x), or (and $x, 1) node.
+ while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
+ SetCC.getOpcode() == ISD::TRUNCATE ||
+ SetCC.getOpcode() == ISD::AND) {
+ if (SetCC.getOpcode() == ISD::AND) {
+ int OpIdx = -1;
+ if (isOneConstant(SetCC.getOperand(0)))
+ OpIdx = 1;
+ if (isOneConstant(SetCC.getOperand(1)))
+ OpIdx = 0;
+ if (OpIdx < 0)
+ break;
+ SetCC = SetCC.getOperand(OpIdx);
+ truncatedToBoolWithAnd = true;
+ } else
+ SetCC = SetCC.getOperand(0);
+ }
+
+ switch (SetCC.getOpcode()) {
+ case X86ISD::SETCC_CARRY:
+ // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
+ // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
+ // i.e. it's a comparison against true but the result of SETCC_CARRY is not
+ // truncated to i1 using 'and'.
+ if (checkAgainstTrue && !truncatedToBoolWithAnd)
+ break;
+ assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
+ "Invalid use of SETCC_CARRY!");
+ LLVM_FALLTHROUGH;
+ case X86ISD::SETCC:
+ // Set the condition code or opposite one if necessary.
+ CC = X86::CondCode(SetCC.getConstantOperandVal(0));
+ if (needOppositeCond)
+ CC = X86::GetOppositeBranchCondition(CC);
+ return SetCC.getOperand(1);
+ case X86ISD::CMOV: {
+ // Check whether false/true value has canonical one, i.e. 0 or 1.
+ ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
+ ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
+ // Quit if true value is not a constant.
+ if (!TVal)
+ return SDValue();
+ // Quit if false value is not a constant.
+ if (!FVal) {
+ SDValue Op = SetCC.getOperand(0);
+ // Skip 'zext' or 'trunc' node.
+ if (Op.getOpcode() == ISD::ZERO_EXTEND ||
+ Op.getOpcode() == ISD::TRUNCATE)
+ Op = Op.getOperand(0);
+ // A special case for rdrand/rdseed, where 0 is set if false cond is
+ // found.
+ if ((Op.getOpcode() != X86ISD::RDRAND &&
+ Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
+ return SDValue();
+ }
+ // Quit if false value is not the constant 0 or 1.
+ bool FValIsFalse = true;
+ if (FVal && FVal->getZExtValue() != 0) {
+ if (FVal->getZExtValue() != 1)
+ return SDValue();
+ // If FVal is 1, opposite cond is needed.
+ needOppositeCond = !needOppositeCond;
+ FValIsFalse = false;
+ }
+ // Quit if TVal is not the constant opposite of FVal.
+ if (FValIsFalse && TVal->getZExtValue() != 1)
+ return SDValue();
+ if (!FValIsFalse && TVal->getZExtValue() != 0)
+ return SDValue();
+ CC = X86::CondCode(SetCC.getConstantOperandVal(2));
+ if (needOppositeCond)
+ CC = X86::GetOppositeBranchCondition(CC);
+ return SetCC.getOperand(3);
+ }
+ }
+
+ return SDValue();
+}
+
+/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
+/// Match:
+/// (X86or (X86setcc) (X86setcc))
+/// (X86cmp (and (X86setcc) (X86setcc)), 0)
+static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
+ X86::CondCode &CC1, SDValue &Flags,
+ bool &isAnd) {
+ if (Cond->getOpcode() == X86ISD::CMP) {
+ if (!isNullConstant(Cond->getOperand(1)))
+ return false;
+
+ Cond = Cond->getOperand(0);
+ }
+
+ isAnd = false;
+
+ SDValue SetCC0, SetCC1;
+ switch (Cond->getOpcode()) {
+ default: return false;
+ case ISD::AND:
+ case X86ISD::AND:
+ isAnd = true;
+ LLVM_FALLTHROUGH;
+ case ISD::OR:
+ case X86ISD::OR:
+ SetCC0 = Cond->getOperand(0);
+ SetCC1 = Cond->getOperand(1);
+ break;
+ };
+
+ // Make sure we have SETCC nodes, using the same flags value.
+ if (SetCC0.getOpcode() != X86ISD::SETCC ||
+ SetCC1.getOpcode() != X86ISD::SETCC ||
+ SetCC0->getOperand(1) != SetCC1->getOperand(1))
+ return false;
+
+ CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
+ CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
+ Flags = SetCC0->getOperand(1);
+ return true;
+}
+
+// When legalizing carry, we create carries via add X, -1
+// If that comes from an actual carry, via setcc, we use the
+// carry directly.
+static SDValue combineCarryThroughADD(SDValue EFLAGS) {
+ if (EFLAGS.getOpcode() == X86ISD::ADD) {
+ if (isAllOnesConstant(EFLAGS.getOperand(1))) {
+ SDValue Carry = EFLAGS.getOperand(0);
+ while (Carry.getOpcode() == ISD::TRUNCATE ||
+ Carry.getOpcode() == ISD::ZERO_EXTEND ||
+ Carry.getOpcode() == ISD::SIGN_EXTEND ||
+ Carry.getOpcode() == ISD::ANY_EXTEND ||
+ (Carry.getOpcode() == ISD::AND &&
+ isOneConstant(Carry.getOperand(1))))
+ Carry = Carry.getOperand(0);
+ if (Carry.getOpcode() == X86ISD::SETCC ||
+ Carry.getOpcode() == X86ISD::SETCC_CARRY) {
+ if (Carry.getConstantOperandVal(0) == X86::COND_B)
+ return Carry.getOperand(1);
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+/// Optimize an EFLAGS definition used according to the condition code \p CC
+/// into a simpler EFLAGS value, potentially returning a new \p CC and replacing
+/// uses of chain values.
+static SDValue combineSetCCEFLAGS(SDValue EFLAGS, X86::CondCode &CC,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (CC == X86::COND_B)
+ if (SDValue Flags = combineCarryThroughADD(EFLAGS))
+ return Flags;
+
+ if (SDValue R = checkBoolTestSetCCCombine(EFLAGS, CC))
+ return R;
+ return combineSetCCAtomicArith(EFLAGS, CC, DAG, Subtarget);
+}
+
+/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
+static SDValue combineCMov(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ SDLoc DL(N);
+
+ SDValue FalseOp = N->getOperand(0);
+ SDValue TrueOp = N->getOperand(1);
+ X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
+ SDValue Cond = N->getOperand(3);
+
+ if (CC == X86::COND_E || CC == X86::COND_NE) {
+ switch (Cond.getOpcode()) {
+ default: break;
+ case X86ISD::BSR:
+ case X86ISD::BSF:
+ // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
+ if (DAG.isKnownNeverZero(Cond.getOperand(0)))
+ return (CC == X86::COND_E) ? FalseOp : TrueOp;
+ }
+ }
+
+ // Try to simplify the EFLAGS and condition code operands.
+ // We can't always do this as FCMOV only supports a subset of X86 cond.
+ if (SDValue Flags = combineSetCCEFLAGS(Cond, CC, DAG, Subtarget)) {
+ if (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC)) {
+ SDValue Ops[] = {FalseOp, TrueOp, DAG.getConstant(CC, DL, MVT::i8),
+ Flags};
+ return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
+ }
+ }
+
+ // If this is a select between two integer constants, try to do some
+ // optimizations. Note that the operands are ordered the opposite of SELECT
+ // operands.
+ if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
+ if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
+ // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
+ // larger than FalseC (the false value).
+ if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
+ CC = X86::GetOppositeBranchCondition(CC);
+ std::swap(TrueC, FalseC);
+ std::swap(TrueOp, FalseOp);
+ }
+
+ // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
+ // This is efficient for any integer data type (including i8/i16) and
+ // shift amount.
+ if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
+ Cond = getSETCC(CC, Cond, DL, DAG);
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
+
+ unsigned ShAmt = TrueC->getAPIntValue().logBase2();
+ Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(ShAmt, DL, MVT::i8));
+ return Cond;
+ }
+
+ // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
+ // for any integer data type, including i8/i16.
+ if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
+ Cond = getSETCC(CC, Cond, DL, DAG);
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
+ FalseC->getValueType(0), Cond);
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ return Cond;
+ }
+
+ // Optimize cases that will turn into an LEA instruction. This requires
+ // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
+ if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
+ uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
+ if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
+
+ bool isFastMultiplier = false;
+ if (Diff < 10) {
+ switch ((unsigned char)Diff) {
+ default: break;
+ case 1: // result = add base, cond
+ case 2: // result = lea base( , cond*2)
+ case 3: // result = lea base(cond, cond*2)
+ case 4: // result = lea base( , cond*4)
+ case 5: // result = lea base(cond, cond*4)
+ case 8: // result = lea base( , cond*8)
+ case 9: // result = lea base(cond, cond*8)
+ isFastMultiplier = true;
+ break;
+ }
+ }
+
+ if (isFastMultiplier) {
+ APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
+ Cond = getSETCC(CC, Cond, DL ,DAG);
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
+ Cond);
+ // Scale the condition by the difference.
+ if (Diff != 1)
+ Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(Diff, DL, Cond.getValueType()));
+
+ // Add the base if non-zero.
+ if (FalseC->getAPIntValue() != 0)
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ return Cond;
+ }
+ }
+ }
+ }
+
+ // Handle these cases:
+ // (select (x != c), e, c) -> select (x != c), e, x),
+ // (select (x == c), c, e) -> select (x == c), x, e)
+ // where the c is an integer constant, and the "select" is the combination
+ // of CMOV and CMP.
+ //
+ // The rationale for this change is that the conditional-move from a constant
+ // needs two instructions, however, conditional-move from a register needs
+ // only one instruction.
+ //
+ // CAVEAT: By replacing a constant with a symbolic value, it may obscure
+ // some instruction-combining opportunities. This opt needs to be
+ // postponed as late as possible.
+ //
+ if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
+ // the DCI.xxxx conditions are provided to postpone the optimization as
+ // late as possible.
+
+ ConstantSDNode *CmpAgainst = nullptr;
+ if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
+ (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
+ !isa<ConstantSDNode>(Cond.getOperand(0))) {
+
+ if (CC == X86::COND_NE &&
+ CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
+ CC = X86::GetOppositeBranchCondition(CC);
+ std::swap(TrueOp, FalseOp);
+ }
+
+ if (CC == X86::COND_E &&
+ CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
+ SDValue Ops[] = { FalseOp, Cond.getOperand(0),
+ DAG.getConstant(CC, DL, MVT::i8), Cond };
+ return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
+ }
+ }
+ }
+
+ // Fold and/or of setcc's to double CMOV:
+ // (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
+ // (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
+ //
+ // This combine lets us generate:
+ // cmovcc1 (jcc1 if we don't have CMOV)
+ // cmovcc2 (same)
+ // instead of:
+ // setcc1
+ // setcc2
+ // and/or
+ // cmovne (jne if we don't have CMOV)
+ // When we can't use the CMOV instruction, it might increase branch
+ // mispredicts.
+ // When we can use CMOV, or when there is no mispredict, this improves
+ // throughput and reduces register pressure.
+ //
+ if (CC == X86::COND_NE) {
+ SDValue Flags;
+ X86::CondCode CC0, CC1;
+ bool isAndSetCC;
+ if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
+ if (isAndSetCC) {
+ std::swap(FalseOp, TrueOp);
+ CC0 = X86::GetOppositeBranchCondition(CC0);
+ CC1 = X86::GetOppositeBranchCondition(CC1);
+ }
+
+ SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8),
+ Flags};
+ SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), LOps);
+ SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags};
+ SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
+ return CMOV;
+ }
+ }
+
+ return SDValue();
+}
+
+/// Different mul shrinking modes.
+enum ShrinkMode { MULS8, MULU8, MULS16, MULU16 };
+
+static bool canReduceVMulWidth(SDNode *N, SelectionDAG &DAG, ShrinkMode &Mode) {
+ EVT VT = N->getOperand(0).getValueType();
+ if (VT.getScalarSizeInBits() != 32)
+ return false;
+
+ assert(N->getNumOperands() == 2 && "NumOperands of Mul are 2");
+ unsigned SignBits[2] = {1, 1};
+ bool IsPositive[2] = {false, false};
+ for (unsigned i = 0; i < 2; i++) {
+ SDValue Opd = N->getOperand(i);
+
+ // DAG.ComputeNumSignBits return 1 for ISD::ANY_EXTEND, so we need to
+ // compute signbits for it separately.
+ if (Opd.getOpcode() == ISD::ANY_EXTEND) {
+ // For anyextend, it is safe to assume an appropriate number of leading
+ // sign/zero bits.
+ if (Opd.getOperand(0).getValueType().getVectorElementType() == MVT::i8)
+ SignBits[i] = 25;
+ else if (Opd.getOperand(0).getValueType().getVectorElementType() ==
+ MVT::i16)
+ SignBits[i] = 17;
+ else
+ return false;
+ IsPositive[i] = true;
+ } else if (Opd.getOpcode() == ISD::BUILD_VECTOR) {
+ // All the operands of BUILD_VECTOR need to be int constant.
+ // Find the smallest value range which all the operands belong to.
+ SignBits[i] = 32;
+ IsPositive[i] = true;
+ for (const SDValue &SubOp : Opd.getNode()->op_values()) {
+ if (SubOp.isUndef())
+ continue;
+ auto *CN = dyn_cast<ConstantSDNode>(SubOp);
+ if (!CN)
+ return false;
+ APInt IntVal = CN->getAPIntValue();
+ if (IntVal.isNegative())
+ IsPositive[i] = false;
+ SignBits[i] = std::min(SignBits[i], IntVal.getNumSignBits());
+ }
+ } else {
+ SignBits[i] = DAG.ComputeNumSignBits(Opd);
+ if (Opd.getOpcode() == ISD::ZERO_EXTEND)
+ IsPositive[i] = true;
+ }
+ }
+
+ bool AllPositive = IsPositive[0] && IsPositive[1];
+ unsigned MinSignBits = std::min(SignBits[0], SignBits[1]);
+ // When ranges are from -128 ~ 127, use MULS8 mode.
+ if (MinSignBits >= 25)
+ Mode = MULS8;
+ // When ranges are from 0 ~ 255, use MULU8 mode.
+ else if (AllPositive && MinSignBits >= 24)
+ Mode = MULU8;
+ // When ranges are from -32768 ~ 32767, use MULS16 mode.
+ else if (MinSignBits >= 17)
+ Mode = MULS16;
+ // When ranges are from 0 ~ 65535, use MULU16 mode.
+ else if (AllPositive && MinSignBits >= 16)
+ Mode = MULU16;
+ else
+ return false;
+ return true;
+}
+
+/// When the operands of vector mul are extended from smaller size values,
+/// like i8 and i16, the type of mul may be shrinked to generate more
+/// efficient code. Two typical patterns are handled:
+/// Pattern1:
+/// %2 = sext/zext <N x i8> %1 to <N x i32>
+/// %4 = sext/zext <N x i8> %3 to <N x i32>
+// or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
+/// %5 = mul <N x i32> %2, %4
+///
+/// Pattern2:
+/// %2 = zext/sext <N x i16> %1 to <N x i32>
+/// %4 = zext/sext <N x i16> %3 to <N x i32>
+/// or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
+/// %5 = mul <N x i32> %2, %4
+///
+/// There are four mul shrinking modes:
+/// If %2 == sext32(trunc8(%2)), i.e., the scalar value range of %2 is
+/// -128 to 128, and the scalar value range of %4 is also -128 to 128,
+/// generate pmullw+sext32 for it (MULS8 mode).
+/// If %2 == zext32(trunc8(%2)), i.e., the scalar value range of %2 is
+/// 0 to 255, and the scalar value range of %4 is also 0 to 255,
+/// generate pmullw+zext32 for it (MULU8 mode).
+/// If %2 == sext32(trunc16(%2)), i.e., the scalar value range of %2 is
+/// -32768 to 32767, and the scalar value range of %4 is also -32768 to 32767,
+/// generate pmullw+pmulhw for it (MULS16 mode).
+/// If %2 == zext32(trunc16(%2)), i.e., the scalar value range of %2 is
+/// 0 to 65535, and the scalar value range of %4 is also 0 to 65535,
+/// generate pmullw+pmulhuw for it (MULU16 mode).
+static SDValue reduceVMULWidth(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // Check for legality
+ // pmullw/pmulhw are not supported by SSE.
+ if (!Subtarget.hasSSE2())
+ return SDValue();
+
+ // Check for profitability
+ // pmulld is supported since SSE41. It is better to use pmulld
+ // instead of pmullw+pmulhw, except for subtargets where pmulld is slower than
+ // the expansion.
+ bool OptForMinSize = DAG.getMachineFunction().getFunction().optForMinSize();
+ if (Subtarget.hasSSE41() && (OptForMinSize || !Subtarget.isPMULLDSlow()))
+ return SDValue();
+
+ ShrinkMode Mode;
+ if (!canReduceVMulWidth(N, DAG, Mode))
+ return SDValue();
+
+ SDLoc DL(N);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getOperand(0).getValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+ if ((NumElts % 2) != 0)
+ return SDValue();
+
+ // If the upper 17 bits of each element are zero then we can use PMADD.
+ APInt Mask17 = APInt::getHighBitsSet(32, 17);
+ if (VT == MVT::v4i32 && DAG.MaskedValueIsZero(N0, Mask17) &&
+ DAG.MaskedValueIsZero(N1, Mask17))
+ return DAG.getNode(X86ISD::VPMADDWD, DL, VT, DAG.getBitcast(MVT::v8i16, N0),
+ DAG.getBitcast(MVT::v8i16, N1));
+
+ unsigned RegSize = 128;
+ MVT OpsVT = MVT::getVectorVT(MVT::i16, RegSize / 16);
+ EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, NumElts);
+
+ // Shrink the operands of mul.
+ SDValue NewN0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N0);
+ SDValue NewN1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N1);
+
+ if (NumElts >= OpsVT.getVectorNumElements()) {
+ // Generate the lower part of mul: pmullw. For MULU8/MULS8, only the
+ // lower part is needed.
+ SDValue MulLo = DAG.getNode(ISD::MUL, DL, ReducedVT, NewN0, NewN1);
+ if (Mode == MULU8 || Mode == MULS8) {
+ return DAG.getNode((Mode == MULU8) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND,
+ DL, VT, MulLo);
+ } else {
+ MVT ResVT = MVT::getVectorVT(MVT::i32, NumElts / 2);
+ // Generate the higher part of mul: pmulhw/pmulhuw. For MULU16/MULS16,
+ // the higher part is also needed.
+ SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL,
+ ReducedVT, NewN0, NewN1);
+
+ // Repack the lower part and higher part result of mul into a wider
+ // result.
+ // Generate shuffle functioning as punpcklwd.
+ SmallVector<int, 16> ShuffleMask(NumElts);
+ for (unsigned i = 0, e = NumElts / 2; i < e; i++) {
+ ShuffleMask[2 * i] = i;
+ ShuffleMask[2 * i + 1] = i + NumElts;
+ }
+ SDValue ResLo =
+ DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
+ ResLo = DAG.getBitcast(ResVT, ResLo);
+ // Generate shuffle functioning as punpckhwd.
+ for (unsigned i = 0, e = NumElts / 2; i < e; i++) {
+ ShuffleMask[2 * i] = i + NumElts / 2;
+ ShuffleMask[2 * i + 1] = i + NumElts * 3 / 2;
+ }
+ SDValue ResHi =
+ DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
+ ResHi = DAG.getBitcast(ResVT, ResHi);
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ResLo, ResHi);
+ }
+ } else {
+ // When VT.getVectorNumElements() < OpsVT.getVectorNumElements(), we want
+ // to legalize the mul explicitly because implicit legalization for type
+ // <4 x i16> to <4 x i32> sometimes involves unnecessary unpack
+ // instructions which will not exist when we explicitly legalize it by
+ // extending <4 x i16> to <8 x i16> (concatenating the <4 x i16> val with
+ // <4 x i16> undef).
+ //
+ // Legalize the operands of mul.
+ // FIXME: We may be able to handle non-concatenated vectors by insertion.
+ unsigned ReducedSizeInBits = ReducedVT.getSizeInBits();
+ if ((RegSize % ReducedSizeInBits) != 0)
+ return SDValue();
+
+ SmallVector<SDValue, 16> Ops(RegSize / ReducedSizeInBits,
+ DAG.getUNDEF(ReducedVT));
+ Ops[0] = NewN0;
+ NewN0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops);
+ Ops[0] = NewN1;
+ NewN1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops);
+
+ if (Mode == MULU8 || Mode == MULS8) {
+ // Generate lower part of mul: pmullw. For MULU8/MULS8, only the lower
+ // part is needed.
+ SDValue Mul = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1);
+
+ // convert the type of mul result to VT.
+ MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32);
+ SDValue Res = DAG.getNode(Mode == MULU8 ? ISD::ZERO_EXTEND_VECTOR_INREG
+ : ISD::SIGN_EXTEND_VECTOR_INREG,
+ DL, ResVT, Mul);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
+ DAG.getIntPtrConstant(0, DL));
+ } else {
+ // Generate the lower and higher part of mul: pmulhw/pmulhuw. For
+ // MULU16/MULS16, both parts are needed.
+ SDValue MulLo = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1);
+ SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL,
+ OpsVT, NewN0, NewN1);
+
+ // Repack the lower part and higher part result of mul into a wider
+ // result. Make sure the type of mul result is VT.
+ MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32);
+ SDValue Res = getUnpackl(DAG, DL, OpsVT, MulLo, MulHi);
+ Res = DAG.getBitcast(ResVT, Res);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
+ DAG.getIntPtrConstant(0, DL));
+ }
+ }
+}
+
+static SDValue combineMulSpecial(uint64_t MulAmt, SDNode *N, SelectionDAG &DAG,
+ EVT VT, SDLoc DL) {
+
+ auto combineMulShlAddOrSub = [&](int Mult, int Shift, bool isAdd) {
+ SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
+ DAG.getConstant(Mult, DL, VT));
+ Result = DAG.getNode(ISD::SHL, DL, VT, Result,
+ DAG.getConstant(Shift, DL, MVT::i8));
+ Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result,
+ N->getOperand(0));
+ return Result;
+ };
+
+ auto combineMulMulAddOrSub = [&](bool isAdd) {
+ SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
+ DAG.getConstant(9, DL, VT));
+ Result = DAG.getNode(ISD::MUL, DL, VT, Result, DAG.getConstant(3, DL, VT));
+ Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result,
+ N->getOperand(0));
+ return Result;
+ };
+
+ switch (MulAmt) {
+ default:
+ break;
+ case 11:
+ // mul x, 11 => add ((shl (mul x, 5), 1), x)
+ return combineMulShlAddOrSub(5, 1, /*isAdd*/ true);
+ case 21:
+ // mul x, 21 => add ((shl (mul x, 5), 2), x)
+ return combineMulShlAddOrSub(5, 2, /*isAdd*/ true);
+ case 22:
+ // mul x, 22 => add (add ((shl (mul x, 5), 2), x), x)
+ return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
+ combineMulShlAddOrSub(5, 2, /*isAdd*/ true));
+ case 19:
+ // mul x, 19 => sub ((shl (mul x, 5), 2), x)
+ return combineMulShlAddOrSub(5, 2, /*isAdd*/ false);
+ case 13:
+ // mul x, 13 => add ((shl (mul x, 3), 2), x)
+ return combineMulShlAddOrSub(3, 2, /*isAdd*/ true);
+ case 23:
+ // mul x, 13 => sub ((shl (mul x, 3), 3), x)
+ return combineMulShlAddOrSub(3, 3, /*isAdd*/ false);
+ case 14:
+ // mul x, 14 => add (add ((shl (mul x, 3), 2), x), x)
+ return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
+ combineMulShlAddOrSub(3, 2, /*isAdd*/ true));
+ case 26:
+ // mul x, 26 => sub ((mul (mul x, 9), 3), x)
+ return combineMulMulAddOrSub(/*isAdd*/ false);
+ case 28:
+ // mul x, 28 => add ((mul (mul x, 9), 3), x)
+ return combineMulMulAddOrSub(/*isAdd*/ true);
+ case 29:
+ // mul x, 29 => add (add ((mul (mul x, 9), 3), x), x)
+ return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
+ combineMulMulAddOrSub(/*isAdd*/ true));
+ case 30:
+ // mul x, 30 => sub (sub ((shl x, 5), x), x)
+ return DAG.getNode(
+ ISD::SUB, DL, VT,
+ DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
+ DAG.getConstant(5, DL, MVT::i8)),
+ N->getOperand(0)),
+ N->getOperand(0));
+ }
+ return SDValue();
+}
+
+/// Optimize a single multiply with constant into two operations in order to
+/// implement it with two cheaper instructions, e.g. LEA + SHL, LEA + LEA.
+static SDValue combineMul(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (DCI.isBeforeLegalize() && VT.isVector())
+ return reduceVMULWidth(N, DAG, Subtarget);
+
+ if (!MulConstantOptimization)
+ return SDValue();
+ // An imul is usually smaller than the alternative sequence.
+ if (DAG.getMachineFunction().getFunction().optForMinSize())
+ return SDValue();
+
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ if (VT != MVT::i64 && VT != MVT::i32)
+ return SDValue();
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C)
+ return SDValue();
+ uint64_t MulAmt = C->getZExtValue();
+ if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
+ return SDValue();
+
+ uint64_t MulAmt1 = 0;
+ uint64_t MulAmt2 = 0;
+ if ((MulAmt % 9) == 0) {
+ MulAmt1 = 9;
+ MulAmt2 = MulAmt / 9;
+ } else if ((MulAmt % 5) == 0) {
+ MulAmt1 = 5;
+ MulAmt2 = MulAmt / 5;
+ } else if ((MulAmt % 3) == 0) {
+ MulAmt1 = 3;
+ MulAmt2 = MulAmt / 3;
+ }
+
+ SDLoc DL(N);
+ SDValue NewMul;
+ if (MulAmt2 &&
+ (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
+
+ if (isPowerOf2_64(MulAmt2) &&
+ !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
+ // If second multiplifer is pow2, issue it first. We want the multiply by
+ // 3, 5, or 9 to be folded into the addressing mode unless the lone use
+ // is an add.
+ std::swap(MulAmt1, MulAmt2);
+
+ if (isPowerOf2_64(MulAmt1))
+ NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
+ DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8));
+ else
+ NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
+ DAG.getConstant(MulAmt1, DL, VT));
+
+ if (isPowerOf2_64(MulAmt2))
+ NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
+ DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8));
+ else
+ NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
+ DAG.getConstant(MulAmt2, DL, VT));
+ } else if (!Subtarget.slowLEA())
+ NewMul = combineMulSpecial(MulAmt, N, DAG, VT, DL);
+
+ if (!NewMul) {
+ assert(MulAmt != 0 &&
+ MulAmt != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX) &&
+ "Both cases that could cause potential overflows should have "
+ "already been handled.");
+ int64_t SignMulAmt = C->getSExtValue();
+ if ((SignMulAmt != INT64_MIN) && (SignMulAmt != INT64_MAX) &&
+ (SignMulAmt != -INT64_MAX)) {
+ int NumSign = SignMulAmt > 0 ? 1 : -1;
+ bool IsPowerOf2_64PlusOne = isPowerOf2_64(NumSign * SignMulAmt - 1);
+ bool IsPowerOf2_64MinusOne = isPowerOf2_64(NumSign * SignMulAmt + 1);
+ if (IsPowerOf2_64PlusOne) {
+ // (mul x, 2^N + 1) => (add (shl x, N), x)
+ NewMul = DAG.getNode(
+ ISD::ADD, DL, VT, N->getOperand(0),
+ DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
+ DAG.getConstant(Log2_64(NumSign * SignMulAmt - 1), DL,
+ MVT::i8)));
+ } else if (IsPowerOf2_64MinusOne) {
+ // (mul x, 2^N - 1) => (sub (shl x, N), x)
+ NewMul = DAG.getNode(
+ ISD::SUB, DL, VT,
+ DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
+ DAG.getConstant(Log2_64(NumSign * SignMulAmt + 1), DL,
+ MVT::i8)),
+ N->getOperand(0));
+ }
+ // To negate, subtract the number from zero
+ if ((IsPowerOf2_64PlusOne || IsPowerOf2_64MinusOne) && NumSign == -1)
+ NewMul =
+ DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), NewMul);
+ }
+ }
+
+ if (NewMul)
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, NewMul, false);
+
+ return SDValue();
+}
+
+static SDValue combineShiftLeft(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+
+ // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
+ // since the result of setcc_c is all zero's or all ones.
+ if (VT.isInteger() && !VT.isVector() &&
+ N1C && N0.getOpcode() == ISD::AND &&
+ N0.getOperand(1).getOpcode() == ISD::Constant) {
+ SDValue N00 = N0.getOperand(0);
+ APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ Mask <<= N1C->getAPIntValue();
+ bool MaskOK = false;
+ // We can handle cases concerning bit-widening nodes containing setcc_c if
+ // we carefully interrogate the mask to make sure we are semantics
+ // preserving.
+ // The transform is not safe if the result of C1 << C2 exceeds the bitwidth
+ // of the underlying setcc_c operation if the setcc_c was zero extended.
+ // Consider the following example:
+ // zext(setcc_c) -> i32 0x0000FFFF
+ // c1 -> i32 0x0000FFFF
+ // c2 -> i32 0x00000001
+ // (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE
+ // (and setcc_c, (c1 << c2)) -> i32 0x0000FFFE
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
+ MaskOK = true;
+ } else if (N00.getOpcode() == ISD::SIGN_EXTEND &&
+ N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+ MaskOK = true;
+ } else if ((N00.getOpcode() == ISD::ZERO_EXTEND ||
+ N00.getOpcode() == ISD::ANY_EXTEND) &&
+ N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+ MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits());
+ }
+ if (MaskOK && Mask != 0) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT));
+ }
+ }
+
+ // Hardware support for vector shifts is sparse which makes us scalarize the
+ // vector operations in many cases. Also, on sandybridge ADD is faster than
+ // shl.
+ // (shl V, 1) -> add V,V
+ if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
+ if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
+ assert(N0.getValueType().isVector() && "Invalid vector shift type");
+ // We shift all of the values by one. In many cases we do not have
+ // hardware support for this operation. This is better expressed as an ADD
+ // of two values.
+ if (N1SplatC->getAPIntValue() == 1)
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
+ }
+
+ return SDValue();
+}
+
+static SDValue combineShiftRightArithmetic(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+ unsigned Size = VT.getSizeInBits();
+
+ // fold (ashr (shl, a, [56,48,32,24,16]), SarConst)
+ // into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or
+ // into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
+ // depending on sign of (SarConst - [56,48,32,24,16])
+
+ // sexts in X86 are MOVs. The MOVs have the same code size
+ // as above SHIFTs (only SHIFT on 1 has lower code size).
+ // However the MOVs have 2 advantages to a SHIFT:
+ // 1. MOVs can write to a register that differs from source
+ // 2. MOVs accept memory operands
+
+ if (VT.isVector() || N1.getOpcode() != ISD::Constant ||
+ N0.getOpcode() != ISD::SHL || !N0.hasOneUse() ||
+ N0.getOperand(1).getOpcode() != ISD::Constant)
+ return SDValue();
+
+ SDValue N00 = N0.getOperand(0);
+ SDValue N01 = N0.getOperand(1);
+ APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue();
+ APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue();
+ EVT CVT = N1.getValueType();
+
+ if (SarConst.isNegative())
+ return SDValue();
+
+ for (MVT SVT : { MVT::i8, MVT::i16, MVT::i32 }) {
+ unsigned ShiftSize = SVT.getSizeInBits();
+ // skipping types without corresponding sext/zext and
+ // ShlConst that is not one of [56,48,32,24,16]
+ if (ShiftSize >= Size || ShlConst != Size - ShiftSize)
+ continue;
+ SDLoc DL(N);
+ SDValue NN =
+ DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT));
+ SarConst = SarConst - (Size - ShiftSize);
+ if (SarConst == 0)
+ return NN;
+ else if (SarConst.isNegative())
+ return DAG.getNode(ISD::SHL, DL, VT, NN,
+ DAG.getConstant(-SarConst, DL, CVT));
+ else
+ return DAG.getNode(ISD::SRA, DL, VT, NN,
+ DAG.getConstant(SarConst, DL, CVT));
+ }
+ return SDValue();
+}
+
+static SDValue combineShiftRightLogical(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+
+ // Try to improve a sequence of srl (and X, C1), C2 by inverting the order.
+ // TODO: This is a generic DAG combine that became an x86-only combine to
+ // avoid shortcomings in other folds such as bswap, bit-test ('bt'), and
+ // and-not ('andn').
+ if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
+ return SDValue();
+
+ auto *ShiftC = dyn_cast<ConstantSDNode>(N1);
+ auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!ShiftC || !AndC)
+ return SDValue();
+
+ // If we can shrink the constant mask below 8-bits or 32-bits, then this
+ // transform should reduce code size. It may also enable secondary transforms
+ // from improved known-bits analysis or instruction selection.
+ APInt MaskVal = AndC->getAPIntValue();
+ APInt NewMaskVal = MaskVal.lshr(ShiftC->getAPIntValue());
+ unsigned OldMaskSize = MaskVal.getMinSignedBits();
+ unsigned NewMaskSize = NewMaskVal.getMinSignedBits();
+ if ((OldMaskSize > 8 && NewMaskSize <= 8) ||
+ (OldMaskSize > 32 && NewMaskSize <= 32)) {
+ // srl (and X, AndC), ShiftC --> and (srl X, ShiftC), (AndC >> ShiftC)
+ SDLoc DL(N);
+ SDValue NewMask = DAG.getConstant(NewMaskVal, DL, VT);
+ SDValue NewShift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1);
+ return DAG.getNode(ISD::AND, DL, VT, NewShift, NewMask);
+ }
+ return SDValue();
+}
+
+static SDValue combineShift(SDNode* N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ if (N->getOpcode() == ISD::SHL)
+ if (SDValue V = combineShiftLeft(N, DAG))
+ return V;
+
+ if (N->getOpcode() == ISD::SRA)
+ if (SDValue V = combineShiftRightArithmetic(N, DAG))
+ return V;
+
+ if (N->getOpcode() == ISD::SRL)
+ if (SDValue V = combineShiftRightLogical(N, DAG))
+ return V;
+
+ return SDValue();
+}
+
+static SDValue combineVectorPack(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ unsigned Opcode = N->getOpcode();
+ assert((X86ISD::PACKSS == Opcode || X86ISD::PACKUS == Opcode) &&
+ "Unexpected shift opcode");
+
+ EVT VT = N->getValueType(0);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ unsigned DstBitsPerElt = VT.getScalarSizeInBits();
+ unsigned SrcBitsPerElt = 2 * DstBitsPerElt;
+ assert(N0.getScalarValueSizeInBits() == SrcBitsPerElt &&
+ N1.getScalarValueSizeInBits() == SrcBitsPerElt &&
+ "Unexpected PACKSS/PACKUS input type");
+
+ // Constant Folding.
+ APInt UndefElts0, UndefElts1;
+ SmallVector<APInt, 32> EltBits0, EltBits1;
+ if ((N0->isUndef() || N->isOnlyUserOf(N0.getNode())) &&
+ (N1->isUndef() || N->isOnlyUserOf(N1.getNode())) &&
+ getTargetConstantBitsFromNode(N0, SrcBitsPerElt, UndefElts0, EltBits0) &&
+ getTargetConstantBitsFromNode(N1, SrcBitsPerElt, UndefElts1, EltBits1)) {
+ unsigned NumLanes = VT.getSizeInBits() / 128;
+ unsigned NumDstElts = VT.getVectorNumElements();
+ unsigned NumSrcElts = NumDstElts / 2;
+ unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
+ unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
+ bool IsSigned = (X86ISD::PACKSS == Opcode);
+
+ APInt Undefs(NumDstElts, 0);
+ SmallVector<APInt, 32> Bits(NumDstElts, APInt::getNullValue(DstBitsPerElt));
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
+ unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
+ auto &UndefElts = (Elt >= NumSrcEltsPerLane ? UndefElts1 : UndefElts0);
+ auto &EltBits = (Elt >= NumSrcEltsPerLane ? EltBits1 : EltBits0);
+
+ if (UndefElts[SrcIdx]) {
+ Undefs.setBit(Lane * NumDstEltsPerLane + Elt);
+ continue;
+ }
+
+ APInt &Val = EltBits[SrcIdx];
+ if (IsSigned) {
+ // PACKSS: Truncate signed value with signed saturation.
+ // Source values less than dst minint are saturated to minint.
+ // Source values greater than dst maxint are saturated to maxint.
+ if (Val.isSignedIntN(DstBitsPerElt))
+ Val = Val.trunc(DstBitsPerElt);
+ else if (Val.isNegative())
+ Val = APInt::getSignedMinValue(DstBitsPerElt);
+ else
+ Val = APInt::getSignedMaxValue(DstBitsPerElt);
+ } else {
+ // PACKUS: Truncate signed value with unsigned saturation.
+ // Source values less than zero are saturated to zero.
+ // Source values greater than dst maxuint are saturated to maxuint.
+ if (Val.isIntN(DstBitsPerElt))
+ Val = Val.trunc(DstBitsPerElt);
+ else if (Val.isNegative())
+ Val = APInt::getNullValue(DstBitsPerElt);
+ else
+ Val = APInt::getAllOnesValue(DstBitsPerElt);
+ }
+ Bits[Lane * NumDstEltsPerLane + Elt] = Val;
+ }
+ }
+
+ return getConstVector(Bits, Undefs, VT.getSimpleVT(), DAG, SDLoc(N));
+ }
+
+ // Attempt to combine as shuffle.
+ SDValue Op(N, 0);
+ if (SDValue Res = combineX86ShufflesRecursively(
+ {Op}, 0, Op, {0}, {}, /*Depth*/ 1,
+ /*HasVarMask*/ false, DAG, DCI, Subtarget)) {
+ DCI.CombineTo(N, Res);
+ return SDValue();
+ }
+
+ return SDValue();
+}
+
+static SDValue combineVectorShiftImm(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ unsigned Opcode = N->getOpcode();
+ assert((X86ISD::VSHLI == Opcode || X86ISD::VSRAI == Opcode ||
+ X86ISD::VSRLI == Opcode) &&
+ "Unexpected shift opcode");
+ bool LogicalShift = X86ISD::VSHLI == Opcode || X86ISD::VSRLI == Opcode;
+ EVT VT = N->getValueType(0);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ unsigned NumBitsPerElt = VT.getScalarSizeInBits();
+ assert(VT == N0.getValueType() && (NumBitsPerElt % 8) == 0 &&
+ "Unexpected value type");
+
+ // Out of range logical bit shifts are guaranteed to be zero.
+ // Out of range arithmetic bit shifts splat the sign bit.
+ APInt ShiftVal = cast<ConstantSDNode>(N1)->getAPIntValue();
+ if (ShiftVal.zextOrTrunc(8).uge(NumBitsPerElt)) {
+ if (LogicalShift)
+ return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N));
+ else
+ ShiftVal = NumBitsPerElt - 1;
+ }
+
+ // Shift N0 by zero -> N0.
+ if (!ShiftVal)
+ return N0;
+
+ // Shift zero -> zero.
+ if (ISD::isBuildVectorAllZeros(N0.getNode()))
+ return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N));
+
+ // fold (VSRLI (VSRAI X, Y), 31) -> (VSRLI X, 31).
+ // This VSRLI only looks at the sign bit, which is unmodified by VSRAI.
+ // TODO - support other sra opcodes as needed.
+ if (Opcode == X86ISD::VSRLI && (ShiftVal + 1) == NumBitsPerElt &&
+ N0.getOpcode() == X86ISD::VSRAI)
+ return DAG.getNode(X86ISD::VSRLI, SDLoc(N), VT, N0.getOperand(0), N1);
+
+ // fold (VSRAI (VSHLI X, C1), C1) --> X iff NumSignBits(X) > C1
+ if (Opcode == X86ISD::VSRAI && N0.getOpcode() == X86ISD::VSHLI &&
+ N1 == N0.getOperand(1)) {
+ SDValue N00 = N0.getOperand(0);
+ unsigned NumSignBits = DAG.ComputeNumSignBits(N00);
+ if (ShiftVal.ult(NumSignBits))
+ return N00;
+ }
+
+ // We can decode 'whole byte' logical bit shifts as shuffles.
+ if (LogicalShift && (ShiftVal.getZExtValue() % 8) == 0) {
+ SDValue Op(N, 0);
+ if (SDValue Res = combineX86ShufflesRecursively(
+ {Op}, 0, Op, {0}, {}, /*Depth*/ 1,
+ /*HasVarMask*/ false, DAG, DCI, Subtarget)) {
+ DCI.CombineTo(N, Res);
+ return SDValue();
+ }
+ }
+
+ // Constant Folding.
+ APInt UndefElts;
+ SmallVector<APInt, 32> EltBits;
+ if (N->isOnlyUserOf(N0.getNode()) &&
+ getTargetConstantBitsFromNode(N0, NumBitsPerElt, UndefElts, EltBits)) {
+ assert(EltBits.size() == VT.getVectorNumElements() &&
+ "Unexpected shift value type");
+ unsigned ShiftImm = ShiftVal.getZExtValue();
+ for (APInt &Elt : EltBits) {
+ if (X86ISD::VSHLI == Opcode)
+ Elt <<= ShiftImm;
+ else if (X86ISD::VSRAI == Opcode)
+ Elt.ashrInPlace(ShiftImm);
+ else
+ Elt.lshrInPlace(ShiftImm);
+ }
+ return getConstVector(EltBits, UndefElts, VT.getSimpleVT(), DAG, SDLoc(N));
+ }
+
+ return SDValue();
+}
+
+static SDValue combineVectorInsert(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ assert(
+ ((N->getOpcode() == X86ISD::PINSRB && N->getValueType(0) == MVT::v16i8) ||
+ (N->getOpcode() == X86ISD::PINSRW &&
+ N->getValueType(0) == MVT::v8i16)) &&
+ "Unexpected vector insertion");
+
+ // Attempt to combine PINSRB/PINSRW patterns to a shuffle.
+ SDValue Op(N, 0);
+ if (SDValue Res = combineX86ShufflesRecursively(
+ {Op}, 0, Op, {0}, {}, /*Depth*/ 1,
+ /*HasVarMask*/ false, DAG, DCI, Subtarget)) {
+ DCI.CombineTo(N, Res);
+ return SDValue();
+ }
+
+ return SDValue();
+}
+
+/// Recognize the distinctive (AND (setcc ...) (setcc ..)) where both setccs
+/// reference the same FP CMP, and rewrite for CMPEQSS and friends. Likewise for
+/// OR -> CMPNEQSS.
+static SDValue combineCompareEqual(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ unsigned opcode;
+
+ // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
+ // we're requiring SSE2 for both.
+ if (Subtarget.hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue CMP0 = N0->getOperand(1);
+ SDValue CMP1 = N1->getOperand(1);
+ SDLoc DL(N);
+
+ // The SETCCs should both refer to the same CMP.
+ if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
+ return SDValue();
+
+ SDValue CMP00 = CMP0->getOperand(0);
+ SDValue CMP01 = CMP0->getOperand(1);
+ EVT VT = CMP00.getValueType();
+
+ if (VT == MVT::f32 || VT == MVT::f64) {
+ bool ExpectingFlags = false;
+ // Check for any users that want flags:
+ for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ !ExpectingFlags && UI != UE; ++UI)
+ switch (UI->getOpcode()) {
+ default:
+ case ISD::BR_CC:
+ case ISD::BRCOND:
+ case ISD::SELECT:
+ ExpectingFlags = true;
+ break;
+ case ISD::CopyToReg:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ break;
+ }
+
+ if (!ExpectingFlags) {
+ enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
+ enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
+
+ if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
+ X86::CondCode tmp = cc0;
+ cc0 = cc1;
+ cc1 = tmp;
+ }
+
+ if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
+ (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
+ // FIXME: need symbolic constants for these magic numbers.
+ // See X86ATTInstPrinter.cpp:printSSECC().
+ unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
+ if (Subtarget.hasAVX512()) {
+ SDValue FSetCC =
+ DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CMP00, CMP01,
+ DAG.getConstant(x86cc, DL, MVT::i8));
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
+ N->getSimpleValueType(0), FSetCC,
+ DAG.getIntPtrConstant(0, DL));
+ }
+ SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
+ CMP00.getValueType(), CMP00, CMP01,
+ DAG.getConstant(x86cc, DL,
+ MVT::i8));
+
+ bool is64BitFP = (CMP00.getValueType() == MVT::f64);
+ MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
+
+ if (is64BitFP && !Subtarget.is64Bit()) {
+ // On a 32-bit target, we cannot bitcast the 64-bit float to a
+ // 64-bit integer, since that's not a legal type. Since
+ // OnesOrZeroesF is all ones of all zeroes, we don't need all the
+ // bits, but can do this little dance to extract the lowest 32 bits
+ // and work with those going forward.
+ SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
+ OnesOrZeroesF);
+ SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
+ OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
+ Vector32, DAG.getIntPtrConstant(0, DL));
+ IntVT = MVT::i32;
+ }
+
+ SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
+ SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
+ DAG.getConstant(1, DL, IntVT));
+ SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
+ ANDed);
+ return OneBitOfTruth;
+ }
+ }
+ }
+ }
+ return SDValue();
+}
+
+/// Try to fold: (and (xor X, -1), Y) -> (andnp X, Y).
+static SDValue combineANDXORWithAllOnesIntoANDNP(SDNode *N, SelectionDAG &DAG) {
+ assert(N->getOpcode() == ISD::AND);
+
+ EVT VT = N->getValueType(0);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+
+ if (VT != MVT::v2i64 && VT != MVT::v4i64 && VT != MVT::v8i64)
+ return SDValue();
+
+ if (N0.getOpcode() == ISD::XOR &&
+ ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
+ return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
+
+ if (N1.getOpcode() == ISD::XOR &&
+ ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
+ return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
+
+ return SDValue();
+}
+
+// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
+// register. In most cases we actually compare or select YMM-sized registers
+// and mixing the two types creates horrible code. This method optimizes
+// some of the transition sequences.
+// Even with AVX-512 this is still useful for removing casts around logical
+// operations on vXi1 mask types.
+static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ EVT VT = N->getValueType(0);
+ assert(VT.isVector() && "Expected vector type");
+
+ assert((N->getOpcode() == ISD::ANY_EXTEND ||
+ N->getOpcode() == ISD::ZERO_EXTEND ||
+ N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
+
+ SDValue Narrow = N->getOperand(0);
+ EVT NarrowVT = Narrow.getValueType();
+
+ if (Narrow->getOpcode() != ISD::XOR &&
+ Narrow->getOpcode() != ISD::AND &&
+ Narrow->getOpcode() != ISD::OR)
+ return SDValue();
+
+ SDValue N0 = Narrow->getOperand(0);
+ SDValue N1 = Narrow->getOperand(1);
+ SDLoc DL(Narrow);
+
+ // The Left side has to be a trunc.
+ if (N0.getOpcode() != ISD::TRUNCATE)
+ return SDValue();
+
+ // The type of the truncated inputs.
+ if (N0->getOperand(0).getValueType() != VT)
+ return SDValue();
+
+ // The right side has to be a 'trunc' or a constant vector.
+ bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE &&
+ N1.getOperand(0).getValueType() == VT;
+ if (!RHSTrunc &&
+ !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()))
+ return SDValue();
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), VT))
+ return SDValue();
+
+ // Set N0 and N1 to hold the inputs to the new wide operation.
+ N0 = N0->getOperand(0);
+ if (RHSTrunc)
+ N1 = N1->getOperand(0);
+ else
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N1);
+
+ // Generate the wide operation.
+ SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, VT, N0, N1);
+ unsigned Opcode = N->getOpcode();
+ switch (Opcode) {
+ default: llvm_unreachable("Unexpected opcode");
+ case ISD::ANY_EXTEND:
+ return Op;
+ case ISD::ZERO_EXTEND:
+ return DAG.getZeroExtendInReg(Op, DL, NarrowVT.getScalarType());
+ case ISD::SIGN_EXTEND:
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
+ Op, DAG.getValueType(NarrowVT));
+ }
+}
+
+/// If both input operands of a logic op are being cast from floating point
+/// types, try to convert this into a floating point logic node to avoid
+/// unnecessary moves from SSE to integer registers.
+static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ unsigned FPOpcode = ISD::DELETED_NODE;
+ if (N->getOpcode() == ISD::AND)
+ FPOpcode = X86ISD::FAND;
+ else if (N->getOpcode() == ISD::OR)
+ FPOpcode = X86ISD::FOR;
+ else if (N->getOpcode() == ISD::XOR)
+ FPOpcode = X86ISD::FXOR;
+
+ assert(FPOpcode != ISD::DELETED_NODE &&
+ "Unexpected input node for FP logic conversion");
+
+ EVT VT = N->getValueType(0);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+ if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST &&
+ ((Subtarget.hasSSE1() && VT == MVT::i32) ||
+ (Subtarget.hasSSE2() && VT == MVT::i64))) {
+ SDValue N00 = N0.getOperand(0);
+ SDValue N10 = N1.getOperand(0);
+ EVT N00Type = N00.getValueType();
+ EVT N10Type = N10.getValueType();
+ if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) {
+ SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10);
+ return DAG.getBitcast(VT, FPLogic);
+ }
+ }
+ return SDValue();
+}
+
+/// If this is a zero/all-bits result that is bitwise-anded with a low bits
+/// mask. (Mask == 1 for the x86 lowering of a SETCC + ZEXT), replace the 'and'
+/// with a shift-right to eliminate loading the vector constant mask value.
+static SDValue combineAndMaskToShift(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDValue Op0 = peekThroughBitcasts(N->getOperand(0));
+ SDValue Op1 = peekThroughBitcasts(N->getOperand(1));
+ EVT VT0 = Op0.getValueType();
+ EVT VT1 = Op1.getValueType();
+
+ if (VT0 != VT1 || !VT0.isSimple() || !VT0.isInteger())
+ return SDValue();
+
+ APInt SplatVal;
+ if (!ISD::isConstantSplatVector(Op1.getNode(), SplatVal) ||
+ !SplatVal.isMask())
+ return SDValue();
+
+ if (!SupportedVectorShiftWithImm(VT0.getSimpleVT(), Subtarget, ISD::SRL))
+ return SDValue();
+
+ unsigned EltBitWidth = VT0.getScalarSizeInBits();
+ if (EltBitWidth != DAG.ComputeNumSignBits(Op0))
+ return SDValue();
+
+ SDLoc DL(N);
+ unsigned ShiftVal = SplatVal.countTrailingOnes();
+ SDValue ShAmt = DAG.getConstant(EltBitWidth - ShiftVal, DL, MVT::i8);
+ SDValue Shift = DAG.getNode(X86ISD::VSRLI, DL, VT0, Op0, ShAmt);
+ return DAG.getBitcast(N->getValueType(0), Shift);
+}
+
+// Get the index node from the lowered DAG of a GEP IR instruction with one
+// indexing dimension.
+static SDValue getIndexFromUnindexedLoad(LoadSDNode *Ld) {
+ if (Ld->isIndexed())
+ return SDValue();
+
+ SDValue Base = Ld->getBasePtr();
+
+ if (Base.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ SDValue ShiftedIndex = Base.getOperand(0);
+
+ if (ShiftedIndex.getOpcode() != ISD::SHL)
+ return SDValue();
+
+ return ShiftedIndex.getOperand(0);
+
+}
+
+static bool hasBZHI(const X86Subtarget &Subtarget, MVT VT) {
+ if (Subtarget.hasBMI2() && VT.isScalarInteger()) {
+ switch (VT.getSizeInBits()) {
+ default: return false;
+ case 64: return Subtarget.is64Bit() ? true : false;
+ case 32: return true;
+ }
+ }
+ return false;
+}
+
+// This function recognizes cases where X86 bzhi instruction can replace and
+// 'and-load' sequence.
+// In case of loading integer value from an array of constants which is defined
+// as follows:
+//
+// int array[SIZE] = {0x0, 0x1, 0x3, 0x7, 0xF ..., 2^(SIZE-1) - 1}
+//
+// then applying a bitwise and on the result with another input.
+// It's equivalent to performing bzhi (zero high bits) on the input, with the
+// same index of the load.
+static SDValue combineAndLoadToBZHI(SDNode *Node, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ MVT VT = Node->getSimpleValueType(0);
+ SDLoc dl(Node);
+
+ // Check if subtarget has BZHI instruction for the node's type
+ if (!hasBZHI(Subtarget, VT))
+ return SDValue();
+
+ // Try matching the pattern for both operands.
+ for (unsigned i = 0; i < 2; i++) {
+ SDValue N = Node->getOperand(i);
+ LoadSDNode *Ld = dyn_cast<LoadSDNode>(N.getNode());
+
+ // continue if the operand is not a load instruction
+ if (!Ld)
+ return SDValue();
+
+ const Value *MemOp = Ld->getMemOperand()->getValue();
+
+ if (!MemOp)
+ return SDValue();
+
+ if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(MemOp)) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) {
+ if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
+
+ Constant *Init = GV->getInitializer();
+ Type *Ty = Init->getType();
+ if (!isa<ConstantDataArray>(Init) ||
+ !Ty->getArrayElementType()->isIntegerTy() ||
+ Ty->getArrayElementType()->getScalarSizeInBits() !=
+ VT.getSizeInBits() ||
+ Ty->getArrayNumElements() >
+ Ty->getArrayElementType()->getScalarSizeInBits())
+ continue;
+
+ // Check if the array's constant elements are suitable to our case.
+ uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
+ bool ConstantsMatch = true;
+ for (uint64_t j = 0; j < ArrayElementCount; j++) {
+ ConstantInt *Elem =
+ dyn_cast<ConstantInt>(Init->getAggregateElement(j));
+ if (Elem->getZExtValue() != (((uint64_t)1 << j) - 1)) {
+ ConstantsMatch = false;
+ break;
+ }
+ }
+ if (!ConstantsMatch)
+ continue;
+
+ // Do the transformation (For 32-bit type):
+ // -> (and (load arr[idx]), inp)
+ // <- (and (srl 0xFFFFFFFF, (sub 32, idx)))
+ // that will be replaced with one bzhi instruction.
+ SDValue Inp = (i == 0) ? Node->getOperand(1) : Node->getOperand(0);
+ SDValue SizeC = DAG.getConstant(VT.getSizeInBits(), dl, VT);
+
+ // Get the Node which indexes into the array.
+ SDValue Index = getIndexFromUnindexedLoad(Ld);
+ if (!Index)
+ return SDValue();
+ Index = DAG.getZExtOrTrunc(Index, dl, VT);
+
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SizeC, Index);
+
+ SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
+ SDValue LShr = DAG.getNode(ISD::SRL, dl, VT, AllOnes, Sub);
+
+ return DAG.getNode(ISD::AND, dl, VT, Inp, LShr);
+ }
+ }
+ }
+ }
+ return SDValue();
+}
+
+static SDValue combineAnd(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ EVT VT = N->getValueType(0);
+
+ // If this is SSE1 only convert to FAND to avoid scalarization.
+ if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) {
+ return DAG.getBitcast(
+ MVT::v4i32, DAG.getNode(X86ISD::FAND, SDLoc(N), MVT::v4f32,
+ DAG.getBitcast(MVT::v4f32, N->getOperand(0)),
+ DAG.getBitcast(MVT::v4f32, N->getOperand(1))));
+ }
+
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
+ return R;
+
+ if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
+ return FPLogic;
+
+ if (SDValue R = combineANDXORWithAllOnesIntoANDNP(N, DAG))
+ return R;
+
+ if (SDValue ShiftRight = combineAndMaskToShift(N, DAG, Subtarget))
+ return ShiftRight;
+
+ if (SDValue R = combineAndLoadToBZHI(N, DAG, Subtarget))
+ return R;
+
+ // Attempt to recursively combine a bitmask AND with shuffles.
+ if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
+ SDValue Op(N, 0);
+ if (SDValue Res = combineX86ShufflesRecursively(
+ {Op}, 0, Op, {0}, {}, /*Depth*/ 1,
+ /*HasVarMask*/ false, DAG, DCI, Subtarget)) {
+ DCI.CombineTo(N, Res);
+ return SDValue();
+ }
+ }
+
+ // Attempt to combine a scalar bitmask AND with an extracted shuffle.
+ if ((VT.getScalarSizeInBits() % 8) == 0 &&
+ N->getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ isa<ConstantSDNode>(N->getOperand(0).getOperand(1))) {
+ SDValue BitMask = N->getOperand(1);
+ SDValue SrcVec = N->getOperand(0).getOperand(0);
+ EVT SrcVecVT = SrcVec.getValueType();
+
+ // Check that the constant bitmask masks whole bytes.
+ APInt UndefElts;
+ SmallVector<APInt, 64> EltBits;
+ if (VT == SrcVecVT.getScalarType() &&
+ N->getOperand(0)->isOnlyUserOf(SrcVec.getNode()) &&
+ getTargetConstantBitsFromNode(BitMask, 8, UndefElts, EltBits) &&
+ llvm::all_of(EltBits, [](APInt M) {
+ return M.isNullValue() || M.isAllOnesValue();
+ })) {
+ unsigned NumElts = SrcVecVT.getVectorNumElements();
+ unsigned Scale = SrcVecVT.getScalarSizeInBits() / 8;
+ unsigned Idx = N->getOperand(0).getConstantOperandVal(1);
+
+ // Create a root shuffle mask from the byte mask and the extracted index.
+ SmallVector<int, 16> ShuffleMask(NumElts * Scale, SM_SentinelUndef);
+ for (unsigned i = 0; i != Scale; ++i) {
+ if (UndefElts[i])
+ continue;
+ int VecIdx = Scale * Idx + i;
+ ShuffleMask[VecIdx] =
+ EltBits[i].isNullValue() ? SM_SentinelZero : VecIdx;
+ }
+
+ if (SDValue Shuffle = combineX86ShufflesRecursively(
+ {SrcVec}, 0, SrcVec, ShuffleMask, {}, /*Depth*/ 2,
+ /*HasVarMask*/ false, DAG, DCI, Subtarget))
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), VT, Shuffle,
+ N->getOperand(0).getOperand(1));
+ }
+ }
+
+ return SDValue();
+}
+
+// Try to fold:
+// (or (and (m, y), (pandn m, x)))
+// into:
+// (vselect m, x, y)
+// As a special case, try to fold:
+// (or (and (m, (sub 0, x)), (pandn m, x)))
+// into:
+// (sub (xor X, M), M)
+static SDValue combineLogicBlendIntoPBLENDV(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ assert(N->getOpcode() == ISD::OR && "Unexpected Opcode");
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ if (!((VT.is128BitVector() && Subtarget.hasSSE2()) ||
+ (VT.is256BitVector() && Subtarget.hasInt256())))
+ return SDValue();
+
+ // Canonicalize AND to LHS.
+ if (N1.getOpcode() == ISD::AND)
+ std::swap(N0, N1);
+
+ // TODO: Attempt to match against AND(XOR(-1,X),Y) as well, waiting for
+ // ANDNP combine allows other combines to happen that prevent matching.
+ if (N0.getOpcode() != ISD::AND || N1.getOpcode() != X86ISD::ANDNP)
+ return SDValue();
+
+ SDValue Mask = N1.getOperand(0);
+ SDValue X = N1.getOperand(1);
+ SDValue Y;
+ if (N0.getOperand(0) == Mask)
+ Y = N0.getOperand(1);
+ if (N0.getOperand(1) == Mask)
+ Y = N0.getOperand(0);
+
+ // Check to see if the mask appeared in both the AND and ANDNP.
+ if (!Y.getNode())
+ return SDValue();
+
+ // Validate that X, Y, and Mask are bitcasts, and see through them.
+ Mask = peekThroughBitcasts(Mask);
+ X = peekThroughBitcasts(X);
+ Y = peekThroughBitcasts(Y);
+
+ EVT MaskVT = Mask.getValueType();
+ unsigned EltBits = MaskVT.getScalarSizeInBits();
+
+ // TODO: Attempt to handle floating point cases as well?
+ if (!MaskVT.isInteger() || DAG.ComputeNumSignBits(Mask) != EltBits)
+ return SDValue();
+
+ SDLoc DL(N);
+
+ // Try to match:
+ // (or (and (M, (sub 0, X)), (pandn M, X)))
+ // which is a special case of vselect:
+ // (vselect M, (sub 0, X), X)
+ // Per:
+ // http://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate
+ // We know that, if fNegate is 0 or 1:
+ // (fNegate ? -v : v) == ((v ^ -fNegate) + fNegate)
+ //
+ // Here, we have a mask, M (all 1s or 0), and, similarly, we know that:
+ // ((M & 1) ? -X : X) == ((X ^ -(M & 1)) + (M & 1))
+ // ( M ? -X : X) == ((X ^ M ) + (M & 1))
+ // This lets us transform our vselect to:
+ // (add (xor X, M), (and M, 1))
+ // And further to:
+ // (sub (xor X, M), M)
+ if (X.getValueType() == MaskVT && Y.getValueType() == MaskVT &&
+ DAG.getTargetLoweringInfo().isOperationLegal(ISD::SUB, MaskVT)) {
+ auto IsNegV = [](SDNode *N, SDValue V) {
+ return N->getOpcode() == ISD::SUB && N->getOperand(1) == V &&
+ ISD::isBuildVectorAllZeros(N->getOperand(0).getNode());
+ };
+ SDValue V;
+ if (IsNegV(Y.getNode(), X))
+ V = X;
+ else if (IsNegV(X.getNode(), Y))
+ V = Y;
+
+ if (V) {
+ SDValue SubOp1 = DAG.getNode(ISD::XOR, DL, MaskVT, V, Mask);
+ SDValue SubOp2 = Mask;
+
+ // If the negate was on the false side of the select, then
+ // the operands of the SUB need to be swapped. PR 27251.
+ // This is because the pattern being matched above is
+ // (vselect M, (sub (0, X), X) -> (sub (xor X, M), M)
+ // but if the pattern matched was
+ // (vselect M, X, (sub (0, X))), that is really negation of the pattern
+ // above, -(vselect M, (sub 0, X), X), and therefore the replacement
+ // pattern also needs to be a negation of the replacement pattern above.
+ // And -(sub X, Y) is just sub (Y, X), so swapping the operands of the
+ // sub accomplishes the negation of the replacement pattern.
+ if (V == Y)
+ std::swap(SubOp1, SubOp2);
+
+ SDValue Res = DAG.getNode(ISD::SUB, DL, MaskVT, SubOp1, SubOp2);
+ return DAG.getBitcast(VT, Res);
+ }
+ }
+
+ // PBLENDVB is only available on SSE 4.1.
+ if (!Subtarget.hasSSE41())
+ return SDValue();
+
+ MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
+
+ X = DAG.getBitcast(BlendVT, X);
+ Y = DAG.getBitcast(BlendVT, Y);
+ Mask = DAG.getBitcast(BlendVT, Mask);
+ Mask = DAG.getSelect(DL, BlendVT, Mask, Y, X);
+ return DAG.getBitcast(VT, Mask);
+}
+
+// Helper function for combineOrCmpEqZeroToCtlzSrl
+// Transforms:
+// seteq(cmp x, 0)
+// into:
+// srl(ctlz x), log2(bitsize(x))
+// Input pattern is checked by caller.
+static SDValue lowerX86CmpEqZeroToCtlzSrl(SDValue Op, EVT ExtTy,
+ SelectionDAG &DAG) {
+ SDValue Cmp = Op.getOperand(1);
+ EVT VT = Cmp.getOperand(0).getValueType();
+ unsigned Log2b = Log2_32(VT.getSizeInBits());
+ SDLoc dl(Op);
+ SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Cmp->getOperand(0));
+ // The result of the shift is true or false, and on X86, the 32-bit
+ // encoding of shr and lzcnt is more desirable.
+ SDValue Trunc = DAG.getZExtOrTrunc(Clz, dl, MVT::i32);
+ SDValue Scc = DAG.getNode(ISD::SRL, dl, MVT::i32, Trunc,
+ DAG.getConstant(Log2b, dl, VT));
+ return DAG.getZExtOrTrunc(Scc, dl, ExtTy);
+}
+
+// Try to transform:
+// zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0))))
+// into:
+// srl(or(ctlz(x), ctlz(y)), log2(bitsize(x))
+// Will also attempt to match more generic cases, eg:
+// zext(or(or(setcc(eq, cmp 0), setcc(eq, cmp 0)), setcc(eq, cmp 0)))
+// Only applies if the target supports the FastLZCNT feature.
+static SDValue combineOrCmpEqZeroToCtlzSrl(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ if (DCI.isBeforeLegalize() || !Subtarget.getTargetLowering()->isCtlzFast())
+ return SDValue();
+
+ auto isORCandidate = [](SDValue N) {
+ return (N->getOpcode() == ISD::OR && N->hasOneUse());
+ };
+
+ // Check the zero extend is extending to 32-bit or more. The code generated by
+ // srl(ctlz) for 16-bit or less variants of the pattern would require extra
+ // instructions to clear the upper bits.
+ if (!N->hasOneUse() || !N->getSimpleValueType(0).bitsGE(MVT::i32) ||
+ !isORCandidate(N->getOperand(0)))
+ return SDValue();
+
+ // Check the node matches: setcc(eq, cmp 0)
+ auto isSetCCCandidate = [](SDValue N) {
+ return N->getOpcode() == X86ISD::SETCC && N->hasOneUse() &&
+ X86::CondCode(N->getConstantOperandVal(0)) == X86::COND_E &&
+ N->getOperand(1).getOpcode() == X86ISD::CMP &&
+ isNullConstant(N->getOperand(1).getOperand(1)) &&
+ N->getOperand(1).getValueType().bitsGE(MVT::i32);
+ };
+
+ SDNode *OR = N->getOperand(0).getNode();
+ SDValue LHS = OR->getOperand(0);
+ SDValue RHS = OR->getOperand(1);
+
+ // Save nodes matching or(or, setcc(eq, cmp 0)).
+ SmallVector<SDNode *, 2> ORNodes;
+ while (((isORCandidate(LHS) && isSetCCCandidate(RHS)) ||
+ (isORCandidate(RHS) && isSetCCCandidate(LHS)))) {
+ ORNodes.push_back(OR);
+ OR = (LHS->getOpcode() == ISD::OR) ? LHS.getNode() : RHS.getNode();
+ LHS = OR->getOperand(0);
+ RHS = OR->getOperand(1);
+ }
+
+ // The last OR node should match or(setcc(eq, cmp 0), setcc(eq, cmp 0)).
+ if (!(isSetCCCandidate(LHS) && isSetCCCandidate(RHS)) ||
+ !isORCandidate(SDValue(OR, 0)))
+ return SDValue();
+
+ // We have a or(setcc(eq, cmp 0), setcc(eq, cmp 0)) pattern, try to lower it
+ // to
+ // or(srl(ctlz),srl(ctlz)).
+ // The dag combiner can then fold it into:
+ // srl(or(ctlz, ctlz)).
+ EVT VT = OR->getValueType(0);
+ SDValue NewLHS = lowerX86CmpEqZeroToCtlzSrl(LHS, VT, DAG);
+ SDValue Ret, NewRHS;
+ if (NewLHS && (NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG)))
+ Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, NewLHS, NewRHS);
+
+ if (!Ret)
+ return SDValue();
+
+ // Try to lower nodes matching the or(or, setcc(eq, cmp 0)) pattern.
+ while (ORNodes.size() > 0) {
+ OR = ORNodes.pop_back_val();
+ LHS = OR->getOperand(0);
+ RHS = OR->getOperand(1);
+ // Swap rhs with lhs to match or(setcc(eq, cmp, 0), or).
+ if (RHS->getOpcode() == ISD::OR)
+ std::swap(LHS, RHS);
+ EVT VT = OR->getValueType(0);
+ SDValue NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG);
+ if (!NewRHS)
+ return SDValue();
+ Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, Ret, NewRHS);
+ }
+
+ if (Ret)
+ Ret = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), Ret);
+
+ return Ret;
+}
+
+static SDValue combineOr(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // If this is SSE1 only convert to FOR to avoid scalarization.
+ if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) {
+ return DAG.getBitcast(MVT::v4i32,
+ DAG.getNode(X86ISD::FOR, SDLoc(N), MVT::v4f32,
+ DAG.getBitcast(MVT::v4f32, N0),
+ DAG.getBitcast(MVT::v4f32, N1)));
+ }
+
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
+ return R;
+
+ if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
+ return FPLogic;
+
+ if (SDValue R = combineLogicBlendIntoPBLENDV(N, DAG, Subtarget))
+ return R;
+
+ if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
+ bool OptForSize = DAG.getMachineFunction().getFunction().optForSize();
+
+ // SHLD/SHRD instructions have lower register pressure, but on some
+ // platforms they have higher latency than the equivalent
+ // series of shifts/or that would otherwise be generated.
+ // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
+ // have higher latencies and we are not optimizing for size.
+ if (!OptForSize && Subtarget.isSHLDSlow())
+ return SDValue();
+
+ if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
+ std::swap(N0, N1);
+ if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
+ return SDValue();
+ if (!N0.hasOneUse() || !N1.hasOneUse())
+ return SDValue();
+
+ SDValue ShAmt0 = N0.getOperand(1);
+ if (ShAmt0.getValueType() != MVT::i8)
+ return SDValue();
+ SDValue ShAmt1 = N1.getOperand(1);
+ if (ShAmt1.getValueType() != MVT::i8)
+ return SDValue();
+ if (ShAmt0.getOpcode() == ISD::TRUNCATE)
+ ShAmt0 = ShAmt0.getOperand(0);
+ if (ShAmt1.getOpcode() == ISD::TRUNCATE)
+ ShAmt1 = ShAmt1.getOperand(0);
+
+ SDLoc DL(N);
+ unsigned Opc = X86ISD::SHLD;
+ SDValue Op0 = N0.getOperand(0);
+ SDValue Op1 = N1.getOperand(0);
+ if (ShAmt0.getOpcode() == ISD::SUB ||
+ ShAmt0.getOpcode() == ISD::XOR) {
+ Opc = X86ISD::SHRD;
+ std::swap(Op0, Op1);
+ std::swap(ShAmt0, ShAmt1);
+ }
+
+ // OR( SHL( X, C ), SRL( Y, 32 - C ) ) -> SHLD( X, Y, C )
+ // OR( SRL( X, C ), SHL( Y, 32 - C ) ) -> SHRD( X, Y, C )
+ // OR( SHL( X, C ), SRL( SRL( Y, 1 ), XOR( C, 31 ) ) ) -> SHLD( X, Y, C )
+ // OR( SRL( X, C ), SHL( SHL( Y, 1 ), XOR( C, 31 ) ) ) -> SHRD( X, Y, C )
+ unsigned Bits = VT.getSizeInBits();
+ if (ShAmt1.getOpcode() == ISD::SUB) {
+ SDValue Sum = ShAmt1.getOperand(0);
+ if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
+ SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
+ if (ShAmt1Op1.getOpcode() == ISD::TRUNCATE)
+ ShAmt1Op1 = ShAmt1Op1.getOperand(0);
+ if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
+ return DAG.getNode(Opc, DL, VT,
+ Op0, Op1,
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ }
+ } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
+ ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
+ if (ShAmt0C && (ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue()) == Bits)
+ return DAG.getNode(Opc, DL, VT,
+ N0.getOperand(0), N1.getOperand(0),
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ } else if (ShAmt1.getOpcode() == ISD::XOR) {
+ SDValue Mask = ShAmt1.getOperand(1);
+ if (ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask)) {
+ unsigned InnerShift = (X86ISD::SHLD == Opc ? ISD::SRL : ISD::SHL);
+ SDValue ShAmt1Op0 = ShAmt1.getOperand(0);
+ if (ShAmt1Op0.getOpcode() == ISD::TRUNCATE)
+ ShAmt1Op0 = ShAmt1Op0.getOperand(0);
+ if (MaskC->getSExtValue() == (Bits - 1) && ShAmt1Op0 == ShAmt0) {
+ if (Op1.getOpcode() == InnerShift &&
+ isa<ConstantSDNode>(Op1.getOperand(1)) &&
+ Op1.getConstantOperandVal(1) == 1) {
+ return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0),
+ DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0));
+ }
+ // Test for ADD( Y, Y ) as an equivalent to SHL( Y, 1 ).
+ if (InnerShift == ISD::SHL && Op1.getOpcode() == ISD::ADD &&
+ Op1.getOperand(0) == Op1.getOperand(1)) {
+ return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0),
+ DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0));
+ }
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+/// Try to turn tests against the signbit in the form of:
+/// XOR(TRUNCATE(SRL(X, size(X)-1)), 1)
+/// into:
+/// SETGT(X, -1)
+static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) {
+ // This is only worth doing if the output type is i8 or i1.
+ EVT ResultType = N->getValueType(0);
+ if (ResultType != MVT::i8 && ResultType != MVT::i1)
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // We should be performing an xor against a truncated shift.
+ if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse())
+ return SDValue();
+
+ // Make sure we are performing an xor against one.
+ if (!isOneConstant(N1))
+ return SDValue();
+
+ // SetCC on x86 zero extends so only act on this if it's a logical shift.
+ SDValue Shift = N0.getOperand(0);
+ if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse())
+ return SDValue();
+
+ // Make sure we are truncating from one of i16, i32 or i64.
+ EVT ShiftTy = Shift.getValueType();
+ if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64)
+ return SDValue();
+
+ // Make sure the shift amount extracts the sign bit.
+ if (!isa<ConstantSDNode>(Shift.getOperand(1)) ||
+ Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1)
+ return SDValue();
+
+ // Create a greater-than comparison against -1.
+ // N.B. Using SETGE against 0 works but we want a canonical looking
+ // comparison, using SETGT matches up with what TranslateX86CC.
+ SDLoc DL(N);
+ SDValue ShiftOp = Shift.getOperand(0);
+ EVT ShiftOpTy = ShiftOp.getValueType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(),
+ *DAG.getContext(), ResultType);
+ SDValue Cond = DAG.getSetCC(DL, SetCCResultType, ShiftOp,
+ DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT);
+ if (SetCCResultType != ResultType)
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, ResultType, Cond);
+ return Cond;
+}
+
+/// Turn vector tests of the signbit in the form of:
+/// xor (sra X, elt_size(X)-1), -1
+/// into:
+/// pcmpgt X, -1
+///
+/// This should be called before type legalization because the pattern may not
+/// persist after that.
+static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (!VT.isSimple())
+ return SDValue();
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return SDValue();
+ case MVT::v16i8:
+ case MVT::v8i16:
+ case MVT::v4i32: if (!Subtarget.hasSSE2()) return SDValue(); break;
+ case MVT::v2i64: if (!Subtarget.hasSSE42()) return SDValue(); break;
+ case MVT::v32i8:
+ case MVT::v16i16:
+ case MVT::v8i32:
+ case MVT::v4i64: if (!Subtarget.hasAVX2()) return SDValue(); break;
+ }
+
+ // There must be a shift right algebraic before the xor, and the xor must be a
+ // 'not' operation.
+ SDValue Shift = N->getOperand(0);
+ SDValue Ones = N->getOperand(1);
+ if (Shift.getOpcode() != ISD::SRA || !Shift.hasOneUse() ||
+ !ISD::isBuildVectorAllOnes(Ones.getNode()))
+ return SDValue();
+
+ // The shift should be smearing the sign bit across each vector element.
+ auto *ShiftBV = dyn_cast<BuildVectorSDNode>(Shift.getOperand(1));
+ if (!ShiftBV)
+ return SDValue();
+
+ EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
+ auto *ShiftAmt = ShiftBV->getConstantSplatNode();
+ if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
+ return SDValue();
+
+ // Create a greater-than comparison against -1. We don't use the more obvious
+ // greater-than-or-equal-to-zero because SSE/AVX don't have that instruction.
+ return DAG.getNode(X86ISD::PCMPGT, SDLoc(N), VT, Shift.getOperand(0), Ones);
+}
+
+/// Check if truncation with saturation form type \p SrcVT to \p DstVT
+/// is valid for the given \p Subtarget.
+static bool isSATValidOnAVX512Subtarget(EVT SrcVT, EVT DstVT,
+ const X86Subtarget &Subtarget) {
+ if (!Subtarget.hasAVX512())
+ return false;
+
+ // FIXME: Scalar type may be supported if we move it to vector register.
+ if (!SrcVT.isVector() || !SrcVT.isSimple() || SrcVT.getSizeInBits() > 512)
+ return false;
+
+ EVT SrcElVT = SrcVT.getScalarType();
+ EVT DstElVT = DstVT.getScalarType();
+ if (SrcElVT.getSizeInBits() < 16 || SrcElVT.getSizeInBits() > 64)
+ return false;
+ if (DstElVT.getSizeInBits() < 8 || DstElVT.getSizeInBits() > 32)
+ return false;
+ if (SrcVT.is512BitVector() || Subtarget.hasVLX())
+ return SrcElVT.getSizeInBits() >= 32 || Subtarget.hasBWI();
+ return false;
+}
+
+/// Detect a pattern of truncation with saturation:
+/// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type).
+/// Return the source value to be truncated or SDValue() if the pattern was not
+/// matched.
+static SDValue detectUSatPattern(SDValue In, EVT VT) {
+ if (In.getOpcode() != ISD::UMIN)
+ return SDValue();
+
+ //Saturation with truncation. We truncate from InVT to VT.
+ assert(In.getScalarValueSizeInBits() > VT.getScalarSizeInBits() &&
+ "Unexpected types for truncate operation");
+
+ APInt C;
+ if (ISD::isConstantSplatVector(In.getOperand(1).getNode(), C)) {
+ // C should be equal to UINT32_MAX / UINT16_MAX / UINT8_MAX according
+ // the element size of the destination type.
+ return C.isMask(VT.getScalarSizeInBits()) ? In.getOperand(0) :
+ SDValue();
+ }
+ return SDValue();
+}
+
+/// Detect a pattern of truncation with saturation:
+/// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type).
+/// The types should allow to use VPMOVUS* instruction on AVX512.
+/// Return the source value to be truncated or SDValue() if the pattern was not
+/// matched.
+static SDValue detectAVX512USatPattern(SDValue In, EVT VT,
+ const X86Subtarget &Subtarget) {
+ if (!isSATValidOnAVX512Subtarget(In.getValueType(), VT, Subtarget))
+ return SDValue();
+ return detectUSatPattern(In, VT);
+}
+
+static SDValue
+combineTruncateWithUSat(SDValue In, EVT VT, SDLoc &DL, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isTypeLegal(In.getValueType()) || !TLI.isTypeLegal(VT))
+ return SDValue();
+ if (auto USatVal = detectUSatPattern(In, VT))
+ if (isSATValidOnAVX512Subtarget(In.getValueType(), VT, Subtarget))
+ return DAG.getNode(X86ISD::VTRUNCUS, DL, VT, USatVal);
+ return SDValue();
+}
+
+/// This function detects the AVG pattern between vectors of unsigned i8/i16,
+/// which is c = (a + b + 1) / 2, and replace this operation with the efficient
+/// X86ISD::AVG instruction.
+static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ const SDLoc &DL) {
+ if (!VT.isVector() || !VT.isSimple())
+ return SDValue();
+ EVT InVT = In.getValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+
+ EVT ScalarVT = VT.getVectorElementType();
+ if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) &&
+ isPowerOf2_32(NumElems)))
+ return SDValue();
+
+ // InScalarVT is the intermediate type in AVG pattern and it should be greater
+ // than the original input type (i8/i16).
+ EVT InScalarVT = InVT.getVectorElementType();
+ if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits())
+ return SDValue();
+
+ if (!Subtarget.hasSSE2())
+ return SDValue();
+
+ // Detect the following pattern:
+ //
+ // %1 = zext <N x i8> %a to <N x i32>
+ // %2 = zext <N x i8> %b to <N x i32>
+ // %3 = add nuw nsw <N x i32> %1, <i32 1 x N>
+ // %4 = add nuw nsw <N x i32> %3, %2
+ // %5 = lshr <N x i32> %N, <i32 1 x N>
+ // %6 = trunc <N x i32> %5 to <N x i8>
+ //
+ // In AVX512, the last instruction can also be a trunc store.
+ if (In.getOpcode() != ISD::SRL)
+ return SDValue();
+
+ // A lambda checking the given SDValue is a constant vector and each element
+ // is in the range [Min, Max].
+ auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) {
+ BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V);
+ if (!BV || !BV->isConstant())
+ return false;
+ for (SDValue Op : V->ops()) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C)
+ return false;
+ uint64_t Val = C->getZExtValue();
+ if (Val < Min || Val > Max)
+ return false;
+ }
+ return true;
+ };
+
+ // Split vectors to legal target size and apply AVG.
+ auto LowerToAVG = [&](SDValue Op0, SDValue Op1) {
+ unsigned NumSubs = 1;
+ if (Subtarget.hasBWI()) {
+ if (VT.getSizeInBits() > 512)
+ NumSubs = VT.getSizeInBits() / 512;
+ } else if (Subtarget.hasAVX2()) {
+ if (VT.getSizeInBits() > 256)
+ NumSubs = VT.getSizeInBits() / 256;
+ } else {
+ if (VT.getSizeInBits() > 128)
+ NumSubs = VT.getSizeInBits() / 128;
+ }
+
+ if (NumSubs == 1)
+ return DAG.getNode(X86ISD::AVG, DL, VT, Op0, Op1);
+
+ SmallVector<SDValue, 4> Subs;
+ EVT SubVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
+ VT.getVectorNumElements() / NumSubs);
+ for (unsigned i = 0; i != NumSubs; ++i) {
+ unsigned Idx = i * SubVT.getVectorNumElements();
+ SDValue LHS = extractSubVector(Op0, Idx, DAG, DL, SubVT.getSizeInBits());
+ SDValue RHS = extractSubVector(Op1, Idx, DAG, DL, SubVT.getSizeInBits());
+ Subs.push_back(DAG.getNode(X86ISD::AVG, DL, SubVT, LHS, RHS));
+ }
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Subs);
+ };
+
+ // Check if each element of the vector is left-shifted by one.
+ auto LHS = In.getOperand(0);
+ auto RHS = In.getOperand(1);
+ if (!IsConstVectorInRange(RHS, 1, 1))
+ return SDValue();
+ if (LHS.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ // Detect a pattern of a + b + 1 where the order doesn't matter.
+ SDValue Operands[3];
+ Operands[0] = LHS.getOperand(0);
+ Operands[1] = LHS.getOperand(1);
+
+ // Take care of the case when one of the operands is a constant vector whose
+ // element is in the range [1, 256].
+ if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) &&
+ Operands[0].getOpcode() == ISD::ZERO_EXTEND &&
+ Operands[0].getOperand(0).getValueType() == VT) {
+ // The pattern is detected. Subtract one from the constant vector, then
+ // demote it and emit X86ISD::AVG instruction.
+ SDValue VecOnes = DAG.getConstant(1, DL, InVT);
+ Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], VecOnes);
+ Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]);
+ return LowerToAVG(Operands[0].getOperand(0), Operands[1]);
+ }
+
+ if (Operands[0].getOpcode() == ISD::ADD)
+ std::swap(Operands[0], Operands[1]);
+ else if (Operands[1].getOpcode() != ISD::ADD)
+ return SDValue();
+ Operands[2] = Operands[1].getOperand(0);
+ Operands[1] = Operands[1].getOperand(1);
+
+ // Now we have three operands of two additions. Check that one of them is a
+ // constant vector with ones, and the other two are promoted from i8/i16.
+ for (int i = 0; i < 3; ++i) {
+ if (!IsConstVectorInRange(Operands[i], 1, 1))
+ continue;
+ std::swap(Operands[i], Operands[2]);
+
+ // Check if Operands[0] and Operands[1] are results of type promotion.
+ for (int j = 0; j < 2; ++j)
+ if (Operands[j].getOpcode() != ISD::ZERO_EXTEND ||
+ Operands[j].getOperand(0).getValueType() != VT)
+ return SDValue();
+
+ // The pattern is detected, emit X86ISD::AVG instruction.
+ return LowerToAVG(Operands[0].getOperand(0), Operands[1].getOperand(0));
+ }
+
+ return SDValue();
+}
+
+static SDValue combineLoad(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ LoadSDNode *Ld = cast<LoadSDNode>(N);
+ EVT RegVT = Ld->getValueType(0);
+ EVT MemVT = Ld->getMemoryVT();
+ SDLoc dl(Ld);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // For chips with slow 32-byte unaligned loads, break the 32-byte operation
+ // into two 16-byte operations. Also split non-temporal aligned loads on
+ // pre-AVX2 targets as 32-byte loads will lower to regular temporal loads.
+ ISD::LoadExtType Ext = Ld->getExtensionType();
+ bool Fast;
+ unsigned AddressSpace = Ld->getAddressSpace();
+ unsigned Alignment = Ld->getAlignment();
+ if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() &&
+ Ext == ISD::NON_EXTLOAD &&
+ ((Ld->isNonTemporal() && !Subtarget.hasInt256() && Alignment >= 16) ||
+ (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT,
+ AddressSpace, Alignment, &Fast) && !Fast))) {
+ unsigned NumElems = RegVT.getVectorNumElements();
+ if (NumElems < 2)
+ return SDValue();
+
+ SDValue Ptr = Ld->getBasePtr();
+
+ EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
+ NumElems/2);
+ SDValue Load1 =
+ DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
+ Alignment, Ld->getMemOperand()->getFlags());
+
+ Ptr = DAG.getMemBasePlusOffset(Ptr, 16, dl);
+ SDValue Load2 =
+ DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
+ Ld->getPointerInfo().getWithOffset(16),
+ MinAlign(Alignment, 16U), Ld->getMemOperand()->getFlags());
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ Load1.getValue(1),
+ Load2.getValue(1));
+
+ SDValue NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Load1, Load2);
+ return DCI.CombineTo(N, NewVec, TF, true);
+ }
+
+ return SDValue();
+}
+
+/// If V is a build vector of boolean constants and exactly one of those
+/// constants is true, return the operand index of that true element.
+/// Otherwise, return -1.
+static int getOneTrueElt(SDValue V) {
+ // This needs to be a build vector of booleans.
+ // TODO: Checking for the i1 type matches the IR definition for the mask,
+ // but the mask check could be loosened to i8 or other types. That might
+ // also require checking more than 'allOnesValue'; eg, the x86 HW
+ // instructions only require that the MSB is set for each mask element.
+ // The ISD::MSTORE comments/definition do not specify how the mask operand
+ // is formatted.
+ auto *BV = dyn_cast<BuildVectorSDNode>(V);
+ if (!BV || BV->getValueType(0).getVectorElementType() != MVT::i1)
+ return -1;
+
+ int TrueIndex = -1;
+ unsigned NumElts = BV->getValueType(0).getVectorNumElements();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ const SDValue &Op = BV->getOperand(i);
+ if (Op.isUndef())
+ continue;
+ auto *ConstNode = dyn_cast<ConstantSDNode>(Op);
+ if (!ConstNode)
+ return -1;
+ if (ConstNode->getAPIntValue().isAllOnesValue()) {
+ // If we already found a one, this is too many.
+ if (TrueIndex >= 0)
+ return -1;
+ TrueIndex = i;
+ }
+ }
+ return TrueIndex;
+}
+
+/// Given a masked memory load/store operation, return true if it has one mask
+/// bit set. If it has one mask bit set, then also return the memory address of
+/// the scalar element to load/store, the vector index to insert/extract that
+/// scalar element, and the alignment for the scalar memory access.
+static bool getParamsForOneTrueMaskedElt(MaskedLoadStoreSDNode *MaskedOp,
+ SelectionDAG &DAG, SDValue &Addr,
+ SDValue &Index, unsigned &Alignment) {
+ int TrueMaskElt = getOneTrueElt(MaskedOp->getMask());
+ if (TrueMaskElt < 0)
+ return false;
+
+ // Get the address of the one scalar element that is specified by the mask
+ // using the appropriate offset from the base pointer.
+ EVT EltVT = MaskedOp->getMemoryVT().getVectorElementType();
+ Addr = MaskedOp->getBasePtr();
+ if (TrueMaskElt != 0) {
+ unsigned Offset = TrueMaskElt * EltVT.getStoreSize();
+ Addr = DAG.getMemBasePlusOffset(Addr, Offset, SDLoc(MaskedOp));
+ }
+
+ Index = DAG.getIntPtrConstant(TrueMaskElt, SDLoc(MaskedOp));
+ Alignment = MinAlign(MaskedOp->getAlignment(), EltVT.getStoreSize());
+ return true;
+}
+
+/// If exactly one element of the mask is set for a non-extending masked load,
+/// it is a scalar load and vector insert.
+/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
+/// mask have already been optimized in IR, so we don't bother with those here.
+static SDValue
+reduceMaskedLoadToScalarLoad(MaskedLoadSDNode *ML, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
+ // However, some target hooks may need to be added to know when the transform
+ // is profitable. Endianness would also have to be considered.
+
+ SDValue Addr, VecIndex;
+ unsigned Alignment;
+ if (!getParamsForOneTrueMaskedElt(ML, DAG, Addr, VecIndex, Alignment))
+ return SDValue();
+
+ // Load the one scalar element that is specified by the mask using the
+ // appropriate offset from the base pointer.
+ SDLoc DL(ML);
+ EVT VT = ML->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
+ SDValue Load =
+ DAG.getLoad(EltVT, DL, ML->getChain(), Addr, ML->getPointerInfo(),
+ Alignment, ML->getMemOperand()->getFlags());
+
+ // Insert the loaded element into the appropriate place in the vector.
+ SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, ML->getSrc0(),
+ Load, VecIndex);
+ return DCI.CombineTo(ML, Insert, Load.getValue(1), true);
+}
+
+static SDValue
+combineMaskedLoadConstantMask(MaskedLoadSDNode *ML, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (!ISD::isBuildVectorOfConstantSDNodes(ML->getMask().getNode()))
+ return SDValue();
+
+ SDLoc DL(ML);
+ EVT VT = ML->getValueType(0);
+
+ // If we are loading the first and last elements of a vector, it is safe and
+ // always faster to load the whole vector. Replace the masked load with a
+ // vector load and select.
+ unsigned NumElts = VT.getVectorNumElements();
+ BuildVectorSDNode *MaskBV = cast<BuildVectorSDNode>(ML->getMask());
+ bool LoadFirstElt = !isNullConstant(MaskBV->getOperand(0));
+ bool LoadLastElt = !isNullConstant(MaskBV->getOperand(NumElts - 1));
+ if (LoadFirstElt && LoadLastElt) {
+ SDValue VecLd = DAG.getLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
+ ML->getMemOperand());
+ SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), VecLd, ML->getSrc0());
+ return DCI.CombineTo(ML, Blend, VecLd.getValue(1), true);
+ }
+
+ // Convert a masked load with a constant mask into a masked load and a select.
+ // This allows the select operation to use a faster kind of select instruction
+ // (for example, vblendvps -> vblendps).
+
+ // Don't try this if the pass-through operand is already undefined. That would
+ // cause an infinite loop because that's what we're about to create.
+ if (ML->getSrc0().isUndef())
+ return SDValue();
+
+ // The new masked load has an undef pass-through operand. The select uses the
+ // original pass-through operand.
+ SDValue NewML = DAG.getMaskedLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
+ ML->getMask(), DAG.getUNDEF(VT),
+ ML->getMemoryVT(), ML->getMemOperand(),
+ ML->getExtensionType());
+ SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), NewML, ML->getSrc0());
+
+ return DCI.CombineTo(ML, Blend, NewML.getValue(1), true);
+}
+
+static SDValue combineMaskedLoad(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
+
+ // TODO: Expanding load with constant mask may be optimized as well.
+ if (Mld->isExpandingLoad())
+ return SDValue();
+
+ if (Mld->getExtensionType() == ISD::NON_EXTLOAD) {
+ if (SDValue ScalarLoad = reduceMaskedLoadToScalarLoad(Mld, DAG, DCI))
+ return ScalarLoad;
+ // TODO: Do some AVX512 subsets benefit from this transform?
+ if (!Subtarget.hasAVX512())
+ if (SDValue Blend = combineMaskedLoadConstantMask(Mld, DAG, DCI))
+ return Blend;
+ }
+
+ if (Mld->getExtensionType() != ISD::SEXTLOAD)
+ return SDValue();
+
+ // Resolve extending loads.
+ EVT VT = Mld->getValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+ EVT LdVT = Mld->getMemoryVT();
+ SDLoc dl(Mld);
+
+ assert(LdVT != VT && "Cannot extend to the same type");
+ unsigned ToSz = VT.getScalarSizeInBits();
+ unsigned FromSz = LdVT.getScalarSizeInBits();
+ // From/To sizes and ElemCount must be pow of two.
+ assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
+ "Unexpected size for extending masked load");
+
+ unsigned SizeRatio = ToSz / FromSz;
+ assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle.
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
+ LdVT.getScalarType(), NumElems*SizeRatio);
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ // Convert Src0 value.
+ SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0());
+ if (!Mld->getSrc0().isUndef()) {
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
+ "WideVecVT should be legal");
+ WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0,
+ DAG.getUNDEF(WideVecVT), ShuffleVec);
+ }
+
+ // Prepare the new mask.
+ SDValue NewMask;
+ SDValue Mask = Mld->getMask();
+ if (Mask.getValueType() == VT) {
+ // Mask and original value have the same type.
+ NewMask = DAG.getBitcast(WideVecVT, Mask);
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+ for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i)
+ ShuffleVec[i] = NumElems * SizeRatio;
+ NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
+ DAG.getConstant(0, dl, WideVecVT),
+ ShuffleVec);
+ } else {
+ assert(Mask.getValueType().getVectorElementType() == MVT::i1);
+ unsigned WidenNumElts = NumElems*SizeRatio;
+ unsigned MaskNumElts = VT.getVectorNumElements();
+ EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ WidenNumElts);
+
+ unsigned NumConcat = WidenNumElts / MaskNumElts;
+ SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
+ SmallVector<SDValue, 16> Ops(NumConcat, ZeroVal);
+ Ops[0] = Mask;
+ NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
+ }
+
+ SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(),
+ Mld->getBasePtr(), NewMask, WideSrc0,
+ Mld->getMemoryVT(), Mld->getMemOperand(),
+ ISD::NON_EXTLOAD);
+ SDValue NewVec = getExtendInVec(X86ISD::VSEXT, dl, VT, WideLd, DAG);
+ return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true);
+}
+
+/// If exactly one element of the mask is set for a non-truncating masked store,
+/// it is a vector extract and scalar store.
+/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
+/// mask have already been optimized in IR, so we don't bother with those here.
+static SDValue reduceMaskedStoreToScalarStore(MaskedStoreSDNode *MS,
+ SelectionDAG &DAG) {
+ // TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
+ // However, some target hooks may need to be added to know when the transform
+ // is profitable. Endianness would also have to be considered.
+
+ SDValue Addr, VecIndex;
+ unsigned Alignment;
+ if (!getParamsForOneTrueMaskedElt(MS, DAG, Addr, VecIndex, Alignment))
+ return SDValue();
+
+ // Extract the one scalar element that is actually being stored.
+ SDLoc DL(MS);
+ EVT VT = MS->getValue().getValueType();
+ EVT EltVT = VT.getVectorElementType();
+ SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
+ MS->getValue(), VecIndex);
+
+ // Store that element at the appropriate offset from the base pointer.
+ return DAG.getStore(MS->getChain(), DL, Extract, Addr, MS->getPointerInfo(),
+ Alignment, MS->getMemOperand()->getFlags());
+}
+
+static SDValue combineMaskedStore(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
+
+ if (Mst->isCompressingStore())
+ return SDValue();
+
+ if (!Mst->isTruncatingStore()) {
+ if (SDValue ScalarStore = reduceMaskedStoreToScalarStore(Mst, DAG))
+ return ScalarStore;
+
+ // If the mask is checking (0 > X), we're creating a vector with all-zeros
+ // or all-ones elements based on the sign bits of X. AVX1 masked store only
+ // cares about the sign bit of each mask element, so eliminate the compare:
+ // mstore val, ptr, (pcmpgt 0, X) --> mstore val, ptr, X
+ // Note that by waiting to match an x86-specific PCMPGT node, we're
+ // eliminating potentially more complex matching of a setcc node which has
+ // a full range of predicates.
+ SDValue Mask = Mst->getMask();
+ if (Mask.getOpcode() == X86ISD::PCMPGT &&
+ ISD::isBuildVectorAllZeros(Mask.getOperand(0).getNode())) {
+ assert(Mask.getValueType() == Mask.getOperand(1).getValueType() &&
+ "Unexpected type for PCMPGT");
+ return DAG.getMaskedStore(
+ Mst->getChain(), SDLoc(N), Mst->getValue(), Mst->getBasePtr(),
+ Mask.getOperand(1), Mst->getMemoryVT(), Mst->getMemOperand());
+ }
+
+ // TODO: AVX512 targets should also be able to simplify something like the
+ // pattern above, but that pattern will be different. It will either need to
+ // match setcc more generally or match PCMPGTM later (in tablegen?).
+
+ return SDValue();
+ }
+
+ // Resolve truncating stores.
+ EVT VT = Mst->getValue().getValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+ EVT StVT = Mst->getMemoryVT();
+ SDLoc dl(Mst);
+
+ assert(StVT != VT && "Cannot truncate to the same type");
+ unsigned FromSz = VT.getScalarSizeInBits();
+ unsigned ToSz = StVT.getScalarSizeInBits();
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // The truncating store is legal in some cases. For example
+ // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
+ // are designated for truncate store.
+ // In this case we don't need any further transformations.
+ if (TLI.isTruncStoreLegal(VT, StVT))
+ return SDValue();
+
+ // From/To sizes and ElemCount must be pow of two.
+ assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
+ "Unexpected size for truncating masked store");
+ // We are going to use the original vector elt for storing.
+ // Accumulated smaller vector elements must be a multiple of the store size.
+ assert (((NumElems * FromSz) % ToSz) == 0 &&
+ "Unexpected ratio for truncating masked store");
+
+ unsigned SizeRatio = FromSz / ToSz;
+ assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle.
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StVT.getScalarType(), NumElems*SizeRatio);
+
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue());
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
+ "WideVecVT should be legal");
+
+ SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
+ DAG.getUNDEF(WideVecVT),
+ ShuffleVec);
+
+ SDValue NewMask;
+ SDValue Mask = Mst->getMask();
+ if (Mask.getValueType() == VT) {
+ // Mask and original value have the same type.
+ NewMask = DAG.getBitcast(WideVecVT, Mask);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+ for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
+ ShuffleVec[i] = NumElems*SizeRatio;
+ NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
+ DAG.getConstant(0, dl, WideVecVT),
+ ShuffleVec);
+ } else {
+ assert(Mask.getValueType().getVectorElementType() == MVT::i1);
+ unsigned WidenNumElts = NumElems*SizeRatio;
+ unsigned MaskNumElts = VT.getVectorNumElements();
+ EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ WidenNumElts);
+
+ unsigned NumConcat = WidenNumElts / MaskNumElts;
+ SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
+ SmallVector<SDValue, 16> Ops(NumConcat, ZeroVal);
+ Ops[0] = Mask;
+ NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
+ }
+
+ return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal,
+ Mst->getBasePtr(), NewMask, StVT,
+ Mst->getMemOperand(), false);
+}
+
+static SDValue combineStore(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ StoreSDNode *St = cast<StoreSDNode>(N);
+ EVT VT = St->getValue().getValueType();
+ EVT StVT = St->getMemoryVT();
+ SDLoc dl(St);
+ SDValue StoredVal = St->getOperand(1);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // If we are saving a concatenation of two XMM registers and 32-byte stores
+ // are slow, such as on Sandy Bridge, perform two 16-byte stores.
+ bool Fast;
+ unsigned AddressSpace = St->getAddressSpace();
+ unsigned Alignment = St->getAlignment();
+ if (VT.is256BitVector() && StVT == VT &&
+ TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
+ AddressSpace, Alignment, &Fast) &&
+ !Fast) {
+ unsigned NumElems = VT.getVectorNumElements();
+ if (NumElems < 2)
+ return SDValue();
+
+ SDValue Value0 = extract128BitVector(StoredVal, 0, DAG, dl);
+ SDValue Value1 = extract128BitVector(StoredVal, NumElems / 2, DAG, dl);
+
+ SDValue Ptr0 = St->getBasePtr();
+ SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 16, dl);
+
+ SDValue Ch0 =
+ DAG.getStore(St->getChain(), dl, Value0, Ptr0, St->getPointerInfo(),
+ Alignment, St->getMemOperand()->getFlags());
+ SDValue Ch1 =
+ DAG.getStore(St->getChain(), dl, Value1, Ptr1,
+ St->getPointerInfo().getWithOffset(16),
+ MinAlign(Alignment, 16U), St->getMemOperand()->getFlags());
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
+ }
+
+ // Optimize trunc store (of multiple scalars) to shuffle and store.
+ // First, pack all of the elements in one place. Next, store to memory
+ // in fewer chunks.
+ if (St->isTruncatingStore() && VT.isVector()) {
+ // Check if we can detect an AVG pattern from the truncation. If yes,
+ // replace the trunc store by a normal store with the result of X86ISD::AVG
+ // instruction.
+ if (SDValue Avg = detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG,
+ Subtarget, dl))
+ return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(),
+ St->getPointerInfo(), St->getAlignment(),
+ St->getMemOperand()->getFlags());
+
+ if (SDValue Val =
+ detectAVX512USatPattern(St->getValue(), St->getMemoryVT(), Subtarget))
+ return EmitTruncSStore(false /* Unsigned saturation */, St->getChain(),
+ dl, Val, St->getBasePtr(),
+ St->getMemoryVT(), St->getMemOperand(), DAG);
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned NumElems = VT.getVectorNumElements();
+ assert(StVT != VT && "Cannot truncate to the same type");
+ unsigned FromSz = VT.getScalarSizeInBits();
+ unsigned ToSz = StVT.getScalarSizeInBits();
+
+ // The truncating store is legal in some cases. For example
+ // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
+ // are designated for truncate store.
+ // In this case we don't need any further transformations.
+ if (TLI.isTruncStoreLegalOrCustom(VT, StVT))
+ return SDValue();
+
+ // From, To sizes and ElemCount must be pow of two
+ if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
+ // We are going to use the original vector elt for storing.
+ // Accumulated smaller vector elements must be a multiple of the store size.
+ if (0 != (NumElems * FromSz) % ToSz) return SDValue();
+
+ unsigned SizeRatio = FromSz / ToSz;
+
+ assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StVT.getScalarType(), NumElems*SizeRatio);
+
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue());
+ SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ if (!TLI.isTypeLegal(WideVecVT))
+ return SDValue();
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
+ DAG.getUNDEF(WideVecVT),
+ ShuffleVec);
+ // At this point all of the data is stored at the bottom of the
+ // register. We now need to save it to mem.
+
+ // Find the largest store unit
+ MVT StoreType = MVT::i8;
+ for (MVT Tp : MVT::integer_valuetypes()) {
+ if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
+ StoreType = Tp;
+ }
+
+ // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
+ if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
+ (64 <= NumElems * ToSz))
+ StoreType = MVT::f64;
+
+ // Bitcast the original vector into a vector of store-size units
+ EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
+ assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
+ SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff);
+ SmallVector<SDValue, 8> Chains;
+ SDValue Ptr = St->getBasePtr();
+
+ // Perform one or more big stores into memory.
+ for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
+ SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ StoreType, ShuffWide,
+ DAG.getIntPtrConstant(i, dl));
+ SDValue Ch =
+ DAG.getStore(St->getChain(), dl, SubVec, Ptr, St->getPointerInfo(),
+ St->getAlignment(), St->getMemOperand()->getFlags());
+ Ptr = DAG.getMemBasePlusOffset(Ptr, StoreType.getStoreSize(), dl);
+ Chains.push_back(Ch);
+ }
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
+ }
+
+ // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
+ // the FP state in cases where an emms may be missing.
+ // A preferable solution to the general problem is to figure out the right
+ // places to insert EMMS. This qualifies as a quick hack.
+
+ // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
+ if (VT.getSizeInBits() != 64)
+ return SDValue();
+
+ const Function &F = DAG.getMachineFunction().getFunction();
+ bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat);
+ bool F64IsLegal =
+ !Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2();
+ if ((VT.isVector() ||
+ (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit())) &&
+ isa<LoadSDNode>(St->getValue()) &&
+ !cast<LoadSDNode>(St->getValue())->isVolatile() &&
+ St->getChain().hasOneUse() && !St->isVolatile()) {
+ LoadSDNode *Ld = cast<LoadSDNode>(St->getValue().getNode());
+ SmallVector<SDValue, 8> Ops;
+
+ if (!ISD::isNormalLoad(Ld))
+ return SDValue();
+
+ // If this is not the MMX case, i.e. we are just turning i64 load/store
+ // into f64 load/store, avoid the transformation if there are multiple
+ // uses of the loaded value.
+ if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
+ return SDValue();
+
+ SDLoc LdDL(Ld);
+ SDLoc StDL(N);
+ // If we are a 64-bit capable x86, lower to a single movq load/store pair.
+ // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
+ // pair instead.
+ if (Subtarget.is64Bit() || F64IsLegal) {
+ MVT LdVT = Subtarget.is64Bit() ? MVT::i64 : MVT::f64;
+ SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
+ Ld->getMemOperand());
+
+ // Make sure new load is placed in same chain order.
+ DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
+ return DAG.getStore(St->getChain(), StDL, NewLd, St->getBasePtr(),
+ St->getMemOperand());
+ }
+
+ // Otherwise, lower to two pairs of 32-bit loads / stores.
+ SDValue LoAddr = Ld->getBasePtr();
+ SDValue HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, LdDL);
+
+ SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
+ Ld->getPointerInfo(), Ld->getAlignment(),
+ Ld->getMemOperand()->getFlags());
+ SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
+ Ld->getPointerInfo().getWithOffset(4),
+ MinAlign(Ld->getAlignment(), 4),
+ Ld->getMemOperand()->getFlags());
+ // Make sure new loads are placed in same chain order.
+ DAG.makeEquivalentMemoryOrdering(Ld, LoLd);
+ DAG.makeEquivalentMemoryOrdering(Ld, HiLd);
+
+ LoAddr = St->getBasePtr();
+ HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, StDL);
+
+ SDValue LoSt =
+ DAG.getStore(St->getChain(), StDL, LoLd, LoAddr, St->getPointerInfo(),
+ St->getAlignment(), St->getMemOperand()->getFlags());
+ SDValue HiSt = DAG.getStore(St->getChain(), StDL, HiLd, HiAddr,
+ St->getPointerInfo().getWithOffset(4),
+ MinAlign(St->getAlignment(), 4),
+ St->getMemOperand()->getFlags());
+ return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
+ }
+
+ // This is similar to the above case, but here we handle a scalar 64-bit
+ // integer store that is extracted from a vector on a 32-bit target.
+ // If we have SSE2, then we can treat it like a floating-point double
+ // to get past legalization. The execution dependencies fixup pass will
+ // choose the optimal machine instruction for the store if this really is
+ // an integer or v2f32 rather than an f64.
+ if (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit() &&
+ St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ SDValue OldExtract = St->getOperand(1);
+ SDValue ExtOp0 = OldExtract.getOperand(0);
+ unsigned VecSize = ExtOp0.getValueSizeInBits();
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
+ SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
+ SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ BitCast, OldExtract.getOperand(1));
+ return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
+ St->getPointerInfo(), St->getAlignment(),
+ St->getMemOperand()->getFlags());
+ }
+
+ return SDValue();
+}
+
+/// Return 'true' if this vector operation is "horizontal"
+/// and return the operands for the horizontal operation in LHS and RHS. A
+/// horizontal operation performs the binary operation on successive elements
+/// of its first operand, then on successive elements of its second operand,
+/// returning the resulting values in a vector. For example, if
+/// A = < float a0, float a1, float a2, float a3 >
+/// and
+/// B = < float b0, float b1, float b2, float b3 >
+/// then the result of doing a horizontal operation on A and B is
+/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
+/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
+/// A horizontal-op B, for some already available A and B, and if so then LHS is
+/// set to A, RHS to B, and the routine returns 'true'.
+/// Note that the binary operation should have the property that if one of the
+/// operands is UNDEF then the result is UNDEF.
+static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
+ // Look for the following pattern: if
+ // A = < float a0, float a1, float a2, float a3 >
+ // B = < float b0, float b1, float b2, float b3 >
+ // and
+ // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
+ // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
+ // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
+ // which is A horizontal-op B.
+
+ // At least one of the operands should be a vector shuffle.
+ if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
+ RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
+ return false;
+
+ MVT VT = LHS.getSimpleValueType();
+
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Unsupported vector type for horizontal add/sub");
+
+ // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
+ // operate independently on 128-bit lanes.
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+ assert((NumLaneElts % 2 == 0) &&
+ "Vector type should have an even number of elements in each lane");
+ unsigned HalfLaneElts = NumLaneElts/2;
+
+ // View LHS in the form
+ // LHS = VECTOR_SHUFFLE A, B, LMask
+ // If LHS is not a shuffle then pretend it is the shuffle
+ // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
+ // NOTE: in what follows a default initialized SDValue represents an UNDEF of
+ // type VT.
+ SDValue A, B;
+ SmallVector<int, 16> LMask(NumElts);
+ if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
+ if (!LHS.getOperand(0).isUndef())
+ A = LHS.getOperand(0);
+ if (!LHS.getOperand(1).isUndef())
+ B = LHS.getOperand(1);
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
+ std::copy(Mask.begin(), Mask.end(), LMask.begin());
+ } else {
+ if (!LHS.isUndef())
+ A = LHS;
+ for (unsigned i = 0; i != NumElts; ++i)
+ LMask[i] = i;
+ }
+
+ // Likewise, view RHS in the form
+ // RHS = VECTOR_SHUFFLE C, D, RMask
+ SDValue C, D;
+ SmallVector<int, 16> RMask(NumElts);
+ if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
+ if (!RHS.getOperand(0).isUndef())
+ C = RHS.getOperand(0);
+ if (!RHS.getOperand(1).isUndef())
+ D = RHS.getOperand(1);
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
+ std::copy(Mask.begin(), Mask.end(), RMask.begin());
+ } else {
+ if (!RHS.isUndef())
+ C = RHS;
+ for (unsigned i = 0; i != NumElts; ++i)
+ RMask[i] = i;
+ }
+
+ // Check that the shuffles are both shuffling the same vectors.
+ if (!(A == C && B == D) && !(A == D && B == C))
+ return false;
+
+ // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
+ if (!A.getNode() && !B.getNode())
+ return false;
+
+ // If A and B occur in reverse order in RHS, then "swap" them (which means
+ // rewriting the mask).
+ if (A != C)
+ ShuffleVectorSDNode::commuteMask(RMask);
+
+ // At this point LHS and RHS are equivalent to
+ // LHS = VECTOR_SHUFFLE A, B, LMask
+ // RHS = VECTOR_SHUFFLE A, B, RMask
+ // Check that the masks correspond to performing a horizontal operation.
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ int LIdx = LMask[i+l], RIdx = RMask[i+l];
+
+ // Ignore any UNDEF components.
+ if (LIdx < 0 || RIdx < 0 ||
+ (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
+ (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
+ continue;
+
+ // Check that successive elements are being operated on. If not, this is
+ // not a horizontal operation.
+ unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
+ int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
+ if (!(LIdx == Index && RIdx == Index + 1) &&
+ !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
+ return false;
+ }
+ }
+
+ LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
+ RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
+ return true;
+}
+
+/// Do target-specific dag combines on floating-point adds/subs.
+static SDValue combineFaddFsub(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ EVT VT = N->getValueType(0);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ bool IsFadd = N->getOpcode() == ISD::FADD;
+ assert((IsFadd || N->getOpcode() == ISD::FSUB) && "Wrong opcode");
+
+ // Try to synthesize horizontal add/sub from adds/subs of shuffles.
+ if (((Subtarget.hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
+ (Subtarget.hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
+ isHorizontalBinOp(LHS, RHS, IsFadd)) {
+ auto NewOpcode = IsFadd ? X86ISD::FHADD : X86ISD::FHSUB;
+ return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
+ }
+ return SDValue();
+}
+
+/// Attempt to pre-truncate inputs to arithmetic ops if it will simplify
+/// the codegen.
+/// e.g. TRUNC( BINOP( X, Y ) ) --> BINOP( TRUNC( X ), TRUNC( Y ) )
+static SDValue combineTruncatedArithmetic(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget,
+ SDLoc &DL) {
+ assert(N->getOpcode() == ISD::TRUNCATE && "Wrong opcode");
+ SDValue Src = N->getOperand(0);
+ unsigned Opcode = Src.getOpcode();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ EVT VT = N->getValueType(0);
+ EVT SrcVT = Src.getValueType();
+
+ auto IsRepeatedOpOrFreeTruncation = [VT](SDValue Op0, SDValue Op1) {
+ unsigned TruncSizeInBits = VT.getScalarSizeInBits();
+
+ // Repeated operand, so we are only trading one output truncation for
+ // one input truncation.
+ if (Op0 == Op1)
+ return true;
+
+ // See if either operand has been extended from a smaller/equal size to
+ // the truncation size, allowing a truncation to combine with the extend.
+ unsigned Opcode0 = Op0.getOpcode();
+ if ((Opcode0 == ISD::ANY_EXTEND || Opcode0 == ISD::SIGN_EXTEND ||
+ Opcode0 == ISD::ZERO_EXTEND) &&
+ Op0.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits)
+ return true;
+
+ unsigned Opcode1 = Op1.getOpcode();
+ if ((Opcode1 == ISD::ANY_EXTEND || Opcode1 == ISD::SIGN_EXTEND ||
+ Opcode1 == ISD::ZERO_EXTEND) &&
+ Op1.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits)
+ return true;
+
+ // See if either operand is a single use constant which can be constant
+ // folded.
+ SDValue BC0 = peekThroughOneUseBitcasts(Op0);
+ SDValue BC1 = peekThroughOneUseBitcasts(Op1);
+ return ISD::isBuildVectorOfConstantSDNodes(BC0.getNode()) ||
+ ISD::isBuildVectorOfConstantSDNodes(BC1.getNode());
+ };
+
+ auto TruncateArithmetic = [&](SDValue N0, SDValue N1) {
+ SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
+ SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
+ return DAG.getNode(Opcode, DL, VT, Trunc0, Trunc1);
+ };
+
+ // Don't combine if the operation has other uses.
+ if (!N->isOnlyUserOf(Src.getNode()))
+ return SDValue();
+
+ // Only support vector truncation for now.
+ // TODO: i64 scalar math would benefit as well.
+ if (!VT.isVector())
+ return SDValue();
+
+ // In most cases its only worth pre-truncating if we're only facing the cost
+ // of one truncation.
+ // i.e. if one of the inputs will constant fold or the input is repeated.
+ switch (Opcode) {
+ case ISD::AND:
+ case ISD::XOR:
+ case ISD::OR: {
+ SDValue Op0 = Src.getOperand(0);
+ SDValue Op1 = Src.getOperand(1);
+ if (TLI.isOperationLegalOrPromote(Opcode, VT) &&
+ IsRepeatedOpOrFreeTruncation(Op0, Op1))
+ return TruncateArithmetic(Op0, Op1);
+ break;
+ }
+
+ case ISD::MUL:
+ // X86 is rubbish at scalar and vector i64 multiplies (until AVX512DQ) - its
+ // better to truncate if we have the chance.
+ if (SrcVT.getScalarType() == MVT::i64 && TLI.isOperationLegal(Opcode, VT) &&
+ !Subtarget.hasDQI())
+ return TruncateArithmetic(Src.getOperand(0), Src.getOperand(1));
+ LLVM_FALLTHROUGH;
+ case ISD::ADD: {
+ // TODO: ISD::SUB should be here but interferes with combineSubToSubus.
+ SDValue Op0 = Src.getOperand(0);
+ SDValue Op1 = Src.getOperand(1);
+ if (TLI.isOperationLegal(Opcode, VT) &&
+ IsRepeatedOpOrFreeTruncation(Op0, Op1))
+ return TruncateArithmetic(Op0, Op1);
+ break;
+ }
+ }
+
+ return SDValue();
+}
+
+/// Truncate a group of v4i32 into v16i8/v8i16 using X86ISD::PACKUS.
+static SDValue
+combineVectorTruncationWithPACKUS(SDNode *N, SelectionDAG &DAG,
+ SmallVector<SDValue, 8> &Regs) {
+ assert(Regs.size() > 0 && (Regs[0].getValueType() == MVT::v4i32 ||
+ Regs[0].getValueType() == MVT::v2i64));
+ EVT OutVT = N->getValueType(0);
+ EVT OutSVT = OutVT.getVectorElementType();
+ EVT InVT = Regs[0].getValueType();
+ EVT InSVT = InVT.getVectorElementType();
+ SDLoc DL(N);
+
+ // First, use mask to unset all bits that won't appear in the result.
+ assert((OutSVT == MVT::i8 || OutSVT == MVT::i16) &&
+ "OutSVT can only be either i8 or i16.");
+ APInt Mask =
+ APInt::getLowBitsSet(InSVT.getSizeInBits(), OutSVT.getSizeInBits());
+ SDValue MaskVal = DAG.getConstant(Mask, DL, InVT);
+ for (auto &Reg : Regs)
+ Reg = DAG.getNode(ISD::AND, DL, InVT, MaskVal, Reg);
+
+ MVT UnpackedVT, PackedVT;
+ if (OutSVT == MVT::i8) {
+ UnpackedVT = MVT::v8i16;
+ PackedVT = MVT::v16i8;
+ } else {
+ UnpackedVT = MVT::v4i32;
+ PackedVT = MVT::v8i16;
+ }
+
+ // In each iteration, truncate the type by a half size.
+ auto RegNum = Regs.size();
+ for (unsigned j = 1, e = InSVT.getSizeInBits() / OutSVT.getSizeInBits();
+ j < e; j *= 2, RegNum /= 2) {
+ for (unsigned i = 0; i < RegNum; i++)
+ Regs[i] = DAG.getBitcast(UnpackedVT, Regs[i]);
+ for (unsigned i = 0; i < RegNum / 2; i++)
+ Regs[i] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[i * 2],
+ Regs[i * 2 + 1]);
+ }
+
+ // If the type of the result is v8i8, we need do one more X86ISD::PACKUS, and
+ // then extract a subvector as the result since v8i8 is not a legal type.
+ if (OutVT == MVT::v8i8) {
+ Regs[0] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[0], Regs[0]);
+ Regs[0] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, Regs[0],
+ DAG.getIntPtrConstant(0, DL));
+ return Regs[0];
+ } else if (RegNum > 1) {
+ Regs.resize(RegNum);
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
+ } else
+ return Regs[0];
+}
+
+/// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS.
+static SDValue
+combineVectorTruncationWithPACKSS(SDNode *N, const X86Subtarget &Subtarget,
+ SelectionDAG &DAG,
+ SmallVector<SDValue, 8> &Regs) {
+ assert(Regs.size() > 0 && Regs[0].getValueType() == MVT::v4i32);
+ EVT OutVT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // Shift left by 16 bits, then arithmetic-shift right by 16 bits.
+ SDValue ShAmt = DAG.getConstant(16, DL, MVT::i32);
+ for (auto &Reg : Regs) {
+ Reg = getTargetVShiftNode(X86ISD::VSHLI, DL, MVT::v4i32, Reg, ShAmt,
+ Subtarget, DAG);
+ Reg = getTargetVShiftNode(X86ISD::VSRAI, DL, MVT::v4i32, Reg, ShAmt,
+ Subtarget, DAG);
+ }
+
+ for (unsigned i = 0, e = Regs.size() / 2; i < e; i++)
+ Regs[i] = DAG.getNode(X86ISD::PACKSS, DL, MVT::v8i16, Regs[i * 2],
+ Regs[i * 2 + 1]);
+
+ if (Regs.size() > 2) {
+ Regs.resize(Regs.size() / 2);
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
+ } else
+ return Regs[0];
+}
+
+/// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into
+/// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type
+/// legalization the truncation will be translated into a BUILD_VECTOR with each
+/// element that is extracted from a vector and then truncated, and it is
+/// difficult to do this optimization based on them.
+static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ EVT OutVT = N->getValueType(0);
+ if (!OutVT.isVector())
+ return SDValue();
+
+ SDValue In = N->getOperand(0);
+ if (!In.getValueType().isSimple())
+ return SDValue();
+
+ EVT InVT = In.getValueType();
+ unsigned NumElems = OutVT.getVectorNumElements();
+
+ // TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on
+ // SSE2, and we need to take care of it specially.
+ // AVX512 provides vpmovdb.
+ if (!Subtarget.hasSSE2() || Subtarget.hasAVX2())
+ return SDValue();
+
+ EVT OutSVT = OutVT.getVectorElementType();
+ EVT InSVT = InVT.getVectorElementType();
+ if (!((InSVT == MVT::i32 || InSVT == MVT::i64) &&
+ (OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) &&
+ NumElems >= 8))
+ return SDValue();
+
+ // SSSE3's pshufb results in less instructions in the cases below.
+ if (Subtarget.hasSSSE3() && NumElems == 8 &&
+ ((OutSVT == MVT::i8 && InSVT != MVT::i64) ||
+ (InSVT == MVT::i32 && OutSVT == MVT::i16)))
+ return SDValue();
+
+ SDLoc DL(N);
+
+ // Split a long vector into vectors of legal type.
+ unsigned RegNum = InVT.getSizeInBits() / 128;
+ SmallVector<SDValue, 8> SubVec(RegNum);
+ unsigned NumSubRegElts = 128 / InSVT.getSizeInBits();
+ EVT SubRegVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubRegElts);
+
+ for (unsigned i = 0; i < RegNum; i++)
+ SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubRegVT, In,
+ DAG.getIntPtrConstant(i * NumSubRegElts, DL));
+
+ // SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PACKUS
+ // for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to
+ // truncate 2 x v4i32 to v8i16.
+ if (Subtarget.hasSSE41() || OutSVT == MVT::i8)
+ return combineVectorTruncationWithPACKUS(N, DAG, SubVec);
+ else if (InSVT == MVT::i32)
+ return combineVectorTruncationWithPACKSS(N, Subtarget, DAG, SubVec);
+ else
+ return SDValue();
+}
+
+/// This function transforms vector truncation of 'extended sign-bits' or
+/// 'extended zero-bits' values.
+/// vXi16/vXi32/vXi64 to vXi8/vXi16/vXi32 into X86ISD::PACKSS/PACKUS operations.
+static SDValue combineVectorSignBitsTruncation(SDNode *N, SDLoc &DL,
+ SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // Requires SSE2 but AVX512 has fast truncate.
+ if (!Subtarget.hasSSE2() || Subtarget.hasAVX512())
+ return SDValue();
+
+ if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple())
+ return SDValue();
+
+ SDValue In = N->getOperand(0);
+ if (!In.getValueType().isSimple())
+ return SDValue();
+
+ MVT VT = N->getValueType(0).getSimpleVT();
+ MVT SVT = VT.getScalarType();
+
+ MVT InVT = In.getValueType().getSimpleVT();
+ MVT InSVT = InVT.getScalarType();
+
+ // Check we have a truncation suited for PACKSS.
+ if (!VT.is128BitVector() && !VT.is256BitVector())
+ return SDValue();
+ if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32)
+ return SDValue();
+ if (InSVT != MVT::i16 && InSVT != MVT::i32 && InSVT != MVT::i64)
+ return SDValue();
+
+ // Use PACKSS if the input has sign-bits that extend all the way to the
+ // packed/truncated value. e.g. Comparison result, sext_in_reg, etc.
+ unsigned NumSignBits = DAG.ComputeNumSignBits(In);
+ unsigned NumPackedBits = std::min<unsigned>(SVT.getSizeInBits(), 16);
+ if (NumSignBits > (InSVT.getSizeInBits() - NumPackedBits))
+ return truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget);
+
+ // Use PACKUS if the input has zero-bits that extend all the way to the
+ // packed/truncated value. e.g. masks, zext_in_reg, etc.
+ KnownBits Known;
+ DAG.computeKnownBits(In, Known);
+ unsigned NumLeadingZeroBits = Known.countMinLeadingZeros();
+ NumPackedBits = Subtarget.hasSSE41() ? NumPackedBits : 8;
+ if (NumLeadingZeroBits >= (InSVT.getSizeInBits() - NumPackedBits))
+ return truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget);
+
+ return SDValue();
+}
+
+static SDValue combineTruncate(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ EVT VT = N->getValueType(0);
+ SDValue Src = N->getOperand(0);
+ SDLoc DL(N);
+
+ // Attempt to pre-truncate inputs to arithmetic ops instead.
+ if (SDValue V = combineTruncatedArithmetic(N, DAG, Subtarget, DL))
+ return V;
+
+ // Try to detect AVG pattern first.
+ if (SDValue Avg = detectAVGPattern(Src, VT, DAG, Subtarget, DL))
+ return Avg;
+
+ // Try to combine truncation with unsigned saturation.
+ if (SDValue Val = combineTruncateWithUSat(Src, VT, DL, DAG, Subtarget))
+ return Val;
+
+ // The bitcast source is a direct mmx result.
+ // Detect bitcasts between i32 to x86mmx
+ if (Src.getOpcode() == ISD::BITCAST && VT == MVT::i32) {
+ SDValue BCSrc = Src.getOperand(0);
+ if (BCSrc.getValueType() == MVT::x86mmx)
+ return DAG.getNode(X86ISD::MMX_MOVD2W, DL, MVT::i32, BCSrc);
+ }
+
+ // Try to truncate extended sign/zero bits with PACKSS/PACKUS.
+ if (SDValue V = combineVectorSignBitsTruncation(N, DL, DAG, Subtarget))
+ return V;
+
+ return combineVectorTruncation(N, DAG, Subtarget);
+}
+
+/// Returns the negated value if the node \p N flips sign of FP value.
+///
+/// FP-negation node may have different forms: FNEG(x) or FXOR (x, 0x80000000).
+/// AVX512F does not have FXOR, so FNEG is lowered as
+/// (bitcast (xor (bitcast x), (bitcast ConstantFP(0x80000000)))).
+/// In this case we go though all bitcasts.
+static SDValue isFNEG(SDNode *N) {
+ if (N->getOpcode() == ISD::FNEG)
+ return N->getOperand(0);
+
+ SDValue Op = peekThroughBitcasts(SDValue(N, 0));
+ if (Op.getOpcode() != X86ISD::FXOR && Op.getOpcode() != ISD::XOR)
+ return SDValue();
+
+ SDValue Op1 = peekThroughBitcasts(Op.getOperand(1));
+ if (!Op1.getValueType().isFloatingPoint())
+ return SDValue();
+
+ SDValue Op0 = peekThroughBitcasts(Op.getOperand(0));
+
+ unsigned EltBits = Op1.getScalarValueSizeInBits();
+ auto isSignMask = [&](const ConstantFP *C) {
+ return C->getValueAPF().bitcastToAPInt() == APInt::getSignMask(EltBits);
+ };
+
+ // There is more than one way to represent the same constant on
+ // the different X86 targets. The type of the node may also depend on size.
+ // - load scalar value and broadcast
+ // - BUILD_VECTOR node
+ // - load from a constant pool.
+ // We check all variants here.
+ if (Op1.getOpcode() == X86ISD::VBROADCAST) {
+ if (auto *C = getTargetConstantFromNode(Op1.getOperand(0)))
+ if (isSignMask(cast<ConstantFP>(C)))
+ return Op0;
+
+ } else if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1)) {
+ if (ConstantFPSDNode *CN = BV->getConstantFPSplatNode())
+ if (isSignMask(CN->getConstantFPValue()))
+ return Op0;
+
+ } else if (auto *C = getTargetConstantFromNode(Op1)) {
+ if (C->getType()->isVectorTy()) {
+ if (auto *SplatV = C->getSplatValue())
+ if (isSignMask(cast<ConstantFP>(SplatV)))
+ return Op0;
+ } else if (auto *FPConst = dyn_cast<ConstantFP>(C))
+ if (isSignMask(FPConst))
+ return Op0;
+ }
+ return SDValue();
+}
+
+/// Do target-specific dag combines on floating point negations.
+static SDValue combineFneg(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ EVT OrigVT = N->getValueType(0);
+ SDValue Arg = isFNEG(N);
+ assert(Arg.getNode() && "N is expected to be an FNEG node");
+
+ EVT VT = Arg.getValueType();
+ EVT SVT = VT.getScalarType();
+ SDLoc DL(N);
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ // If we're negating a FMUL node on a target with FMA, then we can avoid the
+ // use of a constant by performing (-0 - A*B) instead.
+ // FIXME: Check rounding control flags as well once it becomes available.
+ if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) &&
+ Arg->getFlags().hasNoSignedZeros() && Subtarget.hasAnyFMA()) {
+ SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
+ SDValue NewNode = DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
+ Arg.getOperand(1), Zero);
+ return DAG.getBitcast(OrigVT, NewNode);
+ }
+
+ // If we're negating an FMA node, then we can adjust the
+ // instruction to include the extra negation.
+ unsigned NewOpcode = 0;
+ if (Arg.hasOneUse()) {
+ switch (Arg.getOpcode()) {
+ case ISD::FMA: NewOpcode = X86ISD::FNMSUB; break;
+ case X86ISD::FMSUB: NewOpcode = X86ISD::FNMADD; break;
+ case X86ISD::FNMADD: NewOpcode = X86ISD::FMSUB; break;
+ case X86ISD::FNMSUB: NewOpcode = ISD::FMA; break;
+ case X86ISD::FMADD_RND: NewOpcode = X86ISD::FNMSUB_RND; break;
+ case X86ISD::FMSUB_RND: NewOpcode = X86ISD::FNMADD_RND; break;
+ case X86ISD::FNMADD_RND: NewOpcode = X86ISD::FMSUB_RND; break;
+ case X86ISD::FNMSUB_RND: NewOpcode = X86ISD::FMADD_RND; break;
+ // We can't handle scalar intrinsic node here because it would only
+ // invert one element and not the whole vector. But we could try to handle
+ // a negation of the lower element only.
+ }
+ }
+ if (NewOpcode)
+ return DAG.getBitcast(OrigVT, DAG.getNode(NewOpcode, DL, VT,
+ Arg.getNode()->ops()));
+
+ return SDValue();
+}
+
+static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ MVT VT = N->getSimpleValueType(0);
+ // If we have integer vector types available, use the integer opcodes.
+ if (VT.isVector() && Subtarget.hasSSE2()) {
+ SDLoc dl(N);
+
+ MVT IntVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
+
+ SDValue Op0 = DAG.getBitcast(IntVT, N->getOperand(0));
+ SDValue Op1 = DAG.getBitcast(IntVT, N->getOperand(1));
+ unsigned IntOpcode;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("Unexpected FP logic op");
+ case X86ISD::FOR: IntOpcode = ISD::OR; break;
+ case X86ISD::FXOR: IntOpcode = ISD::XOR; break;
+ case X86ISD::FAND: IntOpcode = ISD::AND; break;
+ case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break;
+ }
+ SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1);
+ return DAG.getBitcast(VT, IntOp);
+ }
+ return SDValue();
+}
+
+
+/// Fold a xor(setcc cond, val), 1 --> setcc (inverted(cond), val)
+static SDValue foldXor1SetCC(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() != ISD::XOR)
+ return SDValue();
+
+ SDValue LHS = N->getOperand(0);
+ auto *RHSC = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!RHSC || RHSC->getZExtValue() != 1 || LHS->getOpcode() != X86ISD::SETCC)
+ return SDValue();
+
+ X86::CondCode NewCC = X86::GetOppositeBranchCondition(
+ X86::CondCode(LHS->getConstantOperandVal(0)));
+ SDLoc DL(N);
+ return getSETCC(NewCC, LHS->getOperand(1), DL, DAG);
+}
+
+static SDValue combineXor(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ // If this is SSE1 only convert to FXOR to avoid scalarization.
+ if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() &&
+ N->getValueType(0) == MVT::v4i32) {
+ return DAG.getBitcast(
+ MVT::v4i32, DAG.getNode(X86ISD::FXOR, SDLoc(N), MVT::v4f32,
+ DAG.getBitcast(MVT::v4f32, N->getOperand(0)),
+ DAG.getBitcast(MVT::v4f32, N->getOperand(1))));
+ }
+
+ if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
+ return Cmp;
+
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ if (SDValue SetCC = foldXor1SetCC(N, DAG))
+ return SetCC;
+
+ if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
+ return RV;
+
+ if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
+ return FPLogic;
+
+ if (isFNEG(N))
+ return combineFneg(N, DAG, Subtarget);
+ return SDValue();
+}
+
+
+static bool isNullFPScalarOrVectorConst(SDValue V) {
+ return isNullFPConstant(V) || ISD::isBuildVectorAllZeros(V.getNode());
+}
+
+/// If a value is a scalar FP zero or a vector FP zero (potentially including
+/// undefined elements), return a zero constant that may be used to fold away
+/// that value. In the case of a vector, the returned constant will not contain
+/// undefined elements even if the input parameter does. This makes it suitable
+/// to be used as a replacement operand with operations (eg, bitwise-and) where
+/// an undef should not propagate.
+static SDValue getNullFPConstForNullVal(SDValue V, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (!isNullFPScalarOrVectorConst(V))
+ return SDValue();
+
+ if (V.getValueType().isVector())
+ return getZeroVector(V.getSimpleValueType(), Subtarget, DAG, SDLoc(V));
+
+ return V;
+}
+
+static SDValue combineFAndFNotToFAndn(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // Vector types are handled in combineANDXORWithAllOnesIntoANDNP().
+ if (!((VT == MVT::f32 && Subtarget.hasSSE1()) ||
+ (VT == MVT::f64 && Subtarget.hasSSE2()) ||
+ (VT == MVT::v4f32 && Subtarget.hasSSE1() && !Subtarget.hasSSE2())))
+ return SDValue();
+
+ auto isAllOnesConstantFP = [](SDValue V) {
+ if (V.getSimpleValueType().isVector())
+ return ISD::isBuildVectorAllOnes(V.getNode());
+ auto *C = dyn_cast<ConstantFPSDNode>(V);
+ return C && C->getConstantFPValue()->isAllOnesValue();
+ };
+
+ // fand (fxor X, -1), Y --> fandn X, Y
+ if (N0.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N0.getOperand(1)))
+ return DAG.getNode(X86ISD::FANDN, DL, VT, N0.getOperand(0), N1);
+
+ // fand X, (fxor Y, -1) --> fandn Y, X
+ if (N1.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N1.getOperand(1)))
+ return DAG.getNode(X86ISD::FANDN, DL, VT, N1.getOperand(0), N0);
+
+ return SDValue();
+}
+
+/// Do target-specific dag combines on X86ISD::FAND nodes.
+static SDValue combineFAnd(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // FAND(0.0, x) -> 0.0
+ if (SDValue V = getNullFPConstForNullVal(N->getOperand(0), DAG, Subtarget))
+ return V;
+
+ // FAND(x, 0.0) -> 0.0
+ if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
+ return V;
+
+ if (SDValue V = combineFAndFNotToFAndn(N, DAG, Subtarget))
+ return V;
+
+ return lowerX86FPLogicOp(N, DAG, Subtarget);
+}
+
+/// Do target-specific dag combines on X86ISD::FANDN nodes.
+static SDValue combineFAndn(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // FANDN(0.0, x) -> x
+ if (isNullFPScalarOrVectorConst(N->getOperand(0)))
+ return N->getOperand(1);
+
+ // FANDN(x, 0.0) -> 0.0
+ if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
+ return V;
+
+ return lowerX86FPLogicOp(N, DAG, Subtarget);
+}
+
+/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
+static SDValue combineFOr(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
+
+ // F[X]OR(0.0, x) -> x
+ if (isNullFPScalarOrVectorConst(N->getOperand(0)))
+ return N->getOperand(1);
+
+ // F[X]OR(x, 0.0) -> x
+ if (isNullFPScalarOrVectorConst(N->getOperand(1)))
+ return N->getOperand(0);
+
+ if (isFNEG(N))
+ if (SDValue NewVal = combineFneg(N, DAG, Subtarget))
+ return NewVal;
+
+ return lowerX86FPLogicOp(N, DAG, Subtarget);
+}
+
+/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
+static SDValue combineFMinFMax(SDNode *N, SelectionDAG &DAG) {
+ assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
+
+ // Only perform optimizations if UnsafeMath is used.
+ if (!DAG.getTarget().Options.UnsafeFPMath)
+ return SDValue();
+
+ // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
+ // into FMINC and FMAXC, which are Commutative operations.
+ unsigned NewOp = 0;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unknown opcode");
+ case X86ISD::FMIN: NewOp = X86ISD::FMINC; break;
+ case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break;
+ }
+
+ return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
+ N->getOperand(0), N->getOperand(1));
+}
+
+static SDValue combineFMinNumFMaxNum(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (Subtarget.useSoftFloat())
+ return SDValue();
+
+ // TODO: Check for global or instruction-level "nnan". In that case, we
+ // should be able to lower to FMAX/FMIN alone.
+ // TODO: If an operand is already known to be a NaN or not a NaN, this
+ // should be an optional swap and FMAX/FMIN.
+
+ EVT VT = N->getValueType(0);
+ if (!((Subtarget.hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
+ (Subtarget.hasSSE2() && (VT == MVT::f64 || VT == MVT::v2f64)) ||
+ (Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))))
+ return SDValue();
+
+ // This takes at least 3 instructions, so favor a library call when operating
+ // on a scalar and minimizing code size.
+ if (!VT.isVector() && DAG.getMachineFunction().getFunction().optForMinSize())
+ return SDValue();
+
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ SDLoc DL(N);
+ EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType(
+ DAG.getDataLayout(), *DAG.getContext(), VT);
+
+ // There are 4 possibilities involving NaN inputs, and these are the required
+ // outputs:
+ // Op1
+ // Num NaN
+ // ----------------
+ // Num | Max | Op0 |
+ // Op0 ----------------
+ // NaN | Op1 | NaN |
+ // ----------------
+ //
+ // The SSE FP max/min instructions were not designed for this case, but rather
+ // to implement:
+ // Min = Op1 < Op0 ? Op1 : Op0
+ // Max = Op1 > Op0 ? Op1 : Op0
+ //
+ // So they always return Op0 if either input is a NaN. However, we can still
+ // use those instructions for fmaxnum by selecting away a NaN input.
+
+ // If either operand is NaN, the 2nd source operand (Op0) is passed through.
+ auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN;
+ SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0);
+ SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType , Op0, Op0, ISD::SETUO);
+
+ // If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands
+ // are NaN, the NaN value of Op1 is the result.
+ return DAG.getSelect(DL, VT, IsOp0Nan, Op1, MinOrMax);
+}
+
+/// Do target-specific dag combines on X86ISD::ANDNP nodes.
+static SDValue combineAndnp(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ // ANDNP(0, x) -> x
+ if (ISD::isBuildVectorAllZeros(N->getOperand(0).getNode()))
+ return N->getOperand(1);
+
+ // ANDNP(x, 0) -> 0
+ if (ISD::isBuildVectorAllZeros(N->getOperand(1).getNode()))
+ return getZeroVector(N->getSimpleValueType(0), Subtarget, DAG, SDLoc(N));
+
+ EVT VT = N->getValueType(0);
+
+ // Attempt to recursively combine a bitmask ANDNP with shuffles.
+ if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
+ SDValue Op(N, 0);
+ if (SDValue Res = combineX86ShufflesRecursively(
+ {Op}, 0, Op, {0}, {}, /*Depth*/ 1,
+ /*HasVarMask*/ false, DAG, DCI, Subtarget)) {
+ DCI.CombineTo(N, Res);
+ return SDValue();
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue combineBT(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // BT ignores high bits in the bit index operand.
+ unsigned BitWidth = N1.getValueSizeInBits();
+ APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
+ if (SDValue DemandedN1 = DAG.GetDemandedBits(N1, DemandedMask))
+ return DAG.getNode(X86ISD::BT, SDLoc(N), MVT::i32, N0, DemandedN1);
+
+ return SDValue();
+}
+
+static SDValue combineSignExtendInReg(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector())
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
+ SDLoc dl(N);
+
+ // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
+ // both SSE and AVX2 since there is no sign-extended shift right
+ // operation on a vector with 64-bit elements.
+ //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
+ // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
+ if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
+ N0.getOpcode() == ISD::SIGN_EXTEND)) {
+ SDValue N00 = N0.getOperand(0);
+
+ // EXTLOAD has a better solution on AVX2,
+ // it may be replaced with X86ISD::VSEXT node.
+ if (N00.getOpcode() == ISD::LOAD && Subtarget.hasInt256())
+ if (!ISD::isNormalLoad(N00.getNode()))
+ return SDValue();
+
+ if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
+ SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
+ N00, N1);
+ return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
+ }
+ }
+ return SDValue();
+}
+
+/// sext(add_nsw(x, C)) --> add(sext(x), C_sext)
+/// zext(add_nuw(x, C)) --> add(zext(x), C_zext)
+/// Promoting a sign/zero extension ahead of a no overflow 'add' exposes
+/// opportunities to combine math ops, use an LEA, or use a complex addressing
+/// mode. This can eliminate extend, add, and shift instructions.
+static SDValue promoteExtBeforeAdd(SDNode *Ext, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (Ext->getOpcode() != ISD::SIGN_EXTEND &&
+ Ext->getOpcode() != ISD::ZERO_EXTEND)
+ return SDValue();
+
+ // TODO: This should be valid for other integer types.
+ EVT VT = Ext->getValueType(0);
+ if (VT != MVT::i64)
+ return SDValue();
+
+ SDValue Add = Ext->getOperand(0);
+ if (Add.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ bool Sext = Ext->getOpcode() == ISD::SIGN_EXTEND;
+ bool NSW = Add->getFlags().hasNoSignedWrap();
+ bool NUW = Add->getFlags().hasNoUnsignedWrap();
+
+ // We need an 'add nsw' feeding into the 'sext' or 'add nuw' feeding
+ // into the 'zext'
+ if ((Sext && !NSW) || (!Sext && !NUW))
+ return SDValue();
+
+ // Having a constant operand to the 'add' ensures that we are not increasing
+ // the instruction count because the constant is extended for free below.
+ // A constant operand can also become the displacement field of an LEA.
+ auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1));
+ if (!AddOp1)
+ return SDValue();
+
+ // Don't make the 'add' bigger if there's no hope of combining it with some
+ // other 'add' or 'shl' instruction.
+ // TODO: It may be profitable to generate simpler LEA instructions in place
+ // of single 'add' instructions, but the cost model for selecting an LEA
+ // currently has a high threshold.
+ bool HasLEAPotential = false;
+ for (auto *User : Ext->uses()) {
+ if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) {
+ HasLEAPotential = true;
+ break;
+ }
+ }
+ if (!HasLEAPotential)
+ return SDValue();
+
+ // Everything looks good, so pull the '{s|z}ext' ahead of the 'add'.
+ int64_t AddConstant = Sext ? AddOp1->getSExtValue() : AddOp1->getZExtValue();
+ SDValue AddOp0 = Add.getOperand(0);
+ SDValue NewExt = DAG.getNode(Ext->getOpcode(), SDLoc(Ext), VT, AddOp0);
+ SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT);
+
+ // The wider add is guaranteed to not wrap because both operands are
+ // sign-extended.
+ SDNodeFlags Flags;
+ Flags.setNoSignedWrap(NSW);
+ Flags.setNoUnsignedWrap(NUW);
+ return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewExt, NewConstant, Flags);
+}
+
+/// (i8,i32 {s/z}ext ({s/u}divrem (i8 x, i8 y)) ->
+/// (i8,i32 ({s/u}divrem_sext_hreg (i8 x, i8 y)
+/// This exposes the {s/z}ext to the sdivrem lowering, so that it directly
+/// extends from AH (which we otherwise need to do contortions to access).
+static SDValue getDivRem8(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ auto OpcodeN = N->getOpcode();
+ auto OpcodeN0 = N0.getOpcode();
+ if (!((OpcodeN == ISD::SIGN_EXTEND && OpcodeN0 == ISD::SDIVREM) ||
+ (OpcodeN == ISD::ZERO_EXTEND && OpcodeN0 == ISD::UDIVREM)))
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ EVT InVT = N0.getValueType();
+ if (N0.getResNo() != 1 || InVT != MVT::i8 ||
+ !(VT == MVT::i32 || VT == MVT::i64))
+ return SDValue();
+
+ SDVTList NodeTys = DAG.getVTList(MVT::i8, MVT::i32);
+ auto DivRemOpcode = OpcodeN0 == ISD::SDIVREM ? X86ISD::SDIVREM8_SEXT_HREG
+ : X86ISD::UDIVREM8_ZEXT_HREG;
+ SDValue R = DAG.getNode(DivRemOpcode, SDLoc(N), NodeTys, N0.getOperand(0),
+ N0.getOperand(1));
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
+ // If this was a 64-bit extend, complete it.
+ if (VT == MVT::i64)
+ return DAG.getNode(OpcodeN, SDLoc(N), VT, R.getValue(1));
+ return R.getValue(1);
+}
+
+// If we face {ANY,SIGN,ZERO}_EXTEND that is applied to a CMOV with constant
+// operands and the result of CMOV is not used anywhere else - promote CMOV
+// itself instead of promoting its result. This could be beneficial, because:
+// 1) X86TargetLowering::EmitLoweredSelect later can do merging of two
+// (or more) pseudo-CMOVs only when they go one-after-another and
+// getting rid of result extension code after CMOV will help that.
+// 2) Promotion of constant CMOV arguments is free, hence the
+// {ANY,SIGN,ZERO}_EXTEND will just be deleted.
+// 3) 16-bit CMOV encoding is 4 bytes, 32-bit CMOV is 3-byte, so this
+// promotion is also good in terms of code-size.
+// (64-bit CMOV is 4-bytes, that's why we don't do 32-bit => 64-bit
+// promotion).
+static SDValue combineToExtendCMOV(SDNode *Extend, SelectionDAG &DAG) {
+ SDValue CMovN = Extend->getOperand(0);
+ if (CMovN.getOpcode() != X86ISD::CMOV)
+ return SDValue();
+
+ EVT TargetVT = Extend->getValueType(0);
+ unsigned ExtendOpcode = Extend->getOpcode();
+ SDLoc DL(Extend);
+
+ EVT VT = CMovN.getValueType();
+ SDValue CMovOp0 = CMovN.getOperand(0);
+ SDValue CMovOp1 = CMovN.getOperand(1);
+
+ bool DoPromoteCMOV =
+ (VT == MVT::i16 && (TargetVT == MVT::i32 || TargetVT == MVT::i64)) &&
+ CMovN.hasOneUse() &&
+ (isa<ConstantSDNode>(CMovOp0.getNode()) &&
+ isa<ConstantSDNode>(CMovOp1.getNode()));
+
+ if (!DoPromoteCMOV)
+ return SDValue();
+
+ CMovOp0 = DAG.getNode(ExtendOpcode, DL, TargetVT, CMovOp0);
+ CMovOp1 = DAG.getNode(ExtendOpcode, DL, TargetVT, CMovOp1);
+
+ return DAG.getNode(X86ISD::CMOV, DL, TargetVT, CMovOp0, CMovOp1,
+ CMovN.getOperand(2), CMovN.getOperand(3));
+}
+
+// Convert (vXiY *ext(vXi1 bitcast(iX))) to extend_in_reg(broadcast(iX)).
+// This is more or less the reverse of combineBitcastvxi1.
+static SDValue
+combineToExtendBoolVectorInReg(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND &&
+ Opcode != ISD::ANY_EXTEND)
+ return SDValue();
+ if (!DCI.isBeforeLegalizeOps())
+ return SDValue();
+ if (!Subtarget.hasSSE2() || Subtarget.hasAVX512())
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT InSVT = N0.getValueType().getScalarType();
+ unsigned EltSizeInBits = SVT.getSizeInBits();
+
+ // Input type must be extending a bool vector (bit-casted from a scalar
+ // integer) to legal integer types.
+ if (!VT.isVector())
+ return SDValue();
+ if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16 && SVT != MVT::i8)
+ return SDValue();
+ if (InSVT != MVT::i1 || N0.getOpcode() != ISD::BITCAST)
+ return SDValue();
+
+ SDValue N00 = N0.getOperand(0);
+ EVT SclVT = N0.getOperand(0).getValueType();
+ if (!SclVT.isScalarInteger())
+ return SDValue();
+
+ SDLoc DL(N);
+ SDValue Vec;
+ SmallVector<int, 32> ShuffleMask;
+ unsigned NumElts = VT.getVectorNumElements();
+ assert(NumElts == SclVT.getSizeInBits() && "Unexpected bool vector size");
+
+ // Broadcast the scalar integer to the vector elements.
+ if (NumElts > EltSizeInBits) {
+ // If the scalar integer is greater than the vector element size, then we
+ // must split it down into sub-sections for broadcasting. For example:
+ // i16 -> v16i8 (i16 -> v8i16 -> v16i8) with 2 sub-sections.
+ // i32 -> v32i8 (i32 -> v8i32 -> v32i8) with 4 sub-sections.
+ assert((NumElts % EltSizeInBits) == 0 && "Unexpected integer scale");
+ unsigned Scale = NumElts / EltSizeInBits;
+ EVT BroadcastVT =
+ EVT::getVectorVT(*DAG.getContext(), SclVT, EltSizeInBits);
+ Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, BroadcastVT, N00);
+ Vec = DAG.getBitcast(VT, Vec);
+
+ for (unsigned i = 0; i != Scale; ++i)
+ ShuffleMask.append(EltSizeInBits, i);
+ } else {
+ // For smaller scalar integers, we can simply any-extend it to the vector
+ // element size (we don't care about the upper bits) and broadcast it to all
+ // elements.
+ SDValue Scl = DAG.getAnyExtOrTrunc(N00, DL, SVT);
+ Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl);
+ ShuffleMask.append(NumElts, 0);
+ }
+ Vec = DAG.getVectorShuffle(VT, DL, Vec, Vec, ShuffleMask);
+
+ // Now, mask the relevant bit in each element.
+ SmallVector<SDValue, 32> Bits;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int BitIdx = (i % EltSizeInBits);
+ APInt Bit = APInt::getBitsSet(EltSizeInBits, BitIdx, BitIdx + 1);
+ Bits.push_back(DAG.getConstant(Bit, DL, SVT));
+ }
+ SDValue BitMask = DAG.getBuildVector(VT, DL, Bits);
+ Vec = DAG.getNode(ISD::AND, DL, VT, Vec, BitMask);
+
+ // Compare against the bitmask and extend the result.
+ EVT CCVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumElts);
+ Vec = DAG.getSetCC(DL, CCVT, Vec, BitMask, ISD::SETEQ);
+ Vec = DAG.getSExtOrTrunc(Vec, DL, VT);
+
+ // For SEXT, this is now done, otherwise shift the result down for
+ // zero-extension.
+ if (Opcode == ISD::SIGN_EXTEND)
+ return Vec;
+ return DAG.getNode(ISD::SRL, DL, VT, Vec,
+ DAG.getConstant(EltSizeInBits - 1, DL, VT));
+}
+
+/// Convert a SEXT or ZEXT of a vector to a SIGN_EXTEND_VECTOR_INREG or
+/// ZERO_EXTEND_VECTOR_INREG, this requires the splitting (or concatenating
+/// with UNDEFs) of the input to vectors of the same size as the target type
+/// which then extends the lowest elements.
+static SDValue combineToExtendVectorInReg(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND)
+ return SDValue();
+ if (!DCI.isBeforeLegalizeOps())
+ return SDValue();
+ if (!Subtarget.hasSSE2())
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT InVT = N0.getValueType();
+ EVT InSVT = InVT.getScalarType();
+
+ // Input type must be a vector and we must be extending legal integer types.
+ if (!VT.isVector())
+ return SDValue();
+ if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
+ return SDValue();
+ if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
+ return SDValue();
+
+ // On AVX2+ targets, if the input/output types are both legal then we will be
+ // able to use SIGN_EXTEND/ZERO_EXTEND directly.
+ if (Subtarget.hasInt256() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
+ DAG.getTargetLoweringInfo().isTypeLegal(InVT))
+ return SDValue();
+
+ SDLoc DL(N);
+
+ auto ExtendVecSize = [&DAG](const SDLoc &DL, SDValue N, unsigned Size) {
+ EVT InVT = N.getValueType();
+ EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(),
+ Size / InVT.getScalarSizeInBits());
+ SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(),
+ DAG.getUNDEF(InVT));
+ Opnds[0] = N;
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds);
+ };
+
+ // If target-size is less than 128-bits, extend to a type that would extend
+ // to 128 bits, extend that and extract the original target vector.
+ if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits())) {
+ unsigned Scale = 128 / VT.getSizeInBits();
+ EVT ExVT =
+ EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits());
+ SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits());
+ SDValue SExt = DAG.getNode(Opcode, DL, ExVT, Ex);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt,
+ DAG.getIntPtrConstant(0, DL));
+ }
+
+ // If target-size is 128-bits (or 256-bits on AVX2 target), then convert to
+ // ISD::*_EXTEND_VECTOR_INREG which ensures lowering to X86ISD::V*EXT.
+ // Also use this if we don't have SSE41 to allow the legalizer do its job.
+ if (!Subtarget.hasSSE41() || VT.is128BitVector() ||
+ (VT.is256BitVector() && Subtarget.hasInt256()) ||
+ (VT.is512BitVector() && Subtarget.hasAVX512())) {
+ SDValue ExOp = ExtendVecSize(DL, N0, VT.getSizeInBits());
+ return Opcode == ISD::SIGN_EXTEND
+ ? DAG.getSignExtendVectorInReg(ExOp, DL, VT)
+ : DAG.getZeroExtendVectorInReg(ExOp, DL, VT);
+ }
+
+ auto SplitAndExtendInReg = [&](unsigned SplitSize) {
+ unsigned NumVecs = VT.getSizeInBits() / SplitSize;
+ unsigned NumSubElts = SplitSize / SVT.getSizeInBits();
+ EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts);
+ EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts);
+
+ SmallVector<SDValue, 8> Opnds;
+ for (unsigned i = 0, Offset = 0; i != NumVecs; ++i, Offset += NumSubElts) {
+ SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0,
+ DAG.getIntPtrConstant(Offset, DL));
+ SrcVec = ExtendVecSize(DL, SrcVec, SplitSize);
+ SrcVec = Opcode == ISD::SIGN_EXTEND
+ ? DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT)
+ : DAG.getZeroExtendVectorInReg(SrcVec, DL, SubVT);
+ Opnds.push_back(SrcVec);
+ }
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds);
+ };
+
+ // On pre-AVX2 targets, split into 128-bit nodes of
+ // ISD::*_EXTEND_VECTOR_INREG.
+ if (!Subtarget.hasInt256() && !(VT.getSizeInBits() % 128))
+ return SplitAndExtendInReg(128);
+
+ // On pre-AVX512 targets, split into 256-bit nodes of
+ // ISD::*_EXTEND_VECTOR_INREG.
+ if (!Subtarget.hasAVX512() && !(VT.getSizeInBits() % 256))
+ return SplitAndExtendInReg(256);
+
+ return SDValue();
+}
+
+static SDValue combineSext(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT InVT = N0.getValueType();
+ SDLoc DL(N);
+
+ if (SDValue DivRem8 = getDivRem8(N, DAG))
+ return DivRem8;
+
+ if (SDValue NewCMov = combineToExtendCMOV(N, DAG))
+ return NewCMov;
+
+ if (!DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ if (InVT == MVT::i1 && N0.getOpcode() == ISD::XOR &&
+ isAllOnesConstant(N0.getOperand(1)) && N0.hasOneUse()) {
+ // Invert and sign-extend a boolean is the same as zero-extend and subtract
+ // 1 because 0 becomes -1 and 1 becomes 0. The subtract is efficiently
+ // lowered with an LEA or a DEC. This is the same as: select Bool, 0, -1.
+ // sext (xor Bool, -1) --> sub (zext Bool), 1
+ SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
+ return DAG.getNode(ISD::SUB, DL, VT, Zext, DAG.getConstant(1, DL, VT));
+ }
+
+ if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget))
+ return V;
+
+ if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget))
+ return V;
+
+ if (VT.isVector())
+ if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
+ return R;
+
+ if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
+ return NewAdd;
+
+ return SDValue();
+}
+
+static SDValue combineFMA(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // TODO: Handle FMSUB/FNMADD/FNMSUB as the starting opcode.
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ EVT ScalarVT = VT.getScalarType();
+ if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA())
+ return SDValue();
+
+ SDValue A = N->getOperand(0);
+ SDValue B = N->getOperand(1);
+ SDValue C = N->getOperand(2);
+
+ auto invertIfNegative = [](SDValue &V) {
+ if (SDValue NegVal = isFNEG(V.getNode())) {
+ V = NegVal;
+ return true;
+ }
+ return false;
+ };
+
+ // Do not convert the passthru input of scalar intrinsics.
+ // FIXME: We could allow negations of the lower element only.
+ bool NegA = N->getOpcode() != X86ISD::FMADDS1 &&
+ N->getOpcode() != X86ISD::FMADDS1_RND && invertIfNegative(A);
+ bool NegB = invertIfNegative(B);
+ bool NegC = N->getOpcode() != X86ISD::FMADDS3 &&
+ N->getOpcode() != X86ISD::FMADDS3_RND && invertIfNegative(C);
+
+ // Negative multiplication when NegA xor NegB
+ bool NegMul = (NegA != NegB);
+ bool HasNeg = NegA || NegB || NegC;
+
+ unsigned NewOpcode;
+ if (!NegMul)
+ NewOpcode = (!NegC) ? unsigned(ISD::FMA) : unsigned(X86ISD::FMSUB);
+ else
+ NewOpcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
+
+ // For FMA, we risk reconstructing the node we started with.
+ // In order to avoid this, we check for negation or opcode change. If
+ // one of the two happened, then it is a new node and we return it.
+ if (N->getOpcode() == ISD::FMA) {
+ if (HasNeg || NewOpcode != N->getOpcode())
+ return DAG.getNode(NewOpcode, dl, VT, A, B, C);
+ return SDValue();
+ }
+
+ if (N->getOpcode() == X86ISD::FMADD_RND) {
+ switch (NewOpcode) {
+ case ISD::FMA: NewOpcode = X86ISD::FMADD_RND; break;
+ case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUB_RND; break;
+ case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADD_RND; break;
+ case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUB_RND; break;
+ }
+ } else if (N->getOpcode() == X86ISD::FMADDS1) {
+ switch (NewOpcode) {
+ case ISD::FMA: NewOpcode = X86ISD::FMADDS1; break;
+ case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUBS1; break;
+ case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS1; break;
+ case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS1; break;
+ }
+ } else if (N->getOpcode() == X86ISD::FMADDS3) {
+ switch (NewOpcode) {
+ case ISD::FMA: NewOpcode = X86ISD::FMADDS3; break;
+ case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUBS3; break;
+ case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS3; break;
+ case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS3; break;
+ }
+ } else if (N->getOpcode() == X86ISD::FMADDS1_RND) {
+ switch (NewOpcode) {
+ case ISD::FMA: NewOpcode = X86ISD::FMADDS1_RND; break;
+ case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUBS1_RND; break;
+ case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS1_RND; break;
+ case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS1_RND; break;
+ }
+ } else if (N->getOpcode() == X86ISD::FMADDS3_RND) {
+ switch (NewOpcode) {
+ case ISD::FMA: NewOpcode = X86ISD::FMADDS3_RND; break;
+ case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUBS3_RND; break;
+ case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS3_RND; break;
+ case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS3_RND; break;
+ }
+ } else if (N->getOpcode() == X86ISD::FMADD4S) {
+ switch (NewOpcode) {
+ case ISD::FMA: NewOpcode = X86ISD::FMADD4S; break;
+ case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUB4S; break;
+ case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADD4S; break;
+ case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUB4S; break;
+ }
+ } else {
+ llvm_unreachable("Unexpected opcode!");
+ }
+
+ // Only return the node is the opcode was changed or one of the
+ // operand was negated. If not, we'll just recreate the same node.
+ if (HasNeg || NewOpcode != N->getOpcode()) {
+ if (N->getNumOperands() == 4)
+ return DAG.getNode(NewOpcode, dl, VT, A, B, C, N->getOperand(3));
+ return DAG.getNode(NewOpcode, dl, VT, A, B, C);
+ }
+
+ return SDValue();
+}
+
+// Combine FMADDSUB(A, B, FNEG(C)) -> FMSUBADD(A, B, C)
+static SDValue combineFMADDSUB(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ SDValue NegVal = isFNEG(N->getOperand(2).getNode());
+ if (!NegVal)
+ return SDValue();
+
+ unsigned NewOpcode;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("Unexpected opcode!");
+ case X86ISD::FMADDSUB: NewOpcode = X86ISD::FMSUBADD; break;
+ case X86ISD::FMADDSUB_RND: NewOpcode = X86ISD::FMSUBADD_RND; break;
+ case X86ISD::FMSUBADD: NewOpcode = X86ISD::FMADDSUB; break;
+ case X86ISD::FMSUBADD_RND: NewOpcode = X86ISD::FMADDSUB_RND; break;
+ }
+
+ if (N->getNumOperands() == 4)
+ return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1),
+ NegVal, N->getOperand(3));
+ return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1),
+ NegVal);
+}
+
+static SDValue combineZext(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
+ // (and (i32 x86isd::setcc_carry), 1)
+ // This eliminates the zext. This transformation is necessary because
+ // ISD::SETCC is always legalized to i8.
+ SDLoc dl(N);
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ if (N0.getOpcode() == ISD::AND &&
+ N0.hasOneUse() &&
+ N0.getOperand(0).hasOneUse()) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
+ if (!isOneConstant(N0.getOperand(1)))
+ return SDValue();
+ return DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
+ N00.getOperand(0), N00.getOperand(1)),
+ DAG.getConstant(1, dl, VT));
+ }
+ }
+
+ if (N0.getOpcode() == ISD::TRUNCATE &&
+ N0.hasOneUse() &&
+ N0.getOperand(0).hasOneUse()) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
+ return DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
+ N00.getOperand(0), N00.getOperand(1)),
+ DAG.getConstant(1, dl, VT));
+ }
+ }
+
+ if (SDValue NewCMov = combineToExtendCMOV(N, DAG))
+ return NewCMov;
+
+ if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget))
+ return V;
+
+ if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget))
+ return V;
+
+ if (VT.isVector())
+ if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
+ return R;
+
+ if (SDValue DivRem8 = getDivRem8(N, DAG))
+ return DivRem8;
+
+ if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
+ return NewAdd;
+
+ if (SDValue R = combineOrCmpEqZeroToCtlzSrl(N, DAG, DCI, Subtarget))
+ return R;
+
+ return SDValue();
+}
+
+/// Try to map a 128-bit or larger integer comparison to vector instructions
+/// before type legalization splits it up into chunks.
+static SDValue combineVectorSizedSetCCEquality(SDNode *SetCC, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
+ assert((CC == ISD::SETNE || CC == ISD::SETEQ) && "Bad comparison predicate");
+
+ // We're looking for an oversized integer equality comparison, but ignore a
+ // comparison with zero because that gets special treatment in EmitTest().
+ SDValue X = SetCC->getOperand(0);
+ SDValue Y = SetCC->getOperand(1);
+ EVT OpVT = X.getValueType();
+ unsigned OpSize = OpVT.getSizeInBits();
+ if (!OpVT.isScalarInteger() || OpSize < 128 || isNullConstant(Y))
+ return SDValue();
+
+ // Bail out if we know that this is not really just an oversized integer.
+ if (peekThroughBitcasts(X).getValueType() == MVT::f128 ||
+ peekThroughBitcasts(Y).getValueType() == MVT::f128)
+ return SDValue();
+
+ // TODO: Use PXOR + PTEST for SSE4.1 or later?
+ // TODO: Add support for AVX-512.
+ EVT VT = SetCC->getValueType(0);
+ SDLoc DL(SetCC);
+ if ((OpSize == 128 && Subtarget.hasSSE2()) ||
+ (OpSize == 256 && Subtarget.hasAVX2())) {
+ EVT VecVT = OpSize == 128 ? MVT::v16i8 : MVT::v32i8;
+ SDValue VecX = DAG.getBitcast(VecVT, X);
+ SDValue VecY = DAG.getBitcast(VecVT, Y);
+
+ // If all bytes match (bitmask is 0x(FFFF)FFFF), that's equality.
+ // setcc i128 X, Y, eq --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, eq
+ // setcc i128 X, Y, ne --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, ne
+ // setcc i256 X, Y, eq --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, eq
+ // setcc i256 X, Y, ne --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, ne
+ SDValue Cmp = DAG.getNode(X86ISD::PCMPEQ, DL, VecVT, VecX, VecY);
+ SDValue MovMsk = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Cmp);
+ SDValue FFFFs = DAG.getConstant(OpSize == 128 ? 0xFFFF : 0xFFFFFFFF, DL,
+ MVT::i32);
+ return DAG.getSetCC(DL, VT, MovMsk, FFFFs, CC);
+ }
+
+ return SDValue();
+}
+
+static SDValue combineSetCC(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ if (CC == ISD::SETNE || CC == ISD::SETEQ) {
+ EVT OpVT = LHS.getValueType();
+ // 0-x == y --> x+y == 0
+ // 0-x != y --> x+y != 0
+ if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
+ LHS.hasOneUse()) {
+ SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, RHS, LHS.getOperand(1));
+ return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
+ }
+ // x == 0-y --> x+y == 0
+ // x != 0-y --> x+y != 0
+ if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
+ RHS.hasOneUse()) {
+ SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
+ return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
+ }
+
+ if (SDValue V = combineVectorSizedSetCCEquality(N, DAG, Subtarget))
+ return V;
+ }
+
+ if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
+ (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
+ // Put build_vectors on the right.
+ if (LHS.getOpcode() == ISD::BUILD_VECTOR) {
+ std::swap(LHS, RHS);
+ CC = ISD::getSetCCSwappedOperands(CC);
+ }
+
+ bool IsSEXT0 =
+ (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
+ (LHS.getOperand(0).getValueType().getVectorElementType() == MVT::i1);
+ bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
+
+ if (IsSEXT0 && IsVZero1) {
+ assert(VT == LHS.getOperand(0).getValueType() &&
+ "Uexpected operand type");
+ if (CC == ISD::SETGT)
+ return DAG.getConstant(0, DL, VT);
+ if (CC == ISD::SETLE)
+ return DAG.getConstant(1, DL, VT);
+ if (CC == ISD::SETEQ || CC == ISD::SETGE)
+ return DAG.getNOT(DL, LHS.getOperand(0), VT);
+
+ assert((CC == ISD::SETNE || CC == ISD::SETLT) &&
+ "Unexpected condition code!");
+ return LHS.getOperand(0);
+ }
+ }
+
+ // For an SSE1-only target, lower a comparison of v4f32 to X86ISD::CMPP early
+ // to avoid scalarization via legalization because v4i32 is not a legal type.
+ if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32 &&
+ LHS.getValueType() == MVT::v4f32)
+ return LowerVSETCC(SDValue(N, 0), Subtarget, DAG);
+
+ return SDValue();
+}
+
+static SDValue combineMOVMSK(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue Src = N->getOperand(0);
+ MVT SrcVT = Src.getSimpleValueType();
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+
+ // MOVMSK only uses the MSB from each vector element.
+ KnownBits Known;
+ APInt DemandedMask(APInt::getSignMask(SrcVT.getScalarSizeInBits()));
+ if (TLI.SimplifyDemandedBits(Src, DemandedMask, Known, TLO)) {
+ DCI.AddToWorklist(Src.getNode());
+ DCI.CommitTargetLoweringOpt(TLO);
+ return SDValue(N, 0);
+ }
+
+ return SDValue();
+}
+
+static SDValue combineGatherScatter(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ SDLoc DL(N);
+
+ if (DCI.isBeforeLegalizeOps()) {
+ SDValue Index = N->getOperand(4);
+ // Remove any sign extends from 32 or smaller to larger than 32.
+ // Only do this before LegalizeOps in case we need the sign extend for
+ // legalization.
+ if (Index.getOpcode() == ISD::SIGN_EXTEND) {
+ if (Index.getScalarValueSizeInBits() > 32 &&
+ Index.getOperand(0).getScalarValueSizeInBits() <= 32) {
+ SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
+ NewOps[4] = Index.getOperand(0);
+ DAG.UpdateNodeOperands(N, NewOps);
+ // The original sign extend has less users, add back to worklist in case
+ // it needs to be removed
+ DCI.AddToWorklist(Index.getNode());
+ DCI.AddToWorklist(N);
+ return SDValue(N, 0);
+ }
+ }
+
+ // Make sure the index is either i32 or i64
+ unsigned ScalarSize = Index.getScalarValueSizeInBits();
+ if (ScalarSize != 32 && ScalarSize != 64) {
+ MVT EltVT = ScalarSize > 32 ? MVT::i64 : MVT::i32;
+ EVT IndexVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
+ Index.getValueType().getVectorNumElements());
+ Index = DAG.getSExtOrTrunc(Index, DL, IndexVT);
+ SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
+ NewOps[4] = Index;
+ DAG.UpdateNodeOperands(N, NewOps);
+ DCI.AddToWorklist(N);
+ return SDValue(N, 0);
+ }
+
+ // Try to remove zero extends from 32->64 if we know the sign bit of
+ // the input is zero.
+ if (Index.getOpcode() == ISD::ZERO_EXTEND &&
+ Index.getScalarValueSizeInBits() == 64 &&
+ Index.getOperand(0).getScalarValueSizeInBits() == 32) {
+ if (DAG.SignBitIsZero(Index.getOperand(0))) {
+ SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
+ NewOps[4] = Index.getOperand(0);
+ DAG.UpdateNodeOperands(N, NewOps);
+ // The original zero extend has less users, add back to worklist in case
+ // it needs to be removed
+ DCI.AddToWorklist(Index.getNode());
+ DCI.AddToWorklist(N);
+ return SDValue(N, 0);
+ }
+ }
+ }
+
+ // Gather and Scatter instructions use k-registers for masks. The type of
+ // the masks is v*i1. So the mask will be truncated anyway.
+ // The SIGN_EXTEND_INREG my be dropped.
+ SDValue Mask = N->getOperand(2);
+ if (Subtarget.hasAVX512() && Mask.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
+ NewOps[2] = Mask.getOperand(0);
+ DAG.UpdateNodeOperands(N, NewOps);
+ return SDValue(N, 0);
+ }
+
+ // With AVX2 we only demand the upper bit of the mask.
+ if (!Subtarget.hasAVX512()) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ KnownBits Known;
+ APInt DemandedMask(APInt::getSignMask(Mask.getScalarValueSizeInBits()));
+ if (TLI.SimplifyDemandedBits(Mask, DemandedMask, Known, TLO)) {
+ DCI.AddToWorklist(Mask.getNode());
+ DCI.CommitTargetLoweringOpt(TLO);
+ return SDValue(N, 0);
+ }
+ }
+
+ return SDValue();
+}
+
+// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
+static SDValue combineX86SetCC(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDLoc DL(N);
+ X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
+ SDValue EFLAGS = N->getOperand(1);
+
+ // Try to simplify the EFLAGS and condition code operands.
+ if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget))
+ return getSETCC(CC, Flags, DL, DAG);
+
+ return SDValue();
+}
+
+/// Optimize branch condition evaluation.
+static SDValue combineBrCond(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDLoc DL(N);
+ SDValue EFLAGS = N->getOperand(3);
+ X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
+
+ // Try to simplify the EFLAGS and condition code operands.
+ // Make sure to not keep references to operands, as combineSetCCEFLAGS can
+ // RAUW them under us.
+ if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget)) {
+ SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
+ return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), N->getOperand(0),
+ N->getOperand(1), Cond, Flags);
+ }
+
+ return SDValue();
+}
+
+static SDValue combineVectorCompareAndMaskUnaryOp(SDNode *N,
+ SelectionDAG &DAG) {
+ // Take advantage of vector comparisons producing 0 or -1 in each lane to
+ // optimize away operation when it's from a constant.
+ //
+ // The general transformation is:
+ // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
+ // AND(VECTOR_CMP(x,y), constant2)
+ // constant2 = UNARYOP(constant)
+
+ // Early exit if this isn't a vector operation, the operand of the
+ // unary operation isn't a bitwise AND, or if the sizes of the operations
+ // aren't the same.
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
+ N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
+ VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
+ return SDValue();
+
+ // Now check that the other operand of the AND is a constant. We could
+ // make the transformation for non-constant splats as well, but it's unclear
+ // that would be a benefit as it would not eliminate any operations, just
+ // perform one more step in scalar code before moving to the vector unit.
+ if (BuildVectorSDNode *BV =
+ dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
+ // Bail out if the vector isn't a constant.
+ if (!BV->isConstant())
+ return SDValue();
+
+ // Everything checks out. Build up the new and improved node.
+ SDLoc DL(N);
+ EVT IntVT = BV->getValueType(0);
+ // Create a new constant of the appropriate type for the transformed
+ // DAG.
+ SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
+ // The AND node needs bitcasts to/from an integer vector type around it.
+ SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
+ SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
+ N->getOperand(0)->getOperand(0), MaskConst);
+ SDValue Res = DAG.getBitcast(VT, NewAnd);
+ return Res;
+ }
+
+ return SDValue();
+}
+
+static SDValue combineUIntToFP(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDValue Op0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT InVT = Op0.getValueType();
+ EVT InSVT = InVT.getScalarType();
+
+ // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32))
+ // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32))
+ if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) {
+ SDLoc dl(N);
+ EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
+ InVT.getVectorNumElements());
+ SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
+
+ // UINT_TO_FP isn't legal without AVX512 so use SINT_TO_FP.
+ return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
+ }
+
+ // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
+ // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
+ // the optimization here.
+ if (DAG.SignBitIsZero(Op0))
+ return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, Op0);
+
+ return SDValue();
+}
+
+static SDValue combineSIntToFP(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // First try to optimize away the conversion entirely when it's
+ // conditionally from a constant. Vectors only.
+ if (SDValue Res = combineVectorCompareAndMaskUnaryOp(N, DAG))
+ return Res;
+
+ // Now move on to more general possibilities.
+ SDValue Op0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT InVT = Op0.getValueType();
+ EVT InSVT = InVT.getScalarType();
+
+ // SINT_TO_FP(vXi1) -> SINT_TO_FP(SEXT(vXi1 to vXi32))
+ // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32))
+ // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32))
+ if (InVT.isVector() &&
+ (InSVT == MVT::i8 || InSVT == MVT::i16 ||
+ (InSVT == MVT::i1 && !DAG.getTargetLoweringInfo().isTypeLegal(InVT)))) {
+ SDLoc dl(N);
+ EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
+ InVT.getVectorNumElements());
+ SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
+ return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
+ }
+
+ // Without AVX512DQ we only support i64 to float scalar conversion. For both
+ // vectors and scalars, see if we know that the upper bits are all the sign
+ // bit, in which case we can truncate the input to i32 and convert from that.
+ if (InVT.getScalarSizeInBits() > 32 && !Subtarget.hasDQI()) {
+ unsigned BitWidth = InVT.getScalarSizeInBits();
+ unsigned NumSignBits = DAG.ComputeNumSignBits(Op0);
+ if (NumSignBits >= (BitWidth - 31)) {
+ EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), 32);
+ if (InVT.isVector())
+ TruncVT = EVT::getVectorVT(*DAG.getContext(), TruncVT,
+ InVT.getVectorNumElements());
+ SDLoc dl(N);
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Op0);
+ return DAG.getNode(ISD::SINT_TO_FP, dl, VT, Trunc);
+ }
+ }
+
+ // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
+ // a 32-bit target where SSE doesn't support i64->FP operations.
+ if (!Subtarget.useSoftFloat() && Op0.getOpcode() == ISD::LOAD) {
+ LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
+ EVT LdVT = Ld->getValueType(0);
+
+ // This transformation is not supported if the result type is f16 or f128.
+ if (VT == MVT::f16 || VT == MVT::f128)
+ return SDValue();
+
+ if (!Ld->isVolatile() && !VT.isVector() &&
+ ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
+ !Subtarget.is64Bit() && LdVT == MVT::i64) {
+ SDValue FILDChain = Subtarget.getTargetLowering()->BuildFILD(
+ SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG);
+ DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
+ return FILDChain;
+ }
+ }
+ return SDValue();
+}
+
+static SDValue combineSBB(SDNode *N, SelectionDAG &DAG) {
+ if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
+ MVT VT = N->getSimpleValueType(0);
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+ return DAG.getNode(X86ISD::SBB, SDLoc(N), VTs,
+ N->getOperand(0), N->getOperand(1),
+ Flags);
+ }
+
+ return SDValue();
+}
+
+// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
+static SDValue combineADC(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // If the LHS and RHS of the ADC node are zero, then it can't overflow and
+ // the result is either zero or one (depending on the input carry bit).
+ // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
+ if (X86::isZeroNode(N->getOperand(0)) &&
+ X86::isZeroNode(N->getOperand(1)) &&
+ // We don't have a good way to replace an EFLAGS use, so only do this when
+ // dead right now.
+ SDValue(N, 1).use_empty()) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1));
+ SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
+ DAG.getConstant(X86::COND_B, DL,
+ MVT::i8),
+ N->getOperand(2)),
+ DAG.getConstant(1, DL, VT));
+ return DCI.CombineTo(N, Res1, CarryOut);
+ }
+
+ if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
+ MVT VT = N->getSimpleValueType(0);
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+ return DAG.getNode(X86ISD::ADC, SDLoc(N), VTs,
+ N->getOperand(0), N->getOperand(1),
+ Flags);
+ }
+
+ return SDValue();
+}
+
+/// Materialize "setb reg" as "sbb reg,reg", since it produces an all-ones bit
+/// which is more useful than 0/1 in some cases.
+static SDValue materializeSBB(SDNode *N, SDValue EFLAGS, SelectionDAG &DAG) {
+ SDLoc DL(N);
+ // "Condition code B" is also known as "the carry flag" (CF).
+ SDValue CF = DAG.getConstant(X86::COND_B, DL, MVT::i8);
+ SDValue SBB = DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, CF, EFLAGS);
+ MVT VT = N->getSimpleValueType(0);
+ if (VT == MVT::i8)
+ return DAG.getNode(ISD::AND, DL, VT, SBB, DAG.getConstant(1, DL, VT));
+
+ assert(VT == MVT::i1 && "Unexpected type for SETCC node");
+ return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SBB);
+}
+
+/// If this is an add or subtract where one operand is produced by a cmp+setcc,
+/// then try to convert it to an ADC or SBB. This replaces TEST+SET+{ADD/SUB}
+/// with CMP+{ADC, SBB}.
+static SDValue combineAddOrSubToADCOrSBB(SDNode *N, SelectionDAG &DAG) {
+ bool IsSub = N->getOpcode() == ISD::SUB;
+ SDValue X = N->getOperand(0);
+ SDValue Y = N->getOperand(1);
+
+ // If this is an add, canonicalize a zext operand to the RHS.
+ // TODO: Incomplete? What if both sides are zexts?
+ if (!IsSub && X.getOpcode() == ISD::ZERO_EXTEND &&
+ Y.getOpcode() != ISD::ZERO_EXTEND)
+ std::swap(X, Y);
+
+ // Look through a one-use zext.
+ bool PeekedThroughZext = false;
+ if (Y.getOpcode() == ISD::ZERO_EXTEND && Y.hasOneUse()) {
+ Y = Y.getOperand(0);
+ PeekedThroughZext = true;
+ }
+
+ // If this is an add, canonicalize a setcc operand to the RHS.
+ // TODO: Incomplete? What if both sides are setcc?
+ // TODO: Should we allow peeking through a zext of the other operand?
+ if (!IsSub && !PeekedThroughZext && X.getOpcode() == X86ISD::SETCC &&
+ Y.getOpcode() != X86ISD::SETCC)
+ std::swap(X, Y);
+
+ if (Y.getOpcode() != X86ISD::SETCC || !Y.hasOneUse())
+ return SDValue();
+
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ X86::CondCode CC = (X86::CondCode)Y.getConstantOperandVal(0);
+
+ // If X is -1 or 0, then we have an opportunity to avoid constants required in
+ // the general case below.
+ auto *ConstantX = dyn_cast<ConstantSDNode>(X);
+ if (ConstantX) {
+ if ((!IsSub && CC == X86::COND_AE && ConstantX->isAllOnesValue()) ||
+ (IsSub && CC == X86::COND_B && ConstantX->isNullValue())) {
+ // This is a complicated way to get -1 or 0 from the carry flag:
+ // -1 + SETAE --> -1 + (!CF) --> CF ? -1 : 0 --> SBB %eax, %eax
+ // 0 - SETB --> 0 - (CF) --> CF ? -1 : 0 --> SBB %eax, %eax
+ return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
+ DAG.getConstant(X86::COND_B, DL, MVT::i8),
+ Y.getOperand(1));
+ }
+
+ if ((!IsSub && CC == X86::COND_BE && ConstantX->isAllOnesValue()) ||
+ (IsSub && CC == X86::COND_A && ConstantX->isNullValue())) {
+ SDValue EFLAGS = Y->getOperand(1);
+ if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
+ EFLAGS.getValueType().isInteger() &&
+ !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
+ // Swap the operands of a SUB, and we have the same pattern as above.
+ // -1 + SETBE (SUB A, B) --> -1 + SETAE (SUB B, A) --> SUB + SBB
+ // 0 - SETA (SUB A, B) --> 0 - SETB (SUB B, A) --> SUB + SBB
+ SDValue NewSub = DAG.getNode(
+ X86ISD::SUB, SDLoc(EFLAGS), EFLAGS.getNode()->getVTList(),
+ EFLAGS.getOperand(1), EFLAGS.getOperand(0));
+ SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
+ return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
+ DAG.getConstant(X86::COND_B, DL, MVT::i8),
+ NewEFLAGS);
+ }
+ }
+ }
+
+ if (CC == X86::COND_B) {
+ // X + SETB Z --> X + (mask SBB Z, Z)
+ // X - SETB Z --> X - (mask SBB Z, Z)
+ // TODO: Produce ADC/SBB here directly and avoid SETCC_CARRY?
+ SDValue SBB = materializeSBB(Y.getNode(), Y.getOperand(1), DAG);
+ if (SBB.getValueSizeInBits() != VT.getSizeInBits())
+ SBB = DAG.getZExtOrTrunc(SBB, DL, VT);
+ return DAG.getNode(IsSub ? ISD::SUB : ISD::ADD, DL, VT, X, SBB);
+ }
+
+ if (CC == X86::COND_A) {
+ SDValue EFLAGS = Y->getOperand(1);
+ // Try to convert COND_A into COND_B in an attempt to facilitate
+ // materializing "setb reg".
+ //
+ // Do not flip "e > c", where "c" is a constant, because Cmp instruction
+ // cannot take an immediate as its first operand.
+ //
+ if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
+ EFLAGS.getValueType().isInteger() &&
+ !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
+ SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
+ EFLAGS.getNode()->getVTList(),
+ EFLAGS.getOperand(1), EFLAGS.getOperand(0));
+ SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
+ SDValue SBB = materializeSBB(Y.getNode(), NewEFLAGS, DAG);
+ if (SBB.getValueSizeInBits() != VT.getSizeInBits())
+ SBB = DAG.getZExtOrTrunc(SBB, DL, VT);
+ return DAG.getNode(IsSub ? ISD::SUB : ISD::ADD, DL, VT, X, SBB);
+ }
+ }
+
+ if (CC != X86::COND_E && CC != X86::COND_NE)
+ return SDValue();
+
+ SDValue Cmp = Y.getOperand(1);
+ if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
+ !X86::isZeroNode(Cmp.getOperand(1)) ||
+ !Cmp.getOperand(0).getValueType().isInteger())
+ return SDValue();
+
+ SDValue Z = Cmp.getOperand(0);
+ EVT ZVT = Z.getValueType();
+
+ // If X is -1 or 0, then we have an opportunity to avoid constants required in
+ // the general case below.
+ if (ConstantX) {
+ // 'neg' sets the carry flag when Z != 0, so create 0 or -1 using 'sbb' with
+ // fake operands:
+ // 0 - (Z != 0) --> sbb %eax, %eax, (neg Z)
+ // -1 + (Z == 0) --> sbb %eax, %eax, (neg Z)
+ if ((IsSub && CC == X86::COND_NE && ConstantX->isNullValue()) ||
+ (!IsSub && CC == X86::COND_E && ConstantX->isAllOnesValue())) {
+ SDValue Zero = DAG.getConstant(0, DL, ZVT);
+ SDVTList X86SubVTs = DAG.getVTList(ZVT, MVT::i32);
+ SDValue Neg = DAG.getNode(X86ISD::SUB, DL, X86SubVTs, Zero, Z);
+ return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
+ DAG.getConstant(X86::COND_B, DL, MVT::i8),
+ SDValue(Neg.getNode(), 1));
+ }
+
+ // cmp with 1 sets the carry flag when Z == 0, so create 0 or -1 using 'sbb'
+ // with fake operands:
+ // 0 - (Z == 0) --> sbb %eax, %eax, (cmp Z, 1)
+ // -1 + (Z != 0) --> sbb %eax, %eax, (cmp Z, 1)
+ if ((IsSub && CC == X86::COND_E && ConstantX->isNullValue()) ||
+ (!IsSub && CC == X86::COND_NE && ConstantX->isAllOnesValue())) {
+ SDValue One = DAG.getConstant(1, DL, ZVT);
+ SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One);
+ return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
+ DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp1);
+ }
+ }
+
+ // (cmp Z, 1) sets the carry flag if Z is 0.
+ SDValue One = DAG.getConstant(1, DL, ZVT);
+ SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One);
+
+ // Add the flags type for ADC/SBB nodes.
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+
+ // X - (Z != 0) --> sub X, (zext(setne Z, 0)) --> adc X, -1, (cmp Z, 1)
+ // X + (Z != 0) --> add X, (zext(setne Z, 0)) --> sbb X, -1, (cmp Z, 1)
+ if (CC == X86::COND_NE)
+ return DAG.getNode(IsSub ? X86ISD::ADC : X86ISD::SBB, DL, VTs, X,
+ DAG.getConstant(-1ULL, DL, VT), Cmp1);
+
+ // X - (Z == 0) --> sub X, (zext(sete Z, 0)) --> sbb X, 0, (cmp Z, 1)
+ // X + (Z == 0) --> add X, (zext(sete Z, 0)) --> adc X, 0, (cmp Z, 1)
+ return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL, VTs, X,
+ DAG.getConstant(0, DL, VT), Cmp1);
+}
+
+static SDValue combineLoopMAddPattern(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (!Subtarget.hasSSE2())
+ return SDValue();
+
+ SDValue MulOp = N->getOperand(0);
+ SDValue Phi = N->getOperand(1);
+
+ if (MulOp.getOpcode() != ISD::MUL)
+ std::swap(MulOp, Phi);
+ if (MulOp.getOpcode() != ISD::MUL)
+ return SDValue();
+
+ ShrinkMode Mode;
+ if (!canReduceVMulWidth(MulOp.getNode(), DAG, Mode) || Mode == MULU16)
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+
+ unsigned RegSize = 128;
+ if (Subtarget.hasBWI())
+ RegSize = 512;
+ else if (Subtarget.hasAVX2())
+ RegSize = 256;
+ unsigned VectorSize = VT.getVectorNumElements() * 16;
+ // If the vector size is less than 128, or greater than the supported RegSize,
+ // do not use PMADD.
+ if (VectorSize < 128 || VectorSize > RegSize)
+ return SDValue();
+
+ SDLoc DL(N);
+ EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
+ VT.getVectorNumElements());
+ EVT MAddVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
+ VT.getVectorNumElements() / 2);
+
+ // Shrink the operands of mul.
+ SDValue N0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(0));
+ SDValue N1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(1));
+
+ // Madd vector size is half of the original vector size
+ SDValue Madd = DAG.getNode(X86ISD::VPMADDWD, DL, MAddVT, N0, N1);
+ // Fill the rest of the output with 0
+ SDValue Zero = getZeroVector(Madd.getSimpleValueType(), Subtarget, DAG, DL);
+ SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Madd, Zero);
+ return DAG.getNode(ISD::ADD, DL, VT, Concat, Phi);
+}
+
+static SDValue combineLoopSADPattern(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ if (!Subtarget.hasSSE2())
+ return SDValue();
+
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // TODO: There's nothing special about i32, any integer type above i16 should
+ // work just as well.
+ if (!VT.isVector() || !VT.isSimple() ||
+ !(VT.getVectorElementType() == MVT::i32))
+ return SDValue();
+
+ unsigned RegSize = 128;
+ if (Subtarget.hasBWI())
+ RegSize = 512;
+ else if (Subtarget.hasAVX2())
+ RegSize = 256;
+
+ // We only handle v16i32 for SSE2 / v32i32 for AVX2 / v64i32 for AVX512.
+ // TODO: We should be able to handle larger vectors by splitting them before
+ // feeding them into several SADs, and then reducing over those.
+ if (VT.getSizeInBits() / 4 > RegSize)
+ return SDValue();
+
+ // We know N is a reduction add, which means one of its operands is a phi.
+ // To match SAD, we need the other operand to be a vector select.
+ SDValue SelectOp, Phi;
+ if (Op0.getOpcode() == ISD::VSELECT) {
+ SelectOp = Op0;
+ Phi = Op1;
+ } else if (Op1.getOpcode() == ISD::VSELECT) {
+ SelectOp = Op1;
+ Phi = Op0;
+ } else
+ return SDValue();
+
+ // Check whether we have an abs-diff pattern feeding into the select.
+ if(!detectZextAbsDiff(SelectOp, Op0, Op1))
+ return SDValue();
+
+ // SAD pattern detected. Now build a SAD instruction and an addition for
+ // reduction. Note that the number of elements of the result of SAD is less
+ // than the number of elements of its input. Therefore, we could only update
+ // part of elements in the reduction vector.
+ SDValue Sad = createPSADBW(DAG, Op0, Op1, DL);
+
+ // The output of PSADBW is a vector of i64.
+ // We need to turn the vector of i64 into a vector of i32.
+ // If the reduction vector is at least as wide as the psadbw result, just
+ // bitcast. If it's narrower, truncate - the high i32 of each i64 is zero
+ // anyway.
+ MVT ResVT = MVT::getVectorVT(MVT::i32, Sad.getValueSizeInBits() / 32);
+ if (VT.getSizeInBits() >= ResVT.getSizeInBits())
+ Sad = DAG.getNode(ISD::BITCAST, DL, ResVT, Sad);
+ else
+ Sad = DAG.getNode(ISD::TRUNCATE, DL, VT, Sad);
+
+ if (VT.getSizeInBits() > ResVT.getSizeInBits()) {
+ // Fill the upper elements with zero to match the add width.
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ Sad = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Zero, Sad,
+ DAG.getIntPtrConstant(0, DL));
+ }
+
+ return DAG.getNode(ISD::ADD, DL, VT, Sad, Phi);
+}
+
+/// Convert vector increment or decrement to sub/add with an all-ones constant:
+/// add X, <1, 1...> --> sub X, <-1, -1...>
+/// sub X, <1, 1...> --> add X, <-1, -1...>
+/// The all-ones vector constant can be materialized using a pcmpeq instruction
+/// that is commonly recognized as an idiom (has no register dependency), so
+/// that's better/smaller than loading a splat 1 constant.
+static SDValue combineIncDecVector(SDNode *N, SelectionDAG &DAG) {
+ assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
+ "Unexpected opcode for increment/decrement transform");
+
+ // Pseudo-legality check: getOnesVector() expects one of these types, so bail
+ // out and wait for legalization if we have an unsupported vector length.
+ EVT VT = N->getValueType(0);
+ if (!VT.is128BitVector() && !VT.is256BitVector() && !VT.is512BitVector())
+ return SDValue();
+
+ SDNode *N1 = N->getOperand(1).getNode();
+ APInt SplatVal;
+ if (!ISD::isConstantSplatVector(N1, SplatVal) ||
+ !SplatVal.isOneValue())
+ return SDValue();
+
+ SDValue AllOnesVec = getOnesVector(VT, DAG, SDLoc(N));
+ unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
+ return DAG.getNode(NewOpcode, SDLoc(N), VT, N->getOperand(0), AllOnesVec);
+}
+
+static SDValue combineAdd(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ const SDNodeFlags Flags = N->getFlags();
+ if (Flags.hasVectorReduction()) {
+ if (SDValue Sad = combineLoopSADPattern(N, DAG, Subtarget))
+ return Sad;
+ if (SDValue MAdd = combineLoopMAddPattern(N, DAG, Subtarget))
+ return MAdd;
+ }
+ EVT VT = N->getValueType(0);
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // Try to synthesize horizontal adds from adds of shuffles.
+ if (((Subtarget.hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
+ (Subtarget.hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
+ isHorizontalBinOp(Op0, Op1, true))
+ return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
+
+ if (SDValue V = combineIncDecVector(N, DAG))
+ return V;
+
+ return combineAddOrSubToADCOrSBB(N, DAG);
+}
+
+static SDValue combineSubToSubus(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // PSUBUS is supported, starting from SSE2, but special preprocessing
+ // for v8i32 requires umin, which appears in SSE41.
+ if (!(Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) &&
+ !(Subtarget.hasSSE41() && (VT == MVT::v8i32)) &&
+ !(Subtarget.hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)) &&
+ !(Subtarget.hasAVX512() && Subtarget.hasBWI() &&
+ (VT == MVT::v64i8 || VT == MVT::v32i16 || VT == MVT::v16i32 ||
+ VT == MVT::v8i64)))
+ return SDValue();
+
+ SDValue SubusLHS, SubusRHS;
+ // Try to find umax(a,b) - b or a - umin(a,b) patterns
+ // they may be converted to subus(a,b).
+ // TODO: Need to add IR cannonicialization for this code.
+ if (Op0.getOpcode() == ISD::UMAX) {
+ SubusRHS = Op1;
+ SDValue MaxLHS = Op0.getOperand(0);
+ SDValue MaxRHS = Op0.getOperand(1);
+ if (MaxLHS == Op1)
+ SubusLHS = MaxRHS;
+ else if (MaxRHS == Op1)
+ SubusLHS = MaxLHS;
+ else
+ return SDValue();
+ } else if (Op1.getOpcode() == ISD::UMIN) {
+ SubusLHS = Op0;
+ SDValue MinLHS = Op1.getOperand(0);
+ SDValue MinRHS = Op1.getOperand(1);
+ if (MinLHS == Op0)
+ SubusRHS = MinRHS;
+ else if (MinRHS == Op0)
+ SubusRHS = MinLHS;
+ else
+ return SDValue();
+ } else
+ return SDValue();
+
+ // PSUBUS doesn't support v8i32/v8i64/v16i32, but it can be enabled with
+ // special preprocessing in some cases.
+ if (VT != MVT::v8i32 && VT != MVT::v16i32 && VT != MVT::v8i64)
+ return DAG.getNode(X86ISD::SUBUS, SDLoc(N), VT, SubusLHS, SubusRHS);
+
+ // Special preprocessing case can be only applied
+ // if the value was zero extended from 16 bit,
+ // so we require first 16 bits to be zeros for 32 bit
+ // values, or first 48 bits for 64 bit values.
+ KnownBits Known;
+ DAG.computeKnownBits(SubusLHS, Known);
+ unsigned NumZeros = Known.countMinLeadingZeros();
+ if ((VT == MVT::v8i64 && NumZeros < 48) || NumZeros < 16)
+ return SDValue();
+
+ EVT ExtType = SubusLHS.getValueType();
+ EVT ShrinkedType;
+ if (VT == MVT::v8i32 || VT == MVT::v8i64)
+ ShrinkedType = MVT::v8i16;
+ else
+ ShrinkedType = NumZeros >= 24 ? MVT::v16i8 : MVT::v16i16;
+
+ // If SubusLHS is zeroextended - truncate SubusRHS to it's
+ // size SubusRHS = umin(0xFFF.., SubusRHS).
+ SDValue SaturationConst =
+ DAG.getConstant(APInt::getLowBitsSet(ExtType.getScalarSizeInBits(),
+ ShrinkedType.getScalarSizeInBits()),
+ SDLoc(SubusLHS), ExtType);
+ SDValue UMin = DAG.getNode(ISD::UMIN, SDLoc(SubusLHS), ExtType, SubusRHS,
+ SaturationConst);
+ SDValue NewSubusLHS =
+ DAG.getZExtOrTrunc(SubusLHS, SDLoc(SubusLHS), ShrinkedType);
+ SDValue NewSubusRHS = DAG.getZExtOrTrunc(UMin, SDLoc(SubusRHS), ShrinkedType);
+ SDValue Psubus = DAG.getNode(X86ISD::SUBUS, SDLoc(N), ShrinkedType,
+ NewSubusLHS, NewSubusRHS);
+ // Zero extend the result, it may be used somewhere as 32 bit,
+ // if not zext and following trunc will shrink.
+ return DAG.getZExtOrTrunc(Psubus, SDLoc(N), ExtType);
+}
+
+static SDValue combineSub(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // X86 can't encode an immediate LHS of a sub. See if we can push the
+ // negation into a preceding instruction.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
+ // If the RHS of the sub is a XOR with one use and a constant, invert the
+ // immediate. Then add one to the LHS of the sub so we can turn
+ // X-Y -> X+~Y+1, saving one register.
+ if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
+ isa<ConstantSDNode>(Op1.getOperand(1))) {
+ APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
+ EVT VT = Op0.getValueType();
+ SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
+ Op1.getOperand(0),
+ DAG.getConstant(~XorC, SDLoc(Op1), VT));
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
+ DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT));
+ }
+ }
+
+ // Try to synthesize horizontal subs from subs of shuffles.
+ EVT VT = N->getValueType(0);
+ if (((Subtarget.hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
+ (Subtarget.hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
+ isHorizontalBinOp(Op0, Op1, false))
+ return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
+
+ if (SDValue V = combineIncDecVector(N, DAG))
+ return V;
+
+ // Try to create PSUBUS if SUB's argument is max/min
+ if (SDValue V = combineSubToSubus(N, DAG, Subtarget))
+ return V;
+
+ return combineAddOrSubToADCOrSBB(N, DAG);
+}
+
+static SDValue combineVSZext(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ if (DCI.isBeforeLegalize())
+ return SDValue();
+
+ SDLoc DL(N);
+ unsigned Opcode = N->getOpcode();
+ MVT VT = N->getSimpleValueType(0);
+ MVT SVT = VT.getVectorElementType();
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned EltSizeInBits = SVT.getSizeInBits();
+
+ SDValue Op = N->getOperand(0);
+ MVT OpVT = Op.getSimpleValueType();
+ MVT OpEltVT = OpVT.getVectorElementType();
+ unsigned OpEltSizeInBits = OpEltVT.getSizeInBits();
+ unsigned InputBits = OpEltSizeInBits * NumElts;
+
+ // Perform any constant folding.
+ // FIXME: Reduce constant pool usage and don't fold when OptSize is enabled.
+ APInt UndefElts;
+ SmallVector<APInt, 64> EltBits;
+ if (getTargetConstantBitsFromNode(Op, OpEltSizeInBits, UndefElts, EltBits)) {
+ APInt Undefs(NumElts, 0);
+ SmallVector<APInt, 4> Vals(NumElts, APInt(EltSizeInBits, 0));
+ bool IsZEXT =
+ (Opcode == X86ISD::VZEXT) || (Opcode == ISD::ZERO_EXTEND_VECTOR_INREG);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (UndefElts[i]) {
+ Undefs.setBit(i);
+ continue;
+ }
+ Vals[i] = IsZEXT ? EltBits[i].zextOrTrunc(EltSizeInBits)
+ : EltBits[i].sextOrTrunc(EltSizeInBits);
+ }
+ return getConstVector(Vals, Undefs, VT, DAG, DL);
+ }
+
+ // (vzext (bitcast (vzext (x)) -> (vzext x)
+ // TODO: (vsext (bitcast (vsext (x)) -> (vsext x)
+ SDValue V = peekThroughBitcasts(Op);
+ if (Opcode == X86ISD::VZEXT && V != Op && V.getOpcode() == X86ISD::VZEXT) {
+ MVT InnerVT = V.getSimpleValueType();
+ MVT InnerEltVT = InnerVT.getVectorElementType();
+
+ // If the element sizes match exactly, we can just do one larger vzext. This
+ // is always an exact type match as vzext operates on integer types.
+ if (OpEltVT == InnerEltVT) {
+ assert(OpVT == InnerVT && "Types must match for vzext!");
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
+ }
+
+ // The only other way we can combine them is if only a single element of the
+ // inner vzext is used in the input to the outer vzext.
+ if (InnerEltVT.getSizeInBits() < InputBits)
+ return SDValue();
+
+ // In this case, the inner vzext is completely dead because we're going to
+ // only look at bits inside of the low element. Just do the outer vzext on
+ // a bitcast of the input to the inner.
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V));
+ }
+
+ // Check if we can bypass extracting and re-inserting an element of an input
+ // vector. Essentially:
+ // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
+ // TODO: Add X86ISD::VSEXT support
+ if (Opcode == X86ISD::VZEXT &&
+ V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
+ SDValue ExtractedV = V.getOperand(0);
+ SDValue OrigV = ExtractedV.getOperand(0);
+ if (isNullConstant(ExtractedV.getOperand(1))) {
+ MVT OrigVT = OrigV.getSimpleValueType();
+ // Extract a subvector if necessary...
+ if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
+ int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
+ OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
+ OrigVT.getVectorNumElements() / Ratio);
+ OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
+ DAG.getIntPtrConstant(0, DL));
+ }
+ Op = DAG.getBitcast(OpVT, OrigV);
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue combineTestM(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ MVT VT = N->getSimpleValueType(0);
+ SDLoc DL(N);
+
+ // TEST (AND a, b) ,(AND a, b) -> TEST a, b
+ if (Op0 == Op1 && Op1->getOpcode() == ISD::AND)
+ return DAG.getNode(X86ISD::TESTM, DL, VT, Op0->getOperand(0),
+ Op0->getOperand(1));
+
+ // TEST op0, BUILD_VECTOR(all_zero) -> BUILD_VECTOR(all_zero)
+ // TEST BUILD_VECTOR(all_zero), op1 -> BUILD_VECTOR(all_zero)
+ if (ISD::isBuildVectorAllZeros(Op0.getNode()) ||
+ ISD::isBuildVectorAllZeros(Op1.getNode()))
+ return getZeroVector(VT, Subtarget, DAG, DL);
+
+ return SDValue();
+}
+
+static SDValue combineVectorCompare(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ MVT VT = N->getSimpleValueType(0);
+ SDLoc DL(N);
+
+ if (N->getOperand(0) == N->getOperand(1)) {
+ if (N->getOpcode() == X86ISD::PCMPEQ)
+ return getOnesVector(VT, DAG, DL);
+ if (N->getOpcode() == X86ISD::PCMPGT)
+ return getZeroVector(VT, Subtarget, DAG, DL);
+ }
+
+ return SDValue();
+}
+
+static SDValue combineInsertSubvector(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ MVT OpVT = N->getSimpleValueType(0);
+
+ // Early out for mask vectors.
+ if (OpVT.getVectorElementType() == MVT::i1)
+ return SDValue();
+
+ SDLoc dl(N);
+ SDValue Vec = N->getOperand(0);
+ SDValue SubVec = N->getOperand(1);
+
+ unsigned IdxVal = N->getConstantOperandVal(2);
+ MVT SubVecVT = SubVec.getSimpleValueType();
+
+ if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
+ // Inserting zeros into zeros is a nop.
+ if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
+ return Vec;
+
+ // If we're inserting into a zero vector and then into a larger zero vector,
+ // just insert into the larger zero vector directly.
+ if (SubVec.getOpcode() == ISD::INSERT_SUBVECTOR &&
+ ISD::isBuildVectorAllZeros(SubVec.getOperand(0).getNode())) {
+ unsigned Idx2Val = SubVec.getConstantOperandVal(2);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Vec,
+ SubVec.getOperand(1),
+ DAG.getIntPtrConstant(IdxVal + Idx2Val, dl));
+ }
+
+ // If we're inserting a bitcast into zeros, rewrite the insert and move the
+ // bitcast to the other side. This helps with detecting zero extending
+ // during isel.
+ // TODO: Is this useful for other indices than 0?
+ if (SubVec.getOpcode() == ISD::BITCAST && IdxVal == 0) {
+ MVT CastVT = SubVec.getOperand(0).getSimpleValueType();
+ unsigned NumElems = OpVT.getSizeInBits() / CastVT.getScalarSizeInBits();
+ MVT NewVT = MVT::getVectorVT(CastVT.getVectorElementType(), NumElems);
+ SDValue Insert = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT,
+ DAG.getBitcast(NewVT, Vec),
+ SubVec.getOperand(0), N->getOperand(2));
+ return DAG.getBitcast(OpVT, Insert);
+ }
+ }
+
+ // If this is an insert of an extract, combine to a shuffle. Don't do this
+ // if the insert or extract can be represented with a subregister operation.
+ if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
+ SubVec.getOperand(0).getSimpleValueType() == OpVT &&
+ (IdxVal != 0 || !Vec.isUndef())) {
+ int ExtIdxVal = SubVec.getConstantOperandVal(1);
+ if (ExtIdxVal != 0) {
+ int VecNumElts = OpVT.getVectorNumElements();
+ int SubVecNumElts = SubVecVT.getVectorNumElements();
+ SmallVector<int, 64> Mask(VecNumElts);
+ // First create an identity shuffle mask.
+ for (int i = 0; i != VecNumElts; ++i)
+ Mask[i] = i;
+ // Now insert the extracted portion.
+ for (int i = 0; i != SubVecNumElts; ++i)
+ Mask[i + IdxVal] = i + ExtIdxVal + VecNumElts;
+
+ return DAG.getVectorShuffle(OpVT, dl, Vec, SubVec.getOperand(0), Mask);
+ }
+ }
+
+ // Fold two 16-byte or 32-byte subvector loads into one 32-byte or 64-byte
+ // load:
+ // (insert_subvector (insert_subvector undef, (load16 addr), 0),
+ // (load16 addr + 16), Elts/2)
+ // --> load32 addr
+ // or:
+ // (insert_subvector (insert_subvector undef, (load32 addr), 0),
+ // (load32 addr + 32), Elts/2)
+ // --> load64 addr
+ // or a 16-byte or 32-byte broadcast:
+ // (insert_subvector (insert_subvector undef, (load16 addr), 0),
+ // (load16 addr), Elts/2)
+ // --> X86SubVBroadcast(load16 addr)
+ // or:
+ // (insert_subvector (insert_subvector undef, (load32 addr), 0),
+ // (load32 addr), Elts/2)
+ // --> X86SubVBroadcast(load32 addr)
+ if ((IdxVal == OpVT.getVectorNumElements() / 2) &&
+ Vec.getOpcode() == ISD::INSERT_SUBVECTOR &&
+ OpVT.getSizeInBits() == SubVecVT.getSizeInBits() * 2) {
+ auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2));
+ if (Idx2 && Idx2->getZExtValue() == 0) {
+ SDValue SubVec2 = Vec.getOperand(1);
+ // If needed, look through bitcasts to get to the load.
+ if (auto *FirstLd = dyn_cast<LoadSDNode>(peekThroughBitcasts(SubVec2))) {
+ bool Fast;
+ unsigned Alignment = FirstLd->getAlignment();
+ unsigned AS = FirstLd->getAddressSpace();
+ const X86TargetLowering *TLI = Subtarget.getTargetLowering();
+ if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
+ OpVT, AS, Alignment, &Fast) && Fast) {
+ SDValue Ops[] = {SubVec2, SubVec};
+ if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG,
+ Subtarget, false))
+ return Ld;
+ }
+ }
+ // If lower/upper loads are the same and the only users of the load, then
+ // lower to a VBROADCASTF128/VBROADCASTI128/etc.
+ if (auto *Ld = dyn_cast<LoadSDNode>(peekThroughOneUseBitcasts(SubVec2)))
+ if (SubVec2 == SubVec && ISD::isNormalLoad(Ld) &&
+ SDNode::areOnlyUsersOf({N, Vec.getNode()}, SubVec2.getNode()))
+ return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT, SubVec);
+
+ // If this is subv_broadcast insert into both halves, use a larger
+ // subv_broadcast.
+ if (SubVec.getOpcode() == X86ISD::SUBV_BROADCAST && SubVec == SubVec2)
+ return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT,
+ SubVec.getOperand(0));
+
+ // If we're inserting all zeros into the upper half, change this to
+ // an insert into an all zeros vector. We will match this to a move
+ // with implicit upper bit zeroing during isel.
+ if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
+ getZeroVector(OpVT, Subtarget, DAG, dl), SubVec2,
+ Vec.getOperand(2));
+
+ // If we are inserting into both halves of the vector, the starting
+ // vector should be undef. If it isn't, make it so. Only do this if the
+ // the early insert has no other uses.
+ // TODO: Should this be a generic DAG combine?
+ if (!Vec.getOperand(0).isUndef() && Vec.hasOneUse()) {
+ Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, DAG.getUNDEF(OpVT),
+ SubVec2, Vec.getOperand(2));
+ DCI.AddToWorklist(Vec.getNode());
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Vec, SubVec,
+ N->getOperand(2));
+
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue combineExtractSubvector(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget &Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ MVT OpVT = N->getSimpleValueType(0);
+ SDValue InVec = N->getOperand(0);
+ unsigned IdxVal = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+
+ if (ISD::isBuildVectorAllZeros(InVec.getNode()))
+ return getZeroVector(OpVT, Subtarget, DAG, SDLoc(N));
+
+ if (ISD::isBuildVectorAllOnes(InVec.getNode())) {
+ if (OpVT.getScalarType() == MVT::i1)
+ return DAG.getConstant(1, SDLoc(N), OpVT);
+ return getOnesVector(OpVT, DAG, SDLoc(N));
+ }
+
+ if (InVec.getOpcode() == ISD::BUILD_VECTOR)
+ return DAG.getBuildVector(
+ OpVT, SDLoc(N),
+ InVec.getNode()->ops().slice(IdxVal, OpVT.getVectorNumElements()));
+
+ return SDValue();
+}
+
+SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::EXTRACT_VECTOR_ELT:
+ case X86ISD::PEXTRW:
+ case X86ISD::PEXTRB:
+ return combineExtractVectorElt(N, DAG, DCI, Subtarget);
+ case ISD::INSERT_SUBVECTOR:
+ return combineInsertSubvector(N, DAG, DCI, Subtarget);
+ case ISD::EXTRACT_SUBVECTOR:
+ return combineExtractSubvector(N, DAG, DCI, Subtarget);
+ case ISD::VSELECT:
+ case ISD::SELECT:
+ case X86ISD::SHRUNKBLEND: return combineSelect(N, DAG, DCI, Subtarget);
+ case ISD::BITCAST: return combineBitcast(N, DAG, DCI, Subtarget);
+ case X86ISD::CMOV: return combineCMov(N, DAG, DCI, Subtarget);
+ case ISD::ADD: return combineAdd(N, DAG, Subtarget);
+ case ISD::SUB: return combineSub(N, DAG, Subtarget);
+ case X86ISD::SBB: return combineSBB(N, DAG);
+ case X86ISD::ADC: return combineADC(N, DAG, DCI);
+ case ISD::MUL: return combineMul(N, DAG, DCI, Subtarget);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL: return combineShift(N, DAG, DCI, Subtarget);
+ case ISD::AND: return combineAnd(N, DAG, DCI, Subtarget);
+ case ISD::OR: return combineOr(N, DAG, DCI, Subtarget);
+ case ISD::XOR: return combineXor(N, DAG, DCI, Subtarget);
+ case ISD::LOAD: return combineLoad(N, DAG, DCI, Subtarget);
+ case ISD::MLOAD: return combineMaskedLoad(N, DAG, DCI, Subtarget);
+ case ISD::STORE: return combineStore(N, DAG, Subtarget);
+ case ISD::MSTORE: return combineMaskedStore(N, DAG, Subtarget);
+ case ISD::SINT_TO_FP: return combineSIntToFP(N, DAG, Subtarget);
+ case ISD::UINT_TO_FP: return combineUIntToFP(N, DAG, Subtarget);
+ case ISD::FADD:
+ case ISD::FSUB: return combineFaddFsub(N, DAG, Subtarget);
+ case ISD::FNEG: return combineFneg(N, DAG, Subtarget);
+ case ISD::TRUNCATE: return combineTruncate(N, DAG, Subtarget);
+ case X86ISD::ANDNP: return combineAndnp(N, DAG, DCI, Subtarget);
+ case X86ISD::FAND: return combineFAnd(N, DAG, Subtarget);
+ case X86ISD::FANDN: return combineFAndn(N, DAG, Subtarget);
+ case X86ISD::FXOR:
+ case X86ISD::FOR: return combineFOr(N, DAG, Subtarget);
+ case X86ISD::FMIN:
+ case X86ISD::FMAX: return combineFMinFMax(N, DAG);
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM: return combineFMinNumFMaxNum(N, DAG, Subtarget);
+ case X86ISD::BT: return combineBT(N, DAG, DCI);
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND: return combineZext(N, DAG, DCI, Subtarget);
+ case ISD::SIGN_EXTEND: return combineSext(N, DAG, DCI, Subtarget);
+ case ISD::SIGN_EXTEND_INREG: return combineSignExtendInReg(N, DAG, Subtarget);
+ case ISD::SETCC: return combineSetCC(N, DAG, Subtarget);
+ case X86ISD::SETCC: return combineX86SetCC(N, DAG, Subtarget);
+ case X86ISD::BRCOND: return combineBrCond(N, DAG, Subtarget);
+ case X86ISD::PACKSS:
+ case X86ISD::PACKUS: return combineVectorPack(N, DAG, DCI, Subtarget);
+ case X86ISD::VSHLI:
+ case X86ISD::VSRAI:
+ case X86ISD::VSRLI:
+ return combineVectorShiftImm(N, DAG, DCI, Subtarget);
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ case ISD::ZERO_EXTEND_VECTOR_INREG:
+ case X86ISD::VSEXT:
+ case X86ISD::VZEXT: return combineVSZext(N, DAG, DCI, Subtarget);
+ case X86ISD::PINSRB:
+ case X86ISD::PINSRW: return combineVectorInsert(N, DAG, DCI, Subtarget);
+ case X86ISD::SHUFP: // Handle all target specific shuffles
+ case X86ISD::INSERTPS:
+ case X86ISD::EXTRQI:
+ case X86ISD::INSERTQI:
+ case X86ISD::PALIGNR:
+ case X86ISD::VSHLDQ:
+ case X86ISD::VSRLDQ:
+ case X86ISD::BLENDI:
+ case X86ISD::UNPCKH:
+ case X86ISD::UNPCKL:
+ case X86ISD::MOVHLPS:
+ case X86ISD::MOVLHPS:
+ case X86ISD::PSHUFB:
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ case X86ISD::MOVSHDUP:
+ case X86ISD::MOVSLDUP:
+ case X86ISD::MOVDDUP:
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ case X86ISD::VBROADCAST:
+ case X86ISD::VPPERM:
+ case X86ISD::VPERMI:
+ case X86ISD::VPERMV:
+ case X86ISD::VPERMV3:
+ case X86ISD::VPERMIV3:
+ case X86ISD::VPERMIL2:
+ case X86ISD::VPERMILPI:
+ case X86ISD::VPERMILPV:
+ case X86ISD::VPERM2X128:
+ case X86ISD::VZEXT_MOVL:
+ case ISD::VECTOR_SHUFFLE: return combineShuffle(N, DAG, DCI,Subtarget);
+ case X86ISD::FMADD_RND:
+ case X86ISD::FMADDS1_RND:
+ case X86ISD::FMADDS3_RND:
+ case X86ISD::FMADDS1:
+ case X86ISD::FMADDS3:
+ case X86ISD::FMADD4S:
+ case ISD::FMA: return combineFMA(N, DAG, Subtarget);
+ case X86ISD::FMADDSUB_RND:
+ case X86ISD::FMSUBADD_RND:
+ case X86ISD::FMADDSUB:
+ case X86ISD::FMSUBADD: return combineFMADDSUB(N, DAG, Subtarget);
+ case X86ISD::MOVMSK: return combineMOVMSK(N, DAG, DCI);
+ case X86ISD::MGATHER:
+ case X86ISD::MSCATTER:
+ case ISD::MGATHER:
+ case ISD::MSCATTER: return combineGatherScatter(N, DAG, DCI, Subtarget);
+ case X86ISD::TESTM: return combineTestM(N, DAG, Subtarget);
+ case X86ISD::PCMPEQ:
+ case X86ISD::PCMPGT: return combineVectorCompare(N, DAG, Subtarget);
+ }
+
+ return SDValue();
+}
+
+/// Return true if the target has native support for the specified value type
+/// and it is 'desirable' to use the type for the given node type. e.g. On x86
+/// i16 is legal, but undesirable since i16 instruction encodings are longer and
+/// some i16 instructions are slow.
+bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
+ if (!isTypeLegal(VT))
+ return false;
+ if (VT != MVT::i16)
+ return true;
+
+ switch (Opc) {
+ default:
+ return true;
+ case ISD::LOAD:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SUB:
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ return false;
+ }
+}
+
+/// This function checks if any of the users of EFLAGS copies the EFLAGS. We
+/// know that the code that lowers COPY of EFLAGS has to use the stack, and if
+/// we don't adjust the stack we clobber the first frame index.
+/// See X86InstrInfo::copyPhysReg.
+static bool hasCopyImplyingStackAdjustment(const MachineFunction &MF) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ return any_of(MRI.reg_instructions(X86::EFLAGS),
+ [](const MachineInstr &RI) { return RI.isCopy(); });
+}
+
+void X86TargetLowering::finalizeLowering(MachineFunction &MF) const {
+ if (hasCopyImplyingStackAdjustment(MF)) {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MFI.setHasCopyImplyingStackAdjustment(true);
+ }
+
+ TargetLoweringBase::finalizeLowering(MF);
+}
+
+/// This method query the target whether it is beneficial for dag combiner to
+/// promote the specified node. If true, it should return the desired promotion
+/// type by reference.
+bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
+ EVT VT = Op.getValueType();
+ if (VT != MVT::i16)
+ return false;
+
+ bool Promote = false;
+ bool Commute = false;
+ switch (Op.getOpcode()) {
+ default: break;
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Promote = true;
+ break;
+ case ISD::SHL:
+ case ISD::SRL: {
+ SDValue N0 = Op.getOperand(0);
+ // Look out for (store (shl (load), x)).
+ if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
+ return false;
+ Promote = true;
+ break;
+ }
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ Commute = true;
+ LLVM_FALLTHROUGH;
+ case ISD::SUB: {
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ if (!Commute && MayFoldLoad(N1))
+ return false;
+ // Avoid disabling potential load folding opportunities.
+ if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
+ return false;
+ if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
+ return false;
+ Promote = true;
+ }
+ }
+
+ PVT = MVT::i32;
+ return Promote;
+}
+
+bool X86TargetLowering::
+ isDesirableToCombineBuildVectorToShuffleTruncate(
+ ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const {
+
+ assert(SrcVT.getVectorNumElements() == ShuffleMask.size() &&
+ "Element count mismatch");
+ assert(
+ Subtarget.getTargetLowering()->isShuffleMaskLegal(ShuffleMask, SrcVT) &&
+ "Shuffle Mask expected to be legal");
+
+ // For 32-bit elements VPERMD is better than shuffle+truncate.
+ // TODO: After we improve lowerBuildVector, add execption for VPERMW.
+ if (SrcVT.getScalarSizeInBits() == 32 || !Subtarget.hasAVX2())
+ return false;
+
+ if (is128BitLaneCrossingShuffleMask(SrcVT.getSimpleVT(), ShuffleMask))
+ return false;
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+// Helper to match a string separated by whitespace.
+static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
+ S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
+
+ for (StringRef Piece : Pieces) {
+ if (!S.startswith(Piece)) // Check if the piece matches.
+ return false;
+
+ S = S.substr(Piece.size());
+ StringRef::size_type Pos = S.find_first_not_of(" \t");
+ if (Pos == 0) // We matched a prefix.
+ return false;
+
+ S = S.substr(Pos);
+ }
+
+ return S.empty();
+}
+
+static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
+
+ if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
+ if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
+ std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
+ std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
+
+ if (AsmPieces.size() == 3)
+ return true;
+ else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
+ InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
+
+ const std::string &AsmStr = IA->getAsmString();
+
+ IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
+ if (!Ty || Ty->getBitWidth() % 16 != 0)
+ return false;
+
+ // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
+ SmallVector<StringRef, 4> AsmPieces;
+ SplitString(AsmStr, AsmPieces, ";\n");
+
+ switch (AsmPieces.size()) {
+ default: return false;
+ case 1:
+ // FIXME: this should verify that we are targeting a 486 or better. If not,
+ // we will turn this bswap into something that will be lowered to logical
+ // ops instead of emitting the bswap asm. For now, we don't support 486 or
+ // lower so don't worry about this.
+ // bswap $0
+ if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
+ matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
+ matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
+ matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
+ matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
+ matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
+ // No need to check constraints, nothing other than the equivalent of
+ // "=r,0" would be valid here.
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+
+ // rorw $$8, ${0:w} --> llvm.bswap.i16
+ if (CI->getType()->isIntegerTy(16) &&
+ IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
+ (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
+ matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
+ AsmPieces.clear();
+ StringRef ConstraintsStr = IA->getConstraintString();
+ SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
+ array_pod_sort(AsmPieces.begin(), AsmPieces.end());
+ if (clobbersFlagRegisters(AsmPieces))
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ break;
+ case 3:
+ if (CI->getType()->isIntegerTy(32) &&
+ IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
+ matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
+ matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
+ matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
+ AsmPieces.clear();
+ StringRef ConstraintsStr = IA->getConstraintString();
+ SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
+ array_pod_sort(AsmPieces.begin(), AsmPieces.end());
+ if (clobbersFlagRegisters(AsmPieces))
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+
+ if (CI->getType()->isIntegerTy(64)) {
+ InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
+ if (Constraints.size() >= 2 &&
+ Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
+ Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
+ // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
+ if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
+ matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
+ matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ }
+ break;
+ }
+ return false;
+}
+
+/// Given a constraint letter, return the type of constraint for this target.
+X86TargetLowering::ConstraintType
+X86TargetLowering::getConstraintType(StringRef Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'R':
+ case 'q':
+ case 'Q':
+ case 'f':
+ case 't':
+ case 'u':
+ case 'y':
+ case 'x':
+ case 'v':
+ case 'Y':
+ case 'l':
+ case 'k': // AVX512 masking registers.
+ return C_RegisterClass;
+ case 'a':
+ case 'b':
+ case 'c':
+ case 'd':
+ case 'S':
+ case 'D':
+ case 'A':
+ return C_Register;
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'G':
+ case 'C':
+ case 'e':
+ case 'Z':
+ return C_Other;
+ default:
+ break;
+ }
+ }
+ else if (Constraint.size() == 2) {
+ switch (Constraint[0]) {
+ default:
+ break;
+ case 'Y':
+ switch (Constraint[1]) {
+ default:
+ break;
+ case 'z':
+ case '0':
+ return C_Register;
+ case 'i':
+ case 'm':
+ case 'k':
+ case 't':
+ case '2':
+ return C_RegisterClass;
+ }
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ X86TargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ LLVM_FALLTHROUGH;
+ case 'R':
+ case 'q':
+ case 'Q':
+ case 'a':
+ case 'b':
+ case 'c':
+ case 'd':
+ case 'S':
+ case 'D':
+ case 'A':
+ if (CallOperandVal->getType()->isIntegerTy())
+ weight = CW_SpecificReg;
+ break;
+ case 'f':
+ case 't':
+ case 'u':
+ if (type->isFloatingPointTy())
+ weight = CW_SpecificReg;
+ break;
+ case 'y':
+ if (type->isX86_MMXTy() && Subtarget.hasMMX())
+ weight = CW_SpecificReg;
+ break;
+ case 'Y': {
+ unsigned Size = StringRef(constraint).size();
+ // Pick 'i' as the next char as 'Yi' and 'Y' are synonymous, when matching 'Y'
+ char NextChar = Size == 2 ? constraint[1] : 'i';
+ if (Size > 2)
+ break;
+ switch (NextChar) {
+ default:
+ return CW_Invalid;
+ // XMM0
+ case 'z':
+ case '0':
+ if ((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1())
+ return CW_SpecificReg;
+ return CW_Invalid;
+ // Conditional OpMask regs (AVX512)
+ case 'k':
+ if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512())
+ return CW_Register;
+ return CW_Invalid;
+ // Any MMX reg
+ case 'm':
+ if (type->isX86_MMXTy() && Subtarget.hasMMX())
+ return weight;
+ return CW_Invalid;
+ // Any SSE reg when ISA >= SSE2, same as 'Y'
+ case 'i':
+ case 't':
+ case '2':
+ if (!Subtarget.hasSSE2())
+ return CW_Invalid;
+ break;
+ }
+ // Fall through (handle "Y" constraint).
+ LLVM_FALLTHROUGH;
+ }
+ case 'v':
+ if ((type->getPrimitiveSizeInBits() == 512) && Subtarget.hasAVX512())
+ weight = CW_Register;
+ LLVM_FALLTHROUGH;
+ case 'x':
+ if (((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) ||
+ ((type->getPrimitiveSizeInBits() == 256) && Subtarget.hasFp256()))
+ weight = CW_Register;
+ break;
+ case 'k':
+ // Enable conditional vector operations using %k<#> registers.
+ if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512())
+ weight = CW_Register;
+ break;
+ case 'I':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
+ if (C->getZExtValue() <= 31)
+ weight = CW_Constant;
+ }
+ break;
+ case 'J':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 63)
+ weight = CW_Constant;
+ }
+ break;
+ case 'K':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
+ weight = CW_Constant;
+ }
+ break;
+ case 'L':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
+ weight = CW_Constant;
+ }
+ break;
+ case 'M':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 3)
+ weight = CW_Constant;
+ }
+ break;
+ case 'N':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 0xff)
+ weight = CW_Constant;
+ }
+ break;
+ case 'G':
+ case 'C':
+ if (isa<ConstantFP>(CallOperandVal)) {
+ weight = CW_Constant;
+ }
+ break;
+ case 'e':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getSExtValue() >= -0x80000000LL) &&
+ (C->getSExtValue() <= 0x7fffffffLL))
+ weight = CW_Constant;
+ }
+ break;
+ case 'Z':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 0xffffffff)
+ weight = CW_Constant;
+ }
+ break;
+ }
+ return weight;
+}
+
+/// Try to replace an X constraint, which matches anything, with another that
+/// has more specific requirements based on the type of the corresponding
+/// operand.
+const char *X86TargetLowering::
+LowerXConstraint(EVT ConstraintVT) const {
+ // FP X constraints get lowered to SSE1/2 registers if available, otherwise
+ // 'f' like normal targets.
+ if (ConstraintVT.isFloatingPoint()) {
+ if (Subtarget.hasSSE2())
+ return "Y";
+ if (Subtarget.hasSSE1())
+ return "x";
+ }
+
+ return TargetLowering::LowerXConstraint(ConstraintVT);
+}
+
+/// Lower the specified operand into the Ops vector.
+/// If it is invalid, don't add anything to Ops.
+void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+
+ // Only support length 1 constraints for now.
+ if (Constraint.length() > 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'I':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 31) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'J':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 63) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'K':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (isInt<8>(C->getSExtValue())) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'L':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
+ (Subtarget.is64Bit() && C->getZExtValue() == 0xffffffff)) {
+ Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'M':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 3) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'N':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 255) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'O':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 127) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'e': {
+ // 32-bit signed value
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getSExtValue())) {
+ // Widen to 64 bits here to get it sign extended.
+ Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64);
+ break;
+ }
+ // FIXME gcc accepts some relocatable values here too, but only in certain
+ // memory models; it's complicated.
+ }
+ return;
+ }
+ case 'Z': {
+ // 32-bit unsigned value
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getZExtValue())) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ // FIXME gcc accepts some relocatable values here too, but only in certain
+ // memory models; it's complicated.
+ return;
+ }
+ case 'i': {
+ // Literal immediates are always ok.
+ if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
+ // Widen to 64 bits here to get it sign extended.
+ Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64);
+ break;
+ }
+
+ // In any sort of PIC mode addresses need to be computed at runtime by
+ // adding in a register or some sort of table lookup. These can't
+ // be used as immediates.
+ if (Subtarget.isPICStyleGOT() || Subtarget.isPICStyleStubPIC())
+ return;
+
+ // If we are in non-pic codegen mode, we allow the address of a global (with
+ // an optional displacement) to be used with 'i'.
+ GlobalAddressSDNode *GA = nullptr;
+ int64_t Offset = 0;
+
+ // Match either (GA), (GA+C), (GA+C1+C2), etc.
+ while (1) {
+ if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
+ Offset += GA->getOffset();
+ break;
+ } else if (Op.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ Offset += C->getZExtValue();
+ Op = Op.getOperand(0);
+ continue;
+ }
+ } else if (Op.getOpcode() == ISD::SUB) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ Offset += -C->getZExtValue();
+ Op = Op.getOperand(0);
+ continue;
+ }
+ }
+
+ // Otherwise, this isn't something we can handle, reject it.
+ return;
+ }
+
+ const GlobalValue *GV = GA->getGlobal();
+ // If we require an extra load to get this address, as in PIC mode, we
+ // can't accept it.
+ if (isGlobalStubReference(Subtarget.classifyGlobalReference(GV)))
+ return;
+
+ Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
+ GA->getValueType(0), Offset);
+ break;
+ }
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+/// Check if \p RC is a general purpose register class.
+/// I.e., GR* or one of their variant.
+static bool isGRClass(const TargetRegisterClass &RC) {
+ return RC.hasSuperClassEq(&X86::GR8RegClass) ||
+ RC.hasSuperClassEq(&X86::GR16RegClass) ||
+ RC.hasSuperClassEq(&X86::GR32RegClass) ||
+ RC.hasSuperClassEq(&X86::GR64RegClass) ||
+ RC.hasSuperClassEq(&X86::LOW32_ADDR_ACCESS_RBPRegClass);
+}
+
+/// Check if \p RC is a vector register class.
+/// I.e., FR* / VR* or one of their variant.
+static bool isFRClass(const TargetRegisterClass &RC) {
+ return RC.hasSuperClassEq(&X86::FR32XRegClass) ||
+ RC.hasSuperClassEq(&X86::FR64XRegClass) ||
+ RC.hasSuperClassEq(&X86::VR128XRegClass) ||
+ RC.hasSuperClassEq(&X86::VR256XRegClass) ||
+ RC.hasSuperClassEq(&X86::VR512RegClass);
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+ StringRef Constraint,
+ MVT VT) const {
+ // First, see if this is a constraint that directly corresponds to an LLVM
+ // register class.
+ if (Constraint.size() == 1) {
+ // GCC Constraint Letters
+ switch (Constraint[0]) {
+ default: break;
+ // TODO: Slight differences here in allocation order and leaving
+ // RIP in the class. Do they matter any more here than they do
+ // in the normal allocation?
+ case 'k':
+ if (Subtarget.hasAVX512()) {
+ // Only supported in AVX512 or later.
+ switch (VT.SimpleTy) {
+ default: break;
+ case MVT::i32:
+ return std::make_pair(0U, &X86::VK32RegClass);
+ case MVT::i16:
+ return std::make_pair(0U, &X86::VK16RegClass);
+ case MVT::i8:
+ return std::make_pair(0U, &X86::VK8RegClass);
+ case MVT::i1:
+ return std::make_pair(0U, &X86::VK1RegClass);
+ case MVT::i64:
+ return std::make_pair(0U, &X86::VK64RegClass);
+ }
+ }
+ break;
+ case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
+ if (Subtarget.is64Bit()) {
+ if (VT == MVT::i32 || VT == MVT::f32)
+ return std::make_pair(0U, &X86::GR32RegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16RegClass);
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8RegClass);
+ if (VT == MVT::i64 || VT == MVT::f64)
+ return std::make_pair(0U, &X86::GR64RegClass);
+ break;
+ }
+ LLVM_FALLTHROUGH;
+ // 32-bit fallthrough
+ case 'Q': // Q_REGS
+ if (VT == MVT::i32 || VT == MVT::f32)
+ return std::make_pair(0U, &X86::GR32_ABCDRegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16_ABCDRegClass);
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
+ if (VT == MVT::i64)
+ return std::make_pair(0U, &X86::GR64_ABCDRegClass);
+ break;
+ case 'r': // GENERAL_REGS
+ case 'l': // INDEX_REGS
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8RegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16RegClass);
+ if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget.is64Bit())
+ return std::make_pair(0U, &X86::GR32RegClass);
+ return std::make_pair(0U, &X86::GR64RegClass);
+ case 'R': // LEGACY_REGS
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8_NOREXRegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16_NOREXRegClass);
+ if (VT == MVT::i32 || !Subtarget.is64Bit())
+ return std::make_pair(0U, &X86::GR32_NOREXRegClass);
+ return std::make_pair(0U, &X86::GR64_NOREXRegClass);
+ case 'f': // FP Stack registers.
+ // If SSE is enabled for this VT, use f80 to ensure the isel moves the
+ // value to the correct fpstack register class.
+ if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
+ return std::make_pair(0U, &X86::RFP32RegClass);
+ if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
+ return std::make_pair(0U, &X86::RFP64RegClass);
+ return std::make_pair(0U, &X86::RFP80RegClass);
+ case 'y': // MMX_REGS if MMX allowed.
+ if (!Subtarget.hasMMX()) break;
+ return std::make_pair(0U, &X86::VR64RegClass);
+ case 'Y': // SSE_REGS if SSE2 allowed
+ if (!Subtarget.hasSSE2()) break;
+ LLVM_FALLTHROUGH;
+ case 'v':
+ case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
+ if (!Subtarget.hasSSE1()) break;
+ bool VConstraint = (Constraint[0] == 'v');
+
+ switch (VT.SimpleTy) {
+ default: break;
+ // Scalar SSE types.
+ case MVT::f32:
+ case MVT::i32:
+ if (VConstraint && Subtarget.hasAVX512() && Subtarget.hasVLX())
+ return std::make_pair(0U, &X86::FR32XRegClass);
+ return std::make_pair(0U, &X86::FR32RegClass);
+ case MVT::f64:
+ case MVT::i64:
+ if (VConstraint && Subtarget.hasVLX())
+ return std::make_pair(0U, &X86::FR64XRegClass);
+ return std::make_pair(0U, &X86::FR64RegClass);
+ // TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
+ // Vector types.
+ case MVT::v16i8:
+ case MVT::v8i16:
+ case MVT::v4i32:
+ case MVT::v2i64:
+ case MVT::v4f32:
+ case MVT::v2f64:
+ if (VConstraint && Subtarget.hasVLX())
+ return std::make_pair(0U, &X86::VR128XRegClass);
+ return std::make_pair(0U, &X86::VR128RegClass);
+ // AVX types.
+ case MVT::v32i8:
+ case MVT::v16i16:
+ case MVT::v8i32:
+ case MVT::v4i64:
+ case MVT::v8f32:
+ case MVT::v4f64:
+ if (VConstraint && Subtarget.hasVLX())
+ return std::make_pair(0U, &X86::VR256XRegClass);
+ return std::make_pair(0U, &X86::VR256RegClass);
+ case MVT::v8f64:
+ case MVT::v16f32:
+ case MVT::v16i32:
+ case MVT::v8i64:
+ return std::make_pair(0U, &X86::VR512RegClass);
+ }
+ break;
+ }
+ } else if (Constraint.size() == 2 && Constraint[0] == 'Y') {
+ switch (Constraint[1]) {
+ default:
+ break;
+ case 'i':
+ case 't':
+ case '2':
+ return getRegForInlineAsmConstraint(TRI, "Y", VT);
+ case 'm':
+ if (!Subtarget.hasMMX()) break;
+ return std::make_pair(0U, &X86::VR64RegClass);
+ case 'z':
+ case '0':
+ if (!Subtarget.hasSSE1()) break;
+ return std::make_pair(X86::XMM0, &X86::VR128RegClass);
+ case 'k':
+ // This register class doesn't allocate k0 for masked vector operation.
+ if (Subtarget.hasAVX512()) { // Only supported in AVX512.
+ switch (VT.SimpleTy) {
+ default: break;
+ case MVT::i32:
+ return std::make_pair(0U, &X86::VK32WMRegClass);
+ case MVT::i16:
+ return std::make_pair(0U, &X86::VK16WMRegClass);
+ case MVT::i8:
+ return std::make_pair(0U, &X86::VK8WMRegClass);
+ case MVT::i1:
+ return std::make_pair(0U, &X86::VK1WMRegClass);
+ case MVT::i64:
+ return std::make_pair(0U, &X86::VK64WMRegClass);
+ }
+ }
+ break;
+ }
+ }
+
+ // Use the default implementation in TargetLowering to convert the register
+ // constraint into a member of a register class.
+ std::pair<unsigned, const TargetRegisterClass*> Res;
+ Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+
+ // Not found as a standard register?
+ if (!Res.second) {
+ // Map st(0) -> st(7) -> ST0
+ if (Constraint.size() == 7 && Constraint[0] == '{' &&
+ tolower(Constraint[1]) == 's' &&
+ tolower(Constraint[2]) == 't' &&
+ Constraint[3] == '(' &&
+ (Constraint[4] >= '0' && Constraint[4] <= '7') &&
+ Constraint[5] == ')' &&
+ Constraint[6] == '}') {
+
+ Res.first = X86::FP0+Constraint[4]-'0';
+ Res.second = &X86::RFP80RegClass;
+ return Res;
+ }
+
+ // GCC allows "st(0)" to be called just plain "st".
+ if (StringRef("{st}").equals_lower(Constraint)) {
+ Res.first = X86::FP0;
+ Res.second = &X86::RFP80RegClass;
+ return Res;
+ }
+
+ // flags -> EFLAGS
+ if (StringRef("{flags}").equals_lower(Constraint)) {
+ Res.first = X86::EFLAGS;
+ Res.second = &X86::CCRRegClass;
+ return Res;
+ }
+
+ // 'A' means [ER]AX + [ER]DX.
+ if (Constraint == "A") {
+ if (Subtarget.is64Bit()) {
+ Res.first = X86::RAX;
+ Res.second = &X86::GR64_ADRegClass;
+ } else {
+ assert((Subtarget.is32Bit() || Subtarget.is16Bit()) &&
+ "Expecting 64, 32 or 16 bit subtarget");
+ Res.first = X86::EAX;
+ Res.second = &X86::GR32_ADRegClass;
+ }
+ return Res;
+ }
+ return Res;
+ }
+
+ // Otherwise, check to see if this is a register class of the wrong value
+ // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
+ // turn into {ax},{dx}.
+ // MVT::Other is used to specify clobber names.
+ if (TRI->isTypeLegalForClass(*Res.second, VT) || VT == MVT::Other)
+ return Res; // Correct type already, nothing to do.
+
+ // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should
+ // return "eax". This should even work for things like getting 64bit integer
+ // registers when given an f64 type.
+ const TargetRegisterClass *Class = Res.second;
+ // The generic code will match the first register class that contains the
+ // given register. Thus, based on the ordering of the tablegened file,
+ // the "plain" GR classes might not come first.
+ // Therefore, use a helper method.
+ if (isGRClass(*Class)) {
+ unsigned Size = VT.getSizeInBits();
+ if (Size == 1) Size = 8;
+ unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size);
+ if (DestReg > 0) {
+ bool is64Bit = Subtarget.is64Bit();
+ const TargetRegisterClass *RC =
+ Size == 8 ? (is64Bit ? &X86::GR8RegClass : &X86::GR8_NOREXRegClass)
+ : Size == 16 ? (is64Bit ? &X86::GR16RegClass : &X86::GR16_NOREXRegClass)
+ : Size == 32 ? (is64Bit ? &X86::GR32RegClass : &X86::GR32_NOREXRegClass)
+ : &X86::GR64RegClass;
+ if (RC->contains(DestReg))
+ Res = std::make_pair(DestReg, RC);
+ } else {
+ // No register found/type mismatch.
+ Res.first = 0;
+ Res.second = nullptr;
+ }
+ } else if (isFRClass(*Class)) {
+ // Handle references to XMM physical registers that got mapped into the
+ // wrong class. This can happen with constraints like {xmm0} where the
+ // target independent register mapper will just pick the first match it can
+ // find, ignoring the required type.
+
+ // TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
+ if (VT == MVT::f32 || VT == MVT::i32)
+ Res.second = &X86::FR32RegClass;
+ else if (VT == MVT::f64 || VT == MVT::i64)
+ Res.second = &X86::FR64RegClass;
+ else if (TRI->isTypeLegalForClass(X86::VR128RegClass, VT))
+ Res.second = &X86::VR128RegClass;
+ else if (TRI->isTypeLegalForClass(X86::VR256RegClass, VT))
+ Res.second = &X86::VR256RegClass;
+ else if (TRI->isTypeLegalForClass(X86::VR512RegClass, VT))
+ Res.second = &X86::VR512RegClass;
+ else {
+ // Type mismatch and not a clobber: Return an error;
+ Res.first = 0;
+ Res.second = nullptr;
+ }
+ }
+
+ return Res;
+}
+
+int X86TargetLowering::getScalingFactorCost(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS) const {
+ // Scaling factors are not free at all.
+ // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
+ // will take 2 allocations in the out of order engine instead of 1
+ // for plain addressing mode, i.e. inst (reg1).
+ // E.g.,
+ // vaddps (%rsi,%drx), %ymm0, %ymm1
+ // Requires two allocations (one for the load, one for the computation)
+ // whereas:
+ // vaddps (%rsi), %ymm0, %ymm1
+ // Requires just 1 allocation, i.e., freeing allocations for other operations
+ // and having less micro operations to execute.
+ //
+ // For some X86 architectures, this is even worse because for instance for
+ // stores, the complex addressing mode forces the instruction to use the
+ // "load" ports instead of the dedicated "store" port.
+ // E.g., on Haswell:
+ // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
+ // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
+ if (isLegalAddressingMode(DL, AM, Ty, AS))
+ // Scale represents reg2 * scale, thus account for 1
+ // as soon as we use a second register.
+ return AM.Scale != 0;
+ return -1;
+}
+
+bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
+ // Integer division on x86 is expensive. However, when aggressively optimizing
+ // for code size, we prefer to use a div instruction, as it is usually smaller
+ // than the alternative sequence.
+ // The exception to this is vector division. Since x86 doesn't have vector
+ // integer division, leaving the division as-is is a loss even in terms of
+ // size, because it will have to be scalarized, while the alternative code
+ // sequence can be performed in vector form.
+ bool OptSize =
+ Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
+ return OptSize && !VT.isVector();
+}
+
+void X86TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
+ if (!Subtarget.is64Bit())
+ return;
+
+ // Update IsSplitCSR in X86MachineFunctionInfo.
+ X86MachineFunctionInfo *AFI =
+ Entry->getParent()->getInfo<X86MachineFunctionInfo>();
+ AFI->setIsSplitCSR(true);
+}
+
+void X86TargetLowering::insertCopiesSplitCSR(
+ MachineBasicBlock *Entry,
+ const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
+ const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
+ if (!IStart)
+ return;
+
+ const TargetInstrInfo *TII = Subtarget.getInstrInfo();
+ MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
+ MachineBasicBlock::iterator MBBI = Entry->begin();
+ for (const MCPhysReg *I = IStart; *I; ++I) {
+ const TargetRegisterClass *RC = nullptr;
+ if (X86::GR64RegClass.contains(*I))
+ RC = &X86::GR64RegClass;
+ else
+ llvm_unreachable("Unexpected register class in CSRsViaCopy!");
+
+ unsigned NewVR = MRI->createVirtualRegister(RC);
+ // Create copy from CSR to a virtual register.
+ // FIXME: this currently does not emit CFI pseudo-instructions, it works
+ // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
+ // nounwind. If we want to generalize this later, we may need to emit
+ // CFI pseudo-instructions.
+ assert(Entry->getParent()->getFunction().hasFnAttribute(
+ Attribute::NoUnwind) &&
+ "Function should be nounwind in insertCopiesSplitCSR!");
+ Entry->addLiveIn(*I);
+ BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
+ .addReg(*I);
+
+ // Insert the copy-back instructions right before the terminator.
+ for (auto *Exit : Exits)
+ BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
+ TII->get(TargetOpcode::COPY), *I)
+ .addReg(NewVR);
+ }
+}
+
+bool X86TargetLowering::supportSwiftError() const {
+ return Subtarget.is64Bit();
+}
+
+/// Returns the name of the symbol used to emit stack probes or the empty
+/// string if not applicable.
+StringRef X86TargetLowering::getStackProbeSymbolName(MachineFunction &MF) const {
+ // If the function specifically requests stack probes, emit them.
+ if (MF.getFunction().hasFnAttribute("probe-stack"))
+ return MF.getFunction().getFnAttribute("probe-stack").getValueAsString();
+
+ // Generally, if we aren't on Windows, the platform ABI does not include
+ // support for stack probes, so don't emit them.
+ if (!Subtarget.isOSWindows() || Subtarget.isTargetMachO())
+ return "";
+
+ // We need a stack probe to conform to the Windows ABI. Choose the right
+ // symbol.
+ if (Subtarget.is64Bit())
+ return Subtarget.isTargetCygMing() ? "___chkstk_ms" : "__chkstk";
+ return Subtarget.isTargetCygMing() ? "_alloca" : "_chkstk";
+}