diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelLowering.cpp')
| -rw-r--r-- | contrib/llvm/lib/Target/X86/X86ISelLowering.cpp | 38527 |
1 files changed, 38527 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp new file mode 100644 index 000000000000..9edd799779c7 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp @@ -0,0 +1,38527 @@ +//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that X86 uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#include "X86ISelLowering.h" +#include "Utils/X86ShuffleDecode.h" +#include "X86CallingConv.h" +#include "X86FrameLowering.h" +#include "X86InstrBuilder.h" +#include "X86IntrinsicsInfo.h" +#include "X86MachineFunctionInfo.h" +#include "X86ShuffleDecodeConstantPool.h" +#include "X86TargetMachine.h" +#include "X86TargetObjectFile.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/WinEHFuncInfo.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <bitset> +#include <cctype> +#include <numeric> +using namespace llvm; + +#define DEBUG_TYPE "x86-isel" + +STATISTIC(NumTailCalls, "Number of tail calls"); + +static cl::opt<bool> ExperimentalVectorWideningLegalization( + "x86-experimental-vector-widening-legalization", cl::init(false), + cl::desc("Enable an experimental vector type legalization through widening " + "rather than promotion."), + cl::Hidden); + +static cl::opt<int> ExperimentalPrefLoopAlignment( + "x86-experimental-pref-loop-alignment", cl::init(4), + cl::desc("Sets the preferable loop alignment for experiments " + "(the last x86-experimental-pref-loop-alignment bits" + " of the loop header PC will be 0)."), + cl::Hidden); + +static cl::opt<bool> MulConstantOptimization( + "mul-constant-optimization", cl::init(true), + cl::desc("Replace 'mul x, Const' with more effective instructions like " + "SHIFT, LEA, etc."), + cl::Hidden); + +/// Call this when the user attempts to do something unsupported, like +/// returning a double without SSE2 enabled on x86_64. This is not fatal, unlike +/// report_fatal_error, so calling code should attempt to recover without +/// crashing. +static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl, + const char *Msg) { + MachineFunction &MF = DAG.getMachineFunction(); + DAG.getContext()->diagnose( + DiagnosticInfoUnsupported(MF.getFunction(), Msg, dl.getDebugLoc())); +} + +X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM, + const X86Subtarget &STI) + : TargetLowering(TM), Subtarget(STI) { + bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87(); + X86ScalarSSEf64 = Subtarget.hasSSE2(); + X86ScalarSSEf32 = Subtarget.hasSSE1(); + MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); + + // Set up the TargetLowering object. + + // X86 is weird. It always uses i8 for shift amounts and setcc results. + setBooleanContents(ZeroOrOneBooleanContent); + // X86-SSE is even stranger. It uses -1 or 0 for vector masks. + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + + // For 64-bit, since we have so many registers, use the ILP scheduler. + // For 32-bit, use the register pressure specific scheduling. + // For Atom, always use ILP scheduling. + if (Subtarget.isAtom()) + setSchedulingPreference(Sched::ILP); + else if (Subtarget.is64Bit()) + setSchedulingPreference(Sched::ILP); + else + setSchedulingPreference(Sched::RegPressure); + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); + + // Bypass expensive divides and use cheaper ones. + if (TM.getOptLevel() >= CodeGenOpt::Default) { + if (Subtarget.hasSlowDivide32()) + addBypassSlowDiv(32, 8); + if (Subtarget.hasSlowDivide64() && Subtarget.is64Bit()) + addBypassSlowDiv(64, 32); + } + + if (Subtarget.isTargetKnownWindowsMSVC() || + Subtarget.isTargetWindowsItanium()) { + // Setup Windows compiler runtime calls. + setLibcallName(RTLIB::SDIV_I64, "_alldiv"); + setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); + setLibcallName(RTLIB::SREM_I64, "_allrem"); + setLibcallName(RTLIB::UREM_I64, "_aullrem"); + setLibcallName(RTLIB::MUL_I64, "_allmul"); + setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); + } + + if (Subtarget.isTargetDarwin()) { + // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. + setUseUnderscoreSetJmp(false); + setUseUnderscoreLongJmp(false); + } else if (Subtarget.isTargetWindowsGNU()) { + // MS runtime is weird: it exports _setjmp, but longjmp! + setUseUnderscoreSetJmp(true); + setUseUnderscoreLongJmp(false); + } else { + setUseUnderscoreSetJmp(true); + setUseUnderscoreLongJmp(true); + } + + // Set up the register classes. + addRegisterClass(MVT::i8, &X86::GR8RegClass); + addRegisterClass(MVT::i16, &X86::GR16RegClass); + addRegisterClass(MVT::i32, &X86::GR32RegClass); + if (Subtarget.is64Bit()) + addRegisterClass(MVT::i64, &X86::GR64RegClass); + + for (MVT VT : MVT::integer_valuetypes()) + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); + + // We don't accept any truncstore of integer registers. + setTruncStoreAction(MVT::i64, MVT::i32, Expand); + setTruncStoreAction(MVT::i64, MVT::i16, Expand); + setTruncStoreAction(MVT::i64, MVT::i8 , Expand); + setTruncStoreAction(MVT::i32, MVT::i16, Expand); + setTruncStoreAction(MVT::i32, MVT::i8 , Expand); + setTruncStoreAction(MVT::i16, MVT::i8, Expand); + + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + // SETOEQ and SETUNE require checking two conditions. + setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); + setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); + setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); + + // Integer absolute. + if (Subtarget.hasCMov()) { + setOperationAction(ISD::ABS , MVT::i16 , Custom); + setOperationAction(ISD::ABS , MVT::i32 , Custom); + if (Subtarget.is64Bit()) + setOperationAction(ISD::ABS , MVT::i64 , Custom); + } + + // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this + // operation. + setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); + + if (Subtarget.is64Bit()) { + if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) + // f32/f64 are legal, f80 is custom. + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); + else + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); + } else if (!Subtarget.useSoftFloat()) { + // We have an algorithm for SSE2->double, and we turn this into a + // 64-bit FILD followed by conditional FADD for other targets. + setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); + // We have an algorithm for SSE2, and we turn this into a 64-bit + // FILD or VCVTUSI2SS/SD for other targets. + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); + } + + // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have + // this operation. + setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); + + if (!Subtarget.useSoftFloat()) { + // SSE has no i16 to fp conversion, only i32. + if (X86ScalarSSEf32) { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); + // f32 and f64 cases are Legal, f80 case is not + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); + } else { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); + } + } else { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); + } + + // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have + // this operation. + setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); + + if (!Subtarget.useSoftFloat()) { + // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 + // are Legal, f80 is custom lowered. + setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); + setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); + + if (X86ScalarSSEf32) { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); + // f32 and f64 cases are Legal, f80 case is not + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); + } else { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); + } + } else { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Expand); + setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Expand); + } + + // Handle FP_TO_UINT by promoting the destination to a larger signed + // conversion. + setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); + + if (Subtarget.is64Bit()) { + if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) { + // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); + setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); + } else { + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); + } + } else if (!Subtarget.useSoftFloat()) { + // Since AVX is a superset of SSE3, only check for SSE here. + if (Subtarget.hasSSE1() && !Subtarget.hasSSE3()) + // Expand FP_TO_UINT into a select. + // FIXME: We would like to use a Custom expander here eventually to do + // the optimal thing for SSE vs. the default expansion in the legalizer. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); + else + // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom. + // With SSE3 we can use fisttpll to convert to a signed i64; without + // SSE, we're stuck with a fistpll. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); + + setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); + } + + // TODO: when we have SSE, these could be more efficient, by using movd/movq. + if (!X86ScalarSSEf64) { + setOperationAction(ISD::BITCAST , MVT::f32 , Expand); + setOperationAction(ISD::BITCAST , MVT::i32 , Expand); + if (Subtarget.is64Bit()) { + setOperationAction(ISD::BITCAST , MVT::f64 , Expand); + // Without SSE, i64->f64 goes through memory. + setOperationAction(ISD::BITCAST , MVT::i64 , Expand); + } + } else if (!Subtarget.is64Bit()) + setOperationAction(ISD::BITCAST , MVT::i64 , Custom); + + // Scalar integer divide and remainder are lowered to use operations that + // produce two results, to match the available instructions. This exposes + // the two-result form to trivial CSE, which is able to combine x/y and x%y + // into a single instruction. + // + // Scalar integer multiply-high is also lowered to use two-result + // operations, to match the available instructions. However, plain multiply + // (low) operations are left as Legal, as there are single-result + // instructions for this in x86. Using the two-result multiply instructions + // when both high and low results are needed must be arranged by dagcombine. + for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { + setOperationAction(ISD::MULHS, VT, Expand); + setOperationAction(ISD::MULHU, VT, Expand); + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + } + + setOperationAction(ISD::BR_JT , MVT::Other, Expand); + setOperationAction(ISD::BRCOND , MVT::Other, Custom); + for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128, + MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { + setOperationAction(ISD::BR_CC, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + } + if (Subtarget.is64Bit()) + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); + setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); + + setOperationAction(ISD::FREM , MVT::f32 , Expand); + setOperationAction(ISD::FREM , MVT::f64 , Expand); + setOperationAction(ISD::FREM , MVT::f80 , Expand); + setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); + + // Promote the i8 variants and force them on up to i32 which has a shorter + // encoding. + setOperationPromotedToType(ISD::CTTZ , MVT::i8 , MVT::i32); + setOperationPromotedToType(ISD::CTTZ_ZERO_UNDEF, MVT::i8 , MVT::i32); + if (!Subtarget.hasBMI()) { + setOperationAction(ISD::CTTZ , MVT::i16 , Custom); + setOperationAction(ISD::CTTZ , MVT::i32 , Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Legal); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Legal); + if (Subtarget.is64Bit()) { + setOperationAction(ISD::CTTZ , MVT::i64 , Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Legal); + } + } + + if (Subtarget.hasLZCNT()) { + // When promoting the i8 variants, force them to i32 for a shorter + // encoding. + setOperationPromotedToType(ISD::CTLZ , MVT::i8 , MVT::i32); + setOperationPromotedToType(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32); + } else { + setOperationAction(ISD::CTLZ , MVT::i8 , Custom); + setOperationAction(ISD::CTLZ , MVT::i16 , Custom); + setOperationAction(ISD::CTLZ , MVT::i32 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom); + if (Subtarget.is64Bit()) { + setOperationAction(ISD::CTLZ , MVT::i64 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); + } + } + + // Special handling for half-precision floating point conversions. + // If we don't have F16C support, then lower half float conversions + // into library calls. + if (Subtarget.useSoftFloat() || !Subtarget.hasF16C()) { + setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); + } + + // There's never any support for operations beyond MVT::f32. + setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); + setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand); + + setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand); + setTruncStoreAction(MVT::f32, MVT::f16, Expand); + setTruncStoreAction(MVT::f64, MVT::f16, Expand); + setTruncStoreAction(MVT::f80, MVT::f16, Expand); + + if (Subtarget.hasPOPCNT()) { + setOperationPromotedToType(ISD::CTPOP, MVT::i8, MVT::i32); + } else { + setOperationAction(ISD::CTPOP , MVT::i8 , Expand); + setOperationAction(ISD::CTPOP , MVT::i16 , Expand); + setOperationAction(ISD::CTPOP , MVT::i32 , Expand); + if (Subtarget.is64Bit()) + setOperationAction(ISD::CTPOP , MVT::i64 , Expand); + } + + setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); + + if (!Subtarget.hasMOVBE()) + setOperationAction(ISD::BSWAP , MVT::i16 , Expand); + + // These should be promoted to a larger select which is supported. + setOperationAction(ISD::SELECT , MVT::i1 , Promote); + // X86 wants to expand cmov itself. + for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128 }) { + setOperationAction(ISD::SELECT, VT, Custom); + setOperationAction(ISD::SETCC, VT, Custom); + } + for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { + if (VT == MVT::i64 && !Subtarget.is64Bit()) + continue; + setOperationAction(ISD::SELECT, VT, Custom); + setOperationAction(ISD::SETCC, VT, Custom); + } + + // Custom action for SELECT MMX and expand action for SELECT_CC MMX + setOperationAction(ISD::SELECT, MVT::x86mmx, Custom); + setOperationAction(ISD::SELECT_CC, MVT::x86mmx, Expand); + + setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); + // NOTE: EH_SJLJ_SETJMP/_LONGJMP are not recommended, since + // LLVM/Clang supports zero-cost DWARF and SEH exception handling. + setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); + setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); + setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); + if (TM.Options.ExceptionModel == ExceptionHandling::SjLj) + setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); + + // Darwin ABI issue. + for (auto VT : { MVT::i32, MVT::i64 }) { + if (VT == MVT::i64 && !Subtarget.is64Bit()) + continue; + setOperationAction(ISD::ConstantPool , VT, Custom); + setOperationAction(ISD::JumpTable , VT, Custom); + setOperationAction(ISD::GlobalAddress , VT, Custom); + setOperationAction(ISD::GlobalTLSAddress, VT, Custom); + setOperationAction(ISD::ExternalSymbol , VT, Custom); + setOperationAction(ISD::BlockAddress , VT, Custom); + } + + // 64-bit shl, sra, srl (iff 32-bit x86) + for (auto VT : { MVT::i32, MVT::i64 }) { + if (VT == MVT::i64 && !Subtarget.is64Bit()) + continue; + setOperationAction(ISD::SHL_PARTS, VT, Custom); + setOperationAction(ISD::SRA_PARTS, VT, Custom); + setOperationAction(ISD::SRL_PARTS, VT, Custom); + } + + if (Subtarget.hasSSEPrefetch() || Subtarget.has3DNow()) + setOperationAction(ISD::PREFETCH , MVT::Other, Legal); + + setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom); + + // Expand certain atomics + for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { + setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom); + setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); + setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom); + setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom); + setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom); + setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom); + setOperationAction(ISD::ATOMIC_STORE, VT, Custom); + } + + if (Subtarget.hasCmpxchg16b()) { + setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); + } + + // FIXME - use subtarget debug flags + if (!Subtarget.isTargetDarwin() && !Subtarget.isTargetELF() && + !Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64() && + TM.Options.ExceptionModel != ExceptionHandling::SjLj) { + setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); + } + + setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); + setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); + + setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); + setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); + + setOperationAction(ISD::TRAP, MVT::Other, Legal); + setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); + + // VASTART needs to be custom lowered to use the VarArgsFrameIndex + setOperationAction(ISD::VASTART , MVT::Other, Custom); + setOperationAction(ISD::VAEND , MVT::Other, Expand); + bool Is64Bit = Subtarget.is64Bit(); + setOperationAction(ISD::VAARG, MVT::Other, Is64Bit ? Custom : Expand); + setOperationAction(ISD::VACOPY, MVT::Other, Is64Bit ? Custom : Expand); + + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + + setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); + + // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering. + setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom); + setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom); + + if (!Subtarget.useSoftFloat() && X86ScalarSSEf64) { + // f32 and f64 use SSE. + // Set up the FP register classes. + addRegisterClass(MVT::f32, Subtarget.hasAVX512() ? &X86::FR32XRegClass + : &X86::FR32RegClass); + addRegisterClass(MVT::f64, Subtarget.hasAVX512() ? &X86::FR64XRegClass + : &X86::FR64RegClass); + + for (auto VT : { MVT::f32, MVT::f64 }) { + // Use ANDPD to simulate FABS. + setOperationAction(ISD::FABS, VT, Custom); + + // Use XORP to simulate FNEG. + setOperationAction(ISD::FNEG, VT, Custom); + + // Use ANDPD and ORPD to simulate FCOPYSIGN. + setOperationAction(ISD::FCOPYSIGN, VT, Custom); + + // We don't support sin/cos/fmod + setOperationAction(ISD::FSIN , VT, Expand); + setOperationAction(ISD::FCOS , VT, Expand); + setOperationAction(ISD::FSINCOS, VT, Expand); + } + + // Lower this to MOVMSK plus an AND. + setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); + setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); + + // Expand FP immediates into loads from the stack, except for the special + // cases we handle. + addLegalFPImmediate(APFloat(+0.0)); // xorpd + addLegalFPImmediate(APFloat(+0.0f)); // xorps + } else if (UseX87 && X86ScalarSSEf32) { + // Use SSE for f32, x87 for f64. + // Set up the FP register classes. + addRegisterClass(MVT::f32, &X86::FR32RegClass); + addRegisterClass(MVT::f64, &X86::RFP64RegClass); + + // Use ANDPS to simulate FABS. + setOperationAction(ISD::FABS , MVT::f32, Custom); + + // Use XORP to simulate FNEG. + setOperationAction(ISD::FNEG , MVT::f32, Custom); + + setOperationAction(ISD::UNDEF, MVT::f64, Expand); + + // Use ANDPS and ORPS to simulate FCOPYSIGN. + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + + // We don't support sin/cos/fmod + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + + // Special cases we handle for FP constants. + addLegalFPImmediate(APFloat(+0.0f)); // xorps + addLegalFPImmediate(APFloat(+0.0)); // FLD0 + addLegalFPImmediate(APFloat(+1.0)); // FLD1 + addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS + + // Always expand sin/cos functions even though x87 has an instruction. + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + } else if (UseX87) { + // f32 and f64 in x87. + // Set up the FP register classes. + addRegisterClass(MVT::f64, &X86::RFP64RegClass); + addRegisterClass(MVT::f32, &X86::RFP32RegClass); + + for (auto VT : { MVT::f32, MVT::f64 }) { + setOperationAction(ISD::UNDEF, VT, Expand); + setOperationAction(ISD::FCOPYSIGN, VT, Expand); + + // Always expand sin/cos functions even though x87 has an instruction. + setOperationAction(ISD::FSIN , VT, Expand); + setOperationAction(ISD::FCOS , VT, Expand); + setOperationAction(ISD::FSINCOS, VT, Expand); + } + addLegalFPImmediate(APFloat(+0.0)); // FLD0 + addLegalFPImmediate(APFloat(+1.0)); // FLD1 + addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS + addLegalFPImmediate(APFloat(+0.0f)); // FLD0 + addLegalFPImmediate(APFloat(+1.0f)); // FLD1 + addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS + } + + // We don't support FMA. + setOperationAction(ISD::FMA, MVT::f64, Expand); + setOperationAction(ISD::FMA, MVT::f32, Expand); + + // Long double always uses X87, except f128 in MMX. + if (UseX87) { + if (Subtarget.is64Bit() && Subtarget.hasMMX()) { + addRegisterClass(MVT::f128, &X86::FR128RegClass); + ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); + setOperationAction(ISD::FABS , MVT::f128, Custom); + setOperationAction(ISD::FNEG , MVT::f128, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom); + } + + addRegisterClass(MVT::f80, &X86::RFP80RegClass); + setOperationAction(ISD::UNDEF, MVT::f80, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); + { + APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended()); + addLegalFPImmediate(TmpFlt); // FLD0 + TmpFlt.changeSign(); + addLegalFPImmediate(TmpFlt); // FLD0/FCHS + + bool ignored; + APFloat TmpFlt2(+1.0); + TmpFlt2.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven, + &ignored); + addLegalFPImmediate(TmpFlt2); // FLD1 + TmpFlt2.changeSign(); + addLegalFPImmediate(TmpFlt2); // FLD1/FCHS + } + + // Always expand sin/cos functions even though x87 has an instruction. + setOperationAction(ISD::FSIN , MVT::f80, Expand); + setOperationAction(ISD::FCOS , MVT::f80, Expand); + setOperationAction(ISD::FSINCOS, MVT::f80, Expand); + + setOperationAction(ISD::FFLOOR, MVT::f80, Expand); + setOperationAction(ISD::FCEIL, MVT::f80, Expand); + setOperationAction(ISD::FTRUNC, MVT::f80, Expand); + setOperationAction(ISD::FRINT, MVT::f80, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); + setOperationAction(ISD::FMA, MVT::f80, Expand); + } + + // Always use a library call for pow. + setOperationAction(ISD::FPOW , MVT::f32 , Expand); + setOperationAction(ISD::FPOW , MVT::f64 , Expand); + setOperationAction(ISD::FPOW , MVT::f80 , Expand); + + setOperationAction(ISD::FLOG, MVT::f80, Expand); + setOperationAction(ISD::FLOG2, MVT::f80, Expand); + setOperationAction(ISD::FLOG10, MVT::f80, Expand); + setOperationAction(ISD::FEXP, MVT::f80, Expand); + setOperationAction(ISD::FEXP2, MVT::f80, Expand); + setOperationAction(ISD::FMINNUM, MVT::f80, Expand); + setOperationAction(ISD::FMAXNUM, MVT::f80, Expand); + + // Some FP actions are always expanded for vector types. + for (auto VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, + MVT::v2f64, MVT::v4f64, MVT::v8f64 }) { + setOperationAction(ISD::FSIN, VT, Expand); + setOperationAction(ISD::FSINCOS, VT, Expand); + setOperationAction(ISD::FCOS, VT, Expand); + setOperationAction(ISD::FREM, VT, Expand); + setOperationAction(ISD::FCOPYSIGN, VT, Expand); + setOperationAction(ISD::FPOW, VT, Expand); + setOperationAction(ISD::FLOG, VT, Expand); + setOperationAction(ISD::FLOG2, VT, Expand); + setOperationAction(ISD::FLOG10, VT, Expand); + setOperationAction(ISD::FEXP, VT, Expand); + setOperationAction(ISD::FEXP2, VT, Expand); + } + + // First set operation action for all vector types to either promote + // (for widening) or expand (for scalarization). Then we will selectively + // turn on ones that can be effectively codegen'd. + for (MVT VT : MVT::vector_valuetypes()) { + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); + setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); + setOperationAction(ISD::FMA, VT, Expand); + setOperationAction(ISD::FFLOOR, VT, Expand); + setOperationAction(ISD::FCEIL, VT, Expand); + setOperationAction(ISD::FTRUNC, VT, Expand); + setOperationAction(ISD::FRINT, VT, Expand); + setOperationAction(ISD::FNEARBYINT, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::MULHS, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + setOperationAction(ISD::MULHU, VT, Expand); + setOperationAction(ISD::SDIVREM, VT, Expand); + setOperationAction(ISD::UDIVREM, VT, Expand); + setOperationAction(ISD::CTPOP, VT, Expand); + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTLZ, VT, Expand); + setOperationAction(ISD::ROTL, VT, Expand); + setOperationAction(ISD::ROTR, VT, Expand); + setOperationAction(ISD::BSWAP, VT, Expand); + setOperationAction(ISD::SETCC, VT, Expand); + setOperationAction(ISD::FP_TO_UINT, VT, Expand); + setOperationAction(ISD::FP_TO_SINT, VT, Expand); + setOperationAction(ISD::UINT_TO_FP, VT, Expand); + setOperationAction(ISD::SINT_TO_FP, VT, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); + setOperationAction(ISD::TRUNCATE, VT, Expand); + setOperationAction(ISD::SIGN_EXTEND, VT, Expand); + setOperationAction(ISD::ZERO_EXTEND, VT, Expand); + setOperationAction(ISD::ANY_EXTEND, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + for (MVT InnerVT : MVT::vector_valuetypes()) { + setTruncStoreAction(InnerVT, VT, Expand); + + setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand); + + // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like + // types, we have to deal with them whether we ask for Expansion or not. + // Setting Expand causes its own optimisation problems though, so leave + // them legal. + if (VT.getVectorElementType() == MVT::i1) + setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); + + // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are + // split/scalarized right now. + if (VT.getVectorElementType() == MVT::f16) + setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); + } + } + + // FIXME: In order to prevent SSE instructions being expanded to MMX ones + // with -msoft-float, disable use of MMX as well. + if (!Subtarget.useSoftFloat() && Subtarget.hasMMX()) { + addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); + // No operations on x86mmx supported, everything uses intrinsics. + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasSSE1()) { + addRegisterClass(MVT::v4f32, Subtarget.hasVLX() ? &X86::VR128XRegClass + : &X86::VR128RegClass); + + setOperationAction(ISD::FNEG, MVT::v4f32, Custom); + setOperationAction(ISD::FABS, MVT::v4f32, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); + setOperationAction(ISD::VSELECT, MVT::v4f32, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); + setOperationAction(ISD::SELECT, MVT::v4f32, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasSSE2()) { + addRegisterClass(MVT::v2f64, Subtarget.hasVLX() ? &X86::VR128XRegClass + : &X86::VR128RegClass); + + // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM + // registers cannot be used even for integer operations. + addRegisterClass(MVT::v16i8, Subtarget.hasVLX() ? &X86::VR128XRegClass + : &X86::VR128RegClass); + addRegisterClass(MVT::v8i16, Subtarget.hasVLX() ? &X86::VR128XRegClass + : &X86::VR128RegClass); + addRegisterClass(MVT::v4i32, Subtarget.hasVLX() ? &X86::VR128XRegClass + : &X86::VR128RegClass); + addRegisterClass(MVT::v2i64, Subtarget.hasVLX() ? &X86::VR128XRegClass + : &X86::VR128RegClass); + + setOperationAction(ISD::MUL, MVT::v16i8, Custom); + setOperationAction(ISD::MUL, MVT::v4i32, Custom); + setOperationAction(ISD::MUL, MVT::v2i64, Custom); + setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom); + setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom); + setOperationAction(ISD::MULHU, MVT::v16i8, Custom); + setOperationAction(ISD::MULHS, MVT::v16i8, Custom); + setOperationAction(ISD::MULHU, MVT::v8i16, Legal); + setOperationAction(ISD::MULHS, MVT::v8i16, Legal); + setOperationAction(ISD::MUL, MVT::v8i16, Legal); + setOperationAction(ISD::FNEG, MVT::v2f64, Custom); + setOperationAction(ISD::FABS, MVT::v2f64, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Custom); + + setOperationAction(ISD::SMAX, MVT::v8i16, Legal); + setOperationAction(ISD::UMAX, MVT::v16i8, Legal); + setOperationAction(ISD::SMIN, MVT::v8i16, Legal); + setOperationAction(ISD::UMIN, MVT::v16i8, Legal); + + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); + + for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { + setOperationAction(ISD::SETCC, VT, Custom); + setOperationAction(ISD::CTPOP, VT, Custom); + setOperationAction(ISD::CTTZ, VT, Custom); + } + + for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { + setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + } + + // We support custom legalizing of sext and anyext loads for specific + // memory vector types which we can load as a scalar (or sequence of + // scalars) and extend in-register to a legal 128-bit vector type. For sext + // loads these must work with a single scalar load. + for (MVT VT : MVT::integer_vector_valuetypes()) { + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom); + } + + for (auto VT : { MVT::v2f64, MVT::v2i64 }) { + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Custom); + + if (VT == MVT::v2i64 && !Subtarget.is64Bit()) + continue; + + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + } + + // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. + for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { + setOperationPromotedToType(ISD::AND, VT, MVT::v2i64); + setOperationPromotedToType(ISD::OR, VT, MVT::v2i64); + setOperationPromotedToType(ISD::XOR, VT, MVT::v2i64); + setOperationPromotedToType(ISD::LOAD, VT, MVT::v2i64); + setOperationPromotedToType(ISD::SELECT, VT, MVT::v2i64); + } + + // Custom lower v2i64 and v2f64 selects. + setOperationAction(ISD::SELECT, MVT::v2f64, Custom); + setOperationAction(ISD::SELECT, MVT::v2i64, Custom); + + setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); + setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom); + + setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); + + setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); + + // Fast v2f32 UINT_TO_FP( v2i32 ) custom conversion. + setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom); + + setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); + setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom); + + for (MVT VT : MVT::fp_vector_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal); + + setOperationAction(ISD::BITCAST, MVT::v2i32, Custom); + setOperationAction(ISD::BITCAST, MVT::v4i16, Custom); + setOperationAction(ISD::BITCAST, MVT::v8i8, Custom); + + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom); + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom); + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom); + + // In the customized shift lowering, the legal v4i32/v2i64 cases + // in AVX2 will be recognized. + for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { + setOperationAction(ISD::SRL, VT, Custom); + setOperationAction(ISD::SHL, VT, Custom); + setOperationAction(ISD::SRA, VT, Custom); + } + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasSSSE3()) { + setOperationAction(ISD::ABS, MVT::v16i8, Legal); + setOperationAction(ISD::ABS, MVT::v8i16, Legal); + setOperationAction(ISD::ABS, MVT::v4i32, Legal); + setOperationAction(ISD::BITREVERSE, MVT::v16i8, Custom); + setOperationAction(ISD::CTLZ, MVT::v16i8, Custom); + setOperationAction(ISD::CTLZ, MVT::v8i16, Custom); + setOperationAction(ISD::CTLZ, MVT::v4i32, Custom); + setOperationAction(ISD::CTLZ, MVT::v2i64, Custom); + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasSSE41()) { + for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { + setOperationAction(ISD::FFLOOR, RoundedTy, Legal); + setOperationAction(ISD::FCEIL, RoundedTy, Legal); + setOperationAction(ISD::FTRUNC, RoundedTy, Legal); + setOperationAction(ISD::FRINT, RoundedTy, Legal); + setOperationAction(ISD::FNEARBYINT, RoundedTy, Legal); + } + + setOperationAction(ISD::SMAX, MVT::v16i8, Legal); + setOperationAction(ISD::SMAX, MVT::v4i32, Legal); + setOperationAction(ISD::UMAX, MVT::v8i16, Legal); + setOperationAction(ISD::UMAX, MVT::v4i32, Legal); + setOperationAction(ISD::SMIN, MVT::v16i8, Legal); + setOperationAction(ISD::SMIN, MVT::v4i32, Legal); + setOperationAction(ISD::UMIN, MVT::v8i16, Legal); + setOperationAction(ISD::UMIN, MVT::v4i32, Legal); + + // FIXME: Do we need to handle scalar-to-vector here? + setOperationAction(ISD::MUL, MVT::v4i32, Legal); + + // We directly match byte blends in the backend as they match the VSELECT + // condition form. + setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); + + // SSE41 brings specific instructions for doing vector sign extend even in + // cases where we don't have SRA. + for (auto VT : { MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Legal); + setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Legal); + } + + for (MVT VT : MVT::integer_vector_valuetypes()) { + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom); + } + + // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X + for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) { + setLoadExtAction(LoadExtOp, MVT::v8i16, MVT::v8i8, Legal); + setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i8, Legal); + setLoadExtAction(LoadExtOp, MVT::v2i32, MVT::v2i8, Legal); + setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i8, Legal); + setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i16, Legal); + setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i16, Legal); + setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i32, Legal); + } + + // i8 vectors are custom because the source register and source + // source memory operand types are not the same width. + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasXOP()) { + for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, + MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) + setOperationAction(ISD::ROTL, VT, Custom); + + // XOP can efficiently perform BITREVERSE with VPPERM. + for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) + setOperationAction(ISD::BITREVERSE, VT, Custom); + + for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, + MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) + setOperationAction(ISD::BITREVERSE, VT, Custom); + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasFp256()) { + bool HasInt256 = Subtarget.hasInt256(); + + addRegisterClass(MVT::v32i8, Subtarget.hasVLX() ? &X86::VR256XRegClass + : &X86::VR256RegClass); + addRegisterClass(MVT::v16i16, Subtarget.hasVLX() ? &X86::VR256XRegClass + : &X86::VR256RegClass); + addRegisterClass(MVT::v8i32, Subtarget.hasVLX() ? &X86::VR256XRegClass + : &X86::VR256RegClass); + addRegisterClass(MVT::v8f32, Subtarget.hasVLX() ? &X86::VR256XRegClass + : &X86::VR256RegClass); + addRegisterClass(MVT::v4i64, Subtarget.hasVLX() ? &X86::VR256XRegClass + : &X86::VR256RegClass); + addRegisterClass(MVT::v4f64, Subtarget.hasVLX() ? &X86::VR256XRegClass + : &X86::VR256RegClass); + + for (auto VT : { MVT::v8f32, MVT::v4f64 }) { + setOperationAction(ISD::FFLOOR, VT, Legal); + setOperationAction(ISD::FCEIL, VT, Legal); + setOperationAction(ISD::FTRUNC, VT, Legal); + setOperationAction(ISD::FRINT, VT, Legal); + setOperationAction(ISD::FNEARBYINT, VT, Legal); + setOperationAction(ISD::FNEG, VT, Custom); + setOperationAction(ISD::FABS, VT, Custom); + setOperationAction(ISD::FCOPYSIGN, VT, Custom); + } + + // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted + // even though v8i16 is a legal type. + setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote); + setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote); + setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); + + setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); + setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal); + + for (MVT VT : MVT::fp_vector_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal); + + // In the customized shift lowering, the legal v8i32/v4i64 cases + // in AVX2 will be recognized. + for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) { + setOperationAction(ISD::SRL, VT, Custom); + setOperationAction(ISD::SHL, VT, Custom); + setOperationAction(ISD::SRA, VT, Custom); + } + + setOperationAction(ISD::SELECT, MVT::v4f64, Custom); + setOperationAction(ISD::SELECT, MVT::v4i64, Custom); + setOperationAction(ISD::SELECT, MVT::v8f32, Custom); + + for (auto VT : { MVT::v16i16, MVT::v8i32, MVT::v4i64 }) { + setOperationAction(ISD::SIGN_EXTEND, VT, Custom); + setOperationAction(ISD::ZERO_EXTEND, VT, Custom); + setOperationAction(ISD::ANY_EXTEND, VT, Custom); + } + + setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom); + setOperationAction(ISD::BITREVERSE, MVT::v32i8, Custom); + + for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) { + setOperationAction(ISD::SETCC, VT, Custom); + setOperationAction(ISD::CTPOP, VT, Custom); + setOperationAction(ISD::CTTZ, VT, Custom); + setOperationAction(ISD::CTLZ, VT, Custom); + } + + if (Subtarget.hasAnyFMA()) { + for (auto VT : { MVT::f32, MVT::f64, MVT::v4f32, MVT::v8f32, + MVT::v2f64, MVT::v4f64 }) + setOperationAction(ISD::FMA, VT, Legal); + } + + for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) { + setOperationAction(ISD::ADD, VT, HasInt256 ? Legal : Custom); + setOperationAction(ISD::SUB, VT, HasInt256 ? Legal : Custom); + } + + setOperationAction(ISD::MUL, MVT::v4i64, Custom); + setOperationAction(ISD::MUL, MVT::v8i32, HasInt256 ? Legal : Custom); + setOperationAction(ISD::MUL, MVT::v16i16, HasInt256 ? Legal : Custom); + setOperationAction(ISD::MUL, MVT::v32i8, Custom); + + setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom); + setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom); + + setOperationAction(ISD::MULHU, MVT::v16i16, HasInt256 ? Legal : Custom); + setOperationAction(ISD::MULHS, MVT::v16i16, HasInt256 ? Legal : Custom); + setOperationAction(ISD::MULHU, MVT::v32i8, Custom); + setOperationAction(ISD::MULHS, MVT::v32i8, Custom); + + for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) { + setOperationAction(ISD::ABS, VT, HasInt256 ? Legal : Custom); + setOperationAction(ISD::SMAX, VT, HasInt256 ? Legal : Custom); + setOperationAction(ISD::UMAX, VT, HasInt256 ? Legal : Custom); + setOperationAction(ISD::SMIN, VT, HasInt256 ? Legal : Custom); + setOperationAction(ISD::UMIN, VT, HasInt256 ? Legal : Custom); + } + + if (HasInt256) { + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i64, Custom); + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i32, Custom); + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i16, Custom); + + // The custom lowering for UINT_TO_FP for v8i32 becomes interesting + // when we have a 256bit-wide blend with immediate. + setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom); + + // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X + for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) { + setLoadExtAction(LoadExtOp, MVT::v16i16, MVT::v16i8, Legal); + setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i8, Legal); + setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i8, Legal); + setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i16, Legal); + setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i16, Legal); + setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i32, Legal); + } + } + + for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64, + MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) { + setOperationAction(ISD::MLOAD, VT, Legal); + setOperationAction(ISD::MSTORE, VT, Legal); + } + + // Extract subvector is special because the value type + // (result) is 128-bit but the source is 256-bit wide. + for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, + MVT::v4f32, MVT::v2f64 }) { + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); + } + + // Custom lower several nodes for 256-bit types. + for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, + MVT::v8f32, MVT::v4f64 }) { + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal); + setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); + } + + if (HasInt256) + setOperationAction(ISD::VSELECT, MVT::v32i8, Legal); + + // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. + for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) { + setOperationPromotedToType(ISD::AND, VT, MVT::v4i64); + setOperationPromotedToType(ISD::OR, VT, MVT::v4i64); + setOperationPromotedToType(ISD::XOR, VT, MVT::v4i64); + setOperationPromotedToType(ISD::LOAD, VT, MVT::v4i64); + setOperationPromotedToType(ISD::SELECT, VT, MVT::v4i64); + } + + if (HasInt256) { + // Custom legalize 2x32 to get a little better code. + setOperationAction(ISD::MGATHER, MVT::v2f32, Custom); + setOperationAction(ISD::MGATHER, MVT::v2i32, Custom); + + for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64, + MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) + setOperationAction(ISD::MGATHER, VT, Custom); + } + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) { + addRegisterClass(MVT::v16i32, &X86::VR512RegClass); + addRegisterClass(MVT::v16f32, &X86::VR512RegClass); + addRegisterClass(MVT::v8i64, &X86::VR512RegClass); + addRegisterClass(MVT::v8f64, &X86::VR512RegClass); + + addRegisterClass(MVT::v1i1, &X86::VK1RegClass); + addRegisterClass(MVT::v8i1, &X86::VK8RegClass); + addRegisterClass(MVT::v16i1, &X86::VK16RegClass); + + setOperationAction(ISD::SELECT, MVT::v1i1, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v1i1, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v1i1, Custom); + + setOperationAction(ISD::SINT_TO_FP, MVT::v16i1, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v16i1, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::v8i1, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v8i1, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::v2i1, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v2i1, Custom); + + // Extends of v16i1/v8i1 to 128-bit vectors. + setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v16i8, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v16i8, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v8i16, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v8i16, Custom); + + for (auto VT : { MVT::v8i1, MVT::v16i1 }) { + setOperationAction(ISD::ADD, VT, Custom); + setOperationAction(ISD::SUB, VT, Custom); + setOperationAction(ISD::MUL, VT, Custom); + setOperationAction(ISD::SETCC, VT, Custom); + setOperationAction(ISD::SELECT, VT, Custom); + setOperationAction(ISD::TRUNCATE, VT, Custom); + + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Expand); + } + + setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v16i1, Custom); + for (auto VT : { MVT::v1i1, MVT::v2i1, MVT::v4i1, MVT::v8i1, + MVT::v16i1, MVT::v32i1, MVT::v64i1 }) + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); + + for (MVT VT : MVT::fp_vector_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal); + + for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) { + setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i8, Legal); + setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i16, Legal); + setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i8, Legal); + setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i16, Legal); + setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i32, Legal); + } + + for (MVT VT : {MVT::v2i64, MVT::v4i32, MVT::v8i32, MVT::v4i64, MVT::v8i16, + MVT::v16i8, MVT::v16i16, MVT::v32i8, MVT::v16i32, + MVT::v8i64, MVT::v32i16, MVT::v64i8}) { + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + setLoadExtAction(ISD::SEXTLOAD, VT, MaskVT, Custom); + setLoadExtAction(ISD::ZEXTLOAD, VT, MaskVT, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MaskVT, Custom); + setTruncStoreAction(VT, MaskVT, Custom); + } + + for (MVT VT : { MVT::v16f32, MVT::v8f64 }) { + setOperationAction(ISD::FNEG, VT, Custom); + setOperationAction(ISD::FABS, VT, Custom); + setOperationAction(ISD::FMA, VT, Legal); + setOperationAction(ISD::FCOPYSIGN, VT, Custom); + } + + setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal); + setOperationAction(ISD::FP_TO_SINT, MVT::v16i16, Promote); + setOperationAction(ISD::FP_TO_SINT, MVT::v16i8, Promote); + setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v16i8, Promote); + setOperationAction(ISD::FP_TO_UINT, MVT::v16i16, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal); + + setTruncStoreAction(MVT::v8i64, MVT::v8i8, Legal); + setTruncStoreAction(MVT::v8i64, MVT::v8i16, Legal); + setTruncStoreAction(MVT::v8i64, MVT::v8i32, Legal); + setTruncStoreAction(MVT::v16i32, MVT::v16i8, Legal); + setTruncStoreAction(MVT::v16i32, MVT::v16i16, Legal); + + if (!Subtarget.hasVLX()) { + // With 512-bit vectors and no VLX, we prefer to widen MLOAD/MSTORE + // to 512-bit rather than use the AVX2 instructions so that we can use + // k-masks. + for (auto VT : {MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64, + MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64}) { + setOperationAction(ISD::MLOAD, VT, Custom); + setOperationAction(ISD::MSTORE, VT, Custom); + } + } + + setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v16i32, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v8i64, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom); + + for (auto VT : { MVT::v16f32, MVT::v8f64 }) { + setOperationAction(ISD::FFLOOR, VT, Legal); + setOperationAction(ISD::FCEIL, VT, Legal); + setOperationAction(ISD::FTRUNC, VT, Legal); + setOperationAction(ISD::FRINT, VT, Legal); + setOperationAction(ISD::FNEARBYINT, VT, Legal); + } + + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i64, Custom); + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i32, Custom); + + // Without BWI we need to use custom lowering to handle MVT::v64i8 input. + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v64i8, Custom); + setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, MVT::v64i8, Custom); + + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom); + + setOperationAction(ISD::MUL, MVT::v8i64, Custom); + setOperationAction(ISD::MUL, MVT::v16i32, Legal); + + setOperationAction(ISD::UMUL_LOHI, MVT::v16i32, Custom); + setOperationAction(ISD::SMUL_LOHI, MVT::v16i32, Custom); + + setOperationAction(ISD::SELECT, MVT::v8f64, Custom); + setOperationAction(ISD::SELECT, MVT::v8i64, Custom); + setOperationAction(ISD::SELECT, MVT::v16f32, Custom); + + for (auto VT : { MVT::v16i32, MVT::v8i64 }) { + setOperationAction(ISD::SMAX, VT, Legal); + setOperationAction(ISD::UMAX, VT, Legal); + setOperationAction(ISD::SMIN, VT, Legal); + setOperationAction(ISD::UMIN, VT, Legal); + setOperationAction(ISD::ABS, VT, Legal); + setOperationAction(ISD::SRL, VT, Custom); + setOperationAction(ISD::SHL, VT, Custom); + setOperationAction(ISD::SRA, VT, Custom); + setOperationAction(ISD::CTPOP, VT, Custom); + setOperationAction(ISD::CTTZ, VT, Custom); + setOperationAction(ISD::ROTL, VT, Custom); + setOperationAction(ISD::ROTR, VT, Custom); + } + + // Need to promote to 64-bit even though we have 32-bit masked instructions + // because the IR optimizers rearrange bitcasts around logic ops leaving + // too many variations to handle if we don't promote them. + setOperationPromotedToType(ISD::AND, MVT::v16i32, MVT::v8i64); + setOperationPromotedToType(ISD::OR, MVT::v16i32, MVT::v8i64); + setOperationPromotedToType(ISD::XOR, MVT::v16i32, MVT::v8i64); + + if (Subtarget.hasDQI()) { + setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal); + setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal); + } + + if (Subtarget.hasCDI()) { + // NonVLX sub-targets extend 128/256 vectors to use the 512 version. + for (auto VT : { MVT::v16i32, MVT::v8i64} ) { + setOperationAction(ISD::CTLZ, VT, Legal); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); + } + } // Subtarget.hasCDI() + + if (Subtarget.hasVPOPCNTDQ()) { + for (auto VT : { MVT::v16i32, MVT::v8i64 }) + setOperationAction(ISD::CTPOP, VT, Legal); + } + + // Extract subvector is special because the value type + // (result) is 256-bit but the source is 512-bit wide. + // 128-bit was made Legal under AVX1. + for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, + MVT::v8f32, MVT::v4f64 }) + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); + + for (auto VT : { MVT::v16i32, MVT::v8i64, MVT::v16f32, MVT::v8f64 }) { + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal); + setOperationAction(ISD::MLOAD, VT, Legal); + setOperationAction(ISD::MSTORE, VT, Legal); + setOperationAction(ISD::MGATHER, VT, Custom); + setOperationAction(ISD::MSCATTER, VT, Custom); + } + for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) { + setOperationPromotedToType(ISD::LOAD, VT, MVT::v8i64); + setOperationPromotedToType(ISD::SELECT, VT, MVT::v8i64); + } + }// has AVX-512 + + if (!Subtarget.useSoftFloat() && + (Subtarget.hasAVX512() || Subtarget.hasVLX())) { + // These operations are handled on non-VLX by artificially widening in + // isel patterns. + // TODO: Custom widen in lowering on non-VLX and drop the isel patterns? + + setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); + + for (auto VT : { MVT::v2i64, MVT::v4i64 }) { + setOperationAction(ISD::SMAX, VT, Legal); + setOperationAction(ISD::UMAX, VT, Legal); + setOperationAction(ISD::SMIN, VT, Legal); + setOperationAction(ISD::UMIN, VT, Legal); + setOperationAction(ISD::ABS, VT, Legal); + } + + for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) { + setOperationAction(ISD::ROTL, VT, Custom); + setOperationAction(ISD::ROTR, VT, Custom); + } + + for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64, + MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) + setOperationAction(ISD::MSCATTER, VT, Custom); + + if (Subtarget.hasDQI()) { + for (auto VT : { MVT::v2i64, MVT::v4i64 }) { + setOperationAction(ISD::SINT_TO_FP, VT, Legal); + setOperationAction(ISD::UINT_TO_FP, VT, Legal); + setOperationAction(ISD::FP_TO_SINT, VT, Legal); + setOperationAction(ISD::FP_TO_UINT, VT, Legal); + } + } + + if (Subtarget.hasCDI()) { + for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) { + setOperationAction(ISD::CTLZ, VT, Legal); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); + } + } // Subtarget.hasCDI() + + if (Subtarget.hasVPOPCNTDQ()) { + for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) + setOperationAction(ISD::CTPOP, VT, Legal); + } + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) { + addRegisterClass(MVT::v32i16, &X86::VR512RegClass); + addRegisterClass(MVT::v64i8, &X86::VR512RegClass); + + addRegisterClass(MVT::v32i1, &X86::VK32RegClass); + addRegisterClass(MVT::v64i1, &X86::VK64RegClass); + + for (auto VT : { MVT::v32i1, MVT::v64i1 }) { + setOperationAction(ISD::ADD, VT, Custom); + setOperationAction(ISD::SUB, VT, Custom); + setOperationAction(ISD::MUL, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Expand); + + setOperationAction(ISD::TRUNCATE, VT, Custom); + setOperationAction(ISD::SETCC, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::SELECT, VT, Custom); + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + } + + setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i1, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i1, Custom); + + // Extends from v32i1 masks to 256-bit vectors. + setOperationAction(ISD::SIGN_EXTEND, MVT::v32i8, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v32i8, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v32i8, Custom); + // Extends from v64i1 masks to 512-bit vectors. + setOperationAction(ISD::SIGN_EXTEND, MVT::v64i8, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v64i8, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v64i8, Custom); + + setOperationAction(ISD::MUL, MVT::v32i16, Legal); + setOperationAction(ISD::MUL, MVT::v64i8, Custom); + setOperationAction(ISD::MULHS, MVT::v32i16, Legal); + setOperationAction(ISD::MULHU, MVT::v32i16, Legal); + setOperationAction(ISD::MULHS, MVT::v64i8, Custom); + setOperationAction(ISD::MULHU, MVT::v64i8, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i16, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i8, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i16, Legal); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i8, Legal); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i16, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v64i8, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v32i16, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v32i16, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v32i16, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i8, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v32i8, Custom); + setOperationAction(ISD::BITREVERSE, MVT::v64i8, Custom); + + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v32i16, Custom); + + setTruncStoreAction(MVT::v32i16, MVT::v32i8, Legal); + + for (auto VT : { MVT::v64i8, MVT::v32i16 }) { + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Custom); + setOperationAction(ISD::ABS, VT, Legal); + setOperationAction(ISD::SRL, VT, Custom); + setOperationAction(ISD::SHL, VT, Custom); + setOperationAction(ISD::SRA, VT, Custom); + setOperationAction(ISD::MLOAD, VT, Legal); + setOperationAction(ISD::MSTORE, VT, Legal); + setOperationAction(ISD::CTPOP, VT, Custom); + setOperationAction(ISD::CTTZ, VT, Custom); + setOperationAction(ISD::CTLZ, VT, Custom); + setOperationAction(ISD::SMAX, VT, Legal); + setOperationAction(ISD::UMAX, VT, Legal); + setOperationAction(ISD::SMIN, VT, Legal); + setOperationAction(ISD::UMIN, VT, Legal); + + setOperationPromotedToType(ISD::AND, VT, MVT::v8i64); + setOperationPromotedToType(ISD::OR, VT, MVT::v8i64); + setOperationPromotedToType(ISD::XOR, VT, MVT::v8i64); + } + + for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) { + setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8, Legal); + } + + if (Subtarget.hasBITALG()) { + for (auto VT : { MVT::v64i8, MVT::v32i16 }) + setOperationAction(ISD::CTPOP, VT, Legal); + } + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasBWI() && + (Subtarget.hasAVX512() || Subtarget.hasVLX())) { + for (auto VT : { MVT::v32i8, MVT::v16i8, MVT::v16i16, MVT::v8i16 }) { + setOperationAction(ISD::MLOAD, VT, Subtarget.hasVLX() ? Legal : Custom); + setOperationAction(ISD::MSTORE, VT, Subtarget.hasVLX() ? Legal : Custom); + } + + // These operations are handled on non-VLX by artificially widening in + // isel patterns. + // TODO: Custom widen in lowering on non-VLX and drop the isel patterns? + + if (Subtarget.hasBITALG()) { + for (auto VT : { MVT::v16i8, MVT::v32i8, MVT::v8i16, MVT::v16i16 }) + setOperationAction(ISD::CTPOP, VT, Legal); + } + } + + if (!Subtarget.useSoftFloat() && Subtarget.hasVLX()) { + addRegisterClass(MVT::v4i1, &X86::VK4RegClass); + addRegisterClass(MVT::v2i1, &X86::VK2RegClass); + + for (auto VT : { MVT::v2i1, MVT::v4i1 }) { + setOperationAction(ISD::ADD, VT, Custom); + setOperationAction(ISD::SUB, VT, Custom); + setOperationAction(ISD::MUL, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Expand); + + setOperationAction(ISD::TRUNCATE, VT, Custom); + setOperationAction(ISD::SETCC, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::SELECT, VT, Custom); + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + } + + // TODO: v8i1 concat should be legal without VLX to support concats of + // v1i1, but we won't legalize it correctly currently without introducing + // a v4i1 concat in the middle. + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i1, Custom); + + // Extends from v2i1/v4i1 masks to 128-bit vectors. + setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v2i64, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v2i64, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v2i64, Custom); + + setTruncStoreAction(MVT::v4i64, MVT::v4i8, Legal); + setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal); + setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal); + setTruncStoreAction(MVT::v8i32, MVT::v8i8, Legal); + setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal); + + setTruncStoreAction(MVT::v2i64, MVT::v2i8, Legal); + setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal); + setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal); + setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal); + setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); + + if (Subtarget.hasDQI()) { + // Fast v2f32 SINT_TO_FP( v2i64 ) custom conversion. + // v2f32 UINT_TO_FP is already custom under SSE2. + setOperationAction(ISD::SINT_TO_FP, MVT::v2f32, Custom); + assert(isOperationCustom(ISD::UINT_TO_FP, MVT::v2f32) && + "Unexpected operation action!"); + // v2i64 FP_TO_S/UINT(v2f32) custom conversion. + setOperationAction(ISD::FP_TO_SINT, MVT::v2f32, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::v2f32, Custom); + } + + if (Subtarget.hasBWI()) { + setTruncStoreAction(MVT::v16i16, MVT::v16i8, Legal); + setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); + } + } + + // We want to custom lower some of our intrinsics. + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); + if (!Subtarget.is64Bit()) { + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); + } + + // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't + // handle type legalization for these operations here. + // + // FIXME: We really should do custom legalization for addition and + // subtraction on x86-32 once PR3203 is fixed. We really can't do much better + // than generic legalization for 64-bit multiplication-with-overflow, though. + for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { + if (VT == MVT::i64 && !Subtarget.is64Bit()) + continue; + // Add/Sub/Mul with overflow operations are custom lowered. + setOperationAction(ISD::SADDO, VT, Custom); + setOperationAction(ISD::UADDO, VT, Custom); + setOperationAction(ISD::SSUBO, VT, Custom); + setOperationAction(ISD::USUBO, VT, Custom); + setOperationAction(ISD::SMULO, VT, Custom); + setOperationAction(ISD::UMULO, VT, Custom); + + // Support carry in as value rather than glue. + setOperationAction(ISD::ADDCARRY, VT, Custom); + setOperationAction(ISD::SUBCARRY, VT, Custom); + setOperationAction(ISD::SETCCCARRY, VT, Custom); + } + + if (!Subtarget.is64Bit()) { + // These libcalls are not available in 32-bit. + setLibcallName(RTLIB::SHL_I128, nullptr); + setLibcallName(RTLIB::SRL_I128, nullptr); + setLibcallName(RTLIB::SRA_I128, nullptr); + setLibcallName(RTLIB::MUL_I128, nullptr); + } + + // Combine sin / cos into _sincos_stret if it is available. + if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && + getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { + setOperationAction(ISD::FSINCOS, MVT::f64, Custom); + setOperationAction(ISD::FSINCOS, MVT::f32, Custom); + } + + if (Subtarget.isTargetWin64()) { + setOperationAction(ISD::SDIV, MVT::i128, Custom); + setOperationAction(ISD::UDIV, MVT::i128, Custom); + setOperationAction(ISD::SREM, MVT::i128, Custom); + setOperationAction(ISD::UREM, MVT::i128, Custom); + setOperationAction(ISD::SDIVREM, MVT::i128, Custom); + setOperationAction(ISD::UDIVREM, MVT::i128, Custom); + } + + // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)` + // is. We should promote the value to 64-bits to solve this. + // This is what the CRT headers do - `fmodf` is an inline header + // function casting to f64 and calling `fmod`. + if (Subtarget.is32Bit() && (Subtarget.isTargetKnownWindowsMSVC() || + Subtarget.isTargetWindowsItanium())) + for (ISD::NodeType Op : + {ISD::FCEIL, ISD::FCOS, ISD::FEXP, ISD::FFLOOR, ISD::FREM, ISD::FLOG, + ISD::FLOG10, ISD::FPOW, ISD::FSIN}) + if (isOperationExpand(Op, MVT::f32)) + setOperationAction(Op, MVT::f32, Promote); + + // We have target-specific dag combine patterns for the following nodes: + setTargetDAGCombine(ISD::VECTOR_SHUFFLE); + setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); + setTargetDAGCombine(ISD::INSERT_SUBVECTOR); + setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR); + setTargetDAGCombine(ISD::BITCAST); + setTargetDAGCombine(ISD::VSELECT); + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::SHL); + setTargetDAGCombine(ISD::SRA); + setTargetDAGCombine(ISD::SRL); + setTargetDAGCombine(ISD::OR); + setTargetDAGCombine(ISD::AND); + setTargetDAGCombine(ISD::ADD); + setTargetDAGCombine(ISD::FADD); + setTargetDAGCombine(ISD::FSUB); + setTargetDAGCombine(ISD::FNEG); + setTargetDAGCombine(ISD::FMA); + setTargetDAGCombine(ISD::FMINNUM); + setTargetDAGCombine(ISD::FMAXNUM); + setTargetDAGCombine(ISD::SUB); + setTargetDAGCombine(ISD::LOAD); + setTargetDAGCombine(ISD::MLOAD); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::MSTORE); + setTargetDAGCombine(ISD::TRUNCATE); + setTargetDAGCombine(ISD::ZERO_EXTEND); + setTargetDAGCombine(ISD::ANY_EXTEND); + setTargetDAGCombine(ISD::SIGN_EXTEND); + setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); + setTargetDAGCombine(ISD::SIGN_EXTEND_VECTOR_INREG); + setTargetDAGCombine(ISD::ZERO_EXTEND_VECTOR_INREG); + setTargetDAGCombine(ISD::SINT_TO_FP); + setTargetDAGCombine(ISD::UINT_TO_FP); + setTargetDAGCombine(ISD::SETCC); + setTargetDAGCombine(ISD::MUL); + setTargetDAGCombine(ISD::XOR); + setTargetDAGCombine(ISD::MSCATTER); + setTargetDAGCombine(ISD::MGATHER); + + computeRegisterProperties(Subtarget.getRegisterInfo()); + + MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores + MaxStoresPerMemsetOptSize = 8; + MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores + MaxStoresPerMemcpyOptSize = 4; + MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores + MaxStoresPerMemmoveOptSize = 4; + + // TODO: These control memcmp expansion in CGP and could be raised higher, but + // that needs to benchmarked and balanced with the potential use of vector + // load/store types (PR33329, PR33914). + MaxLoadsPerMemcmp = 2; + MaxLoadsPerMemcmpOptSize = 2; + + // Set loop alignment to 2^ExperimentalPrefLoopAlignment bytes (default: 2^4). + setPrefLoopAlignment(ExperimentalPrefLoopAlignment); + + // An out-of-order CPU can speculatively execute past a predictable branch, + // but a conditional move could be stalled by an expensive earlier operation. + PredictableSelectIsExpensive = Subtarget.getSchedModel().isOutOfOrder(); + EnableExtLdPromotion = true; + setPrefFunctionAlignment(4); // 2^4 bytes. + + verifyIntrinsicTables(); +} + +// This has so far only been implemented for 64-bit MachO. +bool X86TargetLowering::useLoadStackGuardNode() const { + return Subtarget.isTargetMachO() && Subtarget.is64Bit(); +} + +bool X86TargetLowering::useStackGuardXorFP() const { + // Currently only MSVC CRTs XOR the frame pointer into the stack guard value. + return Subtarget.getTargetTriple().isOSMSVCRT(); +} + +SDValue X86TargetLowering::emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, + const SDLoc &DL) const { + EVT PtrTy = getPointerTy(DAG.getDataLayout()); + unsigned XorOp = Subtarget.is64Bit() ? X86::XOR64_FP : X86::XOR32_FP; + MachineSDNode *Node = DAG.getMachineNode(XorOp, DL, PtrTy, Val); + return SDValue(Node, 0); +} + +TargetLoweringBase::LegalizeTypeAction +X86TargetLowering::getPreferredVectorAction(EVT VT) const { + if (ExperimentalVectorWideningLegalization && + VT.getVectorNumElements() != 1 && + VT.getVectorElementType().getSimpleVT() != MVT::i1) + return TypeWidenVector; + + return TargetLoweringBase::getPreferredVectorAction(VT); +} + +EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL, + LLVMContext& Context, + EVT VT) const { + if (!VT.isVector()) + return MVT::i8; + + if (Subtarget.hasAVX512()) { + const unsigned NumElts = VT.getVectorNumElements(); + + // Figure out what this type will be legalized to. + EVT LegalVT = VT; + while (getTypeAction(Context, LegalVT) != TypeLegal) + LegalVT = getTypeToTransformTo(Context, LegalVT); + + // If we got a 512-bit vector then we'll definitely have a vXi1 compare. + if (LegalVT.getSimpleVT().is512BitVector()) + return EVT::getVectorVT(Context, MVT::i1, NumElts); + + if (LegalVT.getSimpleVT().isVector() && Subtarget.hasVLX()) { + // If we legalized to less than a 512-bit vector, then we will use a vXi1 + // compare for vXi32/vXi64 for sure. If we have BWI we will also support + // vXi16/vXi8. + MVT EltVT = LegalVT.getSimpleVT().getVectorElementType(); + if (Subtarget.hasBWI() || EltVT.getSizeInBits() >= 32) + return EVT::getVectorVT(Context, MVT::i1, NumElts); + } + } + + return VT.changeVectorElementTypeToInteger(); +} + +/// Helper for getByValTypeAlignment to determine +/// the desired ByVal argument alignment. +static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { + if (MaxAlign == 16) + return; + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { + if (VTy->getBitWidth() == 128) + MaxAlign = 16; + } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + unsigned EltAlign = 0; + getMaxByValAlign(ATy->getElementType(), EltAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + } else if (StructType *STy = dyn_cast<StructType>(Ty)) { + for (auto *EltTy : STy->elements()) { + unsigned EltAlign = 0; + getMaxByValAlign(EltTy, EltAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + if (MaxAlign == 16) + break; + } + } +} + +/// Return the desired alignment for ByVal aggregate +/// function arguments in the caller parameter area. For X86, aggregates +/// that contain SSE vectors are placed at 16-byte boundaries while the rest +/// are at 4-byte boundaries. +unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty, + const DataLayout &DL) const { + if (Subtarget.is64Bit()) { + // Max of 8 and alignment of type. + unsigned TyAlign = DL.getABITypeAlignment(Ty); + if (TyAlign > 8) + return TyAlign; + return 8; + } + + unsigned Align = 4; + if (Subtarget.hasSSE1()) + getMaxByValAlign(Ty, Align); + return Align; +} + +/// Returns the target specific optimal type for load +/// and store operations as a result of memset, memcpy, and memmove +/// lowering. If DstAlign is zero that means it's safe to destination +/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it +/// means there isn't a need to check it against alignment requirement, +/// probably because the source does not need to be loaded. If 'IsMemset' is +/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that +/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy +/// source is constant so it does not need to be loaded. +/// It returns EVT::Other if the type should be determined using generic +/// target-independent logic. +EVT +X86TargetLowering::getOptimalMemOpType(uint64_t Size, + unsigned DstAlign, unsigned SrcAlign, + bool IsMemset, bool ZeroMemset, + bool MemcpyStrSrc, + MachineFunction &MF) const { + const Function &F = MF.getFunction(); + if (!F.hasFnAttribute(Attribute::NoImplicitFloat)) { + if (Size >= 16 && + (!Subtarget.isUnalignedMem16Slow() || + ((DstAlign == 0 || DstAlign >= 16) && + (SrcAlign == 0 || SrcAlign >= 16)))) { + // FIXME: Check if unaligned 32-byte accesses are slow. + if (Size >= 32 && Subtarget.hasAVX()) { + // Although this isn't a well-supported type for AVX1, we'll let + // legalization and shuffle lowering produce the optimal codegen. If we + // choose an optimal type with a vector element larger than a byte, + // getMemsetStores() may create an intermediate splat (using an integer + // multiply) before we splat as a vector. + return MVT::v32i8; + } + if (Subtarget.hasSSE2()) + return MVT::v16i8; + // TODO: Can SSE1 handle a byte vector? + if (Subtarget.hasSSE1()) + return MVT::v4f32; + } else if ((!IsMemset || ZeroMemset) && !MemcpyStrSrc && Size >= 8 && + !Subtarget.is64Bit() && Subtarget.hasSSE2()) { + // Do not use f64 to lower memcpy if source is string constant. It's + // better to use i32 to avoid the loads. + // Also, do not use f64 to lower memset unless this is a memset of zeros. + // The gymnastics of splatting a byte value into an XMM register and then + // only using 8-byte stores (because this is a CPU with slow unaligned + // 16-byte accesses) makes that a loser. + return MVT::f64; + } + } + // This is a compromise. If we reach here, unaligned accesses may be slow on + // this target. However, creating smaller, aligned accesses could be even + // slower and would certainly be a lot more code. + if (Subtarget.is64Bit() && Size >= 8) + return MVT::i64; + return MVT::i32; +} + +bool X86TargetLowering::isSafeMemOpType(MVT VT) const { + if (VT == MVT::f32) + return X86ScalarSSEf32; + else if (VT == MVT::f64) + return X86ScalarSSEf64; + return true; +} + +bool +X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT, + unsigned, + unsigned, + bool *Fast) const { + if (Fast) { + switch (VT.getSizeInBits()) { + default: + // 8-byte and under are always assumed to be fast. + *Fast = true; + break; + case 128: + *Fast = !Subtarget.isUnalignedMem16Slow(); + break; + case 256: + *Fast = !Subtarget.isUnalignedMem32Slow(); + break; + // TODO: What about AVX-512 (512-bit) accesses? + } + } + // Misaligned accesses of any size are always allowed. + return true; +} + +/// Return the entry encoding for a jump table in the +/// current function. The returned value is a member of the +/// MachineJumpTableInfo::JTEntryKind enum. +unsigned X86TargetLowering::getJumpTableEncoding() const { + // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF + // symbol. + if (isPositionIndependent() && Subtarget.isPICStyleGOT()) + return MachineJumpTableInfo::EK_Custom32; + + // Otherwise, use the normal jump table encoding heuristics. + return TargetLowering::getJumpTableEncoding(); +} + +bool X86TargetLowering::useSoftFloat() const { + return Subtarget.useSoftFloat(); +} + +void X86TargetLowering::markLibCallAttributes(MachineFunction *MF, unsigned CC, + ArgListTy &Args) const { + + // Only relabel X86-32 for C / Stdcall CCs. + if (Subtarget.is64Bit()) + return; + if (CC != CallingConv::C && CC != CallingConv::X86_StdCall) + return; + unsigned ParamRegs = 0; + if (auto *M = MF->getFunction().getParent()) + ParamRegs = M->getNumberRegisterParameters(); + + // Mark the first N int arguments as having reg + for (unsigned Idx = 0; Idx < Args.size(); Idx++) { + Type *T = Args[Idx].Ty; + if (T->isPointerTy() || T->isIntegerTy()) + if (MF->getDataLayout().getTypeAllocSize(T) <= 8) { + unsigned numRegs = 1; + if (MF->getDataLayout().getTypeAllocSize(T) > 4) + numRegs = 2; + if (ParamRegs < numRegs) + return; + ParamRegs -= numRegs; + Args[Idx].IsInReg = true; + } + } +} + +const MCExpr * +X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, + const MachineBasicBlock *MBB, + unsigned uid,MCContext &Ctx) const{ + assert(isPositionIndependent() && Subtarget.isPICStyleGOT()); + // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF + // entries. + return MCSymbolRefExpr::create(MBB->getSymbol(), + MCSymbolRefExpr::VK_GOTOFF, Ctx); +} + +/// Returns relocation base for the given PIC jumptable. +SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const { + if (!Subtarget.is64Bit()) + // This doesn't have SDLoc associated with it, but is not really the + // same as a Register. + return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), + getPointerTy(DAG.getDataLayout())); + return Table; +} + +/// This returns the relocation base for the given PIC jumptable, +/// the same as getPICJumpTableRelocBase, but as an MCExpr. +const MCExpr *X86TargetLowering:: +getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, + MCContext &Ctx) const { + // X86-64 uses RIP relative addressing based on the jump table label. + if (Subtarget.isPICStyleRIPRel()) + return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); + + // Otherwise, the reference is relative to the PIC base. + return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); +} + +std::pair<const TargetRegisterClass *, uint8_t> +X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, + MVT VT) const { + const TargetRegisterClass *RRC = nullptr; + uint8_t Cost = 1; + switch (VT.SimpleTy) { + default: + return TargetLowering::findRepresentativeClass(TRI, VT); + case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: + RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass; + break; + case MVT::x86mmx: + RRC = &X86::VR64RegClass; + break; + case MVT::f32: case MVT::f64: + case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: + case MVT::v4f32: case MVT::v2f64: + case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64: + case MVT::v8f32: case MVT::v4f64: + case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64: + case MVT::v16f32: case MVT::v8f64: + RRC = &X86::VR128XRegClass; + break; + } + return std::make_pair(RRC, Cost); +} + +unsigned X86TargetLowering::getAddressSpace() const { + if (Subtarget.is64Bit()) + return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? 256 : 257; + return 256; +} + +static bool hasStackGuardSlotTLS(const Triple &TargetTriple) { + return TargetTriple.isOSGlibc() || TargetTriple.isOSFuchsia() || + (TargetTriple.isAndroid() && !TargetTriple.isAndroidVersionLT(17)); +} + +static Constant* SegmentOffset(IRBuilder<> &IRB, + unsigned Offset, unsigned AddressSpace) { + return ConstantExpr::getIntToPtr( + ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset), + Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace)); +} + +Value *X86TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const { + // glibc, bionic, and Fuchsia have a special slot for the stack guard in + // tcbhead_t; use it instead of the usual global variable (see + // sysdeps/{i386,x86_64}/nptl/tls.h) + if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) { + if (Subtarget.isTargetFuchsia()) { + // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. + return SegmentOffset(IRB, 0x10, getAddressSpace()); + } else { + // %fs:0x28, unless we're using a Kernel code model, in which case + // it's %gs:0x28. gs:0x14 on i386. + unsigned Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14; + return SegmentOffset(IRB, Offset, getAddressSpace()); + } + } + + return TargetLowering::getIRStackGuard(IRB); +} + +void X86TargetLowering::insertSSPDeclarations(Module &M) const { + // MSVC CRT provides functionalities for stack protection. + if (Subtarget.getTargetTriple().isOSMSVCRT()) { + // MSVC CRT has a global variable holding security cookie. + M.getOrInsertGlobal("__security_cookie", + Type::getInt8PtrTy(M.getContext())); + + // MSVC CRT has a function to validate security cookie. + auto *SecurityCheckCookie = cast<Function>( + M.getOrInsertFunction("__security_check_cookie", + Type::getVoidTy(M.getContext()), + Type::getInt8PtrTy(M.getContext()))); + SecurityCheckCookie->setCallingConv(CallingConv::X86_FastCall); + SecurityCheckCookie->addAttribute(1, Attribute::AttrKind::InReg); + return; + } + // glibc, bionic, and Fuchsia have a special slot for the stack guard. + if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) + return; + TargetLowering::insertSSPDeclarations(M); +} + +Value *X86TargetLowering::getSDagStackGuard(const Module &M) const { + // MSVC CRT has a global variable holding security cookie. + if (Subtarget.getTargetTriple().isOSMSVCRT()) + return M.getGlobalVariable("__security_cookie"); + return TargetLowering::getSDagStackGuard(M); +} + +Value *X86TargetLowering::getSSPStackGuardCheck(const Module &M) const { + // MSVC CRT has a function to validate security cookie. + if (Subtarget.getTargetTriple().isOSMSVCRT()) + return M.getFunction("__security_check_cookie"); + return TargetLowering::getSSPStackGuardCheck(M); +} + +Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { + if (Subtarget.getTargetTriple().isOSContiki()) + return getDefaultSafeStackPointerLocation(IRB, false); + + // Android provides a fixed TLS slot for the SafeStack pointer. See the + // definition of TLS_SLOT_SAFESTACK in + // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h + if (Subtarget.isTargetAndroid()) { + // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs: + // %gs:0x24 on i386 + unsigned Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24; + return SegmentOffset(IRB, Offset, getAddressSpace()); + } + + // Fuchsia is similar. + if (Subtarget.isTargetFuchsia()) { + // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value. + return SegmentOffset(IRB, 0x18, getAddressSpace()); + } + + return TargetLowering::getSafeStackPointerLocation(IRB); +} + +bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, + unsigned DestAS) const { + assert(SrcAS != DestAS && "Expected different address spaces!"); + + return SrcAS < 256 && DestAS < 256; +} + +//===----------------------------------------------------------------------===// +// Return Value Calling Convention Implementation +//===----------------------------------------------------------------------===// + +#include "X86GenCallingConv.inc" + +bool X86TargetLowering::CanLowerReturn( + CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); + return CCInfo.CheckReturn(Outs, RetCC_X86); +} + +const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const { + static const MCPhysReg ScratchRegs[] = { X86::R11, 0 }; + return ScratchRegs; +} + +/// Lowers masks values (v*i1) to the local register values +/// \returns DAG node after lowering to register type +static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc, + const SDLoc &Dl, SelectionDAG &DAG) { + EVT ValVT = ValArg.getValueType(); + + if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) || + (ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) { + // Two stage lowering might be required + // bitcast: v8i1 -> i8 / v16i1 -> i16 + // anyextend: i8 -> i32 / i16 -> i32 + EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16; + SDValue ValToCopy = DAG.getBitcast(TempValLoc, ValArg); + if (ValLoc == MVT::i32) + ValToCopy = DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValToCopy); + return ValToCopy; + } else if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) || + (ValVT == MVT::v64i1 && ValLoc == MVT::i64)) { + // One stage lowering is required + // bitcast: v32i1 -> i32 / v64i1 -> i64 + return DAG.getBitcast(ValLoc, ValArg); + } else + return DAG.getNode(ISD::SIGN_EXTEND, Dl, ValLoc, ValArg); +} + +/// Breaks v64i1 value into two registers and adds the new node to the DAG +static void Passv64i1ArgInRegs( + const SDLoc &Dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg, + SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, CCValAssign &VA, + CCValAssign &NextVA, const X86Subtarget &Subtarget) { + assert(Subtarget.hasBWI() && "Expected AVX512BW target!"); + assert(Subtarget.is32Bit() && "Expecting 32 bit target"); + assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value"); + assert(VA.isRegLoc() && NextVA.isRegLoc() && + "The value should reside in two registers"); + + // Before splitting the value we cast it to i64 + Arg = DAG.getBitcast(MVT::i64, Arg); + + // Splitting the value into two i32 types + SDValue Lo, Hi; + Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg, + DAG.getConstant(0, Dl, MVT::i32)); + Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg, + DAG.getConstant(1, Dl, MVT::i32)); + + // Attach the two i32 types into corresponding registers + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo)); + RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Hi)); +} + +SDValue +X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SDLoc &dl, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + // In some cases we need to disable registers from the default CSR list. + // For example, when they are used for argument passing. + bool ShouldDisableCalleeSavedRegister = + CallConv == CallingConv::X86_RegCall || + MF.getFunction().hasFnAttribute("no_caller_saved_registers"); + + if (CallConv == CallingConv::X86_INTR && !Outs.empty()) + report_fatal_error("X86 interrupts may not return any value"); + + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext()); + CCInfo.AnalyzeReturn(Outs, RetCC_X86); + + SDValue Flag; + SmallVector<SDValue, 6> RetOps; + RetOps.push_back(Chain); // Operand #0 = Chain (updated below) + // Operand #1 = Bytes To Pop + RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl, + MVT::i32)); + + // Copy the result values into the output registers. + for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E; + ++I, ++OutsIndex) { + CCValAssign &VA = RVLocs[I]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + // Add the register to the CalleeSaveDisableRegs list. + if (ShouldDisableCalleeSavedRegister) + MF.getRegInfo().disableCalleeSavedRegister(VA.getLocReg()); + + SDValue ValToCopy = OutVals[OutsIndex]; + EVT ValVT = ValToCopy.getValueType(); + + // Promote values to the appropriate types. + if (VA.getLocInfo() == CCValAssign::SExt) + ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); + else if (VA.getLocInfo() == CCValAssign::ZExt) + ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); + else if (VA.getLocInfo() == CCValAssign::AExt) { + if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1) + ValToCopy = lowerMasksToReg(ValToCopy, VA.getLocVT(), dl, DAG); + else + ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); + } + else if (VA.getLocInfo() == CCValAssign::BCvt) + ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy); + + assert(VA.getLocInfo() != CCValAssign::FPExt && + "Unexpected FP-extend for return value."); + + // If this is x86-64, and we disabled SSE, we can't return FP values, + // or SSE or MMX vectors. + if ((ValVT == MVT::f32 || ValVT == MVT::f64 || + VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && + (Subtarget.is64Bit() && !Subtarget.hasSSE1())) { + errorUnsupported(DAG, dl, "SSE register return with SSE disabled"); + VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts. + } else if (ValVT == MVT::f64 && + (Subtarget.is64Bit() && !Subtarget.hasSSE2())) { + // Likewise we can't return F64 values with SSE1 only. gcc does so, but + // llvm-gcc has never done it right and no one has noticed, so this + // should be OK for now. + errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled"); + VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts. + } + + // Returns in ST0/ST1 are handled specially: these are pushed as operands to + // the RET instruction and handled by the FP Stackifier. + if (VA.getLocReg() == X86::FP0 || + VA.getLocReg() == X86::FP1) { + // If this is a copy from an xmm register to ST(0), use an FPExtend to + // change the value to the FP stack register class. + if (isScalarFPTypeInSSEReg(VA.getValVT())) + ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); + RetOps.push_back(ValToCopy); + // Don't emit a copytoreg. + continue; + } + + // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 + // which is returned in RAX / RDX. + if (Subtarget.is64Bit()) { + if (ValVT == MVT::x86mmx) { + if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { + ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy); + ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, + ValToCopy); + // If we don't have SSE2 available, convert to v4f32 so the generated + // register is legal. + if (!Subtarget.hasSSE2()) + ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy); + } + } + } + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + + if (VA.needsCustom()) { + assert(VA.getValVT() == MVT::v64i1 && + "Currently the only custom case is when we split v64i1 to 2 regs"); + + Passv64i1ArgInRegs(dl, DAG, Chain, ValToCopy, RegsToPass, VA, RVLocs[++I], + Subtarget); + + assert(2 == RegsToPass.size() && + "Expecting two registers after Pass64BitArgInRegs"); + + // Add the second register to the CalleeSaveDisableRegs list. + if (ShouldDisableCalleeSavedRegister) + MF.getRegInfo().disableCalleeSavedRegister(RVLocs[I].getLocReg()); + } else { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), ValToCopy)); + } + + // Add nodes to the DAG and add the values into the RetOps list + for (auto &Reg : RegsToPass) { + Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); + } + } + + // Swift calling convention does not require we copy the sret argument + // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. + + // All x86 ABIs require that for returning structs by value we copy + // the sret argument into %rax/%eax (depending on ABI) for the return. + // We saved the argument into a virtual register in the entry block, + // so now we copy the value out and into %rax/%eax. + // + // Checking Function.hasStructRetAttr() here is insufficient because the IR + // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is + // false, then an sret argument may be implicitly inserted in the SelDAG. In + // either case FuncInfo->setSRetReturnReg() will have been called. + if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { + // When we have both sret and another return value, we should use the + // original Chain stored in RetOps[0], instead of the current Chain updated + // in the above loop. If we only have sret, RetOps[0] equals to Chain. + + // For the case of sret and another return value, we have + // Chain_0 at the function entry + // Chain_1 = getCopyToReg(Chain_0) in the above loop + // If we use Chain_1 in getCopyFromReg, we will have + // Val = getCopyFromReg(Chain_1) + // Chain_2 = getCopyToReg(Chain_1, Val) from below + + // getCopyToReg(Chain_0) will be glued together with + // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be + // in Unit B, and we will have cyclic dependency between Unit A and Unit B: + // Data dependency from Unit B to Unit A due to usage of Val in + // getCopyToReg(Chain_1, Val) + // Chain dependency from Unit A to Unit B + + // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg. + SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg, + getPointerTy(MF.getDataLayout())); + + unsigned RetValReg + = (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ? + X86::RAX : X86::EAX; + Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); + Flag = Chain.getValue(1); + + // RAX/EAX now acts like a return value. + RetOps.push_back( + DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); + + // Add the returned register to the CalleeSaveDisableRegs list. + if (ShouldDisableCalleeSavedRegister) + MF.getRegInfo().disableCalleeSavedRegister(RetValReg); + } + + const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); + const MCPhysReg *I = + TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); + if (I) { + for (; *I; ++I) { + if (X86::GR64RegClass.contains(*I)) + RetOps.push_back(DAG.getRegister(*I, MVT::i64)); + else + llvm_unreachable("Unexpected register class in CSRsViaCopy!"); + } + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + X86ISD::NodeType opcode = X86ISD::RET_FLAG; + if (CallConv == CallingConv::X86_INTR) + opcode = X86ISD::IRET; + return DAG.getNode(opcode, dl, MVT::Other, RetOps); +} + +bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { + if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0)) + return false; + + SDValue TCChain = Chain; + SDNode *Copy = *N->use_begin(); + if (Copy->getOpcode() == ISD::CopyToReg) { + // If the copy has a glue operand, we conservatively assume it isn't safe to + // perform a tail call. + if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) + return false; + TCChain = Copy->getOperand(0); + } else if (Copy->getOpcode() != ISD::FP_EXTEND) + return false; + + bool HasRet = false; + for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); + UI != UE; ++UI) { + if (UI->getOpcode() != X86ISD::RET_FLAG) + return false; + // If we are returning more than one value, we can definitely + // not make a tail call see PR19530 + if (UI->getNumOperands() > 4) + return false; + if (UI->getNumOperands() == 4 && + UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue) + return false; + HasRet = true; + } + + if (!HasRet) + return false; + + Chain = TCChain; + return true; +} + +EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, + ISD::NodeType ExtendKind) const { + MVT ReturnMVT = MVT::i32; + + bool Darwin = Subtarget.getTargetTriple().isOSDarwin(); + if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) { + // The ABI does not require i1, i8 or i16 to be extended. + // + // On Darwin, there is code in the wild relying on Clang's old behaviour of + // always extending i8/i16 return values, so keep doing that for now. + // (PR26665). + ReturnMVT = MVT::i8; + } + + EVT MinVT = getRegisterType(Context, ReturnMVT); + return VT.bitsLT(MinVT) ? MinVT : VT; +} + +/// Reads two 32 bit registers and creates a 64 bit mask value. +/// \param VA The current 32 bit value that need to be assigned. +/// \param NextVA The next 32 bit value that need to be assigned. +/// \param Root The parent DAG node. +/// \param [in,out] InFlag Represents SDvalue in the parent DAG node for +/// glue purposes. In the case the DAG is already using +/// physical register instead of virtual, we should glue +/// our new SDValue to InFlag SDvalue. +/// \return a new SDvalue of size 64bit. +static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA, + SDValue &Root, SelectionDAG &DAG, + const SDLoc &Dl, const X86Subtarget &Subtarget, + SDValue *InFlag = nullptr) { + assert((Subtarget.hasBWI()) && "Expected AVX512BW target!"); + assert(Subtarget.is32Bit() && "Expecting 32 bit target"); + assert(VA.getValVT() == MVT::v64i1 && + "Expecting first location of 64 bit width type"); + assert(NextVA.getValVT() == VA.getValVT() && + "The locations should have the same type"); + assert(VA.isRegLoc() && NextVA.isRegLoc() && + "The values should reside in two registers"); + + SDValue Lo, Hi; + unsigned Reg; + SDValue ArgValueLo, ArgValueHi; + + MachineFunction &MF = DAG.getMachineFunction(); + const TargetRegisterClass *RC = &X86::GR32RegClass; + + // Read a 32 bit value from the registers + if (nullptr == InFlag) { + // When no physical register is present, + // create an intermediate virtual register + Reg = MF.addLiveIn(VA.getLocReg(), RC); + ArgValueLo = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32); + Reg = MF.addLiveIn(NextVA.getLocReg(), RC); + ArgValueHi = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32); + } else { + // When a physical register is available read the value from it and glue + // the reads together. + ArgValueLo = + DAG.getCopyFromReg(Root, Dl, VA.getLocReg(), MVT::i32, *InFlag); + *InFlag = ArgValueLo.getValue(2); + ArgValueHi = + DAG.getCopyFromReg(Root, Dl, NextVA.getLocReg(), MVT::i32, *InFlag); + *InFlag = ArgValueHi.getValue(2); + } + + // Convert the i32 type into v32i1 type + Lo = DAG.getBitcast(MVT::v32i1, ArgValueLo); + + // Convert the i32 type into v32i1 type + Hi = DAG.getBitcast(MVT::v32i1, ArgValueHi); + + // Concatenate the two values together + return DAG.getNode(ISD::CONCAT_VECTORS, Dl, MVT::v64i1, Lo, Hi); +} + +/// The function will lower a register of various sizes (8/16/32/64) +/// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1) +/// \returns a DAG node contains the operand after lowering to mask type. +static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT, + const EVT &ValLoc, const SDLoc &Dl, + SelectionDAG &DAG) { + SDValue ValReturned = ValArg; + + if (ValVT == MVT::v1i1) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v1i1, ValReturned); + + if (ValVT == MVT::v64i1) { + // In 32 bit machine, this case is handled by getv64i1Argument + assert(ValLoc == MVT::i64 && "Expecting only i64 locations"); + // In 64 bit machine, There is no need to truncate the value only bitcast + } else { + MVT maskLen; + switch (ValVT.getSimpleVT().SimpleTy) { + case MVT::v8i1: + maskLen = MVT::i8; + break; + case MVT::v16i1: + maskLen = MVT::i16; + break; + case MVT::v32i1: + maskLen = MVT::i32; + break; + default: + llvm_unreachable("Expecting a vector of i1 types"); + } + + ValReturned = DAG.getNode(ISD::TRUNCATE, Dl, maskLen, ValReturned); + } + return DAG.getBitcast(ValVT, ValReturned); +} + +/// Lower the result values of a call into the +/// appropriate copies out of appropriate physical registers. +/// +SDValue X86TargetLowering::LowerCallResult( + SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, + uint32_t *RegMask) const { + + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + bool Is64Bit = Subtarget.is64Bit(); + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_X86); + + // Copy all of the result registers out of their specified physreg. + for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E; + ++I, ++InsIndex) { + CCValAssign &VA = RVLocs[I]; + EVT CopyVT = VA.getLocVT(); + + // In some calling conventions we need to remove the used registers + // from the register mask. + if (RegMask) { + for (MCSubRegIterator SubRegs(VA.getLocReg(), TRI, /*IncludeSelf=*/true); + SubRegs.isValid(); ++SubRegs) + RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32)); + } + + // If this is x86-64, and we disabled SSE, we can't return FP values + if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) && + ((Is64Bit || Ins[InsIndex].Flags.isInReg()) && !Subtarget.hasSSE1())) { + errorUnsupported(DAG, dl, "SSE register return with SSE disabled"); + VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts. + } + + // If we prefer to use the value in xmm registers, copy it out as f80 and + // use a truncate to move it from fp stack reg to xmm reg. + bool RoundAfterCopy = false; + if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) && + isScalarFPTypeInSSEReg(VA.getValVT())) { + if (!Subtarget.hasX87()) + report_fatal_error("X87 register return with X87 disabled"); + CopyVT = MVT::f80; + RoundAfterCopy = (CopyVT != VA.getLocVT()); + } + + SDValue Val; + if (VA.needsCustom()) { + assert(VA.getValVT() == MVT::v64i1 && + "Currently the only custom case is when we split v64i1 to 2 regs"); + Val = + getv64i1Argument(VA, RVLocs[++I], Chain, DAG, dl, Subtarget, &InFlag); + } else { + Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag) + .getValue(1); + Val = Chain.getValue(0); + InFlag = Chain.getValue(2); + } + + if (RoundAfterCopy) + Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, + // This truncation won't change the value. + DAG.getIntPtrConstant(1, dl)); + + if (VA.isExtInLoc() && (VA.getValVT().getScalarType() == MVT::i1)) { + if (VA.getValVT().isVector() && + ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) || + (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) { + // promoting a mask type (v*i1) into a register of type i64/i32/i16/i8 + Val = lowerRegToMasks(Val, VA.getValVT(), VA.getLocVT(), dl, DAG); + } else + Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); + } + + InVals.push_back(Val); + } + + return Chain; +} + +//===----------------------------------------------------------------------===// +// C & StdCall & Fast Calling Convention implementation +//===----------------------------------------------------------------------===// +// StdCall calling convention seems to be standard for many Windows' API +// routines and around. It differs from C calling convention just a little: +// callee should clean up the stack, not caller. Symbols should be also +// decorated in some fancy way :) It doesn't support any vector arguments. +// For info on fast calling convention see Fast Calling Convention (tail call) +// implementation LowerX86_32FastCCCallTo. + +/// CallIsStructReturn - Determines whether a call uses struct return +/// semantics. +enum StructReturnType { + NotStructReturn, + RegStructReturn, + StackStructReturn +}; +static StructReturnType +callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsMCU) { + if (Outs.empty()) + return NotStructReturn; + + const ISD::ArgFlagsTy &Flags = Outs[0].Flags; + if (!Flags.isSRet()) + return NotStructReturn; + if (Flags.isInReg() || IsMCU) + return RegStructReturn; + return StackStructReturn; +} + +/// Determines whether a function uses struct return semantics. +static StructReturnType +argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsMCU) { + if (Ins.empty()) + return NotStructReturn; + + const ISD::ArgFlagsTy &Flags = Ins[0].Flags; + if (!Flags.isSRet()) + return NotStructReturn; + if (Flags.isInReg() || IsMCU) + return RegStructReturn; + return StackStructReturn; +} + +/// Make a copy of an aggregate at address specified by "Src" to address +/// "Dst" with size and alignment information specified by the specific +/// parameter attribute. The copy will be passed as a byval function parameter. +static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, + SDValue Chain, ISD::ArgFlagsTy Flags, + SelectionDAG &DAG, const SDLoc &dl) { + SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); + + return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), + /*isVolatile*/false, /*AlwaysInline=*/true, + /*isTailCall*/false, + MachinePointerInfo(), MachinePointerInfo()); +} + +/// Return true if the calling convention is one that we can guarantee TCO for. +static bool canGuaranteeTCO(CallingConv::ID CC) { + return (CC == CallingConv::Fast || CC == CallingConv::GHC || + CC == CallingConv::X86_RegCall || CC == CallingConv::HiPE || + CC == CallingConv::HHVM); +} + +/// Return true if we might ever do TCO for calls with this calling convention. +static bool mayTailCallThisCC(CallingConv::ID CC) { + switch (CC) { + // C calling conventions: + case CallingConv::C: + case CallingConv::Win64: + case CallingConv::X86_64_SysV: + // Callee pop conventions: + case CallingConv::X86_ThisCall: + case CallingConv::X86_StdCall: + case CallingConv::X86_VectorCall: + case CallingConv::X86_FastCall: + return true; + default: + return canGuaranteeTCO(CC); + } +} + +/// Return true if the function is being made into a tailcall target by +/// changing its ABI. +static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) { + return GuaranteedTailCallOpt && canGuaranteeTCO(CC); +} + +bool X86TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { + auto Attr = + CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); + if (!CI->isTailCall() || Attr.getValueAsString() == "true") + return false; + + ImmutableCallSite CS(CI); + CallingConv::ID CalleeCC = CS.getCallingConv(); + if (!mayTailCallThisCC(CalleeCC)) + return false; + + return true; +} + +SDValue +X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, + const SmallVectorImpl<ISD::InputArg> &Ins, + const SDLoc &dl, SelectionDAG &DAG, + const CCValAssign &VA, + MachineFrameInfo &MFI, unsigned i) const { + // Create the nodes corresponding to a load from this parameter slot. + ISD::ArgFlagsTy Flags = Ins[i].Flags; + bool AlwaysUseMutable = shouldGuaranteeTCO( + CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt); + bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); + EVT ValVT; + MVT PtrVT = getPointerTy(DAG.getDataLayout()); + + // If value is passed by pointer we have address passed instead of the value + // itself. No need to extend if the mask value and location share the same + // absolute size. + bool ExtendedInMem = + VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 && + VA.getValVT().getSizeInBits() != VA.getLocVT().getSizeInBits(); + + if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem) + ValVT = VA.getLocVT(); + else + ValVT = VA.getValVT(); + + // Calculate SP offset of interrupt parameter, re-arrange the slot normally + // taken by a return address. + int Offset = 0; + if (CallConv == CallingConv::X86_INTR) { + // X86 interrupts may take one or two arguments. + // On the stack there will be no return address as in regular call. + // Offset of last argument need to be set to -4/-8 bytes. + // Where offset of the first argument out of two, should be set to 0 bytes. + Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1); + if (Subtarget.is64Bit() && Ins.size() == 2) { + // The stack pointer needs to be realigned for 64 bit handlers with error + // code, so the argument offset changes by 8 bytes. + Offset += 8; + } + } + + // FIXME: For now, all byval parameter objects are marked mutable. This can be + // changed with more analysis. + // In case of tail call optimization mark all arguments mutable. Since they + // could be overwritten by lowering of arguments in case of a tail call. + if (Flags.isByVal()) { + unsigned Bytes = Flags.getByValSize(); + if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. + int FI = MFI.CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); + // Adjust SP offset of interrupt parameter. + if (CallConv == CallingConv::X86_INTR) { + MFI.setObjectOffset(FI, Offset); + } + return DAG.getFrameIndex(FI, PtrVT); + } + + // This is an argument in memory. We might be able to perform copy elision. + if (Flags.isCopyElisionCandidate()) { + EVT ArgVT = Ins[i].ArgVT; + SDValue PartAddr; + if (Ins[i].PartOffset == 0) { + // If this is a one-part value or the first part of a multi-part value, + // create a stack object for the entire argument value type and return a + // load from our portion of it. This assumes that if the first part of an + // argument is in memory, the rest will also be in memory. + int FI = MFI.CreateFixedObject(ArgVT.getStoreSize(), VA.getLocMemOffset(), + /*Immutable=*/false); + PartAddr = DAG.getFrameIndex(FI, PtrVT); + return DAG.getLoad( + ValVT, dl, Chain, PartAddr, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); + } else { + // This is not the first piece of an argument in memory. See if there is + // already a fixed stack object including this offset. If so, assume it + // was created by the PartOffset == 0 branch above and create a load from + // the appropriate offset into it. + int64_t PartBegin = VA.getLocMemOffset(); + int64_t PartEnd = PartBegin + ValVT.getSizeInBits() / 8; + int FI = MFI.getObjectIndexBegin(); + for (; MFI.isFixedObjectIndex(FI); ++FI) { + int64_t ObjBegin = MFI.getObjectOffset(FI); + int64_t ObjEnd = ObjBegin + MFI.getObjectSize(FI); + if (ObjBegin <= PartBegin && PartEnd <= ObjEnd) + break; + } + if (MFI.isFixedObjectIndex(FI)) { + SDValue Addr = + DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getFrameIndex(FI, PtrVT), + DAG.getIntPtrConstant(Ins[i].PartOffset, dl)); + return DAG.getLoad( + ValVT, dl, Chain, Addr, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI, + Ins[i].PartOffset)); + } + } + } + + int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, + VA.getLocMemOffset(), isImmutable); + + // Set SExt or ZExt flag. + if (VA.getLocInfo() == CCValAssign::ZExt) { + MFI.setObjectZExt(FI, true); + } else if (VA.getLocInfo() == CCValAssign::SExt) { + MFI.setObjectSExt(FI, true); + } + + // Adjust SP offset of interrupt parameter. + if (CallConv == CallingConv::X86_INTR) { + MFI.setObjectOffset(FI, Offset); + } + + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + SDValue Val = DAG.getLoad( + ValVT, dl, Chain, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); + return ExtendedInMem + ? (VA.getValVT().isVector() + ? DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VA.getValVT(), Val) + : DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val)) + : Val; +} + +// FIXME: Get this from tablegen. +static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, + const X86Subtarget &Subtarget) { + assert(Subtarget.is64Bit()); + + if (Subtarget.isCallingConvWin64(CallConv)) { + static const MCPhysReg GPR64ArgRegsWin64[] = { + X86::RCX, X86::RDX, X86::R8, X86::R9 + }; + return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); + } + + static const MCPhysReg GPR64ArgRegs64Bit[] = { + X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 + }; + return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); +} + +// FIXME: Get this from tablegen. +static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF, + CallingConv::ID CallConv, + const X86Subtarget &Subtarget) { + assert(Subtarget.is64Bit()); + if (Subtarget.isCallingConvWin64(CallConv)) { + // The XMM registers which might contain var arg parameters are shadowed + // in their paired GPR. So we only need to save the GPR to their home + // slots. + // TODO: __vectorcall will change this. + return None; + } + + const Function &F = MF.getFunction(); + bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat); + bool isSoftFloat = Subtarget.useSoftFloat(); + assert(!(isSoftFloat && NoImplicitFloatOps) && + "SSE register cannot be used when SSE is disabled!"); + if (isSoftFloat || NoImplicitFloatOps || !Subtarget.hasSSE1()) + // Kernel mode asks for SSE to be disabled, so there are no XMM argument + // registers. + return None; + + static const MCPhysReg XMMArgRegs64Bit[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit)); +} + +#ifndef NDEBUG +static bool isSortedByValueNo(const SmallVectorImpl<CCValAssign> &ArgLocs) { + return std::is_sorted(ArgLocs.begin(), ArgLocs.end(), + [](const CCValAssign &A, const CCValAssign &B) -> bool { + return A.getValNo() < B.getValNo(); + }); +} +#endif + +SDValue X86TargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); + + const Function &F = MF.getFunction(); + if (F.hasExternalLinkage() && Subtarget.isTargetCygMing() && + F.getName() == "main") + FuncInfo->setForceFramePointer(true); + + MachineFrameInfo &MFI = MF.getFrameInfo(); + bool Is64Bit = Subtarget.is64Bit(); + bool IsWin64 = Subtarget.isCallingConvWin64(CallConv); + + assert( + !(isVarArg && canGuaranteeTCO(CallConv)) && + "Var args not supported with calling conv' regcall, fastcc, ghc or hipe"); + + if (CallConv == CallingConv::X86_INTR) { + bool isLegal = Ins.size() == 1 || + (Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) || + (!Is64Bit && Ins[1].VT == MVT::i32))); + if (!isLegal) + report_fatal_error("X86 interrupts may take one or two arguments"); + } + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); + + // Allocate shadow area for Win64. + if (IsWin64) + CCInfo.AllocateStack(32, 8); + + CCInfo.AnalyzeArguments(Ins, CC_X86); + + // In vectorcall calling convention a second pass is required for the HVA + // types. + if (CallingConv::X86_VectorCall == CallConv) { + CCInfo.AnalyzeArgumentsSecondPass(Ins, CC_X86); + } + + // The next loop assumes that the locations are in the same order of the + // input arguments. + assert(isSortedByValueNo(ArgLocs) && + "Argument Location list must be sorted before lowering"); + + SDValue ArgValue; + for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E; + ++I, ++InsIndex) { + assert(InsIndex < Ins.size() && "Invalid Ins index"); + CCValAssign &VA = ArgLocs[I]; + + if (VA.isRegLoc()) { + EVT RegVT = VA.getLocVT(); + if (VA.needsCustom()) { + assert( + VA.getValVT() == MVT::v64i1 && + "Currently the only custom case is when we split v64i1 to 2 regs"); + + // v64i1 values, in regcall calling convention, that are + // compiled to 32 bit arch, are split up into two registers. + ArgValue = + getv64i1Argument(VA, ArgLocs[++I], Chain, DAG, dl, Subtarget); + } else { + const TargetRegisterClass *RC; + if (RegVT == MVT::i32) + RC = &X86::GR32RegClass; + else if (Is64Bit && RegVT == MVT::i64) + RC = &X86::GR64RegClass; + else if (RegVT == MVT::f32) + RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass; + else if (RegVT == MVT::f64) + RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass; + else if (RegVT == MVT::f80) + RC = &X86::RFP80RegClass; + else if (RegVT == MVT::f128) + RC = &X86::FR128RegClass; + else if (RegVT.is512BitVector()) + RC = &X86::VR512RegClass; + else if (RegVT.is256BitVector()) + RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass; + else if (RegVT.is128BitVector()) + RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass; + else if (RegVT == MVT::x86mmx) + RC = &X86::VR64RegClass; + else if (RegVT == MVT::v1i1) + RC = &X86::VK1RegClass; + else if (RegVT == MVT::v8i1) + RC = &X86::VK8RegClass; + else if (RegVT == MVT::v16i1) + RC = &X86::VK16RegClass; + else if (RegVT == MVT::v32i1) + RC = &X86::VK32RegClass; + else if (RegVT == MVT::v64i1) + RC = &X86::VK64RegClass; + else + llvm_unreachable("Unknown argument type!"); + + unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); + ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); + } + + // If this is an 8 or 16-bit value, it is really passed promoted to 32 + // bits. Insert an assert[sz]ext to capture this, then truncate to the + // right size. + if (VA.getLocInfo() == CCValAssign::SExt) + ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::ZExt) + ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::BCvt) + ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue); + + if (VA.isExtInLoc()) { + // Handle MMX values passed in XMM regs. + if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1) + ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); + else if (VA.getValVT().isVector() && + VA.getValVT().getScalarType() == MVT::i1 && + ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) || + (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) { + // Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8 + ArgValue = lowerRegToMasks(ArgValue, VA.getValVT(), RegVT, dl, DAG); + } else + ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); + } + } else { + assert(VA.isMemLoc()); + ArgValue = + LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, InsIndex); + } + + // If value is passed via pointer - do a load. + if (VA.getLocInfo() == CCValAssign::Indirect) + ArgValue = + DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo()); + + InVals.push_back(ArgValue); + } + + for (unsigned I = 0, E = Ins.size(); I != E; ++I) { + // Swift calling convention does not require we copy the sret argument + // into %rax/%eax for the return. We don't set SRetReturnReg for Swift. + if (CallConv == CallingConv::Swift) + continue; + + // All x86 ABIs require that for returning structs by value we copy the + // sret argument into %rax/%eax (depending on ABI) for the return. Save + // the argument into a virtual register so that we can access it from the + // return points. + if (Ins[I].Flags.isSRet()) { + unsigned Reg = FuncInfo->getSRetReturnReg(); + if (!Reg) { + MVT PtrTy = getPointerTy(DAG.getDataLayout()); + Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); + FuncInfo->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[I]); + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); + break; + } + } + + unsigned StackSize = CCInfo.getNextStackOffset(); + // Align stack specially for tail calls. + if (shouldGuaranteeTCO(CallConv, + MF.getTarget().Options.GuaranteedTailCallOpt)) + StackSize = GetAlignedArgumentStackSize(StackSize, DAG); + + // If the function takes variable number of arguments, make a frame index for + // the start of the first vararg value... for expansion of llvm.va_start. We + // can skip this if there are no va_start calls. + if (MFI.hasVAStart() && + (Is64Bit || (CallConv != CallingConv::X86_FastCall && + CallConv != CallingConv::X86_ThisCall))) { + FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); + } + + // Figure out if XMM registers are in use. + assert(!(Subtarget.useSoftFloat() && + F.hasFnAttribute(Attribute::NoImplicitFloat)) && + "SSE register cannot be used when SSE is disabled!"); + + // 64-bit calling conventions support varargs and register parameters, so we + // have to do extra work to spill them in the prologue. + if (Is64Bit && isVarArg && MFI.hasVAStart()) { + // Find the first unallocated argument registers. + ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget); + ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget); + unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs); + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs); + assert(!(NumXMMRegs && !Subtarget.hasSSE1()) && + "SSE register cannot be used when SSE is disabled!"); + + // Gather all the live in physical registers. + SmallVector<SDValue, 6> LiveGPRs; + SmallVector<SDValue, 8> LiveXMMRegs; + SDValue ALVal; + for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) { + unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass); + LiveGPRs.push_back( + DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64)); + } + if (!ArgXMMs.empty()) { + unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); + ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8); + for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) { + unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass); + LiveXMMRegs.push_back( + DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32)); + } + } + + if (IsWin64) { + // Get to the caller-allocated home save location. Add 8 to account + // for the return address. + int HomeOffset = TFI.getOffsetOfLocalArea() + 8; + FuncInfo->setRegSaveFrameIndex( + MFI.CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); + // Fixup to set vararg frame on shadow area (4 x i64). + if (NumIntRegs < 4) + FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); + } else { + // For X86-64, if there are vararg parameters that are passed via + // registers, then we must store them to their spots on the stack so + // they may be loaded by dereferencing the result of va_next. + FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); + FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16); + FuncInfo->setRegSaveFrameIndex(MFI.CreateStackObject( + ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false)); + } + + // Store the integer parameter registers. + SmallVector<SDValue, 8> MemOps; + SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), + getPointerTy(DAG.getDataLayout())); + unsigned Offset = FuncInfo->getVarArgsGPOffset(); + for (SDValue Val : LiveGPRs) { + SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), + RSFIN, DAG.getIntPtrConstant(Offset, dl)); + SDValue Store = + DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo::getFixedStack( + DAG.getMachineFunction(), + FuncInfo->getRegSaveFrameIndex(), Offset)); + MemOps.push_back(Store); + Offset += 8; + } + + if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) { + // Now store the XMM (fp + vector) parameter registers. + SmallVector<SDValue, 12> SaveXMMOps; + SaveXMMOps.push_back(Chain); + SaveXMMOps.push_back(ALVal); + SaveXMMOps.push_back(DAG.getIntPtrConstant( + FuncInfo->getRegSaveFrameIndex(), dl)); + SaveXMMOps.push_back(DAG.getIntPtrConstant( + FuncInfo->getVarArgsFPOffset(), dl)); + SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(), + LiveXMMRegs.end()); + MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, + MVT::Other, SaveXMMOps)); + } + + if (!MemOps.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); + } + + if (isVarArg && MFI.hasMustTailInVarArgFunc()) { + // Find the largest legal vector type. + MVT VecVT = MVT::Other; + // FIXME: Only some x86_32 calling conventions support AVX512. + if (Subtarget.hasAVX512() && + (Is64Bit || (CallConv == CallingConv::X86_VectorCall || + CallConv == CallingConv::Intel_OCL_BI))) + VecVT = MVT::v16f32; + else if (Subtarget.hasAVX()) + VecVT = MVT::v8f32; + else if (Subtarget.hasSSE2()) + VecVT = MVT::v4f32; + + // We forward some GPRs and some vector types. + SmallVector<MVT, 2> RegParmTypes; + MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32; + RegParmTypes.push_back(IntVT); + if (VecVT != MVT::Other) + RegParmTypes.push_back(VecVT); + + // Compute the set of forwarded registers. The rest are scratch. + SmallVectorImpl<ForwardedRegister> &Forwards = + FuncInfo->getForwardedMustTailRegParms(); + CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86); + + // Conservatively forward AL on x86_64, since it might be used for varargs. + if (Is64Bit && !CCInfo.isAllocated(X86::AL)) { + unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass); + Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8)); + } + + // Copy all forwards from physical to virtual registers. + for (ForwardedRegister &F : Forwards) { + // FIXME: Can we use a less constrained schedule? + SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); + F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT)); + Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal); + } + } + + // Some CCs need callee pop. + if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, + MF.getTarget().Options.GuaranteedTailCallOpt)) { + FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. + } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) { + // X86 interrupts must pop the error code (and the alignment padding) if + // present. + FuncInfo->setBytesToPopOnReturn(Is64Bit ? 16 : 4); + } else { + FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. + // If this is an sret function, the return should pop the hidden pointer. + if (!Is64Bit && !canGuaranteeTCO(CallConv) && + !Subtarget.getTargetTriple().isOSMSVCRT() && + argsAreStructReturn(Ins, Subtarget.isTargetMCU()) == StackStructReturn) + FuncInfo->setBytesToPopOnReturn(4); + } + + if (!Is64Bit) { + // RegSaveFrameIndex is X86-64 only. + FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); + if (CallConv == CallingConv::X86_FastCall || + CallConv == CallingConv::X86_ThisCall) + // fastcc functions can't have varargs. + FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); + } + + FuncInfo->setArgumentStackSize(StackSize); + + if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) { + EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn()); + if (Personality == EHPersonality::CoreCLR) { + assert(Is64Bit); + // TODO: Add a mechanism to frame lowering that will allow us to indicate + // that we'd prefer this slot be allocated towards the bottom of the frame + // (i.e. near the stack pointer after allocating the frame). Every + // funclet needs a copy of this slot in its (mostly empty) frame, and the + // offset from the bottom of this and each funclet's frame must be the + // same, so the size of funclets' (mostly empty) frames is dictated by + // how far this slot is from the bottom (since they allocate just enough + // space to accommodate holding this slot at the correct offset). + int PSPSymFI = MFI.CreateStackObject(8, 8, /*isSS=*/false); + EHInfo->PSPSymFrameIdx = PSPSymFI; + } + } + + if (CallConv == CallingConv::X86_RegCall || + F.hasFnAttribute("no_caller_saved_registers")) { + MachineRegisterInfo &MRI = MF.getRegInfo(); + for (std::pair<unsigned, unsigned> Pair : MRI.liveins()) + MRI.disableCalleeSavedRegister(Pair.first); + } + + return Chain; +} + +SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, + SDValue Arg, const SDLoc &dl, + SelectionDAG &DAG, + const CCValAssign &VA, + ISD::ArgFlagsTy Flags) const { + unsigned LocMemOffset = VA.getLocMemOffset(); + SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); + PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), + StackPtr, PtrOff); + if (Flags.isByVal()) + return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); + + return DAG.getStore( + Chain, dl, Arg, PtrOff, + MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset)); +} + +/// Emit a load of return address if tail call +/// optimization is performed and it is required. +SDValue X86TargetLowering::EmitTailCallLoadRetAddr( + SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, + bool Is64Bit, int FPDiff, const SDLoc &dl) const { + // Adjust the Return address stack slot. + EVT VT = getPointerTy(DAG.getDataLayout()); + OutRetAddr = getReturnAddressFrameIndex(DAG); + + // Load the "old" Return address. + OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo()); + return SDValue(OutRetAddr.getNode(), 1); +} + +/// Emit a store of the return address if tail call +/// optimization is performed and it is required (FPDiff!=0). +static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF, + SDValue Chain, SDValue RetAddrFrIdx, + EVT PtrVT, unsigned SlotSize, + int FPDiff, const SDLoc &dl) { + // Store the return address to the appropriate stack slot. + if (!FPDiff) return Chain; + // Calculate the new stack slot for the return address. + int NewReturnAddrFI = + MF.getFrameInfo().CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize, + false); + SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT); + Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, + MachinePointerInfo::getFixedStack( + DAG.getMachineFunction(), NewReturnAddrFI)); + return Chain; +} + +/// Returns a vector_shuffle mask for an movs{s|d}, movd +/// operation of specified width. +static SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> Mask; + Mask.push_back(NumElems); + for (unsigned i = 1; i != NumElems; ++i) + Mask.push_back(i); + return DAG.getVectorShuffle(VT, dl, V1, V2, Mask); +} + +SDValue +X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &dl = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + CallingConv::ID CallConv = CLI.CallConv; + bool &isTailCall = CLI.IsTailCall; + bool isVarArg = CLI.IsVarArg; + + MachineFunction &MF = DAG.getMachineFunction(); + bool Is64Bit = Subtarget.is64Bit(); + bool IsWin64 = Subtarget.isCallingConvWin64(CallConv); + StructReturnType SR = callIsStructReturn(Outs, Subtarget.isTargetMCU()); + bool IsSibcall = false; + X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>(); + auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls"); + const auto *CI = dyn_cast_or_null<CallInst>(CLI.CS.getInstruction()); + const Function *Fn = CI ? CI->getCalledFunction() : nullptr; + bool HasNCSR = (CI && CI->hasFnAttr("no_caller_saved_registers")) || + (Fn && Fn->hasFnAttribute("no_caller_saved_registers")); + + if (CallConv == CallingConv::X86_INTR) + report_fatal_error("X86 interrupts may not be called directly"); + + if (Attr.getValueAsString() == "true") + isTailCall = false; + + if (Subtarget.isPICStyleGOT() && + !MF.getTarget().Options.GuaranteedTailCallOpt) { + // If we are using a GOT, disable tail calls to external symbols with + // default visibility. Tail calling such a symbol requires using a GOT + // relocation, which forces early binding of the symbol. This breaks code + // that require lazy function symbol resolution. Using musttail or + // GuaranteedTailCallOpt will override this. + GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); + if (!G || (!G->getGlobal()->hasLocalLinkage() && + G->getGlobal()->hasDefaultVisibility())) + isTailCall = false; + } + + bool IsMustTail = CLI.CS && CLI.CS.isMustTailCall(); + if (IsMustTail) { + // Force this to be a tail call. The verifier rules are enough to ensure + // that we can lower this successfully without moving the return address + // around. + isTailCall = true; + } else if (isTailCall) { + // Check if it's really possible to do a tail call. + isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, + isVarArg, SR != NotStructReturn, + MF.getFunction().hasStructRetAttr(), CLI.RetTy, + Outs, OutVals, Ins, DAG); + + // Sibcalls are automatically detected tailcalls which do not require + // ABI changes. + if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) + IsSibcall = true; + + if (isTailCall) + ++NumTailCalls; + } + + assert(!(isVarArg && canGuaranteeTCO(CallConv)) && + "Var args not supported with calling convention fastcc, ghc or hipe"); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); + + // Allocate shadow area for Win64. + if (IsWin64) + CCInfo.AllocateStack(32, 8); + + CCInfo.AnalyzeArguments(Outs, CC_X86); + + // In vectorcall calling convention a second pass is required for the HVA + // types. + if (CallingConv::X86_VectorCall == CallConv) { + CCInfo.AnalyzeArgumentsSecondPass(Outs, CC_X86); + } + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); + if (IsSibcall) + // This is a sibcall. The memory operands are available in caller's + // own caller's stack. + NumBytes = 0; + else if (MF.getTarget().Options.GuaranteedTailCallOpt && + canGuaranteeTCO(CallConv)) + NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); + + int FPDiff = 0; + if (isTailCall && !IsSibcall && !IsMustTail) { + // Lower arguments at fp - stackoffset + fpdiff. + unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); + + FPDiff = NumBytesCallerPushed - NumBytes; + + // Set the delta of movement of the returnaddr stackslot. + // But only set if delta is greater than previous delta. + if (FPDiff < X86Info->getTCReturnAddrDelta()) + X86Info->setTCReturnAddrDelta(FPDiff); + } + + unsigned NumBytesToPush = NumBytes; + unsigned NumBytesToPop = NumBytes; + + // If we have an inalloca argument, all stack space has already been allocated + // for us and be right at the top of the stack. We don't support multiple + // arguments passed in memory when using inalloca. + if (!Outs.empty() && Outs.back().Flags.isInAlloca()) { + NumBytesToPush = 0; + if (!ArgLocs.back().isMemLoc()) + report_fatal_error("cannot use inalloca attribute on a register " + "parameter"); + if (ArgLocs.back().getLocMemOffset() != 0) + report_fatal_error("any parameter with the inalloca attribute must be " + "the only memory argument"); + } + + if (!IsSibcall) + Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush, + NumBytes - NumBytesToPush, dl); + + SDValue RetAddrFrIdx; + // Load return address for tail calls. + if (isTailCall && FPDiff) + Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, + Is64Bit, FPDiff, dl); + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + SDValue StackPtr; + + // The next loop assumes that the locations are in the same order of the + // input arguments. + assert(isSortedByValueNo(ArgLocs) && + "Argument Location list must be sorted before lowering"); + + // Walk the register/memloc assignments, inserting copies/loads. In the case + // of tail call optimization arguments are handle later. + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E; + ++I, ++OutIndex) { + assert(OutIndex < Outs.size() && "Invalid Out index"); + // Skip inalloca arguments, they have already been written. + ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags; + if (Flags.isInAlloca()) + continue; + + CCValAssign &VA = ArgLocs[I]; + EVT RegVT = VA.getLocVT(); + SDValue Arg = OutVals[OutIndex]; + bool isByVal = Flags.isByVal(); + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::AExt: + if (Arg.getValueType().isVector() && + Arg.getValueType().getVectorElementType() == MVT::i1) + Arg = lowerMasksToReg(Arg, RegVT, dl, DAG); + else if (RegVT.is128BitVector()) { + // Special case: passing MMX values in XMM registers. + Arg = DAG.getBitcast(MVT::i64, Arg); + Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); + Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); + } else + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::BCvt: + Arg = DAG.getBitcast(RegVT, Arg); + break; + case CCValAssign::Indirect: { + // Store the argument. + SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); + int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); + Chain = DAG.getStore( + Chain, dl, Arg, SpillSlot, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); + Arg = SpillSlot; + break; + } + } + + if (VA.needsCustom()) { + assert(VA.getValVT() == MVT::v64i1 && + "Currently the only custom case is when we split v64i1 to 2 regs"); + // Split v64i1 value into two registers + Passv64i1ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++I], + Subtarget); + } else if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + if (isVarArg && IsWin64) { + // Win64 ABI requires argument XMM reg to be copied to the corresponding + // shadow reg if callee is a varargs function. + unsigned ShadowReg = 0; + switch (VA.getLocReg()) { + case X86::XMM0: ShadowReg = X86::RCX; break; + case X86::XMM1: ShadowReg = X86::RDX; break; + case X86::XMM2: ShadowReg = X86::R8; break; + case X86::XMM3: ShadowReg = X86::R9; break; + } + if (ShadowReg) + RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); + } + } else if (!IsSibcall && (!isTailCall || isByVal)) { + assert(VA.isMemLoc()); + if (!StackPtr.getNode()) + StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), + getPointerTy(DAG.getDataLayout())); + MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, + dl, DAG, VA, Flags)); + } + } + + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); + + if (Subtarget.isPICStyleGOT()) { + // ELF / PIC requires GOT in the EBX register before function calls via PLT + // GOT pointer. + if (!isTailCall) { + RegsToPass.push_back(std::make_pair( + unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), + getPointerTy(DAG.getDataLayout())))); + } else { + // If we are tail calling and generating PIC/GOT style code load the + // address of the callee into ECX. The value in ecx is used as target of + // the tail jump. This is done to circumvent the ebx/callee-saved problem + // for tail calls on PIC/GOT architectures. Normally we would just put the + // address of GOT into ebx and then call target@PLT. But for tail calls + // ebx would be restored (since ebx is callee saved) before jumping to the + // target@PLT. + + // Note: The actual moving to ECX is done further down. + GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); + if (G && !G->getGlobal()->hasLocalLinkage() && + G->getGlobal()->hasDefaultVisibility()) + Callee = LowerGlobalAddress(Callee, DAG); + else if (isa<ExternalSymbolSDNode>(Callee)) + Callee = LowerExternalSymbol(Callee, DAG); + } + } + + if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) { + // From AMD64 ABI document: + // For calls that may call functions that use varargs or stdargs + // (prototype-less calls or calls to functions containing ellipsis (...) in + // the declaration) %al is used as hidden argument to specify the number + // of SSE registers used. The contents of %al do not need to match exactly + // the number of registers, but must be an ubound on the number of SSE + // registers used and is in the range 0 - 8 inclusive. + + // Count the number of XMM registers allocated. + static const MCPhysReg XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); + assert((Subtarget.hasSSE1() || !NumXMMRegs) + && "SSE registers cannot be used when SSE is disabled"); + + RegsToPass.push_back(std::make_pair(unsigned(X86::AL), + DAG.getConstant(NumXMMRegs, dl, + MVT::i8))); + } + + if (isVarArg && IsMustTail) { + const auto &Forwards = X86Info->getForwardedMustTailRegParms(); + for (const auto &F : Forwards) { + SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); + RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val)); + } + } + + // For tail calls lower the arguments to the 'real' stack slots. Sibcalls + // don't need this because the eligibility check rejects calls that require + // shuffling arguments passed in memory. + if (!IsSibcall && isTailCall) { + // Force all the incoming stack arguments to be loaded from the stack + // before any new outgoing arguments are stored to the stack, because the + // outgoing stack slots may alias the incoming argument stack slots, and + // the alias isn't otherwise explicit. This is slightly more conservative + // than necessary, because it means that each store effectively depends + // on every argument instead of just those arguments it would clobber. + SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); + + SmallVector<SDValue, 8> MemOpChains2; + SDValue FIN; + int FI = 0; + for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E; + ++I, ++OutsIndex) { + CCValAssign &VA = ArgLocs[I]; + + if (VA.isRegLoc()) { + if (VA.needsCustom()) { + assert((CallConv == CallingConv::X86_RegCall) && + "Expecting custom case only in regcall calling convention"); + // This means that we are in special case where one argument was + // passed through two register locations - Skip the next location + ++I; + } + + continue; + } + + assert(VA.isMemLoc()); + SDValue Arg = OutVals[OutsIndex]; + ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags; + // Skip inalloca arguments. They don't require any work. + if (Flags.isInAlloca()) + continue; + // Create frame index. + int32_t Offset = VA.getLocMemOffset()+FPDiff; + uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; + FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); + FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + + if (Flags.isByVal()) { + // Copy relative to framepointer. + SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl); + if (!StackPtr.getNode()) + StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), + getPointerTy(DAG.getDataLayout())); + Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), + StackPtr, Source); + + MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, + ArgChain, + Flags, DAG, dl)); + } else { + // Store relative to framepointer. + MemOpChains2.push_back(DAG.getStore( + ArgChain, dl, Arg, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); + } + } + + if (!MemOpChains2.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); + + // Store the return address to the appropriate stack slot. + Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, + getPointerTy(DAG.getDataLayout()), + RegInfo->getSlotSize(), FPDiff, dl); + } + + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into registers. + SDValue InFlag; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + if (DAG.getTarget().getCodeModel() == CodeModel::Large) { + assert(Is64Bit && "Large code model is only legal in 64-bit mode."); + // In the 64-bit large code model, we have to make all calls + // through a register, since the call instruction's 32-bit + // pc-relative offset may not be large enough to hold the whole + // address. + } else if (Callee->getOpcode() == ISD::GlobalAddress) { + // If the callee is a GlobalAddress node (quite common, every direct call + // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack + // it. + GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee); + + // We should use extra load for direct calls to dllimported functions in + // non-JIT mode. + const GlobalValue *GV = G->getGlobal(); + if (!GV->hasDLLImportStorageClass()) { + unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV); + + Callee = DAG.getTargetGlobalAddress( + GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags); + + if (OpFlags == X86II::MO_GOTPCREL) { + // Add a wrapper. + Callee = DAG.getNode(X86ISD::WrapperRIP, dl, + getPointerTy(DAG.getDataLayout()), Callee); + // Add extra indirection + Callee = DAG.getLoad( + getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee, + MachinePointerInfo::getGOT(DAG.getMachineFunction())); + } + } + } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); + unsigned char OpFlags = + Subtarget.classifyGlobalFunctionReference(nullptr, *Mod); + + Callee = DAG.getTargetExternalSymbol( + S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags); + } else if (Subtarget.isTarget64BitILP32() && + Callee->getValueType(0) == MVT::i32) { + // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI + Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee); + } + + // Returns a chain & a flag for retval copy to use. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SmallVector<SDValue, 8> Ops; + + if (!IsSibcall && isTailCall) { + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getIntPtrConstant(NumBytesToPop, dl, true), + DAG.getIntPtrConstant(0, dl, true), InFlag, dl); + InFlag = Chain.getValue(1); + } + + Ops.push_back(Chain); + Ops.push_back(Callee); + + if (isTailCall) + Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32)); + + // Add argument registers to the end of the list so that they are known live + // into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + // If HasNCSR is asserted (attribute NoCallerSavedRegisters exists) then we + // set X86_INTR calling convention because it has the same CSR mask + // (same preserved registers). + const uint32_t *Mask = RegInfo->getCallPreservedMask( + MF, HasNCSR ? (CallingConv::ID)CallingConv::X86_INTR : CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + + // If this is an invoke in a 32-bit function using a funclet-based + // personality, assume the function clobbers all registers. If an exception + // is thrown, the runtime will not restore CSRs. + // FIXME: Model this more precisely so that we can register allocate across + // the normal edge and spill and fill across the exceptional edge. + if (!Is64Bit && CLI.CS && CLI.CS.isInvoke()) { + const Function &CallerFn = MF.getFunction(); + EHPersonality Pers = + CallerFn.hasPersonalityFn() + ? classifyEHPersonality(CallerFn.getPersonalityFn()) + : EHPersonality::Unknown; + if (isFuncletEHPersonality(Pers)) + Mask = RegInfo->getNoPreservedMask(); + } + + // Define a new register mask from the existing mask. + uint32_t *RegMask = nullptr; + + // In some calling conventions we need to remove the used physical registers + // from the reg mask. + if (CallConv == CallingConv::X86_RegCall || HasNCSR) { + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + + // Allocate a new Reg Mask and copy Mask. + RegMask = MF.allocateRegisterMask(TRI->getNumRegs()); + unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32; + memcpy(RegMask, Mask, sizeof(uint32_t) * RegMaskSize); + + // Make sure all sub registers of the argument registers are reset + // in the RegMask. + for (auto const &RegPair : RegsToPass) + for (MCSubRegIterator SubRegs(RegPair.first, TRI, /*IncludeSelf=*/true); + SubRegs.isValid(); ++SubRegs) + RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32)); + + // Create the RegMask Operand according to our updated mask. + Ops.push_back(DAG.getRegisterMask(RegMask)); + } else { + // Create the RegMask Operand according to the static mask. + Ops.push_back(DAG.getRegisterMask(Mask)); + } + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + if (isTailCall) { + // We used to do: + //// If this is the first return lowered for this function, add the regs + //// to the liveout set for the function. + // This isn't right, although it's probably harmless on x86; liveouts + // should be computed from returns not tail calls. Consider a void + // function making a tail call to a function returning int. + MF.getFrameInfo().setHasTailCall(); + return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops); + } + + Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops); + InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node. + unsigned NumBytesForCalleeToPop; + if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, + DAG.getTarget().Options.GuaranteedTailCallOpt)) + NumBytesForCalleeToPop = NumBytes; // Callee pops everything + else if (!Is64Bit && !canGuaranteeTCO(CallConv) && + !Subtarget.getTargetTriple().isOSMSVCRT() && + SR == StackStructReturn) + // If this is a call to a struct-return function, the callee + // pops the hidden struct pointer, so we have to push it back. + // This is common for Darwin/X86, Linux & Mingw32 targets. + // For MSVC Win32 targets, the caller pops the hidden struct pointer. + NumBytesForCalleeToPop = 4; + else + NumBytesForCalleeToPop = 0; // Callee pops nothing. + + if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) { + // No need to reset the stack after the call if the call doesn't return. To + // make the MI verify, we'll pretend the callee does it for us. + NumBytesForCalleeToPop = NumBytes; + } + + // Returns a flag for retval copy to use. + if (!IsSibcall) { + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getIntPtrConstant(NumBytesToPop, dl, true), + DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl, + true), + InFlag, dl); + InFlag = Chain.getValue(1); + } + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, + InVals, RegMask); +} + +//===----------------------------------------------------------------------===// +// Fast Calling Convention (tail call) implementation +//===----------------------------------------------------------------------===// + +// Like std call, callee cleans arguments, convention except that ECX is +// reserved for storing the tail called function address. Only 2 registers are +// free for argument passing (inreg). Tail call optimization is performed +// provided: +// * tailcallopt is enabled +// * caller/callee are fastcc +// On X86_64 architecture with GOT-style position independent code only local +// (within module) calls are supported at the moment. +// To keep the stack aligned according to platform abi the function +// GetAlignedArgumentStackSize ensures that argument delta is always multiples +// of stack alignment. (Dynamic linkers need this - darwin's dyld for example) +// If a tail called function callee has more arguments than the caller the +// caller needs to make sure that there is room to move the RETADDR to. This is +// achieved by reserving an area the size of the argument delta right after the +// original RETADDR, but before the saved framepointer or the spilled registers +// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) +// stack layout: +// arg1 +// arg2 +// RETADDR +// [ new RETADDR +// move area ] +// (possible EBP) +// ESI +// EDI +// local1 .. + +/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align +/// requirement. +unsigned +X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, + SelectionDAG& DAG) const { + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); + unsigned StackAlignment = TFI.getStackAlignment(); + uint64_t AlignMask = StackAlignment - 1; + int64_t Offset = StackSize; + unsigned SlotSize = RegInfo->getSlotSize(); + if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { + // Number smaller than 12 so just add the difference. + Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); + } else { + // Mask out lower bits, add stackalignment once plus the 12 bytes. + Offset = ((~AlignMask) & Offset) + StackAlignment + + (StackAlignment-SlotSize); + } + return Offset; +} + +/// Return true if the given stack call argument is already available in the +/// same position (relatively) of the caller's incoming argument stack. +static +bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, + MachineFrameInfo &MFI, const MachineRegisterInfo *MRI, + const X86InstrInfo *TII, const CCValAssign &VA) { + unsigned Bytes = Arg.getValueSizeInBits() / 8; + + for (;;) { + // Look through nodes that don't alter the bits of the incoming value. + unsigned Op = Arg.getOpcode(); + if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) { + Arg = Arg.getOperand(0); + continue; + } + if (Op == ISD::TRUNCATE) { + const SDValue &TruncInput = Arg.getOperand(0); + if (TruncInput.getOpcode() == ISD::AssertZext && + cast<VTSDNode>(TruncInput.getOperand(1))->getVT() == + Arg.getValueType()) { + Arg = TruncInput.getOperand(0); + continue; + } + } + break; + } + + int FI = INT_MAX; + if (Arg.getOpcode() == ISD::CopyFromReg) { + unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); + if (!TargetRegisterInfo::isVirtualRegister(VR)) + return false; + MachineInstr *Def = MRI->getVRegDef(VR); + if (!Def) + return false; + if (!Flags.isByVal()) { + if (!TII->isLoadFromStackSlot(*Def, FI)) + return false; + } else { + unsigned Opcode = Def->getOpcode(); + if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r || + Opcode == X86::LEA64_32r) && + Def->getOperand(1).isFI()) { + FI = Def->getOperand(1).getIndex(); + Bytes = Flags.getByValSize(); + } else + return false; + } + } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { + if (Flags.isByVal()) + // ByVal argument is passed in as a pointer but it's now being + // dereferenced. e.g. + // define @foo(%struct.X* %A) { + // tail call @bar(%struct.X* byval %A) + // } + return false; + SDValue Ptr = Ld->getBasePtr(); + FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); + if (!FINode) + return false; + FI = FINode->getIndex(); + } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { + FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg); + FI = FINode->getIndex(); + Bytes = Flags.getByValSize(); + } else + return false; + + assert(FI != INT_MAX); + if (!MFI.isFixedObjectIndex(FI)) + return false; + + if (Offset != MFI.getObjectOffset(FI)) + return false; + + // If this is not byval, check that the argument stack object is immutable. + // inalloca and argument copy elision can create mutable argument stack + // objects. Byval objects can be mutated, but a byval call intends to pass the + // mutated memory. + if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(FI)) + return false; + + if (VA.getLocVT().getSizeInBits() > Arg.getValueSizeInBits()) { + // If the argument location is wider than the argument type, check that any + // extension flags match. + if (Flags.isZExt() != MFI.isObjectZExt(FI) || + Flags.isSExt() != MFI.isObjectSExt(FI)) { + return false; + } + } + + return Bytes == MFI.getObjectSize(FI); +} + +/// Check whether the call is eligible for tail call optimization. Targets +/// that want to do tail call optimization should implement this function. +bool X86TargetLowering::IsEligibleForTailCallOptimization( + SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, + bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { + if (!mayTailCallThisCC(CalleeCC)) + return false; + + // If -tailcallopt is specified, make fastcc functions tail-callable. + MachineFunction &MF = DAG.getMachineFunction(); + const Function &CallerF = MF.getFunction(); + + // If the function return type is x86_fp80 and the callee return type is not, + // then the FP_EXTEND of the call result is not a nop. It's not safe to + // perform a tailcall optimization here. + if (CallerF.getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty()) + return false; + + CallingConv::ID CallerCC = CallerF.getCallingConv(); + bool CCMatch = CallerCC == CalleeCC; + bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC); + bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC); + + // Win64 functions have extra shadow space for argument homing. Don't do the + // sibcall if the caller and callee have mismatched expectations for this + // space. + if (IsCalleeWin64 != IsCallerWin64) + return false; + + if (DAG.getTarget().Options.GuaranteedTailCallOpt) { + if (canGuaranteeTCO(CalleeCC) && CCMatch) + return true; + return false; + } + + // Look for obvious safe cases to perform tail call optimization that do not + // require ABI changes. This is what gcc calls sibcall. + + // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to + // emit a special epilogue. + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + if (RegInfo->needsStackRealignment(MF)) + return false; + + // Also avoid sibcall optimization if either caller or callee uses struct + // return semantics. + if (isCalleeStructRet || isCallerStructRet) + return false; + + // Do not sibcall optimize vararg calls unless all arguments are passed via + // registers. + LLVMContext &C = *DAG.getContext(); + if (isVarArg && !Outs.empty()) { + // Optimizing for varargs on Win64 is unlikely to be safe without + // additional testing. + if (IsCalleeWin64 || IsCallerWin64) + return false; + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); + + CCInfo.AnalyzeCallOperands(Outs, CC_X86); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) + if (!ArgLocs[i].isRegLoc()) + return false; + } + + // If the call result is in ST0 / ST1, it needs to be popped off the x87 + // stack. Therefore, if it's not used by the call it is not safe to optimize + // this into a sibcall. + bool Unused = false; + for (unsigned i = 0, e = Ins.size(); i != e; ++i) { + if (!Ins[i].Used) { + Unused = true; + break; + } + } + if (Unused) { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CalleeCC, false, MF, RVLocs, C); + CCInfo.AnalyzeCallResult(Ins, RetCC_X86); + for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { + CCValAssign &VA = RVLocs[i]; + if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) + return false; + } + } + + // Check that the call results are passed in the same way. + if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, + RetCC_X86, RetCC_X86)) + return false; + // The callee has to preserve all registers the caller needs to preserve. + const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); + const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); + if (!CCMatch) { + const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); + if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) + return false; + } + + unsigned StackArgsSize = 0; + + // If the callee takes no arguments then go on to check the results of the + // call. + if (!Outs.empty()) { + // Check if stack adjustment is needed. For now, do not do this if any + // argument is passed on the stack. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); + + // Allocate shadow area for Win64 + if (IsCalleeWin64) + CCInfo.AllocateStack(32, 8); + + CCInfo.AnalyzeCallOperands(Outs, CC_X86); + StackArgsSize = CCInfo.getNextStackOffset(); + + if (CCInfo.getNextStackOffset()) { + // Check if the arguments are already laid out in the right way as + // the caller's fixed stack objects. + MachineFrameInfo &MFI = MF.getFrameInfo(); + const MachineRegisterInfo *MRI = &MF.getRegInfo(); + const X86InstrInfo *TII = Subtarget.getInstrInfo(); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + if (VA.getLocInfo() == CCValAssign::Indirect) + return false; + if (!VA.isRegLoc()) { + if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, + MFI, MRI, TII, VA)) + return false; + } + } + } + + bool PositionIndependent = isPositionIndependent(); + // If the tailcall address may be in a register, then make sure it's + // possible to register allocate for it. In 32-bit, the call address can + // only target EAX, EDX, or ECX since the tail call must be scheduled after + // callee-saved registers are restored. These happen to be the same + // registers used to pass 'inreg' arguments so watch out for those. + if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) && + !isa<ExternalSymbolSDNode>(Callee)) || + PositionIndependent)) { + unsigned NumInRegs = 0; + // In PIC we need an extra register to formulate the address computation + // for the callee. + unsigned MaxInRegs = PositionIndependent ? 2 : 3; + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (!VA.isRegLoc()) + continue; + unsigned Reg = VA.getLocReg(); + switch (Reg) { + default: break; + case X86::EAX: case X86::EDX: case X86::ECX: + if (++NumInRegs == MaxInRegs) + return false; + break; + } + } + } + + const MachineRegisterInfo &MRI = MF.getRegInfo(); + if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) + return false; + } + + bool CalleeWillPop = + X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg, + MF.getTarget().Options.GuaranteedTailCallOpt); + + if (unsigned BytesToPop = + MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) { + // If we have bytes to pop, the callee must pop them. + bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize; + if (!CalleePopMatches) + return false; + } else if (CalleeWillPop && StackArgsSize > 0) { + // If we don't have bytes to pop, make sure the callee doesn't pop any. + return false; + } + + return true; +} + +FastISel * +X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) const { + return X86::createFastISel(funcInfo, libInfo); +} + +//===----------------------------------------------------------------------===// +// Other Lowering Hooks +//===----------------------------------------------------------------------===// + +static bool MayFoldLoad(SDValue Op) { + return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); +} + +static bool MayFoldIntoStore(SDValue Op) { + return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); +} + +static bool MayFoldIntoZeroExtend(SDValue Op) { + if (Op.hasOneUse()) { + unsigned Opcode = Op.getNode()->use_begin()->getOpcode(); + return (ISD::ZERO_EXTEND == Opcode); + } + return false; +} + +static bool isTargetShuffle(unsigned Opcode) { + switch(Opcode) { + default: return false; + case X86ISD::BLENDI: + case X86ISD::PSHUFB: + case X86ISD::PSHUFD: + case X86ISD::PSHUFHW: + case X86ISD::PSHUFLW: + case X86ISD::SHUFP: + case X86ISD::INSERTPS: + case X86ISD::EXTRQI: + case X86ISD::INSERTQI: + case X86ISD::PALIGNR: + case X86ISD::VSHLDQ: + case X86ISD::VSRLDQ: + case X86ISD::MOVLHPS: + case X86ISD::MOVHLPS: + case X86ISD::MOVLPS: + case X86ISD::MOVLPD: + case X86ISD::MOVSHDUP: + case X86ISD::MOVSLDUP: + case X86ISD::MOVDDUP: + case X86ISD::MOVSS: + case X86ISD::MOVSD: + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + case X86ISD::VBROADCAST: + case X86ISD::VPERMILPI: + case X86ISD::VPERMILPV: + case X86ISD::VPERM2X128: + case X86ISD::VPERMIL2: + case X86ISD::VPERMI: + case X86ISD::VPPERM: + case X86ISD::VPERMV: + case X86ISD::VPERMV3: + case X86ISD::VPERMIV3: + case X86ISD::VZEXT_MOVL: + return true; + } +} + +static bool isTargetShuffleVariableMask(unsigned Opcode) { + switch (Opcode) { + default: return false; + // Target Shuffles. + case X86ISD::PSHUFB: + case X86ISD::VPERMILPV: + case X86ISD::VPERMIL2: + case X86ISD::VPPERM: + case X86ISD::VPERMV: + case X86ISD::VPERMV3: + case X86ISD::VPERMIV3: + return true; + // 'Faux' Target Shuffles. + case ISD::AND: + case X86ISD::ANDNP: + return true; + } +} + +SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + int ReturnAddrIndex = FuncInfo->getRAIndex(); + + if (ReturnAddrIndex == 0) { + // Set up a frame object for the return address. + unsigned SlotSize = RegInfo->getSlotSize(); + ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, + -(int64_t)SlotSize, + false); + FuncInfo->setRAIndex(ReturnAddrIndex); + } + + return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout())); +} + +bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, + bool hasSymbolicDisplacement) { + // Offset should fit into 32 bit immediate field. + if (!isInt<32>(Offset)) + return false; + + // If we don't have a symbolic displacement - we don't have any extra + // restrictions. + if (!hasSymbolicDisplacement) + return true; + + // FIXME: Some tweaks might be needed for medium code model. + if (M != CodeModel::Small && M != CodeModel::Kernel) + return false; + + // For small code model we assume that latest object is 16MB before end of 31 + // bits boundary. We may also accept pretty large negative constants knowing + // that all objects are in the positive half of address space. + if (M == CodeModel::Small && Offset < 16*1024*1024) + return true; + + // For kernel code model we know that all object resist in the negative half + // of 32bits address space. We may not accept negative offsets, since they may + // be just off and we may accept pretty large positive ones. + if (M == CodeModel::Kernel && Offset >= 0) + return true; + + return false; +} + +/// Determines whether the callee is required to pop its own arguments. +/// Callee pop is necessary to support tail calls. +bool X86::isCalleePop(CallingConv::ID CallingConv, + bool is64Bit, bool IsVarArg, bool GuaranteeTCO) { + // If GuaranteeTCO is true, we force some calls to be callee pop so that we + // can guarantee TCO. + if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO)) + return true; + + switch (CallingConv) { + default: + return false; + case CallingConv::X86_StdCall: + case CallingConv::X86_FastCall: + case CallingConv::X86_ThisCall: + case CallingConv::X86_VectorCall: + return !is64Bit; + } +} + +/// \brief Return true if the condition is an unsigned comparison operation. +static bool isX86CCUnsigned(unsigned X86CC) { + switch (X86CC) { + default: + llvm_unreachable("Invalid integer condition!"); + case X86::COND_E: + case X86::COND_NE: + case X86::COND_B: + case X86::COND_A: + case X86::COND_BE: + case X86::COND_AE: + return true; + case X86::COND_G: + case X86::COND_GE: + case X86::COND_L: + case X86::COND_LE: + return false; + } +} + +static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) { + switch (SetCCOpcode) { + default: llvm_unreachable("Invalid integer condition!"); + case ISD::SETEQ: return X86::COND_E; + case ISD::SETGT: return X86::COND_G; + case ISD::SETGE: return X86::COND_GE; + case ISD::SETLT: return X86::COND_L; + case ISD::SETLE: return X86::COND_LE; + case ISD::SETNE: return X86::COND_NE; + case ISD::SETULT: return X86::COND_B; + case ISD::SETUGT: return X86::COND_A; + case ISD::SETULE: return X86::COND_BE; + case ISD::SETUGE: return X86::COND_AE; + } +} + +/// Do a one-to-one translation of a ISD::CondCode to the X86-specific +/// condition code, returning the condition code and the LHS/RHS of the +/// comparison to make. +static X86::CondCode TranslateX86CC(ISD::CondCode SetCCOpcode, const SDLoc &DL, + bool isFP, SDValue &LHS, SDValue &RHS, + SelectionDAG &DAG) { + if (!isFP) { + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { + if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { + // X > -1 -> X == 0, jump !sign. + RHS = DAG.getConstant(0, DL, RHS.getValueType()); + return X86::COND_NS; + } + if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { + // X < 0 -> X == 0, jump on sign. + return X86::COND_S; + } + if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { + // X < 1 -> X <= 0 + RHS = DAG.getConstant(0, DL, RHS.getValueType()); + return X86::COND_LE; + } + } + + return TranslateIntegerX86CC(SetCCOpcode); + } + + // First determine if it is required or is profitable to flip the operands. + + // If LHS is a foldable load, but RHS is not, flip the condition. + if (ISD::isNON_EXTLoad(LHS.getNode()) && + !ISD::isNON_EXTLoad(RHS.getNode())) { + SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); + std::swap(LHS, RHS); + } + + switch (SetCCOpcode) { + default: break; + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETUGT: + case ISD::SETUGE: + std::swap(LHS, RHS); + break; + } + + // On a floating point condition, the flags are set as follows: + // ZF PF CF op + // 0 | 0 | 0 | X > Y + // 0 | 0 | 1 | X < Y + // 1 | 0 | 0 | X == Y + // 1 | 1 | 1 | unordered + switch (SetCCOpcode) { + default: llvm_unreachable("Condcode should be pre-legalized away"); + case ISD::SETUEQ: + case ISD::SETEQ: return X86::COND_E; + case ISD::SETOLT: // flipped + case ISD::SETOGT: + case ISD::SETGT: return X86::COND_A; + case ISD::SETOLE: // flipped + case ISD::SETOGE: + case ISD::SETGE: return X86::COND_AE; + case ISD::SETUGT: // flipped + case ISD::SETULT: + case ISD::SETLT: return X86::COND_B; + case ISD::SETUGE: // flipped + case ISD::SETULE: + case ISD::SETLE: return X86::COND_BE; + case ISD::SETONE: + case ISD::SETNE: return X86::COND_NE; + case ISD::SETUO: return X86::COND_P; + case ISD::SETO: return X86::COND_NP; + case ISD::SETOEQ: + case ISD::SETUNE: return X86::COND_INVALID; + } +} + +/// Is there a floating point cmov for the specific X86 condition code? +/// Current x86 isa includes the following FP cmov instructions: +/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. +static bool hasFPCMov(unsigned X86CC) { + switch (X86CC) { + default: + return false; + case X86::COND_B: + case X86::COND_BE: + case X86::COND_E: + case X86::COND_P: + case X86::COND_A: + case X86::COND_AE: + case X86::COND_NE: + case X86::COND_NP: + return true; + } +} + + +bool X86TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, + const CallInst &I, + MachineFunction &MF, + unsigned Intrinsic) const { + + const IntrinsicData* IntrData = getIntrinsicWithChain(Intrinsic); + if (!IntrData) + return false; + + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.flags = MachineMemOperand::MONone; + Info.offset = 0; + + switch (IntrData->Type) { + case EXPAND_FROM_MEM: { + Info.ptrVal = I.getArgOperand(0); + Info.memVT = MVT::getVT(I.getType()); + Info.align = 1; + Info.flags |= MachineMemOperand::MOLoad; + break; + } + case COMPRESS_TO_MEM: { + Info.ptrVal = I.getArgOperand(0); + Info.memVT = MVT::getVT(I.getArgOperand(1)->getType()); + Info.align = 1; + Info.flags |= MachineMemOperand::MOStore; + break; + } + case TRUNCATE_TO_MEM_VI8: + case TRUNCATE_TO_MEM_VI16: + case TRUNCATE_TO_MEM_VI32: { + Info.ptrVal = I.getArgOperand(0); + MVT VT = MVT::getVT(I.getArgOperand(1)->getType()); + MVT ScalarVT = MVT::INVALID_SIMPLE_VALUE_TYPE; + if (IntrData->Type == TRUNCATE_TO_MEM_VI8) + ScalarVT = MVT::i8; + else if (IntrData->Type == TRUNCATE_TO_MEM_VI16) + ScalarVT = MVT::i16; + else if (IntrData->Type == TRUNCATE_TO_MEM_VI32) + ScalarVT = MVT::i32; + + Info.memVT = MVT::getVectorVT(ScalarVT, VT.getVectorNumElements()); + Info.align = 1; + Info.flags |= MachineMemOperand::MOStore; + break; + } + default: + return false; + } + + return true; +} + +/// Returns true if the target can instruction select the +/// specified FP immediate natively. If false, the legalizer will +/// materialize the FP immediate as a load from a constant pool. +bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { + if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) + return true; + } + return false; +} + +bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load, + ISD::LoadExtType ExtTy, + EVT NewVT) const { + // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF + // relocation target a movq or addq instruction: don't let the load shrink. + SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr(); + if (BasePtr.getOpcode() == X86ISD::WrapperRIP) + if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) + return GA->getTargetFlags() != X86II::MO_GOTTPOFF; + return true; +} + +/// \brief Returns true if it is beneficial to convert a load of a constant +/// to just the constant itself. +bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, + Type *Ty) const { + assert(Ty->isIntegerTy()); + + unsigned BitSize = Ty->getPrimitiveSizeInBits(); + if (BitSize == 0 || BitSize > 64) + return false; + return true; +} + +bool X86TargetLowering::convertSelectOfConstantsToMath(EVT VT) const { + // TODO: It might be a win to ease or lift this restriction, but the generic + // folds in DAGCombiner conflict with vector folds for an AVX512 target. + if (VT.isVector() && Subtarget.hasAVX512()) + return false; + + return true; +} + +bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, + unsigned Index) const { + if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) + return false; + + // Mask vectors support all subregister combinations and operations that + // extract half of vector. + if (ResVT.getVectorElementType() == MVT::i1) + return Index == 0 || ((ResVT.getSizeInBits() == SrcVT.getSizeInBits()*2) && + (Index == ResVT.getVectorNumElements())); + + return (Index % ResVT.getVectorNumElements()) == 0; +} + +bool X86TargetLowering::isCheapToSpeculateCttz() const { + // Speculate cttz only if we can directly use TZCNT. + return Subtarget.hasBMI(); +} + +bool X86TargetLowering::isCheapToSpeculateCtlz() const { + // Speculate ctlz only if we can directly use LZCNT. + return Subtarget.hasLZCNT(); +} + +bool X86TargetLowering::canMergeStoresTo(unsigned AddressSpace, EVT MemVT, + const SelectionDAG &DAG) const { + // Do not merge to float value size (128 bytes) if no implicit + // float attribute is set. + bool NoFloat = DAG.getMachineFunction().getFunction().hasFnAttribute( + Attribute::NoImplicitFloat); + + if (NoFloat) { + unsigned MaxIntSize = Subtarget.is64Bit() ? 64 : 32; + return (MemVT.getSizeInBits() <= MaxIntSize); + } + return true; +} + +bool X86TargetLowering::isCtlzFast() const { + return Subtarget.hasFastLZCNT(); +} + +bool X86TargetLowering::isMaskAndCmp0FoldingBeneficial( + const Instruction &AndI) const { + return true; +} + +bool X86TargetLowering::hasAndNotCompare(SDValue Y) const { + if (!Subtarget.hasBMI()) + return false; + + // There are only 32-bit and 64-bit forms for 'andn'. + EVT VT = Y.getValueType(); + if (VT != MVT::i32 && VT != MVT::i64) + return false; + + return true; +} + +MVT X86TargetLowering::hasFastEqualityCompare(unsigned NumBits) const { + MVT VT = MVT::getIntegerVT(NumBits); + if (isTypeLegal(VT)) + return VT; + + // PMOVMSKB can handle this. + if (NumBits == 128 && isTypeLegal(MVT::v16i8)) + return MVT::v16i8; + + // VPMOVMSKB can handle this. + if (NumBits == 256 && isTypeLegal(MVT::v32i8)) + return MVT::v32i8; + + // TODO: Allow 64-bit type for 32-bit target. + // TODO: 512-bit types should be allowed, but make sure that those + // cases are handled in combineVectorSizedSetCCEquality(). + + return MVT::INVALID_SIMPLE_VALUE_TYPE; +} + +/// Val is the undef sentinel value or equal to the specified value. +static bool isUndefOrEqual(int Val, int CmpVal) { + return ((Val == SM_SentinelUndef) || (Val == CmpVal)); +} + +/// Val is either the undef or zero sentinel value. +static bool isUndefOrZero(int Val) { + return ((Val == SM_SentinelUndef) || (Val == SM_SentinelZero)); +} + +/// Return true if every element in Mask, beginning +/// from position Pos and ending in Pos+Size is the undef sentinel value. +static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) { + for (unsigned i = Pos, e = Pos + Size; i != e; ++i) + if (Mask[i] != SM_SentinelUndef) + return false; + return true; +} + +/// Return true if Val is undef or if its value falls within the +/// specified range (L, H]. +static bool isUndefOrInRange(int Val, int Low, int Hi) { + return (Val == SM_SentinelUndef) || (Val >= Low && Val < Hi); +} + +/// Return true if every element in Mask is undef or if its value +/// falls within the specified range (L, H]. +static bool isUndefOrInRange(ArrayRef<int> Mask, + int Low, int Hi) { + for (int M : Mask) + if (!isUndefOrInRange(M, Low, Hi)) + return false; + return true; +} + +/// Return true if Val is undef, zero or if its value falls within the +/// specified range (L, H]. +static bool isUndefOrZeroOrInRange(int Val, int Low, int Hi) { + return isUndefOrZero(Val) || (Val >= Low && Val < Hi); +} + +/// Return true if every element in Mask is undef, zero or if its value +/// falls within the specified range (L, H]. +static bool isUndefOrZeroOrInRange(ArrayRef<int> Mask, int Low, int Hi) { + for (int M : Mask) + if (!isUndefOrZeroOrInRange(M, Low, Hi)) + return false; + return true; +} + +/// Return true if every element in Mask, beginning +/// from position Pos and ending in Pos+Size, falls within the specified +/// sequential range (Low, Low+Size]. or is undef. +static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, + unsigned Pos, unsigned Size, int Low) { + for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) + if (!isUndefOrEqual(Mask[i], Low)) + return false; + return true; +} + +/// Return true if every element in Mask, beginning +/// from position Pos and ending in Pos+Size, falls within the specified +/// sequential range (Low, Low+Size], or is undef or is zero. +static bool isSequentialOrUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos, + unsigned Size, int Low) { + for (unsigned i = Pos, e = Pos + Size; i != e; ++i, ++Low) + if (!isUndefOrZero(Mask[i]) && Mask[i] != Low) + return false; + return true; +} + +/// Return true if every element in Mask, beginning +/// from position Pos and ending in Pos+Size is undef or is zero. +static bool isUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos, + unsigned Size) { + for (unsigned i = Pos, e = Pos + Size; i != e; ++i) + if (!isUndefOrZero(Mask[i])) + return false; + return true; +} + +/// \brief Helper function to test whether a shuffle mask could be +/// simplified by widening the elements being shuffled. +/// +/// Appends the mask for wider elements in WidenedMask if valid. Otherwise +/// leaves it in an unspecified state. +/// +/// NOTE: This must handle normal vector shuffle masks and *target* vector +/// shuffle masks. The latter have the special property of a '-2' representing +/// a zero-ed lane of a vector. +static bool canWidenShuffleElements(ArrayRef<int> Mask, + SmallVectorImpl<int> &WidenedMask) { + WidenedMask.assign(Mask.size() / 2, 0); + for (int i = 0, Size = Mask.size(); i < Size; i += 2) { + int M0 = Mask[i]; + int M1 = Mask[i + 1]; + + // If both elements are undef, its trivial. + if (M0 == SM_SentinelUndef && M1 == SM_SentinelUndef) { + WidenedMask[i / 2] = SM_SentinelUndef; + continue; + } + + // Check for an undef mask and a mask value properly aligned to fit with + // a pair of values. If we find such a case, use the non-undef mask's value. + if (M0 == SM_SentinelUndef && M1 >= 0 && (M1 % 2) == 1) { + WidenedMask[i / 2] = M1 / 2; + continue; + } + if (M1 == SM_SentinelUndef && M0 >= 0 && (M0 % 2) == 0) { + WidenedMask[i / 2] = M0 / 2; + continue; + } + + // When zeroing, we need to spread the zeroing across both lanes to widen. + if (M0 == SM_SentinelZero || M1 == SM_SentinelZero) { + if ((M0 == SM_SentinelZero || M0 == SM_SentinelUndef) && + (M1 == SM_SentinelZero || M1 == SM_SentinelUndef)) { + WidenedMask[i / 2] = SM_SentinelZero; + continue; + } + return false; + } + + // Finally check if the two mask values are adjacent and aligned with + // a pair. + if (M0 != SM_SentinelUndef && (M0 % 2) == 0 && (M0 + 1) == M1) { + WidenedMask[i / 2] = M0 / 2; + continue; + } + + // Otherwise we can't safely widen the elements used in this shuffle. + return false; + } + assert(WidenedMask.size() == Mask.size() / 2 && + "Incorrect size of mask after widening the elements!"); + + return true; +} + +/// Returns true if Elt is a constant zero or a floating point constant +0.0. +bool X86::isZeroNode(SDValue Elt) { + return isNullConstant(Elt) || isNullFPConstant(Elt); +} + +// Build a vector of constants. +// Use an UNDEF node if MaskElt == -1. +// Split 64-bit constants in the 32-bit mode. +static SDValue getConstVector(ArrayRef<int> Values, MVT VT, SelectionDAG &DAG, + const SDLoc &dl, bool IsMask = false) { + + SmallVector<SDValue, 32> Ops; + bool Split = false; + + MVT ConstVecVT = VT; + unsigned NumElts = VT.getVectorNumElements(); + bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64); + if (!In64BitMode && VT.getVectorElementType() == MVT::i64) { + ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2); + Split = true; + } + + MVT EltVT = ConstVecVT.getVectorElementType(); + for (unsigned i = 0; i < NumElts; ++i) { + bool IsUndef = Values[i] < 0 && IsMask; + SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) : + DAG.getConstant(Values[i], dl, EltVT); + Ops.push_back(OpNode); + if (Split) + Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) : + DAG.getConstant(0, dl, EltVT)); + } + SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops); + if (Split) + ConstsNode = DAG.getBitcast(VT, ConstsNode); + return ConstsNode; +} + +static SDValue getConstVector(ArrayRef<APInt> Bits, APInt &Undefs, + MVT VT, SelectionDAG &DAG, const SDLoc &dl) { + assert(Bits.size() == Undefs.getBitWidth() && + "Unequal constant and undef arrays"); + SmallVector<SDValue, 32> Ops; + bool Split = false; + + MVT ConstVecVT = VT; + unsigned NumElts = VT.getVectorNumElements(); + bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64); + if (!In64BitMode && VT.getVectorElementType() == MVT::i64) { + ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2); + Split = true; + } + + MVT EltVT = ConstVecVT.getVectorElementType(); + for (unsigned i = 0, e = Bits.size(); i != e; ++i) { + if (Undefs[i]) { + Ops.append(Split ? 2 : 1, DAG.getUNDEF(EltVT)); + continue; + } + const APInt &V = Bits[i]; + assert(V.getBitWidth() == VT.getScalarSizeInBits() && "Unexpected sizes"); + if (Split) { + Ops.push_back(DAG.getConstant(V.trunc(32), dl, EltVT)); + Ops.push_back(DAG.getConstant(V.lshr(32).trunc(32), dl, EltVT)); + } else if (EltVT == MVT::f32) { + APFloat FV(APFloat::IEEEsingle(), V); + Ops.push_back(DAG.getConstantFP(FV, dl, EltVT)); + } else if (EltVT == MVT::f64) { + APFloat FV(APFloat::IEEEdouble(), V); + Ops.push_back(DAG.getConstantFP(FV, dl, EltVT)); + } else { + Ops.push_back(DAG.getConstant(V, dl, EltVT)); + } + } + + SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops); + return DAG.getBitcast(VT, ConstsNode); +} + +/// Returns a vector of specified type with all zero elements. +static SDValue getZeroVector(MVT VT, const X86Subtarget &Subtarget, + SelectionDAG &DAG, const SDLoc &dl) { + assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector() || + VT.getVectorElementType() == MVT::i1) && + "Unexpected vector type"); + + // Try to build SSE/AVX zero vectors as <N x i32> bitcasted to their dest + // type. This ensures they get CSE'd. But if the integer type is not + // available, use a floating-point +0.0 instead. + SDValue Vec; + if (!Subtarget.hasSSE2() && VT.is128BitVector()) { + Vec = DAG.getConstantFP(+0.0, dl, MVT::v4f32); + } else if (VT.getVectorElementType() == MVT::i1) { + assert((Subtarget.hasBWI() || VT.getVectorNumElements() <= 16) && + "Unexpected vector type"); + assert((Subtarget.hasVLX() || VT.getVectorNumElements() >= 8) && + "Unexpected vector type"); + Vec = DAG.getConstant(0, dl, VT); + } else { + unsigned Num32BitElts = VT.getSizeInBits() / 32; + Vec = DAG.getConstant(0, dl, MVT::getVectorVT(MVT::i32, Num32BitElts)); + } + return DAG.getBitcast(VT, Vec); +} + +static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, + const SDLoc &dl, unsigned vectorWidth) { + EVT VT = Vec.getValueType(); + EVT ElVT = VT.getVectorElementType(); + unsigned Factor = VT.getSizeInBits()/vectorWidth; + EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, + VT.getVectorNumElements()/Factor); + + // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR + unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits(); + assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); + + // This is the index of the first element of the vectorWidth-bit chunk + // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. + IdxVal &= ~(ElemsPerChunk - 1); + + // If the input is a buildvector just emit a smaller one. + if (Vec.getOpcode() == ISD::BUILD_VECTOR) + return DAG.getBuildVector(ResultVT, dl, + Vec->ops().slice(IdxVal, ElemsPerChunk)); + + SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx); +} + +/// Generate a DAG to grab 128-bits from a vector > 128 bits. This +/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128 +/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4 +/// instructions or a simple subregister reference. Idx is an index in the +/// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes +/// lowering EXTRACT_VECTOR_ELT operations easier. +static SDValue extract128BitVector(SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, const SDLoc &dl) { + assert((Vec.getValueType().is256BitVector() || + Vec.getValueType().is512BitVector()) && "Unexpected vector size!"); + return extractSubVector(Vec, IdxVal, DAG, dl, 128); +} + +/// Generate a DAG to grab 256-bits from a 512-bit vector. +static SDValue extract256BitVector(SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, const SDLoc &dl) { + assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!"); + return extractSubVector(Vec, IdxVal, DAG, dl, 256); +} + +static SDValue insertSubVector(SDValue Result, SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, const SDLoc &dl, + unsigned vectorWidth) { + assert((vectorWidth == 128 || vectorWidth == 256) && + "Unsupported vector width"); + // Inserting UNDEF is Result + if (Vec.isUndef()) + return Result; + EVT VT = Vec.getValueType(); + EVT ElVT = VT.getVectorElementType(); + EVT ResultVT = Result.getValueType(); + + // Insert the relevant vectorWidth bits. + unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits(); + assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); + + // This is the index of the first element of the vectorWidth-bit chunk + // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. + IdxVal &= ~(ElemsPerChunk - 1); + + SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx); +} + +/// Generate a DAG to put 128-bits into a vector > 128 bits. This +/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or +/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a +/// simple superregister reference. Idx is an index in the 128 bits +/// we want. It need not be aligned to a 128-bit boundary. That makes +/// lowering INSERT_VECTOR_ELT operations easier. +static SDValue insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, const SDLoc &dl) { + assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!"); + return insertSubVector(Result, Vec, IdxVal, DAG, dl, 128); +} + +static SDValue insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, const SDLoc &dl) { + assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!"); + return insertSubVector(Result, Vec, IdxVal, DAG, dl, 256); +} + +// Return true if the instruction zeroes the unused upper part of the +// destination and accepts mask. +static bool isMaskedZeroUpperBitsvXi1(unsigned int Opcode) { + switch (Opcode) { + default: + return false; + case X86ISD::TESTM: + case X86ISD::TESTNM: + case X86ISD::PCMPEQM: + case X86ISD::PCMPGTM: + case X86ISD::CMPM: + case X86ISD::CMPMU: + case X86ISD::CMPM_RND: + return true; + } +} + +/// Insert i1-subvector to i1-vector. +static SDValue insert1BitVector(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + + SDLoc dl(Op); + SDValue Vec = Op.getOperand(0); + SDValue SubVec = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + + if (!isa<ConstantSDNode>(Idx)) + return SDValue(); + + // Inserting undef is a nop. We can just return the original vector. + if (SubVec.isUndef()) + return Vec; + + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + if (IdxVal == 0 && Vec.isUndef()) // the operation is legal + return Op; + + MVT OpVT = Op.getSimpleValueType(); + unsigned NumElems = OpVT.getVectorNumElements(); + + SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl); + + // Extend to natively supported kshift. + MVT WideOpVT = OpVT; + if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8) + WideOpVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1; + + // Inserting into the lsbs of a zero vector is legal. ISel will insert shifts + // if necessary. + if (IdxVal == 0 && ISD::isBuildVectorAllZeros(Vec.getNode())) { + // May need to promote to a legal type. + Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, + getZeroVector(WideOpVT, Subtarget, DAG, dl), + SubVec, Idx); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx); + } + + MVT SubVecVT = SubVec.getSimpleValueType(); + unsigned SubVecNumElems = SubVecVT.getVectorNumElements(); + + assert(IdxVal + SubVecNumElems <= NumElems && + IdxVal % SubVecVT.getSizeInBits() == 0 && + "Unexpected index value in INSERT_SUBVECTOR"); + + SDValue Undef = DAG.getUNDEF(WideOpVT); + + if (IdxVal == 0) { + // Zero lower bits of the Vec + SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8); + Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, + ZeroIdx); + Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits); + Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits); + // Merge them together, SubVec should be zero extended. + SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, + getZeroVector(WideOpVT, Subtarget, DAG, dl), + SubVec, ZeroIdx); + Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx); + } + + SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, + Undef, SubVec, ZeroIdx); + + if (Vec.isUndef()) { + assert(IdxVal != 0 && "Unexpected index"); + SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx); + } + + if (ISD::isBuildVectorAllZeros(Vec.getNode())) { + assert(IdxVal != 0 && "Unexpected index"); + NumElems = WideOpVT.getVectorNumElements(); + unsigned ShiftLeft = NumElems - SubVecNumElems; + unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal; + SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec, + DAG.getConstant(ShiftLeft, dl, MVT::i8)); + if (ShiftRight != 0) + SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec, + DAG.getConstant(ShiftRight, dl, MVT::i8)); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx); + } + + // Simple case when we put subvector in the upper part + if (IdxVal + SubVecNumElems == NumElems) { + SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + if (SubVecNumElems * 2 == NumElems) { + // Special case, use legal zero extending insert_subvector. This allows + // isel to opimitize when bits are known zero. + Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVecVT, Vec, ZeroIdx); + Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, + getZeroVector(WideOpVT, Subtarget, DAG, dl), + Vec, ZeroIdx); + } else { + // Otherwise use explicit shifts to zero the bits. + Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, + Undef, Vec, ZeroIdx); + NumElems = WideOpVT.getVectorNumElements(); + SDValue ShiftBits = DAG.getConstant(NumElems - IdxVal, dl, MVT::i8); + Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits); + Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits); + } + Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx); + } + + // Inserting into the middle is more complicated. + + NumElems = WideOpVT.getVectorNumElements(); + + // Widen the vector if needed. + Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx); + // Move the current value of the bit to be replace to the lsbs. + Op = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + // Xor with the new bit. + Op = DAG.getNode(ISD::XOR, dl, WideOpVT, Op, SubVec); + // Shift to MSB, filling bottom bits with 0. + unsigned ShiftLeft = NumElems - SubVecNumElems; + Op = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Op, + DAG.getConstant(ShiftLeft, dl, MVT::i8)); + // Shift to the final position, filling upper bits with 0. + unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal; + Op = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Op, + DAG.getConstant(ShiftRight, dl, MVT::i8)); + // Xor with original vector leaving the new value. + Op = DAG.getNode(ISD::XOR, dl, WideOpVT, Vec, Op); + // Reduce to original width if needed. + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx); +} + +/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128 +/// instructions. This is used because creating CONCAT_VECTOR nodes of +/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower +/// large BUILD_VECTORS. +static SDValue concat128BitVectors(SDValue V1, SDValue V2, EVT VT, + unsigned NumElems, SelectionDAG &DAG, + const SDLoc &dl) { + SDValue V = insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); + return insert128BitVector(V, V2, NumElems / 2, DAG, dl); +} + +static SDValue concat256BitVectors(SDValue V1, SDValue V2, EVT VT, + unsigned NumElems, SelectionDAG &DAG, + const SDLoc &dl) { + SDValue V = insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); + return insert256BitVector(V, V2, NumElems / 2, DAG, dl); +} + +/// Returns a vector of specified type with all bits set. +/// Always build ones vectors as <4 x i32>, <8 x i32> or <16 x i32>. +/// Then bitcast to their original type, ensuring they get CSE'd. +static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) { + assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) && + "Expected a 128/256/512-bit vector type"); + + APInt Ones = APInt::getAllOnesValue(32); + unsigned NumElts = VT.getSizeInBits() / 32; + SDValue Vec = DAG.getConstant(Ones, dl, MVT::getVectorVT(MVT::i32, NumElts)); + return DAG.getBitcast(VT, Vec); +} + +static SDValue getExtendInVec(unsigned Opc, const SDLoc &DL, EVT VT, SDValue In, + SelectionDAG &DAG) { + EVT InVT = In.getValueType(); + assert((X86ISD::VSEXT == Opc || X86ISD::VZEXT == Opc) && "Unexpected opcode"); + + if (VT.is128BitVector() && InVT.is128BitVector()) + return X86ISD::VSEXT == Opc ? DAG.getSignExtendVectorInReg(In, DL, VT) + : DAG.getZeroExtendVectorInReg(In, DL, VT); + + // For 256-bit vectors, we only need the lower (128-bit) input half. + // For 512-bit vectors, we only need the lower input half or quarter. + if (VT.getSizeInBits() > 128 && InVT.getSizeInBits() > 128) { + int Scale = VT.getScalarSizeInBits() / InVT.getScalarSizeInBits(); + In = extractSubVector(In, 0, DAG, DL, + std::max(128, (int)VT.getSizeInBits() / Scale)); + } + + return DAG.getNode(Opc, DL, VT, In); +} + +/// Returns a vector_shuffle node for an unpackl operation. +static SDValue getUnpackl(SelectionDAG &DAG, const SDLoc &dl, MVT VT, + SDValue V1, SDValue V2) { + SmallVector<int, 8> Mask; + createUnpackShuffleMask(VT, Mask, /* Lo = */ true, /* Unary = */ false); + return DAG.getVectorShuffle(VT, dl, V1, V2, Mask); +} + +/// Returns a vector_shuffle node for an unpackh operation. +static SDValue getUnpackh(SelectionDAG &DAG, const SDLoc &dl, MVT VT, + SDValue V1, SDValue V2) { + SmallVector<int, 8> Mask; + createUnpackShuffleMask(VT, Mask, /* Lo = */ false, /* Unary = */ false); + return DAG.getVectorShuffle(VT, dl, V1, V2, Mask); +} + +/// Return a vector_shuffle of the specified vector of zero or undef vector. +/// This produces a shuffle where the low element of V2 is swizzled into the +/// zero/undef vector, landing at element Idx. +/// This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). +static SDValue getShuffleVectorZeroOrUndef(SDValue V2, int Idx, + bool IsZero, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = V2.getSimpleValueType(); + SDValue V1 = IsZero + ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT); + int NumElems = VT.getVectorNumElements(); + SmallVector<int, 16> MaskVec(NumElems); + for (int i = 0; i != NumElems; ++i) + // If this is the insertion idx, put the low elt of V2 here. + MaskVec[i] = (i == Idx) ? NumElems : i; + return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, MaskVec); +} + +static SDValue peekThroughBitcasts(SDValue V) { + while (V.getNode() && V.getOpcode() == ISD::BITCAST) + V = V.getOperand(0); + return V; +} + +static SDValue peekThroughOneUseBitcasts(SDValue V) { + while (V.getNode() && V.getOpcode() == ISD::BITCAST && + V.getOperand(0).hasOneUse()) + V = V.getOperand(0); + return V; +} + +static const Constant *getTargetConstantFromNode(SDValue Op) { + Op = peekThroughBitcasts(Op); + + auto *Load = dyn_cast<LoadSDNode>(Op); + if (!Load) + return nullptr; + + SDValue Ptr = Load->getBasePtr(); + if (Ptr->getOpcode() == X86ISD::Wrapper || + Ptr->getOpcode() == X86ISD::WrapperRIP) + Ptr = Ptr->getOperand(0); + + auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr); + if (!CNode || CNode->isMachineConstantPoolEntry()) + return nullptr; + + return dyn_cast<Constant>(CNode->getConstVal()); +} + +// Extract raw constant bits from constant pools. +static bool getTargetConstantBitsFromNode(SDValue Op, unsigned EltSizeInBits, + APInt &UndefElts, + SmallVectorImpl<APInt> &EltBits, + bool AllowWholeUndefs = true, + bool AllowPartialUndefs = true) { + assert(EltBits.empty() && "Expected an empty EltBits vector"); + + Op = peekThroughBitcasts(Op); + + EVT VT = Op.getValueType(); + unsigned SizeInBits = VT.getSizeInBits(); + assert((SizeInBits % EltSizeInBits) == 0 && "Can't split constant!"); + unsigned NumElts = SizeInBits / EltSizeInBits; + + // Bitcast a source array of element bits to the target size. + auto CastBitData = [&](APInt &UndefSrcElts, ArrayRef<APInt> SrcEltBits) { + unsigned NumSrcElts = UndefSrcElts.getBitWidth(); + unsigned SrcEltSizeInBits = SrcEltBits[0].getBitWidth(); + assert((NumSrcElts * SrcEltSizeInBits) == SizeInBits && + "Constant bit sizes don't match"); + + // Don't split if we don't allow undef bits. + bool AllowUndefs = AllowWholeUndefs || AllowPartialUndefs; + if (UndefSrcElts.getBoolValue() && !AllowUndefs) + return false; + + // If we're already the right size, don't bother bitcasting. + if (NumSrcElts == NumElts) { + UndefElts = UndefSrcElts; + EltBits.assign(SrcEltBits.begin(), SrcEltBits.end()); + return true; + } + + // Extract all the undef/constant element data and pack into single bitsets. + APInt UndefBits(SizeInBits, 0); + APInt MaskBits(SizeInBits, 0); + + for (unsigned i = 0; i != NumSrcElts; ++i) { + unsigned BitOffset = i * SrcEltSizeInBits; + if (UndefSrcElts[i]) + UndefBits.setBits(BitOffset, BitOffset + SrcEltSizeInBits); + MaskBits.insertBits(SrcEltBits[i], BitOffset); + } + + // Split the undef/constant single bitset data into the target elements. + UndefElts = APInt(NumElts, 0); + EltBits.resize(NumElts, APInt(EltSizeInBits, 0)); + + for (unsigned i = 0; i != NumElts; ++i) { + unsigned BitOffset = i * EltSizeInBits; + APInt UndefEltBits = UndefBits.extractBits(EltSizeInBits, BitOffset); + + // Only treat an element as UNDEF if all bits are UNDEF. + if (UndefEltBits.isAllOnesValue()) { + if (!AllowWholeUndefs) + return false; + UndefElts.setBit(i); + continue; + } + + // If only some bits are UNDEF then treat them as zero (or bail if not + // supported). + if (UndefEltBits.getBoolValue() && !AllowPartialUndefs) + return false; + + APInt Bits = MaskBits.extractBits(EltSizeInBits, BitOffset); + EltBits[i] = Bits.getZExtValue(); + } + return true; + }; + + // Collect constant bits and insert into mask/undef bit masks. + auto CollectConstantBits = [](const Constant *Cst, APInt &Mask, APInt &Undefs, + unsigned UndefBitIndex) { + if (!Cst) + return false; + if (isa<UndefValue>(Cst)) { + Undefs.setBit(UndefBitIndex); + return true; + } + if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { + Mask = CInt->getValue(); + return true; + } + if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { + Mask = CFP->getValueAPF().bitcastToAPInt(); + return true; + } + return false; + }; + + // Handle UNDEFs. + if (Op.isUndef()) { + APInt UndefSrcElts = APInt::getAllOnesValue(NumElts); + SmallVector<APInt, 64> SrcEltBits(NumElts, APInt(EltSizeInBits, 0)); + return CastBitData(UndefSrcElts, SrcEltBits); + } + + // Extract scalar constant bits. + if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) { + APInt UndefSrcElts = APInt::getNullValue(1); + SmallVector<APInt, 64> SrcEltBits(1, Cst->getAPIntValue()); + return CastBitData(UndefSrcElts, SrcEltBits); + } + + // Extract constant bits from build vector. + if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { + unsigned SrcEltSizeInBits = VT.getScalarSizeInBits(); + unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits; + + APInt UndefSrcElts(NumSrcElts, 0); + SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0)); + for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { + const SDValue &Src = Op.getOperand(i); + if (Src.isUndef()) { + UndefSrcElts.setBit(i); + continue; + } + auto *Cst = cast<ConstantSDNode>(Src); + SrcEltBits[i] = Cst->getAPIntValue().zextOrTrunc(SrcEltSizeInBits); + } + return CastBitData(UndefSrcElts, SrcEltBits); + } + + // Extract constant bits from constant pool vector. + if (auto *Cst = getTargetConstantFromNode(Op)) { + Type *CstTy = Cst->getType(); + if (!CstTy->isVectorTy() || (SizeInBits != CstTy->getPrimitiveSizeInBits())) + return false; + + unsigned SrcEltSizeInBits = CstTy->getScalarSizeInBits(); + unsigned NumSrcElts = CstTy->getVectorNumElements(); + + APInt UndefSrcElts(NumSrcElts, 0); + SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0)); + for (unsigned i = 0; i != NumSrcElts; ++i) + if (!CollectConstantBits(Cst->getAggregateElement(i), SrcEltBits[i], + UndefSrcElts, i)) + return false; + + return CastBitData(UndefSrcElts, SrcEltBits); + } + + // Extract constant bits from a broadcasted constant pool scalar. + if (Op.getOpcode() == X86ISD::VBROADCAST && + EltSizeInBits <= VT.getScalarSizeInBits()) { + if (auto *Broadcast = getTargetConstantFromNode(Op.getOperand(0))) { + unsigned SrcEltSizeInBits = Broadcast->getType()->getScalarSizeInBits(); + unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits; + + APInt UndefSrcElts(NumSrcElts, 0); + SmallVector<APInt, 64> SrcEltBits(1, APInt(SrcEltSizeInBits, 0)); + if (CollectConstantBits(Broadcast, SrcEltBits[0], UndefSrcElts, 0)) { + if (UndefSrcElts[0]) + UndefSrcElts.setBits(0, NumSrcElts); + SrcEltBits.append(NumSrcElts - 1, SrcEltBits[0]); + return CastBitData(UndefSrcElts, SrcEltBits); + } + } + } + + // Extract a rematerialized scalar constant insertion. + if (Op.getOpcode() == X86ISD::VZEXT_MOVL && + Op.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && + isa<ConstantSDNode>(Op.getOperand(0).getOperand(0))) { + unsigned SrcEltSizeInBits = VT.getScalarSizeInBits(); + unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits; + + APInt UndefSrcElts(NumSrcElts, 0); + SmallVector<APInt, 64> SrcEltBits; + auto *CN = cast<ConstantSDNode>(Op.getOperand(0).getOperand(0)); + SrcEltBits.push_back(CN->getAPIntValue().zextOrTrunc(SrcEltSizeInBits)); + SrcEltBits.append(NumSrcElts - 1, APInt(SrcEltSizeInBits, 0)); + return CastBitData(UndefSrcElts, SrcEltBits); + } + + return false; +} + +static bool getTargetShuffleMaskIndices(SDValue MaskNode, + unsigned MaskEltSizeInBits, + SmallVectorImpl<uint64_t> &RawMask) { + APInt UndefElts; + SmallVector<APInt, 64> EltBits; + + // Extract the raw target constant bits. + // FIXME: We currently don't support UNDEF bits or mask entries. + if (!getTargetConstantBitsFromNode(MaskNode, MaskEltSizeInBits, UndefElts, + EltBits, /* AllowWholeUndefs */ false, + /* AllowPartialUndefs */ false)) + return false; + + // Insert the extracted elements into the mask. + for (APInt Elt : EltBits) + RawMask.push_back(Elt.getZExtValue()); + + return true; +} + +/// Create a shuffle mask that matches the PACKSS/PACKUS truncation. +/// Note: This ignores saturation, so inputs must be checked first. +static void createPackShuffleMask(MVT VT, SmallVectorImpl<int> &Mask, + bool Unary) { + assert(Mask.empty() && "Expected an empty shuffle mask vector"); + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumLanes = VT.getSizeInBits() / 128; + unsigned NumEltsPerLane = 128 / VT.getScalarSizeInBits(); + unsigned Offset = Unary ? 0 : NumElts; + + for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { + for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2) + Mask.push_back(Elt + (Lane * NumEltsPerLane)); + for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2) + Mask.push_back(Elt + (Lane * NumEltsPerLane) + Offset); + } +} + +/// Calculates the shuffle mask corresponding to the target-specific opcode. +/// If the mask could be calculated, returns it in \p Mask, returns the shuffle +/// operands in \p Ops, and returns true. +/// Sets \p IsUnary to true if only one source is used. Note that this will set +/// IsUnary for shuffles which use a single input multiple times, and in those +/// cases it will adjust the mask to only have indices within that single input. +/// It is an error to call this with non-empty Mask/Ops vectors. +static bool getTargetShuffleMask(SDNode *N, MVT VT, bool AllowSentinelZero, + SmallVectorImpl<SDValue> &Ops, + SmallVectorImpl<int> &Mask, bool &IsUnary) { + unsigned NumElems = VT.getVectorNumElements(); + SDValue ImmN; + + assert(Mask.empty() && "getTargetShuffleMask expects an empty Mask vector"); + assert(Ops.empty() && "getTargetShuffleMask expects an empty Ops vector"); + + IsUnary = false; + bool IsFakeUnary = false; + switch(N->getOpcode()) { + case X86ISD::BLENDI: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::SHUFP: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::INSERTPS: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeINSERTPSMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::EXTRQI: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + if (isa<ConstantSDNode>(N->getOperand(1)) && + isa<ConstantSDNode>(N->getOperand(2))) { + int BitLen = N->getConstantOperandVal(1); + int BitIdx = N->getConstantOperandVal(2); + DecodeEXTRQIMask(VT, BitLen, BitIdx, Mask); + IsUnary = true; + } + break; + case X86ISD::INSERTQI: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + if (isa<ConstantSDNode>(N->getOperand(2)) && + isa<ConstantSDNode>(N->getOperand(3))) { + int BitLen = N->getConstantOperandVal(2); + int BitIdx = N->getConstantOperandVal(3); + DecodeINSERTQIMask(VT, BitLen, BitIdx, Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + } + break; + case X86ISD::UNPCKH: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + DecodeUNPCKHMask(VT, Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::UNPCKL: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + DecodeUNPCKLMask(VT, Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::MOVHLPS: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + DecodeMOVHLPSMask(NumElems, Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::MOVLHPS: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + DecodeMOVLHPSMask(NumElems, Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::PALIGNR: + assert(VT.getScalarType() == MVT::i8 && "Byte vector expected"); + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + Ops.push_back(N->getOperand(1)); + Ops.push_back(N->getOperand(0)); + break; + case X86ISD::VSHLDQ: + assert(VT.getScalarType() == MVT::i8 && "Byte vector expected"); + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands() - 1); + DecodePSLLDQMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::VSRLDQ: + assert(VT.getScalarType() == MVT::i8 && "Byte vector expected"); + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands() - 1); + DecodePSRLDQMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::PSHUFD: + case X86ISD::VPERMILPI: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::PSHUFHW: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::PSHUFLW: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::VZEXT_MOVL: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + DecodeZeroMoveLowMask(VT, Mask); + IsUnary = true; + break; + case X86ISD::VBROADCAST: { + SDValue N0 = N->getOperand(0); + // See if we're broadcasting from index 0 of an EXTRACT_SUBVECTOR. If so, + // add the pre-extracted value to the Ops vector. + if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && + N0.getOperand(0).getValueType() == VT && + N0.getConstantOperandVal(1) == 0) + Ops.push_back(N0.getOperand(0)); + + // We only decode broadcasts of same-sized vectors, unless the broadcast + // came from an extract from the original width. If we found one, we + // pushed it the Ops vector above. + if (N0.getValueType() == VT || !Ops.empty()) { + DecodeVectorBroadcast(VT, Mask); + IsUnary = true; + break; + } + return false; + } + case X86ISD::VPERMILPV: { + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + IsUnary = true; + SDValue MaskNode = N->getOperand(1); + unsigned MaskEltSize = VT.getScalarSizeInBits(); + SmallVector<uint64_t, 32> RawMask; + if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) { + DecodeVPERMILPMask(VT, RawMask, Mask); + break; + } + if (auto *C = getTargetConstantFromNode(MaskNode)) { + DecodeVPERMILPMask(C, MaskEltSize, Mask); + break; + } + return false; + } + case X86ISD::PSHUFB: { + assert(VT.getScalarType() == MVT::i8 && "Byte vector expected"); + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + IsUnary = true; + SDValue MaskNode = N->getOperand(1); + SmallVector<uint64_t, 32> RawMask; + if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) { + DecodePSHUFBMask(RawMask, Mask); + break; + } + if (auto *C = getTargetConstantFromNode(MaskNode)) { + DecodePSHUFBMask(C, Mask); + break; + } + return false; + } + case X86ISD::VPERMI: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeVPERMMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::MOVSS: + case X86ISD::MOVSD: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask); + break; + case X86ISD::VPERM2X128: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::MOVSLDUP: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + DecodeMOVSLDUPMask(VT, Mask); + IsUnary = true; + break; + case X86ISD::MOVSHDUP: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + DecodeMOVSHDUPMask(VT, Mask); + IsUnary = true; + break; + case X86ISD::MOVDDUP: + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + DecodeMOVDDUPMask(VT, Mask); + IsUnary = true; + break; + case X86ISD::MOVLPD: + case X86ISD::MOVLPS: + // Not yet implemented + return false; + case X86ISD::VPERMIL2: { + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + unsigned MaskEltSize = VT.getScalarSizeInBits(); + SDValue MaskNode = N->getOperand(2); + SDValue CtrlNode = N->getOperand(3); + if (ConstantSDNode *CtrlOp = dyn_cast<ConstantSDNode>(CtrlNode)) { + unsigned CtrlImm = CtrlOp->getZExtValue(); + SmallVector<uint64_t, 32> RawMask; + if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) { + DecodeVPERMIL2PMask(VT, CtrlImm, RawMask, Mask); + break; + } + if (auto *C = getTargetConstantFromNode(MaskNode)) { + DecodeVPERMIL2PMask(C, CtrlImm, MaskEltSize, Mask); + break; + } + } + return false; + } + case X86ISD::VPPERM: { + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + SDValue MaskNode = N->getOperand(2); + SmallVector<uint64_t, 32> RawMask; + if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) { + DecodeVPPERMMask(RawMask, Mask); + break; + } + if (auto *C = getTargetConstantFromNode(MaskNode)) { + DecodeVPPERMMask(C, Mask); + break; + } + return false; + } + case X86ISD::VPERMV: { + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + IsUnary = true; + // Unlike most shuffle nodes, VPERMV's mask operand is operand 0. + Ops.push_back(N->getOperand(1)); + SDValue MaskNode = N->getOperand(0); + SmallVector<uint64_t, 32> RawMask; + unsigned MaskEltSize = VT.getScalarSizeInBits(); + if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) { + DecodeVPERMVMask(RawMask, Mask); + break; + } + if (auto *C = getTargetConstantFromNode(MaskNode)) { + DecodeVPERMVMask(C, MaskEltSize, Mask); + break; + } + return false; + } + case X86ISD::VPERMV3: { + assert(N->getOperand(0).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(2).getValueType() == VT && "Unexpected value type"); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(2); + // Unlike most shuffle nodes, VPERMV3's mask operand is the middle one. + Ops.push_back(N->getOperand(0)); + Ops.push_back(N->getOperand(2)); + SDValue MaskNode = N->getOperand(1); + unsigned MaskEltSize = VT.getScalarSizeInBits(); + if (auto *C = getTargetConstantFromNode(MaskNode)) { + DecodeVPERMV3Mask(C, MaskEltSize, Mask); + break; + } + return false; + } + case X86ISD::VPERMIV3: { + assert(N->getOperand(1).getValueType() == VT && "Unexpected value type"); + assert(N->getOperand(2).getValueType() == VT && "Unexpected value type"); + IsUnary = IsFakeUnary = N->getOperand(1) == N->getOperand(2); + // Unlike most shuffle nodes, VPERMIV3's mask operand is the first one. + Ops.push_back(N->getOperand(1)); + Ops.push_back(N->getOperand(2)); + SDValue MaskNode = N->getOperand(0); + unsigned MaskEltSize = VT.getScalarSizeInBits(); + if (auto *C = getTargetConstantFromNode(MaskNode)) { + DecodeVPERMV3Mask(C, MaskEltSize, Mask); + break; + } + return false; + } + default: llvm_unreachable("unknown target shuffle node"); + } + + // Empty mask indicates the decode failed. + if (Mask.empty()) + return false; + + // Check if we're getting a shuffle mask with zero'd elements. + if (!AllowSentinelZero) + if (any_of(Mask, [](int M) { return M == SM_SentinelZero; })) + return false; + + // If we have a fake unary shuffle, the shuffle mask is spread across two + // inputs that are actually the same node. Re-map the mask to always point + // into the first input. + if (IsFakeUnary) + for (int &M : Mask) + if (M >= (int)Mask.size()) + M -= Mask.size(); + + // If we didn't already add operands in the opcode-specific code, default to + // adding 1 or 2 operands starting at 0. + if (Ops.empty()) { + Ops.push_back(N->getOperand(0)); + if (!IsUnary || IsFakeUnary) + Ops.push_back(N->getOperand(1)); + } + + return true; +} + +/// Check a target shuffle mask's inputs to see if we can set any values to +/// SM_SentinelZero - this is for elements that are known to be zero +/// (not just zeroable) from their inputs. +/// Returns true if the target shuffle mask was decoded. +static bool setTargetShuffleZeroElements(SDValue N, + SmallVectorImpl<int> &Mask, + SmallVectorImpl<SDValue> &Ops) { + bool IsUnary; + if (!isTargetShuffle(N.getOpcode())) + return false; + + MVT VT = N.getSimpleValueType(); + if (!getTargetShuffleMask(N.getNode(), VT, true, Ops, Mask, IsUnary)) + return false; + + SDValue V1 = Ops[0]; + SDValue V2 = IsUnary ? V1 : Ops[1]; + + V1 = peekThroughBitcasts(V1); + V2 = peekThroughBitcasts(V2); + + assert((VT.getSizeInBits() % Mask.size()) == 0 && + "Illegal split of shuffle value type"); + unsigned EltSizeInBits = VT.getSizeInBits() / Mask.size(); + + // Extract known constant input data. + APInt UndefSrcElts[2]; + SmallVector<APInt, 32> SrcEltBits[2]; + bool IsSrcConstant[2] = { + getTargetConstantBitsFromNode(V1, EltSizeInBits, UndefSrcElts[0], + SrcEltBits[0], true, false), + getTargetConstantBitsFromNode(V2, EltSizeInBits, UndefSrcElts[1], + SrcEltBits[1], true, false)}; + + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + int M = Mask[i]; + + // Already decoded as SM_SentinelZero / SM_SentinelUndef. + if (M < 0) + continue; + + // Determine shuffle input and normalize the mask. + unsigned SrcIdx = M / Size; + SDValue V = M < Size ? V1 : V2; + M %= Size; + + // We are referencing an UNDEF input. + if (V.isUndef()) { + Mask[i] = SM_SentinelUndef; + continue; + } + + // SCALAR_TO_VECTOR - only the first element is defined, and the rest UNDEF. + // TODO: We currently only set UNDEF for integer types - floats use the same + // registers as vectors and many of the scalar folded loads rely on the + // SCALAR_TO_VECTOR pattern. + if (V.getOpcode() == ISD::SCALAR_TO_VECTOR && + (Size % V.getValueType().getVectorNumElements()) == 0) { + int Scale = Size / V.getValueType().getVectorNumElements(); + int Idx = M / Scale; + if (Idx != 0 && !VT.isFloatingPoint()) + Mask[i] = SM_SentinelUndef; + else if (Idx == 0 && X86::isZeroNode(V.getOperand(0))) + Mask[i] = SM_SentinelZero; + continue; + } + + // Attempt to extract from the source's constant bits. + if (IsSrcConstant[SrcIdx]) { + if (UndefSrcElts[SrcIdx][M]) + Mask[i] = SM_SentinelUndef; + else if (SrcEltBits[SrcIdx][M] == 0) + Mask[i] = SM_SentinelZero; + } + } + + assert(VT.getVectorNumElements() == Mask.size() && + "Different mask size from vector size!"); + return true; +} + +// Attempt to decode ops that could be represented as a shuffle mask. +// The decoded shuffle mask may contain a different number of elements to the +// destination value type. +static bool getFauxShuffleMask(SDValue N, SmallVectorImpl<int> &Mask, + SmallVectorImpl<SDValue> &Ops, + SelectionDAG &DAG) { + Mask.clear(); + Ops.clear(); + + MVT VT = N.getSimpleValueType(); + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumSizeInBits = VT.getSizeInBits(); + unsigned NumBitsPerElt = VT.getScalarSizeInBits(); + assert((NumBitsPerElt % 8) == 0 && (NumSizeInBits % 8) == 0 && + "Expected byte aligned value types"); + + unsigned Opcode = N.getOpcode(); + switch (Opcode) { + case ISD::AND: + case X86ISD::ANDNP: { + // Attempt to decode as a per-byte mask. + APInt UndefElts; + SmallVector<APInt, 32> EltBits; + SDValue N0 = N.getOperand(0); + SDValue N1 = N.getOperand(1); + bool IsAndN = (X86ISD::ANDNP == Opcode); + uint64_t ZeroMask = IsAndN ? 255 : 0; + if (!getTargetConstantBitsFromNode(IsAndN ? N0 : N1, 8, UndefElts, EltBits)) + return false; + for (int i = 0, e = (int)EltBits.size(); i != e; ++i) { + if (UndefElts[i]) { + Mask.push_back(SM_SentinelUndef); + continue; + } + uint64_t ByteBits = EltBits[i].getZExtValue(); + if (ByteBits != 0 && ByteBits != 255) + return false; + Mask.push_back(ByteBits == ZeroMask ? SM_SentinelZero : i); + } + Ops.push_back(IsAndN ? N1 : N0); + return true; + } + case ISD::SCALAR_TO_VECTOR: { + // Match against a scalar_to_vector of an extract from a vector, + // for PEXTRW/PEXTRB we must handle the implicit zext of the scalar. + SDValue N0 = N.getOperand(0); + SDValue SrcExtract; + + if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + N0.getOperand(0).getValueType() == VT) || + (N0.getOpcode() == X86ISD::PEXTRW && + N0.getOperand(0).getValueType() == MVT::v8i16) || + (N0.getOpcode() == X86ISD::PEXTRB && + N0.getOperand(0).getValueType() == MVT::v16i8)) { + SrcExtract = N0; + } + + if (!SrcExtract || !isa<ConstantSDNode>(SrcExtract.getOperand(1))) + return false; + + SDValue SrcVec = SrcExtract.getOperand(0); + EVT SrcVT = SrcVec.getValueType(); + unsigned NumSrcElts = SrcVT.getVectorNumElements(); + unsigned NumZeros = (NumBitsPerElt / SrcVT.getScalarSizeInBits()) - 1; + + unsigned SrcIdx = SrcExtract.getConstantOperandVal(1); + if (NumSrcElts <= SrcIdx) + return false; + + Ops.push_back(SrcVec); + Mask.push_back(SrcIdx); + Mask.append(NumZeros, SM_SentinelZero); + Mask.append(NumSrcElts - Mask.size(), SM_SentinelUndef); + return true; + } + case X86ISD::PINSRB: + case X86ISD::PINSRW: { + SDValue InVec = N.getOperand(0); + SDValue InScl = N.getOperand(1); + uint64_t InIdx = N.getConstantOperandVal(2); + assert(InIdx < NumElts && "Illegal insertion index"); + + // Attempt to recognise a PINSR*(VEC, 0, Idx) shuffle pattern. + if (X86::isZeroNode(InScl)) { + Ops.push_back(InVec); + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(i == InIdx ? SM_SentinelZero : (int)i); + return true; + } + + // Attempt to recognise a PINSR*(PEXTR*) shuffle pattern. + // TODO: Expand this to support INSERT_VECTOR_ELT/etc. + unsigned ExOp = + (X86ISD::PINSRB == Opcode ? X86ISD::PEXTRB : X86ISD::PEXTRW); + if (InScl.getOpcode() != ExOp) + return false; + + SDValue ExVec = InScl.getOperand(0); + uint64_t ExIdx = InScl.getConstantOperandVal(1); + assert(ExIdx < NumElts && "Illegal extraction index"); + Ops.push_back(InVec); + Ops.push_back(ExVec); + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(i == InIdx ? NumElts + ExIdx : i); + return true; + } + case X86ISD::PACKSS: + case X86ISD::PACKUS: { + SDValue N0 = N.getOperand(0); + SDValue N1 = N.getOperand(1); + assert(N0.getValueType().getVectorNumElements() == (NumElts / 2) && + N1.getValueType().getVectorNumElements() == (NumElts / 2) && + "Unexpected input value type"); + + // If we know input saturation won't happen we can treat this + // as a truncation shuffle. + if (Opcode == X86ISD::PACKSS) { + if ((!N0.isUndef() && DAG.ComputeNumSignBits(N0) <= NumBitsPerElt) || + (!N1.isUndef() && DAG.ComputeNumSignBits(N1) <= NumBitsPerElt)) + return false; + } else { + APInt ZeroMask = APInt::getHighBitsSet(2 * NumBitsPerElt, NumBitsPerElt); + if ((!N0.isUndef() && !DAG.MaskedValueIsZero(N0, ZeroMask)) || + (!N1.isUndef() && !DAG.MaskedValueIsZero(N1, ZeroMask))) + return false; + } + + bool IsUnary = (N0 == N1); + + Ops.push_back(N0); + if (!IsUnary) + Ops.push_back(N1); + + createPackShuffleMask(VT, Mask, IsUnary); + return true; + } + case X86ISD::VSHLI: + case X86ISD::VSRLI: { + uint64_t ShiftVal = N.getConstantOperandVal(1); + // Out of range bit shifts are guaranteed to be zero. + if (NumBitsPerElt <= ShiftVal) { + Mask.append(NumElts, SM_SentinelZero); + return true; + } + + // We can only decode 'whole byte' bit shifts as shuffles. + if ((ShiftVal % 8) != 0) + break; + + uint64_t ByteShift = ShiftVal / 8; + unsigned NumBytes = NumSizeInBits / 8; + unsigned NumBytesPerElt = NumBitsPerElt / 8; + Ops.push_back(N.getOperand(0)); + + // Clear mask to all zeros and insert the shifted byte indices. + Mask.append(NumBytes, SM_SentinelZero); + + if (X86ISD::VSHLI == Opcode) { + for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt) + for (unsigned j = ByteShift; j != NumBytesPerElt; ++j) + Mask[i + j] = i + j - ByteShift; + } else { + for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt) + for (unsigned j = ByteShift; j != NumBytesPerElt; ++j) + Mask[i + j - ByteShift] = i + j; + } + return true; + } + case ISD::ZERO_EXTEND_VECTOR_INREG: + case X86ISD::VZEXT: { + // TODO - add support for VPMOVZX with smaller input vector types. + SDValue Src = N.getOperand(0); + MVT SrcVT = Src.getSimpleValueType(); + if (NumSizeInBits != SrcVT.getSizeInBits()) + break; + DecodeZeroExtendMask(SrcVT.getScalarType(), VT, Mask); + Ops.push_back(Src); + return true; + } + } + + return false; +} + +/// Removes unused shuffle source inputs and adjusts the shuffle mask accordingly. +static void resolveTargetShuffleInputsAndMask(SmallVectorImpl<SDValue> &Inputs, + SmallVectorImpl<int> &Mask) { + int MaskWidth = Mask.size(); + SmallVector<SDValue, 16> UsedInputs; + for (int i = 0, e = Inputs.size(); i < e; ++i) { + int lo = UsedInputs.size() * MaskWidth; + int hi = lo + MaskWidth; + + // Strip UNDEF input usage. + if (Inputs[i].isUndef()) + for (int &M : Mask) + if ((lo <= M) && (M < hi)) + M = SM_SentinelUndef; + + // Check for unused inputs. + if (any_of(Mask, [lo, hi](int i) { return (lo <= i) && (i < hi); })) { + UsedInputs.push_back(Inputs[i]); + continue; + } + for (int &M : Mask) + if (lo <= M) + M -= MaskWidth; + } + Inputs = UsedInputs; +} + +/// Calls setTargetShuffleZeroElements to resolve a target shuffle mask's inputs +/// and set the SM_SentinelUndef and SM_SentinelZero values. Then check the +/// remaining input indices in case we now have a unary shuffle and adjust the +/// inputs accordingly. +/// Returns true if the target shuffle mask was decoded. +static bool resolveTargetShuffleInputs(SDValue Op, + SmallVectorImpl<SDValue> &Inputs, + SmallVectorImpl<int> &Mask, + SelectionDAG &DAG) { + if (!setTargetShuffleZeroElements(Op, Mask, Inputs)) + if (!getFauxShuffleMask(Op, Mask, Inputs, DAG)) + return false; + + resolveTargetShuffleInputsAndMask(Inputs, Mask); + return true; +} + +/// Returns the scalar element that will make up the ith +/// element of the result of the vector shuffle. +static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, + unsigned Depth) { + if (Depth == 6) + return SDValue(); // Limit search depth. + + SDValue V = SDValue(N, 0); + EVT VT = V.getValueType(); + unsigned Opcode = V.getOpcode(); + + // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. + if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { + int Elt = SV->getMaskElt(Index); + + if (Elt < 0) + return DAG.getUNDEF(VT.getVectorElementType()); + + unsigned NumElems = VT.getVectorNumElements(); + SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) + : SV->getOperand(1); + return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); + } + + // Recurse into target specific vector shuffles to find scalars. + if (isTargetShuffle(Opcode)) { + MVT ShufVT = V.getSimpleValueType(); + MVT ShufSVT = ShufVT.getVectorElementType(); + int NumElems = (int)ShufVT.getVectorNumElements(); + SmallVector<int, 16> ShuffleMask; + SmallVector<SDValue, 16> ShuffleOps; + bool IsUnary; + + if (!getTargetShuffleMask(N, ShufVT, true, ShuffleOps, ShuffleMask, IsUnary)) + return SDValue(); + + int Elt = ShuffleMask[Index]; + if (Elt == SM_SentinelZero) + return ShufSVT.isInteger() ? DAG.getConstant(0, SDLoc(N), ShufSVT) + : DAG.getConstantFP(+0.0, SDLoc(N), ShufSVT); + if (Elt == SM_SentinelUndef) + return DAG.getUNDEF(ShufSVT); + + assert(0 <= Elt && Elt < (2*NumElems) && "Shuffle index out of range"); + SDValue NewV = (Elt < NumElems) ? ShuffleOps[0] : ShuffleOps[1]; + return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, + Depth+1); + } + + // Actual nodes that may contain scalar elements + if (Opcode == ISD::BITCAST) { + V = V.getOperand(0); + EVT SrcVT = V.getValueType(); + unsigned NumElems = VT.getVectorNumElements(); + + if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) + return SDValue(); + } + + if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) + return (Index == 0) ? V.getOperand(0) + : DAG.getUNDEF(VT.getVectorElementType()); + + if (V.getOpcode() == ISD::BUILD_VECTOR) + return V.getOperand(Index); + + return SDValue(); +} + +// Use PINSRB/PINSRW/PINSRD to create a build vector. +static SDValue LowerBuildVectorAsInsert(SDValue Op, unsigned NonZeros, + unsigned NumNonZero, unsigned NumZero, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + MVT VT = Op.getSimpleValueType(); + unsigned NumElts = VT.getVectorNumElements(); + assert(((VT == MVT::v8i16 && Subtarget.hasSSE2()) || + ((VT == MVT::v16i8 || VT == MVT::v4i32) && Subtarget.hasSSE41())) && + "Illegal vector insertion"); + + SDLoc dl(Op); + SDValue V; + bool First = true; + + for (unsigned i = 0; i < NumElts; ++i) { + bool IsNonZero = (NonZeros & (1 << i)) != 0; + if (!IsNonZero) + continue; + + // If the build vector contains zeros or our first insertion is not the + // first index then insert into zero vector to break any register + // dependency else use SCALAR_TO_VECTOR/VZEXT_MOVL. + if (First) { + First = false; + if (NumZero || 0 != i) + V = getZeroVector(VT, Subtarget, DAG, dl); + else { + assert(0 == i && "Expected insertion into zero-index"); + V = DAG.getAnyExtOrTrunc(Op.getOperand(i), dl, MVT::i32); + V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V); + V = DAG.getNode(X86ISD::VZEXT_MOVL, dl, MVT::v4i32, V); + V = DAG.getBitcast(VT, V); + continue; + } + } + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V, Op.getOperand(i), + DAG.getIntPtrConstant(i, dl)); + } + + return V; +} + +/// Custom lower build_vector of v16i8. +static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, + unsigned NumNonZero, unsigned NumZero, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (NumNonZero > 8 && !Subtarget.hasSSE41()) + return SDValue(); + + // SSE4.1 - use PINSRB to insert each byte directly. + if (Subtarget.hasSSE41()) + return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG, + Subtarget); + + SDLoc dl(Op); + SDValue V; + bool First = true; + + // Pre-SSE4.1 - merge byte pairs and insert with PINSRW. + for (unsigned i = 0; i < 16; ++i) { + bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; + if (ThisIsNonZero && First) { + if (NumZero) + V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); + else + V = DAG.getUNDEF(MVT::v8i16); + First = false; + } + + if ((i & 1) != 0) { + // FIXME: Investigate extending to i32 instead of just i16. + // FIXME: Investigate combining the first 4 bytes as a i32 instead. + SDValue ThisElt, LastElt; + bool LastIsNonZero = (NonZeros & (1 << (i - 1))) != 0; + if (LastIsNonZero) { + LastElt = + DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i - 1)); + } + if (ThisIsNonZero) { + ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); + ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, ThisElt, + DAG.getConstant(8, dl, MVT::i8)); + if (LastIsNonZero) + ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); + } else + ThisElt = LastElt; + + if (ThisElt) { + if (1 == i) { + V = NumZero ? DAG.getZExtOrTrunc(ThisElt, dl, MVT::i32) + : DAG.getAnyExtOrTrunc(ThisElt, dl, MVT::i32); + V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V); + V = DAG.getNode(X86ISD::VZEXT_MOVL, dl, MVT::v4i32, V); + V = DAG.getBitcast(MVT::v8i16, V); + } else { + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, + DAG.getIntPtrConstant(i / 2, dl)); + } + } + } + } + + return DAG.getBitcast(MVT::v16i8, V); +} + +/// Custom lower build_vector of v8i16. +static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, + unsigned NumNonZero, unsigned NumZero, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (NumNonZero > 4 && !Subtarget.hasSSE41()) + return SDValue(); + + // Use PINSRW to insert each byte directly. + return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG, + Subtarget); +} + +/// Custom lower build_vector of v4i32 or v4f32. +static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // Find all zeroable elements. + std::bitset<4> Zeroable; + for (int i=0; i < 4; ++i) { + SDValue Elt = Op->getOperand(i); + Zeroable[i] = (Elt.isUndef() || X86::isZeroNode(Elt)); + } + assert(Zeroable.size() - Zeroable.count() > 1 && + "We expect at least two non-zero elements!"); + + // We only know how to deal with build_vector nodes where elements are either + // zeroable or extract_vector_elt with constant index. + SDValue FirstNonZero; + unsigned FirstNonZeroIdx; + for (unsigned i=0; i < 4; ++i) { + if (Zeroable[i]) + continue; + SDValue Elt = Op->getOperand(i); + if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + !isa<ConstantSDNode>(Elt.getOperand(1))) + return SDValue(); + // Make sure that this node is extracting from a 128-bit vector. + MVT VT = Elt.getOperand(0).getSimpleValueType(); + if (!VT.is128BitVector()) + return SDValue(); + if (!FirstNonZero.getNode()) { + FirstNonZero = Elt; + FirstNonZeroIdx = i; + } + } + + assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!"); + SDValue V1 = FirstNonZero.getOperand(0); + MVT VT = V1.getSimpleValueType(); + + // See if this build_vector can be lowered as a blend with zero. + SDValue Elt; + unsigned EltMaskIdx, EltIdx; + int Mask[4]; + for (EltIdx = 0; EltIdx < 4; ++EltIdx) { + if (Zeroable[EltIdx]) { + // The zero vector will be on the right hand side. + Mask[EltIdx] = EltIdx+4; + continue; + } + + Elt = Op->getOperand(EltIdx); + // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index. + EltMaskIdx = Elt.getConstantOperandVal(1); + if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx) + break; + Mask[EltIdx] = EltIdx; + } + + if (EltIdx == 4) { + // Let the shuffle legalizer deal with blend operations. + SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op)); + if (V1.getSimpleValueType() != VT) + V1 = DAG.getBitcast(VT, V1); + return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, Mask); + } + + // See if we can lower this build_vector to a INSERTPS. + if (!Subtarget.hasSSE41()) + return SDValue(); + + SDValue V2 = Elt.getOperand(0); + if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx) + V1 = SDValue(); + + bool CanFold = true; + for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) { + if (Zeroable[i]) + continue; + + SDValue Current = Op->getOperand(i); + SDValue SrcVector = Current->getOperand(0); + if (!V1.getNode()) + V1 = SrcVector; + CanFold = (SrcVector == V1) && (Current.getConstantOperandVal(1) == i); + } + + if (!CanFold) + return SDValue(); + + assert(V1.getNode() && "Expected at least two non-zero elements!"); + if (V1.getSimpleValueType() != MVT::v4f32) + V1 = DAG.getBitcast(MVT::v4f32, V1); + if (V2.getSimpleValueType() != MVT::v4f32) + V2 = DAG.getBitcast(MVT::v4f32, V2); + + // Ok, we can emit an INSERTPS instruction. + unsigned ZMask = Zeroable.to_ulong(); + + unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask; + assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); + SDLoc DL(Op); + SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, + DAG.getIntPtrConstant(InsertPSMask, DL)); + return DAG.getBitcast(VT, Result); +} + +/// Return a vector logical shift node. +static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits, + SelectionDAG &DAG, const TargetLowering &TLI, + const SDLoc &dl) { + assert(VT.is128BitVector() && "Unknown type for VShift"); + MVT ShVT = MVT::v16i8; + unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; + SrcOp = DAG.getBitcast(ShVT, SrcOp); + MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), VT); + assert(NumBits % 8 == 0 && "Only support byte sized shifts"); + SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy); + return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal)); +} + +static SDValue LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, const SDLoc &dl, + SelectionDAG &DAG) { + + // Check if the scalar load can be widened into a vector load. And if + // the address is "base + cst" see if the cst can be "absorbed" into + // the shuffle mask. + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { + SDValue Ptr = LD->getBasePtr(); + if (!ISD::isNormalLoad(LD) || LD->isVolatile()) + return SDValue(); + EVT PVT = LD->getValueType(0); + if (PVT != MVT::i32 && PVT != MVT::f32) + return SDValue(); + + int FI = -1; + int64_t Offset = 0; + if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { + FI = FINode->getIndex(); + Offset = 0; + } else if (DAG.isBaseWithConstantOffset(Ptr) && + isa<FrameIndexSDNode>(Ptr.getOperand(0))) { + FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); + Offset = Ptr.getConstantOperandVal(1); + Ptr = Ptr.getOperand(0); + } else { + return SDValue(); + } + + // FIXME: 256-bit vector instructions don't require a strict alignment, + // improve this code to support it better. + unsigned RequiredAlign = VT.getSizeInBits()/8; + SDValue Chain = LD->getChain(); + // Make sure the stack object alignment is at least 16 or 32. + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { + if (MFI.isFixedObjectIndex(FI)) { + // Can't change the alignment. FIXME: It's possible to compute + // the exact stack offset and reference FI + adjust offset instead. + // If someone *really* cares about this. That's the way to implement it. + return SDValue(); + } else { + MFI.setObjectAlignment(FI, RequiredAlign); + } + } + + // (Offset % 16 or 32) must be multiple of 4. Then address is then + // Ptr + (Offset & ~15). + if (Offset < 0) + return SDValue(); + if ((Offset % RequiredAlign) & 3) + return SDValue(); + int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1); + if (StartOffset) { + SDLoc DL(Ptr); + Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, + DAG.getConstant(StartOffset, DL, Ptr.getValueType())); + } + + int EltNo = (Offset - StartOffset) >> 2; + unsigned NumElems = VT.getVectorNumElements(); + + EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); + SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, + LD->getPointerInfo().getWithOffset(StartOffset)); + + SmallVector<int, 8> Mask(NumElems, EltNo); + + return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), Mask); + } + + return SDValue(); +} + +/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the +/// elements can be replaced by a single large load which has the same value as +/// a build_vector or insert_subvector whose loaded operands are 'Elts'. +/// +/// Example: <load i32 *a, load i32 *a+4, zero, undef> -> zextload a +static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts, + const SDLoc &DL, SelectionDAG &DAG, + const X86Subtarget &Subtarget, + bool isAfterLegalize) { + unsigned NumElems = Elts.size(); + + int LastLoadedElt = -1; + SmallBitVector LoadMask(NumElems, false); + SmallBitVector ZeroMask(NumElems, false); + SmallBitVector UndefMask(NumElems, false); + + // For each element in the initializer, see if we've found a load, zero or an + // undef. + for (unsigned i = 0; i < NumElems; ++i) { + SDValue Elt = peekThroughBitcasts(Elts[i]); + if (!Elt.getNode()) + return SDValue(); + + if (Elt.isUndef()) + UndefMask[i] = true; + else if (X86::isZeroNode(Elt) || ISD::isBuildVectorAllZeros(Elt.getNode())) + ZeroMask[i] = true; + else if (ISD::isNON_EXTLoad(Elt.getNode())) { + LoadMask[i] = true; + LastLoadedElt = i; + // Each loaded element must be the correct fractional portion of the + // requested vector load. + if ((NumElems * Elt.getValueSizeInBits()) != VT.getSizeInBits()) + return SDValue(); + } else + return SDValue(); + } + assert((ZeroMask | UndefMask | LoadMask).count() == NumElems && + "Incomplete element masks"); + + // Handle Special Cases - all undef or undef/zero. + if (UndefMask.count() == NumElems) + return DAG.getUNDEF(VT); + + // FIXME: Should we return this as a BUILD_VECTOR instead? + if ((ZeroMask | UndefMask).count() == NumElems) + return VT.isInteger() ? DAG.getConstant(0, DL, VT) + : DAG.getConstantFP(0.0, DL, VT); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + int FirstLoadedElt = LoadMask.find_first(); + SDValue EltBase = peekThroughBitcasts(Elts[FirstLoadedElt]); + LoadSDNode *LDBase = cast<LoadSDNode>(EltBase); + EVT LDBaseVT = EltBase.getValueType(); + + // Consecutive loads can contain UNDEFS but not ZERO elements. + // Consecutive loads with UNDEFs and ZEROs elements require a + // an additional shuffle stage to clear the ZERO elements. + bool IsConsecutiveLoad = true; + bool IsConsecutiveLoadWithZeros = true; + for (int i = FirstLoadedElt + 1; i <= LastLoadedElt; ++i) { + if (LoadMask[i]) { + SDValue Elt = peekThroughBitcasts(Elts[i]); + LoadSDNode *LD = cast<LoadSDNode>(Elt); + if (!DAG.areNonVolatileConsecutiveLoads( + LD, LDBase, Elt.getValueType().getStoreSizeInBits() / 8, + i - FirstLoadedElt)) { + IsConsecutiveLoad = false; + IsConsecutiveLoadWithZeros = false; + break; + } + } else if (ZeroMask[i]) { + IsConsecutiveLoad = false; + } + } + + SmallVector<LoadSDNode *, 8> Loads; + for (int i = FirstLoadedElt; i <= LastLoadedElt; ++i) + if (LoadMask[i]) + Loads.push_back(cast<LoadSDNode>(peekThroughBitcasts(Elts[i]))); + + auto CreateLoad = [&DAG, &DL, &Loads](EVT VT, LoadSDNode *LDBase) { + auto MMOFlags = LDBase->getMemOperand()->getFlags(); + assert(!(MMOFlags & MachineMemOperand::MOVolatile) && + "Cannot merge volatile loads."); + SDValue NewLd = + DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), + LDBase->getPointerInfo(), LDBase->getAlignment(), MMOFlags); + for (auto *LD : Loads) + DAG.makeEquivalentMemoryOrdering(LD, NewLd); + return NewLd; + }; + + // LOAD - all consecutive load/undefs (must start/end with a load). + // If we have found an entire vector of loads and undefs, then return a large + // load of the entire vector width starting at the base pointer. + // If the vector contains zeros, then attempt to shuffle those elements. + if (FirstLoadedElt == 0 && LastLoadedElt == (int)(NumElems - 1) && + (IsConsecutiveLoad || IsConsecutiveLoadWithZeros)) { + assert(LDBase && "Did not find base load for merging consecutive loads"); + EVT EltVT = LDBase->getValueType(0); + // Ensure that the input vector size for the merged loads matches the + // cumulative size of the input elements. + if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems) + return SDValue(); + + if (isAfterLegalize && !TLI.isOperationLegal(ISD::LOAD, VT)) + return SDValue(); + + // Don't create 256-bit non-temporal aligned loads without AVX2 as these + // will lower to regular temporal loads and use the cache. + if (LDBase->isNonTemporal() && LDBase->getAlignment() >= 32 && + VT.is256BitVector() && !Subtarget.hasInt256()) + return SDValue(); + + if (IsConsecutiveLoad) + return CreateLoad(VT, LDBase); + + // IsConsecutiveLoadWithZeros - we need to create a shuffle of the loaded + // vector and a zero vector to clear out the zero elements. + if (!isAfterLegalize && NumElems == VT.getVectorNumElements()) { + SmallVector<int, 4> ClearMask(NumElems, -1); + for (unsigned i = 0; i < NumElems; ++i) { + if (ZeroMask[i]) + ClearMask[i] = i + NumElems; + else if (LoadMask[i]) + ClearMask[i] = i; + } + SDValue V = CreateLoad(VT, LDBase); + SDValue Z = VT.isInteger() ? DAG.getConstant(0, DL, VT) + : DAG.getConstantFP(0.0, DL, VT); + return DAG.getVectorShuffle(VT, DL, V, Z, ClearMask); + } + } + + int LoadSize = + (1 + LastLoadedElt - FirstLoadedElt) * LDBaseVT.getStoreSizeInBits(); + + // VZEXT_LOAD - consecutive 32/64-bit load/undefs followed by zeros/undefs. + if (IsConsecutiveLoad && FirstLoadedElt == 0 && + (LoadSize == 32 || LoadSize == 64) && + ((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()))) { + MVT VecSVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(LoadSize) + : MVT::getIntegerVT(LoadSize); + MVT VecVT = MVT::getVectorVT(VecSVT, VT.getSizeInBits() / LoadSize); + if (TLI.isTypeLegal(VecVT)) { + SDVTList Tys = DAG.getVTList(VecVT, MVT::Other); + SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; + SDValue ResNode = + DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, VecSVT, + LDBase->getPointerInfo(), + LDBase->getAlignment(), + MachineMemOperand::MOLoad); + for (auto *LD : Loads) + DAG.makeEquivalentMemoryOrdering(LD, ResNode); + return DAG.getBitcast(VT, ResNode); + } + } + + return SDValue(); +} + +static Constant *getConstantVector(MVT VT, const APInt &SplatValue, + unsigned SplatBitSize, LLVMContext &C) { + unsigned ScalarSize = VT.getScalarSizeInBits(); + unsigned NumElm = SplatBitSize / ScalarSize; + + SmallVector<Constant *, 32> ConstantVec; + for (unsigned i = 0; i < NumElm; i++) { + APInt Val = SplatValue.extractBits(ScalarSize, ScalarSize * i); + Constant *Const; + if (VT.isFloatingPoint()) { + if (ScalarSize == 32) { + Const = ConstantFP::get(C, APFloat(APFloat::IEEEsingle(), Val)); + } else { + assert(ScalarSize == 64 && "Unsupported floating point scalar size"); + Const = ConstantFP::get(C, APFloat(APFloat::IEEEdouble(), Val)); + } + } else + Const = Constant::getIntegerValue(Type::getIntNTy(C, ScalarSize), Val); + ConstantVec.push_back(Const); + } + return ConstantVector::get(ArrayRef<Constant *>(ConstantVec)); +} + +static bool isUseOfShuffle(SDNode *N) { + for (auto *U : N->uses()) { + if (isTargetShuffle(U->getOpcode())) + return true; + if (U->getOpcode() == ISD::BITCAST) // Ignore bitcasts + return isUseOfShuffle(U); + } + return false; +} + +// Check if the current node of build vector is a zero extended vector. +// // If so, return the value extended. +// // For example: (0,0,0,a,0,0,0,a,0,0,0,a,0,0,0,a) returns a. +// // NumElt - return the number of zero extended identical values. +// // EltType - return the type of the value include the zero extend. +static SDValue isSplatZeroExtended(const BuildVectorSDNode *Op, + unsigned &NumElt, MVT &EltType) { + SDValue ExtValue = Op->getOperand(0); + unsigned NumElts = Op->getNumOperands(); + unsigned Delta = NumElts; + + for (unsigned i = 1; i < NumElts; i++) { + if (Op->getOperand(i) == ExtValue) { + Delta = i; + break; + } + if (!(Op->getOperand(i).isUndef() || isNullConstant(Op->getOperand(i)))) + return SDValue(); + } + if (!isPowerOf2_32(Delta) || Delta == 1) + return SDValue(); + + for (unsigned i = Delta; i < NumElts; i++) { + if (i % Delta == 0) { + if (Op->getOperand(i) != ExtValue) + return SDValue(); + } else if (!(isNullConstant(Op->getOperand(i)) || + Op->getOperand(i).isUndef())) + return SDValue(); + } + unsigned EltSize = Op->getSimpleValueType(0).getScalarSizeInBits(); + unsigned ExtVTSize = EltSize * Delta; + EltType = MVT::getIntegerVT(ExtVTSize); + NumElt = NumElts / Delta; + return ExtValue; +} + +/// Attempt to use the vbroadcast instruction to generate a splat value +/// from a splat BUILD_VECTOR which uses: +/// a. A single scalar load, or a constant. +/// b. Repeated pattern of constants (e.g. <0,1,0,1> or <0,1,2,3,0,1,2,3>). +/// +/// The VBROADCAST node is returned when a pattern is found, +/// or SDValue() otherwise. +static SDValue lowerBuildVectorAsBroadcast(BuildVectorSDNode *BVOp, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + // VBROADCAST requires AVX. + // TODO: Splats could be generated for non-AVX CPUs using SSE + // instructions, but there's less potential gain for only 128-bit vectors. + if (!Subtarget.hasAVX()) + return SDValue(); + + MVT VT = BVOp->getSimpleValueType(0); + SDLoc dl(BVOp); + + assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) && + "Unsupported vector type for broadcast."); + + BitVector UndefElements; + SDValue Ld = BVOp->getSplatValue(&UndefElements); + + // Attempt to use VBROADCASTM + // From this paterrn: + // a. t0 = (zext_i64 (bitcast_i8 v2i1 X)) + // b. t1 = (build_vector t0 t0) + // + // Create (VBROADCASTM v2i1 X) + if (Subtarget.hasCDI() && (VT.is512BitVector() || Subtarget.hasVLX())) { + MVT EltType = VT.getScalarType(); + unsigned NumElts = VT.getVectorNumElements(); + SDValue BOperand; + SDValue ZeroExtended = isSplatZeroExtended(BVOp, NumElts, EltType); + if ((ZeroExtended && ZeroExtended.getOpcode() == ISD::BITCAST) || + (Ld && Ld.getOpcode() == ISD::ZERO_EXTEND && + Ld.getOperand(0).getOpcode() == ISD::BITCAST)) { + if (ZeroExtended) + BOperand = ZeroExtended.getOperand(0); + else + BOperand = Ld.getOperand(0).getOperand(0); + if (BOperand.getValueType().isVector() && + BOperand.getSimpleValueType().getVectorElementType() == MVT::i1) { + if ((EltType == MVT::i64 && (VT.getVectorElementType() == MVT::i8 || + NumElts == 8)) || // for broadcastmb2q + (EltType == MVT::i32 && (VT.getVectorElementType() == MVT::i16 || + NumElts == 16))) { // for broadcastmw2d + SDValue Brdcst = + DAG.getNode(X86ISD::VBROADCASTM, dl, + MVT::getVectorVT(EltType, NumElts), BOperand); + return DAG.getBitcast(VT, Brdcst); + } + } + } + } + + // We need a splat of a single value to use broadcast, and it doesn't + // make any sense if the value is only in one element of the vector. + if (!Ld || (VT.getVectorNumElements() - UndefElements.count()) <= 1) { + APInt SplatValue, Undef; + unsigned SplatBitSize; + bool HasUndef; + // Check if this is a repeated constant pattern suitable for broadcasting. + if (BVOp->isConstantSplat(SplatValue, Undef, SplatBitSize, HasUndef) && + SplatBitSize > VT.getScalarSizeInBits() && + SplatBitSize < VT.getSizeInBits()) { + // Avoid replacing with broadcast when it's a use of a shuffle + // instruction to preserve the present custom lowering of shuffles. + if (isUseOfShuffle(BVOp) || BVOp->hasOneUse()) + return SDValue(); + // replace BUILD_VECTOR with broadcast of the repeated constants. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + LLVMContext *Ctx = DAG.getContext(); + MVT PVT = TLI.getPointerTy(DAG.getDataLayout()); + if (Subtarget.hasAVX()) { + if (SplatBitSize <= 64 && Subtarget.hasAVX2() && + !(SplatBitSize == 64 && Subtarget.is32Bit())) { + // Splatted value can fit in one INTEGER constant in constant pool. + // Load the constant and broadcast it. + MVT CVT = MVT::getIntegerVT(SplatBitSize); + Type *ScalarTy = Type::getIntNTy(*Ctx, SplatBitSize); + Constant *C = Constant::getIntegerValue(ScalarTy, SplatValue); + SDValue CP = DAG.getConstantPool(C, PVT); + unsigned Repeat = VT.getSizeInBits() / SplatBitSize; + + unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); + Ld = DAG.getLoad( + CVT, dl, DAG.getEntryNode(), CP, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + Alignment); + SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl, + MVT::getVectorVT(CVT, Repeat), Ld); + return DAG.getBitcast(VT, Brdcst); + } else if (SplatBitSize == 32 || SplatBitSize == 64) { + // Splatted value can fit in one FLOAT constant in constant pool. + // Load the constant and broadcast it. + // AVX have support for 32 and 64 bit broadcast for floats only. + // No 64bit integer in 32bit subtarget. + MVT CVT = MVT::getFloatingPointVT(SplatBitSize); + // Lower the splat via APFloat directly, to avoid any conversion. + Constant *C = + SplatBitSize == 32 + ? ConstantFP::get(*Ctx, + APFloat(APFloat::IEEEsingle(), SplatValue)) + : ConstantFP::get(*Ctx, + APFloat(APFloat::IEEEdouble(), SplatValue)); + SDValue CP = DAG.getConstantPool(C, PVT); + unsigned Repeat = VT.getSizeInBits() / SplatBitSize; + + unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); + Ld = DAG.getLoad( + CVT, dl, DAG.getEntryNode(), CP, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + Alignment); + SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl, + MVT::getVectorVT(CVT, Repeat), Ld); + return DAG.getBitcast(VT, Brdcst); + } else if (SplatBitSize > 64) { + // Load the vector of constants and broadcast it. + MVT CVT = VT.getScalarType(); + Constant *VecC = getConstantVector(VT, SplatValue, SplatBitSize, + *Ctx); + SDValue VCP = DAG.getConstantPool(VecC, PVT); + unsigned NumElm = SplatBitSize / VT.getScalarSizeInBits(); + unsigned Alignment = cast<ConstantPoolSDNode>(VCP)->getAlignment(); + Ld = DAG.getLoad( + MVT::getVectorVT(CVT, NumElm), dl, DAG.getEntryNode(), VCP, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + Alignment); + SDValue Brdcst = DAG.getNode(X86ISD::SUBV_BROADCAST, dl, VT, Ld); + return DAG.getBitcast(VT, Brdcst); + } + } + } + return SDValue(); + } + + bool ConstSplatVal = + (Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP); + + // Make sure that all of the users of a non-constant load are from the + // BUILD_VECTOR node. + if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode())) + return SDValue(); + + unsigned ScalarSize = Ld.getValueSizeInBits(); + bool IsGE256 = (VT.getSizeInBits() >= 256); + + // When optimizing for size, generate up to 5 extra bytes for a broadcast + // instruction to save 8 or more bytes of constant pool data. + // TODO: If multiple splats are generated to load the same constant, + // it may be detrimental to overall size. There needs to be a way to detect + // that condition to know if this is truly a size win. + bool OptForSize = DAG.getMachineFunction().getFunction().optForSize(); + + // Handle broadcasting a single constant scalar from the constant pool + // into a vector. + // On Sandybridge (no AVX2), it is still better to load a constant vector + // from the constant pool and not to broadcast it from a scalar. + // But override that restriction when optimizing for size. + // TODO: Check if splatting is recommended for other AVX-capable CPUs. + if (ConstSplatVal && (Subtarget.hasAVX2() || OptForSize)) { + EVT CVT = Ld.getValueType(); + assert(!CVT.isVector() && "Must not broadcast a vector type"); + + // Splat f32, i32, v4f64, v4i64 in all cases with AVX2. + // For size optimization, also splat v2f64 and v2i64, and for size opt + // with AVX2, also splat i8 and i16. + // With pattern matching, the VBROADCAST node may become a VMOVDDUP. + if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || + (OptForSize && (ScalarSize == 64 || Subtarget.hasAVX2()))) { + const Constant *C = nullptr; + if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld)) + C = CI->getConstantIntValue(); + else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld)) + C = CF->getConstantFPValue(); + + assert(C && "Invalid constant type"); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue CP = + DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout())); + unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); + Ld = DAG.getLoad( + CVT, dl, DAG.getEntryNode(), CP, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + Alignment); + + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + } + } + + bool IsLoad = ISD::isNormalLoad(Ld.getNode()); + + // Handle AVX2 in-register broadcasts. + if (!IsLoad && Subtarget.hasInt256() && + (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))) + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + + // The scalar source must be a normal load. + if (!IsLoad) + return SDValue(); + + if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || + (Subtarget.hasVLX() && ScalarSize == 64)) + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + + // The integer check is needed for the 64-bit into 128-bit so it doesn't match + // double since there is no vbroadcastsd xmm + if (Subtarget.hasInt256() && Ld.getValueType().isInteger()) { + if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + } + + // Unsupported broadcast. + return SDValue(); +} + +/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real +/// underlying vector and index. +/// +/// Modifies \p ExtractedFromVec to the real vector and returns the real +/// index. +static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec, + SDValue ExtIdx) { + int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue(); + if (!isa<ShuffleVectorSDNode>(ExtractedFromVec)) + return Idx; + + // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already + // lowered this: + // (extract_vector_elt (v8f32 %1), Constant<6>) + // to: + // (extract_vector_elt (vector_shuffle<2,u,u,u> + // (extract_subvector (v8f32 %0), Constant<4>), + // undef) + // Constant<0>) + // In this case the vector is the extract_subvector expression and the index + // is 2, as specified by the shuffle. + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec); + SDValue ShuffleVec = SVOp->getOperand(0); + MVT ShuffleVecVT = ShuffleVec.getSimpleValueType(); + assert(ShuffleVecVT.getVectorElementType() == + ExtractedFromVec.getSimpleValueType().getVectorElementType()); + + int ShuffleIdx = SVOp->getMaskElt(Idx); + if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) { + ExtractedFromVec = ShuffleVec; + return ShuffleIdx; + } + return Idx; +} + +static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + + // Skip if insert_vec_elt is not supported. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT)) + return SDValue(); + + SDLoc DL(Op); + unsigned NumElems = Op.getNumOperands(); + + SDValue VecIn1; + SDValue VecIn2; + SmallVector<unsigned, 4> InsertIndices; + SmallVector<int, 8> Mask(NumElems, -1); + + for (unsigned i = 0; i != NumElems; ++i) { + unsigned Opc = Op.getOperand(i).getOpcode(); + + if (Opc == ISD::UNDEF) + continue; + + if (Opc != ISD::EXTRACT_VECTOR_ELT) { + // Quit if more than 1 elements need inserting. + if (InsertIndices.size() > 1) + return SDValue(); + + InsertIndices.push_back(i); + continue; + } + + SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0); + SDValue ExtIdx = Op.getOperand(i).getOperand(1); + + // Quit if non-constant index. + if (!isa<ConstantSDNode>(ExtIdx)) + return SDValue(); + int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx); + + // Quit if extracted from vector of different type. + if (ExtractedFromVec.getValueType() != VT) + return SDValue(); + + if (!VecIn1.getNode()) + VecIn1 = ExtractedFromVec; + else if (VecIn1 != ExtractedFromVec) { + if (!VecIn2.getNode()) + VecIn2 = ExtractedFromVec; + else if (VecIn2 != ExtractedFromVec) + // Quit if more than 2 vectors to shuffle + return SDValue(); + } + + if (ExtractedFromVec == VecIn1) + Mask[i] = Idx; + else if (ExtractedFromVec == VecIn2) + Mask[i] = Idx + NumElems; + } + + if (!VecIn1.getNode()) + return SDValue(); + + VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); + SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, Mask); + + for (unsigned Idx : InsertIndices) + NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx), + DAG.getIntPtrConstant(Idx, DL)); + + return NV; +} + +static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) { + assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && + Op.getScalarValueSizeInBits() == 1 && + "Can not convert non-constant vector"); + uint64_t Immediate = 0; + for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { + SDValue In = Op.getOperand(idx); + if (!In.isUndef()) + Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx; + } + SDLoc dl(Op); + MVT VT = MVT::getIntegerVT(std::max((int)Op.getValueSizeInBits(), 8)); + return DAG.getConstant(Immediate, dl, VT); +} +// Lower BUILD_VECTOR operation for v8i1 and v16i1 types. +static SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + + MVT VT = Op.getSimpleValueType(); + assert((VT.getVectorElementType() == MVT::i1) && + "Unexpected type in LowerBUILD_VECTORvXi1!"); + + SDLoc dl(Op); + if (ISD::isBuildVectorAllZeros(Op.getNode())) + return Op; + + if (ISD::isBuildVectorAllOnes(Op.getNode())) + return Op; + + if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { + if (VT == MVT::v64i1 && !Subtarget.is64Bit()) { + // Split the pieces. + SDValue Lower = + DAG.getBuildVector(MVT::v32i1, dl, Op.getNode()->ops().slice(0, 32)); + SDValue Upper = + DAG.getBuildVector(MVT::v32i1, dl, Op.getNode()->ops().slice(32, 32)); + // We have to manually lower both halves so getNode doesn't try to + // reassemble the build_vector. + Lower = LowerBUILD_VECTORvXi1(Lower, DAG, Subtarget); + Upper = LowerBUILD_VECTORvXi1(Upper, DAG, Subtarget); + return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lower, Upper); + } + SDValue Imm = ConvertI1VectorToInteger(Op, DAG); + if (Imm.getValueSizeInBits() == VT.getSizeInBits()) + return DAG.getBitcast(VT, Imm); + SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, + DAG.getIntPtrConstant(0, dl)); + } + + // Vector has one or more non-const elements + uint64_t Immediate = 0; + SmallVector<unsigned, 16> NonConstIdx; + bool IsSplat = true; + bool HasConstElts = false; + int SplatIdx = -1; + for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { + SDValue In = Op.getOperand(idx); + if (In.isUndef()) + continue; + if (!isa<ConstantSDNode>(In)) + NonConstIdx.push_back(idx); + else { + Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx; + HasConstElts = true; + } + if (SplatIdx < 0) + SplatIdx = idx; + else if (In != Op.getOperand(SplatIdx)) + IsSplat = false; + } + + // for splat use " (select i1 splat_elt, all-ones, all-zeroes)" + if (IsSplat) + return DAG.getSelect(dl, VT, Op.getOperand(SplatIdx), + DAG.getConstant(1, dl, VT), + DAG.getConstant(0, dl, VT)); + + // insert elements one by one + SDValue DstVec; + SDValue Imm; + if (Immediate) { + MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8)); + Imm = DAG.getConstant(Immediate, dl, ImmVT); + } + else if (HasConstElts) + Imm = DAG.getConstant(0, dl, VT); + else + Imm = DAG.getUNDEF(VT); + if (Imm.getValueSizeInBits() == VT.getSizeInBits()) + DstVec = DAG.getBitcast(VT, Imm); + else { + SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); + DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, + DAG.getIntPtrConstant(0, dl)); + } + + for (unsigned i = 0, e = NonConstIdx.size(); i != e; ++i) { + unsigned InsertIdx = NonConstIdx[i]; + DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, + Op.getOperand(InsertIdx), + DAG.getIntPtrConstant(InsertIdx, dl)); + } + return DstVec; +} + +/// \brief Return true if \p N implements a horizontal binop and return the +/// operands for the horizontal binop into V0 and V1. +/// +/// This is a helper function of LowerToHorizontalOp(). +/// This function checks that the build_vector \p N in input implements a +/// horizontal operation. Parameter \p Opcode defines the kind of horizontal +/// operation to match. +/// For example, if \p Opcode is equal to ISD::ADD, then this function +/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode +/// is equal to ISD::SUB, then this function checks if this is a horizontal +/// arithmetic sub. +/// +/// This function only analyzes elements of \p N whose indices are +/// in range [BaseIdx, LastIdx). +static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode, + SelectionDAG &DAG, + unsigned BaseIdx, unsigned LastIdx, + SDValue &V0, SDValue &V1) { + EVT VT = N->getValueType(0); + + assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!"); + assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx && + "Invalid Vector in input!"); + + bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD); + bool CanFold = true; + unsigned ExpectedVExtractIdx = BaseIdx; + unsigned NumElts = LastIdx - BaseIdx; + V0 = DAG.getUNDEF(VT); + V1 = DAG.getUNDEF(VT); + + // Check if N implements a horizontal binop. + for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) { + SDValue Op = N->getOperand(i + BaseIdx); + + // Skip UNDEFs. + if (Op->isUndef()) { + // Update the expected vector extract index. + if (i * 2 == NumElts) + ExpectedVExtractIdx = BaseIdx; + ExpectedVExtractIdx += 2; + continue; + } + + CanFold = Op->getOpcode() == Opcode && Op->hasOneUse(); + + if (!CanFold) + break; + + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + // Try to match the following pattern: + // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1)) + CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Op0.getOperand(0) == Op1.getOperand(0) && + isa<ConstantSDNode>(Op0.getOperand(1)) && + isa<ConstantSDNode>(Op1.getOperand(1))); + if (!CanFold) + break; + + unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); + unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue(); + + if (i * 2 < NumElts) { + if (V0.isUndef()) { + V0 = Op0.getOperand(0); + if (V0.getValueType() != VT) + return false; + } + } else { + if (V1.isUndef()) { + V1 = Op0.getOperand(0); + if (V1.getValueType() != VT) + return false; + } + if (i * 2 == NumElts) + ExpectedVExtractIdx = BaseIdx; + } + + SDValue Expected = (i * 2 < NumElts) ? V0 : V1; + if (I0 == ExpectedVExtractIdx) + CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected; + else if (IsCommutable && I1 == ExpectedVExtractIdx) { + // Try to match the following dag sequence: + // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I)) + CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected; + } else + CanFold = false; + + ExpectedVExtractIdx += 2; + } + + return CanFold; +} + +/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by +/// a concat_vector. +/// +/// This is a helper function of LowerToHorizontalOp(). +/// This function expects two 256-bit vectors called V0 and V1. +/// At first, each vector is split into two separate 128-bit vectors. +/// Then, the resulting 128-bit vectors are used to implement two +/// horizontal binary operations. +/// +/// The kind of horizontal binary operation is defined by \p X86Opcode. +/// +/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to +/// the two new horizontal binop. +/// When Mode is set, the first horizontal binop dag node would take as input +/// the lower 128-bit of V0 and the upper 128-bit of V0. The second +/// horizontal binop dag node would take as input the lower 128-bit of V1 +/// and the upper 128-bit of V1. +/// Example: +/// HADD V0_LO, V0_HI +/// HADD V1_LO, V1_HI +/// +/// Otherwise, the first horizontal binop dag node takes as input the lower +/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop +/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1. +/// Example: +/// HADD V0_LO, V1_LO +/// HADD V0_HI, V1_HI +/// +/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower +/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to +/// the upper 128-bits of the result. +static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1, + const SDLoc &DL, SelectionDAG &DAG, + unsigned X86Opcode, bool Mode, + bool isUndefLO, bool isUndefHI) { + MVT VT = V0.getSimpleValueType(); + assert(VT.is256BitVector() && VT == V1.getSimpleValueType() && + "Invalid nodes in input!"); + + unsigned NumElts = VT.getVectorNumElements(); + SDValue V0_LO = extract128BitVector(V0, 0, DAG, DL); + SDValue V0_HI = extract128BitVector(V0, NumElts/2, DAG, DL); + SDValue V1_LO = extract128BitVector(V1, 0, DAG, DL); + SDValue V1_HI = extract128BitVector(V1, NumElts/2, DAG, DL); + MVT NewVT = V0_LO.getSimpleValueType(); + + SDValue LO = DAG.getUNDEF(NewVT); + SDValue HI = DAG.getUNDEF(NewVT); + + if (Mode) { + // Don't emit a horizontal binop if the result is expected to be UNDEF. + if (!isUndefLO && !V0->isUndef()) + LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI); + if (!isUndefHI && !V1->isUndef()) + HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI); + } else { + // Don't emit a horizontal binop if the result is expected to be UNDEF. + if (!isUndefLO && (!V0_LO->isUndef() || !V1_LO->isUndef())) + LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO); + + if (!isUndefHI && (!V0_HI->isUndef() || !V1_HI->isUndef())) + HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI); + } + + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI); +} + +/// Returns true iff \p BV builds a vector with the result equivalent to +/// the result of ADDSUB operation. +/// If true is returned then the operands of ADDSUB = Opnd0 +- Opnd1 operation +/// are written to the parameters \p Opnd0 and \p Opnd1. +static bool isAddSub(const BuildVectorSDNode *BV, + const X86Subtarget &Subtarget, SelectionDAG &DAG, + SDValue &Opnd0, SDValue &Opnd1, + unsigned &NumExtracts) { + + MVT VT = BV->getSimpleValueType(0); + if ((!Subtarget.hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) && + (!Subtarget.hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)) && + (!Subtarget.hasAVX512() || (VT != MVT::v16f32 && VT != MVT::v8f64))) + return false; + + unsigned NumElts = VT.getVectorNumElements(); + SDValue InVec0 = DAG.getUNDEF(VT); + SDValue InVec1 = DAG.getUNDEF(VT); + + NumExtracts = 0; + + // Odd-numbered elements in the input build vector are obtained from + // adding two integer/float elements. + // Even-numbered elements in the input build vector are obtained from + // subtracting two integer/float elements. + unsigned ExpectedOpcode = ISD::FSUB; + unsigned NextExpectedOpcode = ISD::FADD; + bool AddFound = false; + bool SubFound = false; + + for (unsigned i = 0, e = NumElts; i != e; ++i) { + SDValue Op = BV->getOperand(i); + + // Skip 'undef' values. + unsigned Opcode = Op.getOpcode(); + if (Opcode == ISD::UNDEF) { + std::swap(ExpectedOpcode, NextExpectedOpcode); + continue; + } + + // Early exit if we found an unexpected opcode. + if (Opcode != ExpectedOpcode) + return false; + + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + // Try to match the following pattern: + // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i)) + // Early exit if we cannot match that sequence. + if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + !isa<ConstantSDNode>(Op0.getOperand(1)) || + !isa<ConstantSDNode>(Op1.getOperand(1)) || + Op0.getOperand(1) != Op1.getOperand(1)) + return false; + + unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); + if (I0 != i) + return false; + + // We found a valid add/sub node. Update the information accordingly. + if (i & 1) + AddFound = true; + else + SubFound = true; + + // Update InVec0 and InVec1. + if (InVec0.isUndef()) { + InVec0 = Op0.getOperand(0); + if (InVec0.getSimpleValueType() != VT) + return false; + } + if (InVec1.isUndef()) { + InVec1 = Op1.getOperand(0); + if (InVec1.getSimpleValueType() != VT) + return false; + } + + // Make sure that operands in input to each add/sub node always + // come from a same pair of vectors. + if (InVec0 != Op0.getOperand(0)) { + if (ExpectedOpcode == ISD::FSUB) + return false; + + // FADD is commutable. Try to commute the operands + // and then test again. + std::swap(Op0, Op1); + if (InVec0 != Op0.getOperand(0)) + return false; + } + + if (InVec1 != Op1.getOperand(0)) + return false; + + // Update the pair of expected opcodes. + std::swap(ExpectedOpcode, NextExpectedOpcode); + + // Increment the number of extractions done. + ++NumExtracts; + } + + // Don't try to fold this build_vector into an ADDSUB if the inputs are undef. + if (!AddFound || !SubFound || InVec0.isUndef() || InVec1.isUndef()) + return false; + + Opnd0 = InVec0; + Opnd1 = InVec1; + return true; +} + +/// Returns true if is possible to fold MUL and an idiom that has already been +/// recognized as ADDSUB/SUBADD(\p Opnd0, \p Opnd1) into +/// FMADDSUB/FMSUBADD(x, y, \p Opnd1). If (and only if) true is returned, the +/// operands of FMADDSUB/FMSUBADD are written to parameters \p Opnd0, \p Opnd1, \p Opnd2. +/// +/// Prior to calling this function it should be known that there is some +/// SDNode that potentially can be replaced with an X86ISD::ADDSUB operation +/// using \p Opnd0 and \p Opnd1 as operands. Also, this method is called +/// before replacement of such SDNode with ADDSUB operation. Thus the number +/// of \p Opnd0 uses is expected to be equal to 2. +/// For example, this function may be called for the following IR: +/// %AB = fmul fast <2 x double> %A, %B +/// %Sub = fsub fast <2 x double> %AB, %C +/// %Add = fadd fast <2 x double> %AB, %C +/// %Addsub = shufflevector <2 x double> %Sub, <2 x double> %Add, +/// <2 x i32> <i32 0, i32 3> +/// There is a def for %Addsub here, which potentially can be replaced by +/// X86ISD::ADDSUB operation: +/// %Addsub = X86ISD::ADDSUB %AB, %C +/// and such ADDSUB can further be replaced with FMADDSUB: +/// %Addsub = FMADDSUB %A, %B, %C. +/// +/// The main reason why this method is called before the replacement of the +/// recognized ADDSUB idiom with ADDSUB operation is that such replacement +/// is illegal sometimes. E.g. 512-bit ADDSUB is not available, while 512-bit +/// FMADDSUB is. +static bool isFMAddSubOrFMSubAdd(const X86Subtarget &Subtarget, + SelectionDAG &DAG, + SDValue &Opnd0, SDValue &Opnd1, SDValue &Opnd2, + unsigned ExpectedUses) { + if (Opnd0.getOpcode() != ISD::FMUL || + !Opnd0->hasNUsesOfValue(ExpectedUses, 0) || !Subtarget.hasAnyFMA()) + return false; + + // FIXME: These checks must match the similar ones in + // DAGCombiner::visitFADDForFMACombine. It would be good to have one + // function that would answer if it is Ok to fuse MUL + ADD to FMADD + // or MUL + ADDSUB to FMADDSUB. + const TargetOptions &Options = DAG.getTarget().Options; + bool AllowFusion = + (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath); + if (!AllowFusion) + return false; + + Opnd2 = Opnd1; + Opnd1 = Opnd0.getOperand(1); + Opnd0 = Opnd0.getOperand(0); + + return true; +} + +/// Try to fold a build_vector that performs an 'addsub' or 'fmaddsub' operation +/// accordingly to X86ISD::ADDSUB or X86ISD::FMADDSUB node. +static SDValue lowerToAddSubOrFMAddSub(const BuildVectorSDNode *BV, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDValue Opnd0, Opnd1; + unsigned NumExtracts; + if (!isAddSub(BV, Subtarget, DAG, Opnd0, Opnd1, NumExtracts)) + return SDValue(); + + MVT VT = BV->getSimpleValueType(0); + SDLoc DL(BV); + + // Try to generate X86ISD::FMADDSUB node here. + SDValue Opnd2; + // TODO: According to coverage reports, the FMADDSUB transform is not + // triggered by any tests. + if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, NumExtracts)) + return DAG.getNode(X86ISD::FMADDSUB, DL, VT, Opnd0, Opnd1, Opnd2); + + // Do not generate X86ISD::ADDSUB node for 512-bit types even though + // the ADDSUB idiom has been successfully recognized. There are no known + // X86 targets with 512-bit ADDSUB instructions! + // 512-bit ADDSUB idiom recognition was needed only as part of FMADDSUB idiom + // recognition. + if (VT.is512BitVector()) + return SDValue(); + + return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1); +} + +/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible. +static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = BV->getSimpleValueType(0); + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumUndefsLO = 0; + unsigned NumUndefsHI = 0; + unsigned Half = NumElts/2; + + // Count the number of UNDEF operands in the build_vector in input. + for (unsigned i = 0, e = Half; i != e; ++i) + if (BV->getOperand(i)->isUndef()) + NumUndefsLO++; + + for (unsigned i = Half, e = NumElts; i != e; ++i) + if (BV->getOperand(i)->isUndef()) + NumUndefsHI++; + + // Early exit if this is either a build_vector of all UNDEFs or all the + // operands but one are UNDEF. + if (NumUndefsLO + NumUndefsHI + 1 >= NumElts) + return SDValue(); + + SDLoc DL(BV); + SDValue InVec0, InVec1; + if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget.hasSSE3()) { + // Try to match an SSE3 float HADD/HSUB. + if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) + return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); + + if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) + return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); + } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget.hasSSSE3()) { + // Try to match an SSSE3 integer HADD/HSUB. + if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) + return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1); + + if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) + return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1); + } + + if (!Subtarget.hasAVX()) + return SDValue(); + + if ((VT == MVT::v8f32 || VT == MVT::v4f64)) { + // Try to match an AVX horizontal add/sub of packed single/double + // precision floating point values from 256-bit vectors. + SDValue InVec2, InVec3; + if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) && + isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) && + ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) && + ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3)) + return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); + + if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) && + isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) && + ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) && + ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3)) + return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); + } else if (VT == MVT::v8i32 || VT == MVT::v16i16) { + // Try to match an AVX2 horizontal add/sub of signed integers. + SDValue InVec2, InVec3; + unsigned X86Opcode; + bool CanFold = true; + + if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) && + isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) && + ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) && + ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3)) + X86Opcode = X86ISD::HADD; + else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) && + isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) && + ((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) && + ((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3)) + X86Opcode = X86ISD::HSUB; + else + CanFold = false; + + if (CanFold) { + // Fold this build_vector into a single horizontal add/sub. + // Do this only if the target has AVX2. + if (Subtarget.hasAVX2()) + return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1); + + // Do not try to expand this build_vector into a pair of horizontal + // add/sub if we can emit a pair of scalar add/sub. + if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) + return SDValue(); + + // Convert this build_vector into a pair of horizontal binop followed by + // a concat vector. + bool isUndefLO = NumUndefsLO == Half; + bool isUndefHI = NumUndefsHI == Half; + return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false, + isUndefLO, isUndefHI); + } + } + + if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 || + VT == MVT::v16i16) && Subtarget.hasAVX()) { + unsigned X86Opcode; + if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) + X86Opcode = X86ISD::HADD; + else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) + X86Opcode = X86ISD::HSUB; + else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) + X86Opcode = X86ISD::FHADD; + else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) + X86Opcode = X86ISD::FHSUB; + else + return SDValue(); + + // Don't try to expand this build_vector into a pair of horizontal add/sub + // if we can simply emit a pair of scalar add/sub. + if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) + return SDValue(); + + // Convert this build_vector into two horizontal add/sub followed by + // a concat vector. + bool isUndefLO = NumUndefsLO == Half; + bool isUndefHI = NumUndefsHI == Half; + return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true, + isUndefLO, isUndefHI); + } + + return SDValue(); +} + +/// If a BUILD_VECTOR's source elements all apply the same bit operation and +/// one of their operands is constant, lower to a pair of BUILD_VECTOR and +/// just apply the bit to the vectors. +/// NOTE: Its not in our interest to start make a general purpose vectorizer +/// from this, but enough scalar bit operations are created from the later +/// legalization + scalarization stages to need basic support. +static SDValue lowerBuildVectorToBitOp(BuildVectorSDNode *Op, + SelectionDAG &DAG) { + SDLoc DL(Op); + MVT VT = Op->getSimpleValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // Check that all elements have the same opcode. + // TODO: Should we allow UNDEFS and if so how many? + unsigned Opcode = Op->getOperand(0).getOpcode(); + for (unsigned i = 1; i < NumElems; ++i) + if (Opcode != Op->getOperand(i).getOpcode()) + return SDValue(); + + // TODO: We may be able to add support for other Ops (ADD/SUB + shifts). + switch (Opcode) { + default: + return SDValue(); + case ISD::AND: + case ISD::XOR: + case ISD::OR: + if (!TLI.isOperationLegalOrPromote(Opcode, VT)) + return SDValue(); + break; + } + + SmallVector<SDValue, 4> LHSElts, RHSElts; + for (SDValue Elt : Op->ops()) { + SDValue LHS = Elt.getOperand(0); + SDValue RHS = Elt.getOperand(1); + + // We expect the canonicalized RHS operand to be the constant. + if (!isa<ConstantSDNode>(RHS)) + return SDValue(); + LHSElts.push_back(LHS); + RHSElts.push_back(RHS); + } + + SDValue LHS = DAG.getBuildVector(VT, DL, LHSElts); + SDValue RHS = DAG.getBuildVector(VT, DL, RHSElts); + return DAG.getNode(Opcode, DL, VT, LHS, RHS); +} + +/// Create a vector constant without a load. SSE/AVX provide the bare minimum +/// functionality to do this, so it's all zeros, all ones, or some derivation +/// that is cheap to calculate. +static SDValue materializeVectorConstant(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + + // Vectors containing all zeros can be matched by pxor and xorps. + if (ISD::isBuildVectorAllZeros(Op.getNode())) { + // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd + // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. + if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) + return Op; + + return getZeroVector(VT, Subtarget, DAG, DL); + } + + // Vectors containing all ones can be matched by pcmpeqd on 128-bit width + // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use + // vpcmpeqd on 256-bit vectors. + if (Subtarget.hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { + if (VT == MVT::v4i32 || VT == MVT::v16i32 || + (VT == MVT::v8i32 && Subtarget.hasInt256())) + return Op; + + return getOnesVector(VT, DAG, DL); + } + + return SDValue(); +} + +// Tries to lower a BUILD_VECTOR composed of extract-extract chains that can be +// reasoned to be a permutation of a vector by indices in a non-constant vector. +// (build_vector (extract_elt V, (extract_elt I, 0)), +// (extract_elt V, (extract_elt I, 1)), +// ... +// -> +// (vpermv I, V) +// +// TODO: Handle undefs +// TODO: Utilize pshufb and zero mask blending to support more efficient +// construction of vectors with constant-0 elements. +// TODO: Use smaller-element vectors of same width, and "interpolate" the indices, +// when no native operation available. +static SDValue +LowerBUILD_VECTORAsVariablePermute(SDValue V, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // Look for VPERMV and PSHUFB opportunities. + MVT VT = V.getSimpleValueType(); + switch (VT.SimpleTy) { + default: + return SDValue(); + case MVT::v16i8: + if (!Subtarget.hasSSE3()) + return SDValue(); + break; + case MVT::v8f32: + case MVT::v8i32: + if (!Subtarget.hasAVX2()) + return SDValue(); + break; + case MVT::v4i64: + case MVT::v4f64: + if (!Subtarget.hasVLX()) + return SDValue(); + break; + case MVT::v16f32: + case MVT::v8f64: + case MVT::v16i32: + case MVT::v8i64: + if (!Subtarget.hasAVX512()) + return SDValue(); + break; + case MVT::v32i16: + if (!Subtarget.hasBWI()) + return SDValue(); + break; + case MVT::v8i16: + case MVT::v16i16: + if (!Subtarget.hasVLX() || !Subtarget.hasBWI()) + return SDValue(); + break; + case MVT::v64i8: + if (!Subtarget.hasVBMI()) + return SDValue(); + break; + case MVT::v32i8: + if (!Subtarget.hasVLX() || !Subtarget.hasVBMI()) + return SDValue(); + break; + } + SDValue SrcVec, IndicesVec; + // Check for a match of the permute source vector and permute index elements. + // This is done by checking that the i-th build_vector operand is of the form: + // (extract_elt SrcVec, (extract_elt IndicesVec, i)). + for (unsigned Idx = 0, E = V.getNumOperands(); Idx != E; ++Idx) { + SDValue Op = V.getOperand(Idx); + if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + // If this is the first extract encountered in V, set the source vector, + // otherwise verify the extract is from the previously defined source + // vector. + if (!SrcVec) + SrcVec = Op.getOperand(0); + else if (SrcVec != Op.getOperand(0)) + return SDValue(); + SDValue ExtractedIndex = Op->getOperand(1); + // Peek through extends. + if (ExtractedIndex.getOpcode() == ISD::ZERO_EXTEND || + ExtractedIndex.getOpcode() == ISD::SIGN_EXTEND) + ExtractedIndex = ExtractedIndex.getOperand(0); + if (ExtractedIndex.getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + // If this is the first extract from the index vector candidate, set the + // indices vector, otherwise verify the extract is from the previously + // defined indices vector. + if (!IndicesVec) + IndicesVec = ExtractedIndex.getOperand(0); + else if (IndicesVec != ExtractedIndex.getOperand(0)) + return SDValue(); + + auto *PermIdx = dyn_cast<ConstantSDNode>(ExtractedIndex.getOperand(1)); + if (!PermIdx || PermIdx->getZExtValue() != Idx) + return SDValue(); + } + MVT IndicesVT = VT; + if (VT.isFloatingPoint()) + IndicesVT = MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits()), + VT.getVectorNumElements()); + IndicesVec = DAG.getZExtOrTrunc(IndicesVec, SDLoc(IndicesVec), IndicesVT); + return DAG.getNode(VT == MVT::v16i8 ? X86ISD::PSHUFB : X86ISD::VPERMV, + SDLoc(V), VT, IndicesVec, SrcVec); +} + +SDValue +X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { + SDLoc dl(Op); + + MVT VT = Op.getSimpleValueType(); + MVT ExtVT = VT.getVectorElementType(); + unsigned NumElems = Op.getNumOperands(); + + // Generate vectors for predicate vectors. + if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512()) + return LowerBUILD_VECTORvXi1(Op, DAG, Subtarget); + + if (SDValue VectorConstant = materializeVectorConstant(Op, DAG, Subtarget)) + return VectorConstant; + + BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode()); + // TODO: Support FMSUBADD here if we ever get tests for the FMADDSUB + // transform here. + if (SDValue AddSub = lowerToAddSubOrFMAddSub(BV, Subtarget, DAG)) + return AddSub; + if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG)) + return HorizontalOp; + if (SDValue Broadcast = lowerBuildVectorAsBroadcast(BV, Subtarget, DAG)) + return Broadcast; + if (SDValue BitOp = lowerBuildVectorToBitOp(BV, DAG)) + return BitOp; + + unsigned EVTBits = ExtVT.getSizeInBits(); + + unsigned NumZero = 0; + unsigned NumNonZero = 0; + uint64_t NonZeros = 0; + bool IsAllConstants = true; + SmallSet<SDValue, 8> Values; + unsigned NumConstants = NumElems; + for (unsigned i = 0; i < NumElems; ++i) { + SDValue Elt = Op.getOperand(i); + if (Elt.isUndef()) + continue; + Values.insert(Elt); + if (!isa<ConstantSDNode>(Elt) && !isa<ConstantFPSDNode>(Elt)) { + IsAllConstants = false; + NumConstants--; + } + if (X86::isZeroNode(Elt)) + NumZero++; + else { + assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range. + NonZeros |= ((uint64_t)1 << i); + NumNonZero++; + } + } + + // All undef vector. Return an UNDEF. All zero vectors were handled above. + if (NumNonZero == 0) + return DAG.getUNDEF(VT); + + // If we are inserting one variable into a vector of non-zero constants, try + // to avoid loading each constant element as a scalar. Load the constants as a + // vector and then insert the variable scalar element. If insertion is not + // supported, we assume that we will fall back to a shuffle to get the scalar + // blended with the constants. Insertion into a zero vector is handled as a + // special-case somewhere below here. + LLVMContext &Context = *DAG.getContext(); + if (NumConstants == NumElems - 1 && NumNonZero != 1 && + (isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT) || + isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))) { + // Create an all-constant vector. The variable element in the old + // build vector is replaced by undef in the constant vector. Save the + // variable scalar element and its index for use in the insertelement. + Type *EltType = Op.getValueType().getScalarType().getTypeForEVT(Context); + SmallVector<Constant *, 16> ConstVecOps(NumElems, UndefValue::get(EltType)); + SDValue VarElt; + SDValue InsIndex; + for (unsigned i = 0; i != NumElems; ++i) { + SDValue Elt = Op.getOperand(i); + if (auto *C = dyn_cast<ConstantSDNode>(Elt)) + ConstVecOps[i] = ConstantInt::get(Context, C->getAPIntValue()); + else if (auto *C = dyn_cast<ConstantFPSDNode>(Elt)) + ConstVecOps[i] = ConstantFP::get(Context, C->getValueAPF()); + else if (!Elt.isUndef()) { + assert(!VarElt.getNode() && !InsIndex.getNode() && + "Expected one variable element in this vector"); + VarElt = Elt; + InsIndex = DAG.getConstant(i, dl, getVectorIdxTy(DAG.getDataLayout())); + } + } + Constant *CV = ConstantVector::get(ConstVecOps); + SDValue DAGConstVec = DAG.getConstantPool(CV, VT); + + // The constants we just created may not be legal (eg, floating point). We + // must lower the vector right here because we can not guarantee that we'll + // legalize it before loading it. This is also why we could not just create + // a new build vector here. If the build vector contains illegal constants, + // it could get split back up into a series of insert elements. + // TODO: Improve this by using shorter loads with broadcast/VZEXT_LOAD. + SDValue LegalDAGConstVec = LowerConstantPool(DAGConstVec, DAG); + MachineFunction &MF = DAG.getMachineFunction(); + MachinePointerInfo MPI = MachinePointerInfo::getConstantPool(MF); + SDValue Ld = DAG.getLoad(VT, dl, DAG.getEntryNode(), LegalDAGConstVec, MPI); + return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ld, VarElt, InsIndex); + } + + // Special case for single non-zero, non-undef, element. + if (NumNonZero == 1) { + unsigned Idx = countTrailingZeros(NonZeros); + SDValue Item = Op.getOperand(Idx); + + // If this is an insertion of an i64 value on x86-32, and if the top bits of + // the value are obviously zero, truncate the value to i32 and do the + // insertion that way. Only do this if the value is non-constant or if the + // value is a constant being inserted into element 0. It is cheaper to do + // a constant pool load than it is to do a movd + shuffle. + if (ExtVT == MVT::i64 && !Subtarget.is64Bit() && + (!IsAllConstants || Idx == 0)) { + if (DAG.MaskedValueIsZero(Item, APInt::getHighBitsSet(64, 32))) { + // Handle SSE only. + assert(VT == MVT::v2i64 && "Expected an SSE value type!"); + MVT VecVT = MVT::v4i32; + + // Truncate the value (which may itself be a constant) to i32, and + // convert it to a vector with movd (S2V+shuffle to zero extend). + Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); + return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef( + Item, Idx * 2, true, Subtarget, DAG)); + } + } + + // If we have a constant or non-constant insertion into the low element of + // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into + // the rest of the elements. This will be matched as movd/movq/movss/movsd + // depending on what the source datatype is. + if (Idx == 0) { + if (NumZero == 0) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + + if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || + (ExtVT == MVT::i64 && Subtarget.is64Bit())) { + assert((VT.is128BitVector() || VT.is256BitVector() || + VT.is512BitVector()) && + "Expected an SSE value type!"); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. + return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); + } + + // We can't directly insert an i8 or i16 into a vector, so zero extend + // it to i32 first. + if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { + Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); + if (VT.getSizeInBits() >= 256) { + MVT ShufVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32); + if (Subtarget.hasAVX()) { + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShufVT, Item); + Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); + } else { + // Without AVX, we need to extend to a 128-bit vector and then + // insert into the 256-bit vector. + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); + SDValue ZeroVec = getZeroVector(ShufVT, Subtarget, DAG, dl); + Item = insert128BitVector(ZeroVec, Item, 0, DAG, dl); + } + } else { + assert(VT.is128BitVector() && "Expected an SSE value type!"); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); + Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); + } + return DAG.getBitcast(VT, Item); + } + } + + // Is it a vector logical left shift? + if (NumElems == 2 && Idx == 1 && + X86::isZeroNode(Op.getOperand(0)) && + !X86::isZeroNode(Op.getOperand(1))) { + unsigned NumBits = VT.getSizeInBits(); + return getVShift(true, VT, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + VT, Op.getOperand(1)), + NumBits/2, DAG, *this, dl); + } + + if (IsAllConstants) // Otherwise, it's better to do a constpool load. + return SDValue(); + + // Otherwise, if this is a vector with i32 or f32 elements, and the element + // is a non-constant being inserted into an element other than the low one, + // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka + // movd/movss) to move this into the low element, then shuffle it into + // place. + if (EVTBits == 32) { + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG); + } + } + + // Splat is obviously ok. Let legalizer expand it to a shuffle. + if (Values.size() == 1) { + if (EVTBits == 32) { + // Instead of a shuffle like this: + // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> + // Check if it's possible to issue this instead. + // shuffle (vload ptr)), undef, <1, 1, 1, 1> + unsigned Idx = countTrailingZeros(NonZeros); + SDValue Item = Op.getOperand(Idx); + if (Op.getNode()->isOnlyUserOf(Item.getNode())) + return LowerAsSplatVectorLoad(Item, VT, dl, DAG); + } + return SDValue(); + } + + // A vector full of immediates; various special cases are already + // handled, so this is best done with a single constant-pool load. + if (IsAllConstants) + return SDValue(); + + if (SDValue V = LowerBUILD_VECTORAsVariablePermute(Op, DAG, Subtarget)) + return V; + + // See if we can use a vector load to get all of the elements. + if (VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) { + SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems); + if (SDValue LD = + EltsFromConsecutiveLoads(VT, Ops, dl, DAG, Subtarget, false)) + return LD; + } + + // For AVX-length vectors, build the individual 128-bit pieces and use + // shuffles to put them in place. + if (VT.is256BitVector() || VT.is512BitVector()) { + EVT HVT = EVT::getVectorVT(Context, ExtVT, NumElems/2); + + // Build both the lower and upper subvector. + SDValue Lower = + DAG.getBuildVector(HVT, dl, Op->ops().slice(0, NumElems / 2)); + SDValue Upper = DAG.getBuildVector( + HVT, dl, Op->ops().slice(NumElems / 2, NumElems /2)); + + // Recreate the wider vector with the lower and upper part. + if (VT.is256BitVector()) + return concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl); + return concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl); + } + + // Let legalizer expand 2-wide build_vectors. + if (EVTBits == 64) { + if (NumNonZero == 1) { + // One half is zero or undef. + unsigned Idx = countTrailingZeros(NonZeros); + SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, + Op.getOperand(Idx)); + return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); + } + return SDValue(); + } + + // If element VT is < 32 bits, convert it to inserts into a zero vector. + if (EVTBits == 8 && NumElems == 16) + if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero, + DAG, Subtarget)) + return V; + + if (EVTBits == 16 && NumElems == 8) + if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero, + DAG, Subtarget)) + return V; + + // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS + if (EVTBits == 32 && NumElems == 4) + if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget)) + return V; + + // If element VT is == 32 bits, turn it into a number of shuffles. + if (NumElems == 4 && NumZero > 0) { + SmallVector<SDValue, 8> Ops(NumElems); + for (unsigned i = 0; i < 4; ++i) { + bool isZero = !(NonZeros & (1ULL << i)); + if (isZero) + Ops[i] = getZeroVector(VT, Subtarget, DAG, dl); + else + Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); + } + + for (unsigned i = 0; i < 2; ++i) { + switch ((NonZeros >> (i*2)) & 0x3) { + default: llvm_unreachable("Unexpected NonZero count"); + case 0: + Ops[i] = Ops[i*2]; // Must be a zero vector. + break; + case 1: + Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2+1], Ops[i*2]); + break; + case 2: + Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2], Ops[i*2+1]); + break; + case 3: + Ops[i] = getUnpackl(DAG, dl, VT, Ops[i*2], Ops[i*2+1]); + break; + } + } + + bool Reverse1 = (NonZeros & 0x3) == 2; + bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; + int MaskVec[] = { + Reverse1 ? 1 : 0, + Reverse1 ? 0 : 1, + static_cast<int>(Reverse2 ? NumElems+1 : NumElems), + static_cast<int>(Reverse2 ? NumElems : NumElems+1) + }; + return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec); + } + + assert(Values.size() > 1 && "Expected non-undef and non-splat vector"); + + // Check for a build vector from mostly shuffle plus few inserting. + if (SDValue Sh = buildFromShuffleMostly(Op, DAG)) + return Sh; + + // For SSE 4.1, use insertps to put the high elements into the low element. + if (Subtarget.hasSSE41()) { + SDValue Result; + if (!Op.getOperand(0).isUndef()) + Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); + else + Result = DAG.getUNDEF(VT); + + for (unsigned i = 1; i < NumElems; ++i) { + if (Op.getOperand(i).isUndef()) continue; + Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, + Op.getOperand(i), DAG.getIntPtrConstant(i, dl)); + } + return Result; + } + + // Otherwise, expand into a number of unpckl*, start by extending each of + // our (non-undef) elements to the full vector width with the element in the + // bottom slot of the vector (which generates no code for SSE). + SmallVector<SDValue, 8> Ops(NumElems); + for (unsigned i = 0; i < NumElems; ++i) { + if (!Op.getOperand(i).isUndef()) + Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); + else + Ops[i] = DAG.getUNDEF(VT); + } + + // Next, we iteratively mix elements, e.g. for v4f32: + // Step 1: unpcklps 0, 1 ==> X: <?, ?, 1, 0> + // : unpcklps 2, 3 ==> Y: <?, ?, 3, 2> + // Step 2: unpcklpd X, Y ==> <3, 2, 1, 0> + for (unsigned Scale = 1; Scale < NumElems; Scale *= 2) { + // Generate scaled UNPCKL shuffle mask. + SmallVector<int, 16> Mask; + for(unsigned i = 0; i != Scale; ++i) + Mask.push_back(i); + for (unsigned i = 0; i != Scale; ++i) + Mask.push_back(NumElems+i); + Mask.append(NumElems - Mask.size(), SM_SentinelUndef); + + for (unsigned i = 0, e = NumElems / (2 * Scale); i != e; ++i) + Ops[i] = DAG.getVectorShuffle(VT, dl, Ops[2*i], Ops[(2*i)+1], Mask); + } + return Ops[0]; +} + +// 256-bit AVX can use the vinsertf128 instruction +// to create 256-bit vectors from two other 128-bit ones. +static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { + SDLoc dl(Op); + MVT ResVT = Op.getSimpleValueType(); + + assert((ResVT.is256BitVector() || + ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide"); + + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + unsigned NumElems = ResVT.getVectorNumElements(); + if (ResVT.is256BitVector()) + return concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl); + + if (Op.getNumOperands() == 4) { + MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(), + ResVT.getVectorNumElements()/2); + SDValue V3 = Op.getOperand(2); + SDValue V4 = Op.getOperand(3); + return concat256BitVectors( + concat128BitVectors(V1, V2, HalfVT, NumElems / 2, DAG, dl), + concat128BitVectors(V3, V4, HalfVT, NumElems / 2, DAG, dl), ResVT, + NumElems, DAG, dl); + } + return concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl); +} + +// Return true if all the operands of the given CONCAT_VECTORS node are zeros +// except for the first one. (CONCAT_VECTORS Op, 0, 0,...,0) +static bool isExpandWithZeros(const SDValue &Op) { + assert(Op.getOpcode() == ISD::CONCAT_VECTORS && + "Expand with zeros only possible in CONCAT_VECTORS nodes!"); + + for (unsigned i = 1; i < Op.getNumOperands(); i++) + if (!ISD::isBuildVectorAllZeros(Op.getOperand(i).getNode())) + return false; + + return true; +} + +// Returns true if the given node is a type promotion (by concatenating i1 +// zeros) of the result of a node that already zeros all upper bits of +// k-register. +static SDValue isTypePromotionOfi1ZeroUpBits(SDValue Op) { + unsigned Opc = Op.getOpcode(); + + assert(Opc == ISD::CONCAT_VECTORS && + Op.getSimpleValueType().getVectorElementType() == MVT::i1 && + "Unexpected node to check for type promotion!"); + + // As long as we are concatenating zeros to the upper part of a previous node + // result, climb up the tree until a node with different opcode is + // encountered + while (Opc == ISD::INSERT_SUBVECTOR || Opc == ISD::CONCAT_VECTORS) { + if (Opc == ISD::INSERT_SUBVECTOR) { + if (ISD::isBuildVectorAllZeros(Op.getOperand(0).getNode()) && + Op.getConstantOperandVal(2) == 0) + Op = Op.getOperand(1); + else + return SDValue(); + } else { // Opc == ISD::CONCAT_VECTORS + if (isExpandWithZeros(Op)) + Op = Op.getOperand(0); + else + return SDValue(); + } + Opc = Op.getOpcode(); + } + + // Check if the first inserted node zeroes the upper bits, or an 'and' result + // of a node that zeros the upper bits (its masked version). + if (isMaskedZeroUpperBitsvXi1(Op.getOpcode()) || + (Op.getOpcode() == ISD::AND && + (isMaskedZeroUpperBitsvXi1(Op.getOperand(0).getOpcode()) || + isMaskedZeroUpperBitsvXi1(Op.getOperand(1).getOpcode())))) { + return Op; + } + + return SDValue(); +} + +static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op, + const X86Subtarget &Subtarget, + SelectionDAG & DAG) { + SDLoc dl(Op); + MVT ResVT = Op.getSimpleValueType(); + unsigned NumOperands = Op.getNumOperands(); + + assert(NumOperands > 1 && isPowerOf2_32(NumOperands) && + "Unexpected number of operands in CONCAT_VECTORS"); + + // If this node promotes - by concatenating zeroes - the type of the result + // of a node with instruction that zeroes all upper (irrelevant) bits of the + // output register, mark it as legal and catch the pattern in instruction + // selection to avoid emitting extra instructions (for zeroing upper bits). + if (SDValue Promoted = isTypePromotionOfi1ZeroUpBits(Op)) { + SDValue ZeroC = DAG.getIntPtrConstant(0, dl); + SDValue AllZeros = getZeroVector(ResVT, Subtarget, DAG, dl); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, AllZeros, Promoted, + ZeroC); + } + + unsigned NumZero = 0; + unsigned NumNonZero = 0; + uint64_t NonZeros = 0; + for (unsigned i = 0; i != NumOperands; ++i) { + SDValue SubVec = Op.getOperand(i); + if (SubVec.isUndef()) + continue; + if (ISD::isBuildVectorAllZeros(SubVec.getNode())) + ++NumZero; + else { + assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range. + NonZeros |= (uint64_t)1 << i; + ++NumNonZero; + } + } + + + // If there are zero or one non-zeros we can handle this very simply. + if (NumNonZero <= 1) { + SDValue Vec = NumZero ? getZeroVector(ResVT, Subtarget, DAG, dl) + : DAG.getUNDEF(ResVT); + if (!NumNonZero) + return Vec; + unsigned Idx = countTrailingZeros(NonZeros); + SDValue SubVec = Op.getOperand(Idx); + unsigned SubVecNumElts = SubVec.getSimpleValueType().getVectorNumElements(); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, SubVec, + DAG.getIntPtrConstant(Idx * SubVecNumElts, dl)); + } + + if (NumOperands > 2) { + MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(), + ResVT.getVectorNumElements()/2); + ArrayRef<SDUse> Ops = Op->ops(); + SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, + Ops.slice(0, NumOperands/2)); + SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, + Ops.slice(NumOperands/2)); + return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi); + } + + assert(NumNonZero == 2 && "Simple cases not handled?"); + + if (ResVT.getVectorNumElements() >= 16) + return Op; // The operation is legal with KUNPCK + + SDValue Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, + DAG.getUNDEF(ResVT), Op.getOperand(0), + DAG.getIntPtrConstant(0, dl)); + unsigned NumElems = ResVT.getVectorNumElements(); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, Op.getOperand(1), + DAG.getIntPtrConstant(NumElems/2, dl)); +} + +static SDValue LowerCONCAT_VECTORS(SDValue Op, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + if (VT.getVectorElementType() == MVT::i1) + return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG); + + assert((VT.is256BitVector() && Op.getNumOperands() == 2) || + (VT.is512BitVector() && (Op.getNumOperands() == 2 || + Op.getNumOperands() == 4))); + + // AVX can use the vinsertf128 instruction to create 256-bit vectors + // from two other 128-bit ones. + + // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors + return LowerAVXCONCAT_VECTORS(Op, DAG); +} + +//===----------------------------------------------------------------------===// +// Vector shuffle lowering +// +// This is an experimental code path for lowering vector shuffles on x86. It is +// designed to handle arbitrary vector shuffles and blends, gracefully +// degrading performance as necessary. It works hard to recognize idiomatic +// shuffles and lower them to optimal instruction patterns without leaving +// a framework that allows reasonably efficient handling of all vector shuffle +// patterns. +//===----------------------------------------------------------------------===// + +/// \brief Tiny helper function to identify a no-op mask. +/// +/// This is a somewhat boring predicate function. It checks whether the mask +/// array input, which is assumed to be a single-input shuffle mask of the kind +/// used by the X86 shuffle instructions (not a fully general +/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an +/// in-place shuffle are 'no-op's. +static bool isNoopShuffleMask(ArrayRef<int> Mask) { + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + assert(Mask[i] >= -1 && "Out of bound mask element!"); + if (Mask[i] >= 0 && Mask[i] != i) + return false; + } + return true; +} + +/// \brief Test whether there are elements crossing 128-bit lanes in this +/// shuffle mask. +/// +/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations +/// and we routinely test for these. +static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) { + int LaneSize = 128 / VT.getScalarSizeInBits(); + int Size = Mask.size(); + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) + return true; + return false; +} + +/// \brief Test whether a shuffle mask is equivalent within each sub-lane. +/// +/// This checks a shuffle mask to see if it is performing the same +/// lane-relative shuffle in each sub-lane. This trivially implies +/// that it is also not lane-crossing. It may however involve a blend from the +/// same lane of a second vector. +/// +/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is +/// non-trivial to compute in the face of undef lanes. The representation is +/// suitable for use with existing 128-bit shuffles as entries from the second +/// vector have been remapped to [LaneSize, 2*LaneSize). +static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT, + ArrayRef<int> Mask, + SmallVectorImpl<int> &RepeatedMask) { + auto LaneSize = LaneSizeInBits / VT.getScalarSizeInBits(); + RepeatedMask.assign(LaneSize, -1); + int Size = Mask.size(); + for (int i = 0; i < Size; ++i) { + assert(Mask[i] == SM_SentinelUndef || Mask[i] >= 0); + if (Mask[i] < 0) + continue; + if ((Mask[i] % Size) / LaneSize != i / LaneSize) + // This entry crosses lanes, so there is no way to model this shuffle. + return false; + + // Ok, handle the in-lane shuffles by detecting if and when they repeat. + // Adjust second vector indices to start at LaneSize instead of Size. + int LocalM = Mask[i] < Size ? Mask[i] % LaneSize + : Mask[i] % LaneSize + LaneSize; + if (RepeatedMask[i % LaneSize] < 0) + // This is the first non-undef entry in this slot of a 128-bit lane. + RepeatedMask[i % LaneSize] = LocalM; + else if (RepeatedMask[i % LaneSize] != LocalM) + // Found a mismatch with the repeated mask. + return false; + } + return true; +} + +/// Test whether a shuffle mask is equivalent within each 128-bit lane. +static bool +is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask, + SmallVectorImpl<int> &RepeatedMask) { + return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask); +} + +/// Test whether a shuffle mask is equivalent within each 256-bit lane. +static bool +is256BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask, + SmallVectorImpl<int> &RepeatedMask) { + return isRepeatedShuffleMask(256, VT, Mask, RepeatedMask); +} + +/// Test whether a target shuffle mask is equivalent within each sub-lane. +/// Unlike isRepeatedShuffleMask we must respect SM_SentinelZero. +static bool isRepeatedTargetShuffleMask(unsigned LaneSizeInBits, MVT VT, + ArrayRef<int> Mask, + SmallVectorImpl<int> &RepeatedMask) { + int LaneSize = LaneSizeInBits / VT.getScalarSizeInBits(); + RepeatedMask.assign(LaneSize, SM_SentinelUndef); + int Size = Mask.size(); + for (int i = 0; i < Size; ++i) { + assert(isUndefOrZero(Mask[i]) || (Mask[i] >= 0)); + if (Mask[i] == SM_SentinelUndef) + continue; + if (Mask[i] == SM_SentinelZero) { + if (!isUndefOrZero(RepeatedMask[i % LaneSize])) + return false; + RepeatedMask[i % LaneSize] = SM_SentinelZero; + continue; + } + if ((Mask[i] % Size) / LaneSize != i / LaneSize) + // This entry crosses lanes, so there is no way to model this shuffle. + return false; + + // Ok, handle the in-lane shuffles by detecting if and when they repeat. + // Adjust second vector indices to start at LaneSize instead of Size. + int LocalM = + Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize; + if (RepeatedMask[i % LaneSize] == SM_SentinelUndef) + // This is the first non-undef entry in this slot of a 128-bit lane. + RepeatedMask[i % LaneSize] = LocalM; + else if (RepeatedMask[i % LaneSize] != LocalM) + // Found a mismatch with the repeated mask. + return false; + } + return true; +} + +/// \brief Checks whether a shuffle mask is equivalent to an explicit list of +/// arguments. +/// +/// This is a fast way to test a shuffle mask against a fixed pattern: +/// +/// if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... } +/// +/// It returns true if the mask is exactly as wide as the argument list, and +/// each element of the mask is either -1 (signifying undef) or the value given +/// in the argument. +static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask, + ArrayRef<int> ExpectedMask) { + if (Mask.size() != ExpectedMask.size()) + return false; + + int Size = Mask.size(); + + // If the values are build vectors, we can look through them to find + // equivalent inputs that make the shuffles equivalent. + auto *BV1 = dyn_cast<BuildVectorSDNode>(V1); + auto *BV2 = dyn_cast<BuildVectorSDNode>(V2); + + for (int i = 0; i < Size; ++i) { + assert(Mask[i] >= -1 && "Out of bound mask element!"); + if (Mask[i] >= 0 && Mask[i] != ExpectedMask[i]) { + auto *MaskBV = Mask[i] < Size ? BV1 : BV2; + auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2; + if (!MaskBV || !ExpectedBV || + MaskBV->getOperand(Mask[i] % Size) != + ExpectedBV->getOperand(ExpectedMask[i] % Size)) + return false; + } + } + + return true; +} + +/// Checks whether a target shuffle mask is equivalent to an explicit pattern. +/// +/// The masks must be exactly the same width. +/// +/// If an element in Mask matches SM_SentinelUndef (-1) then the corresponding +/// value in ExpectedMask is always accepted. Otherwise the indices must match. +/// +/// SM_SentinelZero is accepted as a valid negative index but must match in both. +static bool isTargetShuffleEquivalent(ArrayRef<int> Mask, + ArrayRef<int> ExpectedMask) { + int Size = Mask.size(); + if (Size != (int)ExpectedMask.size()) + return false; + + for (int i = 0; i < Size; ++i) + if (Mask[i] == SM_SentinelUndef) + continue; + else if (Mask[i] < 0 && Mask[i] != SM_SentinelZero) + return false; + else if (Mask[i] != ExpectedMask[i]) + return false; + + return true; +} + +// Merges a general DAG shuffle mask and zeroable bit mask into a target shuffle +// mask. +static SmallVector<int, 64> createTargetShuffleMask(ArrayRef<int> Mask, + const APInt &Zeroable) { + int NumElts = Mask.size(); + assert(NumElts == (int)Zeroable.getBitWidth() && "Mismatch mask sizes"); + + SmallVector<int, 64> TargetMask(NumElts, SM_SentinelUndef); + for (int i = 0; i != NumElts; ++i) { + int M = Mask[i]; + if (M == SM_SentinelUndef) + continue; + assert(0 <= M && M < (2 * NumElts) && "Out of range shuffle index"); + TargetMask[i] = (Zeroable[i] ? SM_SentinelZero : M); + } + return TargetMask; +} + +// Check if the shuffle mask is suitable for the AVX vpunpcklwd or vpunpckhwd +// instructions. +static bool isUnpackWdShuffleMask(ArrayRef<int> Mask, MVT VT) { + if (VT != MVT::v8i32 && VT != MVT::v8f32) + return false; + + SmallVector<int, 8> Unpcklwd; + createUnpackShuffleMask(MVT::v8i16, Unpcklwd, /* Lo = */ true, + /* Unary = */ false); + SmallVector<int, 8> Unpckhwd; + createUnpackShuffleMask(MVT::v8i16, Unpckhwd, /* Lo = */ false, + /* Unary = */ false); + bool IsUnpackwdMask = (isTargetShuffleEquivalent(Mask, Unpcklwd) || + isTargetShuffleEquivalent(Mask, Unpckhwd)); + return IsUnpackwdMask; +} + +/// \brief Get a 4-lane 8-bit shuffle immediate for a mask. +/// +/// This helper function produces an 8-bit shuffle immediate corresponding to +/// the ubiquitous shuffle encoding scheme used in x86 instructions for +/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for +/// example. +/// +/// NB: We rely heavily on "undef" masks preserving the input lane. +static unsigned getV4X86ShuffleImm(ArrayRef<int> Mask) { + assert(Mask.size() == 4 && "Only 4-lane shuffle masks"); + assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!"); + assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!"); + assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!"); + assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!"); + + unsigned Imm = 0; + Imm |= (Mask[0] < 0 ? 0 : Mask[0]) << 0; + Imm |= (Mask[1] < 0 ? 1 : Mask[1]) << 2; + Imm |= (Mask[2] < 0 ? 2 : Mask[2]) << 4; + Imm |= (Mask[3] < 0 ? 3 : Mask[3]) << 6; + return Imm; +} + +static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, const SDLoc &DL, + SelectionDAG &DAG) { + return DAG.getConstant(getV4X86ShuffleImm(Mask), DL, MVT::i8); +} + +/// \brief Compute whether each element of a shuffle is zeroable. +/// +/// A "zeroable" vector shuffle element is one which can be lowered to zero. +/// Either it is an undef element in the shuffle mask, the element of the input +/// referenced is undef, or the element of the input referenced is known to be +/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle +/// as many lanes with this technique as possible to simplify the remaining +/// shuffle. +static APInt computeZeroableShuffleElements(ArrayRef<int> Mask, + SDValue V1, SDValue V2) { + APInt Zeroable(Mask.size(), 0); + V1 = peekThroughBitcasts(V1); + V2 = peekThroughBitcasts(V2); + + bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode()); + bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode()); + + int VectorSizeInBits = V1.getValueSizeInBits(); + int ScalarSizeInBits = VectorSizeInBits / Mask.size(); + assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size"); + + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + int M = Mask[i]; + // Handle the easy cases. + if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) { + Zeroable.setBit(i); + continue; + } + + // Determine shuffle input and normalize the mask. + SDValue V = M < Size ? V1 : V2; + M %= Size; + + // Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements. + if (V.getOpcode() != ISD::BUILD_VECTOR) + continue; + + // If the BUILD_VECTOR has fewer elements then the bitcasted portion of + // the (larger) source element must be UNDEF/ZERO. + if ((Size % V.getNumOperands()) == 0) { + int Scale = Size / V->getNumOperands(); + SDValue Op = V.getOperand(M / Scale); + if (Op.isUndef() || X86::isZeroNode(Op)) + Zeroable.setBit(i); + else if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) { + APInt Val = Cst->getAPIntValue(); + Val.lshrInPlace((M % Scale) * ScalarSizeInBits); + Val = Val.getLoBits(ScalarSizeInBits); + if (Val == 0) + Zeroable.setBit(i); + } else if (ConstantFPSDNode *Cst = dyn_cast<ConstantFPSDNode>(Op)) { + APInt Val = Cst->getValueAPF().bitcastToAPInt(); + Val.lshrInPlace((M % Scale) * ScalarSizeInBits); + Val = Val.getLoBits(ScalarSizeInBits); + if (Val == 0) + Zeroable.setBit(i); + } + continue; + } + + // If the BUILD_VECTOR has more elements then all the (smaller) source + // elements must be UNDEF or ZERO. + if ((V.getNumOperands() % Size) == 0) { + int Scale = V->getNumOperands() / Size; + bool AllZeroable = true; + for (int j = 0; j < Scale; ++j) { + SDValue Op = V.getOperand((M * Scale) + j); + AllZeroable &= (Op.isUndef() || X86::isZeroNode(Op)); + } + if (AllZeroable) + Zeroable.setBit(i); + continue; + } + } + + return Zeroable; +} + +// The Shuffle result is as follow: +// 0*a[0]0*a[1]...0*a[n] , n >=0 where a[] elements in a ascending order. +// Each Zeroable's element correspond to a particular Mask's element. +// As described in computeZeroableShuffleElements function. +// +// The function looks for a sub-mask that the nonzero elements are in +// increasing order. If such sub-mask exist. The function returns true. +static bool isNonZeroElementsInOrder(const APInt &Zeroable, + ArrayRef<int> Mask, const EVT &VectorType, + bool &IsZeroSideLeft) { + int NextElement = -1; + // Check if the Mask's nonzero elements are in increasing order. + for (int i = 0, e = Mask.size(); i < e; i++) { + // Checks if the mask's zeros elements are built from only zeros. + assert(Mask[i] >= -1 && "Out of bound mask element!"); + if (Mask[i] < 0) + return false; + if (Zeroable[i]) + continue; + // Find the lowest non zero element + if (NextElement < 0) { + NextElement = Mask[i] != 0 ? VectorType.getVectorNumElements() : 0; + IsZeroSideLeft = NextElement != 0; + } + // Exit if the mask's non zero elements are not in increasing order. + if (NextElement != Mask[i]) + return false; + NextElement++; + } + return true; +} + +/// Try to lower a shuffle with a single PSHUFB of V1 or V2. +static SDValue lowerVectorShuffleWithPSHUFB(const SDLoc &DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, + const APInt &Zeroable, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + int Size = Mask.size(); + int LaneSize = 128 / VT.getScalarSizeInBits(); + const int NumBytes = VT.getSizeInBits() / 8; + const int NumEltBytes = VT.getScalarSizeInBits() / 8; + + assert((Subtarget.hasSSSE3() && VT.is128BitVector()) || + (Subtarget.hasAVX2() && VT.is256BitVector()) || + (Subtarget.hasBWI() && VT.is512BitVector())); + + SmallVector<SDValue, 64> PSHUFBMask(NumBytes); + // Sign bit set in i8 mask means zero element. + SDValue ZeroMask = DAG.getConstant(0x80, DL, MVT::i8); + + SDValue V; + for (int i = 0; i < NumBytes; ++i) { + int M = Mask[i / NumEltBytes]; + if (M < 0) { + PSHUFBMask[i] = DAG.getUNDEF(MVT::i8); + continue; + } + if (Zeroable[i / NumEltBytes]) { + PSHUFBMask[i] = ZeroMask; + continue; + } + + // We can only use a single input of V1 or V2. + SDValue SrcV = (M >= Size ? V2 : V1); + if (V && V != SrcV) + return SDValue(); + V = SrcV; + M %= Size; + + // PSHUFB can't cross lanes, ensure this doesn't happen. + if ((M / LaneSize) != ((i / NumEltBytes) / LaneSize)) + return SDValue(); + + M = M % LaneSize; + M = M * NumEltBytes + (i % NumEltBytes); + PSHUFBMask[i] = DAG.getConstant(M, DL, MVT::i8); + } + assert(V && "Failed to find a source input"); + + MVT I8VT = MVT::getVectorVT(MVT::i8, NumBytes); + return DAG.getBitcast( + VT, DAG.getNode(X86ISD::PSHUFB, DL, I8VT, DAG.getBitcast(I8VT, V), + DAG.getBuildVector(I8VT, DL, PSHUFBMask))); +} + +static SDValue getMaskNode(SDValue Mask, MVT MaskVT, + const X86Subtarget &Subtarget, SelectionDAG &DAG, + const SDLoc &dl); + +// X86 has dedicated shuffle that can be lowered to VEXPAND +static SDValue lowerVectorShuffleToEXPAND(const SDLoc &DL, MVT VT, + const APInt &Zeroable, + ArrayRef<int> Mask, SDValue &V1, + SDValue &V2, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + bool IsLeftZeroSide = true; + if (!isNonZeroElementsInOrder(Zeroable, Mask, V1.getValueType(), + IsLeftZeroSide)) + return SDValue(); + unsigned VEXPANDMask = (~Zeroable).getZExtValue(); + MVT IntegerType = + MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8)); + SDValue MaskNode = DAG.getConstant(VEXPANDMask, DL, IntegerType); + unsigned NumElts = VT.getVectorNumElements(); + assert((NumElts == 4 || NumElts == 8 || NumElts == 16) && + "Unexpected number of vector elements"); + SDValue VMask = getMaskNode(MaskNode, MVT::getVectorVT(MVT::i1, NumElts), + Subtarget, DAG, DL); + SDValue ZeroVector = getZeroVector(VT, Subtarget, DAG, DL); + SDValue ExpandedVector = IsLeftZeroSide ? V2 : V1; + return DAG.getSelect(DL, VT, VMask, + DAG.getNode(X86ISD::EXPAND, DL, VT, ExpandedVector), + ZeroVector); +} + +static bool matchVectorShuffleWithUNPCK(MVT VT, SDValue &V1, SDValue &V2, + unsigned &UnpackOpcode, bool IsUnary, + ArrayRef<int> TargetMask, SDLoc &DL, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + int NumElts = VT.getVectorNumElements(); + + bool Undef1 = true, Undef2 = true, Zero1 = true, Zero2 = true; + for (int i = 0; i != NumElts; i += 2) { + int M1 = TargetMask[i + 0]; + int M2 = TargetMask[i + 1]; + Undef1 &= (SM_SentinelUndef == M1); + Undef2 &= (SM_SentinelUndef == M2); + Zero1 &= isUndefOrZero(M1); + Zero2 &= isUndefOrZero(M2); + } + assert(!((Undef1 || Zero1) && (Undef2 || Zero2)) && + "Zeroable shuffle detected"); + + // Attempt to match the target mask against the unpack lo/hi mask patterns. + SmallVector<int, 64> Unpckl, Unpckh; + createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, IsUnary); + if (isTargetShuffleEquivalent(TargetMask, Unpckl)) { + UnpackOpcode = X86ISD::UNPCKL; + V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2)); + V1 = (Undef1 ? DAG.getUNDEF(VT) : V1); + return true; + } + + createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, IsUnary); + if (isTargetShuffleEquivalent(TargetMask, Unpckh)) { + UnpackOpcode = X86ISD::UNPCKH; + V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2)); + V1 = (Undef1 ? DAG.getUNDEF(VT) : V1); + return true; + } + + // If an unary shuffle, attempt to match as an unpack lo/hi with zero. + if (IsUnary && (Zero1 || Zero2)) { + // Don't bother if we can blend instead. + if ((Subtarget.hasSSE41() || VT == MVT::v2i64 || VT == MVT::v2f64) && + isSequentialOrUndefOrZeroInRange(TargetMask, 0, NumElts, 0)) + return false; + + bool MatchLo = true, MatchHi = true; + for (int i = 0; (i != NumElts) && (MatchLo || MatchHi); ++i) { + int M = TargetMask[i]; + + // Ignore if the input is known to be zero or the index is undef. + if ((((i & 1) == 0) && Zero1) || (((i & 1) == 1) && Zero2) || + (M == SM_SentinelUndef)) + continue; + + MatchLo &= (M == Unpckl[i]); + MatchHi &= (M == Unpckh[i]); + } + + if (MatchLo || MatchHi) { + UnpackOpcode = MatchLo ? X86ISD::UNPCKL : X86ISD::UNPCKH; + V2 = Zero2 ? getZeroVector(VT, Subtarget, DAG, DL) : V1; + V1 = Zero1 ? getZeroVector(VT, Subtarget, DAG, DL) : V1; + return true; + } + } + + // If a binary shuffle, commute and try again. + if (!IsUnary) { + ShuffleVectorSDNode::commuteMask(Unpckl); + if (isTargetShuffleEquivalent(TargetMask, Unpckl)) { + UnpackOpcode = X86ISD::UNPCKL; + std::swap(V1, V2); + return true; + } + + ShuffleVectorSDNode::commuteMask(Unpckh); + if (isTargetShuffleEquivalent(TargetMask, Unpckh)) { + UnpackOpcode = X86ISD::UNPCKH; + std::swap(V1, V2); + return true; + } + } + + return false; +} + +// X86 has dedicated unpack instructions that can handle specific blend +// operations: UNPCKH and UNPCKL. +static SDValue lowerVectorShuffleWithUNPCK(const SDLoc &DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, SelectionDAG &DAG) { + SmallVector<int, 8> Unpckl; + createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, /* Unary = */ false); + if (isShuffleEquivalent(V1, V2, Mask, Unpckl)) + return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2); + + SmallVector<int, 8> Unpckh; + createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, /* Unary = */ false); + if (isShuffleEquivalent(V1, V2, Mask, Unpckh)) + return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2); + + // Commute and try again. + ShuffleVectorSDNode::commuteMask(Unpckl); + if (isShuffleEquivalent(V1, V2, Mask, Unpckl)) + return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1); + + ShuffleVectorSDNode::commuteMask(Unpckh); + if (isShuffleEquivalent(V1, V2, Mask, Unpckh)) + return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1); + + return SDValue(); +} + +// X86 has dedicated pack instructions that can handle specific truncation +// operations: PACKSS and PACKUS. +static bool matchVectorShuffleWithPACK(MVT VT, MVT &SrcVT, SDValue &V1, + SDValue &V2, unsigned &PackOpcode, + ArrayRef<int> TargetMask, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + unsigned NumElts = VT.getVectorNumElements(); + unsigned BitSize = VT.getScalarSizeInBits(); + MVT PackSVT = MVT::getIntegerVT(BitSize * 2); + MVT PackVT = MVT::getVectorVT(PackSVT, NumElts / 2); + + auto MatchPACK = [&](SDValue N1, SDValue N2) { + SDValue VV1 = DAG.getBitcast(PackVT, N1); + SDValue VV2 = DAG.getBitcast(PackVT, N2); + if ((N1.isUndef() || DAG.ComputeNumSignBits(VV1) > BitSize) && + (N2.isUndef() || DAG.ComputeNumSignBits(VV2) > BitSize)) { + V1 = VV1; + V2 = VV2; + SrcVT = PackVT; + PackOpcode = X86ISD::PACKSS; + return true; + } + + if (Subtarget.hasSSE41() || PackSVT == MVT::i16) { + APInt ZeroMask = APInt::getHighBitsSet(BitSize * 2, BitSize); + if ((N1.isUndef() || DAG.MaskedValueIsZero(VV1, ZeroMask)) && + (N2.isUndef() || DAG.MaskedValueIsZero(VV2, ZeroMask))) { + V1 = VV1; + V2 = VV2; + SrcVT = PackVT; + PackOpcode = X86ISD::PACKUS; + return true; + } + } + + return false; + }; + + // Try binary shuffle. + SmallVector<int, 32> BinaryMask; + createPackShuffleMask(VT, BinaryMask, false); + if (isTargetShuffleEquivalent(TargetMask, BinaryMask)) + if (MatchPACK(V1, V2)) + return true; + + // Try unary shuffle. + SmallVector<int, 32> UnaryMask; + createPackShuffleMask(VT, UnaryMask, true); + if (isTargetShuffleEquivalent(TargetMask, UnaryMask)) + if (MatchPACK(V1, V1)) + return true; + + return false; +} + +static SDValue lowerVectorShuffleWithPACK(const SDLoc &DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + MVT PackVT; + unsigned PackOpcode; + if (matchVectorShuffleWithPACK(VT, PackVT, V1, V2, PackOpcode, Mask, DAG, + Subtarget)) + return DAG.getNode(PackOpcode, DL, VT, DAG.getBitcast(PackVT, V1), + DAG.getBitcast(PackVT, V2)); + + return SDValue(); +} + +/// \brief Try to emit a bitmask instruction for a shuffle. +/// +/// This handles cases where we can model a blend exactly as a bitmask due to +/// one of the inputs being zeroable. +static SDValue lowerVectorShuffleAsBitMask(const SDLoc &DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + const APInt &Zeroable, + SelectionDAG &DAG) { + assert(!VT.isFloatingPoint() && "Floating point types are not supported"); + MVT EltVT = VT.getVectorElementType(); + SDValue Zero = DAG.getConstant(0, DL, EltVT); + SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT); + SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero); + SDValue V; + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + if (Zeroable[i]) + continue; + if (Mask[i] % Size != i) + return SDValue(); // Not a blend. + if (!V) + V = Mask[i] < Size ? V1 : V2; + else if (V != (Mask[i] < Size ? V1 : V2)) + return SDValue(); // Can only let one input through the mask. + + VMaskOps[i] = AllOnes; + } + if (!V) + return SDValue(); // No non-zeroable elements! + + SDValue VMask = DAG.getBuildVector(VT, DL, VMaskOps); + return DAG.getNode(ISD::AND, DL, VT, V, VMask); +} + +/// \brief Try to emit a blend instruction for a shuffle using bit math. +/// +/// This is used as a fallback approach when first class blend instructions are +/// unavailable. Currently it is only suitable for integer vectors, but could +/// be generalized for floating point vectors if desirable. +static SDValue lowerVectorShuffleAsBitBlend(const SDLoc &DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(VT.isInteger() && "Only supports integer vector types!"); + MVT EltVT = VT.getVectorElementType(); + SDValue Zero = DAG.getConstant(0, DL, EltVT); + SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT); + SmallVector<SDValue, 16> MaskOps; + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + if (Mask[i] >= 0 && Mask[i] != i && Mask[i] != i + Size) + return SDValue(); // Shuffled input! + MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero); + } + + SDValue V1Mask = DAG.getBuildVector(VT, DL, MaskOps); + V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask); + // We have to cast V2 around. + MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64); + V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT, + DAG.getBitcast(MaskVT, V1Mask), + DAG.getBitcast(MaskVT, V2))); + return DAG.getNode(ISD::OR, DL, VT, V1, V2); +} + +static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask, + SDValue PreservedSrc, + const X86Subtarget &Subtarget, + SelectionDAG &DAG); + +static bool matchVectorShuffleAsBlend(SDValue V1, SDValue V2, + MutableArrayRef<int> TargetMask, + bool &ForceV1Zero, bool &ForceV2Zero, + uint64_t &BlendMask) { + bool V1IsZeroOrUndef = + V1.isUndef() || ISD::isBuildVectorAllZeros(V1.getNode()); + bool V2IsZeroOrUndef = + V2.isUndef() || ISD::isBuildVectorAllZeros(V2.getNode()); + + BlendMask = 0; + ForceV1Zero = false, ForceV2Zero = false; + assert(TargetMask.size() <= 64 && "Shuffle mask too big for blend mask"); + + // Attempt to generate the binary blend mask. If an input is zero then + // we can use any lane. + // TODO: generalize the zero matching to any scalar like isShuffleEquivalent. + for (int i = 0, Size = TargetMask.size(); i < Size; ++i) { + int M = TargetMask[i]; + if (M == SM_SentinelUndef) + continue; + if (M == i) + continue; + if (M == i + Size) { + BlendMask |= 1ull << i; + continue; + } + if (M == SM_SentinelZero) { + if (V1IsZeroOrUndef) { + ForceV1Zero = true; + TargetMask[i] = i; + continue; + } + if (V2IsZeroOrUndef) { + ForceV2Zero = true; + BlendMask |= 1ull << i; + TargetMask[i] = i + Size; + continue; + } + } + return false; + } + return true; +} + +static uint64_t scaleVectorShuffleBlendMask(uint64_t BlendMask, int Size, + int Scale) { + uint64_t ScaledMask = 0; + for (int i = 0; i != Size; ++i) + if (BlendMask & (1ull << i)) + ScaledMask |= ((1ull << Scale) - 1) << (i * Scale); + return ScaledMask; +} + +/// \brief Try to emit a blend instruction for a shuffle. +/// +/// This doesn't do any checks for the availability of instructions for blending +/// these values. It relies on the availability of the X86ISD::BLENDI pattern to +/// be matched in the backend with the type given. What it does check for is +/// that the shuffle mask is a blend, or convertible into a blend with zero. +static SDValue lowerVectorShuffleAsBlend(const SDLoc &DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Original, + const APInt &Zeroable, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SmallVector<int, 64> Mask = createTargetShuffleMask(Original, Zeroable); + + uint64_t BlendMask = 0; + bool ForceV1Zero = false, ForceV2Zero = false; + if (!matchVectorShuffleAsBlend(V1, V2, Mask, ForceV1Zero, ForceV2Zero, + BlendMask)) + return SDValue(); + + // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs. + if (ForceV1Zero) + V1 = getZeroVector(VT, Subtarget, DAG, DL); + if (ForceV2Zero) + V2 = getZeroVector(VT, Subtarget, DAG, DL); + + switch (VT.SimpleTy) { + case MVT::v2f64: + case MVT::v4f32: + case MVT::v4f64: + case MVT::v8f32: + return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2, + DAG.getConstant(BlendMask, DL, MVT::i8)); + + case MVT::v4i64: + case MVT::v8i32: + assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!"); + LLVM_FALLTHROUGH; + case MVT::v2i64: + case MVT::v4i32: + // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into + // that instruction. + if (Subtarget.hasAVX2()) { + // Scale the blend by the number of 32-bit dwords per element. + int Scale = VT.getScalarSizeInBits() / 32; + BlendMask = scaleVectorShuffleBlendMask(BlendMask, Mask.size(), Scale); + MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32; + V1 = DAG.getBitcast(BlendVT, V1); + V2 = DAG.getBitcast(BlendVT, V2); + return DAG.getBitcast( + VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2, + DAG.getConstant(BlendMask, DL, MVT::i8))); + } + LLVM_FALLTHROUGH; + case MVT::v8i16: { + // For integer shuffles we need to expand the mask and cast the inputs to + // v8i16s prior to blending. + int Scale = 8 / VT.getVectorNumElements(); + BlendMask = scaleVectorShuffleBlendMask(BlendMask, Mask.size(), Scale); + V1 = DAG.getBitcast(MVT::v8i16, V1); + V2 = DAG.getBitcast(MVT::v8i16, V2); + return DAG.getBitcast(VT, + DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2, + DAG.getConstant(BlendMask, DL, MVT::i8))); + } + + case MVT::v16i16: { + assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!"); + SmallVector<int, 8> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { + // We can lower these with PBLENDW which is mirrored across 128-bit lanes. + assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!"); + BlendMask = 0; + for (int i = 0; i < 8; ++i) + if (RepeatedMask[i] >= 8) + BlendMask |= 1ull << i; + return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2, + DAG.getConstant(BlendMask, DL, MVT::i8)); + } + LLVM_FALLTHROUGH; + } + case MVT::v16i8: + case MVT::v32i8: { + assert((VT.is128BitVector() || Subtarget.hasAVX2()) && + "256-bit byte-blends require AVX2 support!"); + + if (Subtarget.hasBWI() && Subtarget.hasVLX()) { + MVT IntegerType = + MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8)); + SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType); + return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG); + } + + // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB. + if (SDValue Masked = + lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG)) + return Masked; + + // Scale the blend by the number of bytes per element. + int Scale = VT.getScalarSizeInBits() / 8; + + // This form of blend is always done on bytes. Compute the byte vector + // type. + MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8); + + // Compute the VSELECT mask. Note that VSELECT is really confusing in the + // mix of LLVM's code generator and the x86 backend. We tell the code + // generator that boolean values in the elements of an x86 vector register + // are -1 for true and 0 for false. We then use the LLVM semantics of 'true' + // mapping a select to operand #1, and 'false' mapping to operand #2. The + // reality in x86 is that vector masks (pre-AVX-512) use only the high bit + // of the element (the remaining are ignored) and 0 in that high bit would + // mean operand #1 while 1 in the high bit would mean operand #2. So while + // the LLVM model for boolean values in vector elements gets the relevant + // bit set, it is set backwards and over constrained relative to x86's + // actual model. + SmallVector<SDValue, 32> VSELECTMask; + for (int i = 0, Size = Mask.size(); i < Size; ++i) + for (int j = 0; j < Scale; ++j) + VSELECTMask.push_back( + Mask[i] < 0 ? DAG.getUNDEF(MVT::i8) + : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL, + MVT::i8)); + + V1 = DAG.getBitcast(BlendVT, V1); + V2 = DAG.getBitcast(BlendVT, V2); + return DAG.getBitcast( + VT, + DAG.getSelect(DL, BlendVT, DAG.getBuildVector(BlendVT, DL, VSELECTMask), + V1, V2)); + } + case MVT::v16f32: + case MVT::v8f64: + case MVT::v8i64: + case MVT::v16i32: + case MVT::v32i16: + case MVT::v64i8: { + MVT IntegerType = + MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8)); + SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType); + return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG); + } + default: + llvm_unreachable("Not a supported integer vector type!"); + } +} + +/// \brief Try to lower as a blend of elements from two inputs followed by +/// a single-input permutation. +/// +/// This matches the pattern where we can blend elements from two inputs and +/// then reduce the shuffle to a single-input permutation. +static SDValue lowerVectorShuffleAsBlendAndPermute(const SDLoc &DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + // We build up the blend mask while checking whether a blend is a viable way + // to reduce the shuffle. + SmallVector<int, 32> BlendMask(Mask.size(), -1); + SmallVector<int, 32> PermuteMask(Mask.size(), -1); + + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + if (Mask[i] < 0) + continue; + + assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds."); + + if (BlendMask[Mask[i] % Size] < 0) + BlendMask[Mask[i] % Size] = Mask[i]; + else if (BlendMask[Mask[i] % Size] != Mask[i]) + return SDValue(); // Can't blend in the needed input! + + PermuteMask[i] = Mask[i] % Size; + } + + SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); + return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask); +} + +/// \brief Generic routine to decompose a shuffle and blend into independent +/// blends and permutes. +/// +/// This matches the extremely common pattern for handling combined +/// shuffle+blend operations on newer X86 ISAs where we have very fast blend +/// operations. It will try to pick the best arrangement of shuffles and +/// blends. +static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(const SDLoc &DL, + MVT VT, SDValue V1, + SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + // Shuffle the input elements into the desired positions in V1 and V2 and + // blend them together. + SmallVector<int, 32> V1Mask(Mask.size(), -1); + SmallVector<int, 32> V2Mask(Mask.size(), -1); + SmallVector<int, 32> BlendMask(Mask.size(), -1); + for (int i = 0, Size = Mask.size(); i < Size; ++i) + if (Mask[i] >= 0 && Mask[i] < Size) { + V1Mask[i] = Mask[i]; + BlendMask[i] = i; + } else if (Mask[i] >= Size) { + V2Mask[i] = Mask[i] - Size; + BlendMask[i] = i + Size; + } + + // Try to lower with the simpler initial blend strategy unless one of the + // input shuffles would be a no-op. We prefer to shuffle inputs as the + // shuffle may be able to fold with a load or other benefit. However, when + // we'll have to do 2x as many shuffles in order to achieve this, blending + // first is a better strategy. + if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask)) + if (SDValue BlendPerm = + lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG)) + return BlendPerm; + + V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); + V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); + return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); +} + +/// \brief Try to lower a vector shuffle as a rotation. +/// +/// This is used for support PALIGNR for SSSE3 or VALIGND/Q for AVX512. +static int matchVectorShuffleAsRotate(SDValue &V1, SDValue &V2, + ArrayRef<int> Mask) { + int NumElts = Mask.size(); + + // We need to detect various ways of spelling a rotation: + // [11, 12, 13, 14, 15, 0, 1, 2] + // [-1, 12, 13, 14, -1, -1, 1, -1] + // [-1, -1, -1, -1, -1, -1, 1, 2] + // [ 3, 4, 5, 6, 7, 8, 9, 10] + // [-1, 4, 5, 6, -1, -1, 9, -1] + // [-1, 4, 5, 6, -1, -1, -1, -1] + int Rotation = 0; + SDValue Lo, Hi; + for (int i = 0; i < NumElts; ++i) { + int M = Mask[i]; + assert((M == SM_SentinelUndef || (0 <= M && M < (2*NumElts))) && + "Unexpected mask index."); + if (M < 0) + continue; + + // Determine where a rotated vector would have started. + int StartIdx = i - (M % NumElts); + if (StartIdx == 0) + // The identity rotation isn't interesting, stop. + return -1; + + // If we found the tail of a vector the rotation must be the missing + // front. If we found the head of a vector, it must be how much of the + // head. + int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx; + + if (Rotation == 0) + Rotation = CandidateRotation; + else if (Rotation != CandidateRotation) + // The rotations don't match, so we can't match this mask. + return -1; + + // Compute which value this mask is pointing at. + SDValue MaskV = M < NumElts ? V1 : V2; + + // Compute which of the two target values this index should be assigned + // to. This reflects whether the high elements are remaining or the low + // elements are remaining. + SDValue &TargetV = StartIdx < 0 ? Hi : Lo; + + // Either set up this value if we've not encountered it before, or check + // that it remains consistent. + if (!TargetV) + TargetV = MaskV; + else if (TargetV != MaskV) + // This may be a rotation, but it pulls from the inputs in some + // unsupported interleaving. + return -1; + } + + // Check that we successfully analyzed the mask, and normalize the results. + assert(Rotation != 0 && "Failed to locate a viable rotation!"); + assert((Lo || Hi) && "Failed to find a rotated input vector!"); + if (!Lo) + Lo = Hi; + else if (!Hi) + Hi = Lo; + + V1 = Lo; + V2 = Hi; + + return Rotation; +} + +/// \brief Try to lower a vector shuffle as a byte rotation. +/// +/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary +/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use +/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will +/// try to generically lower a vector shuffle through such an pattern. It +/// does not check for the profitability of lowering either as PALIGNR or +/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form. +/// This matches shuffle vectors that look like: +/// +/// v8i16 [11, 12, 13, 14, 15, 0, 1, 2] +/// +/// Essentially it concatenates V1 and V2, shifts right by some number of +/// elements, and takes the low elements as the result. Note that while this is +/// specified as a *right shift* because x86 is little-endian, it is a *left +/// rotate* of the vector lanes. +static int matchVectorShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2, + ArrayRef<int> Mask) { + // Don't accept any shuffles with zero elements. + if (any_of(Mask, [](int M) { return M == SM_SentinelZero; })) + return -1; + + // PALIGNR works on 128-bit lanes. + SmallVector<int, 16> RepeatedMask; + if (!is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask)) + return -1; + + int Rotation = matchVectorShuffleAsRotate(V1, V2, RepeatedMask); + if (Rotation <= 0) + return -1; + + // PALIGNR rotates bytes, so we need to scale the + // rotation based on how many bytes are in the vector lane. + int NumElts = RepeatedMask.size(); + int Scale = 16 / NumElts; + return Rotation * Scale; +} + +static SDValue lowerVectorShuffleAsByteRotate(const SDLoc &DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!"); + + SDValue Lo = V1, Hi = V2; + int ByteRotation = matchVectorShuffleAsByteRotate(VT, Lo, Hi, Mask); + if (ByteRotation <= 0) + return SDValue(); + + // Cast the inputs to i8 vector of correct length to match PALIGNR or + // PSLLDQ/PSRLDQ. + MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8); + Lo = DAG.getBitcast(ByteVT, Lo); + Hi = DAG.getBitcast(ByteVT, Hi); + + // SSSE3 targets can use the palignr instruction. + if (Subtarget.hasSSSE3()) { + assert((!VT.is512BitVector() || Subtarget.hasBWI()) && + "512-bit PALIGNR requires BWI instructions"); + return DAG.getBitcast( + VT, DAG.getNode(X86ISD::PALIGNR, DL, ByteVT, Lo, Hi, + DAG.getConstant(ByteRotation, DL, MVT::i8))); + } + + assert(VT.is128BitVector() && + "Rotate-based lowering only supports 128-bit lowering!"); + assert(Mask.size() <= 16 && + "Can shuffle at most 16 bytes in a 128-bit vector!"); + assert(ByteVT == MVT::v16i8 && + "SSE2 rotate lowering only needed for v16i8!"); + + // Default SSE2 implementation + int LoByteShift = 16 - ByteRotation; + int HiByteShift = ByteRotation; + + SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Lo, + DAG.getConstant(LoByteShift, DL, MVT::i8)); + SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Hi, + DAG.getConstant(HiByteShift, DL, MVT::i8)); + return DAG.getBitcast(VT, + DAG.getNode(ISD::OR, DL, MVT::v16i8, LoShift, HiShift)); +} + +/// \brief Try to lower a vector shuffle as a dword/qword rotation. +/// +/// AVX512 has a VALIGND/VALIGNQ instructions that will do an arbitrary +/// rotation of the concatenation of two vectors; This routine will +/// try to generically lower a vector shuffle through such an pattern. +/// +/// Essentially it concatenates V1 and V2, shifts right by some number of +/// elements, and takes the low elements as the result. Note that while this is +/// specified as a *right shift* because x86 is little-endian, it is a *left +/// rotate* of the vector lanes. +static SDValue lowerVectorShuffleAsRotate(const SDLoc &DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert((VT.getScalarType() == MVT::i32 || VT.getScalarType() == MVT::i64) && + "Only 32-bit and 64-bit elements are supported!"); + + // 128/256-bit vectors are only supported with VLX. + assert((Subtarget.hasVLX() || (!VT.is128BitVector() && !VT.is256BitVector())) + && "VLX required for 128/256-bit vectors"); + + SDValue Lo = V1, Hi = V2; + int Rotation = matchVectorShuffleAsRotate(Lo, Hi, Mask); + if (Rotation <= 0) + return SDValue(); + + return DAG.getNode(X86ISD::VALIGN, DL, VT, Lo, Hi, + DAG.getConstant(Rotation, DL, MVT::i8)); +} + +/// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros). +/// +/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and +/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function +/// matches elements from one of the input vectors shuffled to the left or +/// right with zeroable elements 'shifted in'. It handles both the strictly +/// bit-wise element shifts and the byte shift across an entire 128-bit double +/// quad word lane. +/// +/// PSHL : (little-endian) left bit shift. +/// [ zz, 0, zz, 2 ] +/// [ -1, 4, zz, -1 ] +/// PSRL : (little-endian) right bit shift. +/// [ 1, zz, 3, zz] +/// [ -1, -1, 7, zz] +/// PSLLDQ : (little-endian) left byte shift +/// [ zz, 0, 1, 2, 3, 4, 5, 6] +/// [ zz, zz, -1, -1, 2, 3, 4, -1] +/// [ zz, zz, zz, zz, zz, zz, -1, 1] +/// PSRLDQ : (little-endian) right byte shift +/// [ 5, 6, 7, zz, zz, zz, zz, zz] +/// [ -1, 5, 6, 7, zz, zz, zz, zz] +/// [ 1, 2, -1, -1, -1, -1, zz, zz] +static int matchVectorShuffleAsShift(MVT &ShiftVT, unsigned &Opcode, + unsigned ScalarSizeInBits, + ArrayRef<int> Mask, int MaskOffset, + const APInt &Zeroable, + const X86Subtarget &Subtarget) { + int Size = Mask.size(); + unsigned SizeInBits = Size * ScalarSizeInBits; + + auto CheckZeros = [&](int Shift, int Scale, bool Left) { + for (int i = 0; i < Size; i += Scale) + for (int j = 0; j < Shift; ++j) + if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))]) + return false; + + return true; + }; + + auto MatchShift = [&](int Shift, int Scale, bool Left) { + for (int i = 0; i != Size; i += Scale) { + unsigned Pos = Left ? i + Shift : i; + unsigned Low = Left ? i : i + Shift; + unsigned Len = Scale - Shift; + if (!isSequentialOrUndefInRange(Mask, Pos, Len, Low + MaskOffset)) + return -1; + } + + int ShiftEltBits = ScalarSizeInBits * Scale; + bool ByteShift = ShiftEltBits > 64; + Opcode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI) + : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI); + int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1); + + // Normalize the scale for byte shifts to still produce an i64 element + // type. + Scale = ByteShift ? Scale / 2 : Scale; + + // We need to round trip through the appropriate type for the shift. + MVT ShiftSVT = MVT::getIntegerVT(ScalarSizeInBits * Scale); + ShiftVT = ByteShift ? MVT::getVectorVT(MVT::i8, SizeInBits / 8) + : MVT::getVectorVT(ShiftSVT, Size / Scale); + return (int)ShiftAmt; + }; + + // SSE/AVX supports logical shifts up to 64-bit integers - so we can just + // keep doubling the size of the integer elements up to that. We can + // then shift the elements of the integer vector by whole multiples of + // their width within the elements of the larger integer vector. Test each + // multiple to see if we can find a match with the moved element indices + // and that the shifted in elements are all zeroable. + unsigned MaxWidth = ((SizeInBits == 512) && !Subtarget.hasBWI() ? 64 : 128); + for (int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2) + for (int Shift = 1; Shift != Scale; ++Shift) + for (bool Left : {true, false}) + if (CheckZeros(Shift, Scale, Left)) { + int ShiftAmt = MatchShift(Shift, Scale, Left); + if (0 < ShiftAmt) + return ShiftAmt; + } + + // no match + return -1; +} + +static SDValue lowerVectorShuffleAsShift(const SDLoc &DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + const APInt &Zeroable, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + int Size = Mask.size(); + assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); + + MVT ShiftVT; + SDValue V = V1; + unsigned Opcode; + + // Try to match shuffle against V1 shift. + int ShiftAmt = matchVectorShuffleAsShift( + ShiftVT, Opcode, VT.getScalarSizeInBits(), Mask, 0, Zeroable, Subtarget); + + // If V1 failed, try to match shuffle against V2 shift. + if (ShiftAmt < 0) { + ShiftAmt = + matchVectorShuffleAsShift(ShiftVT, Opcode, VT.getScalarSizeInBits(), + Mask, Size, Zeroable, Subtarget); + V = V2; + } + + if (ShiftAmt < 0) + return SDValue(); + + assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) && + "Illegal integer vector type"); + V = DAG.getBitcast(ShiftVT, V); + V = DAG.getNode(Opcode, DL, ShiftVT, V, + DAG.getConstant(ShiftAmt, DL, MVT::i8)); + return DAG.getBitcast(VT, V); +} + +// EXTRQ: Extract Len elements from lower half of source, starting at Idx. +// Remainder of lower half result is zero and upper half is all undef. +static bool matchVectorShuffleAsEXTRQ(MVT VT, SDValue &V1, SDValue &V2, + ArrayRef<int> Mask, uint64_t &BitLen, + uint64_t &BitIdx, const APInt &Zeroable) { + int Size = Mask.size(); + int HalfSize = Size / 2; + assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); + assert(!Zeroable.isAllOnesValue() && "Fully zeroable shuffle mask"); + + // Upper half must be undefined. + if (!isUndefInRange(Mask, HalfSize, HalfSize)) + return false; + + // Determine the extraction length from the part of the + // lower half that isn't zeroable. + int Len = HalfSize; + for (; Len > 0; --Len) + if (!Zeroable[Len - 1]) + break; + assert(Len > 0 && "Zeroable shuffle mask"); + + // Attempt to match first Len sequential elements from the lower half. + SDValue Src; + int Idx = -1; + for (int i = 0; i != Len; ++i) { + int M = Mask[i]; + if (M == SM_SentinelUndef) + continue; + SDValue &V = (M < Size ? V1 : V2); + M = M % Size; + + // The extracted elements must start at a valid index and all mask + // elements must be in the lower half. + if (i > M || M >= HalfSize) + return false; + + if (Idx < 0 || (Src == V && Idx == (M - i))) { + Src = V; + Idx = M - i; + continue; + } + return false; + } + + if (!Src || Idx < 0) + return false; + + assert((Idx + Len) <= HalfSize && "Illegal extraction mask"); + BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; + BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; + V1 = Src; + return true; +} + +// INSERTQ: Extract lowest Len elements from lower half of second source and +// insert over first source, starting at Idx. +// { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... } +static bool matchVectorShuffleAsINSERTQ(MVT VT, SDValue &V1, SDValue &V2, + ArrayRef<int> Mask, uint64_t &BitLen, + uint64_t &BitIdx) { + int Size = Mask.size(); + int HalfSize = Size / 2; + assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); + + // Upper half must be undefined. + if (!isUndefInRange(Mask, HalfSize, HalfSize)) + return false; + + for (int Idx = 0; Idx != HalfSize; ++Idx) { + SDValue Base; + + // Attempt to match first source from mask before insertion point. + if (isUndefInRange(Mask, 0, Idx)) { + /* EMPTY */ + } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) { + Base = V1; + } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) { + Base = V2; + } else { + continue; + } + + // Extend the extraction length looking to match both the insertion of + // the second source and the remaining elements of the first. + for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) { + SDValue Insert; + int Len = Hi - Idx; + + // Match insertion. + if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) { + Insert = V1; + } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) { + Insert = V2; + } else { + continue; + } + + // Match the remaining elements of the lower half. + if (isUndefInRange(Mask, Hi, HalfSize - Hi)) { + /* EMPTY */ + } else if ((!Base || (Base == V1)) && + isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) { + Base = V1; + } else if ((!Base || (Base == V2)) && + isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, + Size + Hi)) { + Base = V2; + } else { + continue; + } + + BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; + BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; + V1 = Base; + V2 = Insert; + return true; + } + } + + return false; +} + +/// \brief Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ. +static SDValue lowerVectorShuffleWithSSE4A(const SDLoc &DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + const APInt &Zeroable, + SelectionDAG &DAG) { + uint64_t BitLen, BitIdx; + if (matchVectorShuffleAsEXTRQ(VT, V1, V2, Mask, BitLen, BitIdx, Zeroable)) + return DAG.getNode(X86ISD::EXTRQI, DL, VT, V1, + DAG.getConstant(BitLen, DL, MVT::i8), + DAG.getConstant(BitIdx, DL, MVT::i8)); + + if (matchVectorShuffleAsINSERTQ(VT, V1, V2, Mask, BitLen, BitIdx)) + return DAG.getNode(X86ISD::INSERTQI, DL, VT, V1 ? V1 : DAG.getUNDEF(VT), + V2 ? V2 : DAG.getUNDEF(VT), + DAG.getConstant(BitLen, DL, MVT::i8), + DAG.getConstant(BitIdx, DL, MVT::i8)); + + return SDValue(); +} + +/// \brief Lower a vector shuffle as a zero or any extension. +/// +/// Given a specific number of elements, element bit width, and extension +/// stride, produce either a zero or any extension based on the available +/// features of the subtarget. The extended elements are consecutive and +/// begin and can start from an offsetted element index in the input; to +/// avoid excess shuffling the offset must either being in the bottom lane +/// or at the start of a higher lane. All extended elements must be from +/// the same lane. +static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend( + const SDLoc &DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV, + ArrayRef<int> Mask, const X86Subtarget &Subtarget, SelectionDAG &DAG) { + assert(Scale > 1 && "Need a scale to extend."); + int EltBits = VT.getScalarSizeInBits(); + int NumElements = VT.getVectorNumElements(); + int NumEltsPerLane = 128 / EltBits; + int OffsetLane = Offset / NumEltsPerLane; + assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && + "Only 8, 16, and 32 bit elements can be extended."); + assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits."); + assert(0 <= Offset && "Extension offset must be positive."); + assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) && + "Extension offset must be in the first lane or start an upper lane."); + + // Check that an index is in same lane as the base offset. + auto SafeOffset = [&](int Idx) { + return OffsetLane == (Idx / NumEltsPerLane); + }; + + // Shift along an input so that the offset base moves to the first element. + auto ShuffleOffset = [&](SDValue V) { + if (!Offset) + return V; + + SmallVector<int, 8> ShMask((unsigned)NumElements, -1); + for (int i = 0; i * Scale < NumElements; ++i) { + int SrcIdx = i + Offset; + ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1; + } + return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask); + }; + + // Found a valid zext mask! Try various lowering strategies based on the + // input type and available ISA extensions. + if (Subtarget.hasSSE41()) { + // Not worth offsetting 128-bit vectors if scale == 2, a pattern using + // PUNPCK will catch this in a later shuffle match. + if (Offset && Scale == 2 && VT.is128BitVector()) + return SDValue(); + MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale), + NumElements / Scale); + InputV = ShuffleOffset(InputV); + InputV = getExtendInVec(X86ISD::VZEXT, DL, ExtVT, InputV, DAG); + return DAG.getBitcast(VT, InputV); + } + + assert(VT.is128BitVector() && "Only 128-bit vectors can be extended."); + + // For any extends we can cheat for larger element sizes and use shuffle + // instructions that can fold with a load and/or copy. + if (AnyExt && EltBits == 32) { + int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1, + -1}; + return DAG.getBitcast( + VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, + DAG.getBitcast(MVT::v4i32, InputV), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); + } + if (AnyExt && EltBits == 16 && Scale > 2) { + int PSHUFDMask[4] = {Offset / 2, -1, + SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1}; + InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, + DAG.getBitcast(MVT::v4i32, InputV), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)); + int PSHUFWMask[4] = {1, -1, -1, -1}; + unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW); + return DAG.getBitcast( + VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16, + DAG.getBitcast(MVT::v8i16, InputV), + getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG))); + } + + // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes + // to 64-bits. + if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget.hasSSE4A()) { + assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!"); + assert(VT.is128BitVector() && "Unexpected vector width!"); + + int LoIdx = Offset * EltBits; + SDValue Lo = DAG.getBitcast( + MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, + DAG.getConstant(EltBits, DL, MVT::i8), + DAG.getConstant(LoIdx, DL, MVT::i8))); + + if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) || + !SafeOffset(Offset + 1)) + return DAG.getBitcast(VT, Lo); + + int HiIdx = (Offset + 1) * EltBits; + SDValue Hi = DAG.getBitcast( + MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, + DAG.getConstant(EltBits, DL, MVT::i8), + DAG.getConstant(HiIdx, DL, MVT::i8))); + return DAG.getBitcast(VT, + DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi)); + } + + // If this would require more than 2 unpack instructions to expand, use + // pshufb when available. We can only use more than 2 unpack instructions + // when zero extending i8 elements which also makes it easier to use pshufb. + if (Scale > 4 && EltBits == 8 && Subtarget.hasSSSE3()) { + assert(NumElements == 16 && "Unexpected byte vector width!"); + SDValue PSHUFBMask[16]; + for (int i = 0; i < 16; ++i) { + int Idx = Offset + (i / Scale); + PSHUFBMask[i] = DAG.getConstant( + (i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8); + } + InputV = DAG.getBitcast(MVT::v16i8, InputV); + return DAG.getBitcast( + VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV, + DAG.getBuildVector(MVT::v16i8, DL, PSHUFBMask))); + } + + // If we are extending from an offset, ensure we start on a boundary that + // we can unpack from. + int AlignToUnpack = Offset % (NumElements / Scale); + if (AlignToUnpack) { + SmallVector<int, 8> ShMask((unsigned)NumElements, -1); + for (int i = AlignToUnpack; i < NumElements; ++i) + ShMask[i - AlignToUnpack] = i; + InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask); + Offset -= AlignToUnpack; + } + + // Otherwise emit a sequence of unpacks. + do { + unsigned UnpackLoHi = X86ISD::UNPCKL; + if (Offset >= (NumElements / 2)) { + UnpackLoHi = X86ISD::UNPCKH; + Offset -= (NumElements / 2); + } + + MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements); + SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT) + : getZeroVector(InputVT, Subtarget, DAG, DL); + InputV = DAG.getBitcast(InputVT, InputV); + InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext); + Scale /= 2; + EltBits *= 2; + NumElements /= 2; + } while (Scale > 1); + return DAG.getBitcast(VT, InputV); +} + +/// \brief Try to lower a vector shuffle as a zero extension on any microarch. +/// +/// This routine will try to do everything in its power to cleverly lower +/// a shuffle which happens to match the pattern of a zero extend. It doesn't +/// check for the profitability of this lowering, it tries to aggressively +/// match this pattern. It will use all of the micro-architectural details it +/// can to emit an efficient lowering. It handles both blends with all-zero +/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to +/// masking out later). +/// +/// The reason we have dedicated lowering for zext-style shuffles is that they +/// are both incredibly common and often quite performance sensitive. +static SDValue lowerVectorShuffleAsZeroOrAnyExtend( + const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, + const APInt &Zeroable, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + int Bits = VT.getSizeInBits(); + int NumLanes = Bits / 128; + int NumElements = VT.getVectorNumElements(); + int NumEltsPerLane = NumElements / NumLanes; + assert(VT.getScalarSizeInBits() <= 32 && + "Exceeds 32-bit integer zero extension limit"); + assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size"); + + // Define a helper function to check a particular ext-scale and lower to it if + // valid. + auto Lower = [&](int Scale) -> SDValue { + SDValue InputV; + bool AnyExt = true; + int Offset = 0; + int Matches = 0; + for (int i = 0; i < NumElements; ++i) { + int M = Mask[i]; + if (M < 0) + continue; // Valid anywhere but doesn't tell us anything. + if (i % Scale != 0) { + // Each of the extended elements need to be zeroable. + if (!Zeroable[i]) + return SDValue(); + + // We no longer are in the anyext case. + AnyExt = false; + continue; + } + + // Each of the base elements needs to be consecutive indices into the + // same input vector. + SDValue V = M < NumElements ? V1 : V2; + M = M % NumElements; + if (!InputV) { + InputV = V; + Offset = M - (i / Scale); + } else if (InputV != V) + return SDValue(); // Flip-flopping inputs. + + // Offset must start in the lowest 128-bit lane or at the start of an + // upper lane. + // FIXME: Is it ever worth allowing a negative base offset? + if (!((0 <= Offset && Offset < NumEltsPerLane) || + (Offset % NumEltsPerLane) == 0)) + return SDValue(); + + // If we are offsetting, all referenced entries must come from the same + // lane. + if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane)) + return SDValue(); + + if ((M % NumElements) != (Offset + (i / Scale))) + return SDValue(); // Non-consecutive strided elements. + Matches++; + } + + // If we fail to find an input, we have a zero-shuffle which should always + // have already been handled. + // FIXME: Maybe handle this here in case during blending we end up with one? + if (!InputV) + return SDValue(); + + // If we are offsetting, don't extend if we only match a single input, we + // can always do better by using a basic PSHUF or PUNPCK. + if (Offset != 0 && Matches < 2) + return SDValue(); + + return lowerVectorShuffleAsSpecificZeroOrAnyExtend( + DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG); + }; + + // The widest scale possible for extending is to a 64-bit integer. + assert(Bits % 64 == 0 && + "The number of bits in a vector must be divisible by 64 on x86!"); + int NumExtElements = Bits / 64; + + // Each iteration, try extending the elements half as much, but into twice as + // many elements. + for (; NumExtElements < NumElements; NumExtElements *= 2) { + assert(NumElements % NumExtElements == 0 && + "The input vector size must be divisible by the extended size."); + if (SDValue V = Lower(NumElements / NumExtElements)) + return V; + } + + // General extends failed, but 128-bit vectors may be able to use MOVQ. + if (Bits != 128) + return SDValue(); + + // Returns one of the source operands if the shuffle can be reduced to a + // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits. + auto CanZExtLowHalf = [&]() { + for (int i = NumElements / 2; i != NumElements; ++i) + if (!Zeroable[i]) + return SDValue(); + if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0)) + return V1; + if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements)) + return V2; + return SDValue(); + }; + + if (SDValue V = CanZExtLowHalf()) { + V = DAG.getBitcast(MVT::v2i64, V); + V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V); + return DAG.getBitcast(VT, V); + } + + // No viable ext lowering found. + return SDValue(); +} + +/// \brief Try to get a scalar value for a specific element of a vector. +/// +/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar. +static SDValue getScalarValueForVectorElement(SDValue V, int Idx, + SelectionDAG &DAG) { + MVT VT = V.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + V = peekThroughBitcasts(V); + + // If the bitcasts shift the element size, we can't extract an equivalent + // element from it. + MVT NewVT = V.getSimpleValueType(); + if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) + return SDValue(); + + if (V.getOpcode() == ISD::BUILD_VECTOR || + (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) { + // Ensure the scalar operand is the same size as the destination. + // FIXME: Add support for scalar truncation where possible. + SDValue S = V.getOperand(Idx); + if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits()) + return DAG.getBitcast(EltVT, S); + } + + return SDValue(); +} + +/// \brief Helper to test for a load that can be folded with x86 shuffles. +/// +/// This is particularly important because the set of instructions varies +/// significantly based on whether the operand is a load or not. +static bool isShuffleFoldableLoad(SDValue V) { + V = peekThroughBitcasts(V); + return ISD::isNON_EXTLoad(V.getNode()); +} + +/// \brief Try to lower insertion of a single element into a zero vector. +/// +/// This is a common pattern that we have especially efficient patterns to lower +/// across all subtarget feature sets. +static SDValue lowerVectorShuffleAsElementInsertion( + const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, + const APInt &Zeroable, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT ExtVT = VT; + MVT EltVT = VT.getVectorElementType(); + + int V2Index = + find_if(Mask, [&Mask](int M) { return M >= (int)Mask.size(); }) - + Mask.begin(); + bool IsV1Zeroable = true; + for (int i = 0, Size = Mask.size(); i < Size; ++i) + if (i != V2Index && !Zeroable[i]) { + IsV1Zeroable = false; + break; + } + + // Check for a single input from a SCALAR_TO_VECTOR node. + // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and + // all the smarts here sunk into that routine. However, the current + // lowering of BUILD_VECTOR makes that nearly impossible until the old + // vector shuffle lowering is dead. + SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(), + DAG); + if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) { + // We need to zext the scalar if it is smaller than an i32. + V2S = DAG.getBitcast(EltVT, V2S); + if (EltVT == MVT::i8 || EltVT == MVT::i16) { + // Using zext to expand a narrow element won't work for non-zero + // insertions. + if (!IsV1Zeroable) + return SDValue(); + + // Zero-extend directly to i32. + ExtVT = MVT::getVectorVT(MVT::i32, ExtVT.getSizeInBits() / 32); + V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S); + } + V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S); + } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 || + EltVT == MVT::i16) { + // Either not inserting from the low element of the input or the input + // element size is too small to use VZEXT_MOVL to clear the high bits. + return SDValue(); + } + + if (!IsV1Zeroable) { + // If V1 can't be treated as a zero vector we have fewer options to lower + // this. We can't support integer vectors or non-zero targets cheaply, and + // the V1 elements can't be permuted in any way. + assert(VT == ExtVT && "Cannot change extended type when non-zeroable!"); + if (!VT.isFloatingPoint() || V2Index != 0) + return SDValue(); + SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end()); + V1Mask[V2Index] = -1; + if (!isNoopShuffleMask(V1Mask)) + return SDValue(); + if (!VT.is128BitVector()) + return SDValue(); + + // Otherwise, use MOVSD or MOVSS. + assert((EltVT == MVT::f32 || EltVT == MVT::f64) && + "Only two types of floating point element types to handle!"); + return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL, + ExtVT, V1, V2); + } + + // This lowering only works for the low element with floating point vectors. + if (VT.isFloatingPoint() && V2Index != 0) + return SDValue(); + + V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2); + if (ExtVT != VT) + V2 = DAG.getBitcast(VT, V2); + + if (V2Index != 0) { + // If we have 4 or fewer lanes we can cheaply shuffle the element into + // the desired position. Otherwise it is more efficient to do a vector + // shift left. We know that we can do a vector shift left because all + // the inputs are zero. + if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) { + SmallVector<int, 4> V2Shuffle(Mask.size(), 1); + V2Shuffle[V2Index] = 0; + V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle); + } else { + V2 = DAG.getBitcast(MVT::v16i8, V2); + V2 = DAG.getNode( + X86ISD::VSHLDQ, DL, MVT::v16i8, V2, + DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL, + DAG.getTargetLoweringInfo().getScalarShiftAmountTy( + DAG.getDataLayout(), VT))); + V2 = DAG.getBitcast(VT, V2); + } + } + return V2; +} + +/// Try to lower broadcast of a single - truncated - integer element, +/// coming from a scalar_to_vector/build_vector node \p V0 with larger elements. +/// +/// This assumes we have AVX2. +static SDValue lowerVectorShuffleAsTruncBroadcast(const SDLoc &DL, MVT VT, + SDValue V0, int BroadcastIdx, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(Subtarget.hasAVX2() && + "We can only lower integer broadcasts with AVX2!"); + + EVT EltVT = VT.getVectorElementType(); + EVT V0VT = V0.getValueType(); + + assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!"); + assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!"); + + EVT V0EltVT = V0VT.getVectorElementType(); + if (!V0EltVT.isInteger()) + return SDValue(); + + const unsigned EltSize = EltVT.getSizeInBits(); + const unsigned V0EltSize = V0EltVT.getSizeInBits(); + + // This is only a truncation if the original element type is larger. + if (V0EltSize <= EltSize) + return SDValue(); + + assert(((V0EltSize % EltSize) == 0) && + "Scalar type sizes must all be powers of 2 on x86!"); + + const unsigned V0Opc = V0.getOpcode(); + const unsigned Scale = V0EltSize / EltSize; + const unsigned V0BroadcastIdx = BroadcastIdx / Scale; + + if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) && + V0Opc != ISD::BUILD_VECTOR) + return SDValue(); + + SDValue Scalar = V0.getOperand(V0BroadcastIdx); + + // If we're extracting non-least-significant bits, shift so we can truncate. + // Hopefully, we can fold away the trunc/srl/load into the broadcast. + // Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer + // vpbroadcast+vmovd+shr to vpshufb(m)+vmovd. + if (const int OffsetIdx = BroadcastIdx % Scale) + Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar, + DAG.getConstant(OffsetIdx * EltSize, DL, Scalar.getValueType())); + + return DAG.getNode(X86ISD::VBROADCAST, DL, VT, + DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar)); +} + +/// \brief Try to lower broadcast of a single element. +/// +/// For convenience, this code also bundles all of the subtarget feature set +/// filtering. While a little annoying to re-dispatch on type here, there isn't +/// a convenient way to factor it out. +static SDValue lowerVectorShuffleAsBroadcast(const SDLoc &DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + if (!((Subtarget.hasSSE3() && VT == MVT::v2f64) || + (Subtarget.hasAVX() && VT.isFloatingPoint()) || + (Subtarget.hasAVX2() && VT.isInteger()))) + return SDValue(); + + // With MOVDDUP (v2f64) we can broadcast from a register or a load, otherwise + // we can only broadcast from a register with AVX2. + unsigned NumElts = Mask.size(); + unsigned Opcode = (VT == MVT::v2f64 && !Subtarget.hasAVX2()) + ? X86ISD::MOVDDUP + : X86ISD::VBROADCAST; + bool BroadcastFromReg = (Opcode == X86ISD::MOVDDUP) || Subtarget.hasAVX2(); + + // Check that the mask is a broadcast. + int BroadcastIdx = -1; + for (int i = 0; i != (int)NumElts; ++i) { + SmallVector<int, 8> BroadcastMask(NumElts, i); + if (isShuffleEquivalent(V1, V2, Mask, BroadcastMask)) { + BroadcastIdx = i; + break; + } + } + + if (BroadcastIdx < 0) + return SDValue(); + assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with " + "a sorted mask where the broadcast " + "comes from V1."); + + // Go up the chain of (vector) values to find a scalar load that we can + // combine with the broadcast. + SDValue V = V1; + for (;;) { + switch (V.getOpcode()) { + case ISD::BITCAST: { + // Peek through bitcasts as long as BroadcastIdx can be adjusted. + SDValue VSrc = V.getOperand(0); + unsigned NumEltBits = V.getScalarValueSizeInBits(); + unsigned NumSrcBits = VSrc.getScalarValueSizeInBits(); + if ((NumEltBits % NumSrcBits) == 0) + BroadcastIdx *= (NumEltBits / NumSrcBits); + else if ((NumSrcBits % NumEltBits) == 0 && + (BroadcastIdx % (NumSrcBits / NumEltBits)) == 0) + BroadcastIdx /= (NumSrcBits / NumEltBits); + else + break; + V = VSrc; + continue; + } + case ISD::CONCAT_VECTORS: { + int OperandSize = Mask.size() / V.getNumOperands(); + V = V.getOperand(BroadcastIdx / OperandSize); + BroadcastIdx %= OperandSize; + continue; + } + case ISD::INSERT_SUBVECTOR: { + SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1); + auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2)); + if (!ConstantIdx) + break; + + int BeginIdx = (int)ConstantIdx->getZExtValue(); + int EndIdx = + BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements(); + if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) { + BroadcastIdx -= BeginIdx; + V = VInner; + } else { + V = VOuter; + } + continue; + } + } + break; + } + + // Ensure the source vector and BroadcastIdx are for a suitable type. + if (VT.getScalarSizeInBits() != V.getScalarValueSizeInBits()) { + unsigned NumEltBits = VT.getScalarSizeInBits(); + unsigned NumSrcBits = V.getScalarValueSizeInBits(); + if ((NumSrcBits % NumEltBits) == 0) + BroadcastIdx *= (NumSrcBits / NumEltBits); + else if ((NumEltBits % NumSrcBits) == 0 && + (BroadcastIdx % (NumEltBits / NumSrcBits)) == 0) + BroadcastIdx /= (NumEltBits / NumSrcBits); + else + return SDValue(); + + unsigned NumSrcElts = V.getValueSizeInBits() / NumEltBits; + MVT SrcVT = MVT::getVectorVT(VT.getScalarType(), NumSrcElts); + V = DAG.getBitcast(SrcVT, V); + } + + // Check if this is a broadcast of a scalar. We special case lowering + // for scalars so that we can more effectively fold with loads. + // First, look through bitcast: if the original value has a larger element + // type than the shuffle, the broadcast element is in essence truncated. + // Make that explicit to ease folding. + if (V.getOpcode() == ISD::BITCAST && VT.isInteger()) + if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast( + DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG)) + return TruncBroadcast; + + MVT BroadcastVT = VT; + + // Peek through any bitcast (only useful for loads). + SDValue BC = peekThroughBitcasts(V); + + // Also check the simpler case, where we can directly reuse the scalar. + if (V.getOpcode() == ISD::BUILD_VECTOR || + (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) { + V = V.getOperand(BroadcastIdx); + + // If we can't broadcast from a register, check that the input is a load. + if (!BroadcastFromReg && !isShuffleFoldableLoad(V)) + return SDValue(); + } else if (MayFoldLoad(BC) && !cast<LoadSDNode>(BC)->isVolatile()) { + // 32-bit targets need to load i64 as a f64 and then bitcast the result. + if (!Subtarget.is64Bit() && VT.getScalarType() == MVT::i64) { + BroadcastVT = MVT::getVectorVT(MVT::f64, VT.getVectorNumElements()); + Opcode = (BroadcastVT.is128BitVector() && !Subtarget.hasAVX2()) + ? X86ISD::MOVDDUP + : Opcode; + } + + // If we are broadcasting a load that is only used by the shuffle + // then we can reduce the vector load to the broadcasted scalar load. + LoadSDNode *Ld = cast<LoadSDNode>(BC); + SDValue BaseAddr = Ld->getOperand(1); + EVT SVT = BroadcastVT.getScalarType(); + unsigned Offset = BroadcastIdx * SVT.getStoreSize(); + SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL); + V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, + DAG.getMachineFunction().getMachineMemOperand( + Ld->getMemOperand(), Offset, SVT.getStoreSize())); + DAG.makeEquivalentMemoryOrdering(Ld, V); + } else if (!BroadcastFromReg) { + // We can't broadcast from a vector register. + return SDValue(); + } else if (BroadcastIdx != 0) { + // We can only broadcast from the zero-element of a vector register, + // but it can be advantageous to broadcast from the zero-element of a + // subvector. + if (!VT.is256BitVector() && !VT.is512BitVector()) + return SDValue(); + + // VPERMQ/VPERMPD can perform the cross-lane shuffle directly. + if (VT == MVT::v4f64 || VT == MVT::v4i64) + return SDValue(); + + // Only broadcast the zero-element of a 128-bit subvector. + unsigned EltSize = VT.getScalarSizeInBits(); + if (((BroadcastIdx * EltSize) % 128) != 0) + return SDValue(); + + // The shuffle input might have been a bitcast we looked through; look at + // the original input vector. Emit an EXTRACT_SUBVECTOR of that type; we'll + // later bitcast it to BroadcastVT. + assert(V.getScalarValueSizeInBits() == BroadcastVT.getScalarSizeInBits() && + "Unexpected vector element size"); + assert((V.getValueSizeInBits() == 256 || V.getValueSizeInBits() == 512) && + "Unexpected vector size"); + V = extract128BitVector(V, BroadcastIdx, DAG, DL); + } + + if (Opcode == X86ISD::MOVDDUP && !V.getValueType().isVector()) + V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, + DAG.getBitcast(MVT::f64, V)); + + // Bitcast back to the same scalar type as BroadcastVT. + MVT SrcVT = V.getSimpleValueType(); + if (SrcVT.getScalarType() != BroadcastVT.getScalarType()) { + assert(SrcVT.getScalarSizeInBits() == BroadcastVT.getScalarSizeInBits() && + "Unexpected vector element size"); + if (SrcVT.isVector()) { + unsigned NumSrcElts = SrcVT.getVectorNumElements(); + SrcVT = MVT::getVectorVT(BroadcastVT.getScalarType(), NumSrcElts); + } else { + SrcVT = BroadcastVT.getScalarType(); + } + V = DAG.getBitcast(SrcVT, V); + } + + // 32-bit targets need to load i64 as a f64 and then bitcast the result. + if (!Subtarget.is64Bit() && SrcVT == MVT::i64) { + V = DAG.getBitcast(MVT::f64, V); + unsigned NumBroadcastElts = BroadcastVT.getVectorNumElements(); + BroadcastVT = MVT::getVectorVT(MVT::f64, NumBroadcastElts); + } + + // We only support broadcasting from 128-bit vectors to minimize the + // number of patterns we need to deal with in isel. So extract down to + // 128-bits, removing as many bitcasts as possible. + if (SrcVT.getSizeInBits() > 128) { + MVT ExtVT = MVT::getVectorVT(SrcVT.getScalarType(), + 128 / SrcVT.getScalarSizeInBits()); + V = extract128BitVector(peekThroughBitcasts(V), 0, DAG, DL); + V = DAG.getBitcast(ExtVT, V); + } + + return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, BroadcastVT, V)); +} + +// Check for whether we can use INSERTPS to perform the shuffle. We only use +// INSERTPS when the V1 elements are already in the correct locations +// because otherwise we can just always use two SHUFPS instructions which +// are much smaller to encode than a SHUFPS and an INSERTPS. We can also +// perform INSERTPS if a single V1 element is out of place and all V2 +// elements are zeroable. +static bool matchVectorShuffleAsInsertPS(SDValue &V1, SDValue &V2, + unsigned &InsertPSMask, + const APInt &Zeroable, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType().is128BitVector() && "Bad operand type!"); + assert(V2.getSimpleValueType().is128BitVector() && "Bad operand type!"); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + + // Attempt to match INSERTPS with one element from VA or VB being + // inserted into VA (or undef). If successful, V1, V2 and InsertPSMask + // are updated. + auto matchAsInsertPS = [&](SDValue VA, SDValue VB, + ArrayRef<int> CandidateMask) { + unsigned ZMask = 0; + int VADstIndex = -1; + int VBDstIndex = -1; + bool VAUsedInPlace = false; + + for (int i = 0; i < 4; ++i) { + // Synthesize a zero mask from the zeroable elements (includes undefs). + if (Zeroable[i]) { + ZMask |= 1 << i; + continue; + } + + // Flag if we use any VA inputs in place. + if (i == CandidateMask[i]) { + VAUsedInPlace = true; + continue; + } + + // We can only insert a single non-zeroable element. + if (VADstIndex >= 0 || VBDstIndex >= 0) + return false; + + if (CandidateMask[i] < 4) { + // VA input out of place for insertion. + VADstIndex = i; + } else { + // VB input for insertion. + VBDstIndex = i; + } + } + + // Don't bother if we have no (non-zeroable) element for insertion. + if (VADstIndex < 0 && VBDstIndex < 0) + return false; + + // Determine element insertion src/dst indices. The src index is from the + // start of the inserted vector, not the start of the concatenated vector. + unsigned VBSrcIndex = 0; + if (VADstIndex >= 0) { + // If we have a VA input out of place, we use VA as the V2 element + // insertion and don't use the original V2 at all. + VBSrcIndex = CandidateMask[VADstIndex]; + VBDstIndex = VADstIndex; + VB = VA; + } else { + VBSrcIndex = CandidateMask[VBDstIndex] - 4; + } + + // If no V1 inputs are used in place, then the result is created only from + // the zero mask and the V2 insertion - so remove V1 dependency. + if (!VAUsedInPlace) + VA = DAG.getUNDEF(MVT::v4f32); + + // Update V1, V2 and InsertPSMask accordingly. + V1 = VA; + V2 = VB; + + // Insert the V2 element into the desired position. + InsertPSMask = VBSrcIndex << 6 | VBDstIndex << 4 | ZMask; + assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); + return true; + }; + + if (matchAsInsertPS(V1, V2, Mask)) + return true; + + // Commute and try again. + SmallVector<int, 4> CommutedMask(Mask.begin(), Mask.end()); + ShuffleVectorSDNode::commuteMask(CommutedMask); + if (matchAsInsertPS(V2, V1, CommutedMask)) + return true; + + return false; +} + +static SDValue lowerVectorShuffleAsInsertPS(const SDLoc &DL, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + const APInt &Zeroable, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); + + // Attempt to match the insertps pattern. + unsigned InsertPSMask; + if (!matchVectorShuffleAsInsertPS(V1, V2, InsertPSMask, Zeroable, Mask, DAG)) + return SDValue(); + + // Insert the V2 element into the desired position. + return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, + DAG.getConstant(InsertPSMask, DL, MVT::i8)); +} + +/// \brief Try to lower a shuffle as a permute of the inputs followed by an +/// UNPCK instruction. +/// +/// This specifically targets cases where we end up with alternating between +/// the two inputs, and so can permute them into something that feeds a single +/// UNPCK instruction. Note that this routine only targets integer vectors +/// because for floating point vectors we have a generalized SHUFPS lowering +/// strategy that handles everything that doesn't *exactly* match an unpack, +/// making this clever lowering unnecessary. +static SDValue lowerVectorShuffleAsPermuteAndUnpack(const SDLoc &DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(!VT.isFloatingPoint() && + "This routine only supports integer vectors."); + assert(VT.is128BitVector() && + "This routine only works on 128-bit vectors."); + assert(!V2.isUndef() && + "This routine should only be used when blending two inputs."); + assert(Mask.size() >= 2 && "Single element masks are invalid."); + + int Size = Mask.size(); + + int NumLoInputs = + count_if(Mask, [Size](int M) { return M >= 0 && M % Size < Size / 2; }); + int NumHiInputs = + count_if(Mask, [Size](int M) { return M % Size >= Size / 2; }); + + bool UnpackLo = NumLoInputs >= NumHiInputs; + + auto TryUnpack = [&](int ScalarSize, int Scale) { + SmallVector<int, 16> V1Mask((unsigned)Size, -1); + SmallVector<int, 16> V2Mask((unsigned)Size, -1); + + for (int i = 0; i < Size; ++i) { + if (Mask[i] < 0) + continue; + + // Each element of the unpack contains Scale elements from this mask. + int UnpackIdx = i / Scale; + + // We only handle the case where V1 feeds the first slots of the unpack. + // We rely on canonicalization to ensure this is the case. + if ((UnpackIdx % 2 == 0) != (Mask[i] < Size)) + return SDValue(); + + // Setup the mask for this input. The indexing is tricky as we have to + // handle the unpack stride. + SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask; + VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] = + Mask[i] % Size; + } + + // If we will have to shuffle both inputs to use the unpack, check whether + // we can just unpack first and shuffle the result. If so, skip this unpack. + if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) && + !isNoopShuffleMask(V2Mask)) + return SDValue(); + + // Shuffle the inputs into place. + V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); + V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); + + // Cast the inputs to the type we will use to unpack them. + MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), Size / Scale); + V1 = DAG.getBitcast(UnpackVT, V1); + V2 = DAG.getBitcast(UnpackVT, V2); + + // Unpack the inputs and cast the result back to the desired type. + return DAG.getBitcast( + VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, + UnpackVT, V1, V2)); + }; + + // We try each unpack from the largest to the smallest to try and find one + // that fits this mask. + int OrigScalarSize = VT.getScalarSizeInBits(); + for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) + if (SDValue Unpack = TryUnpack(ScalarSize, ScalarSize / OrigScalarSize)) + return Unpack; + + // If none of the unpack-rooted lowerings worked (or were profitable) try an + // initial unpack. + if (NumLoInputs == 0 || NumHiInputs == 0) { + assert((NumLoInputs > 0 || NumHiInputs > 0) && + "We have to have *some* inputs!"); + int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0; + + // FIXME: We could consider the total complexity of the permute of each + // possible unpacking. Or at the least we should consider how many + // half-crossings are created. + // FIXME: We could consider commuting the unpacks. + + SmallVector<int, 32> PermMask((unsigned)Size, -1); + for (int i = 0; i < Size; ++i) { + if (Mask[i] < 0) + continue; + + assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!"); + + PermMask[i] = + 2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1); + } + return DAG.getVectorShuffle( + VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL, + DL, VT, V1, V2), + DAG.getUNDEF(VT), PermMask); + } + + return SDValue(); +} + +/// \brief Handle lowering of 2-lane 64-bit floating point shuffles. +/// +/// This is the basis function for the 2-lane 64-bit shuffles as we have full +/// support for floating point shuffles but not integer shuffles. These +/// instructions will incur a domain crossing penalty on some chips though so +/// it is better to avoid lowering through this for integer vectors where +/// possible. +static SDValue lowerV2F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); + assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); + + if (V2.isUndef()) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( + DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG)) + return Broadcast; + + // Straight shuffle of a single input vector. Simulate this by using the + // single input as both of the "inputs" to this instruction.. + unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1); + + if (Subtarget.hasAVX()) { + // If we have AVX, we can use VPERMILPS which will allow folding a load + // into the shuffle. + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1, + DAG.getConstant(SHUFPDMask, DL, MVT::i8)); + } + + return DAG.getNode( + X86ISD::SHUFP, DL, MVT::v2f64, + Mask[0] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1, + Mask[1] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1, + DAG.getConstant(SHUFPDMask, DL, MVT::i8)); + } + assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!"); + assert(Mask[1] >= 2 && "Non-canonicalized blend!"); + + // If we have a single input, insert that into V1 if we can do so cheaply. + if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) { + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, MVT::v2f64, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return Insertion; + // Try inverting the insertion since for v2 masks it is easy to do and we + // can't reliably sort the mask one way or the other. + int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2), + Mask[1] < 0 ? -1 : (Mask[1] ^ 2)}; + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, MVT::v2f64, V2, V1, InverseMask, Zeroable, Subtarget, DAG)) + return Insertion; + } + + // Try to use one of the special instruction patterns to handle two common + // blend patterns if a zero-blend above didn't work. + if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) || + isShuffleEquivalent(V1, V2, Mask, {1, 3})) + if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG)) + // We can either use a special instruction to load over the low double or + // to move just the low double. + return DAG.getNode( + isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD, + DL, MVT::v2f64, V2, + DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S)); + + if (Subtarget.hasSSE41()) + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG)) + return V; + + unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1); + return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2, + DAG.getConstant(SHUFPDMask, DL, MVT::i8)); +} + +/// \brief Handle lowering of 2-lane 64-bit integer shuffles. +/// +/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by +/// the integer unit to minimize domain crossing penalties. However, for blends +/// it falls back to the floating point shuffle operation with appropriate bit +/// casting. +static SDValue lowerV2I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); + assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); + + if (V2.isUndef()) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( + DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) + return Broadcast; + + // Straight shuffle of a single input vector. For everything from SSE2 + // onward this has a single fast instruction with no scary immediates. + // We have to map the mask as it is actually a v4i32 shuffle instruction. + V1 = DAG.getBitcast(MVT::v4i32, V1); + int WidenedMask[4] = { + std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1, + std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1}; + return DAG.getBitcast( + MVT::v2i64, + DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, + getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG))); + } + assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!"); + assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!"); + assert(Mask[0] < 2 && "We sort V1 to be the first input."); + assert(Mask[1] >= 2 && "We sort V2 to be the second input."); + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // When loading a scalar and then shuffling it into a vector we can often do + // the insertion cheaply. + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, MVT::v2i64, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return Insertion; + // Try inverting the insertion since for v2 masks it is easy to do and we + // can't reliably sort the mask one way or the other. + int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2}; + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, MVT::v2i64, V2, V1, InverseMask, Zeroable, Subtarget, DAG)) + return Insertion; + + // We have different paths for blend lowering, but they all must use the + // *exact* same predicate. + bool IsBlendSupported = Subtarget.hasSSE41(); + if (IsBlendSupported) + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG)) + return V; + + // Try to use byte rotation instructions. + // Its more profitable for pre-SSSE3 to use shuffles/unpacks. + if (Subtarget.hasSSSE3()) { + if (Subtarget.hasVLX()) + if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v2i64, V1, V2, + Mask, Subtarget, DAG)) + return Rotate; + + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + } + + // If we have direct support for blends, we should lower by decomposing into + // a permute. That will be faster than the domain cross. + if (IsBlendSupported) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2, + Mask, DAG); + + // We implement this with SHUFPD which is pretty lame because it will likely + // incur 2 cycles of stall for integer vectors on Nehalem and older chips. + // However, all the alternatives are still more cycles and newer chips don't + // have this problem. It would be really nice if x86 had better shuffles here. + V1 = DAG.getBitcast(MVT::v2f64, V1); + V2 = DAG.getBitcast(MVT::v2f64, V2); + return DAG.getBitcast(MVT::v2i64, + DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask)); +} + +/// \brief Test whether this can be lowered with a single SHUFPS instruction. +/// +/// This is used to disable more specialized lowerings when the shufps lowering +/// will happen to be efficient. +static bool isSingleSHUFPSMask(ArrayRef<int> Mask) { + // This routine only handles 128-bit shufps. + assert(Mask.size() == 4 && "Unsupported mask size!"); + assert(Mask[0] >= -1 && Mask[0] < 8 && "Out of bound mask element!"); + assert(Mask[1] >= -1 && Mask[1] < 8 && "Out of bound mask element!"); + assert(Mask[2] >= -1 && Mask[2] < 8 && "Out of bound mask element!"); + assert(Mask[3] >= -1 && Mask[3] < 8 && "Out of bound mask element!"); + + // To lower with a single SHUFPS we need to have the low half and high half + // each requiring a single input. + if (Mask[0] >= 0 && Mask[1] >= 0 && (Mask[0] < 4) != (Mask[1] < 4)) + return false; + if (Mask[2] >= 0 && Mask[3] >= 0 && (Mask[2] < 4) != (Mask[3] < 4)) + return false; + + return true; +} + +/// \brief Lower a vector shuffle using the SHUFPS instruction. +/// +/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS. +/// It makes no assumptions about whether this is the *best* lowering, it simply +/// uses it. +static SDValue lowerVectorShuffleWithSHUFPS(const SDLoc &DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, SelectionDAG &DAG) { + SDValue LowV = V1, HighV = V2; + int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]}; + + int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; }); + + if (NumV2Elements == 1) { + int V2Index = find_if(Mask, [](int M) { return M >= 4; }) - Mask.begin(); + + // Compute the index adjacent to V2Index and in the same half by toggling + // the low bit. + int V2AdjIndex = V2Index ^ 1; + + if (Mask[V2AdjIndex] < 0) { + // Handles all the cases where we have a single V2 element and an undef. + // This will only ever happen in the high lanes because we commute the + // vector otherwise. + if (V2Index < 2) + std::swap(LowV, HighV); + NewMask[V2Index] -= 4; + } else { + // Handle the case where the V2 element ends up adjacent to a V1 element. + // To make this work, blend them together as the first step. + int V1Index = V2AdjIndex; + int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0}; + V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1, + getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); + + // Now proceed to reconstruct the final blend as we have the necessary + // high or low half formed. + if (V2Index < 2) { + LowV = V2; + HighV = V1; + } else { + HighV = V2; + } + NewMask[V1Index] = 2; // We put the V1 element in V2[2]. + NewMask[V2Index] = 0; // We shifted the V2 element into V2[0]. + } + } else if (NumV2Elements == 2) { + if (Mask[0] < 4 && Mask[1] < 4) { + // Handle the easy case where we have V1 in the low lanes and V2 in the + // high lanes. + NewMask[2] -= 4; + NewMask[3] -= 4; + } else if (Mask[2] < 4 && Mask[3] < 4) { + // We also handle the reversed case because this utility may get called + // when we detect a SHUFPS pattern but can't easily commute the shuffle to + // arrange things in the right direction. + NewMask[0] -= 4; + NewMask[1] -= 4; + HighV = V1; + LowV = V2; + } else { + // We have a mixture of V1 and V2 in both low and high lanes. Rather than + // trying to place elements directly, just blend them and set up the final + // shuffle to place them. + + // The first two blend mask elements are for V1, the second two are for + // V2. + int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1], + Mask[2] < 4 ? Mask[2] : Mask[3], + (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4, + (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4}; + V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, + getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); + + // Now we do a normal shuffle of V1 by giving V1 as both operands to + // a blend. + LowV = HighV = V1; + NewMask[0] = Mask[0] < 4 ? 0 : 2; + NewMask[1] = Mask[0] < 4 ? 2 : 0; + NewMask[2] = Mask[2] < 4 ? 1 : 3; + NewMask[3] = Mask[2] < 4 ? 3 : 1; + } + } + return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV, + getV4X86ShuffleImm8ForMask(NewMask, DL, DAG)); +} + +/// \brief Lower 4-lane 32-bit floating point shuffles. +/// +/// Uses instructions exclusively from the floating point unit to minimize +/// domain crossing penalties, as these are sufficient to implement all v4f32 +/// shuffles. +static SDValue lowerV4F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + + int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; }); + + if (NumV2Elements == 0) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( + DL, MVT::v4f32, V1, V2, Mask, Subtarget, DAG)) + return Broadcast; + + // Use even/odd duplicate instructions for masks that match their pattern. + if (Subtarget.hasSSE3()) { + if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) + return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1); + if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3})) + return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1); + } + + if (Subtarget.hasAVX()) { + // If we have AVX, we can use VPERMILPS which will allow folding a load + // into the shuffle. + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + } + + // Use MOVLHPS/MOVHLPS to simulate unary shuffles. These are only valid + // in SSE1 because otherwise they are widened to v2f64 and never get here. + if (!Subtarget.hasSSE2()) { + if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1})) + return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V1); + if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 2, 3})) + return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V1, V1); + } + + // Otherwise, use a straight shuffle of a single input vector. We pass the + // input vector to both operands to simulate this with a SHUFPS. + return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + } + + // There are special ways we can lower some single-element blends. However, we + // have custom ways we can lower more complex single-element blends below that + // we defer to if both this and BLENDPS fail to match, so restrict this to + // when the V2 input is targeting element 0 of the mask -- that is the fast + // case here. + if (NumV2Elements == 1 && Mask[0] >= 4) + if (SDValue V = lowerVectorShuffleAsElementInsertion( + DL, MVT::v4f32, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return V; + + if (Subtarget.hasSSE41()) { + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Use INSERTPS if we can complete the shuffle efficiently. + if (SDValue V = + lowerVectorShuffleAsInsertPS(DL, V1, V2, Mask, Zeroable, DAG)) + return V; + + if (!isSingleSHUFPSMask(Mask)) + if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute( + DL, MVT::v4f32, V1, V2, Mask, DAG)) + return BlendPerm; + } + + // Use low/high mov instructions. These are only valid in SSE1 because + // otherwise they are widened to v2f64 and never get here. + if (!Subtarget.hasSSE2()) { + if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) + return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V2); + if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 6, 7})) + return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V2, V1); + } + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG)) + return V; + + // Otherwise fall back to a SHUFPS lowering strategy. + return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG); +} + +/// \brief Lower 4-lane i32 vector shuffles. +/// +/// We try to handle these with integer-domain shuffles where we can, but for +/// blends we use the floating point domain blend instructions. +static SDValue lowerV4I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return ZExt; + + int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; }); + + if (NumV2Elements == 0) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( + DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) + return Broadcast; + + // Straight shuffle of a single input vector. For everything from SSE2 + // onward this has a single fast instruction with no scary immediates. + // We coerce the shuffle pattern to be compatible with UNPCK instructions + // but we aren't actually going to use the UNPCK instruction because doing + // so prevents folding a load into this instruction or making a copy. + const int UnpackLoMask[] = {0, 0, 1, 1}; + const int UnpackHiMask[] = {2, 2, 3, 3}; + if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1})) + Mask = UnpackLoMask; + else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3})) + Mask = UnpackHiMask; + + return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + } + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // There are special ways we can lower some single-element blends. + if (NumV2Elements == 1) + if (SDValue V = lowerVectorShuffleAsElementInsertion( + DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return V; + + // We have different paths for blend lowering, but they all must use the + // *exact* same predicate. + bool IsBlendSupported = Subtarget.hasSSE41(); + if (IsBlendSupported) + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, + Zeroable, DAG)) + return Masked; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG)) + return V; + + // Try to use byte rotation instructions. + // Its more profitable for pre-SSSE3 to use shuffles/unpacks. + if (Subtarget.hasSSSE3()) { + if (Subtarget.hasVLX()) + if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v4i32, V1, V2, + Mask, Subtarget, DAG)) + return Rotate; + + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + } + + // Assume that a single SHUFPS is faster than an alternative sequence of + // multiple instructions (even if the CPU has a domain penalty). + // If some CPU is harmed by the domain switch, we can fix it in a later pass. + if (!isSingleSHUFPSMask(Mask)) { + // If we have direct support for blends, we should lower by decomposing into + // a permute. That will be faster than the domain cross. + if (IsBlendSupported) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2, + Mask, DAG); + + // Try to lower by permuting the inputs into an unpack instruction. + if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack( + DL, MVT::v4i32, V1, V2, Mask, DAG)) + return Unpack; + } + + // We implement this with SHUFPS because it can blend from two vectors. + // Because we're going to eventually use SHUFPS, we use SHUFPS even to build + // up the inputs, bypassing domain shift penalties that we would incur if we + // directly used PSHUFD on Nehalem and older. For newer chips, this isn't + // relevant. + SDValue CastV1 = DAG.getBitcast(MVT::v4f32, V1); + SDValue CastV2 = DAG.getBitcast(MVT::v4f32, V2); + SDValue ShufPS = DAG.getVectorShuffle(MVT::v4f32, DL, CastV1, CastV2, Mask); + return DAG.getBitcast(MVT::v4i32, ShufPS); +} + +/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2 +/// shuffle lowering, and the most complex part. +/// +/// The lowering strategy is to try to form pairs of input lanes which are +/// targeted at the same half of the final vector, and then use a dword shuffle +/// to place them onto the right half, and finally unpack the paired lanes into +/// their final position. +/// +/// The exact breakdown of how to form these dword pairs and align them on the +/// correct sides is really tricky. See the comments within the function for +/// more of the details. +/// +/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each +/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to +/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16 +/// vector, form the analogous 128-bit 8-element Mask. +static SDValue lowerV8I16GeneralSingleInputVectorShuffle( + const SDLoc &DL, MVT VT, SDValue V, MutableArrayRef<int> Mask, + const X86Subtarget &Subtarget, SelectionDAG &DAG) { + assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!"); + MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); + + assert(Mask.size() == 8 && "Shuffle mask length doesn't match!"); + MutableArrayRef<int> LoMask = Mask.slice(0, 4); + MutableArrayRef<int> HiMask = Mask.slice(4, 4); + + SmallVector<int, 4> LoInputs; + copy_if(LoMask, std::back_inserter(LoInputs), [](int M) { return M >= 0; }); + std::sort(LoInputs.begin(), LoInputs.end()); + LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end()); + SmallVector<int, 4> HiInputs; + copy_if(HiMask, std::back_inserter(HiInputs), [](int M) { return M >= 0; }); + std::sort(HiInputs.begin(), HiInputs.end()); + HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end()); + int NumLToL = + std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin(); + int NumHToL = LoInputs.size() - NumLToL; + int NumLToH = + std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin(); + int NumHToH = HiInputs.size() - NumLToH; + MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL); + MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH); + MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL); + MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH); + + // If we are splatting two values from one half - one to each half, then + // we can shuffle that half so each is splatted to a dword, then splat those + // to their respective halves. + auto SplatHalfs = [&](int LoInput, int HiInput, unsigned ShufWOp, + int DOffset) { + int PSHUFHalfMask[] = {LoInput % 4, LoInput % 4, HiInput % 4, HiInput % 4}; + int PSHUFDMask[] = {DOffset + 0, DOffset + 0, DOffset + 1, DOffset + 1}; + V = DAG.getNode(ShufWOp, DL, VT, V, + getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG)); + V = DAG.getBitcast(PSHUFDVT, V); + V = DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, V, + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)); + return DAG.getBitcast(VT, V); + }; + + if (NumLToL == 1 && NumLToH == 1 && (NumHToL + NumHToH) == 0) + return SplatHalfs(LToLInputs[0], LToHInputs[0], X86ISD::PSHUFLW, 0); + if (NumHToL == 1 && NumHToH == 1 && (NumLToL + NumLToH) == 0) + return SplatHalfs(HToLInputs[0], HToHInputs[0], X86ISD::PSHUFHW, 2); + + // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all + // such inputs we can swap two of the dwords across the half mark and end up + // with <=2 inputs to each half in each half. Once there, we can fall through + // to the generic code below. For example: + // + // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] + // Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5] + // + // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half + // and an existing 2-into-2 on the other half. In this case we may have to + // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or + // 1-into-3 which could cause us to cycle endlessly fixing each side in turn. + // Fortunately, we don't have to handle anything but a 2-into-2 pattern + // because any other situation (including a 3-into-1 or 1-into-3 in the other + // half than the one we target for fixing) will be fixed when we re-enter this + // path. We will also combine away any sequence of PSHUFD instructions that + // result into a single instruction. Here is an example of the tricky case: + // + // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] + // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3] + // + // This now has a 1-into-3 in the high half! Instead, we do two shuffles: + // + // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h] + // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6] + // + // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h] + // Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6] + // + // The result is fine to be handled by the generic logic. + auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs, + ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs, + int AOffset, int BOffset) { + assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) && + "Must call this with A having 3 or 1 inputs from the A half."); + assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) && + "Must call this with B having 1 or 3 inputs from the B half."); + assert(AToAInputs.size() + BToAInputs.size() == 4 && + "Must call this with either 3:1 or 1:3 inputs (summing to 4)."); + + bool ThreeAInputs = AToAInputs.size() == 3; + + // Compute the index of dword with only one word among the three inputs in + // a half by taking the sum of the half with three inputs and subtracting + // the sum of the actual three inputs. The difference is the remaining + // slot. + int ADWord, BDWord; + int &TripleDWord = ThreeAInputs ? ADWord : BDWord; + int &OneInputDWord = ThreeAInputs ? BDWord : ADWord; + int TripleInputOffset = ThreeAInputs ? AOffset : BOffset; + ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs; + int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0]; + int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset); + int TripleNonInputIdx = + TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0); + TripleDWord = TripleNonInputIdx / 2; + + // We use xor with one to compute the adjacent DWord to whichever one the + // OneInput is in. + OneInputDWord = (OneInput / 2) ^ 1; + + // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA + // and BToA inputs. If there is also such a problem with the BToB and AToB + // inputs, we don't try to fix it necessarily -- we'll recurse and see it in + // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it + // is essential that we don't *create* a 3<-1 as then we might oscillate. + if (BToBInputs.size() == 2 && AToBInputs.size() == 2) { + // Compute how many inputs will be flipped by swapping these DWords. We + // need + // to balance this to ensure we don't form a 3-1 shuffle in the other + // half. + int NumFlippedAToBInputs = + std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) + + std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1); + int NumFlippedBToBInputs = + std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) + + std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1); + if ((NumFlippedAToBInputs == 1 && + (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) || + (NumFlippedBToBInputs == 1 && + (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) { + // We choose whether to fix the A half or B half based on whether that + // half has zero flipped inputs. At zero, we may not be able to fix it + // with that half. We also bias towards fixing the B half because that + // will more commonly be the high half, and we have to bias one way. + auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord, + ArrayRef<int> Inputs) { + int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot. + bool IsFixIdxInput = is_contained(Inputs, PinnedIdx ^ 1); + // Determine whether the free index is in the flipped dword or the + // unflipped dword based on where the pinned index is. We use this bit + // in an xor to conditionally select the adjacent dword. + int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord)); + bool IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx); + if (IsFixIdxInput == IsFixFreeIdxInput) + FixFreeIdx += 1; + IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx); + assert(IsFixIdxInput != IsFixFreeIdxInput && + "We need to be changing the number of flipped inputs!"); + int PSHUFHalfMask[] = {0, 1, 2, 3}; + std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]); + V = DAG.getNode( + FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL, + MVT::getVectorVT(MVT::i16, V.getValueSizeInBits() / 16), V, + getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG)); + + for (int &M : Mask) + if (M >= 0 && M == FixIdx) + M = FixFreeIdx; + else if (M >= 0 && M == FixFreeIdx) + M = FixIdx; + }; + if (NumFlippedBToBInputs != 0) { + int BPinnedIdx = + BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput; + FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs); + } else { + assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!"); + int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput; + FixFlippedInputs(APinnedIdx, ADWord, AToBInputs); + } + } + } + + int PSHUFDMask[] = {0, 1, 2, 3}; + PSHUFDMask[ADWord] = BDWord; + PSHUFDMask[BDWord] = ADWord; + V = DAG.getBitcast( + VT, + DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); + + // Adjust the mask to match the new locations of A and B. + for (int &M : Mask) + if (M >= 0 && M/2 == ADWord) + M = 2 * BDWord + M % 2; + else if (M >= 0 && M/2 == BDWord) + M = 2 * ADWord + M % 2; + + // Recurse back into this routine to re-compute state now that this isn't + // a 3 and 1 problem. + return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget, + DAG); + }; + if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3)) + return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4); + if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3)) + return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0); + + // At this point there are at most two inputs to the low and high halves from + // each half. That means the inputs can always be grouped into dwords and + // those dwords can then be moved to the correct half with a dword shuffle. + // We use at most one low and one high word shuffle to collect these paired + // inputs into dwords, and finally a dword shuffle to place them. + int PSHUFLMask[4] = {-1, -1, -1, -1}; + int PSHUFHMask[4] = {-1, -1, -1, -1}; + int PSHUFDMask[4] = {-1, -1, -1, -1}; + + // First fix the masks for all the inputs that are staying in their + // original halves. This will then dictate the targets of the cross-half + // shuffles. + auto fixInPlaceInputs = + [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs, + MutableArrayRef<int> SourceHalfMask, + MutableArrayRef<int> HalfMask, int HalfOffset) { + if (InPlaceInputs.empty()) + return; + if (InPlaceInputs.size() == 1) { + SourceHalfMask[InPlaceInputs[0] - HalfOffset] = + InPlaceInputs[0] - HalfOffset; + PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2; + return; + } + if (IncomingInputs.empty()) { + // Just fix all of the in place inputs. + for (int Input : InPlaceInputs) { + SourceHalfMask[Input - HalfOffset] = Input - HalfOffset; + PSHUFDMask[Input / 2] = Input / 2; + } + return; + } + + assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!"); + SourceHalfMask[InPlaceInputs[0] - HalfOffset] = + InPlaceInputs[0] - HalfOffset; + // Put the second input next to the first so that they are packed into + // a dword. We find the adjacent index by toggling the low bit. + int AdjIndex = InPlaceInputs[0] ^ 1; + SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset; + std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex); + PSHUFDMask[AdjIndex / 2] = AdjIndex / 2; + }; + fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0); + fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4); + + // Now gather the cross-half inputs and place them into a free dword of + // their target half. + // FIXME: This operation could almost certainly be simplified dramatically to + // look more like the 3-1 fixing operation. + auto moveInputsToRightHalf = [&PSHUFDMask]( + MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs, + MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask, + MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset, + int DestOffset) { + auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) { + return SourceHalfMask[Word] >= 0 && SourceHalfMask[Word] != Word; + }; + auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask, + int Word) { + int LowWord = Word & ~1; + int HighWord = Word | 1; + return isWordClobbered(SourceHalfMask, LowWord) || + isWordClobbered(SourceHalfMask, HighWord); + }; + + if (IncomingInputs.empty()) + return; + + if (ExistingInputs.empty()) { + // Map any dwords with inputs from them into the right half. + for (int Input : IncomingInputs) { + // If the source half mask maps over the inputs, turn those into + // swaps and use the swapped lane. + if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) { + if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] < 0) { + SourceHalfMask[SourceHalfMask[Input - SourceOffset]] = + Input - SourceOffset; + // We have to swap the uses in our half mask in one sweep. + for (int &M : HalfMask) + if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset) + M = Input; + else if (M == Input) + M = SourceHalfMask[Input - SourceOffset] + SourceOffset; + } else { + assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == + Input - SourceOffset && + "Previous placement doesn't match!"); + } + // Note that this correctly re-maps both when we do a swap and when + // we observe the other side of the swap above. We rely on that to + // avoid swapping the members of the input list directly. + Input = SourceHalfMask[Input - SourceOffset] + SourceOffset; + } + + // Map the input's dword into the correct half. + if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] < 0) + PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2; + else + assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == + Input / 2 && + "Previous placement doesn't match!"); + } + + // And just directly shift any other-half mask elements to be same-half + // as we will have mirrored the dword containing the element into the + // same position within that half. + for (int &M : HalfMask) + if (M >= SourceOffset && M < SourceOffset + 4) { + M = M - SourceOffset + DestOffset; + assert(M >= 0 && "This should never wrap below zero!"); + } + return; + } + + // Ensure we have the input in a viable dword of its current half. This + // is particularly tricky because the original position may be clobbered + // by inputs being moved and *staying* in that half. + if (IncomingInputs.size() == 1) { + if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { + int InputFixed = find(SourceHalfMask, -1) - std::begin(SourceHalfMask) + + SourceOffset; + SourceHalfMask[InputFixed - SourceOffset] = + IncomingInputs[0] - SourceOffset; + std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0], + InputFixed); + IncomingInputs[0] = InputFixed; + } + } else if (IncomingInputs.size() == 2) { + if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 || + isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { + // We have two non-adjacent or clobbered inputs we need to extract from + // the source half. To do this, we need to map them into some adjacent + // dword slot in the source mask. + int InputsFixed[2] = {IncomingInputs[0] - SourceOffset, + IncomingInputs[1] - SourceOffset}; + + // If there is a free slot in the source half mask adjacent to one of + // the inputs, place the other input in it. We use (Index XOR 1) to + // compute an adjacent index. + if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) && + SourceHalfMask[InputsFixed[0] ^ 1] < 0) { + SourceHalfMask[InputsFixed[0]] = InputsFixed[0]; + SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; + InputsFixed[1] = InputsFixed[0] ^ 1; + } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) && + SourceHalfMask[InputsFixed[1] ^ 1] < 0) { + SourceHalfMask[InputsFixed[1]] = InputsFixed[1]; + SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0]; + InputsFixed[0] = InputsFixed[1] ^ 1; + } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] < 0 && + SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] < 0) { + // The two inputs are in the same DWord but it is clobbered and the + // adjacent DWord isn't used at all. Move both inputs to the free + // slot. + SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0]; + SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1]; + InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1); + InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1; + } else { + // The only way we hit this point is if there is no clobbering + // (because there are no off-half inputs to this half) and there is no + // free slot adjacent to one of the inputs. In this case, we have to + // swap an input with a non-input. + for (int i = 0; i < 4; ++i) + assert((SourceHalfMask[i] < 0 || SourceHalfMask[i] == i) && + "We can't handle any clobbers here!"); + assert(InputsFixed[1] != (InputsFixed[0] ^ 1) && + "Cannot have adjacent inputs here!"); + + SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; + SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1; + + // We also have to update the final source mask in this case because + // it may need to undo the above swap. + for (int &M : FinalSourceHalfMask) + if (M == (InputsFixed[0] ^ 1) + SourceOffset) + M = InputsFixed[1] + SourceOffset; + else if (M == InputsFixed[1] + SourceOffset) + M = (InputsFixed[0] ^ 1) + SourceOffset; + + InputsFixed[1] = InputsFixed[0] ^ 1; + } + + // Point everything at the fixed inputs. + for (int &M : HalfMask) + if (M == IncomingInputs[0]) + M = InputsFixed[0] + SourceOffset; + else if (M == IncomingInputs[1]) + M = InputsFixed[1] + SourceOffset; + + IncomingInputs[0] = InputsFixed[0] + SourceOffset; + IncomingInputs[1] = InputsFixed[1] + SourceOffset; + } + } else { + llvm_unreachable("Unhandled input size!"); + } + + // Now hoist the DWord down to the right half. + int FreeDWord = (PSHUFDMask[DestOffset / 2] < 0 ? 0 : 1) + DestOffset / 2; + assert(PSHUFDMask[FreeDWord] < 0 && "DWord not free"); + PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2; + for (int &M : HalfMask) + for (int Input : IncomingInputs) + if (M == Input) + M = FreeDWord * 2 + Input % 2; + }; + moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask, + /*SourceOffset*/ 4, /*DestOffset*/ 0); + moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask, + /*SourceOffset*/ 0, /*DestOffset*/ 4); + + // Now enact all the shuffles we've computed to move the inputs into their + // target half. + if (!isNoopShuffleMask(PSHUFLMask)) + V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, + getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG)); + if (!isNoopShuffleMask(PSHUFHMask)) + V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, + getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG)); + if (!isNoopShuffleMask(PSHUFDMask)) + V = DAG.getBitcast( + VT, + DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); + + // At this point, each half should contain all its inputs, and we can then + // just shuffle them into their final position. + assert(count_if(LoMask, [](int M) { return M >= 4; }) == 0 && + "Failed to lift all the high half inputs to the low mask!"); + assert(count_if(HiMask, [](int M) { return M >= 0 && M < 4; }) == 0 && + "Failed to lift all the low half inputs to the high mask!"); + + // Do a half shuffle for the low mask. + if (!isNoopShuffleMask(LoMask)) + V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, + getV4X86ShuffleImm8ForMask(LoMask, DL, DAG)); + + // Do a half shuffle with the high mask after shifting its values down. + for (int &M : HiMask) + if (M >= 0) + M -= 4; + if (!isNoopShuffleMask(HiMask)) + V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, + getV4X86ShuffleImm8ForMask(HiMask, DL, DAG)); + + return V; +} + +/// Helper to form a PSHUFB-based shuffle+blend, opportunistically avoiding the +/// blend if only one input is used. +static SDValue lowerVectorShuffleAsBlendOfPSHUFBs( + const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, + const APInt &Zeroable, SelectionDAG &DAG, bool &V1InUse, + bool &V2InUse) { + SDValue V1Mask[16]; + SDValue V2Mask[16]; + V1InUse = false; + V2InUse = false; + + int Size = Mask.size(); + int Scale = 16 / Size; + for (int i = 0; i < 16; ++i) { + if (Mask[i / Scale] < 0) { + V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8); + } else { + const int ZeroMask = 0x80; + int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale + : ZeroMask; + int V2Idx = Mask[i / Scale] < Size + ? ZeroMask + : (Mask[i / Scale] - Size) * Scale + i % Scale; + if (Zeroable[i / Scale]) + V1Idx = V2Idx = ZeroMask; + V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8); + V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8); + V1InUse |= (ZeroMask != V1Idx); + V2InUse |= (ZeroMask != V2Idx); + } + } + + if (V1InUse) + V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, + DAG.getBitcast(MVT::v16i8, V1), + DAG.getBuildVector(MVT::v16i8, DL, V1Mask)); + if (V2InUse) + V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, + DAG.getBitcast(MVT::v16i8, V2), + DAG.getBuildVector(MVT::v16i8, DL, V2Mask)); + + // If we need shuffled inputs from both, blend the two. + SDValue V; + if (V1InUse && V2InUse) + V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2); + else + V = V1InUse ? V1 : V2; + + // Cast the result back to the correct type. + return DAG.getBitcast(VT, V); +} + +/// \brief Generic lowering of 8-lane i16 shuffles. +/// +/// This handles both single-input shuffles and combined shuffle/blends with +/// two inputs. The single input shuffles are immediately delegated to +/// a dedicated lowering routine. +/// +/// The blends are lowered in one of three fundamental ways. If there are few +/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle +/// of the input is significantly cheaper when lowered as an interleaving of +/// the two inputs, try to interleave them. Otherwise, blend the low and high +/// halves of the inputs separately (making them have relatively few inputs) +/// and then concatenate them. +static SDValue lowerV8I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return ZExt; + + int NumV2Inputs = count_if(Mask, [](int M) { return M >= 8; }); + + if (NumV2Inputs == 0) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( + DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) + return Broadcast; + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG)) + return V; + + // Use dedicated pack instructions for masks that match their pattern. + if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, + DAG, Subtarget)) + return V; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1, + Mask, Subtarget, DAG)) + return Rotate; + + // Make a copy of the mask so it can be modified. + SmallVector<int, 8> MutableMask(Mask.begin(), Mask.end()); + return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, + MutableMask, Subtarget, + DAG); + } + + assert(llvm::any_of(Mask, [](int M) { return M >= 0 && M < 8; }) && + "All single-input shuffles should be canonicalized to be V1-input " + "shuffles."); + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // See if we can use SSE4A Extraction / Insertion. + if (Subtarget.hasSSE4A()) + if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask, + Zeroable, DAG)) + return V; + + // There are special ways we can lower some single-element blends. + if (NumV2Inputs == 1) + if (SDValue V = lowerVectorShuffleAsElementInsertion( + DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return V; + + // We have different paths for blend lowering, but they all must use the + // *exact* same predicate. + bool IsBlendSupported = Subtarget.hasSSE41(); + if (IsBlendSupported) + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, + Zeroable, DAG)) + return Masked; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG)) + return V; + + // Use dedicated pack instructions for masks that match their pattern. + if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, DAG, + Subtarget)) + return V; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + if (SDValue BitBlend = + lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG)) + return BitBlend; + + // Try to lower by permuting the inputs into an unpack instruction. + if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1, + V2, Mask, DAG)) + return Unpack; + + // If we can't directly blend but can use PSHUFB, that will be better as it + // can both shuffle and set up the inefficient blend. + if (!IsBlendSupported && Subtarget.hasSSSE3()) { + bool V1InUse, V2InUse; + return lowerVectorShuffleAsBlendOfPSHUFBs(DL, MVT::v8i16, V1, V2, Mask, + Zeroable, DAG, V1InUse, V2InUse); + } + + // We can always bit-blend if we have to so the fallback strategy is to + // decompose into single-input permutes and blends. + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2, + Mask, DAG); +} + +/// \brief Check whether a compaction lowering can be done by dropping even +/// elements and compute how many times even elements must be dropped. +/// +/// This handles shuffles which take every Nth element where N is a power of +/// two. Example shuffle masks: +/// +/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14 +/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 +/// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12 +/// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28 +/// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8 +/// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24 +/// +/// Any of these lanes can of course be undef. +/// +/// This routine only supports N <= 3. +/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here +/// for larger N. +/// +/// \returns N above, or the number of times even elements must be dropped if +/// there is such a number. Otherwise returns zero. +static int canLowerByDroppingEvenElements(ArrayRef<int> Mask, + bool IsSingleInput) { + // The modulus for the shuffle vector entries is based on whether this is + // a single input or not. + int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2); + assert(isPowerOf2_32((uint32_t)ShuffleModulus) && + "We should only be called with masks with a power-of-2 size!"); + + uint64_t ModMask = (uint64_t)ShuffleModulus - 1; + + // We track whether the input is viable for all power-of-2 strides 2^1, 2^2, + // and 2^3 simultaneously. This is because we may have ambiguity with + // partially undef inputs. + bool ViableForN[3] = {true, true, true}; + + for (int i = 0, e = Mask.size(); i < e; ++i) { + // Ignore undef lanes, we'll optimistically collapse them to the pattern we + // want. + if (Mask[i] < 0) + continue; + + bool IsAnyViable = false; + for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) + if (ViableForN[j]) { + uint64_t N = j + 1; + + // The shuffle mask must be equal to (i * 2^N) % M. + if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask)) + IsAnyViable = true; + else + ViableForN[j] = false; + } + // Early exit if we exhaust the possible powers of two. + if (!IsAnyViable) + break; + } + + for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) + if (ViableForN[j]) + return j + 1; + + // Return 0 as there is no viable power of two. + return 0; +} + +static SDValue lowerVectorShuffleWithPERMV(const SDLoc &DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, SelectionDAG &DAG) { + MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); + MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements()); + + SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true); + if (V2.isUndef()) + return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1); + + return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2); +} + +/// \brief Generic lowering of v16i8 shuffles. +/// +/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to +/// detect any complexity reducing interleaving. If that doesn't help, it uses +/// UNPCK to spread the i8 elements across two i16-element vectors, and uses +/// the existing lowering for v8i16 blends on each half, finally PACK-ing them +/// back together. +static SDValue lowerV16I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); + assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + // Use dedicated pack instructions for masks that match their pattern. + if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v16i8, Mask, V1, V2, DAG, + Subtarget)) + return V; + + // Try to use a zext lowering. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return ZExt; + + // See if we can use SSE4A Extraction / Insertion. + if (Subtarget.hasSSE4A()) + if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask, + Zeroable, DAG)) + return V; + + int NumV2Elements = count_if(Mask, [](int M) { return M >= 16; }); + + // For single-input shuffles, there are some nicer lowering tricks we can use. + if (NumV2Elements == 0) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( + DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) + return Broadcast; + + // Check whether we can widen this to an i16 shuffle by duplicating bytes. + // Notably, this handles splat and partial-splat shuffles more efficiently. + // However, it only makes sense if the pre-duplication shuffle simplifies + // things significantly. Currently, this means we need to be able to + // express the pre-duplication shuffle as an i16 shuffle. + // + // FIXME: We should check for other patterns which can be widened into an + // i16 shuffle as well. + auto canWidenViaDuplication = [](ArrayRef<int> Mask) { + for (int i = 0; i < 16; i += 2) + if (Mask[i] >= 0 && Mask[i + 1] >= 0 && Mask[i] != Mask[i + 1]) + return false; + + return true; + }; + auto tryToWidenViaDuplication = [&]() -> SDValue { + if (!canWidenViaDuplication(Mask)) + return SDValue(); + SmallVector<int, 4> LoInputs; + copy_if(Mask, std::back_inserter(LoInputs), + [](int M) { return M >= 0 && M < 8; }); + std::sort(LoInputs.begin(), LoInputs.end()); + LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), + LoInputs.end()); + SmallVector<int, 4> HiInputs; + copy_if(Mask, std::back_inserter(HiInputs), [](int M) { return M >= 8; }); + std::sort(HiInputs.begin(), HiInputs.end()); + HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), + HiInputs.end()); + + bool TargetLo = LoInputs.size() >= HiInputs.size(); + ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs; + ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs; + + int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1}; + SmallDenseMap<int, int, 8> LaneMap; + for (int I : InPlaceInputs) { + PreDupI16Shuffle[I/2] = I/2; + LaneMap[I] = I; + } + int j = TargetLo ? 0 : 4, je = j + 4; + for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) { + // Check if j is already a shuffle of this input. This happens when + // there are two adjacent bytes after we move the low one. + if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) { + // If we haven't yet mapped the input, search for a slot into which + // we can map it. + while (j < je && PreDupI16Shuffle[j] >= 0) + ++j; + + if (j == je) + // We can't place the inputs into a single half with a simple i16 shuffle, so bail. + return SDValue(); + + // Map this input with the i16 shuffle. + PreDupI16Shuffle[j] = MovingInputs[i] / 2; + } + + // Update the lane map based on the mapping we ended up with. + LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2; + } + V1 = DAG.getBitcast( + MVT::v16i8, + DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), + DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle)); + + // Unpack the bytes to form the i16s that will be shuffled into place. + V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, + MVT::v16i8, V1, V1); + + int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; + for (int i = 0; i < 16; ++i) + if (Mask[i] >= 0) { + int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8); + assert(MappedMask < 8 && "Invalid v8 shuffle mask!"); + if (PostDupI16Shuffle[i / 2] < 0) + PostDupI16Shuffle[i / 2] = MappedMask; + else + assert(PostDupI16Shuffle[i / 2] == MappedMask && + "Conflicting entries in the original shuffle!"); + } + return DAG.getBitcast( + MVT::v16i8, + DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), + DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle)); + }; + if (SDValue V = tryToWidenViaDuplication()) + return V; + } + + if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask, + Zeroable, DAG)) + return Masked; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG)) + return V; + + // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly + // with PSHUFB. It is important to do this before we attempt to generate any + // blends but after all of the single-input lowerings. If the single input + // lowerings can find an instruction sequence that is faster than a PSHUFB, we + // want to preserve that and we can DAG combine any longer sequences into + // a PSHUFB in the end. But once we start blending from multiple inputs, + // the complexity of DAG combining bad patterns back into PSHUFB is too high, + // and there are *very* few patterns that would actually be faster than the + // PSHUFB approach because of its ability to zero lanes. + // + // FIXME: The only exceptions to the above are blends which are exact + // interleavings with direct instructions supporting them. We currently don't + // handle those well here. + if (Subtarget.hasSSSE3()) { + bool V1InUse = false; + bool V2InUse = false; + + SDValue PSHUFB = lowerVectorShuffleAsBlendOfPSHUFBs( + DL, MVT::v16i8, V1, V2, Mask, Zeroable, DAG, V1InUse, V2InUse); + + // If both V1 and V2 are in use and we can use a direct blend or an unpack, + // do so. This avoids using them to handle blends-with-zero which is + // important as a single pshufb is significantly faster for that. + if (V1InUse && V2InUse) { + if (Subtarget.hasSSE41()) + if (SDValue Blend = lowerVectorShuffleAsBlend( + DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return Blend; + + // We can use an unpack to do the blending rather than an or in some + // cases. Even though the or may be (very minorly) more efficient, we + // preference this lowering because there are common cases where part of + // the complexity of the shuffles goes away when we do the final blend as + // an unpack. + // FIXME: It might be worth trying to detect if the unpack-feeding + // shuffles will both be pshufb, in which case we shouldn't bother with + // this. + if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack( + DL, MVT::v16i8, V1, V2, Mask, DAG)) + return Unpack; + + // If we have VBMI we can use one VPERM instead of multiple PSHUFBs. + if (Subtarget.hasVBMI() && Subtarget.hasVLX()) + return lowerVectorShuffleWithPERMV(DL, MVT::v16i8, Mask, V1, V2, DAG); + } + + return PSHUFB; + } + + // There are special ways we can lower some single-element blends. + if (NumV2Elements == 1) + if (SDValue V = lowerVectorShuffleAsElementInsertion( + DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return V; + + if (SDValue BitBlend = + lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG)) + return BitBlend; + + // Check whether a compaction lowering can be done. This handles shuffles + // which take every Nth element for some even N. See the helper function for + // details. + // + // We special case these as they can be particularly efficiently handled with + // the PACKUSB instruction on x86 and they show up in common patterns of + // rearranging bytes to truncate wide elements. + bool IsSingleInput = V2.isUndef(); + if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask, IsSingleInput)) { + // NumEvenDrops is the power of two stride of the elements. Another way of + // thinking about it is that we need to drop the even elements this many + // times to get the original input. + + // First we need to zero all the dropped bytes. + assert(NumEvenDrops <= 3 && + "No support for dropping even elements more than 3 times."); + // We use the mask type to pick which bytes are preserved based on how many + // elements are dropped. + MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 }; + SDValue ByteClearMask = DAG.getBitcast( + MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1])); + V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask); + if (!IsSingleInput) + V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask); + + // Now pack things back together. + V1 = DAG.getBitcast(MVT::v8i16, V1); + V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2); + SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2); + for (int i = 1; i < NumEvenDrops; ++i) { + Result = DAG.getBitcast(MVT::v8i16, Result); + Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result); + } + + return Result; + } + + // Handle multi-input cases by blending single-input shuffles. + if (NumV2Elements > 0) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2, + Mask, DAG); + + // The fallback path for single-input shuffles widens this into two v8i16 + // vectors with unpacks, shuffles those, and then pulls them back together + // with a pack. + SDValue V = V1; + + std::array<int, 8> LoBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}}; + std::array<int, 8> HiBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}}; + for (int i = 0; i < 16; ++i) + if (Mask[i] >= 0) + (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i]; + + SDValue VLoHalf, VHiHalf; + // Check if any of the odd lanes in the v16i8 are used. If not, we can mask + // them out and avoid using UNPCK{L,H} to extract the elements of V as + // i16s. + if (none_of(LoBlendMask, [](int M) { return M >= 0 && M % 2 == 1; }) && + none_of(HiBlendMask, [](int M) { return M >= 0 && M % 2 == 1; })) { + // Use a mask to drop the high bytes. + VLoHalf = DAG.getBitcast(MVT::v8i16, V); + VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf, + DAG.getConstant(0x00FF, DL, MVT::v8i16)); + + // This will be a single vector shuffle instead of a blend so nuke VHiHalf. + VHiHalf = DAG.getUNDEF(MVT::v8i16); + + // Squash the masks to point directly into VLoHalf. + for (int &M : LoBlendMask) + if (M >= 0) + M /= 2; + for (int &M : HiBlendMask) + if (M >= 0) + M /= 2; + } else { + // Otherwise just unpack the low half of V into VLoHalf and the high half into + // VHiHalf so that we can blend them as i16s. + SDValue Zero = getZeroVector(MVT::v16i8, Subtarget, DAG, DL); + + VLoHalf = DAG.getBitcast( + MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero)); + VHiHalf = DAG.getBitcast( + MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero)); + } + + SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask); + SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask); + + return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV); +} + +/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles. +/// +/// This routine breaks down the specific type of 128-bit shuffle and +/// dispatches to the lowering routines accordingly. +static SDValue lower128BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + MVT VT, SDValue V1, SDValue V2, + const APInt &Zeroable, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + switch (VT.SimpleTy) { + case MVT::v2i64: + return lowerV2I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v2f64: + return lowerV2F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v4i32: + return lowerV4I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v4f32: + return lowerV4F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v8i16: + return lowerV8I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v16i8: + return lowerV16I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + + default: + llvm_unreachable("Unimplemented!"); + } +} + +/// \brief Generic routine to split vector shuffle into half-sized shuffles. +/// +/// This routine just extracts two subvectors, shuffles them independently, and +/// then concatenates them back together. This should work effectively with all +/// AVX vector shuffle types. +static SDValue splitAndLowerVectorShuffle(const SDLoc &DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(VT.getSizeInBits() >= 256 && + "Only for 256-bit or wider vector shuffles!"); + assert(V1.getSimpleValueType() == VT && "Bad operand type!"); + assert(V2.getSimpleValueType() == VT && "Bad operand type!"); + + ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2); + ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2); + + int NumElements = VT.getVectorNumElements(); + int SplitNumElements = NumElements / 2; + MVT ScalarVT = VT.getVectorElementType(); + MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2); + + // Rather than splitting build-vectors, just build two narrower build + // vectors. This helps shuffling with splats and zeros. + auto SplitVector = [&](SDValue V) { + V = peekThroughBitcasts(V); + + MVT OrigVT = V.getSimpleValueType(); + int OrigNumElements = OrigVT.getVectorNumElements(); + int OrigSplitNumElements = OrigNumElements / 2; + MVT OrigScalarVT = OrigVT.getVectorElementType(); + MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2); + + SDValue LoV, HiV; + + auto *BV = dyn_cast<BuildVectorSDNode>(V); + if (!BV) { + LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, + DAG.getIntPtrConstant(0, DL)); + HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, + DAG.getIntPtrConstant(OrigSplitNumElements, DL)); + } else { + + SmallVector<SDValue, 16> LoOps, HiOps; + for (int i = 0; i < OrigSplitNumElements; ++i) { + LoOps.push_back(BV->getOperand(i)); + HiOps.push_back(BV->getOperand(i + OrigSplitNumElements)); + } + LoV = DAG.getBuildVector(OrigSplitVT, DL, LoOps); + HiV = DAG.getBuildVector(OrigSplitVT, DL, HiOps); + } + return std::make_pair(DAG.getBitcast(SplitVT, LoV), + DAG.getBitcast(SplitVT, HiV)); + }; + + SDValue LoV1, HiV1, LoV2, HiV2; + std::tie(LoV1, HiV1) = SplitVector(V1); + std::tie(LoV2, HiV2) = SplitVector(V2); + + // Now create two 4-way blends of these half-width vectors. + auto HalfBlend = [&](ArrayRef<int> HalfMask) { + bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false; + SmallVector<int, 32> V1BlendMask((unsigned)SplitNumElements, -1); + SmallVector<int, 32> V2BlendMask((unsigned)SplitNumElements, -1); + SmallVector<int, 32> BlendMask((unsigned)SplitNumElements, -1); + for (int i = 0; i < SplitNumElements; ++i) { + int M = HalfMask[i]; + if (M >= NumElements) { + if (M >= NumElements + SplitNumElements) + UseHiV2 = true; + else + UseLoV2 = true; + V2BlendMask[i] = M - NumElements; + BlendMask[i] = SplitNumElements + i; + } else if (M >= 0) { + if (M >= SplitNumElements) + UseHiV1 = true; + else + UseLoV1 = true; + V1BlendMask[i] = M; + BlendMask[i] = i; + } + } + + // Because the lowering happens after all combining takes place, we need to + // manually combine these blend masks as much as possible so that we create + // a minimal number of high-level vector shuffle nodes. + + // First try just blending the halves of V1 or V2. + if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2) + return DAG.getUNDEF(SplitVT); + if (!UseLoV2 && !UseHiV2) + return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); + if (!UseLoV1 && !UseHiV1) + return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); + + SDValue V1Blend, V2Blend; + if (UseLoV1 && UseHiV1) { + V1Blend = + DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); + } else { + // We only use half of V1 so map the usage down into the final blend mask. + V1Blend = UseLoV1 ? LoV1 : HiV1; + for (int i = 0; i < SplitNumElements; ++i) + if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements) + BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements); + } + if (UseLoV2 && UseHiV2) { + V2Blend = + DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); + } else { + // We only use half of V2 so map the usage down into the final blend mask. + V2Blend = UseLoV2 ? LoV2 : HiV2; + for (int i = 0; i < SplitNumElements; ++i) + if (BlendMask[i] >= SplitNumElements) + BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0); + } + return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask); + }; + SDValue Lo = HalfBlend(LoMask); + SDValue Hi = HalfBlend(HiMask); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); +} + +/// \brief Either split a vector in halves or decompose the shuffles and the +/// blend. +/// +/// This is provided as a good fallback for many lowerings of non-single-input +/// shuffles with more than one 128-bit lane. In those cases, we want to select +/// between splitting the shuffle into 128-bit components and stitching those +/// back together vs. extracting the single-input shuffles and blending those +/// results. +static SDValue lowerVectorShuffleAsSplitOrBlend(const SDLoc &DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(!V2.isUndef() && "This routine must not be used to lower single-input " + "shuffles as it could then recurse on itself."); + int Size = Mask.size(); + + // If this can be modeled as a broadcast of two elements followed by a blend, + // prefer that lowering. This is especially important because broadcasts can + // often fold with memory operands. + auto DoBothBroadcast = [&] { + int V1BroadcastIdx = -1, V2BroadcastIdx = -1; + for (int M : Mask) + if (M >= Size) { + if (V2BroadcastIdx < 0) + V2BroadcastIdx = M - Size; + else if (M - Size != V2BroadcastIdx) + return false; + } else if (M >= 0) { + if (V1BroadcastIdx < 0) + V1BroadcastIdx = M; + else if (M != V1BroadcastIdx) + return false; + } + return true; + }; + if (DoBothBroadcast()) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, + DAG); + + // If the inputs all stem from a single 128-bit lane of each input, then we + // split them rather than blending because the split will decompose to + // unusually few instructions. + int LaneCount = VT.getSizeInBits() / 128; + int LaneSize = Size / LaneCount; + SmallBitVector LaneInputs[2]; + LaneInputs[0].resize(LaneCount, false); + LaneInputs[1].resize(LaneCount, false); + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0) + LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true; + if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1) + return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); + + // Otherwise, just fall back to decomposed shuffles and a blend. This requires + // that the decomposed single-input shuffles don't end up here. + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); +} + +/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as +/// a permutation and blend of those lanes. +/// +/// This essentially blends the out-of-lane inputs to each lane into the lane +/// from a permuted copy of the vector. This lowering strategy results in four +/// instructions in the worst case for a single-input cross lane shuffle which +/// is lower than any other fully general cross-lane shuffle strategy I'm aware +/// of. Special cases for each particular shuffle pattern should be handled +/// prior to trying this lowering. +static SDValue lowerVectorShuffleAsLanePermuteAndBlend(const SDLoc &DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // FIXME: This should probably be generalized for 512-bit vectors as well. + assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!"); + int Size = Mask.size(); + int LaneSize = Size / 2; + + // If there are only inputs from one 128-bit lane, splitting will in fact be + // less expensive. The flags track whether the given lane contains an element + // that crosses to another lane. + if (!Subtarget.hasAVX2()) { + bool LaneCrossing[2] = {false, false}; + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) + LaneCrossing[(Mask[i] % Size) / LaneSize] = true; + if (!LaneCrossing[0] || !LaneCrossing[1]) + return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); + } else { + bool LaneUsed[2] = {false, false}; + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0) + LaneUsed[(Mask[i] / LaneSize)] = true; + if (!LaneUsed[0] || !LaneUsed[1]) + return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); + } + + assert(V2.isUndef() && + "This last part of this routine only works on single input shuffles"); + + SmallVector<int, 32> FlippedBlendMask(Size); + for (int i = 0; i < Size; ++i) + FlippedBlendMask[i] = + Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize) + ? Mask[i] + : Mask[i] % LaneSize + + (i / LaneSize) * LaneSize + Size); + + // Flip the vector, and blend the results which should now be in-lane. + MVT PVT = VT.isFloatingPoint() ? MVT::v4f64 : MVT::v4i64; + SDValue Flipped = DAG.getBitcast(PVT, V1); + Flipped = DAG.getVectorShuffle(PVT, DL, Flipped, DAG.getUNDEF(PVT), + { 2, 3, 0, 1 }); + Flipped = DAG.getBitcast(VT, Flipped); + return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask); +} + +/// \brief Handle lowering 2-lane 128-bit shuffles. +static SDValue lowerV2X128VectorShuffle(const SDLoc &DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + const APInt &Zeroable, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + // With AVX2, use VPERMQ/VPERMPD for unary shuffles to allow memory folding. + if (Subtarget.hasAVX2() && V2.isUndef()) + return SDValue(); + + SmallVector<int, 4> WidenedMask; + if (!canWidenShuffleElements(Mask, WidenedMask)) + return SDValue(); + + // TODO: If minimizing size and one of the inputs is a zero vector and the + // the zero vector has only one use, we could use a VPERM2X128 to save the + // instruction bytes needed to explicitly generate the zero vector. + + // Blends are faster and handle all the non-lane-crossing cases. + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + bool IsLowZero = (Zeroable & 0x3) == 0x3; + bool IsHighZero = (Zeroable & 0xc) == 0xc; + + // If either input operand is a zero vector, use VPERM2X128 because its mask + // allows us to replace the zero input with an implicit zero. + if (!IsLowZero && !IsHighZero) { + // Check for patterns which can be matched with a single insert of a 128-bit + // subvector. + bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1}); + if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) { + + // With AVX1, use vperm2f128 (below) to allow load folding. Otherwise, + // this will likely become vinsertf128 which can't fold a 256-bit memop. + if (!isa<LoadSDNode>(peekThroughBitcasts(V1))) { + MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), + VT.getVectorNumElements() / 2); + SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1, + DAG.getIntPtrConstant(0, DL)); + SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, + OnlyUsesV1 ? V1 : V2, + DAG.getIntPtrConstant(0, DL)); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV); + } + } + + // Try to use SHUF128 if possible. + if (Subtarget.hasVLX()) { + if (WidenedMask[0] < 2 && WidenedMask[1] >= 2) { + unsigned PermMask = ((WidenedMask[0] % 2) << 0) | + ((WidenedMask[1] % 2) << 1); + return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2, + DAG.getConstant(PermMask, DL, MVT::i8)); + } + } + } + + // Otherwise form a 128-bit permutation. After accounting for undefs, + // convert the 64-bit shuffle mask selection values into 128-bit + // selection bits by dividing the indexes by 2 and shifting into positions + // defined by a vperm2*128 instruction's immediate control byte. + + // The immediate permute control byte looks like this: + // [1:0] - select 128 bits from sources for low half of destination + // [2] - ignore + // [3] - zero low half of destination + // [5:4] - select 128 bits from sources for high half of destination + // [6] - ignore + // [7] - zero high half of destination + + assert(WidenedMask[0] >= 0 && WidenedMask[1] >= 0 && "Undef half?"); + + unsigned PermMask = 0; + PermMask |= IsLowZero ? 0x08 : (WidenedMask[0] << 0); + PermMask |= IsHighZero ? 0x80 : (WidenedMask[1] << 4); + + // Check the immediate mask and replace unused sources with undef. + if ((PermMask & 0x0a) != 0x00 && (PermMask & 0xa0) != 0x00) + V1 = DAG.getUNDEF(VT); + if ((PermMask & 0x0a) != 0x02 && (PermMask & 0xa0) != 0x20) + V2 = DAG.getUNDEF(VT); + + return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2, + DAG.getConstant(PermMask, DL, MVT::i8)); +} + +/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then +/// shuffling each lane. +/// +/// This will only succeed when the result of fixing the 128-bit lanes results +/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in +/// each 128-bit lanes. This handles many cases where we can quickly blend away +/// the lane crosses early and then use simpler shuffles within each lane. +/// +/// FIXME: It might be worthwhile at some point to support this without +/// requiring the 128-bit lane-relative shuffles to be repeating, but currently +/// in x86 only floating point has interesting non-repeating shuffles, and even +/// those are still *marginally* more expensive. +static SDValue lowerVectorShuffleByMerging128BitLanes( + const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, + const X86Subtarget &Subtarget, SelectionDAG &DAG) { + assert(!V2.isUndef() && "This is only useful with multiple inputs."); + + int Size = Mask.size(); + int LaneSize = 128 / VT.getScalarSizeInBits(); + int NumLanes = Size / LaneSize; + assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles."); + + // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also + // check whether the in-128-bit lane shuffles share a repeating pattern. + SmallVector<int, 4> Lanes((unsigned)NumLanes, -1); + SmallVector<int, 4> InLaneMask((unsigned)LaneSize, -1); + for (int i = 0; i < Size; ++i) { + if (Mask[i] < 0) + continue; + + int j = i / LaneSize; + + if (Lanes[j] < 0) { + // First entry we've seen for this lane. + Lanes[j] = Mask[i] / LaneSize; + } else if (Lanes[j] != Mask[i] / LaneSize) { + // This doesn't match the lane selected previously! + return SDValue(); + } + + // Check that within each lane we have a consistent shuffle mask. + int k = i % LaneSize; + if (InLaneMask[k] < 0) { + InLaneMask[k] = Mask[i] % LaneSize; + } else if (InLaneMask[k] != Mask[i] % LaneSize) { + // This doesn't fit a repeating in-lane mask. + return SDValue(); + } + } + + // First shuffle the lanes into place. + MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64, + VT.getSizeInBits() / 64); + SmallVector<int, 8> LaneMask((unsigned)NumLanes * 2, -1); + for (int i = 0; i < NumLanes; ++i) + if (Lanes[i] >= 0) { + LaneMask[2 * i + 0] = 2*Lanes[i] + 0; + LaneMask[2 * i + 1] = 2*Lanes[i] + 1; + } + + V1 = DAG.getBitcast(LaneVT, V1); + V2 = DAG.getBitcast(LaneVT, V2); + SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask); + + // Cast it back to the type we actually want. + LaneShuffle = DAG.getBitcast(VT, LaneShuffle); + + // Now do a simple shuffle that isn't lane crossing. + SmallVector<int, 8> NewMask((unsigned)Size, -1); + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0) + NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize; + assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) && + "Must not introduce lane crosses at this point!"); + + return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask); +} + +/// Lower shuffles where an entire half of a 256 or 512-bit vector is UNDEF. +/// This allows for fast cases such as subvector extraction/insertion +/// or shuffling smaller vector types which can lower more efficiently. +static SDValue lowerVectorShuffleWithUndefHalf(const SDLoc &DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert((VT.is256BitVector() || VT.is512BitVector()) && + "Expected 256-bit or 512-bit vector"); + + unsigned NumElts = VT.getVectorNumElements(); + unsigned HalfNumElts = NumElts / 2; + MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), HalfNumElts); + + bool UndefLower = isUndefInRange(Mask, 0, HalfNumElts); + bool UndefUpper = isUndefInRange(Mask, HalfNumElts, HalfNumElts); + if (!UndefLower && !UndefUpper) + return SDValue(); + + // Upper half is undef and lower half is whole upper subvector. + // e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> + if (UndefUpper && + isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) { + SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, + DAG.getIntPtrConstant(HalfNumElts, DL)); + return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi, + DAG.getIntPtrConstant(0, DL)); + } + + // Lower half is undef and upper half is whole lower subvector. + // e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> + if (UndefLower && + isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) { + SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, + DAG.getIntPtrConstant(0, DL)); + return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi, + DAG.getIntPtrConstant(HalfNumElts, DL)); + } + + // If the shuffle only uses two of the four halves of the input operands, + // then extract them and perform the 'half' shuffle at half width. + // e.g. vector_shuffle <X, X, X, X, u, u, u, u> or <X, X, u, u> + int HalfIdx1 = -1, HalfIdx2 = -1; + SmallVector<int, 8> HalfMask(HalfNumElts); + unsigned Offset = UndefLower ? HalfNumElts : 0; + for (unsigned i = 0; i != HalfNumElts; ++i) { + int M = Mask[i + Offset]; + if (M < 0) { + HalfMask[i] = M; + continue; + } + + // Determine which of the 4 half vectors this element is from. + // i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2. + int HalfIdx = M / HalfNumElts; + + // Determine the element index into its half vector source. + int HalfElt = M % HalfNumElts; + + // We can shuffle with up to 2 half vectors, set the new 'half' + // shuffle mask accordingly. + if (HalfIdx1 < 0 || HalfIdx1 == HalfIdx) { + HalfMask[i] = HalfElt; + HalfIdx1 = HalfIdx; + continue; + } + if (HalfIdx2 < 0 || HalfIdx2 == HalfIdx) { + HalfMask[i] = HalfElt + HalfNumElts; + HalfIdx2 = HalfIdx; + continue; + } + + // Too many half vectors referenced. + return SDValue(); + } + assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length"); + + // Only shuffle the halves of the inputs when useful. + int NumLowerHalves = + (HalfIdx1 == 0 || HalfIdx1 == 2) + (HalfIdx2 == 0 || HalfIdx2 == 2); + int NumUpperHalves = + (HalfIdx1 == 1 || HalfIdx1 == 3) + (HalfIdx2 == 1 || HalfIdx2 == 3); + + // uuuuXXXX - don't extract uppers just to insert again. + if (UndefLower && NumUpperHalves != 0) + return SDValue(); + + // XXXXuuuu - don't extract both uppers, instead shuffle and then extract. + if (UndefUpper && NumUpperHalves == 2) + return SDValue(); + + // AVX2 - XXXXuuuu - always extract lowers. + if (Subtarget.hasAVX2() && !(UndefUpper && NumUpperHalves == 0)) { + // AVX2 supports efficient immediate 64-bit element cross-lane shuffles. + if (VT == MVT::v4f64 || VT == MVT::v4i64) + return SDValue(); + // AVX2 supports variable 32-bit element cross-lane shuffles. + if (VT == MVT::v8f32 || VT == MVT::v8i32) { + // XXXXuuuu - don't extract lowers and uppers. + if (UndefUpper && NumLowerHalves != 0 && NumUpperHalves != 0) + return SDValue(); + } + } + + // AVX512 - XXXXuuuu - always extract lowers. + if (VT.is512BitVector() && !(UndefUpper && NumUpperHalves == 0)) + return SDValue(); + + auto GetHalfVector = [&](int HalfIdx) { + if (HalfIdx < 0) + return DAG.getUNDEF(HalfVT); + SDValue V = (HalfIdx < 2 ? V1 : V2); + HalfIdx = (HalfIdx % 2) * HalfNumElts; + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V, + DAG.getIntPtrConstant(HalfIdx, DL)); + }; + + SDValue Half1 = GetHalfVector(HalfIdx1); + SDValue Half2 = GetHalfVector(HalfIdx2); + SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask); + return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, + DAG.getIntPtrConstant(Offset, DL)); +} + +/// \brief Test whether the specified input (0 or 1) is in-place blended by the +/// given mask. +/// +/// This returns true if the elements from a particular input are already in the +/// slot required by the given mask and require no permutation. +static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) { + assert((Input == 0 || Input == 1) && "Only two inputs to shuffles."); + int Size = Mask.size(); + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i) + return false; + + return true; +} + +/// Handle case where shuffle sources are coming from the same 128-bit lane and +/// every lane can be represented as the same repeating mask - allowing us to +/// shuffle the sources with the repeating shuffle and then permute the result +/// to the destination lanes. +static SDValue lowerShuffleAsRepeatedMaskAndLanePermute( + const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, + const X86Subtarget &Subtarget, SelectionDAG &DAG) { + int NumElts = VT.getVectorNumElements(); + int NumLanes = VT.getSizeInBits() / 128; + int NumLaneElts = NumElts / NumLanes; + + // On AVX2 we may be able to just shuffle the lowest elements and then + // broadcast the result. + if (Subtarget.hasAVX2()) { + for (unsigned BroadcastSize : {16, 32, 64}) { + if (BroadcastSize <= VT.getScalarSizeInBits()) + continue; + int NumBroadcastElts = BroadcastSize / VT.getScalarSizeInBits(); + + // Attempt to match a repeating pattern every NumBroadcastElts, + // accounting for UNDEFs but only references the lowest 128-bit + // lane of the inputs. + auto FindRepeatingBroadcastMask = [&](SmallVectorImpl<int> &RepeatMask) { + for (int i = 0; i != NumElts; i += NumBroadcastElts) + for (int j = 0; j != NumBroadcastElts; ++j) { + int M = Mask[i + j]; + if (M < 0) + continue; + int &R = RepeatMask[j]; + if (0 != ((M % NumElts) / NumLaneElts)) + return false; + if (0 <= R && R != M) + return false; + R = M; + } + return true; + }; + + SmallVector<int, 8> RepeatMask((unsigned)NumElts, -1); + if (!FindRepeatingBroadcastMask(RepeatMask)) + continue; + + // Shuffle the (lowest) repeated elements in place for broadcast. + SDValue RepeatShuf = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatMask); + + // Shuffle the actual broadcast. + SmallVector<int, 8> BroadcastMask((unsigned)NumElts, -1); + for (int i = 0; i != NumElts; i += NumBroadcastElts) + for (int j = 0; j != NumBroadcastElts; ++j) + BroadcastMask[i + j] = j; + return DAG.getVectorShuffle(VT, DL, RepeatShuf, DAG.getUNDEF(VT), + BroadcastMask); + } + } + + // Bail if the shuffle mask doesn't cross 128-bit lanes. + if (!is128BitLaneCrossingShuffleMask(VT, Mask)) + return SDValue(); + + // Bail if we already have a repeated lane shuffle mask. + SmallVector<int, 8> RepeatedShuffleMask; + if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedShuffleMask)) + return SDValue(); + + // On AVX2 targets we can permute 256-bit vectors as 64-bit sub-lanes + // (with PERMQ/PERMPD), otherwise we can only permute whole 128-bit lanes. + int SubLaneScale = Subtarget.hasAVX2() && VT.is256BitVector() ? 2 : 1; + int NumSubLanes = NumLanes * SubLaneScale; + int NumSubLaneElts = NumLaneElts / SubLaneScale; + + // Check that all the sources are coming from the same lane and see if we can + // form a repeating shuffle mask (local to each sub-lane). At the same time, + // determine the source sub-lane for each destination sub-lane. + int TopSrcSubLane = -1; + SmallVector<int, 8> Dst2SrcSubLanes((unsigned)NumSubLanes, -1); + SmallVector<int, 8> RepeatedSubLaneMasks[2] = { + SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef), + SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef)}; + + for (int DstSubLane = 0; DstSubLane != NumSubLanes; ++DstSubLane) { + // Extract the sub-lane mask, check that it all comes from the same lane + // and normalize the mask entries to come from the first lane. + int SrcLane = -1; + SmallVector<int, 8> SubLaneMask((unsigned)NumSubLaneElts, -1); + for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) { + int M = Mask[(DstSubLane * NumSubLaneElts) + Elt]; + if (M < 0) + continue; + int Lane = (M % NumElts) / NumLaneElts; + if ((0 <= SrcLane) && (SrcLane != Lane)) + return SDValue(); + SrcLane = Lane; + int LocalM = (M % NumLaneElts) + (M < NumElts ? 0 : NumElts); + SubLaneMask[Elt] = LocalM; + } + + // Whole sub-lane is UNDEF. + if (SrcLane < 0) + continue; + + // Attempt to match against the candidate repeated sub-lane masks. + for (int SubLane = 0; SubLane != SubLaneScale; ++SubLane) { + auto MatchMasks = [NumSubLaneElts](ArrayRef<int> M1, ArrayRef<int> M2) { + for (int i = 0; i != NumSubLaneElts; ++i) { + if (M1[i] < 0 || M2[i] < 0) + continue; + if (M1[i] != M2[i]) + return false; + } + return true; + }; + + auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane]; + if (!MatchMasks(SubLaneMask, RepeatedSubLaneMask)) + continue; + + // Merge the sub-lane mask into the matching repeated sub-lane mask. + for (int i = 0; i != NumSubLaneElts; ++i) { + int M = SubLaneMask[i]; + if (M < 0) + continue; + assert((RepeatedSubLaneMask[i] < 0 || RepeatedSubLaneMask[i] == M) && + "Unexpected mask element"); + RepeatedSubLaneMask[i] = M; + } + + // Track the top most source sub-lane - by setting the remaining to UNDEF + // we can greatly simplify shuffle matching. + int SrcSubLane = (SrcLane * SubLaneScale) + SubLane; + TopSrcSubLane = std::max(TopSrcSubLane, SrcSubLane); + Dst2SrcSubLanes[DstSubLane] = SrcSubLane; + break; + } + + // Bail if we failed to find a matching repeated sub-lane mask. + if (Dst2SrcSubLanes[DstSubLane] < 0) + return SDValue(); + } + assert(0 <= TopSrcSubLane && TopSrcSubLane < NumSubLanes && + "Unexpected source lane"); + + // Create a repeating shuffle mask for the entire vector. + SmallVector<int, 8> RepeatedMask((unsigned)NumElts, -1); + for (int SubLane = 0; SubLane <= TopSrcSubLane; ++SubLane) { + int Lane = SubLane / SubLaneScale; + auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane % SubLaneScale]; + for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) { + int M = RepeatedSubLaneMask[Elt]; + if (M < 0) + continue; + int Idx = (SubLane * NumSubLaneElts) + Elt; + RepeatedMask[Idx] = M + (Lane * NumLaneElts); + } + } + SDValue RepeatedShuffle = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatedMask); + + // Shuffle each source sub-lane to its destination. + SmallVector<int, 8> SubLaneMask((unsigned)NumElts, -1); + for (int i = 0; i != NumElts; i += NumSubLaneElts) { + int SrcSubLane = Dst2SrcSubLanes[i / NumSubLaneElts]; + if (SrcSubLane < 0) + continue; + for (int j = 0; j != NumSubLaneElts; ++j) + SubLaneMask[i + j] = j + (SrcSubLane * NumSubLaneElts); + } + + return DAG.getVectorShuffle(VT, DL, RepeatedShuffle, DAG.getUNDEF(VT), + SubLaneMask); +} + +static bool matchVectorShuffleWithSHUFPD(MVT VT, SDValue &V1, SDValue &V2, + unsigned &ShuffleImm, + ArrayRef<int> Mask) { + int NumElts = VT.getVectorNumElements(); + assert(VT.getScalarSizeInBits() == 64 && + (NumElts == 2 || NumElts == 4 || NumElts == 8) && + "Unexpected data type for VSHUFPD"); + + // Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, .. + // Mask for V4F64; 0/1, 4/5, 2/3, 6/7.. + ShuffleImm = 0; + bool ShufpdMask = true; + bool CommutableMask = true; + for (int i = 0; i < NumElts; ++i) { + if (Mask[i] == SM_SentinelUndef) + continue; + if (Mask[i] < 0) + return false; + int Val = (i & 6) + NumElts * (i & 1); + int CommutVal = (i & 0xe) + NumElts * ((i & 1) ^ 1); + if (Mask[i] < Val || Mask[i] > Val + 1) + ShufpdMask = false; + if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1) + CommutableMask = false; + ShuffleImm |= (Mask[i] % 2) << i; + } + + if (ShufpdMask) + return true; + if (CommutableMask) { + std::swap(V1, V2); + return true; + } + + return false; +} + +static SDValue lowerVectorShuffleWithSHUFPD(const SDLoc &DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, SelectionDAG &DAG) { + assert((VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v8f64)&& + "Unexpected data type for VSHUFPD"); + + unsigned Immediate = 0; + if (!matchVectorShuffleWithSHUFPD(VT, V1, V2, Immediate, Mask)) + return SDValue(); + + return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, + DAG.getConstant(Immediate, DL, MVT::i8)); +} + +/// \brief Handle lowering of 4-lane 64-bit floating point shuffles. +/// +/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2 +/// isn't available. +static SDValue lowerV4F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + + if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return V; + + if (V2.isUndef()) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast( + DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) + return Broadcast; + + // Use low duplicate instructions for masks that match their pattern. + if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) + return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1); + + if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) { + // Non-half-crossing single input shuffles can be lowered with an + // interleaved permutation. + unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) | + ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3); + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1, + DAG.getConstant(VPERMILPMask, DL, MVT::i8)); + } + + // With AVX2 we have direct support for this permutation. + if (Subtarget.hasAVX2()) + return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + + // Try to create an in-lane repeating shuffle mask and then shuffle the + // the results into the target lanes. + if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( + DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) + return V; + + // Otherwise, fall back. + return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask, + DAG, Subtarget); + } + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG)) + return V; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Check if the blend happens to exactly fit that of SHUFPD. + if (SDValue Op = + lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG)) + return Op; + + // Try to create an in-lane repeating shuffle mask and then shuffle the + // the results into the target lanes. + if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( + DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) + return V; + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. However, if we have AVX2 and either inputs are already in place, + // we will be able to shuffle even across lanes the other input in a single + // instruction so skip this pattern. + if (!(Subtarget.hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || + isShuffleMaskInputInPlace(1, Mask)))) + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) + return Result; + // If we have VLX support, we can use VEXPAND. + if (Subtarget.hasVLX()) + if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v4f64, Zeroable, Mask, + V1, V2, DAG, Subtarget)) + return V; + + // If we have AVX2 then we always want to lower with a blend because an v4 we + // can fully permute the elements. + if (Subtarget.hasAVX2()) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, + Mask, DAG); + + // Otherwise fall back on generic lowering. + return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); +} + +/// \brief Handle lowering of 4-lane 64-bit integer shuffles. +/// +/// This routine is only called when we have AVX2 and thus a reasonable +/// instruction set for v4i64 shuffling.. +static SDValue lowerV4I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + assert(Subtarget.hasAVX2() && "We can only lower v4i64 with AVX2!"); + + if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return V; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1, V2, + Mask, Subtarget, DAG)) + return Broadcast; + + if (V2.isUndef()) { + // When the shuffle is mirrored between the 128-bit lanes of the unit, we + // can use lower latency instructions that will operate on both lanes. + SmallVector<int, 2> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) { + SmallVector<int, 4> PSHUFDMask; + scaleShuffleMask<int>(2, RepeatedMask, PSHUFDMask); + return DAG.getBitcast( + MVT::v4i64, + DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, + DAG.getBitcast(MVT::v8i32, V1), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); + } + + // AVX2 provides a direct instruction for permuting a single input across + // lanes. + return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + } + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // If we have VLX support, we can use VALIGN or VEXPAND. + if (Subtarget.hasVLX()) { + if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v4i64, V1, V2, + Mask, Subtarget, DAG)) + return Rotate; + + if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v4i64, Zeroable, Mask, + V1, V2, DAG, Subtarget)) + return V; + } + + // Try to use PALIGNR. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v4i64, V1, V2, + Mask, Subtarget, DAG)) + return Rotate; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG)) + return V; + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. However, if we have AVX2 and either inputs are already in place, + // we will be able to shuffle even across lanes the other input in a single + // instruction so skip this pattern. + if (!isShuffleMaskInputInPlace(0, Mask) && + !isShuffleMaskInputInPlace(1, Mask)) + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // Otherwise fall back on generic blend lowering. + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, + Mask, DAG); +} + +/// \brief Handle lowering of 8-lane 32-bit floating point shuffles. +/// +/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2 +/// isn't available. +static SDValue lowerV8F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1, V2, + Mask, Subtarget, DAG)) + return Broadcast; + + // If the shuffle mask is repeated in each 128-bit lane, we have many more + // options to efficiently lower the shuffle. + SmallVector<int, 4> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) { + assert(RepeatedMask.size() == 4 && + "Repeated masks must be half the mask width!"); + + // Use even/odd duplicate instructions for masks that match their pattern. + if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2})) + return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1); + if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3})) + return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1); + + if (V2.isUndef()) + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1, + getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG)) + return V; + + // Otherwise, fall back to a SHUFPS sequence. Here it is important that we + // have already handled any direct blends. + return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG); + } + + // Try to create an in-lane repeating shuffle mask and then shuffle the + // the results into the target lanes. + if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( + DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) + return V; + + // If we have a single input shuffle with different shuffle patterns in the + // two 128-bit lanes use the variable mask to VPERMILPS. + if (V2.isUndef()) { + SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true); + if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask)) + return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, V1, VPermMask); + + if (Subtarget.hasAVX2()) + return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32, VPermMask, V1); + + // Otherwise, fall back. + return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask, + DAG, Subtarget); + } + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) + return Result; + // If we have VLX support, we can use VEXPAND. + if (Subtarget.hasVLX()) + if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8f32, Zeroable, Mask, + V1, V2, DAG, Subtarget)) + return V; + + // For non-AVX512 if the Mask is of 16bit elements in lane then try to split + // since after split we get a more efficient code using vpunpcklwd and + // vpunpckhwd instrs than vblend. + if (!Subtarget.hasAVX512() && isUnpackWdShuffleMask(Mask, MVT::v8f32)) + if (SDValue V = lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, + Mask, DAG)) + return V; + + // If we have AVX2 then we always want to lower with a blend because at v8 we + // can fully permute the elements. + if (Subtarget.hasAVX2()) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2, + Mask, DAG); + + // Otherwise fall back on generic lowering. + return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); +} + +/// \brief Handle lowering of 8-lane 32-bit integer shuffles. +/// +/// This routine is only called when we have AVX2 and thus a reasonable +/// instruction set for v8i32 shuffling.. +static SDValue lowerV8I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + assert(Subtarget.hasAVX2() && "We can only lower v8i32 with AVX2!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v8i32, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return ZExt; + + // For non-AVX512 if the Mask is of 16bit elements in lane then try to split + // since after split we get a more efficient code than vblend by using + // vpunpcklwd and vpunpckhwd instrs. + if (isUnpackWdShuffleMask(Mask, MVT::v8i32) && !V2.isUndef() && + !Subtarget.hasAVX512()) + if (SDValue V = + lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8i32, V1, V2, Mask, DAG)) + return V; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1, V2, + Mask, Subtarget, DAG)) + return Broadcast; + + // If the shuffle mask is repeated in each 128-bit lane we can use more + // efficient instructions that mirror the shuffles across the two 128-bit + // lanes. + SmallVector<int, 4> RepeatedMask; + bool Is128BitLaneRepeatedShuffle = + is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask); + if (Is128BitLaneRepeatedShuffle) { + assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); + if (V2.isUndef()) + return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1, + getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG)) + return V; + } + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // If we have VLX support, we can use VALIGN or EXPAND. + if (Subtarget.hasVLX()) { + if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i32, V1, V2, + Mask, Subtarget, DAG)) + return Rotate; + + if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8i32, Zeroable, Mask, + V1, V2, DAG, Subtarget)) + return V; + } + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + // Try to create an in-lane repeating shuffle mask and then shuffle the + // results into the target lanes. + if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( + DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) + return V; + + // If the shuffle patterns aren't repeated but it is a single input, directly + // generate a cross-lane VPERMD instruction. + if (V2.isUndef()) { + SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true); + return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8i32, VPermMask, V1); + } + + // Assume that a single SHUFPS is faster than an alternative sequence of + // multiple instructions (even if the CPU has a domain penalty). + // If some CPU is harmed by the domain switch, we can fix it in a later pass. + if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) { + SDValue CastV1 = DAG.getBitcast(MVT::v8f32, V1); + SDValue CastV2 = DAG.getBitcast(MVT::v8f32, V2); + SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, + CastV1, CastV2, DAG); + return DAG.getBitcast(MVT::v8i32, ShufPS); + } + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // Otherwise fall back on generic blend lowering. + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2, + Mask, DAG); +} + +/// \brief Handle lowering of 16-lane 16-bit integer shuffles. +/// +/// This routine is only called when we have AVX2 and thus a reasonable +/// instruction set for v16i16 shuffling.. +static SDValue lowerV16I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); + assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); + assert(Subtarget.hasAVX2() && "We can only lower v16i16 with AVX2!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v16i16, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return ZExt; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1, V2, + Mask, Subtarget, DAG)) + return Broadcast; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG)) + return V; + + // Use dedicated pack instructions for masks that match their pattern. + if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v16i16, Mask, V1, V2, DAG, + Subtarget)) + return V; + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + // Try to create an in-lane repeating shuffle mask and then shuffle the + // the results into the target lanes. + if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( + DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) + return V; + + if (V2.isUndef()) { + // There are no generalized cross-lane shuffle operations available on i16 + // element types. + if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask)) + return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2, + Mask, DAG, Subtarget); + + SmallVector<int, 8> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { + // As this is a single-input shuffle, the repeated mask should be + // a strictly valid v8i16 mask that we can pass through to the v8i16 + // lowering to handle even the v16 case. + return lowerV8I16GeneralSingleInputVectorShuffle( + DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG); + } + } + + if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB( + DL, MVT::v16i16, Mask, V1, V2, Zeroable, Subtarget, DAG)) + return PSHUFB; + + // AVX512BWVL can lower to VPERMW. + if (Subtarget.hasBWI() && Subtarget.hasVLX()) + return lowerVectorShuffleWithPERMV(DL, MVT::v16i16, Mask, V1, V2, DAG); + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // Otherwise fall back on generic lowering. + return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG); +} + +/// \brief Handle lowering of 32-lane 8-bit integer shuffles. +/// +/// This routine is only called when we have AVX2 and thus a reasonable +/// instruction set for v32i8 shuffling.. +static SDValue lowerV32I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); + assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); + assert(Subtarget.hasAVX2() && "We can only lower v32i8 with AVX2!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v32i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return ZExt; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1, V2, + Mask, Subtarget, DAG)) + return Broadcast; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG)) + return V; + + // Use dedicated pack instructions for masks that match their pattern. + if (SDValue V = lowerVectorShuffleWithPACK(DL, MVT::v32i8, Mask, V1, V2, DAG, + Subtarget)) + return V; + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + // Try to create an in-lane repeating shuffle mask and then shuffle the + // the results into the target lanes. + if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( + DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) + return V; + + // There are no generalized cross-lane shuffle operations available on i8 + // element types. + if (V2.isUndef() && is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask)) + return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2, Mask, + DAG, Subtarget); + + if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB( + DL, MVT::v32i8, Mask, V1, V2, Zeroable, Subtarget, DAG)) + return PSHUFB; + + // AVX512VBMIVL can lower to VPERMB. + if (Subtarget.hasVBMI() && Subtarget.hasVLX()) + return lowerVectorShuffleWithPERMV(DL, MVT::v32i8, Mask, V1, V2, DAG); + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // Otherwise fall back on generic lowering. + return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG); +} + +/// \brief High-level routine to lower various 256-bit x86 vector shuffles. +/// +/// This routine either breaks down the specific type of a 256-bit x86 vector +/// shuffle or splits it into two 128-bit shuffles and fuses the results back +/// together based on the available instructions. +static SDValue lower256BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + MVT VT, SDValue V1, SDValue V2, + const APInt &Zeroable, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + // If we have a single input to the zero element, insert that into V1 if we + // can do so cheaply. + int NumElts = VT.getVectorNumElements(); + int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; }); + + if (NumV2Elements == 1 && Mask[0] >= NumElts) + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return Insertion; + + // Handle special cases where the lower or upper half is UNDEF. + if (SDValue V = + lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG)) + return V; + + // There is a really nice hard cut-over between AVX1 and AVX2 that means we + // can check for those subtargets here and avoid much of the subtarget + // querying in the per-vector-type lowering routines. With AVX1 we have + // essentially *zero* ability to manipulate a 256-bit vector with integer + // types. Since we'll use floating point types there eventually, just + // immediately cast everything to a float and operate entirely in that domain. + if (VT.isInteger() && !Subtarget.hasAVX2()) { + int ElementBits = VT.getScalarSizeInBits(); + if (ElementBits < 32) { + // No floating point type available, if we can't use the bit operations + // for masking/blending then decompose into 128-bit vectors. + if (SDValue V = + lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable, DAG)) + return V; + if (SDValue V = lowerVectorShuffleAsBitBlend(DL, VT, V1, V2, Mask, DAG)) + return V; + return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); + } + + MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits), + VT.getVectorNumElements()); + V1 = DAG.getBitcast(FpVT, V1); + V2 = DAG.getBitcast(FpVT, V2); + return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask)); + } + + switch (VT.SimpleTy) { + case MVT::v4f64: + return lowerV4F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v4i64: + return lowerV4I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v8f32: + return lowerV8F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v8i32: + return lowerV8I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v16i16: + return lowerV16I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v32i8: + return lowerV32I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + + default: + llvm_unreachable("Not a valid 256-bit x86 vector type!"); + } +} + +/// \brief Try to lower a vector shuffle as a 128-bit shuffles. +static SDValue lowerV4X128VectorShuffle(const SDLoc &DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, SelectionDAG &DAG) { + assert(VT.getScalarSizeInBits() == 64 && + "Unexpected element type size for 128bit shuffle."); + + // To handle 256 bit vector requires VLX and most probably + // function lowerV2X128VectorShuffle() is better solution. + assert(VT.is512BitVector() && "Unexpected vector size for 512bit shuffle."); + + SmallVector<int, 4> WidenedMask; + if (!canWidenShuffleElements(Mask, WidenedMask)) + return SDValue(); + + // Check for patterns which can be matched with a single insert of a 256-bit + // subvector. + bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, + {0, 1, 2, 3, 0, 1, 2, 3}); + if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, + {0, 1, 2, 3, 8, 9, 10, 11})) { + MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 4); + SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1, + DAG.getIntPtrConstant(0, DL)); + SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, + OnlyUsesV1 ? V1 : V2, + DAG.getIntPtrConstant(0, DL)); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV); + } + + assert(WidenedMask.size() == 4); + + // See if this is an insertion of the lower 128-bits of V2 into V1. + bool IsInsert = true; + int V2Index = -1; + for (int i = 0; i < 4; ++i) { + assert(WidenedMask[i] >= -1); + if (WidenedMask[i] < 0) + continue; + + // Make sure all V1 subvectors are in place. + if (WidenedMask[i] < 4) { + if (WidenedMask[i] != i) { + IsInsert = false; + break; + } + } else { + // Make sure we only have a single V2 index and its the lowest 128-bits. + if (V2Index >= 0 || WidenedMask[i] != 4) { + IsInsert = false; + break; + } + V2Index = i; + } + } + if (IsInsert && V2Index >= 0) { + MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2); + SDValue Subvec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2, + DAG.getIntPtrConstant(0, DL)); + return insert128BitVector(V1, Subvec, V2Index * 2, DAG, DL); + } + + // Try to lower to to vshuf64x2/vshuf32x4. + SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)}; + unsigned PermMask = 0; + // Insure elements came from the same Op. + for (int i = 0; i < 4; ++i) { + assert(WidenedMask[i] >= -1); + if (WidenedMask[i] < 0) + continue; + + SDValue Op = WidenedMask[i] >= 4 ? V2 : V1; + unsigned OpIndex = i / 2; + if (Ops[OpIndex].isUndef()) + Ops[OpIndex] = Op; + else if (Ops[OpIndex] != Op) + return SDValue(); + + // Convert the 128-bit shuffle mask selection values into 128-bit selection + // bits defined by a vshuf64x2 instruction's immediate control byte. + PermMask |= (WidenedMask[i] % 4) << (i * 2); + } + + return DAG.getNode(X86ISD::SHUF128, DL, VT, Ops[0], Ops[1], + DAG.getConstant(PermMask, DL, MVT::i8)); +} + +/// \brief Handle lowering of 8-lane 64-bit floating point shuffles. +static SDValue lowerV8F64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + + if (V2.isUndef()) { + // Use low duplicate instructions for masks that match their pattern. + if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6})) + return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v8f64, V1); + + if (!is128BitLaneCrossingShuffleMask(MVT::v8f64, Mask)) { + // Non-half-crossing single input shuffles can be lowered with an + // interleaved permutation. + unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) | + ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3) | + ((Mask[4] == 5) << 4) | ((Mask[5] == 5) << 5) | + ((Mask[6] == 7) << 6) | ((Mask[7] == 7) << 7); + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f64, V1, + DAG.getConstant(VPERMILPMask, DL, MVT::i8)); + } + + SmallVector<int, 4> RepeatedMask; + if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask)) + return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8f64, V1, + getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); + } + + if (SDValue Shuf128 = + lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, V1, V2, DAG)) + return Shuf128; + + if (SDValue Unpck = + lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG)) + return Unpck; + + // Check if the blend happens to exactly fit that of SHUFPD. + if (SDValue Op = + lowerVectorShuffleWithSHUFPD(DL, MVT::v8f64, Mask, V1, V2, DAG)) + return Op; + + if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8f64, Zeroable, Mask, V1, + V2, DAG, Subtarget)) + return V; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 16-lane 32-bit floating point shuffles. +static SDValue lowerV16F32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); + assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); + + // If the shuffle mask is repeated in each 128-bit lane, we have many more + // options to efficiently lower the shuffle. + SmallVector<int, 4> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v16f32, Mask, RepeatedMask)) { + assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); + + // Use even/odd duplicate instructions for masks that match their pattern. + if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2})) + return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v16f32, V1); + if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3})) + return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v16f32, V1); + + if (V2.isUndef()) + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v16f32, V1, + getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue Unpck = + lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG)) + return Unpck; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16f32, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // Otherwise, fall back to a SHUFPS sequence. + return lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask, V1, V2, DAG); + } + + // If we have a single input shuffle with different shuffle patterns in the + // 128-bit lanes and don't lane cross, use variable mask VPERMILPS. + if (V2.isUndef() && + !is128BitLaneCrossingShuffleMask(MVT::v16f32, Mask)) { + SDValue VPermMask = getConstVector(Mask, MVT::v16i32, DAG, DL, true); + return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v16f32, V1, VPermMask); + } + + // If we have AVX512F support, we can use VEXPAND. + if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v16f32, Zeroable, Mask, + V1, V2, DAG, Subtarget)) + return V; + + return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 8-lane 64-bit integer shuffles. +static SDValue lowerV8I64VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + + if (V2.isUndef()) { + // When the shuffle is mirrored between the 128-bit lanes of the unit, we + // can use lower latency instructions that will operate on all four + // 128-bit lanes. + SmallVector<int, 2> Repeated128Mask; + if (is128BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated128Mask)) { + SmallVector<int, 4> PSHUFDMask; + scaleShuffleMask<int>(2, Repeated128Mask, PSHUFDMask); + return DAG.getBitcast( + MVT::v8i64, + DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32, + DAG.getBitcast(MVT::v16i32, V1), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); + } + + SmallVector<int, 4> Repeated256Mask; + if (is256BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated256Mask)) + return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8i64, V1, + getV4X86ShuffleImm8ForMask(Repeated256Mask, DL, DAG)); + } + + if (SDValue Shuf128 = + lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, V1, V2, DAG)) + return Shuf128; + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v8i64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // Try to use VALIGN. + if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v8i64, V1, V2, + Mask, Subtarget, DAG)) + return Rotate; + + // Try to use PALIGNR. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i64, V1, V2, + Mask, Subtarget, DAG)) + return Rotate; + + if (SDValue Unpck = + lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG)) + return Unpck; + // If we have AVX512F support, we can use VEXPAND. + if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v8i64, Zeroable, Mask, V1, + V2, DAG, Subtarget)) + return V; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i64, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 16-lane 32-bit integer shuffles. +static SDValue lowerV16I32VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); + assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v16i32, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return ZExt; + + // If the shuffle mask is repeated in each 128-bit lane we can use more + // efficient instructions that mirror the shuffles across the four 128-bit + // lanes. + SmallVector<int, 4> RepeatedMask; + bool Is128BitLaneRepeatedShuffle = + is128BitLaneRepeatedShuffleMask(MVT::v16i32, Mask, RepeatedMask); + if (Is128BitLaneRepeatedShuffle) { + assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); + if (V2.isUndef()) + return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32, V1, + getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG)) + return V; + } + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v16i32, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // Try to use VALIGN. + if (SDValue Rotate = lowerVectorShuffleAsRotate(DL, MVT::v16i32, V1, V2, + Mask, Subtarget, DAG)) + return Rotate; + + // Try to use byte rotation instructions. + if (Subtarget.hasBWI()) + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v16i32, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + // Assume that a single SHUFPS is faster than using a permv shuffle. + // If some CPU is harmed by the domain switch, we can fix it in a later pass. + if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) { + SDValue CastV1 = DAG.getBitcast(MVT::v16f32, V1); + SDValue CastV2 = DAG.getBitcast(MVT::v16f32, V2); + SDValue ShufPS = lowerVectorShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask, + CastV1, CastV2, DAG); + return DAG.getBitcast(MVT::v16i32, ShufPS); + } + // If we have AVX512F support, we can use VEXPAND. + if (SDValue V = lowerVectorShuffleToEXPAND(DL, MVT::v16i32, Zeroable, Mask, + V1, V2, DAG, Subtarget)) + return V; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i32, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 32-lane 16-bit integer shuffles. +static SDValue lowerV32I16VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); + assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); + assert(Subtarget.hasBWI() && "We can only lower v32i16 with AVX-512-BWI!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v32i16, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return ZExt; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v32i16, Mask, V1, V2, DAG)) + return V; + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v32i16, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v32i16, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + if (V2.isUndef()) { + SmallVector<int, 8> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v32i16, Mask, RepeatedMask)) { + // As this is a single-input shuffle, the repeated mask should be + // a strictly valid v8i16 mask that we can pass through to the v8i16 + // lowering to handle even the v32 case. + return lowerV8I16GeneralSingleInputVectorShuffle( + DL, MVT::v32i16, V1, RepeatedMask, Subtarget, DAG); + } + } + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i16, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB( + DL, MVT::v32i16, Mask, V1, V2, Zeroable, Subtarget, DAG)) + return PSHUFB; + + return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 64-lane 8-bit integer shuffles. +static SDValue lowerV64I8VectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + const APInt &Zeroable, + SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); + assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!"); + assert(Subtarget.hasBWI() && "We can only lower v64i8 with AVX-512-BWI!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v64i8, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return ZExt; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v64i8, Mask, V1, V2, DAG)) + return V; + + // Try to use shift instructions. + if (SDValue Shift = lowerVectorShuffleAsShift(DL, MVT::v64i8, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Shift; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + if (SDValue PSHUFB = lowerVectorShuffleWithPSHUFB( + DL, MVT::v64i8, Mask, V1, V2, Zeroable, Subtarget, DAG)) + return PSHUFB; + + // VBMI can use VPERMV/VPERMV3 byte shuffles. + if (Subtarget.hasVBMI()) + return lowerVectorShuffleWithPERMV(DL, MVT::v64i8, Mask, V1, V2, DAG); + + // Try to create an in-lane repeating shuffle mask and then shuffle the + // the results into the target lanes. + if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute( + DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG)) + return V; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v64i8, V1, V2, Mask, + Zeroable, Subtarget, DAG)) + return Blend; + + // FIXME: Implement direct support for this type! + return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG); +} + +/// \brief High-level routine to lower various 512-bit x86 vector shuffles. +/// +/// This routine either breaks down the specific type of a 512-bit x86 vector +/// shuffle or splits it into two 256-bit shuffles and fuses the results back +/// together based on the available instructions. +static SDValue lower512BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + MVT VT, SDValue V1, SDValue V2, + const APInt &Zeroable, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(Subtarget.hasAVX512() && + "Cannot lower 512-bit vectors w/ basic ISA!"); + + // If we have a single input to the zero element, insert that into V1 if we + // can do so cheaply. + int NumElts = Mask.size(); + int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; }); + + if (NumV2Elements == 1 && Mask[0] >= NumElts) + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG)) + return Insertion; + + // Handle special cases where the lower or upper half is UNDEF. + if (SDValue V = + lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG)) + return V; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = + lowerVectorShuffleAsBroadcast(DL, VT, V1, V2, Mask, Subtarget, DAG)) + return Broadcast; + + // Dispatch to each element type for lowering. If we don't have support for + // specific element type shuffles at 512 bits, immediately split them and + // lower them. Each lowering routine of a given type is allowed to assume that + // the requisite ISA extensions for that element type are available. + switch (VT.SimpleTy) { + case MVT::v8f64: + return lowerV8F64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v16f32: + return lowerV16F32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v8i64: + return lowerV8I64VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v16i32: + return lowerV16I32VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v32i16: + return lowerV32I16VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + case MVT::v64i8: + return lowerV64I8VectorShuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG); + + default: + llvm_unreachable("Not a valid 512-bit x86 vector type!"); + } +} + +// Lower vXi1 vector shuffles. +// There is no a dedicated instruction on AVX-512 that shuffles the masks. +// The only way to shuffle bits is to sign-extend the mask vector to SIMD +// vector, shuffle and then truncate it back. +static SDValue lower1BitVectorShuffle(const SDLoc &DL, ArrayRef<int> Mask, + MVT VT, SDValue V1, SDValue V2, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(Subtarget.hasAVX512() && + "Cannot lower 512-bit vectors w/o basic ISA!"); + MVT ExtVT; + switch (VT.SimpleTy) { + default: + llvm_unreachable("Expected a vector of i1 elements"); + case MVT::v2i1: + ExtVT = MVT::v2i64; + break; + case MVT::v4i1: + ExtVT = MVT::v4i32; + break; + case MVT::v8i1: + // Take 512-bit type, more shuffles on KNL. If we have VLX use a 256-bit + // shuffle. + ExtVT = Subtarget.hasVLX() ? MVT::v8i32 : MVT::v8i64; + break; + case MVT::v16i1: + ExtVT = MVT::v16i32; + break; + case MVT::v32i1: + ExtVT = MVT::v32i16; + break; + case MVT::v64i1: + ExtVT = MVT::v64i8; + break; + } + + if (ISD::isBuildVectorAllZeros(V1.getNode())) + V1 = getZeroVector(ExtVT, Subtarget, DAG, DL); + else if (ISD::isBuildVectorAllOnes(V1.getNode())) + V1 = getOnesVector(ExtVT, DAG, DL); + else + V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1); + + if (V2.isUndef()) + V2 = DAG.getUNDEF(ExtVT); + else if (ISD::isBuildVectorAllZeros(V2.getNode())) + V2 = getZeroVector(ExtVT, Subtarget, DAG, DL); + else if (ISD::isBuildVectorAllOnes(V2.getNode())) + V2 = getOnesVector(ExtVT, DAG, DL); + else + V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2); + + SDValue Shuffle = DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask); + // i1 was sign extended we can use X86ISD::CVT2MASK. + int NumElems = VT.getVectorNumElements(); + if ((Subtarget.hasBWI() && (NumElems >= 32)) || + (Subtarget.hasDQI() && (NumElems < 32))) + return DAG.getNode(X86ISD::CVT2MASK, DL, VT, Shuffle); + + return DAG.getNode(ISD::TRUNCATE, DL, VT, Shuffle); +} + +/// Helper function that returns true if the shuffle mask should be +/// commuted to improve canonicalization. +static bool canonicalizeShuffleMaskWithCommute(ArrayRef<int> Mask) { + int NumElements = Mask.size(); + + int NumV1Elements = 0, NumV2Elements = 0; + for (int M : Mask) + if (M < 0) + continue; + else if (M < NumElements) + ++NumV1Elements; + else + ++NumV2Elements; + + // Commute the shuffle as needed such that more elements come from V1 than + // V2. This allows us to match the shuffle pattern strictly on how many + // elements come from V1 without handling the symmetric cases. + if (NumV2Elements > NumV1Elements) + return true; + + assert(NumV1Elements > 0 && "No V1 indices"); + + if (NumV2Elements == 0) + return false; + + // When the number of V1 and V2 elements are the same, try to minimize the + // number of uses of V2 in the low half of the vector. When that is tied, + // ensure that the sum of indices for V1 is equal to or lower than the sum + // indices for V2. When those are equal, try to ensure that the number of odd + // indices for V1 is lower than the number of odd indices for V2. + if (NumV1Elements == NumV2Elements) { + int LowV1Elements = 0, LowV2Elements = 0; + for (int M : Mask.slice(0, NumElements / 2)) + if (M >= NumElements) + ++LowV2Elements; + else if (M >= 0) + ++LowV1Elements; + if (LowV2Elements > LowV1Elements) + return true; + if (LowV2Elements == LowV1Elements) { + int SumV1Indices = 0, SumV2Indices = 0; + for (int i = 0, Size = Mask.size(); i < Size; ++i) + if (Mask[i] >= NumElements) + SumV2Indices += i; + else if (Mask[i] >= 0) + SumV1Indices += i; + if (SumV2Indices < SumV1Indices) + return true; + if (SumV2Indices == SumV1Indices) { + int NumV1OddIndices = 0, NumV2OddIndices = 0; + for (int i = 0, Size = Mask.size(); i < Size; ++i) + if (Mask[i] >= NumElements) + NumV2OddIndices += i % 2; + else if (Mask[i] >= 0) + NumV1OddIndices += i % 2; + if (NumV2OddIndices < NumV1OddIndices) + return true; + } + } + } + + return false; +} + +/// \brief Top-level lowering for x86 vector shuffles. +/// +/// This handles decomposition, canonicalization, and lowering of all x86 +/// vector shuffles. Most of the specific lowering strategies are encapsulated +/// above in helper routines. The canonicalization attempts to widen shuffles +/// to involve fewer lanes of wider elements, consolidate symmetric patterns +/// s.t. only one of the two inputs needs to be tested, etc. +static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + MVT VT = Op.getSimpleValueType(); + int NumElements = VT.getVectorNumElements(); + SDLoc DL(Op); + bool Is1BitVector = (VT.getVectorElementType() == MVT::i1); + + assert((VT.getSizeInBits() != 64 || Is1BitVector) && + "Can't lower MMX shuffles"); + + bool V1IsUndef = V1.isUndef(); + bool V2IsUndef = V2.isUndef(); + if (V1IsUndef && V2IsUndef) + return DAG.getUNDEF(VT); + + // When we create a shuffle node we put the UNDEF node to second operand, + // but in some cases the first operand may be transformed to UNDEF. + // In this case we should just commute the node. + if (V1IsUndef) + return DAG.getCommutedVectorShuffle(*SVOp); + + // Check for non-undef masks pointing at an undef vector and make the masks + // undef as well. This makes it easier to match the shuffle based solely on + // the mask. + if (V2IsUndef) + for (int M : Mask) + if (M >= NumElements) { + SmallVector<int, 8> NewMask(Mask.begin(), Mask.end()); + for (int &M : NewMask) + if (M >= NumElements) + M = -1; + return DAG.getVectorShuffle(VT, DL, V1, V2, NewMask); + } + + // Check for illegal shuffle mask element index values. + int MaskUpperLimit = Mask.size() * (V2IsUndef ? 1 : 2); (void)MaskUpperLimit; + assert(llvm::all_of(Mask, + [&](int M) { return -1 <= M && M < MaskUpperLimit; }) && + "Out of bounds shuffle index"); + + // We actually see shuffles that are entirely re-arrangements of a set of + // zero inputs. This mostly happens while decomposing complex shuffles into + // simple ones. Directly lower these as a buildvector of zeros. + APInt Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + if (Zeroable.isAllOnesValue()) + return getZeroVector(VT, Subtarget, DAG, DL); + + // Try to collapse shuffles into using a vector type with fewer elements but + // wider element types. We cap this to not form integers or floating point + // elements wider than 64 bits, but it might be interesting to form i128 + // integers to handle flipping the low and high halves of AVX 256-bit vectors. + SmallVector<int, 16> WidenedMask; + if (VT.getScalarSizeInBits() < 64 && !Is1BitVector && + canWidenShuffleElements(Mask, WidenedMask)) { + MVT NewEltVT = VT.isFloatingPoint() + ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2) + : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2); + MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2); + // Make sure that the new vector type is legal. For example, v2f64 isn't + // legal on SSE1. + if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) { + V1 = DAG.getBitcast(NewVT, V1); + V2 = DAG.getBitcast(NewVT, V2); + return DAG.getBitcast( + VT, DAG.getVectorShuffle(NewVT, DL, V1, V2, WidenedMask)); + } + } + + // Commute the shuffle if it will improve canonicalization. + if (canonicalizeShuffleMaskWithCommute(Mask)) + return DAG.getCommutedVectorShuffle(*SVOp); + + // For each vector width, delegate to a specialized lowering routine. + if (VT.is128BitVector()) + return lower128BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, + DAG); + + if (VT.is256BitVector()) + return lower256BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, + DAG); + + if (VT.is512BitVector()) + return lower512BitVectorShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, + DAG); + + if (Is1BitVector) + return lower1BitVectorShuffle(DL, Mask, VT, V1, V2, Subtarget, DAG); + + llvm_unreachable("Unimplemented!"); +} + +/// \brief Try to lower a VSELECT instruction to a vector shuffle. +static SDValue lowerVSELECTtoVectorShuffle(SDValue Op, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDValue Cond = Op.getOperand(0); + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) + return SDValue(); + auto *CondBV = cast<BuildVectorSDNode>(Cond); + + // Only non-legal VSELECTs reach this lowering, convert those into generic + // shuffles and re-use the shuffle lowering path for blends. + SmallVector<int, 32> Mask; + for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) { + SDValue CondElt = CondBV->getOperand(i); + Mask.push_back( + isa<ConstantSDNode>(CondElt) ? i + (isNullConstant(CondElt) ? Size : 0) + : -1); + } + return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask); +} + +SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { + // A vselect where all conditions and data are constants can be optimized into + // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). + if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) && + ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) && + ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode())) + return SDValue(); + + // Try to lower this to a blend-style vector shuffle. This can handle all + // constant condition cases. + if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG)) + return BlendOp; + + // If this VSELECT has a vector if i1 as a mask, it will be directly matched + // with patterns on the mask registers on AVX-512. + if (Op->getOperand(0).getValueType().getScalarSizeInBits() == 1) + return Op; + + // Variable blends are only legal from SSE4.1 onward. + if (!Subtarget.hasSSE41()) + return SDValue(); + + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + // If the VSELECT is on a 512-bit type, we have to convert a non-i1 condition + // into an i1 condition so that we can use the mask-based 512-bit blend + // instructions. + if (VT.getSizeInBits() == 512) { + SDValue Cond = Op.getOperand(0); + // The vNi1 condition case should be handled above as it can be trivially + // lowered. + assert(Cond.getValueType().getScalarSizeInBits() == + VT.getScalarSizeInBits() && + "Should have a size-matched integer condition!"); + // Build a mask by testing the condition against itself (tests for zero). + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + SDValue Mask = DAG.getNode(X86ISD::TESTM, dl, MaskVT, Cond, Cond); + // Now return a new VSELECT using the mask. + return DAG.getSelect(dl, VT, Mask, Op.getOperand(1), Op.getOperand(2)); + } + + // Only some types will be legal on some subtargets. If we can emit a legal + // VSELECT-matching blend, return Op, and but if we need to expand, return + // a null value. + switch (VT.SimpleTy) { + default: + // Most of the vector types have blends past SSE4.1. + return Op; + + case MVT::v32i8: + // The byte blends for AVX vectors were introduced only in AVX2. + if (Subtarget.hasAVX2()) + return Op; + + return SDValue(); + + case MVT::v8i16: + case MVT::v16i16: + // FIXME: We should custom lower this by fixing the condition and using i8 + // blends. + return SDValue(); + } +} + +static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + if (!Op.getOperand(0).getSimpleValueType().is128BitVector()) + return SDValue(); + + if (VT.getSizeInBits() == 8) { + SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, + Op.getOperand(0), Op.getOperand(1)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract); + } + + if (VT == MVT::f32) { + // EXTRACTPS outputs to a GPR32 register which will require a movd to copy + // the result back to FR32 register. It's only worth matching if the + // result has a single use which is a store or a bitcast to i32. And in + // the case of a store, it's not worth it if the index is a constant 0, + // because a MOVSSmr can be used instead, which is smaller and faster. + if (!Op.hasOneUse()) + return SDValue(); + SDNode *User = *Op.getNode()->use_begin(); + if ((User->getOpcode() != ISD::STORE || + isNullConstant(Op.getOperand(1))) && + (User->getOpcode() != ISD::BITCAST || + User->getValueType(0) != MVT::i32)) + return SDValue(); + SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getBitcast(MVT::v4i32, Op.getOperand(0)), + Op.getOperand(1)); + return DAG.getBitcast(MVT::f32, Extract); + } + + if (VT == MVT::i32 || VT == MVT::i64) { + // ExtractPS/pextrq works with constant index. + if (isa<ConstantSDNode>(Op.getOperand(1))) + return Op; + } + + return SDValue(); +} + +/// Extract one bit from mask vector, like v16i1 or v8i1. +/// AVX-512 feature. +static SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDValue Vec = Op.getOperand(0); + SDLoc dl(Vec); + MVT VecVT = Vec.getSimpleValueType(); + SDValue Idx = Op.getOperand(1); + MVT EltVT = Op.getSimpleValueType(); + + assert((VecVT.getVectorNumElements() <= 16 || Subtarget.hasBWI()) && + "Unexpected vector type in ExtractBitFromMaskVector"); + + // variable index can't be handled in mask registers, + // extend vector to VR512/128 + if (!isa<ConstantSDNode>(Idx)) { + unsigned NumElts = VecVT.getVectorNumElements(); + // Extending v8i1/v16i1 to 512-bit get better performance on KNL + // than extending to 128/256bit. + MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8; + MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts); + SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec); + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ExtEltVT, Ext, Idx); + return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt); + } + + // Canonicalize result type to MVT::i32. + if (EltVT != MVT::i32) { + SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + Vec, Idx); + return DAG.getAnyExtOrTrunc(Extract, dl, EltVT); + } + + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + + // Extracts from element 0 are always allowed. + if (IdxVal == 0) + return Op; + + // If the kshift instructions of the correct width aren't natively supported + // then we need to promote the vector to the native size to get the correct + // zeroing behavior. + if ((!Subtarget.hasDQI() && (VecVT.getVectorNumElements() == 8)) || + (VecVT.getVectorNumElements() < 8)) { + VecVT = MVT::v16i1; + Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VecVT, + DAG.getUNDEF(VecVT), + Vec, + DAG.getIntPtrConstant(0, dl)); + } + + // Use kshiftr instruction to move to the lower element. + Vec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Vec, + DAG.getIntPtrConstant(0, dl)); +} + +SDValue +X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + SDValue Vec = Op.getOperand(0); + MVT VecVT = Vec.getSimpleValueType(); + SDValue Idx = Op.getOperand(1); + + if (VecVT.getVectorElementType() == MVT::i1) + return ExtractBitFromMaskVector(Op, DAG, Subtarget); + + if (!isa<ConstantSDNode>(Idx)) { + // Its more profitable to go through memory (1 cycles throughput) + // than using VMOVD + VPERMV/PSHUFB sequence ( 2/3 cycles throughput) + // IACA tool was used to get performance estimation + // (https://software.intel.com/en-us/articles/intel-architecture-code-analyzer) + // + // example : extractelement <16 x i8> %a, i32 %i + // + // Block Throughput: 3.00 Cycles + // Throughput Bottleneck: Port5 + // + // | Num Of | Ports pressure in cycles | | + // | Uops | 0 - DV | 5 | 6 | 7 | | + // --------------------------------------------- + // | 1 | | 1.0 | | | CP | vmovd xmm1, edi + // | 1 | | 1.0 | | | CP | vpshufb xmm0, xmm0, xmm1 + // | 2 | 1.0 | 1.0 | | | CP | vpextrb eax, xmm0, 0x0 + // Total Num Of Uops: 4 + // + // + // Block Throughput: 1.00 Cycles + // Throughput Bottleneck: PORT2_AGU, PORT3_AGU, Port4 + // + // | | Ports pressure in cycles | | + // |Uops| 1 | 2 - D |3 - D | 4 | 5 | | + // --------------------------------------------------------- + // |2^ | | 0.5 | 0.5 |1.0| |CP| vmovaps xmmword ptr [rsp-0x18], xmm0 + // |1 |0.5| | | |0.5| | lea rax, ptr [rsp-0x18] + // |1 | |0.5, 0.5|0.5, 0.5| | |CP| mov al, byte ptr [rdi+rax*1] + // Total Num Of Uops: 4 + + return SDValue(); + } + + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + + // If this is a 256-bit vector result, first extract the 128-bit vector and + // then extract the element from the 128-bit vector. + if (VecVT.is256BitVector() || VecVT.is512BitVector()) { + // Get the 128-bit vector. + Vec = extract128BitVector(Vec, IdxVal, DAG, dl); + MVT EltVT = VecVT.getVectorElementType(); + + unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits(); + assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); + + // Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2 + // this can be done with a mask. + IdxVal &= ElemsPerChunk - 1; + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, + DAG.getConstant(IdxVal, dl, MVT::i32)); + } + + assert(VecVT.is128BitVector() && "Unexpected vector length"); + + MVT VT = Op.getSimpleValueType(); + + if (VT.getSizeInBits() == 16) { + // If IdxVal is 0, it's cheaper to do a move instead of a pextrw, unless + // we're going to zero extend the register or fold the store (SSE41 only). + if (IdxVal == 0 && !MayFoldIntoZeroExtend(Op) && + !(Subtarget.hasSSE41() && MayFoldIntoStore(Op))) + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getBitcast(MVT::v4i32, Vec), Idx)); + + // Transform it so it match pextrw which produces a 32-bit result. + SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, + Op.getOperand(0), Op.getOperand(1)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract); + } + + if (Subtarget.hasSSE41()) + if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG)) + return Res; + + // TODO: We only extract a single element from v16i8, we can probably afford + // to be more aggressive here before using the default approach of spilling to + // stack. + if (VT.getSizeInBits() == 8 && Op->isOnlyUserOf(Vec.getNode())) { + // Extract either the lowest i32 or any i16, and extract the sub-byte. + int DWordIdx = IdxVal / 4; + if (DWordIdx == 0) { + SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getBitcast(MVT::v4i32, Vec), + DAG.getIntPtrConstant(DWordIdx, dl)); + int ShiftVal = (IdxVal % 4) * 8; + if (ShiftVal != 0) + Res = DAG.getNode(ISD::SRL, dl, MVT::i32, Res, + DAG.getConstant(ShiftVal, dl, MVT::i32)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Res); + } + + int WordIdx = IdxVal / 2; + SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, + DAG.getBitcast(MVT::v8i16, Vec), + DAG.getIntPtrConstant(WordIdx, dl)); + int ShiftVal = (IdxVal % 2) * 8; + if (ShiftVal != 0) + Res = DAG.getNode(ISD::SRL, dl, MVT::i16, Res, + DAG.getConstant(ShiftVal, dl, MVT::i16)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Res); + } + + if (VT.getSizeInBits() == 32) { + if (IdxVal == 0) + return Op; + + // SHUFPS the element to the lowest double word, then movss. + int Mask[4] = { static_cast<int>(IdxVal), -1, -1, -1 }; + Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, + DAG.getIntPtrConstant(0, dl)); + } + + if (VT.getSizeInBits() == 64) { + // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b + // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught + // to match extract_elt for f64. + if (IdxVal == 0) + return Op; + + // UNPCKHPD the element to the lowest double word, then movsd. + // Note if the lower 64 bits of the result of the UNPCKHPD is then stored + // to a f64mem, the whole operation is folded into a single MOVHPDmr. + int Mask[2] = { 1, -1 }; + Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, + DAG.getIntPtrConstant(0, dl)); + } + + return SDValue(); +} + +/// Insert one bit to mask vector, like v16i1 or v8i1. +/// AVX-512 feature. +static SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDLoc dl(Op); + SDValue Vec = Op.getOperand(0); + SDValue Elt = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + MVT VecVT = Vec.getSimpleValueType(); + + if (!isa<ConstantSDNode>(Idx)) { + // Non constant index. Extend source and destination, + // insert element and then truncate the result. + unsigned NumElts = VecVT.getVectorNumElements(); + MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8; + MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts); + SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT, + DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec), + DAG.getNode(ISD::SIGN_EXTEND, dl, ExtEltVT, Elt), Idx); + return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp); + } + + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + unsigned NumElems = VecVT.getVectorNumElements(); + + // If the kshift instructions of the correct width aren't natively supported + // then we need to promote the vector to the native size to get the correct + // zeroing behavior. + if ((!Subtarget.hasDQI() && NumElems == 8) || (NumElems < 8)) { + // Need to promote to v16i1, do the insert, then extract back. + Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1, + DAG.getUNDEF(MVT::v16i1), Vec, + DAG.getIntPtrConstant(0, dl)); + Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v16i1, Vec, Elt, Idx); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VecVT, Op, + DAG.getIntPtrConstant(0, dl)); + } + + SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt); + + if (Vec.isUndef()) { + if (IdxVal) + EltInVec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, EltInVec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + return EltInVec; + } + + // Insertion of one bit into first position + if (IdxVal == 0 ) { + // Clean top bits of vector. + EltInVec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, EltInVec, + DAG.getConstant(NumElems - 1, dl, MVT::i8)); + EltInVec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, EltInVec, + DAG.getConstant(NumElems - 1, dl, MVT::i8)); + // Clean the first bit in source vector. + Vec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec, + DAG.getConstant(1 , dl, MVT::i8)); + Vec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, Vec, + DAG.getConstant(1, dl, MVT::i8)); + + return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec); + } + // Insertion of one bit into last position + if (IdxVal == NumElems - 1) { + // Move the bit to the last position inside the vector. + EltInVec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, EltInVec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + // Clean the last bit in the source vector. + Vec = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, Vec, + DAG.getConstant(1, dl, MVT::i8)); + Vec = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec, + DAG.getConstant(1 , dl, MVT::i8)); + + return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec); + } + + // Move the current value of the bit to be replace to bit 0. + SDValue Merged = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Vec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + // Xor with the new bit. + Merged = DAG.getNode(ISD::XOR, dl, VecVT, Merged, EltInVec); + // Shift to MSB, filling bottom bits with 0. + Merged = DAG.getNode(X86ISD::KSHIFTL, dl, VecVT, Merged, + DAG.getConstant(NumElems - 1, dl, MVT::i8)); + // Shift to the final position, filling upper bits with 0. + Merged = DAG.getNode(X86ISD::KSHIFTR, dl, VecVT, Merged, + DAG.getConstant(NumElems - 1 - IdxVal, dl, MVT::i8)); + // Xor with original vector to cancel out the original bit value that's still + // present. + return DAG.getNode(ISD::XOR, dl, VecVT, Merged, Vec); +} + +SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + MVT VT = Op.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + unsigned NumElts = VT.getVectorNumElements(); + + if (EltVT == MVT::i1) + return InsertBitToMaskVector(Op, DAG, Subtarget); + + SDLoc dl(Op); + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + SDValue N2 = Op.getOperand(2); + if (!isa<ConstantSDNode>(N2)) + return SDValue(); + auto *N2C = cast<ConstantSDNode>(N2); + unsigned IdxVal = N2C->getZExtValue(); + + bool IsZeroElt = X86::isZeroNode(N1); + bool IsAllOnesElt = VT.isInteger() && llvm::isAllOnesConstant(N1); + + // If we are inserting a element, see if we can do this more efficiently with + // a blend shuffle with a rematerializable vector than a costly integer + // insertion. + if ((IsZeroElt || IsAllOnesElt) && Subtarget.hasSSE41() && + 16 <= EltVT.getSizeInBits()) { + SmallVector<int, 8> BlendMask; + for (unsigned i = 0; i != NumElts; ++i) + BlendMask.push_back(i == IdxVal ? i + NumElts : i); + SDValue CstVector = IsZeroElt ? getZeroVector(VT, Subtarget, DAG, dl) + : getOnesVector(VT, DAG, dl); + return DAG.getVectorShuffle(VT, dl, N0, CstVector, BlendMask); + } + + // If the vector is wider than 128 bits, extract the 128-bit subvector, insert + // into that, and then insert the subvector back into the result. + if (VT.is256BitVector() || VT.is512BitVector()) { + // With a 256-bit vector, we can insert into the zero element efficiently + // using a blend if we have AVX or AVX2 and the right data type. + if (VT.is256BitVector() && IdxVal == 0) { + // TODO: It is worthwhile to cast integer to floating point and back + // and incur a domain crossing penalty if that's what we'll end up + // doing anyway after extracting to a 128-bit vector. + if ((Subtarget.hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) || + (Subtarget.hasAVX2() && EltVT == MVT::i32)) { + SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1); + N2 = DAG.getIntPtrConstant(1, dl); + return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2); + } + } + + // Get the desired 128-bit vector chunk. + SDValue V = extract128BitVector(N0, IdxVal, DAG, dl); + + // Insert the element into the desired chunk. + unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits(); + assert(isPowerOf2_32(NumEltsIn128)); + // Since NumEltsIn128 is a power of 2 we can use mask instead of modulo. + unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1); + + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, + DAG.getConstant(IdxIn128, dl, MVT::i32)); + + // Insert the changed part back into the bigger vector + return insert128BitVector(N0, V, IdxVal, DAG, dl); + } + assert(VT.is128BitVector() && "Only 128-bit vector types should be left!"); + + // Transform it so it match pinsr{b,w} which expects a GR32 as its second + // argument. SSE41 required for pinsrb. + if (VT == MVT::v8i16 || (VT == MVT::v16i8 && Subtarget.hasSSE41())) { + unsigned Opc; + if (VT == MVT::v8i16) { + assert(Subtarget.hasSSE2() && "SSE2 required for PINSRW"); + Opc = X86ISD::PINSRW; + } else { + assert(VT == MVT::v16i8 && "PINSRB requires v16i8 vector"); + assert(Subtarget.hasSSE41() && "SSE41 required for PINSRB"); + Opc = X86ISD::PINSRB; + } + + if (N1.getValueType() != MVT::i32) + N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); + if (N2.getValueType() != MVT::i32) + N2 = DAG.getIntPtrConstant(IdxVal, dl); + return DAG.getNode(Opc, dl, VT, N0, N1, N2); + } + + if (Subtarget.hasSSE41()) { + if (EltVT == MVT::f32) { + // Bits [7:6] of the constant are the source select. This will always be + // zero here. The DAG Combiner may combine an extract_elt index into + // these bits. For example (insert (extract, 3), 2) could be matched by + // putting the '3' into bits [7:6] of X86ISD::INSERTPS. + // Bits [5:4] of the constant are the destination select. This is the + // value of the incoming immediate. + // Bits [3:0] of the constant are the zero mask. The DAG Combiner may + // combine either bitwise AND or insert of float 0.0 to set these bits. + + bool MinSize = DAG.getMachineFunction().getFunction().optForMinSize(); + if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) { + // If this is an insertion of 32-bits into the low 32-bits of + // a vector, we prefer to generate a blend with immediate rather + // than an insertps. Blends are simpler operations in hardware and so + // will always have equal or better performance than insertps. + // But if optimizing for size and there's a load folding opportunity, + // generate insertps because blendps does not have a 32-bit memory + // operand form. + N2 = DAG.getIntPtrConstant(1, dl); + N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); + return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2); + } + N2 = DAG.getIntPtrConstant(IdxVal << 4, dl); + // Create this as a scalar to vector.. + N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); + return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); + } + + // PINSR* works with constant index. + if (EltVT == MVT::i32 || EltVT == MVT::i64) + return Op; + } + + return SDValue(); +} + +static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDLoc dl(Op); + MVT OpVT = Op.getSimpleValueType(); + + // It's always cheaper to replace a xor+movd with xorps and simplifies further + // combines. + if (X86::isZeroNode(Op.getOperand(0))) + return getZeroVector(OpVT, Subtarget, DAG, dl); + + // If this is a 256-bit vector result, first insert into a 128-bit + // vector and then insert into the 256-bit vector. + if (!OpVT.is128BitVector()) { + // Insert into a 128-bit vector. + unsigned SizeFactor = OpVT.getSizeInBits() / 128; + MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(), + OpVT.getVectorNumElements() / SizeFactor); + + Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); + + // Insert the 128-bit vector. + return insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); + } + assert(OpVT.is128BitVector() && "Expected an SSE type!"); + + // Pass through a v4i32 SCALAR_TO_VECTOR as that's what we use in tblgen. + if (OpVT == MVT::v4i32) + return Op; + + SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); + return DAG.getBitcast( + OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt)); +} + +// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a +// simple superregister reference or explicit instructions to insert +// the upper bits of a vector. +static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1); + + return insert1BitVector(Op, DAG, Subtarget); +} + +// Returns the appropriate wrapper opcode for a global reference. +unsigned X86TargetLowering::getGlobalWrapperKind(const GlobalValue *GV) const { + // References to absolute symbols are never PC-relative. + if (GV && GV->isAbsoluteSymbolRef()) + return X86ISD::Wrapper; + + CodeModel::Model M = getTargetMachine().getCodeModel(); + if (Subtarget.isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + return X86ISD::WrapperRIP; + + return X86ISD::Wrapper; +} + +// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as +// their target counterpart wrapped in the X86ISD::Wrapper node. Suppose N is +// one of the above mentioned nodes. It has to be wrapped because otherwise +// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only +// be used to form addressing mode. These wrapped nodes will be selected +// into MOV32ri. +SDValue +X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { + ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr); + + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result = DAG.getTargetConstantPool( + CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag); + SDLoc DL(CP); + Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result); + // With PIC, the address is actually $g + Offset. + if (OpFlag) { + Result = + DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); + } + + return Result; +} + +SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr); + + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag); + SDLoc DL(JT); + Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result); + + // With PIC, the address is actually $g + Offset. + if (OpFlag) + Result = + DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); + + return Result; +} + +SDValue +X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { + const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); + unsigned char OpFlag = Subtarget.classifyGlobalReference(nullptr, *Mod); + + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag); + + SDLoc DL(Op); + Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result); + + // With PIC, the address is actually $g + Offset. + if (isPositionIndependent() && !Subtarget.is64Bit()) { + Result = + DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); + } + + // For symbols that require a load from a stub to get the address, emit the + // load. + if (isGlobalStubReference(OpFlag)) + Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, + MachinePointerInfo::getGOT(DAG.getMachineFunction())); + + return Result; +} + +SDValue +X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { + // Create the TargetBlockAddressAddress node. + unsigned char OpFlags = + Subtarget.classifyBlockAddressReference(); + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset(); + SDLoc dl(Op); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags); + Result = DAG.getNode(getGlobalWrapperKind(), dl, PtrVT, Result); + + // With PIC, the address is actually $g + Offset. + if (isGlobalRelativeToPICBase(OpFlags)) { + Result = DAG.getNode(ISD::ADD, dl, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); + } + + return Result; +} + +SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, + const SDLoc &dl, int64_t Offset, + SelectionDAG &DAG) const { + // Create the TargetGlobalAddress node, folding in the constant + // offset if it is legal. + unsigned char OpFlags = Subtarget.classifyGlobalReference(GV); + CodeModel::Model M = DAG.getTarget().getCodeModel(); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result; + if (OpFlags == X86II::MO_NO_FLAG && + X86::isOffsetSuitableForCodeModel(Offset, M)) { + // A direct static reference to a global. + Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); + Offset = 0; + } else { + Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags); + } + + Result = DAG.getNode(getGlobalWrapperKind(GV), dl, PtrVT, Result); + + // With PIC, the address is actually $g + Offset. + if (isGlobalRelativeToPICBase(OpFlags)) { + Result = DAG.getNode(ISD::ADD, dl, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); + } + + // For globals that require a load from a stub to get the address, emit the + // load. + if (isGlobalStubReference(OpFlags)) + Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, + MachinePointerInfo::getGOT(DAG.getMachineFunction())); + + // If there was a non-zero offset that we didn't fold, create an explicit + // addition for it. + if (Offset != 0) + Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, + DAG.getConstant(Offset, dl, PtrVT)); + + return Result; +} + +SDValue +X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { + const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); + int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); + return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG); +} + +static SDValue +GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, + SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, + unsigned char OperandFlags, bool LocalDynamic = false) { + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SDLoc dl(GA); + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), + OperandFlags); + + X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR + : X86ISD::TLSADDR; + + if (InFlag) { + SDValue Ops[] = { Chain, TGA, *InFlag }; + Chain = DAG.getNode(CallType, dl, NodeTys, Ops); + } else { + SDValue Ops[] = { Chain, TGA }; + Chain = DAG.getNode(CallType, dl, NodeTys, Ops); + } + + // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. + MFI.setAdjustsStack(true); + MFI.setHasCalls(true); + + SDValue Flag = Chain.getValue(1); + return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); +} + +// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit +static SDValue +LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT) { + SDValue InFlag; + SDLoc dl(GA); // ? function entry point might be better + SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, + DAG.getNode(X86ISD::GlobalBaseReg, + SDLoc(), PtrVT), InFlag); + InFlag = Chain.getValue(1); + + return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); +} + +// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit +static SDValue +LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT) { + return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, + X86::RAX, X86II::MO_TLSGD); +} + +static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, + SelectionDAG &DAG, + const EVT PtrVT, + bool is64Bit) { + SDLoc dl(GA); + + // Get the start address of the TLS block for this module. + X86MachineFunctionInfo *MFI = DAG.getMachineFunction() + .getInfo<X86MachineFunctionInfo>(); + MFI->incNumLocalDynamicTLSAccesses(); + + SDValue Base; + if (is64Bit) { + Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX, + X86II::MO_TLSLD, /*LocalDynamic=*/true); + } else { + SDValue InFlag; + SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag); + InFlag = Chain.getValue(1); + Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, + X86II::MO_TLSLDM, /*LocalDynamic=*/true); + } + + // Note: the CleanupLocalDynamicTLSPass will remove redundant computations + // of Base. + + // Build x@dtpoff. + unsigned char OperandFlags = X86II::MO_DTPOFF; + unsigned WrapperKind = X86ISD::Wrapper; + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), OperandFlags); + SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); + + // Add x@dtpoff with the base. + return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); +} + +// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. +static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT, TLSModel::Model model, + bool is64Bit, bool isPIC) { + SDLoc dl(GA); + + // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). + Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), + is64Bit ? 257 : 256)); + + SDValue ThreadPointer = + DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl), + MachinePointerInfo(Ptr)); + + unsigned char OperandFlags = 0; + // Most TLS accesses are not RIP relative, even on x86-64. One exception is + // initialexec. + unsigned WrapperKind = X86ISD::Wrapper; + if (model == TLSModel::LocalExec) { + OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; + } else if (model == TLSModel::InitialExec) { + if (is64Bit) { + OperandFlags = X86II::MO_GOTTPOFF; + WrapperKind = X86ISD::WrapperRIP; + } else { + OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; + } + } else { + llvm_unreachable("Unexpected model"); + } + + // emit "addl x@ntpoff,%eax" (local exec) + // or "addl x@indntpoff,%eax" (initial exec) + // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) + SDValue TGA = + DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), + GA->getOffset(), OperandFlags); + SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); + + if (model == TLSModel::InitialExec) { + if (isPIC && !is64Bit) { + Offset = DAG.getNode(ISD::ADD, dl, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), + Offset); + } + + Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, + MachinePointerInfo::getGOT(DAG.getMachineFunction())); + } + + // The address of the thread local variable is the add of the thread + // pointer with the offset of the variable. + return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); +} + +SDValue +X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { + + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + + if (DAG.getTarget().Options.EmulatedTLS) + return LowerToTLSEmulatedModel(GA, DAG); + + const GlobalValue *GV = GA->getGlobal(); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + bool PositionIndependent = isPositionIndependent(); + + if (Subtarget.isTargetELF()) { + TLSModel::Model model = DAG.getTarget().getTLSModel(GV); + switch (model) { + case TLSModel::GeneralDynamic: + if (Subtarget.is64Bit()) + return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT); + return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT); + case TLSModel::LocalDynamic: + return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT, + Subtarget.is64Bit()); + case TLSModel::InitialExec: + case TLSModel::LocalExec: + return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget.is64Bit(), + PositionIndependent); + } + llvm_unreachable("Unknown TLS model."); + } + + if (Subtarget.isTargetDarwin()) { + // Darwin only has one model of TLS. Lower to that. + unsigned char OpFlag = 0; + unsigned WrapperKind = Subtarget.isPICStyleRIPRel() ? + X86ISD::WrapperRIP : X86ISD::Wrapper; + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + bool PIC32 = PositionIndependent && !Subtarget.is64Bit(); + if (PIC32) + OpFlag = X86II::MO_TLVP_PIC_BASE; + else + OpFlag = X86II::MO_TLVP; + SDLoc DL(Op); + SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, + GA->getValueType(0), + GA->getOffset(), OpFlag); + SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result); + + // With PIC32, the address is actually $g + Offset. + if (PIC32) + Offset = DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), + Offset); + + // Lowering the machine isd will make sure everything is in the right + // location. + SDValue Chain = DAG.getEntryNode(); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); + SDValue Args[] = { Chain, Offset }; + Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args); + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true), + DAG.getIntPtrConstant(0, DL, true), + Chain.getValue(1), DL); + + // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + MFI.setAdjustsStack(true); + + // And our return value (tls address) is in the standard call return value + // location. + unsigned Reg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; + return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1)); + } + + if (Subtarget.isTargetKnownWindowsMSVC() || + Subtarget.isTargetWindowsItanium() || + Subtarget.isTargetWindowsGNU()) { + // Just use the implicit TLS architecture + // Need to generate something similar to: + // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage + // ; from TEB + // mov ecx, dword [rel _tls_index]: Load index (from C runtime) + // mov rcx, qword [rdx+rcx*8] + // mov eax, .tls$:tlsvar + // [rax+rcx] contains the address + // Windows 64bit: gs:0x58 + // Windows 32bit: fs:__tls_array + + SDLoc dl(GA); + SDValue Chain = DAG.getEntryNode(); + + // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or + // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly + // use its literal value of 0x2C. + Value *Ptr = Constant::getNullValue(Subtarget.is64Bit() + ? Type::getInt8PtrTy(*DAG.getContext(), + 256) + : Type::getInt32PtrTy(*DAG.getContext(), + 257)); + + SDValue TlsArray = Subtarget.is64Bit() + ? DAG.getIntPtrConstant(0x58, dl) + : (Subtarget.isTargetWindowsGNU() + ? DAG.getIntPtrConstant(0x2C, dl) + : DAG.getExternalSymbol("_tls_array", PtrVT)); + + SDValue ThreadPointer = + DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr)); + + SDValue res; + if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) { + res = ThreadPointer; + } else { + // Load the _tls_index variable + SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT); + if (Subtarget.is64Bit()) + IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX, + MachinePointerInfo(), MVT::i32); + else + IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo()); + + auto &DL = DAG.getDataLayout(); + SDValue Scale = + DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, PtrVT); + IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale); + + res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX); + } + + res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo()); + + // Get the offset of start of .tls section + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), X86II::MO_SECREL); + SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA); + + // The address of the thread local variable is the add of the thread + // pointer with the offset of the variable. + return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset); + } + + llvm_unreachable("TLS not implemented for this target."); +} + +/// Lower SRA_PARTS and friends, which return two i32 values +/// and take a 2 x i32 value to shift plus a shift amount. +static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) { + assert(Op.getNumOperands() == 3 && "Not a double-shift!"); + MVT VT = Op.getSimpleValueType(); + unsigned VTBits = VT.getSizeInBits(); + SDLoc dl(Op); + bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; + SDValue ShOpLo = Op.getOperand(0); + SDValue ShOpHi = Op.getOperand(1); + SDValue ShAmt = Op.getOperand(2); + // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the + // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away + // during isel. + SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, + DAG.getConstant(VTBits - 1, dl, MVT::i8)); + SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, + DAG.getConstant(VTBits - 1, dl, MVT::i8)) + : DAG.getConstant(0, dl, VT); + + SDValue Tmp2, Tmp3; + if (Op.getOpcode() == ISD::SHL_PARTS) { + Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); + } else { + Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); + Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); + } + + // If the shift amount is larger or equal than the width of a part we can't + // rely on the results of shld/shrd. Insert a test and select the appropriate + // values for large shift amounts. + SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, + DAG.getConstant(VTBits, dl, MVT::i8)); + SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + AndNode, DAG.getConstant(0, dl, MVT::i8)); + + SDValue Hi, Lo; + SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); + SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; + SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; + + if (Op.getOpcode() == ISD::SHL_PARTS) { + Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); + Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); + } else { + Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); + Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); + } + + SDValue Ops[2] = { Lo, Hi }; + return DAG.getMergeValues(Ops, dl); +} + +SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + SDValue Src = Op.getOperand(0); + MVT SrcVT = Src.getSimpleValueType(); + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + if (SrcVT.isVector()) { + if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) { + return DAG.getNode(X86ISD::CVTSI2P, dl, VT, + DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src, + DAG.getUNDEF(SrcVT))); + } + if (SrcVT.getVectorElementType() == MVT::i1) { + if (SrcVT == MVT::v2i1) { + // For v2i1, we need to widen to v4i1 first. + assert(VT == MVT::v2f64 && "Unexpected type"); + Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Src, + DAG.getUNDEF(MVT::v2i1)); + return DAG.getNode(X86ISD::CVTSI2P, dl, Op.getValueType(), + DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Src)); + } + + MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements()); + return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), + DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src)); + } + return SDValue(); + } + + assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 && + "Unknown SINT_TO_FP to lower!"); + + // These are really Legal; return the operand so the caller accepts it as + // Legal. + if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) + return Op; + if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && + Subtarget.is64Bit()) { + return Op; + } + + SDValue ValueToStore = Op.getOperand(0); + if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && + !Subtarget.is64Bit()) + // Bitcasting to f64 here allows us to do a single 64-bit store from + // an SSE register, avoiding the store forwarding penalty that would come + // with two 32-bit stores. + ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore); + + unsigned Size = SrcVT.getSizeInBits()/8; + MachineFunction &MF = DAG.getMachineFunction(); + auto PtrVT = getPointerTy(MF.getDataLayout()); + int SSFI = MF.getFrameInfo().CreateStackObject(Size, Size, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); + SDValue Chain = DAG.getStore( + DAG.getEntryNode(), dl, ValueToStore, StackSlot, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI)); + return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); +} + +SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, + SDValue StackSlot, + SelectionDAG &DAG) const { + // Build the FILD + SDLoc DL(Op); + SDVTList Tys; + bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); + if (useSSE) + Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); + else + Tys = DAG.getVTList(Op.getValueType(), MVT::Other); + + unsigned ByteSize = SrcVT.getSizeInBits()/8; + + FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot); + MachineMemOperand *MMO; + if (FI) { + int SSFI = FI->getIndex(); + MMO = DAG.getMachineFunction().getMachineMemOperand( + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), + MachineMemOperand::MOLoad, ByteSize, ByteSize); + } else { + MMO = cast<LoadSDNode>(StackSlot)->getMemOperand(); + StackSlot = StackSlot.getOperand(1); + } + SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; + SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : + X86ISD::FILD, DL, + Tys, Ops, SrcVT, MMO); + + if (useSSE) { + Chain = Result.getValue(1); + SDValue InFlag = Result.getValue(2); + + // FIXME: Currently the FST is flagged to the FILD_FLAG. This + // shouldn't be necessary except that RFP cannot be live across + // multiple blocks. When stackifier is fixed, they can be uncoupled. + MachineFunction &MF = DAG.getMachineFunction(); + unsigned SSFISize = Op.getValueSizeInBits()/8; + int SSFI = MF.getFrameInfo().CreateStackObject(SSFISize, SSFISize, false); + auto PtrVT = getPointerTy(MF.getDataLayout()); + SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); + Tys = DAG.getVTList(MVT::Other); + SDValue Ops[] = { + Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag + }; + MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), + MachineMemOperand::MOStore, SSFISize, SSFISize); + + Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, + Ops, Op.getValueType(), MMO); + Result = DAG.getLoad( + Op.getValueType(), DL, Chain, StackSlot, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI)); + } + + return Result; +} + +/// 64-bit unsigned integer to double expansion. +static SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // This algorithm is not obvious. Here it is what we're trying to output: + /* + movq %rax, %xmm0 + punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } + subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } + #ifdef __SSE3__ + haddpd %xmm0, %xmm0 + #else + pshufd $0x4e, %xmm0, %xmm1 + addpd %xmm1, %xmm0 + #endif + */ + + SDLoc dl(Op); + LLVMContext *Context = DAG.getContext(); + + // Build some magic constants. + static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; + Constant *C0 = ConstantDataVector::get(*Context, CV0); + auto PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); + SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16); + + SmallVector<Constant*,2> CV1; + CV1.push_back( + ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(), + APInt(64, 0x4330000000000000ULL)))); + CV1.push_back( + ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(), + APInt(64, 0x4530000000000000ULL)))); + Constant *C1 = ConstantVector::get(CV1); + SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16); + + // Load the 64-bit value into an XMM register. + SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, + Op.getOperand(0)); + SDValue CLod0 = + DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + /* Alignment = */ 16); + SDValue Unpck1 = + getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0); + + SDValue CLod1 = + DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + /* Alignment = */ 16); + SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1); + // TODO: Are there any fast-math-flags to propagate here? + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); + SDValue Result; + + if (Subtarget.hasSSE3()) { + // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. + Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); + } else { + SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub); + SDValue Shuffle = DAG.getVectorShuffle(MVT::v4i32, dl, S2F, S2F, {2,3,0,1}); + Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, + DAG.getBitcast(MVT::v2f64, Shuffle), Sub); + } + + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, + DAG.getIntPtrConstant(0, dl)); +} + +/// 32-bit unsigned integer to float expansion. +static SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDLoc dl(Op); + // FP constant to bias correct the final result. + SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, + MVT::f64); + + // Load the 32-bit value into an XMM register. + SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, + Op.getOperand(0)); + + // Zero out the upper parts of the register. + Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); + + Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + DAG.getBitcast(MVT::v2f64, Load), + DAG.getIntPtrConstant(0, dl)); + + // Or the load with the bias. + SDValue Or = DAG.getNode( + ISD::OR, dl, MVT::v2i64, + DAG.getBitcast(MVT::v2i64, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)), + DAG.getBitcast(MVT::v2i64, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias))); + Or = + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl)); + + // Subtract the bias. + // TODO: Are there any fast-math-flags to propagate here? + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); + + // Handle final rounding. + return DAG.getFPExtendOrRound(Sub, dl, Op.getSimpleValueType()); +} + +static SDValue lowerUINT_TO_FP_v2i32(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget, SDLoc &DL) { + if (Op.getSimpleValueType() != MVT::v2f64) + return SDValue(); + + SDValue N0 = Op.getOperand(0); + assert(N0.getSimpleValueType() == MVT::v2i32 && "Unexpected input type"); + + // Legalize to v4i32 type. + N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0, + DAG.getUNDEF(MVT::v2i32)); + + if (Subtarget.hasAVX512()) + return DAG.getNode(X86ISD::CVTUI2P, DL, MVT::v2f64, N0); + + // Same implementation as VectorLegalizer::ExpandUINT_TO_FLOAT, + // but using v2i32 to v2f64 with X86ISD::CVTSI2P. + SDValue HalfWord = DAG.getConstant(16, DL, MVT::v4i32); + SDValue HalfWordMask = DAG.getConstant(0x0000FFFF, DL, MVT::v4i32); + + // Two to the power of half-word-size. + SDValue TWOHW = DAG.getConstantFP(1 << 16, DL, MVT::v2f64); + + // Clear upper part of LO, lower HI. + SDValue HI = DAG.getNode(ISD::SRL, DL, MVT::v4i32, N0, HalfWord); + SDValue LO = DAG.getNode(ISD::AND, DL, MVT::v4i32, N0, HalfWordMask); + + SDValue fHI = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, HI); + fHI = DAG.getNode(ISD::FMUL, DL, MVT::v2f64, fHI, TWOHW); + SDValue fLO = DAG.getNode(X86ISD::CVTSI2P, DL, MVT::v2f64, LO); + + // Add the two halves. + return DAG.getNode(ISD::FADD, DL, MVT::v2f64, fHI, fLO); +} + +static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // The algorithm is the following: + // #ifdef __SSE4_1__ + // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); + // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), + // (uint4) 0x53000000, 0xaa); + // #else + // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; + // uint4 hi = (v >> 16) | (uint4) 0x53000000; + // #endif + // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); + // return (float4) lo + fhi; + + // We shouldn't use it when unsafe-fp-math is enabled though: we might later + // reassociate the two FADDs, and if we do that, the algorithm fails + // spectacularly (PR24512). + // FIXME: If we ever have some kind of Machine FMF, this should be marked + // as non-fast and always be enabled. Why isn't SDAG FMF enough? Because + // there's also the MachineCombiner reassociations happening on Machine IR. + if (DAG.getTarget().Options.UnsafeFPMath) + return SDValue(); + + SDLoc DL(Op); + SDValue V = Op->getOperand(0); + MVT VecIntVT = V.getSimpleValueType(); + bool Is128 = VecIntVT == MVT::v4i32; + MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32; + // If we convert to something else than the supported type, e.g., to v4f64, + // abort early. + if (VecFloatVT != Op->getSimpleValueType(0)) + return SDValue(); + + assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) && + "Unsupported custom type"); + + // In the #idef/#else code, we have in common: + // - The vector of constants: + // -- 0x4b000000 + // -- 0x53000000 + // - A shift: + // -- v >> 16 + + // Create the splat vector for 0x4b000000. + SDValue VecCstLow = DAG.getConstant(0x4b000000, DL, VecIntVT); + // Create the splat vector for 0x53000000. + SDValue VecCstHigh = DAG.getConstant(0x53000000, DL, VecIntVT); + + // Create the right shift. + SDValue VecCstShift = DAG.getConstant(16, DL, VecIntVT); + SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift); + + SDValue Low, High; + if (Subtarget.hasSSE41()) { + MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16; + // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); + SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow); + SDValue VecBitcast = DAG.getBitcast(VecI16VT, V); + // Low will be bitcasted right away, so do not bother bitcasting back to its + // original type. + Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast, + VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); + // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), + // (uint4) 0x53000000, 0xaa); + SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh); + SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift); + // High will be bitcasted right away, so do not bother bitcasting back to + // its original type. + High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast, + VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); + } else { + SDValue VecCstMask = DAG.getConstant(0xffff, DL, VecIntVT); + // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; + SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask); + Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow); + + // uint4 hi = (v >> 16) | (uint4) 0x53000000; + High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh); + } + + // Create the vector constant for -(0x1.0p39f + 0x1.0p23f). + SDValue VecCstFAdd = DAG.getConstantFP( + APFloat(APFloat::IEEEsingle(), APInt(32, 0xD3000080)), DL, VecFloatVT); + + // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); + SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High); + // TODO: Are there any fast-math-flags to propagate here? + SDValue FHigh = + DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd); + // return (float4) lo + fhi; + SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low); + return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh); +} + +static SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDValue N0 = Op.getOperand(0); + MVT SrcVT = N0.getSimpleValueType(); + SDLoc dl(Op); + + if (SrcVT.getVectorElementType() == MVT::i1) { + if (SrcVT == MVT::v2i1) { + // For v2i1, we need to widen to v4i1 first. + assert(Op.getValueType() == MVT::v2f64 && "Unexpected type"); + N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, N0, + DAG.getUNDEF(MVT::v2i1)); + return DAG.getNode(X86ISD::CVTUI2P, dl, MVT::v2f64, + DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0)); + } + + MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements()); + return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(), + DAG.getNode(ISD::ZERO_EXTEND, dl, IntegerVT, N0)); + } + + switch (SrcVT.SimpleTy) { + default: + llvm_unreachable("Custom UINT_TO_FP is not supported!"); + case MVT::v2i32: + return lowerUINT_TO_FP_v2i32(Op, DAG, Subtarget, dl); + case MVT::v4i32: + case MVT::v8i32: + assert(!Subtarget.hasAVX512()); + return lowerUINT_TO_FP_vXi32(Op, DAG, Subtarget); + } +} + +SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + SDValue N0 = Op.getOperand(0); + SDLoc dl(Op); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + if (Op.getSimpleValueType().isVector()) + return lowerUINT_TO_FP_vec(Op, DAG, Subtarget); + + MVT SrcVT = N0.getSimpleValueType(); + MVT DstVT = Op.getSimpleValueType(); + + if (Subtarget.hasAVX512() && isScalarFPTypeInSSEReg(DstVT) && + (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget.is64Bit()))) { + // Conversions from unsigned i32 to f32/f64 are legal, + // using VCVTUSI2SS/SD. Same for i64 in 64-bit mode. + return Op; + } + + if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) + return LowerUINT_TO_FP_i64(Op, DAG, Subtarget); + if (SrcVT == MVT::i32 && X86ScalarSSEf64) + return LowerUINT_TO_FP_i32(Op, DAG, Subtarget); + if (Subtarget.is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) + return SDValue(); + + // Make a 64-bit buffer, and use it to build an FILD. + SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); + if (SrcVT == MVT::i32) { + SDValue OffsetSlot = DAG.getMemBasePlusOffset(StackSlot, 4, dl); + SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), + StackSlot, MachinePointerInfo()); + SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32), + OffsetSlot, MachinePointerInfo()); + SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); + return Fild; + } + + assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); + SDValue ValueToStore = Op.getOperand(0); + if (isScalarFPTypeInSSEReg(Op.getValueType()) && !Subtarget.is64Bit()) + // Bitcasting to f64 here allows us to do a single 64-bit store from + // an SSE register, avoiding the store forwarding penalty that would come + // with two 32-bit stores. + ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore); + SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, ValueToStore, StackSlot, + MachinePointerInfo()); + // For i64 source, we need to add the appropriate power of 2 if the input + // was negative. This is the same as the optimization in + // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, + // we must be careful to do the computation in x87 extended precision, not + // in SSE. (The generic code can't know it's OK to do this, or how to.) + int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); + MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), + MachineMemOperand::MOLoad, 8, 8); + + SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); + SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; + SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, + MVT::i64, MMO); + + APInt FF(32, 0x5F800000ULL); + + // Check whether the sign bit is set. + SDValue SignSet = DAG.getSetCC( + dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), + Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); + + // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. + SDValue FudgePtr = DAG.getConstantPool( + ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT); + + // Get a pointer to FF if the sign bit was set, or to 0 otherwise. + SDValue Zero = DAG.getIntPtrConstant(0, dl); + SDValue Four = DAG.getIntPtrConstant(4, dl); + SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet, Zero, Four); + FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset); + + // Load the value out, extending it from f32 to f80. + // FIXME: Avoid the extend by constructing the right constant pool? + SDValue Fudge = DAG.getExtLoad( + ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, + /* Alignment = */ 4); + // Extend everything to 80 bits to force it to be done on x87. + // TODO: Are there any fast-math-flags to propagate here? + SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); + return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, + DAG.getIntPtrConstant(0, dl)); +} + +// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation +// is legal, or has an fp128 or f16 source (which needs to be promoted to f32), +// just return an <SDValue(), SDValue()> pair. +// Otherwise it is assumed to be a conversion from one of f32, f64 or f80 +// to i16, i32 or i64, and we lower it to a legal sequence. +// If lowered to the final integer result we return a <result, SDValue()> pair. +// Otherwise we lower it to a sequence ending with a FIST, return a +// <FIST, StackSlot> pair, and the caller is responsible for loading +// the final integer result from StackSlot. +std::pair<SDValue,SDValue> +X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, + bool IsSigned, bool IsReplace) const { + SDLoc DL(Op); + + EVT DstTy = Op.getValueType(); + EVT TheVT = Op.getOperand(0).getValueType(); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) { + // f16 must be promoted before using the lowering in this routine. + // fp128 does not use this lowering. + return std::make_pair(SDValue(), SDValue()); + } + + // If using FIST to compute an unsigned i64, we'll need some fixup + // to handle values above the maximum signed i64. A FIST is always + // used for the 32-bit subtarget, but also for f80 on a 64-bit target. + bool UnsignedFixup = !IsSigned && + DstTy == MVT::i64 && + (!Subtarget.is64Bit() || + !isScalarFPTypeInSSEReg(TheVT)); + + if (!IsSigned && DstTy != MVT::i64 && !Subtarget.hasAVX512()) { + // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST. + // The low 32 bits of the fist result will have the correct uint32 result. + assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); + DstTy = MVT::i64; + } + + assert(DstTy.getSimpleVT() <= MVT::i64 && + DstTy.getSimpleVT() >= MVT::i16 && + "Unknown FP_TO_INT to lower!"); + + // These are really Legal. + if (DstTy == MVT::i32 && + isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) + return std::make_pair(SDValue(), SDValue()); + if (Subtarget.is64Bit() && + DstTy == MVT::i64 && + isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) + return std::make_pair(SDValue(), SDValue()); + + // We lower FP->int64 into FISTP64 followed by a load from a temporary + // stack slot. + MachineFunction &MF = DAG.getMachineFunction(); + unsigned MemSize = DstTy.getSizeInBits()/8; + int SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); + + unsigned Opc; + switch (DstTy.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); + case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; + case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; + case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; + } + + SDValue Chain = DAG.getEntryNode(); + SDValue Value = Op.getOperand(0); + SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment. + + if (UnsignedFixup) { + // + // Conversion to unsigned i64 is implemented with a select, + // depending on whether the source value fits in the range + // of a signed i64. Let Thresh be the FP equivalent of + // 0x8000000000000000ULL. + // + // Adjust i32 = (Value < Thresh) ? 0 : 0x80000000; + // FistSrc = (Value < Thresh) ? Value : (Value - Thresh); + // Fist-to-mem64 FistSrc + // Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent + // to XOR'ing the high 32 bits with Adjust. + // + // Being a power of 2, Thresh is exactly representable in all FP formats. + // For X87 we'd like to use the smallest FP type for this constant, but + // for DAG type consistency we have to match the FP operand type. + + APFloat Thresh(APFloat::IEEEsingle(), APInt(32, 0x5f000000)); + LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK; + bool LosesInfo = false; + if (TheVT == MVT::f64) + // The rounding mode is irrelevant as the conversion should be exact. + Status = Thresh.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, + &LosesInfo); + else if (TheVT == MVT::f80) + Status = Thresh.convert(APFloat::x87DoubleExtended(), + APFloat::rmNearestTiesToEven, &LosesInfo); + + assert(Status == APFloat::opOK && !LosesInfo && + "FP conversion should have been exact"); + + SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT); + + SDValue Cmp = DAG.getSetCC(DL, + getSetCCResultType(DAG.getDataLayout(), + *DAG.getContext(), TheVT), + Value, ThreshVal, ISD::SETLT); + Adjust = DAG.getSelect(DL, MVT::i32, Cmp, + DAG.getConstant(0, DL, MVT::i32), + DAG.getConstant(0x80000000, DL, MVT::i32)); + SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal); + Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(), + *DAG.getContext(), TheVT), + Value, ThreshVal, ISD::SETLT); + Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub); + } + + // FIXME This causes a redundant load/store if the SSE-class value is already + // in memory, such as if it is on the callstack. + if (isScalarFPTypeInSSEReg(TheVT)) { + assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); + Chain = DAG.getStore(Chain, DL, Value, StackSlot, + MachinePointerInfo::getFixedStack(MF, SSFI)); + SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); + SDValue Ops[] = { + Chain, StackSlot, DAG.getValueType(TheVT) + }; + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), + MachineMemOperand::MOLoad, MemSize, MemSize); + Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO); + Chain = Value.getValue(1); + SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false); + StackSlot = DAG.getFrameIndex(SSFI, PtrVT); + } + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), + MachineMemOperand::MOStore, MemSize, MemSize); + + if (UnsignedFixup) { + + // Insert the FIST, load its result as two i32's, + // and XOR the high i32 with Adjust. + + SDValue FistOps[] = { Chain, Value, StackSlot }; + SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), + FistOps, DstTy, MMO); + + SDValue Low32 = + DAG.getLoad(MVT::i32, DL, FIST, StackSlot, MachinePointerInfo()); + SDValue HighAddr = DAG.getMemBasePlusOffset(StackSlot, 4, DL); + + SDValue High32 = + DAG.getLoad(MVT::i32, DL, FIST, HighAddr, MachinePointerInfo()); + High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust); + + if (Subtarget.is64Bit()) { + // Join High32 and Low32 into a 64-bit result. + // (High32 << 32) | Low32 + Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32); + High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32); + High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32, + DAG.getConstant(32, DL, MVT::i8)); + SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32); + return std::make_pair(Result, SDValue()); + } + + SDValue ResultOps[] = { Low32, High32 }; + + SDValue pair = IsReplace + ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps) + : DAG.getMergeValues(ResultOps, DL); + return std::make_pair(pair, SDValue()); + } else { + // Build the FP_TO_INT*_IN_MEM + SDValue Ops[] = { Chain, Value, StackSlot }; + SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), + Ops, DstTy, MMO); + return std::make_pair(FIST, StackSlot); + } +} + +static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + MVT VT = Op->getSimpleValueType(0); + SDValue In = Op->getOperand(0); + MVT InVT = In.getSimpleValueType(); + SDLoc dl(Op); + + if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && + (VT != MVT::v8i32 || InVT != MVT::v8i16) && + (VT != MVT::v16i16 || InVT != MVT::v16i8) && + (VT != MVT::v8i64 || InVT != MVT::v8i32) && + (VT != MVT::v8i64 || InVT != MVT::v8i16) && + (VT != MVT::v16i32 || InVT != MVT::v16i16) && + (VT != MVT::v16i32 || InVT != MVT::v16i8) && + (VT != MVT::v32i16 || InVT != MVT::v32i8)) + return SDValue(); + + if (Subtarget.hasInt256()) + return DAG.getNode(X86ISD::VZEXT, dl, VT, In); + + // Optimize vectors in AVX mode: + // + // v8i16 -> v8i32 + // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. + // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. + // Concat upper and lower parts. + // + // v4i32 -> v4i64 + // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. + // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. + // Concat upper and lower parts. + // + + SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); + SDValue Undef = DAG.getUNDEF(InVT); + bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; + SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); + SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); + + MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), + VT.getVectorNumElements()/2); + + OpLo = DAG.getBitcast(HVT, OpLo); + OpHi = DAG.getBitcast(HVT, OpHi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); +} + +static SDValue LowerZERO_EXTEND_Mask(SDValue Op, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op->getSimpleValueType(0); + SDValue In = Op->getOperand(0); + MVT InVT = In.getSimpleValueType(); + assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!"); + SDLoc DL(Op); + unsigned NumElts = VT.getVectorNumElements(); + + // Extend VT if the scalar type is v8/v16 and BWI is not supported. + MVT ExtVT = VT; + if (!Subtarget.hasBWI() && + (VT.getVectorElementType().getSizeInBits() <= 16)) + ExtVT = MVT::getVectorVT(MVT::i32, NumElts); + + // Widen to 512-bits if VLX is not supported. + MVT WideVT = ExtVT; + if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) { + NumElts *= 512 / ExtVT.getSizeInBits(); + InVT = MVT::getVectorVT(MVT::i1, NumElts); + In = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT, DAG.getUNDEF(InVT), + In, DAG.getIntPtrConstant(0, DL)); + WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(), + NumElts); + } + + SDValue One = DAG.getConstant(1, DL, WideVT); + SDValue Zero = getZeroVector(WideVT, Subtarget, DAG, DL); + + SDValue SelectedVal = DAG.getSelect(DL, WideVT, In, One, Zero); + + // Truncate if we had to extend i16/i8 above. + if (VT != ExtVT) { + WideVT = MVT::getVectorVT(VT.getVectorElementType(), NumElts); + SelectedVal = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SelectedVal); + } + + // Extract back to 128/256-bit if we widened. + if (WideVT != VT) + SelectedVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SelectedVal, + DAG.getIntPtrConstant(0, DL)); + + return SelectedVal; +} + +static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDValue In = Op.getOperand(0); + MVT SVT = In.getSimpleValueType(); + + if (SVT.getVectorElementType() == MVT::i1) + return LowerZERO_EXTEND_Mask(Op, Subtarget, DAG); + + if (Subtarget.hasFp256()) + if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) + return Res; + + assert(!Op.getSimpleValueType().is256BitVector() || !SVT.is128BitVector() || + Op.getSimpleValueType().getVectorNumElements() != + SVT.getVectorNumElements()); + return SDValue(); +} + +/// Helper to recursively truncate vector elements in half with PACKSS/PACKUS. +/// It makes use of the fact that vectors with enough leading sign/zero bits +/// prevent the PACKSS/PACKUS from saturating the results. +/// AVX2 (Int256) sub-targets require extra shuffling as the PACK*S operates +/// within each 128-bit lane. +static SDValue truncateVectorWithPACK(unsigned Opcode, EVT DstVT, SDValue In, + const SDLoc &DL, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + assert((Opcode == X86ISD::PACKSS || Opcode == X86ISD::PACKUS) && + "Unexpected PACK opcode"); + + // Requires SSE2 but AVX512 has fast truncate. + if (!Subtarget.hasSSE2() || Subtarget.hasAVX512()) + return SDValue(); + + EVT SrcVT = In.getValueType(); + + // No truncation required, we might get here due to recursive calls. + if (SrcVT == DstVT) + return In; + + // We only support vector truncation to 128bits or greater from a + // 256bits or greater source. + unsigned DstSizeInBits = DstVT.getSizeInBits(); + unsigned SrcSizeInBits = SrcVT.getSizeInBits(); + if ((DstSizeInBits % 128) != 0 || (SrcSizeInBits % 256) != 0) + return SDValue(); + + LLVMContext &Ctx = *DAG.getContext(); + unsigned NumElems = SrcVT.getVectorNumElements(); + assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation"); + assert(SrcSizeInBits > DstSizeInBits && "Illegal truncation"); + + EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2); + + // Extract lower/upper subvectors. + unsigned NumSubElts = NumElems / 2; + SDValue Lo = extractSubVector(In, 0 * NumSubElts, DAG, DL, SrcSizeInBits / 2); + SDValue Hi = extractSubVector(In, 1 * NumSubElts, DAG, DL, SrcSizeInBits / 2); + + // Pack to the largest type possible: + // vXi64/vXi32 -> PACK*SDW and vXi16 -> PACK*SWB. + EVT InVT = MVT::i16, OutVT = MVT::i8; + if (DstVT.getScalarSizeInBits() > 8 && + (Opcode == X86ISD::PACKSS || Subtarget.hasSSE41())) { + InVT = MVT::i32; + OutVT = MVT::i16; + } + + unsigned SubSizeInBits = SrcSizeInBits / 2; + InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits()); + OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits()); + + // 256bit -> 128bit truncate - PACK lower/upper 128-bit subvectors. + if (SrcVT.is256BitVector()) { + Lo = DAG.getBitcast(InVT, Lo); + Hi = DAG.getBitcast(InVT, Hi); + SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi); + return DAG.getBitcast(DstVT, Res); + } + + // AVX2: 512bit -> 256bit truncate - PACK lower/upper 256-bit subvectors. + // AVX2: 512bit -> 128bit truncate - PACK(PACK, PACK). + if (SrcVT.is512BitVector() && Subtarget.hasInt256()) { + Lo = DAG.getBitcast(InVT, Lo); + Hi = DAG.getBitcast(InVT, Hi); + SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi); + + // 256-bit PACK(ARG0, ARG1) leaves us with ((LO0,LO1),(HI0,HI1)), + // so we need to shuffle to get ((LO0,HI0),(LO1,HI1)). + Res = DAG.getBitcast(MVT::v4i64, Res); + Res = DAG.getVectorShuffle(MVT::v4i64, DL, Res, Res, {0, 2, 1, 3}); + + if (DstVT.is256BitVector()) + return DAG.getBitcast(DstVT, Res); + + // If 512bit -> 128bit truncate another stage. + EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); + Res = DAG.getBitcast(PackedVT, Res); + return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget); + } + + // Recursively pack lower/upper subvectors, concat result and pack again. + assert(SrcSizeInBits >= 512 && "Expected 512-bit vector or greater"); + EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumSubElts); + Lo = truncateVectorWithPACK(Opcode, PackedVT, Lo, DL, DAG, Subtarget); + Hi = truncateVectorWithPACK(Opcode, PackedVT, Hi, DL, DAG, Subtarget); + + PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems); + SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi); + return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget); +} + +static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue In = Op.getOperand(0); + MVT InVT = In.getSimpleValueType(); + + assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type."); + + // Shift LSB to MSB and use VPMOVB/W2M or TESTD/Q. + unsigned ShiftInx = InVT.getScalarSizeInBits() - 1; + if (InVT.getScalarSizeInBits() <= 16) { + if (Subtarget.hasBWI()) { + // legal, will go to VPMOVB2M, VPMOVW2M + // Shift packed bytes not supported natively, bitcast to word + MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16); + SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, ExtVT, + DAG.getBitcast(ExtVT, In), + DAG.getConstant(ShiftInx, DL, ExtVT)); + ShiftNode = DAG.getBitcast(InVT, ShiftNode); + return DAG.getNode(X86ISD::CVT2MASK, DL, VT, ShiftNode); + } + // Use TESTD/Q, extended vector to packed dword/qword. + assert((InVT.is256BitVector() || InVT.is128BitVector()) && + "Unexpected vector type."); + unsigned NumElts = InVT.getVectorNumElements(); + MVT EltVT = Subtarget.hasVLX() ? MVT::i32 : MVT::getIntegerVT(512/NumElts); + MVT ExtVT = MVT::getVectorVT(EltVT, NumElts); + In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In); + InVT = ExtVT; + ShiftInx = InVT.getScalarSizeInBits() - 1; + } + + SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, InVT, In, + DAG.getConstant(ShiftInx, DL, InVT)); + return DAG.getNode(X86ISD::TESTM, DL, VT, ShiftNode, ShiftNode); +} + +SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue In = Op.getOperand(0); + MVT InVT = In.getSimpleValueType(); + unsigned InNumEltBits = InVT.getScalarSizeInBits(); + + assert(VT.getVectorNumElements() == InVT.getVectorNumElements() && + "Invalid TRUNCATE operation"); + + if (VT.getVectorElementType() == MVT::i1) + return LowerTruncateVecI1(Op, DAG, Subtarget); + + // vpmovqb/w/d, vpmovdb/w, vpmovwb + if (Subtarget.hasAVX512()) { + // word to byte only under BWI + if (InVT == MVT::v16i16 && !Subtarget.hasBWI()) // v16i16 -> v16i8 + return DAG.getNode(X86ISD::VTRUNC, DL, VT, + getExtendInVec(X86ISD::VSEXT, DL, MVT::v16i32, In, DAG)); + return DAG.getNode(X86ISD::VTRUNC, DL, VT, In); + } + + // Truncate with PACKSS if we are truncating a vector with sign-bits that + // extend all the way to the packed/truncated value. + unsigned NumPackedBits = std::min<unsigned>(VT.getScalarSizeInBits(), 16); + if ((InNumEltBits - NumPackedBits) < DAG.ComputeNumSignBits(In)) + if (SDValue V = + truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget)) + return V; + + // Truncate with PACKUS if we are truncating a vector with leading zero bits + // that extend all the way to the packed/truncated value. + // Pre-SSE41 we can only use PACKUSWB. + KnownBits Known; + DAG.computeKnownBits(In, Known); + NumPackedBits = Subtarget.hasSSE41() ? NumPackedBits : 8; + if ((InNumEltBits - NumPackedBits) <= Known.countMinLeadingZeros()) + if (SDValue V = + truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget)) + return V; + + if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) { + // On AVX2, v4i64 -> v4i32 becomes VPERMD. + if (Subtarget.hasInt256()) { + static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; + In = DAG.getBitcast(MVT::v8i32, In); + In = DAG.getVectorShuffle(MVT::v8i32, DL, In, In, ShufMask); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, + DAG.getIntPtrConstant(0, DL)); + } + + SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(0, DL)); + SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(2, DL)); + OpLo = DAG.getBitcast(MVT::v4i32, OpLo); + OpHi = DAG.getBitcast(MVT::v4i32, OpHi); + static const int ShufMask[] = {0, 2, 4, 6}; + return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask); + } + + if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) { + // On AVX2, v8i32 -> v8i16 becomes PSHUFB. + if (Subtarget.hasInt256()) { + In = DAG.getBitcast(MVT::v32i8, In); + + // The PSHUFB mask: + static const int ShufMask1[] = { 0, 1, 4, 5, 8, 9, 12, 13, + -1, -1, -1, -1, -1, -1, -1, -1, + 16, 17, 20, 21, 24, 25, 28, 29, + -1, -1, -1, -1, -1, -1, -1, -1 }; + In = DAG.getVectorShuffle(MVT::v32i8, DL, In, In, ShufMask1); + In = DAG.getBitcast(MVT::v4i64, In); + + static const int ShufMask2[] = {0, 2, -1, -1}; + In = DAG.getVectorShuffle(MVT::v4i64, DL, In, In, ShufMask2); + In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(0, DL)); + return DAG.getBitcast(VT, In); + } + + SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, + DAG.getIntPtrConstant(0, DL)); + + SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, + DAG.getIntPtrConstant(4, DL)); + + OpLo = DAG.getBitcast(MVT::v16i8, OpLo); + OpHi = DAG.getBitcast(MVT::v16i8, OpHi); + + // The PSHUFB mask: + static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, + -1, -1, -1, -1, -1, -1, -1, -1}; + + OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, OpLo, ShufMask1); + OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, OpHi, ShufMask1); + + OpLo = DAG.getBitcast(MVT::v4i32, OpLo); + OpHi = DAG.getBitcast(MVT::v4i32, OpHi); + + // The MOVLHPS Mask: + static const int ShufMask2[] = {0, 1, 4, 5}; + SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); + return DAG.getBitcast(MVT::v8i16, res); + } + + // Handle truncation of V256 to V128 using shuffles. + if (!VT.is128BitVector() || !InVT.is256BitVector()) + return SDValue(); + + assert(Subtarget.hasFp256() && "256-bit vector without AVX!"); + + unsigned NumElems = VT.getVectorNumElements(); + MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2); + + SmallVector<int, 16> MaskVec(NumElems * 2, -1); + // Prepare truncation shuffle mask + for (unsigned i = 0; i != NumElems; ++i) + MaskVec[i] = i * 2; + In = DAG.getBitcast(NVT, In); + SDValue V = DAG.getVectorShuffle(NVT, DL, In, In, MaskVec); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, + DAG.getIntPtrConstant(0, DL)); +} + +SDValue X86TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { + bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT; + MVT VT = Op.getSimpleValueType(); + + if (VT.isVector()) { + assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!"); + SDValue Src = Op.getOperand(0); + SDLoc dl(Op); + if (VT == MVT::v2i64 && Src.getSimpleValueType() == MVT::v2f32) { + return DAG.getNode(IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI, dl, VT, + DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src, + DAG.getUNDEF(MVT::v2f32))); + } + + return SDValue(); + } + + assert(!VT.isVector()); + + std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, + IsSigned, /*IsReplace=*/ false); + SDValue FIST = Vals.first, StackSlot = Vals.second; + // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. + if (!FIST.getNode()) + return Op; + + if (StackSlot.getNode()) + // Load the result. + return DAG.getLoad(VT, SDLoc(Op), FIST, StackSlot, MachinePointerInfo()); + + // The node is the result. + return FIST; +} + +static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue In = Op.getOperand(0); + MVT SVT = In.getSimpleValueType(); + + assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); + + return DAG.getNode(X86ISD::VFPEXT, DL, VT, + DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, + In, DAG.getUNDEF(SVT))); +} + +/// The only differences between FABS and FNEG are the mask and the logic op. +/// FNEG also has a folding opportunity for FNEG(FABS(x)). +static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) { + assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) && + "Wrong opcode for lowering FABS or FNEG."); + + bool IsFABS = (Op.getOpcode() == ISD::FABS); + + // If this is a FABS and it has an FNEG user, bail out to fold the combination + // into an FNABS. We'll lower the FABS after that if it is still in use. + if (IsFABS) + for (SDNode *User : Op->uses()) + if (User->getOpcode() == ISD::FNEG) + return Op; + + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + bool IsF128 = (VT == MVT::f128); + + // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to + // decide if we should generate a 16-byte constant mask when we only need 4 or + // 8 bytes for the scalar case. + + MVT LogicVT; + MVT EltVT; + + if (VT.isVector()) { + LogicVT = VT; + EltVT = VT.getVectorElementType(); + } else if (IsF128) { + // SSE instructions are used for optimized f128 logical operations. + LogicVT = MVT::f128; + EltVT = VT; + } else { + // There are no scalar bitwise logical SSE/AVX instructions, so we + // generate a 16-byte vector constant and logic op even for the scalar case. + // Using a 16-byte mask allows folding the load of the mask with + // the logic op, so it can save (~4 bytes) on code size. + LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32; + EltVT = VT; + } + + unsigned EltBits = EltVT.getSizeInBits(); + // For FABS, mask is 0x7f...; for FNEG, mask is 0x80... + APInt MaskElt = + IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignMask(EltBits); + const fltSemantics &Sem = + EltVT == MVT::f64 ? APFloat::IEEEdouble() : + (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle()); + SDValue Mask = DAG.getConstantFP(APFloat(Sem, MaskElt), dl, LogicVT); + + SDValue Op0 = Op.getOperand(0); + bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS); + unsigned LogicOp = + IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR; + SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0; + + if (VT.isVector() || IsF128) + return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); + + // For the scalar case extend to a 128-bit vector, perform the logic op, + // and extract the scalar result back out. + Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand); + SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode, + DAG.getIntPtrConstant(0, dl)); +} + +static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { + SDValue Mag = Op.getOperand(0); + SDValue Sign = Op.getOperand(1); + SDLoc dl(Op); + + // If the sign operand is smaller, extend it first. + MVT VT = Op.getSimpleValueType(); + if (Sign.getSimpleValueType().bitsLT(VT)) + Sign = DAG.getNode(ISD::FP_EXTEND, dl, VT, Sign); + + // And if it is bigger, shrink it first. + if (Sign.getSimpleValueType().bitsGT(VT)) + Sign = DAG.getNode(ISD::FP_ROUND, dl, VT, Sign, DAG.getIntPtrConstant(1, dl)); + + // At this point the operands and the result should have the same + // type, and that won't be f80 since that is not custom lowered. + bool IsF128 = (VT == MVT::f128); + assert((VT == MVT::f64 || VT == MVT::f32 || VT == MVT::f128 || + VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v4f32 || + VT == MVT::v8f32 || VT == MVT::v8f64 || VT == MVT::v16f32) && + "Unexpected type in LowerFCOPYSIGN"); + + MVT EltVT = VT.getScalarType(); + const fltSemantics &Sem = + EltVT == MVT::f64 ? APFloat::IEEEdouble() + : (IsF128 ? APFloat::IEEEquad() : APFloat::IEEEsingle()); + + // Perform all scalar logic operations as 16-byte vectors because there are no + // scalar FP logic instructions in SSE. + // TODO: This isn't necessary. If we used scalar types, we might avoid some + // unnecessary splats, but we might miss load folding opportunities. Should + // this decision be based on OptimizeForSize? + bool IsFakeVector = !VT.isVector() && !IsF128; + MVT LogicVT = VT; + if (IsFakeVector) + LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32; + + // The mask constants are automatically splatted for vector types. + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + SDValue SignMask = DAG.getConstantFP( + APFloat(Sem, APInt::getSignMask(EltSizeInBits)), dl, LogicVT); + SDValue MagMask = DAG.getConstantFP( + APFloat(Sem, ~APInt::getSignMask(EltSizeInBits)), dl, LogicVT); + + // First, clear all bits but the sign bit from the second operand (sign). + if (IsFakeVector) + Sign = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Sign); + SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Sign, SignMask); + + // Next, clear the sign bit from the first operand (magnitude). + // TODO: If we had general constant folding for FP logic ops, this check + // wouldn't be necessary. + SDValue MagBits; + if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Mag)) { + APFloat APF = Op0CN->getValueAPF(); + APF.clearSign(); + MagBits = DAG.getConstantFP(APF, dl, LogicVT); + } else { + // If the magnitude operand wasn't a constant, we need to AND out the sign. + if (IsFakeVector) + Mag = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Mag); + MagBits = DAG.getNode(X86ISD::FAND, dl, LogicVT, Mag, MagMask); + } + + // OR the magnitude value with the sign bit. + SDValue Or = DAG.getNode(X86ISD::FOR, dl, LogicVT, MagBits, SignBit); + return !IsFakeVector ? Or : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Or, + DAG.getIntPtrConstant(0, dl)); +} + +static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { + SDValue N0 = Op.getOperand(0); + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + MVT OpVT = N0.getSimpleValueType(); + assert((OpVT == MVT::f32 || OpVT == MVT::f64) && + "Unexpected type for FGETSIGN"); + + // Lower ISD::FGETSIGN to (AND (X86ISD::MOVMSK ...) 1). + MVT VecVT = (OpVT == MVT::f32 ? MVT::v4f32 : MVT::v2f64); + SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, N0); + Res = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32, Res); + Res = DAG.getZExtOrTrunc(Res, dl, VT); + Res = DAG.getNode(ISD::AND, dl, VT, Res, DAG.getConstant(1, dl, VT)); + return Res; +} + +// Check whether an OR'd tree is PTEST-able. +static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); + + if (!Subtarget.hasSSE41()) + return SDValue(); + + if (!Op->hasOneUse()) + return SDValue(); + + SDNode *N = Op.getNode(); + SDLoc DL(N); + + SmallVector<SDValue, 8> Opnds; + DenseMap<SDValue, unsigned> VecInMap; + SmallVector<SDValue, 8> VecIns; + EVT VT = MVT::Other; + + // Recognize a special case where a vector is casted into wide integer to + // test all 0s. + Opnds.push_back(N->getOperand(0)); + Opnds.push_back(N->getOperand(1)); + + for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) { + SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot; + // BFS traverse all OR'd operands. + if (I->getOpcode() == ISD::OR) { + Opnds.push_back(I->getOperand(0)); + Opnds.push_back(I->getOperand(1)); + // Re-evaluate the number of nodes to be traversed. + e += 2; // 2 more nodes (LHS and RHS) are pushed. + continue; + } + + // Quit if a non-EXTRACT_VECTOR_ELT + if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + // Quit if without a constant index. + SDValue Idx = I->getOperand(1); + if (!isa<ConstantSDNode>(Idx)) + return SDValue(); + + SDValue ExtractedFromVec = I->getOperand(0); + DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec); + if (M == VecInMap.end()) { + VT = ExtractedFromVec.getValueType(); + // Quit if not 128/256-bit vector. + if (!VT.is128BitVector() && !VT.is256BitVector()) + return SDValue(); + // Quit if not the same type. + if (VecInMap.begin() != VecInMap.end() && + VT != VecInMap.begin()->first.getValueType()) + return SDValue(); + M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first; + VecIns.push_back(ExtractedFromVec); + } + M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue(); + } + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Not extracted from 128-/256-bit vector."); + + unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U; + + for (DenseMap<SDValue, unsigned>::const_iterator + I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) { + // Quit if not all elements are used. + if (I->second != FullMask) + return SDValue(); + } + + MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; + + // Cast all vectors into TestVT for PTEST. + for (unsigned i = 0, e = VecIns.size(); i < e; ++i) + VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]); + + // If more than one full vector is evaluated, OR them first before PTEST. + for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) { + // Each iteration will OR 2 nodes and append the result until there is only + // 1 node left, i.e. the final OR'd value of all vectors. + SDValue LHS = VecIns[Slot]; + SDValue RHS = VecIns[Slot + 1]; + VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS)); + } + + return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, VecIns.back(), VecIns.back()); +} + +/// \brief return true if \c Op has a use that doesn't just read flags. +static bool hasNonFlagsUse(SDValue Op) { + for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; + ++UI) { + SDNode *User = *UI; + unsigned UOpNo = UI.getOperandNo(); + if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { + // Look pass truncate. + UOpNo = User->use_begin().getOperandNo(); + User = *User->use_begin(); + } + + if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC && + !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) + return true; + } + return false; +} + +// Emit KTEST instruction for bit vectors on AVX-512 +static SDValue EmitKTEST(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (Op.getOpcode() == ISD::BITCAST) { + auto hasKTEST = [&](MVT VT) { + unsigned SizeInBits = VT.getSizeInBits(); + return (Subtarget.hasDQI() && (SizeInBits == 8 || SizeInBits == 16)) || + (Subtarget.hasBWI() && (SizeInBits == 32 || SizeInBits == 64)); + }; + SDValue Op0 = Op.getOperand(0); + MVT Op0VT = Op0.getValueType().getSimpleVT(); + if (Op0VT.isVector() && Op0VT.getVectorElementType() == MVT::i1 && + hasKTEST(Op0VT)) + return DAG.getNode(X86ISD::KTEST, SDLoc(Op), Op0VT, Op0, Op0); + } + return SDValue(); +} + +/// Emit nodes that will be selected as "test Op0,Op0", or something +/// equivalent. +SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, const SDLoc &dl, + SelectionDAG &DAG) const { + if (Op.getValueType() == MVT::i1) { + SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op); + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp, + DAG.getConstant(0, dl, MVT::i8)); + } + // CF and OF aren't always set the way we want. Determine which + // of these we need. + bool NeedCF = false; + bool NeedOF = false; + switch (X86CC) { + default: break; + case X86::COND_A: case X86::COND_AE: + case X86::COND_B: case X86::COND_BE: + NeedCF = true; + break; + case X86::COND_G: case X86::COND_GE: + case X86::COND_L: case X86::COND_LE: + case X86::COND_O: case X86::COND_NO: { + // Check if we really need to set the + // Overflow flag. If NoSignedWrap is present + // that is not actually needed. + switch (Op->getOpcode()) { + case ISD::ADD: + case ISD::SUB: + case ISD::MUL: + case ISD::SHL: + if (Op.getNode()->getFlags().hasNoSignedWrap()) + break; + LLVM_FALLTHROUGH; + default: + NeedOF = true; + break; + } + break; + } + } + // See if we can use the EFLAGS value from the operand instead of + // doing a separate TEST. TEST always sets OF and CF to 0, so unless + // we prove that the arithmetic won't overflow, we can't use OF or CF. + if (Op.getResNo() != 0 || NeedOF || NeedCF) { + // Emit KTEST for bit vectors + if (auto Node = EmitKTEST(Op, DAG, Subtarget)) + return Node; + // Emit a CMP with 0, which is the TEST pattern. + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, + DAG.getConstant(0, dl, Op.getValueType())); + } + unsigned Opcode = 0; + unsigned NumOperands = 0; + + // Truncate operations may prevent the merge of the SETCC instruction + // and the arithmetic instruction before it. Attempt to truncate the operands + // of the arithmetic instruction and use a reduced bit-width instruction. + bool NeedTruncation = false; + SDValue ArithOp = Op; + if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { + SDValue Arith = Op->getOperand(0); + // Both the trunc and the arithmetic op need to have one user each. + if (Arith->hasOneUse()) + switch (Arith.getOpcode()) { + default: break; + case ISD::ADD: + case ISD::SUB: + case ISD::AND: + case ISD::OR: + case ISD::XOR: { + NeedTruncation = true; + ArithOp = Arith; + } + } + } + + // Sometimes flags can be set either with an AND or with an SRL/SHL + // instruction. SRL/SHL variant should be preferred for masks longer than this + // number of bits. + const int ShiftToAndMaxMaskWidth = 32; + const bool ZeroCheck = (X86CC == X86::COND_E || X86CC == X86::COND_NE); + + // NOTICE: In the code below we use ArithOp to hold the arithmetic operation + // which may be the result of a CAST. We use the variable 'Op', which is the + // non-casted variable when we check for possible users. + switch (ArithOp.getOpcode()) { + case ISD::ADD: + // We only want to rewrite this as a target-specific node with attached + // flags if there is a reasonable chance of either using that to do custom + // instructions selection that can fold some of the memory operands, or if + // only the flags are used. If there are other uses, leave the node alone + // and emit a test instruction. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) + if (UI->getOpcode() != ISD::CopyToReg && + UI->getOpcode() != ISD::SETCC && + UI->getOpcode() != ISD::STORE) + goto default_case; + + if (auto *C = dyn_cast<ConstantSDNode>(ArithOp.getOperand(1))) { + // An add of one will be selected as an INC. + if (C->isOne() && + (!Subtarget.slowIncDec() || + DAG.getMachineFunction().getFunction().optForSize())) { + Opcode = X86ISD::INC; + NumOperands = 1; + break; + } + + // An add of negative one (subtract of one) will be selected as a DEC. + if (C->isAllOnesValue() && + (!Subtarget.slowIncDec() || + DAG.getMachineFunction().getFunction().optForSize())) { + Opcode = X86ISD::DEC; + NumOperands = 1; + break; + } + } + + // Otherwise use a regular EFLAGS-setting add. + Opcode = X86ISD::ADD; + NumOperands = 2; + break; + case ISD::SHL: + case ISD::SRL: + // If we have a constant logical shift that's only used in a comparison + // against zero turn it into an equivalent AND. This allows turning it into + // a TEST instruction later. + if (ZeroCheck && Op->hasOneUse() && + isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) { + EVT VT = Op.getValueType(); + unsigned BitWidth = VT.getSizeInBits(); + unsigned ShAmt = Op->getConstantOperandVal(1); + if (ShAmt >= BitWidth) // Avoid undefined shifts. + break; + APInt Mask = ArithOp.getOpcode() == ISD::SRL + ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt) + : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt); + if (!Mask.isSignedIntN(ShiftToAndMaxMaskWidth)) + break; + Op = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0), + DAG.getConstant(Mask, dl, VT)); + } + break; + + case ISD::AND: + // If the primary 'and' result isn't used, don't bother using X86ISD::AND, + // because a TEST instruction will be better. However, AND should be + // preferred if the instruction can be combined into ANDN. + if (!hasNonFlagsUse(Op)) { + SDValue Op0 = ArithOp->getOperand(0); + SDValue Op1 = ArithOp->getOperand(1); + EVT VT = ArithOp.getValueType(); + bool isAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1); + bool isLegalAndnType = VT == MVT::i32 || VT == MVT::i64; + bool isProperAndn = isAndn && isLegalAndnType && Subtarget.hasBMI(); + + // If we cannot select an ANDN instruction, check if we can replace + // AND+IMM64 with a shift before giving up. This is possible for masks + // like 0xFF000000 or 0x00FFFFFF and if we care only about the zero flag. + if (!isProperAndn) { + if (!ZeroCheck) + break; + + assert(!isa<ConstantSDNode>(Op0) && "AND node isn't canonicalized"); + auto *CN = dyn_cast<ConstantSDNode>(Op1); + if (!CN) + break; + + const APInt &Mask = CN->getAPIntValue(); + if (Mask.isSignedIntN(ShiftToAndMaxMaskWidth)) + break; // Prefer TEST instruction. + + unsigned BitWidth = Mask.getBitWidth(); + unsigned LeadingOnes = Mask.countLeadingOnes(); + unsigned TrailingZeros = Mask.countTrailingZeros(); + + if (LeadingOnes + TrailingZeros == BitWidth) { + assert(TrailingZeros < VT.getSizeInBits() && + "Shift amount should be less than the type width"); + MVT ShTy = getScalarShiftAmountTy(DAG.getDataLayout(), VT); + SDValue ShAmt = DAG.getConstant(TrailingZeros, dl, ShTy); + Op = DAG.getNode(ISD::SRL, dl, VT, Op0, ShAmt); + break; + } + + unsigned LeadingZeros = Mask.countLeadingZeros(); + unsigned TrailingOnes = Mask.countTrailingOnes(); + + if (LeadingZeros + TrailingOnes == BitWidth) { + assert(LeadingZeros < VT.getSizeInBits() && + "Shift amount should be less than the type width"); + MVT ShTy = getScalarShiftAmountTy(DAG.getDataLayout(), VT); + SDValue ShAmt = DAG.getConstant(LeadingZeros, dl, ShTy); + Op = DAG.getNode(ISD::SHL, dl, VT, Op0, ShAmt); + break; + } + + break; + } + } + LLVM_FALLTHROUGH; + case ISD::SUB: + case ISD::OR: + case ISD::XOR: + // Similar to ISD::ADD above, check if the uses will preclude useful + // lowering of the target-specific node. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) + if (UI->getOpcode() != ISD::CopyToReg && + UI->getOpcode() != ISD::SETCC && + UI->getOpcode() != ISD::STORE) + goto default_case; + + // Otherwise use a regular EFLAGS-setting instruction. + switch (ArithOp.getOpcode()) { + default: llvm_unreachable("unexpected operator!"); + case ISD::SUB: Opcode = X86ISD::SUB; break; + case ISD::XOR: Opcode = X86ISD::XOR; break; + case ISD::AND: Opcode = X86ISD::AND; break; + case ISD::OR: { + if (!NeedTruncation && ZeroCheck) { + if (SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG)) + return EFLAGS; + } + Opcode = X86ISD::OR; + break; + } + } + + NumOperands = 2; + break; + case X86ISD::ADD: + case X86ISD::SUB: + case X86ISD::INC: + case X86ISD::DEC: + case X86ISD::OR: + case X86ISD::XOR: + case X86ISD::AND: + return SDValue(Op.getNode(), 1); + default: + default_case: + break; + } + + // If we found that truncation is beneficial, perform the truncation and + // update 'Op'. + if (NeedTruncation) { + EVT VT = Op.getValueType(); + SDValue WideVal = Op->getOperand(0); + EVT WideVT = WideVal.getValueType(); + unsigned ConvertedOp = 0; + // Use a target machine opcode to prevent further DAGCombine + // optimizations that may separate the arithmetic operations + // from the setcc node. + switch (WideVal.getOpcode()) { + default: break; + case ISD::ADD: ConvertedOp = X86ISD::ADD; break; + case ISD::SUB: ConvertedOp = X86ISD::SUB; break; + case ISD::AND: ConvertedOp = X86ISD::AND; break; + case ISD::OR: ConvertedOp = X86ISD::OR; break; + case ISD::XOR: ConvertedOp = X86ISD::XOR; break; + } + + if (ConvertedOp) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { + SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0)); + SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1)); + Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1); + } + } + } + + if (Opcode == 0) { + // Emit KTEST for bit vectors + if (auto Node = EmitKTEST(Op, DAG, Subtarget)) + return Node; + + // Emit a CMP with 0, which is the TEST pattern. + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, + DAG.getConstant(0, dl, Op.getValueType())); + } + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands); + + SDValue New = DAG.getNode(Opcode, dl, VTs, Ops); + DAG.ReplaceAllUsesWith(Op, New); + return SDValue(New.getNode(), 1); +} + +/// Emit nodes that will be selected as "cmp Op0,Op1", or something +/// equivalent. +SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, + const SDLoc &dl, SelectionDAG &DAG) const { + if (isNullConstant(Op1)) + return EmitTest(Op0, X86CC, dl, DAG); + + assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) && + "Unexpected comparison operation for MVT::i1 operands"); + + if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || + Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { + // Only promote the compare up to I32 if it is a 16 bit operation + // with an immediate. 16 bit immediates are to be avoided. + if ((Op0.getValueType() == MVT::i16 && + (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1))) && + !DAG.getMachineFunction().getFunction().optForMinSize() && + !Subtarget.isAtom()) { + unsigned ExtendOp = + isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; + Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0); + Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1); + } + // Use SUB instead of CMP to enable CSE between SUB and CMP. + SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); + SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, Op0, Op1); + return SDValue(Sub.getNode(), 1); + } + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); +} + +/// Convert a comparison if required by the subtarget. +SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, + SelectionDAG &DAG) const { + // If the subtarget does not support the FUCOMI instruction, floating-point + // comparisons have to be converted. + if (Subtarget.hasCMov() || + Cmp.getOpcode() != X86ISD::CMP || + !Cmp.getOperand(0).getValueType().isFloatingPoint() || + !Cmp.getOperand(1).getValueType().isFloatingPoint()) + return Cmp; + + // The instruction selector will select an FUCOM instruction instead of + // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence + // build an SDNode sequence that transfers the result from FPSW into EFLAGS: + // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) + SDLoc dl(Cmp); + SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); + SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); + SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, + DAG.getConstant(8, dl, MVT::i8)); + SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); + + // Some 64-bit targets lack SAHF support, but they do support FCOMI. + assert(Subtarget.hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?"); + return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); +} + +/// Check if replacement of SQRT with RSQRT should be disabled. +bool X86TargetLowering::isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + + // We never want to use both SQRT and RSQRT instructions for the same input. + if (DAG.getNodeIfExists(X86ISD::FRSQRT, DAG.getVTList(VT), Op)) + return false; + + if (VT.isVector()) + return Subtarget.hasFastVectorFSQRT(); + return Subtarget.hasFastScalarFSQRT(); +} + +/// The minimum architected relative accuracy is 2^-12. We need one +/// Newton-Raphson step to have a good float result (24 bits of precision). +SDValue X86TargetLowering::getSqrtEstimate(SDValue Op, + SelectionDAG &DAG, int Enabled, + int &RefinementSteps, + bool &UseOneConstNR, + bool Reciprocal) const { + EVT VT = Op.getValueType(); + + // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps. + // TODO: Add support for AVX512 (v16f32). + // It is likely not profitable to do this for f64 because a double-precision + // rsqrt estimate with refinement on x86 prior to FMA requires at least 16 + // instructions: convert to single, rsqrtss, convert back to double, refine + // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA + // along with FMA, this could be a throughput win. + // TODO: SQRT requires SSE2 to prevent the introduction of an illegal v4i32 + // after legalize types. + if ((VT == MVT::f32 && Subtarget.hasSSE1()) || + (VT == MVT::v4f32 && Subtarget.hasSSE1() && Reciprocal) || + (VT == MVT::v4f32 && Subtarget.hasSSE2() && !Reciprocal) || + (VT == MVT::v8f32 && Subtarget.hasAVX())) { + if (RefinementSteps == ReciprocalEstimate::Unspecified) + RefinementSteps = 1; + + UseOneConstNR = false; + return DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op); + } + return SDValue(); +} + +/// The minimum architected relative accuracy is 2^-12. We need one +/// Newton-Raphson step to have a good float result (24 bits of precision). +SDValue X86TargetLowering::getRecipEstimate(SDValue Op, SelectionDAG &DAG, + int Enabled, + int &RefinementSteps) const { + EVT VT = Op.getValueType(); + + // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps. + // TODO: Add support for AVX512 (v16f32). + // It is likely not profitable to do this for f64 because a double-precision + // reciprocal estimate with refinement on x86 prior to FMA requires + // 15 instructions: convert to single, rcpss, convert back to double, refine + // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA + // along with FMA, this could be a throughput win. + + if ((VT == MVT::f32 && Subtarget.hasSSE1()) || + (VT == MVT::v4f32 && Subtarget.hasSSE1()) || + (VT == MVT::v8f32 && Subtarget.hasAVX())) { + // Enable estimate codegen with 1 refinement step for vector division. + // Scalar division estimates are disabled because they break too much + // real-world code. These defaults are intended to match GCC behavior. + if (VT == MVT::f32 && Enabled == ReciprocalEstimate::Unspecified) + return SDValue(); + + if (RefinementSteps == ReciprocalEstimate::Unspecified) + RefinementSteps = 1; + + return DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op); + } + return SDValue(); +} + +/// If we have at least two divisions that use the same divisor, convert to +/// multiplication by a reciprocal. This may need to be adjusted for a given +/// CPU if a division's cost is not at least twice the cost of a multiplication. +/// This is because we still need one division to calculate the reciprocal and +/// then we need two multiplies by that reciprocal as replacements for the +/// original divisions. +unsigned X86TargetLowering::combineRepeatedFPDivisors() const { + return 2; +} + +/// Helper for creating a X86ISD::SETCC node. +static SDValue getSETCC(X86::CondCode Cond, SDValue EFLAGS, const SDLoc &dl, + SelectionDAG &DAG) { + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(Cond, dl, MVT::i8), EFLAGS); +} + +/// Create a BT (Bit Test) node - Test bit \p BitNo in \p Src and set condition +/// according to equal/not-equal condition code \p CC. +static SDValue getBitTestCondition(SDValue Src, SDValue BitNo, ISD::CondCode CC, + const SDLoc &dl, SelectionDAG &DAG) { + // If Src is i8, promote it to i32 with any_extend. There is no i8 BT + // instruction. Since the shift amount is in-range-or-undefined, we know + // that doing a bittest on the i32 value is ok. We extend to i32 because + // the encoding for the i16 version is larger than the i32 version. + // Also promote i16 to i32 for performance / code size reason. + if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16) + Src = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Src); + + // See if we can use the 32-bit instruction instead of the 64-bit one for a + // shorter encoding. Since the former takes the modulo 32 of BitNo and the + // latter takes the modulo 64, this is only valid if the 5th bit of BitNo is + // known to be zero. + if (Src.getValueType() == MVT::i64 && + DAG.MaskedValueIsZero(BitNo, APInt(BitNo.getValueSizeInBits(), 32))) + Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src); + + // If the operand types disagree, extend the shift amount to match. Since + // BT ignores high bits (like shifts) we can use anyextend. + if (Src.getValueType() != BitNo.getValueType()) + BitNo = DAG.getNode(ISD::ANY_EXTEND, dl, Src.getValueType(), BitNo); + + SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, Src, BitNo); + X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; + return getSETCC(Cond, BT, dl , DAG); +} + +/// Result of 'and' is compared against zero. Change to a BT node if possible. +static SDValue LowerAndToBT(SDValue And, ISD::CondCode CC, + const SDLoc &dl, SelectionDAG &DAG) { + assert(And.getOpcode() == ISD::AND && "Expected AND node!"); + SDValue Op0 = And.getOperand(0); + SDValue Op1 = And.getOperand(1); + if (Op0.getOpcode() == ISD::TRUNCATE) + Op0 = Op0.getOperand(0); + if (Op1.getOpcode() == ISD::TRUNCATE) + Op1 = Op1.getOperand(0); + + SDValue LHS, RHS; + if (Op1.getOpcode() == ISD::SHL) + std::swap(Op0, Op1); + if (Op0.getOpcode() == ISD::SHL) { + if (isOneConstant(Op0.getOperand(0))) { + // If we looked past a truncate, check that it's only truncating away + // known zeros. + unsigned BitWidth = Op0.getValueSizeInBits(); + unsigned AndBitWidth = And.getValueSizeInBits(); + if (BitWidth > AndBitWidth) { + KnownBits Known; + DAG.computeKnownBits(Op0, Known); + if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth) + return SDValue(); + } + LHS = Op1; + RHS = Op0.getOperand(1); + } + } else if (Op1.getOpcode() == ISD::Constant) { + ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); + uint64_t AndRHSVal = AndRHS->getZExtValue(); + SDValue AndLHS = Op0; + + if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { + LHS = AndLHS.getOperand(0); + RHS = AndLHS.getOperand(1); + } + + // Use BT if the immediate can't be encoded in a TEST instruction. + if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { + LHS = AndLHS; + RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType()); + } + } + + if (LHS.getNode()) + return getBitTestCondition(LHS, RHS, CC, dl, DAG); + + return SDValue(); +} + +/// Turns an ISD::CondCode into a value suitable for SSE floating-point mask +/// CMPs. +static unsigned translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0, + SDValue &Op1) { + unsigned SSECC; + bool Swap = false; + + // SSE Condition code mapping: + // 0 - EQ + // 1 - LT + // 2 - LE + // 3 - UNORD + // 4 - NEQ + // 5 - NLT + // 6 - NLE + // 7 - ORD + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETOEQ: + case ISD::SETEQ: SSECC = 0; break; + case ISD::SETOGT: + case ISD::SETGT: Swap = true; LLVM_FALLTHROUGH; + case ISD::SETLT: + case ISD::SETOLT: SSECC = 1; break; + case ISD::SETOGE: + case ISD::SETGE: Swap = true; LLVM_FALLTHROUGH; + case ISD::SETLE: + case ISD::SETOLE: SSECC = 2; break; + case ISD::SETUO: SSECC = 3; break; + case ISD::SETUNE: + case ISD::SETNE: SSECC = 4; break; + case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH; + case ISD::SETUGE: SSECC = 5; break; + case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH; + case ISD::SETUGT: SSECC = 6; break; + case ISD::SETO: SSECC = 7; break; + case ISD::SETUEQ: SSECC = 8; break; + case ISD::SETONE: SSECC = 12; break; + } + if (Swap) + std::swap(Op0, Op1); + + return SSECC; +} + +/// Break a VSETCC 256-bit integer VSETCC into two new 128 ones and then +/// concatenate the result back. +static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + + assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && + "Unsupported value type for operation"); + + unsigned NumElems = VT.getVectorNumElements(); + SDLoc dl(Op); + SDValue CC = Op.getOperand(2); + + // Extract the LHS vectors + SDValue LHS = Op.getOperand(0); + SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl); + SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl); + + // Extract the RHS vectors + SDValue RHS = Op.getOperand(1); + SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl); + SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl); + + // Issue the operation on the smaller types and concatenate the result back + MVT EltVT = VT.getVectorElementType(); + MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); +} + +static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue CC = Op.getOperand(2); + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + assert(Op0.getSimpleValueType().getVectorElementType() == MVT::i1 && + "Unexpected type for boolean compare operation"); + ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); + SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0, + DAG.getConstant(-1, dl, VT)); + SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1, + DAG.getConstant(-1, dl, VT)); + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETEQ: + // (x == y) -> ~(x ^ y) + return DAG.getNode(ISD::XOR, dl, VT, + DAG.getNode(ISD::XOR, dl, VT, Op0, Op1), + DAG.getConstant(-1, dl, VT)); + case ISD::SETNE: + // (x != y) -> (x ^ y) + return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1); + case ISD::SETUGT: + case ISD::SETGT: + // (x > y) -> (x & ~y) + return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1); + case ISD::SETULT: + case ISD::SETLT: + // (x < y) -> (~x & y) + return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1); + case ISD::SETULE: + case ISD::SETLE: + // (x <= y) -> (~x | y) + return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1); + case ISD::SETUGE: + case ISD::SETGE: + // (x >=y) -> (x | ~y) + return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1); + } +} + +static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) { + + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue CC = Op.getOperand(2); + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + assert(VT.getVectorElementType() == MVT::i1 && + "Cannot set masked compare for this operation"); + + ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); + unsigned Opc = 0; + bool Unsigned = false; + bool Swap = false; + unsigned SSECC; + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETNE: SSECC = 4; break; + case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break; + case ISD::SETUGT: SSECC = 6; Unsigned = true; break; + case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH; + case ISD::SETGT: Opc = X86ISD::PCMPGTM; break; + case ISD::SETULT: SSECC = 1; Unsigned = true; break; + case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT + case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap + case ISD::SETULE: Unsigned = true; LLVM_FALLTHROUGH; + case ISD::SETLE: SSECC = 2; break; + } + + if (Swap) + std::swap(Op0, Op1); + + // See if it is the case of CMP(EQ|NEQ,AND(A,B),ZERO) and change it to TESTM|NM. + if ((!Opc && SSECC == 4) || Opc == X86ISD::PCMPEQM) { + SDValue A = peekThroughBitcasts(Op0); + if ((A.getOpcode() == ISD::AND || A.getOpcode() == X86ISD::FAND) && + ISD::isBuildVectorAllZeros(Op1.getNode())) { + MVT VT0 = Op0.getSimpleValueType(); + SDValue RHS = DAG.getBitcast(VT0, A.getOperand(0)); + SDValue LHS = DAG.getBitcast(VT0, A.getOperand(1)); + return DAG.getNode(Opc == X86ISD::PCMPEQM ? X86ISD::TESTNM : X86ISD::TESTM, + dl, VT, RHS, LHS); + } + } + + if (Opc) + return DAG.getNode(Opc, dl, VT, Op0, Op1); + Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM; + return DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(SSECC, dl, MVT::i8)); +} + +/// \brief Try to turn a VSETULT into a VSETULE by modifying its second +/// operand \p Op1. If non-trivial (for example because it's not constant) +/// return an empty value. +static SDValue ChangeVSETULTtoVSETULE(const SDLoc &dl, SDValue Op1, + SelectionDAG &DAG) { + BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode()); + if (!BV) + return SDValue(); + + MVT VT = Op1.getSimpleValueType(); + MVT EVT = VT.getVectorElementType(); + unsigned n = VT.getVectorNumElements(); + SmallVector<SDValue, 8> ULTOp1; + + for (unsigned i = 0; i < n; ++i) { + ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i)); + if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT) + return SDValue(); + + // Avoid underflow. + APInt Val = Elt->getAPIntValue(); + if (Val == 0) + return SDValue(); + + ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT)); + } + + return DAG.getBuildVector(VT, dl, ULTOp1); +} + +static SDValue LowerVSETCC(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue CC = Op.getOperand(2); + MVT VT = Op.getSimpleValueType(); + ISD::CondCode Cond = cast<CondCodeSDNode>(CC)->get(); + bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint(); + SDLoc dl(Op); + + if (isFP) { +#ifndef NDEBUG + MVT EltVT = Op0.getSimpleValueType().getVectorElementType(); + assert(EltVT == MVT::f32 || EltVT == MVT::f64); +#endif + + unsigned Opc; + if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) { + assert(VT.getVectorNumElements() <= 16); + Opc = X86ISD::CMPM; + } else { + Opc = X86ISD::CMPP; + // The SSE/AVX packed FP comparison nodes are defined with a + // floating-point vector result that matches the operand type. This allows + // them to work with an SSE1 target (integer vector types are not legal). + VT = Op0.getSimpleValueType(); + } + + // In the two cases not handled by SSE compare predicates (SETUEQ/SETONE), + // emit two comparisons and a logic op to tie them together. + SDValue Cmp; + unsigned SSECC = translateX86FSETCC(Cond, Op0, Op1); + if (SSECC >= 8 && !Subtarget.hasAVX()) { + // LLVM predicate is SETUEQ or SETONE. + unsigned CC0, CC1; + unsigned CombineOpc; + if (Cond == ISD::SETUEQ) { + CC0 = 3; // UNORD + CC1 = 0; // EQ + CombineOpc = X86ISD::FOR; + } else { + assert(Cond == ISD::SETONE); + CC0 = 7; // ORD + CC1 = 4; // NEQ + CombineOpc = X86ISD::FAND; + } + + SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(CC0, dl, MVT::i8)); + SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(CC1, dl, MVT::i8)); + Cmp = DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); + } else { + // Handle all other FP comparisons here. + Cmp = DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(SSECC, dl, MVT::i8)); + } + + // If this is SSE/AVX CMPP, bitcast the result back to integer to match the + // result type of SETCC. The bitcast is expected to be optimized away + // during combining/isel. + if (Opc == X86ISD::CMPP) + Cmp = DAG.getBitcast(Op.getSimpleValueType(), Cmp); + + return Cmp; + } + + MVT VTOp0 = Op0.getSimpleValueType(); + assert(VTOp0 == Op1.getSimpleValueType() && + "Expected operands with same type!"); + assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() && + "Invalid number of packed elements for source and destination!"); + + if (VT.is128BitVector() && VTOp0.is256BitVector()) { + // On non-AVX512 targets, a vector of MVT::i1 is promoted by the type + // legalizer to a wider vector type. In the case of 'vsetcc' nodes, the + // legalizer firstly checks if the first operand in input to the setcc has + // a legal type. If so, then it promotes the return type to that same type. + // Otherwise, the return type is promoted to the 'next legal type' which, + // for a vector of MVT::i1 is always a 128-bit integer vector type. + // + // We reach this code only if the following two conditions are met: + // 1. Both return type and operand type have been promoted to wider types + // by the type legalizer. + // 2. The original operand type has been promoted to a 256-bit vector. + // + // Note that condition 2. only applies for AVX targets. + SDValue NewOp = DAG.getSetCC(dl, VTOp0, Op0, Op1, Cond); + return DAG.getZExtOrTrunc(NewOp, dl, VT); + } + + // The non-AVX512 code below works under the assumption that source and + // destination types are the same. + assert((Subtarget.hasAVX512() || (VT == VTOp0)) && + "Value types for source and destination must be the same!"); + + // Break 256-bit integer vector compare into smaller ones. + if (VT.is256BitVector() && !Subtarget.hasInt256()) + return Lower256IntVSETCC(Op, DAG); + + // Operands are boolean (vectors of i1) + MVT OpVT = Op1.getSimpleValueType(); + if (OpVT.getVectorElementType() == MVT::i1) + return LowerBoolVSETCC_AVX512(Op, DAG); + + // The result is boolean, but operands are int/float + if (VT.getVectorElementType() == MVT::i1) { + // In AVX-512 architecture setcc returns mask with i1 elements, + // But there is no compare instruction for i8 and i16 elements in KNL. + // In this case use SSE compare + bool UseAVX512Inst = + (OpVT.is512BitVector() || + OpVT.getScalarSizeInBits() >= 32 || + (Subtarget.hasBWI() && Subtarget.hasVLX())); + + if (UseAVX512Inst) + return LowerIntVSETCC_AVX512(Op, DAG); + + return DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC)); + } + + // Lower using XOP integer comparisons. + if ((VT == MVT::v16i8 || VT == MVT::v8i16 || + VT == MVT::v4i32 || VT == MVT::v2i64) && Subtarget.hasXOP()) { + // Translate compare code to XOP PCOM compare mode. + unsigned CmpMode = 0; + switch (Cond) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETULT: + case ISD::SETLT: CmpMode = 0x00; break; + case ISD::SETULE: + case ISD::SETLE: CmpMode = 0x01; break; + case ISD::SETUGT: + case ISD::SETGT: CmpMode = 0x02; break; + case ISD::SETUGE: + case ISD::SETGE: CmpMode = 0x03; break; + case ISD::SETEQ: CmpMode = 0x04; break; + case ISD::SETNE: CmpMode = 0x05; break; + } + + // Are we comparing unsigned or signed integers? + unsigned Opc = + ISD::isUnsignedIntSetCC(Cond) ? X86ISD::VPCOMU : X86ISD::VPCOM; + + return DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(CmpMode, dl, MVT::i8)); + } + + // (X & Y) != 0 --> (X & Y) == Y iff Y is power-of-2. + // Revert part of the simplifySetCCWithAnd combine, to avoid an invert. + if (Cond == ISD::SETNE && ISD::isBuildVectorAllZeros(Op1.getNode())) { + SDValue BC0 = peekThroughBitcasts(Op0); + if (BC0.getOpcode() == ISD::AND) { + APInt UndefElts; + SmallVector<APInt, 64> EltBits; + if (getTargetConstantBitsFromNode(BC0.getOperand(1), + VT.getScalarSizeInBits(), UndefElts, + EltBits, false, false)) { + if (llvm::all_of(EltBits, [](APInt &V) { return V.isPowerOf2(); })) { + Cond = ISD::SETEQ; + Op1 = DAG.getBitcast(VT, BC0.getOperand(1)); + } + } + } + } + + // We are handling one of the integer comparisons here. Since SSE only has + // GT and EQ comparisons for integer, swapping operands and multiple + // operations may be required for some comparisons. + unsigned Opc = (Cond == ISD::SETEQ || Cond == ISD::SETNE) ? X86ISD::PCMPEQ + : X86ISD::PCMPGT; + bool Swap = Cond == ISD::SETLT || Cond == ISD::SETULT || + Cond == ISD::SETGE || Cond == ISD::SETUGE; + bool Invert = Cond == ISD::SETNE || + (Cond != ISD::SETEQ && ISD::isTrueWhenEqual(Cond)); + + // If both operands are known non-negative, then an unsigned compare is the + // same as a signed compare and there's no need to flip signbits. + // TODO: We could check for more general simplifications here since we're + // computing known bits. + bool FlipSigns = ISD::isUnsignedIntSetCC(Cond) && + !(DAG.SignBitIsZero(Op0) && DAG.SignBitIsZero(Op1)); + + // Special case: Use min/max operations for SETULE/SETUGE + MVT VET = VT.getVectorElementType(); + bool HasMinMax = + (Subtarget.hasAVX512() && VET == MVT::i64) || + (Subtarget.hasSSE41() && (VET == MVT::i16 || VET == MVT::i32)) || + (Subtarget.hasSSE2() && (VET == MVT::i8)); + bool MinMax = false; + if (HasMinMax) { + switch (Cond) { + default: break; + case ISD::SETULE: Opc = ISD::UMIN; MinMax = true; break; + case ISD::SETUGE: Opc = ISD::UMAX; MinMax = true; break; + } + + if (MinMax) + Swap = Invert = FlipSigns = false; + } + + bool HasSubus = Subtarget.hasSSE2() && (VET == MVT::i8 || VET == MVT::i16); + bool Subus = false; + if (!MinMax && HasSubus) { + // As another special case, use PSUBUS[BW] when it's profitable. E.g. for + // Op0 u<= Op1: + // t = psubus Op0, Op1 + // pcmpeq t, <0..0> + switch (Cond) { + default: break; + case ISD::SETULT: { + // If the comparison is against a constant we can turn this into a + // setule. With psubus, setule does not require a swap. This is + // beneficial because the constant in the register is no longer + // destructed as the destination so it can be hoisted out of a loop. + // Only do this pre-AVX since vpcmp* is no longer destructive. + if (Subtarget.hasAVX()) + break; + if (SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG)) { + Op1 = ULEOp1; + Subus = true; Invert = false; Swap = false; + } + break; + } + // Psubus is better than flip-sign because it requires no inversion. + case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break; + case ISD::SETULE: Subus = true; Invert = false; Swap = false; break; + } + + if (Subus) { + Opc = X86ISD::SUBUS; + FlipSigns = false; + } + } + + if (Swap) + std::swap(Op0, Op1); + + // Check that the operation in question is available (most are plain SSE2, + // but PCMPGTQ and PCMPEQQ have different requirements). + if (VT == MVT::v2i64) { + if (Opc == X86ISD::PCMPGT && !Subtarget.hasSSE42()) { + assert(Subtarget.hasSSE2() && "Don't know how to lower!"); + + // First cast everything to the right type. + Op0 = DAG.getBitcast(MVT::v4i32, Op0); + Op1 = DAG.getBitcast(MVT::v4i32, Op1); + + // Since SSE has no unsigned integer comparisons, we need to flip the sign + // bits of the inputs before performing those operations. The lower + // compare is always unsigned. + SDValue SB; + if (FlipSigns) { + SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32); + } else { + SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32); + SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32); + SB = DAG.getBuildVector(MVT::v4i32, dl, {Sign, Zero, Sign, Zero}); + } + Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB); + Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB); + + // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2)) + SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1); + SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1); + + // Create masks for only the low parts/high parts of the 64 bit integers. + static const int MaskHi[] = { 1, 1, 3, 3 }; + static const int MaskLo[] = { 0, 0, 2, 2 }; + SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi); + SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo); + SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi); + + SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo); + Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi); + + if (Invert) + Result = DAG.getNOT(dl, Result, MVT::v4i32); + + return DAG.getBitcast(VT, Result); + } + + if (Opc == X86ISD::PCMPEQ && !Subtarget.hasSSE41()) { + // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with + // pcmpeqd + pshufd + pand. + assert(Subtarget.hasSSE2() && !FlipSigns && "Don't know how to lower!"); + + // First cast everything to the right type. + Op0 = DAG.getBitcast(MVT::v4i32, Op0); + Op1 = DAG.getBitcast(MVT::v4i32, Op1); + + // Do the compare. + SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); + + // Make sure the lower and upper halves are both all-ones. + static const int Mask[] = { 1, 0, 3, 2 }; + SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); + Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); + + if (Invert) + Result = DAG.getNOT(dl, Result, MVT::v4i32); + + return DAG.getBitcast(VT, Result); + } + } + + // Since SSE has no unsigned integer comparisons, we need to flip the sign + // bits of the inputs before performing those operations. + if (FlipSigns) { + MVT EltVT = VT.getVectorElementType(); + SDValue SM = DAG.getConstant(APInt::getSignMask(EltVT.getSizeInBits()), dl, + VT); + Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SM); + Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SM); + } + + SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); + + // If the logical-not of the result is required, perform that now. + if (Invert) + Result = DAG.getNOT(dl, Result, VT); + + if (MinMax) + Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result); + + if (Subus) + Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result, + getZeroVector(VT, Subtarget, DAG, dl)); + + return Result; +} + +SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + + MVT VT = Op.getSimpleValueType(); + + if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); + + assert(VT == MVT::i8 && "SetCC type must be 8-bit integer"); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDLoc dl(Op); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + + // Optimize to BT if possible. + // Lower (X & (1 << N)) == 0 to BT(X, N). + // Lower ((X >>u N) & 1) != 0 to BT(X, N). + // Lower ((X >>s N) & 1) != 0 to BT(X, N). + if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && isNullConstant(Op1) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + if (SDValue NewSetCC = LowerAndToBT(Op0, CC, dl, DAG)) + return NewSetCC; + } + + // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of + // these. + if ((isOneConstant(Op1) || isNullConstant(Op1)) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + + // If the input is a setcc, then reuse the input setcc or use a new one with + // the inverted condition. + if (Op0.getOpcode() == X86ISD::SETCC) { + X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); + bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1); + if (!Invert) + return Op0; + + CCode = X86::GetOppositeBranchCondition(CCode); + return getSETCC(CCode, Op0.getOperand(1), dl, DAG); + } + } + + bool IsFP = Op1.getSimpleValueType().isFloatingPoint(); + X86::CondCode X86CC = TranslateX86CC(CC, dl, IsFP, Op0, Op1, DAG); + if (X86CC == X86::COND_INVALID) + return SDValue(); + + SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG); + EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); + return getSETCC(X86CC, EFLAGS, dl, DAG); +} + +SDValue X86TargetLowering::LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const { + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + SDValue Carry = Op.getOperand(2); + SDValue Cond = Op.getOperand(3); + SDLoc DL(Op); + + assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only."); + X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get()); + + // Recreate the carry if needed. + EVT CarryVT = Carry.getValueType(); + APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits()); + Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32), + Carry, DAG.getConstant(NegOne, DL, CarryVT)); + + SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); + SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry.getValue(1)); + return getSETCC(CC, Cmp.getValue(1), DL, DAG); +} + +/// Return true if opcode is a X86 logical comparison. +static bool isX86LogicalCmp(SDValue Op) { + unsigned Opc = Op.getOpcode(); + if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || + Opc == X86ISD::SAHF) + return true; + if (Op.getResNo() == 1 && + (Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC || + Opc == X86ISD::SBB || Opc == X86ISD::SMUL || + Opc == X86ISD::INC || Opc == X86ISD::DEC || Opc == X86ISD::OR || + Opc == X86ISD::XOR || Opc == X86ISD::AND)) + return true; + + if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) + return true; + + return false; +} + +static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { + if (V.getOpcode() != ISD::TRUNCATE) + return false; + + SDValue VOp0 = V.getOperand(0); + unsigned InBits = VOp0.getValueSizeInBits(); + unsigned Bits = V.getValueSizeInBits(); + return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); +} + +SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { + bool AddTest = true; + SDValue Cond = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue Op2 = Op.getOperand(2); + SDLoc DL(Op); + MVT VT = Op1.getSimpleValueType(); + SDValue CC; + + // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops + // are available or VBLENDV if AVX is available. + // Otherwise FP cmovs get lowered into a less efficient branch sequence later. + if (Cond.getOpcode() == ISD::SETCC && + ((Subtarget.hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) || + (Subtarget.hasSSE1() && VT == MVT::f32)) && + VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) { + SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1); + unsigned SSECC = translateX86FSETCC( + cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1); + + if (Subtarget.hasAVX512()) { + SDValue Cmp = DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CondOp0, + CondOp1, DAG.getConstant(SSECC, DL, MVT::i8)); + assert(!VT.isVector() && "Not a scalar type?"); + return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2); + } + + if (SSECC < 8 || Subtarget.hasAVX()) { + SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1, + DAG.getConstant(SSECC, DL, MVT::i8)); + + // If we have AVX, we can use a variable vector select (VBLENDV) instead + // of 3 logic instructions for size savings and potentially speed. + // Unfortunately, there is no scalar form of VBLENDV. + + // If either operand is a constant, don't try this. We can expect to + // optimize away at least one of the logic instructions later in that + // case, so that sequence would be faster than a variable blend. + + // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly + // uses XMM0 as the selection register. That may need just as many + // instructions as the AND/ANDN/OR sequence due to register moves, so + // don't bother. + + if (Subtarget.hasAVX() && + !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) { + + // Convert to vectors, do a VSELECT, and convert back to scalar. + // All of the conversions should be optimized away. + + MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64; + SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1); + SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2); + SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp); + + MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64; + VCmp = DAG.getBitcast(VCmpVT, VCmp); + + SDValue VSel = DAG.getSelect(DL, VecVT, VCmp, VOp1, VOp2); + + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, + VSel, DAG.getIntPtrConstant(0, DL)); + } + SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2); + SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1); + return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And); + } + } + + // AVX512 fallback is to lower selects of scalar floats to masked moves. + if ((VT == MVT::f64 || VT == MVT::f32) && Subtarget.hasAVX512()) { + SDValue Cmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1, Cond); + return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2); + } + + if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { + SDValue Op1Scalar; + if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode())) + Op1Scalar = ConvertI1VectorToInteger(Op1, DAG); + else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0)) + Op1Scalar = Op1.getOperand(0); + SDValue Op2Scalar; + if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode())) + Op2Scalar = ConvertI1VectorToInteger(Op2, DAG); + else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0)) + Op2Scalar = Op2.getOperand(0); + if (Op1Scalar.getNode() && Op2Scalar.getNode()) { + SDValue newSelect = DAG.getSelect(DL, Op1Scalar.getValueType(), Cond, + Op1Scalar, Op2Scalar); + if (newSelect.getValueSizeInBits() == VT.getSizeInBits()) + return DAG.getBitcast(VT, newSelect); + SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec, + DAG.getIntPtrConstant(0, DL)); + } + } + + if (VT == MVT::v4i1 || VT == MVT::v2i1) { + SDValue zeroConst = DAG.getIntPtrConstant(0, DL); + Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, + DAG.getUNDEF(MVT::v8i1), Op1, zeroConst); + Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, + DAG.getUNDEF(MVT::v8i1), Op2, zeroConst); + SDValue newSelect = DAG.getSelect(DL, MVT::v8i1, Cond, Op1, Op2); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst); + } + + if (Cond.getOpcode() == ISD::SETCC) { + if (SDValue NewCond = LowerSETCC(Cond, DAG)) { + Cond = NewCond; + // If the condition was updated, it's possible that the operands of the + // select were also updated (for example, EmitTest has a RAUW). Refresh + // the local references to the select operands in case they got stale. + Op1 = Op.getOperand(1); + Op2 = Op.getOperand(2); + } + } + + // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y + // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y + // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y + // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y + // (select (and (x , 0x1) == 0), y, (z ^ y) ) -> (-(and (x , 0x1)) & z ) ^ y + // (select (and (x , 0x1) == 0), y, (z | y) ) -> (-(and (x , 0x1)) & z ) | y + if (Cond.getOpcode() == X86ISD::SETCC && + Cond.getOperand(1).getOpcode() == X86ISD::CMP && + isNullConstant(Cond.getOperand(1).getOperand(1))) { + SDValue Cmp = Cond.getOperand(1); + unsigned CondCode = + cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); + + if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && + (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { + SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2; + SDValue CmpOp0 = Cmp.getOperand(0); + + // Apply further optimizations for special cases + // (select (x != 0), -1, 0) -> neg & sbb + // (select (x == 0), 0, -1) -> neg & sbb + if (isNullConstant(Y) && + (isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) { + SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); + SDValue Zero = DAG.getConstant(0, DL, CmpOp0.getValueType()); + SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, Zero, CmpOp0); + SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), + DAG.getConstant(X86::COND_B, DL, MVT::i8), + SDValue(Neg.getNode(), 1)); + return Res; + } + + Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, + CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType())); + Cmp = ConvertCmpIfNecessary(Cmp, DAG); + + SDValue Res = // Res = 0 or -1. + DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), + DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp); + + if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E)) + Res = DAG.getNOT(DL, Res, Res.getValueType()); + + if (!isNullConstant(Op2)) + Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); + return Res; + } else if (!Subtarget.hasCMov() && CondCode == X86::COND_E && + Cmp.getOperand(0).getOpcode() == ISD::AND && + isOneConstant(Cmp.getOperand(0).getOperand(1))) { + SDValue CmpOp0 = Cmp.getOperand(0); + SDValue Src1, Src2; + // true if Op2 is XOR or OR operator and one of its operands + // is equal to Op1 + // ( a , a op b) || ( b , a op b) + auto isOrXorPattern = [&]() { + if ((Op2.getOpcode() == ISD::XOR || Op2.getOpcode() == ISD::OR) && + (Op2.getOperand(0) == Op1 || Op2.getOperand(1) == Op1)) { + Src1 = + Op2.getOperand(0) == Op1 ? Op2.getOperand(1) : Op2.getOperand(0); + Src2 = Op1; + return true; + } + return false; + }; + + if (isOrXorPattern()) { + SDValue Neg; + unsigned int CmpSz = CmpOp0.getSimpleValueType().getSizeInBits(); + // we need mask of all zeros or ones with same size of the other + // operands. + if (CmpSz > VT.getSizeInBits()) + Neg = DAG.getNode(ISD::TRUNCATE, DL, VT, CmpOp0); + else if (CmpSz < VT.getSizeInBits()) + Neg = DAG.getNode(ISD::AND, DL, VT, + DAG.getNode(ISD::ANY_EXTEND, DL, VT, CmpOp0.getOperand(0)), + DAG.getConstant(1, DL, VT)); + else + Neg = CmpOp0; + SDValue Mask = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), + Neg); // -(and (x, 0x1)) + SDValue And = DAG.getNode(ISD::AND, DL, VT, Mask, Src1); // Mask & z + return DAG.getNode(Op2.getOpcode(), DL, VT, And, Src2); // And Op y + } + } + } + + // Look past (and (setcc_carry (cmp ...)), 1). + if (Cond.getOpcode() == ISD::AND && + Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY && + isOneConstant(Cond.getOperand(1))) + Cond = Cond.getOperand(0); + + // If condition flag is set by a X86ISD::CMP, then use it as the condition + // setting operand in place of the X86ISD::SETCC. + unsigned CondOpcode = Cond.getOpcode(); + if (CondOpcode == X86ISD::SETCC || + CondOpcode == X86ISD::SETCC_CARRY) { + CC = Cond.getOperand(0); + + SDValue Cmp = Cond.getOperand(1); + unsigned Opc = Cmp.getOpcode(); + MVT VT = Op.getSimpleValueType(); + + bool IllegalFPCMov = false; + if (VT.isFloatingPoint() && !VT.isVector() && + !isScalarFPTypeInSSEReg(VT)) // FPStack? + IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); + + if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || + Opc == X86ISD::BT) { // FIXME + Cond = Cmp; + AddTest = false; + } + } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || + CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || + ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && + Cond.getOperand(0).getValueType() != MVT::i8)) { + SDValue LHS = Cond.getOperand(0); + SDValue RHS = Cond.getOperand(1); + unsigned X86Opcode; + unsigned X86Cond; + SDVTList VTs; + switch (CondOpcode) { + case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; + case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; + case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; + case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; + case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; + case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; + default: llvm_unreachable("unexpected overflowing operator"); + } + if (CondOpcode == ISD::UMULO) + VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), + MVT::i32); + else + VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); + + SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); + + if (CondOpcode == ISD::UMULO) + Cond = X86Op.getValue(2); + else + Cond = X86Op.getValue(1); + + CC = DAG.getConstant(X86Cond, DL, MVT::i8); + AddTest = false; + } + + if (AddTest) { + // Look past the truncate if the high bits are known zero. + if (isTruncWithZeroHighBitsInput(Cond, DAG)) + Cond = Cond.getOperand(0); + + // We know the result of AND is compared against zero. Try to match + // it to BT. + if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { + if (SDValue NewSetCC = LowerAndToBT(Cond, ISD::SETNE, DL, DAG)) { + CC = NewSetCC.getOperand(0); + Cond = NewSetCC.getOperand(1); + AddTest = false; + } + } + } + + if (AddTest) { + CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8); + Cond = EmitTest(Cond, X86::COND_NE, DL, DAG); + } + + // a < b ? -1 : 0 -> RES = ~setcc_carry + // a < b ? 0 : -1 -> RES = setcc_carry + // a >= b ? -1 : 0 -> RES = setcc_carry + // a >= b ? 0 : -1 -> RES = ~setcc_carry + if (Cond.getOpcode() == X86ISD::SUB) { + Cond = ConvertCmpIfNecessary(Cond, DAG); + unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); + + if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && + (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && + (isNullConstant(Op1) || isNullConstant(Op2))) { + SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), + DAG.getConstant(X86::COND_B, DL, MVT::i8), + Cond); + if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B)) + return DAG.getNOT(DL, Res, Res.getValueType()); + return Res; + } + } + + // X86 doesn't have an i8 cmov. If both operands are the result of a truncate + // widen the cmov and push the truncate through. This avoids introducing a new + // branch during isel and doesn't add any extensions. + if (Op.getValueType() == MVT::i8 && + Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) { + SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); + if (T1.getValueType() == T2.getValueType() && + // Blacklist CopyFromReg to avoid partial register stalls. + T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){ + SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, T1.getValueType(), T2, T1, + CC, Cond); + return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); + } + } + + // X86ISD::CMOV means set the result (which is operand 1) to the RHS if + // condition is true. + SDValue Ops[] = { Op2, Op1, CC, Cond }; + return DAG.getNode(X86ISD::CMOV, DL, Op.getValueType(), Ops); +} + +static SDValue LowerSIGN_EXTEND_Mask(SDValue Op, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op->getSimpleValueType(0); + SDValue In = Op->getOperand(0); + MVT InVT = In.getSimpleValueType(); + assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!"); + MVT VTElt = VT.getVectorElementType(); + SDLoc dl(Op); + + unsigned NumElts = VT.getVectorNumElements(); + + // Extend VT if the scalar type is v8/v16 and BWI is not supported. + MVT ExtVT = VT; + if (!Subtarget.hasBWI() && VTElt.getSizeInBits() <= 16) + ExtVT = MVT::getVectorVT(MVT::i32, NumElts); + + // Widen to 512-bits if VLX is not supported. + MVT WideVT = ExtVT; + if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) { + NumElts *= 512 / ExtVT.getSizeInBits(); + InVT = MVT::getVectorVT(MVT::i1, NumElts); + In = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, InVT, DAG.getUNDEF(InVT), + In, DAG.getIntPtrConstant(0, dl)); + WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(), NumElts); + } + + SDValue V; + MVT WideEltVT = WideVT.getVectorElementType(); + if ((Subtarget.hasDQI() && WideEltVT.getSizeInBits() >= 32) || + (Subtarget.hasBWI() && WideEltVT.getSizeInBits() <= 16)) { + V = getExtendInVec(X86ISD::VSEXT, dl, WideVT, In, DAG); + } else { + SDValue NegOne = getOnesVector(WideVT, DAG, dl); + SDValue Zero = getZeroVector(WideVT, Subtarget, DAG, dl); + V = DAG.getSelect(dl, WideVT, In, NegOne, Zero); + } + + // Truncate if we had to extend i16/i8 above. + if (VT != ExtVT) { + WideVT = MVT::getVectorVT(VTElt, NumElts); + V = DAG.getNode(ISD::TRUNCATE, dl, WideVT, V); + } + + // Extract back to 128/256-bit if we widened. + if (WideVT != VT) + V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, V, + DAG.getIntPtrConstant(0, dl)); + + return V; +} + +static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDValue In = Op->getOperand(0); + MVT InVT = In.getSimpleValueType(); + + if (InVT.getVectorElementType() == MVT::i1) + return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG); + + if (Subtarget.hasFp256()) + if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) + return Res; + + return SDValue(); +} + +// Lowering for SIGN_EXTEND_VECTOR_INREG and ZERO_EXTEND_VECTOR_INREG. +// For sign extend this needs to handle all vector sizes and SSE4.1 and +// non-SSE4.1 targets. For zero extend this should only handle inputs of +// MVT::v64i8 when BWI is not supported, but AVX512 is. +static SDValue LowerEXTEND_VECTOR_INREG(SDValue Op, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDValue In = Op->getOperand(0); + MVT VT = Op->getSimpleValueType(0); + MVT InVT = In.getSimpleValueType(); + assert(VT.getSizeInBits() == InVT.getSizeInBits()); + + MVT SVT = VT.getVectorElementType(); + MVT InSVT = InVT.getVectorElementType(); + assert(SVT.getSizeInBits() > InSVT.getSizeInBits()); + + if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16) + return SDValue(); + if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8) + return SDValue(); + if (!(VT.is128BitVector() && Subtarget.hasSSE2()) && + !(VT.is256BitVector() && Subtarget.hasInt256()) && + !(VT.is512BitVector() && Subtarget.hasAVX512())) + return SDValue(); + + SDLoc dl(Op); + + // For 256-bit vectors, we only need the lower (128-bit) half of the input. + // For 512-bit vectors, we need 128-bits or 256-bits. + if (VT.getSizeInBits() > 128) { + // Input needs to be at least the same number of elements as output, and + // at least 128-bits. + int InSize = InSVT.getSizeInBits() * VT.getVectorNumElements(); + In = extractSubVector(In, 0, DAG, dl, std::max(InSize, 128)); + } + + assert((Op.getOpcode() != ISD::ZERO_EXTEND_VECTOR_INREG || + InVT == MVT::v64i8) && "Zero extend only for v64i8 input!"); + + // SSE41 targets can use the pmovsx* instructions directly for 128-bit results, + // so are legal and shouldn't occur here. AVX2/AVX512 pmovsx* instructions still + // need to be handled here for 256/512-bit results. + if (Subtarget.hasInt256()) { + assert(VT.getSizeInBits() > 128 && "Unexpected 128-bit vector extension"); + unsigned ExtOpc = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ? + X86ISD::VSEXT : X86ISD::VZEXT; + return DAG.getNode(ExtOpc, dl, VT, In); + } + + // We should only get here for sign extend. + assert(Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG && + "Unexpected opcode!"); + + // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI. + SDValue Curr = In; + MVT CurrVT = InVT; + + // As SRAI is only available on i16/i32 types, we expand only up to i32 + // and handle i64 separately. + while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) { + Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr); + MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2); + CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2); + Curr = DAG.getBitcast(CurrVT, Curr); + } + + SDValue SignExt = Curr; + if (CurrVT != InVT) { + unsigned SignExtShift = + CurrVT.getScalarSizeInBits() - InSVT.getSizeInBits(); + SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, + DAG.getConstant(SignExtShift, dl, MVT::i8)); + } + + if (CurrVT == VT) + return SignExt; + + if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) { + SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, + DAG.getConstant(31, dl, MVT::i8)); + SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5}); + return DAG.getBitcast(VT, Ext); + } + + return SDValue(); +} + +static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op->getSimpleValueType(0); + SDValue In = Op->getOperand(0); + MVT InVT = In.getSimpleValueType(); + SDLoc dl(Op); + + if (InVT.getVectorElementType() == MVT::i1) + return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG); + + if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && + (VT != MVT::v8i32 || InVT != MVT::v8i16) && + (VT != MVT::v16i16 || InVT != MVT::v16i8) && + (VT != MVT::v8i64 || InVT != MVT::v8i32) && + (VT != MVT::v8i64 || InVT != MVT::v8i16) && + (VT != MVT::v16i32 || InVT != MVT::v16i16) && + (VT != MVT::v16i32 || InVT != MVT::v16i8) && + (VT != MVT::v32i16 || InVT != MVT::v32i8)) + return SDValue(); + + if (Subtarget.hasInt256()) + return DAG.getNode(X86ISD::VSEXT, dl, VT, In); + + // Optimize vectors in AVX mode + // Sign extend v8i16 to v8i32 and + // v4i32 to v4i64 + // + // Divide input vector into two parts + // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} + // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 + // concat the vectors to original VT + + unsigned NumElems = InVT.getVectorNumElements(); + SDValue Undef = DAG.getUNDEF(InVT); + + SmallVector<int,8> ShufMask1(NumElems, -1); + for (unsigned i = 0; i != NumElems/2; ++i) + ShufMask1[i] = i; + + SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask1); + + SmallVector<int,8> ShufMask2(NumElems, -1); + for (unsigned i = 0; i != NumElems/2; ++i) + ShufMask2[i] = i + NumElems/2; + + SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, ShufMask2); + + MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), + VT.getVectorNumElements() / 2); + + OpLo = DAG.getSignExtendVectorInReg(OpLo, dl, HalfVT); + OpHi = DAG.getSignExtendVectorInReg(OpHi, dl, HalfVT); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); +} + +// Lower truncating store. We need a special lowering to vXi1 vectors +static SDValue LowerTruncatingStore(SDValue StOp, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + StoreSDNode *St = cast<StoreSDNode>(StOp.getNode()); + SDLoc dl(St); + EVT MemVT = St->getMemoryVT(); + assert(St->isTruncatingStore() && "We only custom truncating store."); + assert(MemVT.isVector() && MemVT.getVectorElementType() == MVT::i1 && + "Expected truncstore of i1 vector"); + + SDValue Op = St->getValue(); + MVT OpVT = Op.getValueType().getSimpleVT(); + unsigned NumElts = OpVT.getVectorNumElements(); + if ((Subtarget.hasVLX() && Subtarget.hasBWI() && Subtarget.hasDQI()) || + NumElts == 16) { + // Truncate and store - everything is legal + Op = DAG.getNode(ISD::TRUNCATE, dl, MemVT, Op); + if (MemVT.getSizeInBits() < 8) + Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1, + DAG.getUNDEF(MVT::v8i1), Op, + DAG.getIntPtrConstant(0, dl)); + return DAG.getStore(St->getChain(), dl, Op, St->getBasePtr(), + St->getMemOperand()); + } + + // A subset, assume that we have only AVX-512F + if (NumElts <= 8) { + if (NumElts < 8) { + // Extend to 8-elts vector + MVT ExtVT = MVT::getVectorVT(OpVT.getScalarType(), 8); + Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ExtVT, + DAG.getUNDEF(ExtVT), Op, DAG.getIntPtrConstant(0, dl)); + } + Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i1, Op); + return DAG.getStore(St->getChain(), dl, Op, St->getBasePtr(), + St->getMemOperand()); + } + // v32i8 + assert(OpVT == MVT::v32i8 && "Unexpected operand type"); + // Divide the vector into 2 parts and store each part separately + SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, Op, + DAG.getIntPtrConstant(0, dl)); + Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::v16i1, Lo); + SDValue BasePtr = St->getBasePtr(); + SDValue StLo = DAG.getStore(St->getChain(), dl, Lo, BasePtr, + St->getMemOperand()); + SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, Op, + DAG.getIntPtrConstant(16, dl)); + Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::v16i1, Hi); + + SDValue BasePtrHi = + DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, + DAG.getConstant(2, dl, BasePtr.getValueType())); + + SDValue StHi = DAG.getStore(St->getChain(), dl, Hi, + BasePtrHi, St->getMemOperand()); + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StLo, StHi); +} + +static SDValue LowerExtended1BitVectorLoad(SDValue Op, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + + LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode()); + SDLoc dl(Ld); + EVT MemVT = Ld->getMemoryVT(); + assert(MemVT.isVector() && MemVT.getScalarType() == MVT::i1 && + "Expected i1 vector load"); + unsigned ExtOpcode = Ld->getExtensionType() == ISD::ZEXTLOAD ? + ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; + MVT VT = Op.getValueType().getSimpleVT(); + unsigned NumElts = VT.getVectorNumElements(); + + if ((Subtarget.hasBWI() && NumElts >= 32) || + (Subtarget.hasDQI() && NumElts < 16) || + NumElts == 16) { + // Load and extend - everything is legal + if (NumElts < 8) { + SDValue Load = DAG.getLoad(MVT::v8i1, dl, Ld->getChain(), + Ld->getBasePtr(), + Ld->getMemOperand()); + // Replace chain users with the new chain. + assert(Load->getNumValues() == 2 && "Loads must carry a chain!"); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1)); + if (Subtarget.hasVLX()) { + // Extract to v4i1/v2i1. + SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Load, + DAG.getIntPtrConstant(0, dl)); + // Finally, do a normal sign-extend to the desired register. + return DAG.getNode(ExtOpcode, dl, Op.getValueType(), Extract); + } + + MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 8); + SDValue ExtVec = DAG.getNode(ExtOpcode, dl, ExtVT, Load); + + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, + DAG.getIntPtrConstant(0, dl)); + } + SDValue Load = DAG.getLoad(MemVT, dl, Ld->getChain(), + Ld->getBasePtr(), + Ld->getMemOperand()); + // Replace chain users with the new chain. + assert(Load->getNumValues() == 2 && "Loads must carry a chain!"); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1)); + + // Finally, do a normal sign-extend to the desired register. + return DAG.getNode(ExtOpcode, dl, Op.getValueType(), Load); + } + + if (NumElts <= 8) { + // A subset, assume that we have only AVX-512F + SDValue Load = DAG.getLoad(MVT::i8, dl, Ld->getChain(), + Ld->getBasePtr(), + Ld->getMemOperand()); + // Replace chain users with the new chain. + assert(Load->getNumValues() == 2 && "Loads must carry a chain!"); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1)); + + SDValue BitVec = DAG.getBitcast(MVT::v8i1, Load); + + if (NumElts == 8) + return DAG.getNode(ExtOpcode, dl, VT, BitVec); + + if (Subtarget.hasVLX()) { + // Extract to v4i1/v2i1. + SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, BitVec, + DAG.getIntPtrConstant(0, dl)); + // Finally, do a normal sign-extend to the desired register. + return DAG.getNode(ExtOpcode, dl, Op.getValueType(), Extract); + } + + MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 8); + SDValue ExtVec = DAG.getNode(ExtOpcode, dl, ExtVT, BitVec); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, + DAG.getIntPtrConstant(0, dl)); + } + + assert(VT == MVT::v32i8 && "Unexpected extload type"); + + SDValue BasePtr = Ld->getBasePtr(); + SDValue LoadLo = DAG.getLoad(MVT::v16i1, dl, Ld->getChain(), + Ld->getBasePtr(), + Ld->getMemOperand()); + + SDValue BasePtrHi = DAG.getMemBasePlusOffset(BasePtr, 2, dl); + + SDValue LoadHi = DAG.getLoad(MVT::v16i1, dl, Ld->getChain(), BasePtrHi, + Ld->getPointerInfo().getWithOffset(2), + MinAlign(Ld->getAlignment(), 2U), + Ld->getMemOperand()->getFlags()); + + SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + LoadLo.getValue(1), LoadHi.getValue(1)); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain); + + SDValue Lo = DAG.getNode(ExtOpcode, dl, MVT::v16i8, LoadLo); + SDValue Hi = DAG.getNode(ExtOpcode, dl, MVT::v16i8, LoadHi); + return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v32i8, Lo, Hi); +} + +// Lower vector extended loads using a shuffle. If SSSE3 is not available we +// may emit an illegal shuffle but the expansion is still better than scalar +// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise +// we'll emit a shuffle and a arithmetic shift. +// FIXME: Is the expansion actually better than scalar code? It doesn't seem so. +// TODO: It is possible to support ZExt by zeroing the undef values during +// the shuffle phase or after the shuffle. +static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT RegVT = Op.getSimpleValueType(); + assert(RegVT.isVector() && "We only custom lower vector sext loads."); + assert(RegVT.isInteger() && + "We only custom lower integer vector sext loads."); + + // Nothing useful we can do without SSE2 shuffles. + assert(Subtarget.hasSSE2() && "We only custom lower sext loads with SSE2."); + + LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode()); + SDLoc dl(Ld); + EVT MemVT = Ld->getMemoryVT(); + if (MemVT.getScalarType() == MVT::i1) + return LowerExtended1BitVectorLoad(Op, Subtarget, DAG); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned RegSz = RegVT.getSizeInBits(); + + ISD::LoadExtType Ext = Ld->getExtensionType(); + + assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD) + && "Only anyext and sext are currently implemented."); + assert(MemVT != RegVT && "Cannot extend to the same type"); + assert(MemVT.isVector() && "Must load a vector from memory"); + + unsigned NumElems = RegVT.getVectorNumElements(); + unsigned MemSz = MemVT.getSizeInBits(); + assert(RegSz > MemSz && "Register size must be greater than the mem size"); + + if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget.hasInt256()) { + // The only way in which we have a legal 256-bit vector result but not the + // integer 256-bit operations needed to directly lower a sextload is if we + // have AVX1 but not AVX2. In that case, we can always emit a sextload to + // a 128-bit vector and a normal sign_extend to 256-bits that should get + // correctly legalized. We do this late to allow the canonical form of + // sextload to persist throughout the rest of the DAG combiner -- it wants + // to fold together any extensions it can, and so will fuse a sign_extend + // of an sextload into a sextload targeting a wider value. + SDValue Load; + if (MemSz == 128) { + // Just switch this to a normal load. + assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, " + "it must be a legal 128-bit vector " + "type!"); + Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(), + Ld->getPointerInfo(), Ld->getAlignment(), + Ld->getMemOperand()->getFlags()); + } else { + assert(MemSz < 128 && + "Can't extend a type wider than 128 bits to a 256 bit vector!"); + // Do an sext load to a 128-bit vector type. We want to use the same + // number of elements, but elements half as wide. This will end up being + // recursively lowered by this routine, but will succeed as we definitely + // have all the necessary features if we're using AVX1. + EVT HalfEltVT = + EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2); + EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems); + Load = + DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(), + Ld->getPointerInfo(), MemVT, Ld->getAlignment(), + Ld->getMemOperand()->getFlags()); + } + + // Replace chain users with the new chain. + assert(Load->getNumValues() == 2 && "Loads must carry a chain!"); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1)); + + // Finally, do a normal sign-extend to the desired register. + return DAG.getSExtOrTrunc(Load, dl, RegVT); + } + + // All sizes must be a power of two. + assert(isPowerOf2_32(RegSz * MemSz * NumElems) && + "Non-power-of-two elements are not custom lowered!"); + + // Attempt to load the original value using scalar loads. + // Find the largest scalar type that divides the total loaded size. + MVT SclrLoadTy = MVT::i8; + for (MVT Tp : MVT::integer_valuetypes()) { + if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { + SclrLoadTy = Tp; + } + } + + // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. + if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && + (64 <= MemSz)) + SclrLoadTy = MVT::f64; + + // Calculate the number of scalar loads that we need to perform + // in order to load our vector from memory. + unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); + + assert((Ext != ISD::SEXTLOAD || NumLoads == 1) && + "Can only lower sext loads with a single scalar load!"); + + unsigned loadRegZize = RegSz; + if (Ext == ISD::SEXTLOAD && RegSz >= 256) + loadRegZize = 128; + + // If we don't have BWI we won't be able to create the shuffle needed for + // v8i8->v8i64. + if (Ext == ISD::EXTLOAD && !Subtarget.hasBWI() && RegVT == MVT::v8i64 && + MemVT == MVT::v8i8) + loadRegZize = 128; + + // Represent our vector as a sequence of elements which are the + // largest scalar that we can load. + EVT LoadUnitVecVT = EVT::getVectorVT( + *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits()); + + // Represent the data using the same element type that is stored in + // memory. In practice, we ''widen'' MemVT. + EVT WideVecVT = + EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), + loadRegZize / MemVT.getScalarSizeInBits()); + + assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && + "Invalid vector type"); + + // We can't shuffle using an illegal type. + assert(TLI.isTypeLegal(WideVecVT) && + "We only lower types that form legal widened vector types"); + + SmallVector<SDValue, 8> Chains; + SDValue Ptr = Ld->getBasePtr(); + SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl, + TLI.getPointerTy(DAG.getDataLayout())); + SDValue Res = DAG.getUNDEF(LoadUnitVecVT); + + for (unsigned i = 0; i < NumLoads; ++i) { + // Perform a single load. + SDValue ScalarLoad = + DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), + Ld->getAlignment(), Ld->getMemOperand()->getFlags()); + Chains.push_back(ScalarLoad.getValue(1)); + // Create the first element type using SCALAR_TO_VECTOR in order to avoid + // another round of DAGCombining. + if (i == 0) + Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); + else + Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, + ScalarLoad, DAG.getIntPtrConstant(i, dl)); + + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + } + + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); + + // Bitcast the loaded value to a vector of the original element type, in + // the size of the target vector type. + SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res); + unsigned SizeRatio = RegSz / MemSz; + + if (Ext == ISD::SEXTLOAD) { + // If we have SSE4.1, we can directly emit a VSEXT node. + if (Subtarget.hasSSE41()) { + SDValue Sext = getExtendInVec(X86ISD::VSEXT, dl, RegVT, SlicedVec, DAG); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); + return Sext; + } + + // Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest + // lanes. + assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) && + "We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!"); + + SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); + return Shuff; + } + + if (Ext == ISD::EXTLOAD && !Subtarget.hasBWI() && RegVT == MVT::v8i64 && + MemVT == MVT::v8i8) { + SDValue Sext = getExtendInVec(X86ISD::VZEXT, dl, RegVT, SlicedVec, DAG); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); + return Sext; + } + + // Redistribute the loaded elements into the different locations. + SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i * SizeRatio] = i; + + SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, + DAG.getUNDEF(WideVecVT), ShuffleVec); + + // Bitcast to the requested type. + Shuff = DAG.getBitcast(RegVT, Shuff); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); + return Shuff; +} + +/// Return true if node is an ISD::AND or ISD::OR of two X86ISD::SETCC nodes +/// each of which has no other use apart from the AND / OR. +static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { + Opc = Op.getOpcode(); + if (Opc != ISD::OR && Opc != ISD::AND) + return false; + return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && + Op.getOperand(0).hasOneUse() && + Op.getOperand(1).getOpcode() == X86ISD::SETCC && + Op.getOperand(1).hasOneUse()); +} + +/// Return true if node is an ISD::XOR of a X86ISD::SETCC and 1 and that the +/// SETCC node has a single use. +static bool isXor1OfSetCC(SDValue Op) { + if (Op.getOpcode() != ISD::XOR) + return false; + if (isOneConstant(Op.getOperand(1))) + return Op.getOperand(0).getOpcode() == X86ISD::SETCC && + Op.getOperand(0).hasOneUse(); + return false; +} + +SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { + bool addTest = true; + SDValue Chain = Op.getOperand(0); + SDValue Cond = Op.getOperand(1); + SDValue Dest = Op.getOperand(2); + SDLoc dl(Op); + SDValue CC; + bool Inverted = false; + + if (Cond.getOpcode() == ISD::SETCC) { + // Check for setcc([su]{add,sub,mul}o == 0). + if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ && + isNullConstant(Cond.getOperand(1)) && + Cond.getOperand(0).getResNo() == 1 && + (Cond.getOperand(0).getOpcode() == ISD::SADDO || + Cond.getOperand(0).getOpcode() == ISD::UADDO || + Cond.getOperand(0).getOpcode() == ISD::SSUBO || + Cond.getOperand(0).getOpcode() == ISD::USUBO || + Cond.getOperand(0).getOpcode() == ISD::SMULO || + Cond.getOperand(0).getOpcode() == ISD::UMULO)) { + Inverted = true; + Cond = Cond.getOperand(0); + } else { + if (SDValue NewCond = LowerSETCC(Cond, DAG)) + Cond = NewCond; + } + } +#if 0 + // FIXME: LowerXALUO doesn't handle these!! + else if (Cond.getOpcode() == X86ISD::ADD || + Cond.getOpcode() == X86ISD::SUB || + Cond.getOpcode() == X86ISD::SMUL || + Cond.getOpcode() == X86ISD::UMUL) + Cond = LowerXALUO(Cond, DAG); +#endif + + // Look pass (and (setcc_carry (cmp ...)), 1). + if (Cond.getOpcode() == ISD::AND && + Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY && + isOneConstant(Cond.getOperand(1))) + Cond = Cond.getOperand(0); + + // If condition flag is set by a X86ISD::CMP, then use it as the condition + // setting operand in place of the X86ISD::SETCC. + unsigned CondOpcode = Cond.getOpcode(); + if (CondOpcode == X86ISD::SETCC || + CondOpcode == X86ISD::SETCC_CARRY) { + CC = Cond.getOperand(0); + + SDValue Cmp = Cond.getOperand(1); + unsigned Opc = Cmp.getOpcode(); + // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? + if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { + Cond = Cmp; + addTest = false; + } else { + switch (cast<ConstantSDNode>(CC)->getZExtValue()) { + default: break; + case X86::COND_O: + case X86::COND_B: + // These can only come from an arithmetic instruction with overflow, + // e.g. SADDO, UADDO. + Cond = Cond.getOperand(1); + addTest = false; + break; + } + } + } + CondOpcode = Cond.getOpcode(); + if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || + CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || + ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && + Cond.getOperand(0).getValueType() != MVT::i8)) { + SDValue LHS = Cond.getOperand(0); + SDValue RHS = Cond.getOperand(1); + unsigned X86Opcode; + unsigned X86Cond; + SDVTList VTs; + // Keep this in sync with LowerXALUO, otherwise we might create redundant + // instructions that can't be removed afterwards (i.e. X86ISD::ADD and + // X86ISD::INC). + switch (CondOpcode) { + case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; + case ISD::SADDO: + if (isOneConstant(RHS)) { + X86Opcode = X86ISD::INC; X86Cond = X86::COND_O; + break; + } + X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; + case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; + case ISD::SSUBO: + if (isOneConstant(RHS)) { + X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O; + break; + } + X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; + case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; + case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; + default: llvm_unreachable("unexpected overflowing operator"); + } + if (Inverted) + X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); + if (CondOpcode == ISD::UMULO) + VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), + MVT::i32); + else + VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); + + SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); + + if (CondOpcode == ISD::UMULO) + Cond = X86Op.getValue(2); + else + Cond = X86Op.getValue(1); + + CC = DAG.getConstant(X86Cond, dl, MVT::i8); + addTest = false; + } else { + unsigned CondOpc; + if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { + SDValue Cmp = Cond.getOperand(0).getOperand(1); + if (CondOpc == ISD::OR) { + // Also, recognize the pattern generated by an FCMP_UNE. We can emit + // two branches instead of an explicit OR instruction with a + // separate test. + if (Cmp == Cond.getOperand(1).getOperand(1) && + isX86LogicalCmp(Cmp)) { + CC = Cond.getOperand(0).getOperand(0); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = Cond.getOperand(1).getOperand(0); + Cond = Cmp; + addTest = false; + } + } else { // ISD::AND + // Also, recognize the pattern generated by an FCMP_OEQ. We can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Cmp == Cond.getOperand(1).getOperand(1) && + isX86LogicalCmp(Cmp) && + Op.getNode()->hasOneUse()) { + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, dl, MVT::i8); + SDNode *User = *Op.getNode()->use_begin(); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_OEQ. + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); + assert(NewBR == User); + (void)NewBR; + Dest = FalseBB; + + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, dl, MVT::i8); + Cond = Cmp; + addTest = false; + } + } + } + } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { + // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. + // It should be transformed during dag combiner except when the condition + // is set by a arithmetics with overflow node. + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, dl, MVT::i8); + Cond = Cond.getOperand(0).getOperand(1); + addTest = false; + } else if (Cond.getOpcode() == ISD::SETCC && + cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) { + // For FCMP_OEQ, we can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Op.getNode()->hasOneUse()) { + SDNode *User = *Op.getNode()->use_begin(); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_OEQ. + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); + assert(NewBR == User); + (void)NewBR; + Dest = FalseBB; + + SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + Cond.getOperand(0), Cond.getOperand(1)); + Cmp = ConvertCmpIfNecessary(Cmp, DAG); + CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = DAG.getConstant(X86::COND_P, dl, MVT::i8); + Cond = Cmp; + addTest = false; + } + } + } else if (Cond.getOpcode() == ISD::SETCC && + cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) { + // For FCMP_UNE, we can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Op.getNode()->hasOneUse()) { + SDNode *User = *Op.getNode()->use_begin(); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_UNE. + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); + assert(NewBR == User); + (void)NewBR; + + SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + Cond.getOperand(0), Cond.getOperand(1)); + Cmp = ConvertCmpIfNecessary(Cmp, DAG); + CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8); + Cond = Cmp; + addTest = false; + Dest = FalseBB; + } + } + } + } + + if (addTest) { + // Look pass the truncate if the high bits are known zero. + if (isTruncWithZeroHighBitsInput(Cond, DAG)) + Cond = Cond.getOperand(0); + + // We know the result of AND is compared against zero. Try to match + // it to BT. + if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { + if (SDValue NewSetCC = LowerAndToBT(Cond, ISD::SETNE, dl, DAG)) { + CC = NewSetCC.getOperand(0); + Cond = NewSetCC.getOperand(1); + addTest = false; + } + } + } + + if (addTest) { + X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE; + CC = DAG.getConstant(X86Cond, dl, MVT::i8); + Cond = EmitTest(Cond, X86Cond, dl, DAG); + } + Cond = ConvertCmpIfNecessary(Cond, DAG); + return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cond); +} + +// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. +// Calls to _alloca are needed to probe the stack when allocating more than 4k +// bytes in one go. Touching the stack at 4K increments is necessary to ensure +// that the guard pages used by the OS virtual memory manager are allocated in +// correct sequence. +SDValue +X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + bool SplitStack = MF.shouldSplitStack(); + bool EmitStackProbe = !getStackProbeSymbolName(MF).empty(); + bool Lower = (Subtarget.isOSWindows() && !Subtarget.isTargetMachO()) || + SplitStack || EmitStackProbe; + SDLoc dl(Op); + + // Get the inputs. + SDNode *Node = Op.getNode(); + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); + EVT VT = Node->getValueType(0); + + // Chain the dynamic stack allocation so that it doesn't modify the stack + // pointer when other instructions are using the stack. + Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); + + bool Is64Bit = Subtarget.is64Bit(); + MVT SPTy = getPointerTy(DAG.getDataLayout()); + + SDValue Result; + if (!Lower) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); + assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" + " not tell us which reg is the stack pointer!"); + + SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); + Chain = SP.getValue(1); + const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); + unsigned StackAlign = TFI.getStackAlignment(); + Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value + if (Align > StackAlign) + Result = DAG.getNode(ISD::AND, dl, VT, Result, + DAG.getConstant(-(uint64_t)Align, dl, VT)); + Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain + } else if (SplitStack) { + MachineRegisterInfo &MRI = MF.getRegInfo(); + + if (Is64Bit) { + // The 64 bit implementation of segmented stacks needs to clobber both r10 + // r11. This makes it impossible to use it along with nested parameters. + const Function &F = MF.getFunction(); + for (const auto &A : F.args()) { + if (A.hasNestAttr()) + report_fatal_error("Cannot use segmented stacks with functions that " + "have nested arguments."); + } + } + + const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy); + unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); + Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); + Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, + DAG.getRegister(Vreg, SPTy)); + } else { + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Size); + MF.getInfo<X86MachineFunctionInfo>()->setHasWinAlloca(true); + + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + unsigned SPReg = RegInfo->getStackRegister(); + SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy); + Chain = SP.getValue(1); + + if (Align) { + SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), + DAG.getConstant(-(uint64_t)Align, dl, VT)); + Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP); + } + + Result = SP; + } + + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), + DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); + + SDValue Ops[2] = {Result, Chain}; + return DAG.getMergeValues(Ops, dl); +} + +SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + auto PtrVT = getPointerTy(MF.getDataLayout()); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + SDLoc DL(Op); + + if (!Subtarget.is64Bit() || + Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv())) { + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); + return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), + MachinePointerInfo(SV)); + } + + // __va_list_tag: + // gp_offset (0 - 6 * 8) + // fp_offset (48 - 48 + 8 * 16) + // overflow_arg_area (point to parameters coming in memory). + // reg_save_area + SmallVector<SDValue, 8> MemOps; + SDValue FIN = Op.getOperand(1); + // Store gp_offset + SDValue Store = DAG.getStore( + Op.getOperand(0), DL, + DAG.getConstant(FuncInfo->getVarArgsGPOffset(), DL, MVT::i32), FIN, + MachinePointerInfo(SV)); + MemOps.push_back(Store); + + // Store fp_offset + FIN = DAG.getMemBasePlusOffset(FIN, 4, DL); + Store = DAG.getStore( + Op.getOperand(0), DL, + DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32), FIN, + MachinePointerInfo(SV, 4)); + MemOps.push_back(Store); + + // Store ptr to overflow_arg_area + FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); + SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); + Store = + DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8)); + MemOps.push_back(Store); + + // Store ptr to reg_save_area. + FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant( + Subtarget.isTarget64BitLP64() ? 8 : 4, DL)); + SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT); + Store = DAG.getStore( + Op.getOperand(0), DL, RSFIN, FIN, + MachinePointerInfo(SV, Subtarget.isTarget64BitLP64() ? 16 : 12)); + MemOps.push_back(Store); + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); +} + +SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { + assert(Subtarget.is64Bit() && + "LowerVAARG only handles 64-bit va_arg!"); + assert(Op.getNumOperands() == 4); + + MachineFunction &MF = DAG.getMachineFunction(); + if (Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv())) + // The Win64 ABI uses char* instead of a structure. + return DAG.expandVAArg(Op.getNode()); + + SDValue Chain = Op.getOperand(0); + SDValue SrcPtr = Op.getOperand(1); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + unsigned Align = Op.getConstantOperandVal(3); + SDLoc dl(Op); + + EVT ArgVT = Op.getNode()->getValueType(0); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); + uint8_t ArgMode; + + // Decide which area this value should be read from. + // TODO: Implement the AMD64 ABI in its entirety. This simple + // selection mechanism works only for the basic types. + if (ArgVT == MVT::f80) { + llvm_unreachable("va_arg for f80 not yet implemented"); + } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { + ArgMode = 2; // Argument passed in XMM register. Use fp_offset. + } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { + ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset. + } else { + llvm_unreachable("Unhandled argument type in LowerVAARG"); + } + + if (ArgMode == 2) { + // Sanity Check: Make sure using fp_offset makes sense. + assert(!Subtarget.useSoftFloat() && + !(MF.getFunction().hasFnAttribute(Attribute::NoImplicitFloat)) && + Subtarget.hasSSE1()); + } + + // Insert VAARG_64 node into the DAG + // VAARG_64 returns two values: Variable Argument Address, Chain + SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32), + DAG.getConstant(ArgMode, dl, MVT::i8), + DAG.getConstant(Align, dl, MVT::i32)}; + SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other); + SDValue VAARG = DAG.getMemIntrinsicNode( + X86ISD::VAARG_64, dl, + VTs, InstOps, MVT::i64, + MachinePointerInfo(SV), + /*Align=*/0, + MachineMemOperand::MOLoad | MachineMemOperand::MOStore); + Chain = VAARG.getValue(1); + + // Load the next argument and return it + return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo()); +} + +static SDValue LowerVACOPY(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows, + // where a va_list is still an i8*. + assert(Subtarget.is64Bit() && "This code only handles 64-bit va_copy!"); + if (Subtarget.isCallingConvWin64( + DAG.getMachineFunction().getFunction().getCallingConv())) + // Probably a Win64 va_copy. + return DAG.expandVACopy(Op.getNode()); + + SDValue Chain = Op.getOperand(0); + SDValue DstPtr = Op.getOperand(1); + SDValue SrcPtr = Op.getOperand(2); + const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); + const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + SDLoc DL(Op); + + return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, + DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false, + false, false, + MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); +} + +/// Handle vector element shifts where the shift amount is a constant. +/// Takes immediate version of shift as input. +static SDValue getTargetVShiftByConstNode(unsigned Opc, const SDLoc &dl, MVT VT, + SDValue SrcOp, uint64_t ShiftAmt, + SelectionDAG &DAG) { + MVT ElementType = VT.getVectorElementType(); + + // Bitcast the source vector to the output type, this is mainly necessary for + // vXi8/vXi64 shifts. + if (VT != SrcOp.getSimpleValueType()) + SrcOp = DAG.getBitcast(VT, SrcOp); + + // Fold this packed shift into its first operand if ShiftAmt is 0. + if (ShiftAmt == 0) + return SrcOp; + + // Check for ShiftAmt >= element width + if (ShiftAmt >= ElementType.getSizeInBits()) { + if (Opc == X86ISD::VSRAI) + ShiftAmt = ElementType.getSizeInBits() - 1; + else + return DAG.getConstant(0, dl, VT); + } + + assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI) + && "Unknown target vector shift-by-constant node"); + + // Fold this packed vector shift into a build vector if SrcOp is a + // vector of Constants or UNDEFs. + if (ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) { + SmallVector<SDValue, 8> Elts; + unsigned NumElts = SrcOp->getNumOperands(); + ConstantSDNode *ND; + + switch(Opc) { + default: llvm_unreachable("Unknown opcode!"); + case X86ISD::VSHLI: + for (unsigned i=0; i!=NumElts; ++i) { + SDValue CurrentOp = SrcOp->getOperand(i); + if (CurrentOp->isUndef()) { + Elts.push_back(CurrentOp); + continue; + } + ND = cast<ConstantSDNode>(CurrentOp); + const APInt &C = ND->getAPIntValue(); + Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType)); + } + break; + case X86ISD::VSRLI: + for (unsigned i=0; i!=NumElts; ++i) { + SDValue CurrentOp = SrcOp->getOperand(i); + if (CurrentOp->isUndef()) { + Elts.push_back(CurrentOp); + continue; + } + ND = cast<ConstantSDNode>(CurrentOp); + const APInt &C = ND->getAPIntValue(); + Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType)); + } + break; + case X86ISD::VSRAI: + for (unsigned i=0; i!=NumElts; ++i) { + SDValue CurrentOp = SrcOp->getOperand(i); + if (CurrentOp->isUndef()) { + Elts.push_back(CurrentOp); + continue; + } + ND = cast<ConstantSDNode>(CurrentOp); + const APInt &C = ND->getAPIntValue(); + Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType)); + } + break; + } + + return DAG.getBuildVector(VT, dl, Elts); + } + + return DAG.getNode(Opc, dl, VT, SrcOp, + DAG.getConstant(ShiftAmt, dl, MVT::i8)); +} + +/// Handle vector element shifts where the shift amount may or may not be a +/// constant. Takes immediate version of shift as input. +static SDValue getTargetVShiftNode(unsigned Opc, const SDLoc &dl, MVT VT, + SDValue SrcOp, SDValue ShAmt, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT SVT = ShAmt.getSimpleValueType(); + assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!"); + + // Catch shift-by-constant. + if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt)) + return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp, + CShAmt->getZExtValue(), DAG); + + // Change opcode to non-immediate version + switch (Opc) { + default: llvm_unreachable("Unknown target vector shift node"); + case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; + case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; + case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; + } + + // Need to build a vector containing shift amount. + // SSE/AVX packed shifts only use the lower 64-bit of the shift count. + // +=================+============+=======================================+ + // | ShAmt is | HasSSE4.1? | Construct ShAmt vector as | + // +=================+============+=======================================+ + // | i64 | Yes, No | Use ShAmt as lowest elt | + // | i32 | Yes | zero-extend in-reg | + // | (i32 zext(i16)) | Yes | zero-extend in-reg | + // | i16/i32 | No | v4i32 build_vector(ShAmt, 0, ud, ud)) | + // +=================+============+=======================================+ + + if (SVT == MVT::i64) + ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v2i64, ShAmt); + else if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND && + ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) { + ShAmt = ShAmt.getOperand(0); + ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v8i16, ShAmt); + ShAmt = DAG.getZeroExtendVectorInReg(ShAmt, SDLoc(ShAmt), MVT::v2i64); + } else if (Subtarget.hasSSE41() && + ShAmt.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { + ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v4i32, ShAmt); + ShAmt = DAG.getZeroExtendVectorInReg(ShAmt, SDLoc(ShAmt), MVT::v2i64); + } else { + SDValue ShOps[4] = {ShAmt, DAG.getConstant(0, dl, SVT), + DAG.getUNDEF(SVT), DAG.getUNDEF(SVT)}; + ShAmt = DAG.getBuildVector(MVT::v4i32, dl, ShOps); + } + + // The return type has to be a 128-bit type with the same element + // type as the input type. + MVT EltVT = VT.getVectorElementType(); + MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); + + ShAmt = DAG.getBitcast(ShVT, ShAmt); + return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); +} + +/// \brief Return Mask with the necessary casting or extending +/// for \p Mask according to \p MaskVT when lowering masking intrinsics +static SDValue getMaskNode(SDValue Mask, MVT MaskVT, + const X86Subtarget &Subtarget, SelectionDAG &DAG, + const SDLoc &dl) { + + if (isAllOnesConstant(Mask)) + return DAG.getConstant(1, dl, MaskVT); + if (X86::isZeroNode(Mask)) + return DAG.getConstant(0, dl, MaskVT); + + if (MaskVT.bitsGT(Mask.getSimpleValueType())) { + // Mask should be extended + Mask = DAG.getNode(ISD::ANY_EXTEND, dl, + MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask); + } + + if (Mask.getSimpleValueType() == MVT::i64 && Subtarget.is32Bit()) { + if (MaskVT == MVT::v64i1) { + assert(Subtarget.hasBWI() && "Expected AVX512BW target!"); + // In case 32bit mode, bitcast i64 is illegal, extend/split it. + SDValue Lo, Hi; + Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask, + DAG.getConstant(0, dl, MVT::i32)); + Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask, + DAG.getConstant(1, dl, MVT::i32)); + + Lo = DAG.getBitcast(MVT::v32i1, Lo); + Hi = DAG.getBitcast(MVT::v32i1, Hi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi); + } else { + // MaskVT require < 64bit. Truncate mask (should succeed in any case), + // and bitcast. + MVT TruncVT = MVT::getIntegerVT(MaskVT.getSizeInBits()); + return DAG.getBitcast(MaskVT, + DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Mask)); + } + + } else { + MVT BitcastVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements + // are extracted by EXTRACT_SUBVECTOR. + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, + DAG.getBitcast(BitcastVT, Mask), + DAG.getIntPtrConstant(0, dl)); + } +} + +/// \brief Return (and \p Op, \p Mask) for compare instructions or +/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the +/// necessary casting or extending for \p Mask when lowering masking intrinsics +static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask, + SDValue PreservedSrc, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + unsigned OpcodeSelect = ISD::VSELECT; + SDLoc dl(Op); + + if (isAllOnesConstant(Mask)) + return Op; + + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + + switch (Op.getOpcode()) { + default: break; + case X86ISD::CMPM: + case X86ISD::CMPM_RND: + case X86ISD::CMPMU: + case X86ISD::VPSHUFBITQMB: + return DAG.getNode(ISD::AND, dl, VT, Op, VMask); + case X86ISD::VFPCLASS: + return DAG.getNode(ISD::OR, dl, VT, Op, VMask); + case X86ISD::VTRUNC: + case X86ISD::VTRUNCS: + case X86ISD::VTRUNCUS: + case X86ISD::CVTPS2PH: + // We can't use ISD::VSELECT here because it is not always "Legal" + // for the destination type. For example vpmovqb require only AVX512 + // and vselect that can operate on byte element type require BWI + OpcodeSelect = X86ISD::SELECT; + break; + } + if (PreservedSrc.isUndef()) + PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); + return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc); +} + +/// \brief Creates an SDNode for a predicated scalar operation. +/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc). +/// The mask is coming as MVT::i8 and it should be transformed +/// to MVT::v1i1 while lowering masking intrinsics. +/// The main difference between ScalarMaskingNode and VectorMaskingNode is using +/// "X86select" instead of "vselect". We just can't create the "vselect" node +/// for a scalar instruction. +static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask, + SDValue PreservedSrc, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + + if (auto *MaskConst = dyn_cast<ConstantSDNode>(Mask)) + if (MaskConst->getZExtValue() & 0x1) + return Op; + + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + SDValue IMask = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i1, Mask); + if (Op.getOpcode() == X86ISD::FSETCCM || + Op.getOpcode() == X86ISD::FSETCCM_RND) + return DAG.getNode(ISD::AND, dl, VT, Op, IMask); + if (Op.getOpcode() == X86ISD::VFPCLASSS) + return DAG.getNode(ISD::OR, dl, VT, Op, IMask); + + if (PreservedSrc.isUndef()) + PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); + return DAG.getNode(X86ISD::SELECTS, dl, VT, IMask, Op, PreservedSrc); +} + +static int getSEHRegistrationNodeSize(const Function *Fn) { + if (!Fn->hasPersonalityFn()) + report_fatal_error( + "querying registration node size for function without personality"); + // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See + // WinEHStatePass for the full struct definition. + switch (classifyEHPersonality(Fn->getPersonalityFn())) { + case EHPersonality::MSVC_X86SEH: return 24; + case EHPersonality::MSVC_CXX: return 16; + default: break; + } + report_fatal_error( + "can only recover FP for 32-bit MSVC EH personality functions"); +} + +/// When the MSVC runtime transfers control to us, either to an outlined +/// function or when returning to a parent frame after catching an exception, we +/// recover the parent frame pointer by doing arithmetic on the incoming EBP. +/// Here's the math: +/// RegNodeBase = EntryEBP - RegNodeSize +/// ParentFP = RegNodeBase - ParentFrameOffset +/// Subtracting RegNodeSize takes us to the offset of the registration node, and +/// subtracting the offset (negative on x86) takes us back to the parent FP. +static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn, + SDValue EntryEBP) { + MachineFunction &MF = DAG.getMachineFunction(); + SDLoc dl; + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + + // It's possible that the parent function no longer has a personality function + // if the exceptional code was optimized away, in which case we just return + // the incoming EBP. + if (!Fn->hasPersonalityFn()) + return EntryEBP; + + // Get an MCSymbol that will ultimately resolve to the frame offset of the EH + // registration, or the .set_setframe offset. + MCSymbol *OffsetSym = + MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol( + GlobalValue::dropLLVMManglingEscape(Fn->getName())); + SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT); + SDValue ParentFrameOffset = + DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal); + + // Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after + // prologue to RBP in the parent function. + const X86Subtarget &Subtarget = + static_cast<const X86Subtarget &>(DAG.getSubtarget()); + if (Subtarget.is64Bit()) + return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset); + + int RegNodeSize = getSEHRegistrationNodeSize(Fn); + // RegNodeBase = EntryEBP - RegNodeSize + // ParentFP = RegNodeBase - ParentFrameOffset + SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP, + DAG.getConstant(RegNodeSize, dl, PtrVT)); + return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset); +} + +SDValue X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + // Helper to detect if the operand is CUR_DIRECTION rounding mode. + auto isRoundModeCurDirection = [](SDValue Rnd) { + if (!isa<ConstantSDNode>(Rnd)) + return false; + + unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); + return Round == X86::STATIC_ROUNDING::CUR_DIRECTION; + }; + + SDLoc dl(Op); + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + MVT VT = Op.getSimpleValueType(); + const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo); + if (IntrData) { + switch(IntrData->Type) { + case INTR_TYPE_1OP: + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1)); + case INTR_TYPE_2OP: + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), + Op.getOperand(2)); + case INTR_TYPE_3OP: + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3)); + case INTR_TYPE_4OP: + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); + case INTR_TYPE_1OP_MASK_RM: { + SDValue Src = Op.getOperand(1); + SDValue PassThru = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + SDValue RoundingMode; + // We always add rounding mode to the Node. + // If the rounding mode is not specified, we add the + // "current direction" mode. + if (Op.getNumOperands() == 4) + RoundingMode = + DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); + else + RoundingMode = Op.getOperand(4); + assert(IntrData->Opc1 == 0 && "Unexpected second opcode!"); + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src, + RoundingMode), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_1OP_MASK: { + SDValue Src = Op.getOperand(1); + SDValue PassThru = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + // We add rounding mode to the Node when + // - RM Opcode is specified and + // - RM is not "current direction". + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(4); + if (!isRoundModeCurDirection(Rnd)) { + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), + Src, Rnd), + Mask, PassThru, Subtarget, DAG); + } + } + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_SCALAR_MASK: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue passThru = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + // There are 2 kinds of intrinsics in this group: + // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands + // (2) With rounding mode and sae - 7 operands. + bool HasRounding = IntrWithRoundingModeOpcode != 0; + if (Op.getNumOperands() == (5U + HasRounding)) { + if (HasRounding) { + SDValue Rnd = Op.getOperand(5); + if (!isRoundModeCurDirection(Rnd)) + return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, VT, Src1, Src2, Rnd), + Mask, passThru, Subtarget, DAG); + } + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, + Src2), + Mask, passThru, Subtarget, DAG); + } + + assert(Op.getNumOperands() == (6U + HasRounding) && + "Unexpected intrinsic form"); + SDValue RoundingMode = Op.getOperand(5); + if (HasRounding) { + SDValue Sae = Op.getOperand(6); + if (!isRoundModeCurDirection(Sae)) + return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, VT, Src1, Src2, + RoundingMode, Sae), + Mask, passThru, Subtarget, DAG); + } + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, + Src2, RoundingMode), + Mask, passThru, Subtarget, DAG); + } + case INTR_TYPE_SCALAR_MASK_RM: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src0 = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + // There are 2 kinds of intrinsics in this group: + // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands + // (2) With rounding mode and sae - 7 operands. + if (Op.getNumOperands() == 6) { + SDValue Sae = Op.getOperand(5); + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, + Sae), + Mask, Src0, Subtarget, DAG); + } + assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form"); + SDValue RoundingMode = Op.getOperand(5); + SDValue Sae = Op.getOperand(6); + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, + RoundingMode, Sae), + Mask, Src0, Subtarget, DAG); + } + case INTR_TYPE_2OP_MASK: + case INTR_TYPE_2OP_IMM8_MASK: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue PassThru = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + + if (IntrData->Type == INTR_TYPE_2OP_IMM8_MASK) + Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2); + + // We specify 2 possible opcodes for intrinsics with rounding modes. + // First, we check if the intrinsic may have non-default rounding mode, + // (IntrData->Opc1 != 0), then we check the rounding mode operand. + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(5); + if (!isRoundModeCurDirection(Rnd)) { + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), + Src1, Src2, Rnd), + Mask, PassThru, Subtarget, DAG); + } + } + // TODO: Intrinsics should have fast-math-flags to propagate. + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_2OP_MASK_RM: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue PassThru = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + // We specify 2 possible modes for intrinsics, with/without rounding + // modes. + // First, we check if the intrinsic have rounding mode (6 operands), + // if not, we set rounding mode to "current". + SDValue Rnd; + if (Op.getNumOperands() == 6) + Rnd = Op.getOperand(5); + else + Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Rnd), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_3OP_SCALAR_MASK: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue PassThru = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(6); + if (!isRoundModeCurDirection(Rnd)) + return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, VT, Src1, Src2, Src3, Rnd), + Mask, PassThru, Subtarget, DAG); + } + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, + Src2, Src3), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_3OP_MASK_RM: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Imm = Op.getOperand(3); + SDValue PassThru = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + // We specify 2 possible modes for intrinsics, with/without rounding + // modes. + // First, we check if the intrinsic have rounding mode (7 operands), + // if not, we set rounding mode to "current". + SDValue Rnd; + if (Op.getNumOperands() == 7) + Rnd = Op.getOperand(6); + else + Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Imm, Rnd), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_3OP_IMM8_MASK: + case INTR_TYPE_3OP_MASK: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue PassThru = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + + if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK) + Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3); + + // We specify 2 possible opcodes for intrinsics with rounding modes. + // First, we check if the intrinsic may have non-default rounding mode, + // (IntrData->Opc1 != 0), then we check the rounding mode operand. + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(6); + if (!isRoundModeCurDirection(Rnd)) { + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), + Src1, Src2, Src3, Rnd), + Mask, PassThru, Subtarget, DAG); + } + } + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Src3), + Mask, PassThru, Subtarget, DAG); + } + case VPERM_2OP_MASK : { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue PassThru = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + + // Swap Src1 and Src2 in the node creation + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src2, Src1), + Mask, PassThru, Subtarget, DAG); + } + case VPERM_3OP_MASKZ: + case VPERM_3OP_MASK:{ + MVT VT = Op.getSimpleValueType(); + // Src2 is the PassThru + SDValue Src1 = Op.getOperand(1); + // PassThru needs to be the same type as the destination in order + // to pattern match correctly. + SDValue Src2 = DAG.getBitcast(VT, Op.getOperand(2)); + SDValue Src3 = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + SDValue PassThru = SDValue(); + + // set PassThru element + if (IntrData->Type == VPERM_3OP_MASKZ) + PassThru = getZeroVector(VT, Subtarget, DAG, dl); + else + PassThru = Src2; + + // Swap Src1 and Src2 in the node creation + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, + dl, Op.getValueType(), + Src2, Src1, Src3), + Mask, PassThru, Subtarget, DAG); + } + case FMA_OP_MASK3: + case FMA_OP_MASKZ: + case FMA_OP_MASK: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + MVT VT = Op.getSimpleValueType(); + SDValue PassThru = SDValue(); + + // set PassThru element + if (IntrData->Type == FMA_OP_MASKZ) + PassThru = getZeroVector(VT, Subtarget, DAG, dl); + else if (IntrData->Type == FMA_OP_MASK3) + PassThru = Src3; + else + PassThru = Src1; + + // We specify 2 possible opcodes for intrinsics with rounding modes. + // First, we check if the intrinsic may have non-default rounding mode, + // (IntrData->Opc1 != 0), then we check the rounding mode operand. + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(5); + if (!isRoundModeCurDirection(Rnd)) + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), + Src1, Src2, Src3, Rnd), + Mask, PassThru, Subtarget, DAG); + } + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, + dl, Op.getValueType(), + Src1, Src2, Src3), + Mask, PassThru, Subtarget, DAG); + } + case FMA_OP_SCALAR_MASK: + case FMA_OP_SCALAR_MASK3: + case FMA_OP_SCALAR_MASKZ: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + MVT VT = Op.getSimpleValueType(); + SDValue PassThru = SDValue(); + + // set PassThru element + if (IntrData->Type == FMA_OP_SCALAR_MASKZ) + PassThru = getZeroVector(VT, Subtarget, DAG, dl); + else if (IntrData->Type == FMA_OP_SCALAR_MASK3) + PassThru = Src3; + else + PassThru = Src1; + + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(5); + if (!isRoundModeCurDirection(Rnd)) + return getScalarMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, dl, + Op.getValueType(), Src1, Src2, + Src3, Rnd), + Mask, PassThru, Subtarget, DAG); + } + + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, + Op.getValueType(), Src1, Src2, + Src3), + Mask, PassThru, Subtarget, DAG); + } + case IFMA_OP_MASKZ: + case IFMA_OP_MASK: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + MVT VT = Op.getSimpleValueType(); + SDValue PassThru = Src1; + + // set PassThru element + if (IntrData->Type == IFMA_OP_MASKZ) + PassThru = getZeroVector(VT, Subtarget, DAG, dl); + + // Node we need to swizzle the operands to pass the multiply operands + // first. + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, + dl, Op.getValueType(), + Src2, Src3, Src1), + Mask, PassThru, Subtarget, DAG); + } + case TERLOG_OP_MASK: + case TERLOG_OP_MASKZ: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue Src4 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(4)); + SDValue Mask = Op.getOperand(5); + MVT VT = Op.getSimpleValueType(); + SDValue PassThru = Src1; + // Set PassThru element. + if (IntrData->Type == TERLOG_OP_MASKZ) + PassThru = getZeroVector(VT, Subtarget, DAG, dl); + + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Src3, Src4), + Mask, PassThru, Subtarget, DAG); + } + case CVTPD2PS: + // ISD::FP_ROUND has a second argument that indicates if the truncation + // does not change the value. Set it to 0 since it can change. + return DAG.getNode(IntrData->Opc0, dl, VT, Op.getOperand(1), + DAG.getIntPtrConstant(0, dl)); + case CVTPD2PS_MASK: { + SDValue Src = Op.getOperand(1); + SDValue PassThru = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + // We add rounding mode to the Node when + // - RM Opcode is specified and + // - RM is not "current direction". + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(4); + if (!isRoundModeCurDirection(Rnd)) { + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), + Src, Rnd), + Mask, PassThru, Subtarget, DAG); + } + } + assert(IntrData->Opc0 == ISD::FP_ROUND && "Unexpected opcode!"); + // ISD::FP_ROUND has a second argument that indicates if the truncation + // does not change the value. Set it to 0 since it can change. + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src, + DAG.getIntPtrConstant(0, dl)), + Mask, PassThru, Subtarget, DAG); + } + case FPCLASS: { + // FPclass intrinsics with mask + SDValue Src1 = Op.getOperand(1); + MVT VT = Src1.getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + SDValue Imm = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + MVT BitcastVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm); + SDValue FPclassMask = getVectorMaskingNode(FPclass, Mask, SDValue(), + Subtarget, DAG); + SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, + DAG.getUNDEF(BitcastVT), FPclassMask, + DAG.getIntPtrConstant(0, dl)); + return DAG.getBitcast(Op.getValueType(), Res); + } + case FPCLASSS: { + SDValue Src1 = Op.getOperand(1); + SDValue Imm = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Imm); + SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask, SDValue(), + Subtarget, DAG); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, FPclassMask, + DAG.getIntPtrConstant(0, dl)); + } + case CMP_MASK: + case CMP_MASK_CC: { + // Comparison intrinsics with masks. + // Example of transformation: + // (i8 (int_x86_avx512_mask_pcmpeq_q_128 + // (v2i64 %a), (v2i64 %b), (i8 %mask))) -> + // (i8 (bitcast + // (v8i1 (insert_subvector undef, + // (v2i1 (and (PCMPEQM %a, %b), + // (extract_subvector + // (v8i1 (bitcast %mask)), 0))), 0)))) + MVT VT = Op.getOperand(1).getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3); + MVT BitcastVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + SDValue Cmp; + if (IntrData->Type == CMP_MASK_CC) { + SDValue CC = Op.getOperand(3); + CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC); + // We specify 2 possible opcodes for intrinsics with rounding modes. + // First, we check if the intrinsic may have non-default rounding mode, + // (IntrData->Opc1 != 0), then we check the rounding mode operand. + if (IntrData->Opc1 != 0) { + SDValue Rnd = Op.getOperand(5); + if (!isRoundModeCurDirection(Rnd)) + Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1), + Op.getOperand(2), CC, Rnd); + } + //default rounding mode + if(!Cmp.getNode()) + Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), + Op.getOperand(2), CC); + + } else { + assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!"); + Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), + Op.getOperand(2)); + } + SDValue CmpMask = getVectorMaskingNode(Cmp, Mask, SDValue(), + Subtarget, DAG); + SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, + DAG.getUNDEF(BitcastVT), CmpMask, + DAG.getIntPtrConstant(0, dl)); + return DAG.getBitcast(Op.getValueType(), Res); + } + case CMP_MASK_SCALAR_CC: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3)); + SDValue Mask = Op.getOperand(4); + + SDValue Cmp; + if (IntrData->Opc1 != 0) { + SDValue Rnd = Op.getOperand(5); + if (!isRoundModeCurDirection(Rnd)) + Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::v1i1, Src1, Src2, CC, Rnd); + } + //default rounding mode + if(!Cmp.getNode()) + Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Src2, CC); + + SDValue CmpMask = getScalarMaskingNode(Cmp, Mask, SDValue(), + Subtarget, DAG); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, CmpMask, + DAG.getIntPtrConstant(0, dl)); + } + case COMI: { // Comparison intrinsics + ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1; + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + SDValue Comi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS); + SDValue InvComi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, RHS, LHS); + SDValue SetCC; + switch (CC) { + case ISD::SETEQ: { // (ZF = 0 and PF = 0) + SetCC = getSETCC(X86::COND_E, Comi, dl, DAG); + SDValue SetNP = getSETCC(X86::COND_NP, Comi, dl, DAG); + SetCC = DAG.getNode(ISD::AND, dl, MVT::i8, SetCC, SetNP); + break; + } + case ISD::SETNE: { // (ZF = 1 or PF = 1) + SetCC = getSETCC(X86::COND_NE, Comi, dl, DAG); + SDValue SetP = getSETCC(X86::COND_P, Comi, dl, DAG); + SetCC = DAG.getNode(ISD::OR, dl, MVT::i8, SetCC, SetP); + break; + } + case ISD::SETGT: // (CF = 0 and ZF = 0) + SetCC = getSETCC(X86::COND_A, Comi, dl, DAG); + break; + case ISD::SETLT: { // The condition is opposite to GT. Swap the operands. + SetCC = getSETCC(X86::COND_A, InvComi, dl, DAG); + break; + } + case ISD::SETGE: // CF = 0 + SetCC = getSETCC(X86::COND_AE, Comi, dl, DAG); + break; + case ISD::SETLE: // The condition is opposite to GE. Swap the operands. + SetCC = getSETCC(X86::COND_AE, InvComi, dl, DAG); + break; + default: + llvm_unreachable("Unexpected illegal condition!"); + } + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + case COMI_RM: { // Comparison intrinsics with Sae + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + unsigned CondVal = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); + SDValue Sae = Op.getOperand(4); + + SDValue FCmp; + if (isRoundModeCurDirection(Sae)) + FCmp = DAG.getNode(X86ISD::FSETCCM, dl, MVT::v1i1, LHS, RHS, + DAG.getConstant(CondVal, dl, MVT::i8)); + else + FCmp = DAG.getNode(X86ISD::FSETCCM_RND, dl, MVT::v1i1, LHS, RHS, + DAG.getConstant(CondVal, dl, MVT::i8), Sae); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, FCmp, + DAG.getIntPtrConstant(0, dl)); + } + case VSHIFT: + return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(), + Op.getOperand(1), Op.getOperand(2), Subtarget, + DAG); + case COMPRESS_EXPAND_IN_REG: { + SDValue Mask = Op.getOperand(3); + SDValue DataToCompress = Op.getOperand(1); + SDValue PassThru = Op.getOperand(2); + if (isAllOnesConstant(Mask)) // return data as is + return Op.getOperand(1); + + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + DataToCompress), + Mask, PassThru, Subtarget, DAG); + } + case BROADCASTM: { + SDValue Mask = Op.getOperand(1); + MVT MaskVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + Mask = DAG.getBitcast(MaskVT, Mask); + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Mask); + } + case MASK_BINOP: { + MVT VT = Op.getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits()); + + SDValue Src1 = getMaskNode(Op.getOperand(1), MaskVT, Subtarget, DAG, dl); + SDValue Src2 = getMaskNode(Op.getOperand(2), MaskVT, Subtarget, DAG, dl); + SDValue Res = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Src2); + return DAG.getBitcast(VT, Res); + } + case FIXUPIMMS: + case FIXUPIMMS_MASKZ: + case FIXUPIMM: + case FIXUPIMM_MASKZ:{ + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue Imm = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + SDValue Passthru = (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMMS ) ? + Src1 : getZeroVector(VT, Subtarget, DAG, dl); + // We specify 2 possible modes for intrinsics, with/without rounding + // modes. + // First, we check if the intrinsic have rounding mode (7 operands), + // if not, we set rounding mode to "current". + SDValue Rnd; + if (Op.getNumOperands() == 7) + Rnd = Op.getOperand(6); + else + Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); + if (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMM_MASKZ) + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Src3, Imm, Rnd), + Mask, Passthru, Subtarget, DAG); + else // Scalar - FIXUPIMMS, FIXUPIMMS_MASKZ + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Src3, Imm, Rnd), + Mask, Passthru, Subtarget, DAG); + } + case CONVERT_TO_MASK: { + MVT SrcVT = Op.getOperand(1).getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements()); + MVT BitcastVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits()); + + SDValue CvtMask = DAG.getNode(IntrData->Opc0, dl, MaskVT, + Op.getOperand(1)); + SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, + DAG.getUNDEF(BitcastVT), CvtMask, + DAG.getIntPtrConstant(0, dl)); + return DAG.getBitcast(Op.getValueType(), Res); + } + case ROUNDP: { + assert(IntrData->Opc0 == X86ISD::VRNDSCALE && "Unexpected opcode"); + // Clear the upper bits of the rounding immediate so that the legacy + // intrinsic can't trigger the scaling behavior of VRNDSCALE. + SDValue RoundingMode = DAG.getNode(ISD::AND, dl, MVT::i32, + Op.getOperand(2), + DAG.getConstant(0xf, dl, MVT::i32)); + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), + Op.getOperand(1), RoundingMode); + } + case ROUNDS: { + assert(IntrData->Opc0 == X86ISD::VRNDSCALES && "Unexpected opcode"); + // Clear the upper bits of the rounding immediate so that the legacy + // intrinsic can't trigger the scaling behavior of VRNDSCALE. + SDValue RoundingMode = DAG.getNode(ISD::AND, dl, MVT::i32, + Op.getOperand(3), + DAG.getConstant(0xf, dl, MVT::i32)); + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2), RoundingMode); + } + default: + break; + } + } + + switch (IntNo) { + default: return SDValue(); // Don't custom lower most intrinsics. + + case Intrinsic::x86_avx2_permd: + case Intrinsic::x86_avx2_permps: + // Operands intentionally swapped. Mask is last operand to intrinsic, + // but second operand for node/instruction. + return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(), + Op.getOperand(2), Op.getOperand(1)); + + // ptest and testp intrinsics. The intrinsic these come from are designed to + // return an integer value, not just an instruction so lower it to the ptest + // or testp pattern and a setcc for the result. + case Intrinsic::x86_sse41_ptestz: + case Intrinsic::x86_sse41_ptestc: + case Intrinsic::x86_sse41_ptestnzc: + case Intrinsic::x86_avx_ptestz_256: + case Intrinsic::x86_avx_ptestc_256: + case Intrinsic::x86_avx_ptestnzc_256: + case Intrinsic::x86_avx_vtestz_ps: + case Intrinsic::x86_avx_vtestc_ps: + case Intrinsic::x86_avx_vtestnzc_ps: + case Intrinsic::x86_avx_vtestz_pd: + case Intrinsic::x86_avx_vtestc_pd: + case Intrinsic::x86_avx_vtestnzc_pd: + case Intrinsic::x86_avx_vtestz_ps_256: + case Intrinsic::x86_avx_vtestc_ps_256: + case Intrinsic::x86_avx_vtestnzc_ps_256: + case Intrinsic::x86_avx_vtestz_pd_256: + case Intrinsic::x86_avx_vtestc_pd_256: + case Intrinsic::x86_avx_vtestnzc_pd_256: { + bool IsTestPacked = false; + X86::CondCode X86CC; + switch (IntNo) { + default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); + case Intrinsic::x86_avx_vtestz_ps: + case Intrinsic::x86_avx_vtestz_pd: + case Intrinsic::x86_avx_vtestz_ps_256: + case Intrinsic::x86_avx_vtestz_pd_256: + IsTestPacked = true; + LLVM_FALLTHROUGH; + case Intrinsic::x86_sse41_ptestz: + case Intrinsic::x86_avx_ptestz_256: + // ZF = 1 + X86CC = X86::COND_E; + break; + case Intrinsic::x86_avx_vtestc_ps: + case Intrinsic::x86_avx_vtestc_pd: + case Intrinsic::x86_avx_vtestc_ps_256: + case Intrinsic::x86_avx_vtestc_pd_256: + IsTestPacked = true; + LLVM_FALLTHROUGH; + case Intrinsic::x86_sse41_ptestc: + case Intrinsic::x86_avx_ptestc_256: + // CF = 1 + X86CC = X86::COND_B; + break; + case Intrinsic::x86_avx_vtestnzc_ps: + case Intrinsic::x86_avx_vtestnzc_pd: + case Intrinsic::x86_avx_vtestnzc_ps_256: + case Intrinsic::x86_avx_vtestnzc_pd_256: + IsTestPacked = true; + LLVM_FALLTHROUGH; + case Intrinsic::x86_sse41_ptestnzc: + case Intrinsic::x86_avx_ptestnzc_256: + // ZF and CF = 0 + X86CC = X86::COND_A; + break; + } + + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; + SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); + SDValue SetCC = getSETCC(X86CC, Test, dl, DAG); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + case Intrinsic::x86_avx512_kortestz_w: + case Intrinsic::x86_avx512_kortestc_w: { + X86::CondCode X86CC = + (IntNo == Intrinsic::x86_avx512_kortestz_w) ? X86::COND_E : X86::COND_B; + SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1)); + SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2)); + SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS); + SDValue SetCC = getSETCC(X86CC, Test, dl, DAG); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + + case Intrinsic::x86_avx512_knot_w: { + SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1)); + SDValue RHS = DAG.getConstant(1, dl, MVT::v16i1); + SDValue Res = DAG.getNode(ISD::XOR, dl, MVT::v16i1, LHS, RHS); + return DAG.getBitcast(MVT::i16, Res); + } + + case Intrinsic::x86_avx512_kandn_w: { + SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1)); + // Invert LHS for the not. + LHS = DAG.getNode(ISD::XOR, dl, MVT::v16i1, LHS, + DAG.getConstant(1, dl, MVT::v16i1)); + SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2)); + SDValue Res = DAG.getNode(ISD::AND, dl, MVT::v16i1, LHS, RHS); + return DAG.getBitcast(MVT::i16, Res); + } + + case Intrinsic::x86_avx512_kxnor_w: { + SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1)); + SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2)); + SDValue Res = DAG.getNode(ISD::XOR, dl, MVT::v16i1, LHS, RHS); + // Invert result for the not. + Res = DAG.getNode(ISD::XOR, dl, MVT::v16i1, Res, + DAG.getConstant(1, dl, MVT::v16i1)); + return DAG.getBitcast(MVT::i16, Res); + } + + case Intrinsic::x86_sse42_pcmpistria128: + case Intrinsic::x86_sse42_pcmpestria128: + case Intrinsic::x86_sse42_pcmpistric128: + case Intrinsic::x86_sse42_pcmpestric128: + case Intrinsic::x86_sse42_pcmpistrio128: + case Intrinsic::x86_sse42_pcmpestrio128: + case Intrinsic::x86_sse42_pcmpistris128: + case Intrinsic::x86_sse42_pcmpestris128: + case Intrinsic::x86_sse42_pcmpistriz128: + case Intrinsic::x86_sse42_pcmpestriz128: { + unsigned Opcode; + X86::CondCode X86CC; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse42_pcmpistria128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_A; + break; + case Intrinsic::x86_sse42_pcmpestria128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_A; + break; + case Intrinsic::x86_sse42_pcmpistric128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_B; + break; + case Intrinsic::x86_sse42_pcmpestric128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_B; + break; + case Intrinsic::x86_sse42_pcmpistrio128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_O; + break; + case Intrinsic::x86_sse42_pcmpestrio128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_O; + break; + case Intrinsic::x86_sse42_pcmpistris128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_S; + break; + case Intrinsic::x86_sse42_pcmpestris128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_S; + break; + case Intrinsic::x86_sse42_pcmpistriz128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_E; + break; + case Intrinsic::x86_sse42_pcmpestriz128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_E; + break; + } + SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps); + SDValue SetCC = getSETCC(X86CC, SDValue(PCMP.getNode(), 1), dl, DAG); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + + case Intrinsic::x86_sse42_pcmpistri128: + case Intrinsic::x86_sse42_pcmpestri128: { + unsigned Opcode; + if (IntNo == Intrinsic::x86_sse42_pcmpistri128) + Opcode = X86ISD::PCMPISTRI; + else + Opcode = X86ISD::PCMPESTRI; + + SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + return DAG.getNode(Opcode, dl, VTs, NewOps); + } + + case Intrinsic::eh_sjlj_lsda: { + MachineFunction &MF = DAG.getMachineFunction(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + auto &Context = MF.getMMI().getContext(); + MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + + Twine(MF.getFunctionNumber())); + return DAG.getNode(getGlobalWrapperKind(), dl, VT, + DAG.getMCSymbol(S, PtrVT)); + } + + case Intrinsic::x86_seh_lsda: { + // Compute the symbol for the LSDA. We know it'll get emitted later. + MachineFunction &MF = DAG.getMachineFunction(); + SDValue Op1 = Op.getOperand(1); + auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal()); + MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol( + GlobalValue::dropLLVMManglingEscape(Fn->getName())); + + // Generate a simple absolute symbol reference. This intrinsic is only + // supported on 32-bit Windows, which isn't PIC. + SDValue Result = DAG.getMCSymbol(LSDASym, VT); + return DAG.getNode(X86ISD::Wrapper, dl, VT, Result); + } + + case Intrinsic::x86_seh_recoverfp: { + SDValue FnOp = Op.getOperand(1); + SDValue IncomingFPOp = Op.getOperand(2); + GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); + auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); + if (!Fn) + report_fatal_error( + "llvm.x86.seh.recoverfp must take a function as the first argument"); + return recoverFramePointer(DAG, Fn, IncomingFPOp); + } + + case Intrinsic::localaddress: { + // Returns one of the stack, base, or frame pointer registers, depending on + // which is used to reference local variables. + MachineFunction &MF = DAG.getMachineFunction(); + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + unsigned Reg; + if (RegInfo->hasBasePointer(MF)) + Reg = RegInfo->getBaseRegister(); + else // This function handles the SP or FP case. + Reg = RegInfo->getPtrSizedFrameRegister(MF); + return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); + } + } +} + +static SDValue getAVX2GatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, + SDValue Src, SDValue Mask, SDValue Base, + SDValue Index, SDValue ScaleOp, SDValue Chain, + const X86Subtarget &Subtarget) { + SDLoc dl(Op); + auto *C = dyn_cast<ConstantSDNode>(ScaleOp); + // Scale must be constant. + if (!C) + return SDValue(); + SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); + EVT MaskVT = Mask.getValueType(); + SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); + SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); + SDValue Segment = DAG.getRegister(0, MVT::i32); + // If source is undef or we know it won't be used, use a zero vector + // to break register dependency. + // TODO: use undef instead and let ExecutionDepsFix deal with it? + if (Src.isUndef() || ISD::isBuildVectorAllOnes(Mask.getNode())) + Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl); + SDValue Ops[] = {Src, Base, Scale, Index, Disp, Segment, Mask, Chain}; + SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); + SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; + return DAG.getMergeValues(RetOps, dl); +} + +static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, + SDValue Src, SDValue Mask, SDValue Base, + SDValue Index, SDValue ScaleOp, SDValue Chain, + const X86Subtarget &Subtarget) { + SDLoc dl(Op); + auto *C = dyn_cast<ConstantSDNode>(ScaleOp); + // Scale must be constant. + if (!C) + return SDValue(); + SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); + MVT MaskVT = MVT::getVectorVT(MVT::i1, + Index.getSimpleValueType().getVectorNumElements()); + + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); + SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); + SDValue Segment = DAG.getRegister(0, MVT::i32); + // If source is undef or we know it won't be used, use a zero vector + // to break register dependency. + // TODO: use undef instead and let ExecutionDepsFix deal with it? + if (Src.isUndef() || ISD::isBuildVectorAllOnes(VMask.getNode())) + Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl); + SDValue Ops[] = {Src, VMask, Base, Scale, Index, Disp, Segment, Chain}; + SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); + SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; + return DAG.getMergeValues(RetOps, dl); +} + +static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, + SDValue Src, SDValue Mask, SDValue Base, + SDValue Index, SDValue ScaleOp, SDValue Chain, + const X86Subtarget &Subtarget) { + SDLoc dl(Op); + auto *C = dyn_cast<ConstantSDNode>(ScaleOp); + // Scale must be constant. + if (!C) + return SDValue(); + SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); + SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); + SDValue Segment = DAG.getRegister(0, MVT::i32); + MVT MaskVT = MVT::getVectorVT(MVT::i1, + Index.getSimpleValueType().getVectorNumElements()); + + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); + SDValue Ops[] = {Base, Scale, Index, Disp, Segment, VMask, Src, Chain}; + SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); + return SDValue(Res, 1); +} + +static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, + SDValue Mask, SDValue Base, SDValue Index, + SDValue ScaleOp, SDValue Chain, + const X86Subtarget &Subtarget) { + SDLoc dl(Op); + auto *C = dyn_cast<ConstantSDNode>(ScaleOp); + // Scale must be constant. + if (!C) + return SDValue(); + SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); + SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); + SDValue Segment = DAG.getRegister(0, MVT::i32); + MVT MaskVT = + MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + SDValue Ops[] = {VMask, Base, Scale, Index, Disp, Segment, Chain}; + SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops); + return SDValue(Res, 0); +} + +/// Handles the lowering of builtin intrinsic that return the value +/// of the extended control register. +static void getExtendedControlRegister(SDNode *N, const SDLoc &DL, + SelectionDAG &DAG, + const X86Subtarget &Subtarget, + SmallVectorImpl<SDValue> &Results) { + assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue LO, HI; + + // The ECX register is used to select the index of the XCR register to + // return. + SDValue Chain = + DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, N->getOperand(2)); + SDNode *N1 = DAG.getMachineNode(X86::XGETBV, DL, Tys, Chain); + Chain = SDValue(N1, 0); + + // Reads the content of XCR and returns it in registers EDX:EAX. + if (Subtarget.is64Bit()) { + LO = DAG.getCopyFromReg(Chain, DL, X86::RAX, MVT::i64, SDValue(N1, 1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, + LO.getValue(2)); + } else { + LO = DAG.getCopyFromReg(Chain, DL, X86::EAX, MVT::i32, SDValue(N1, 1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, + LO.getValue(2)); + } + Chain = HI.getValue(1); + + if (Subtarget.is64Bit()) { + // Merge the two 32-bit values into a 64-bit one.. + SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, + DAG.getConstant(32, DL, MVT::i8)); + Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); + Results.push_back(Chain); + return; + } + + // Use a buildpair to merge the two 32-bit values into a 64-bit one. + SDValue Ops[] = { LO, HI }; + SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); + Results.push_back(Pair); + Results.push_back(Chain); +} + +/// Handles the lowering of builtin intrinsics that read performance monitor +/// counters (x86_rdpmc). +static void getReadPerformanceCounter(SDNode *N, const SDLoc &DL, + SelectionDAG &DAG, + const X86Subtarget &Subtarget, + SmallVectorImpl<SDValue> &Results) { + assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue LO, HI; + + // The ECX register is used to select the index of the performance counter + // to read. + SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, + N->getOperand(2)); + SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain); + + // Reads the content of a 64-bit performance counter and returns it in the + // registers EDX:EAX. + if (Subtarget.is64Bit()) { + LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, + LO.getValue(2)); + } else { + LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, + LO.getValue(2)); + } + Chain = HI.getValue(1); + + if (Subtarget.is64Bit()) { + // The EAX register is loaded with the low-order 32 bits. The EDX register + // is loaded with the supported high-order bits of the counter. + SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, + DAG.getConstant(32, DL, MVT::i8)); + Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); + Results.push_back(Chain); + return; + } + + // Use a buildpair to merge the two 32-bit values into a 64-bit one. + SDValue Ops[] = { LO, HI }; + SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); + Results.push_back(Pair); + Results.push_back(Chain); +} + +/// Handles the lowering of builtin intrinsics that read the time stamp counter +/// (x86_rdtsc and x86_rdtscp). This function is also used to custom lower +/// READCYCLECOUNTER nodes. +static void getReadTimeStampCounter(SDNode *N, const SDLoc &DL, unsigned Opcode, + SelectionDAG &DAG, + const X86Subtarget &Subtarget, + SmallVectorImpl<SDValue> &Results) { + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0)); + SDValue LO, HI; + + // The processor's time-stamp counter (a 64-bit MSR) is stored into the + // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR + // and the EAX register is loaded with the low-order 32 bits. + if (Subtarget.is64Bit()) { + LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, + LO.getValue(2)); + } else { + LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, + LO.getValue(2)); + } + SDValue Chain = HI.getValue(1); + + if (Opcode == X86ISD::RDTSCP_DAG) { + assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); + + // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into + // the ECX register. Add 'ecx' explicitly to the chain. + SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32, + HI.getValue(2)); + // Explicitly store the content of ECX at the location passed in input + // to the 'rdtscp' intrinsic. + Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2), + MachinePointerInfo()); + } + + if (Subtarget.is64Bit()) { + // The EDX register is loaded with the high-order 32 bits of the MSR, and + // the EAX register is loaded with the low-order 32 bits. + SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, + DAG.getConstant(32, DL, MVT::i8)); + Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); + Results.push_back(Chain); + return; + } + + // Use a buildpair to merge the two 32-bit values into a 64-bit one. + SDValue Ops[] = { LO, HI }; + SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); + Results.push_back(Pair); + Results.push_back(Chain); +} + +static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SmallVector<SDValue, 2> Results; + SDLoc DL(Op); + getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget, + Results); + return DAG.getMergeValues(Results, DL); +} + +static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) { + MachineFunction &MF = DAG.getMachineFunction(); + SDValue Chain = Op.getOperand(0); + SDValue RegNode = Op.getOperand(2); + WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); + if (!EHInfo) + report_fatal_error("EH registrations only live in functions using WinEH"); + + // Cast the operand to an alloca, and remember the frame index. + auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode); + if (!FINode) + report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca"); + EHInfo->EHRegNodeFrameIndex = FINode->getIndex(); + + // Return the chain operand without making any DAG nodes. + return Chain; +} + +static SDValue MarkEHGuard(SDValue Op, SelectionDAG &DAG) { + MachineFunction &MF = DAG.getMachineFunction(); + SDValue Chain = Op.getOperand(0); + SDValue EHGuard = Op.getOperand(2); + WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); + if (!EHInfo) + report_fatal_error("EHGuard only live in functions using WinEH"); + + // Cast the operand to an alloca, and remember the frame index. + auto *FINode = dyn_cast<FrameIndexSDNode>(EHGuard); + if (!FINode) + report_fatal_error("llvm.x86.seh.ehguard expects a static alloca"); + EHInfo->EHGuardFrameIndex = FINode->getIndex(); + + // Return the chain operand without making any DAG nodes. + return Chain; +} + +/// Emit Truncating Store with signed or unsigned saturation. +static SDValue +EmitTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl, SDValue Val, + SDValue Ptr, EVT MemVT, MachineMemOperand *MMO, + SelectionDAG &DAG) { + + SDVTList VTs = DAG.getVTList(MVT::Other); + SDValue Undef = DAG.getUNDEF(Ptr.getValueType()); + SDValue Ops[] = { Chain, Val, Ptr, Undef }; + return SignedSat ? + DAG.getTargetMemSDNode<TruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) : + DAG.getTargetMemSDNode<TruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO); +} + +/// Emit Masked Truncating Store with signed or unsigned saturation. +static SDValue +EmitMaskedTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl, + SDValue Val, SDValue Ptr, SDValue Mask, EVT MemVT, + MachineMemOperand *MMO, SelectionDAG &DAG) { + + SDVTList VTs = DAG.getVTList(MVT::Other); + SDValue Ops[] = { Chain, Ptr, Mask, Val }; + return SignedSat ? + DAG.getTargetMemSDNode<MaskedTruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) : + DAG.getTargetMemSDNode<MaskedTruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO); +} + +static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + + const IntrinsicData *IntrData = getIntrinsicWithChain(IntNo); + if (!IntrData) { + switch (IntNo) { + case llvm::Intrinsic::x86_seh_ehregnode: + return MarkEHRegistrationNode(Op, DAG); + case llvm::Intrinsic::x86_seh_ehguard: + return MarkEHGuard(Op, DAG); + case llvm::Intrinsic::x86_flags_read_u32: + case llvm::Intrinsic::x86_flags_read_u64: + case llvm::Intrinsic::x86_flags_write_u32: + case llvm::Intrinsic::x86_flags_write_u64: { + // We need a frame pointer because this will get lowered to a PUSH/POP + // sequence. + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + MFI.setHasCopyImplyingStackAdjustment(true); + // Don't do anything here, we will expand these intrinsics out later + // during ExpandISelPseudos in EmitInstrWithCustomInserter. + return SDValue(); + } + case Intrinsic::x86_lwpins32: + case Intrinsic::x86_lwpins64: { + SDLoc dl(Op); + SDValue Chain = Op->getOperand(0); + SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); + SDValue LwpIns = + DAG.getNode(X86ISD::LWPINS, dl, VTs, Chain, Op->getOperand(2), + Op->getOperand(3), Op->getOperand(4)); + SDValue SetCC = getSETCC(X86::COND_B, LwpIns.getValue(0), dl, DAG); + SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, SetCC); + return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, + LwpIns.getValue(1)); + } + } + return SDValue(); + } + + SDLoc dl(Op); + switch(IntrData->Type) { + default: llvm_unreachable("Unknown Intrinsic Type"); + case RDSEED: + case RDRAND: { + // Emit the node with the right value type. + SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32, MVT::Other); + SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); + + // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1. + // Otherwise return the value from Rand, which is always 0, casted to i32. + SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), + DAG.getConstant(1, dl, Op->getValueType(1)), + DAG.getConstant(X86::COND_B, dl, MVT::i8), + SDValue(Result.getNode(), 1) }; + SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, Op->getValueType(1), Ops); + + // Return { result, isValid, chain }. + return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, + SDValue(Result.getNode(), 2)); + } + case GATHER_AVX2: { + SDValue Chain = Op.getOperand(0); + SDValue Src = Op.getOperand(2); + SDValue Base = Op.getOperand(3); + SDValue Index = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + SDValue Scale = Op.getOperand(6); + return getAVX2GatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, + Scale, Chain, Subtarget); + } + case GATHER: { + //gather(v1, mask, index, base, scale); + SDValue Chain = Op.getOperand(0); + SDValue Src = Op.getOperand(2); + SDValue Base = Op.getOperand(3); + SDValue Index = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + SDValue Scale = Op.getOperand(6); + return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, + Chain, Subtarget); + } + case SCATTER: { + //scatter(base, mask, index, v1, scale); + SDValue Chain = Op.getOperand(0); + SDValue Base = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + SDValue Index = Op.getOperand(4); + SDValue Src = Op.getOperand(5); + SDValue Scale = Op.getOperand(6); + return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, + Scale, Chain, Subtarget); + } + case PREFETCH: { + SDValue Hint = Op.getOperand(6); + unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue(); + assert((HintVal == 2 || HintVal == 3) && + "Wrong prefetch hint in intrinsic: should be 2 or 3"); + unsigned Opcode = (HintVal == 2 ? IntrData->Opc1 : IntrData->Opc0); + SDValue Chain = Op.getOperand(0); + SDValue Mask = Op.getOperand(2); + SDValue Index = Op.getOperand(3); + SDValue Base = Op.getOperand(4); + SDValue Scale = Op.getOperand(5); + return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain, + Subtarget); + } + // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP). + case RDTSC: { + SmallVector<SDValue, 2> Results; + getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, + Results); + return DAG.getMergeValues(Results, dl); + } + // Read Performance Monitoring Counters. + case RDPMC: { + SmallVector<SDValue, 2> Results; + getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results); + return DAG.getMergeValues(Results, dl); + } + // Get Extended Control Register. + case XGETBV: { + SmallVector<SDValue, 2> Results; + getExtendedControlRegister(Op.getNode(), dl, DAG, Subtarget, Results); + return DAG.getMergeValues(Results, dl); + } + // XTEST intrinsics. + case XTEST: { + SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other); + SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); + + SDValue SetCC = getSETCC(X86::COND_NE, InTrans, dl, DAG); + SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC); + return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), + Ret, SDValue(InTrans.getNode(), 1)); + } + // ADC/ADCX/SBB + case ADX: { + SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::i32); + SDVTList VTs = DAG.getVTList(Op.getOperand(3).getValueType(), MVT::i32); + SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2), + DAG.getConstant(-1, dl, MVT::i8)); + SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3), + Op.getOperand(4), GenCF.getValue(1)); + SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0), + Op.getOperand(5), MachinePointerInfo()); + SDValue SetCC = getSETCC(X86::COND_B, Res.getValue(1), dl, DAG); + SDValue Results[] = { SetCC, Store }; + return DAG.getMergeValues(Results, dl); + } + case COMPRESS_TO_MEM: { + SDValue Mask = Op.getOperand(4); + SDValue DataToCompress = Op.getOperand(3); + SDValue Addr = Op.getOperand(2); + SDValue Chain = Op.getOperand(0); + MVT VT = DataToCompress.getSimpleValueType(); + + MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op); + assert(MemIntr && "Expected MemIntrinsicSDNode!"); + + if (isAllOnesConstant(Mask)) // return just a store + return DAG.getStore(Chain, dl, DataToCompress, Addr, + MemIntr->getMemOperand()); + + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + + return DAG.getMaskedStore(Chain, dl, DataToCompress, Addr, VMask, VT, + MemIntr->getMemOperand(), + false /* truncating */, true /* compressing */); + } + case TRUNCATE_TO_MEM_VI8: + case TRUNCATE_TO_MEM_VI16: + case TRUNCATE_TO_MEM_VI32: { + SDValue Mask = Op.getOperand(4); + SDValue DataToTruncate = Op.getOperand(3); + SDValue Addr = Op.getOperand(2); + SDValue Chain = Op.getOperand(0); + + MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op); + assert(MemIntr && "Expected MemIntrinsicSDNode!"); + + EVT MemVT = MemIntr->getMemoryVT(); + + uint16_t TruncationOp = IntrData->Opc0; + switch (TruncationOp) { + case X86ISD::VTRUNC: { + if (isAllOnesConstant(Mask)) // return just a truncate store + return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, MemVT, + MemIntr->getMemOperand()); + + MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements()); + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + + return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, VMask, MemVT, + MemIntr->getMemOperand(), true /* truncating */); + } + case X86ISD::VTRUNCUS: + case X86ISD::VTRUNCS: { + bool IsSigned = (TruncationOp == X86ISD::VTRUNCS); + if (isAllOnesConstant(Mask)) + return EmitTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr, MemVT, + MemIntr->getMemOperand(), DAG); + + MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements()); + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + + return EmitMaskedTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr, + VMask, MemVT, MemIntr->getMemOperand(), DAG); + } + default: + llvm_unreachable("Unsupported truncstore intrinsic"); + } + } + + case EXPAND_FROM_MEM: { + SDValue Mask = Op.getOperand(4); + SDValue PassThru = Op.getOperand(3); + SDValue Addr = Op.getOperand(2); + SDValue Chain = Op.getOperand(0); + MVT VT = Op.getSimpleValueType(); + + MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op); + assert(MemIntr && "Expected MemIntrinsicSDNode!"); + + if (isAllOnesConstant(Mask)) // Return a regular (unmasked) vector load. + return DAG.getLoad(VT, dl, Chain, Addr, MemIntr->getMemOperand()); + if (X86::isZeroNode(Mask)) + return DAG.getUNDEF(VT); + + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + return DAG.getMaskedLoad(VT, dl, Chain, Addr, VMask, PassThru, VT, + MemIntr->getMemOperand(), ISD::NON_EXTLOAD, + true /* expanding */); + } + } +} + +SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); + MFI.setReturnAddressIsTaken(true); + + if (verifyReturnAddressArgumentIsConstant(Op, DAG)) + return SDValue(); + + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + SDLoc dl(Op); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + if (Depth > 0) { + SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT); + return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), + DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), + MachinePointerInfo()); + } + + // Just load the return address. + SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); + return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, + MachinePointerInfo()); +} + +SDValue X86TargetLowering::LowerADDROFRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + DAG.getMachineFunction().getFrameInfo().setReturnAddressIsTaken(true); + return getReturnAddressFrameIndex(DAG); +} + +SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + EVT VT = Op.getValueType(); + + MFI.setFrameAddressIsTaken(true); + + if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { + // Depth > 0 makes no sense on targets which use Windows unwind codes. It + // is not possible to crawl up the stack without looking at the unwind codes + // simultaneously. + int FrameAddrIndex = FuncInfo->getFAIndex(); + if (!FrameAddrIndex) { + // Set up a frame object for the return address. + unsigned SlotSize = RegInfo->getSlotSize(); + FrameAddrIndex = MF.getFrameInfo().CreateFixedObject( + SlotSize, /*Offset=*/0, /*IsImmutable=*/false); + FuncInfo->setFAIndex(FrameAddrIndex); + } + return DAG.getFrameIndex(FrameAddrIndex, VT); + } + + unsigned FrameReg = + RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); + SDLoc dl(Op); // FIXME probably not meaningful + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + assert(((FrameReg == X86::RBP && VT == MVT::i64) || + (FrameReg == X86::EBP && VT == MVT::i32)) && + "Invalid Frame Register!"); + SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); + while (Depth--) + FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, + MachinePointerInfo()); + return FrameAddr; +} + +// FIXME? Maybe this could be a TableGen attribute on some registers and +// this table could be generated automatically from RegInfo. +unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT, + SelectionDAG &DAG) const { + const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); + const MachineFunction &MF = DAG.getMachineFunction(); + + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("esp", X86::ESP) + .Case("rsp", X86::RSP) + .Case("ebp", X86::EBP) + .Case("rbp", X86::RBP) + .Default(0); + + if (Reg == X86::EBP || Reg == X86::RBP) { + if (!TFI.hasFP(MF)) + report_fatal_error("register " + StringRef(RegName) + + " is allocatable: function has no frame pointer"); +#ifndef NDEBUG + else { + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + unsigned FrameReg = + RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); + assert((FrameReg == X86::EBP || FrameReg == X86::RBP) && + "Invalid Frame Register!"); + } +#endif + } + + if (Reg) + return Reg; + + report_fatal_error("Invalid register name global variable"); +} + +SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, + SelectionDAG &DAG) const { + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op)); +} + +unsigned X86TargetLowering::getExceptionPointerRegister( + const Constant *PersonalityFn) const { + if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR) + return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX; + + return Subtarget.isTarget64BitLP64() ? X86::RAX : X86::EAX; +} + +unsigned X86TargetLowering::getExceptionSelectorRegister( + const Constant *PersonalityFn) const { + // Funclet personalities don't use selectors (the runtime does the selection). + assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn))); + return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX; +} + +bool X86TargetLowering::needsFixedCatchObjects() const { + return Subtarget.isTargetWin64(); +} + +SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + SDValue Offset = Op.getOperand(1); + SDValue Handler = Op.getOperand(2); + SDLoc dl (Op); + + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); + assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) || + (FrameReg == X86::EBP && PtrVT == MVT::i32)) && + "Invalid Frame Register!"); + SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); + unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX; + + SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame, + DAG.getIntPtrConstant(RegInfo->getSlotSize(), + dl)); + StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset); + Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo()); + Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); + + return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain, + DAG.getRegister(StoreAddrReg, PtrVT)); +} + +SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + // If the subtarget is not 64bit, we may need the global base reg + // after isel expand pseudo, i.e., after CGBR pass ran. + // Therefore, ask for the GlobalBaseReg now, so that the pass + // inserts the code for us in case we need it. + // Otherwise, we will end up in a situation where we will + // reference a virtual register that is not defined! + if (!Subtarget.is64Bit()) { + const X86InstrInfo *TII = Subtarget.getInstrInfo(); + (void)TII->getGlobalBaseReg(&DAG.getMachineFunction()); + } + return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL, + DAG.getVTList(MVT::i32, MVT::Other), + Op.getOperand(0), Op.getOperand(1)); +} + +SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other, + Op.getOperand(0), Op.getOperand(1)); +} + +SDValue X86TargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + return DAG.getNode(X86ISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other, + Op.getOperand(0)); +} + +static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) { + return Op.getOperand(0); +} + +SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, + SelectionDAG &DAG) const { + SDValue Root = Op.getOperand(0); + SDValue Trmp = Op.getOperand(1); // trampoline + SDValue FPtr = Op.getOperand(2); // nested function + SDValue Nest = Op.getOperand(3); // 'nest' parameter value + SDLoc dl (Op); + + const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + + if (Subtarget.is64Bit()) { + SDValue OutChains[6]; + + // Large code-model. + const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. + const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. + + const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7; + const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7; + + const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix + + // Load the pointer to the nested function into R11. + unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 + SDValue Addr = Trmp; + OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), + Addr, MachinePointerInfo(TrmpAddr)); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(2, dl, MVT::i64)); + OutChains[1] = + DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2), + /* Alignment = */ 2); + + // Load the 'nest' parameter value into R10. + // R10 is specified in X86CallingConv.td + OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(10, dl, MVT::i64)); + OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), + Addr, MachinePointerInfo(TrmpAddr, 10)); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(12, dl, MVT::i64)); + OutChains[3] = + DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12), + /* Alignment = */ 2); + + // Jump to the nested function. + OpCode = (JMP64r << 8) | REX_WB; // jmpq *... + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(20, dl, MVT::i64)); + OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), + Addr, MachinePointerInfo(TrmpAddr, 20)); + + unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(22, dl, MVT::i64)); + OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8), + Addr, MachinePointerInfo(TrmpAddr, 22)); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); + } else { + const Function *Func = + cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); + CallingConv::ID CC = Func->getCallingConv(); + unsigned NestReg; + + switch (CC) { + default: + llvm_unreachable("Unsupported calling convention"); + case CallingConv::C: + case CallingConv::X86_StdCall: { + // Pass 'nest' parameter in ECX. + // Must be kept in sync with X86CallingConv.td + NestReg = X86::ECX; + + // Check that ECX wasn't needed by an 'inreg' parameter. + FunctionType *FTy = Func->getFunctionType(); + const AttributeList &Attrs = Func->getAttributes(); + + if (!Attrs.isEmpty() && !Func->isVarArg()) { + unsigned InRegCount = 0; + unsigned Idx = 1; + + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I, ++Idx) + if (Attrs.hasAttribute(Idx, Attribute::InReg)) { + auto &DL = DAG.getDataLayout(); + // FIXME: should only count parameters that are lowered to integers. + InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32; + } + + if (InRegCount > 2) { + report_fatal_error("Nest register in use - reduce number of inreg" + " parameters!"); + } + } + break; + } + case CallingConv::X86_FastCall: + case CallingConv::X86_ThisCall: + case CallingConv::Fast: + // Pass 'nest' parameter in EAX. + // Must be kept in sync with X86CallingConv.td + NestReg = X86::EAX; + break; + } + + SDValue OutChains[4]; + SDValue Addr, Disp; + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(10, dl, MVT::i32)); + Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); + + // This is storing the opcode for MOV32ri. + const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. + const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7; + OutChains[0] = + DAG.getStore(Root, dl, DAG.getConstant(MOV32ri | N86Reg, dl, MVT::i8), + Trmp, MachinePointerInfo(TrmpAddr)); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(1, dl, MVT::i32)); + OutChains[1] = + DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1), + /* Alignment = */ 1); + + const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(5, dl, MVT::i32)); + OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8), + Addr, MachinePointerInfo(TrmpAddr, 5), + /* Alignment = */ 1); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(6, dl, MVT::i32)); + OutChains[3] = + DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6), + /* Alignment = */ 1); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); + } +} + +SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, + SelectionDAG &DAG) const { + /* + The rounding mode is in bits 11:10 of FPSR, and has the following + settings: + 00 Round to nearest + 01 Round to -inf + 10 Round to +inf + 11 Round to 0 + + FLT_ROUNDS, on the other hand, expects the following: + -1 Undefined + 0 Round to 0 + 1 Round to nearest + 2 Round to +inf + 3 Round to -inf + + To perform the conversion, we do: + (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) + */ + + MachineFunction &MF = DAG.getMachineFunction(); + const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); + unsigned StackAlignment = TFI.getStackAlignment(); + MVT VT = Op.getSimpleValueType(); + SDLoc DL(Op); + + // Save FP Control Word to stack slot + int SSFI = MF.getFrameInfo().CreateStackObject(2, StackAlignment, false); + SDValue StackSlot = + DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout())); + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), + MachineMemOperand::MOStore, 2, 2); + + SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; + SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, + DAG.getVTList(MVT::Other), + Ops, MVT::i16, MMO); + + // Load FP Control Word from stack slot + SDValue CWD = + DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo()); + + // Transform as necessary + SDValue CWD1 = + DAG.getNode(ISD::SRL, DL, MVT::i16, + DAG.getNode(ISD::AND, DL, MVT::i16, + CWD, DAG.getConstant(0x800, DL, MVT::i16)), + DAG.getConstant(11, DL, MVT::i8)); + SDValue CWD2 = + DAG.getNode(ISD::SRL, DL, MVT::i16, + DAG.getNode(ISD::AND, DL, MVT::i16, + CWD, DAG.getConstant(0x400, DL, MVT::i16)), + DAG.getConstant(9, DL, MVT::i8)); + + SDValue RetVal = + DAG.getNode(ISD::AND, DL, MVT::i16, + DAG.getNode(ISD::ADD, DL, MVT::i16, + DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), + DAG.getConstant(1, DL, MVT::i16)), + DAG.getConstant(3, DL, MVT::i16)); + + return DAG.getNode((VT.getSizeInBits() < 16 ? + ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); +} + +// Split an unary integer op into 2 half sized ops. +static SDValue LowerVectorIntUnary(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + unsigned NumElems = VT.getVectorNumElements(); + unsigned SizeInBits = VT.getSizeInBits(); + + // Extract the Lo/Hi vectors + SDLoc dl(Op); + SDValue Src = Op.getOperand(0); + SDValue Lo = extractSubVector(Src, 0, DAG, dl, SizeInBits / 2); + SDValue Hi = extractSubVector(Src, NumElems / 2, DAG, dl, SizeInBits / 2); + + MVT EltVT = VT.getVectorElementType(); + MVT NewVT = MVT::getVectorVT(EltVT, NumElems / 2); + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, + DAG.getNode(Op.getOpcode(), dl, NewVT, Lo), + DAG.getNode(Op.getOpcode(), dl, NewVT, Hi)); +} + +// Decompose 256-bit ops into smaller 128-bit ops. +static SDValue Lower256IntUnary(SDValue Op, SelectionDAG &DAG) { + assert(Op.getSimpleValueType().is256BitVector() && + Op.getSimpleValueType().isInteger() && + "Only handle AVX 256-bit vector integer operation"); + return LowerVectorIntUnary(Op, DAG); +} + +// Decompose 512-bit ops into smaller 256-bit ops. +static SDValue Lower512IntUnary(SDValue Op, SelectionDAG &DAG) { + assert(Op.getSimpleValueType().is512BitVector() && + Op.getSimpleValueType().isInteger() && + "Only handle AVX 512-bit vector integer operation"); + return LowerVectorIntUnary(Op, DAG); +} + +/// \brief Lower a vector CTLZ using native supported vector CTLZ instruction. +// +// i8/i16 vector implemented using dword LZCNT vector instruction +// ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal, +// split the vector, perform operation on it's Lo a Hi part and +// concatenate the results. +static SDValue LowerVectorCTLZ_AVX512CDI(SDValue Op, SelectionDAG &DAG) { + assert(Op.getOpcode() == ISD::CTLZ); + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + unsigned NumElems = VT.getVectorNumElements(); + + assert((EltVT == MVT::i8 || EltVT == MVT::i16) && + "Unsupported element type"); + + // Split vector, it's Lo and Hi parts will be handled in next iteration. + if (16 < NumElems) + return LowerVectorIntUnary(Op, DAG); + + MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems); + assert((NewVT.is256BitVector() || NewVT.is512BitVector()) && + "Unsupported value type for operation"); + + // Use native supported vector instruction vplzcntd. + Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0)); + SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op); + SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode); + SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT); + + return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta); +} + +// Lower CTLZ using a PSHUFB lookup table implementation. +static SDValue LowerVectorCTLZInRegLUT(SDValue Op, const SDLoc &DL, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + int NumElts = VT.getVectorNumElements(); + int NumBytes = NumElts * (VT.getScalarSizeInBits() / 8); + MVT CurrVT = MVT::getVectorVT(MVT::i8, NumBytes); + + // Per-nibble leading zero PSHUFB lookup table. + const int LUT[16] = {/* 0 */ 4, /* 1 */ 3, /* 2 */ 2, /* 3 */ 2, + /* 4 */ 1, /* 5 */ 1, /* 6 */ 1, /* 7 */ 1, + /* 8 */ 0, /* 9 */ 0, /* a */ 0, /* b */ 0, + /* c */ 0, /* d */ 0, /* e */ 0, /* f */ 0}; + + SmallVector<SDValue, 64> LUTVec; + for (int i = 0; i < NumBytes; ++i) + LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8)); + SDValue InRegLUT = DAG.getBuildVector(CurrVT, DL, LUTVec); + + // Begin by bitcasting the input to byte vector, then split those bytes + // into lo/hi nibbles and use the PSHUFB LUT to perform CLTZ on each of them. + // If the hi input nibble is zero then we add both results together, otherwise + // we just take the hi result (by masking the lo result to zero before the + // add). + SDValue Op0 = DAG.getBitcast(CurrVT, Op.getOperand(0)); + SDValue Zero = getZeroVector(CurrVT, Subtarget, DAG, DL); + + SDValue NibbleMask = DAG.getConstant(0xF, DL, CurrVT); + SDValue NibbleShift = DAG.getConstant(0x4, DL, CurrVT); + SDValue Lo = DAG.getNode(ISD::AND, DL, CurrVT, Op0, NibbleMask); + SDValue Hi = DAG.getNode(ISD::SRL, DL, CurrVT, Op0, NibbleShift); + SDValue HiZ; + if (CurrVT.is512BitVector()) { + MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements()); + HiZ = DAG.getSetCC(DL, MaskVT, Hi, Zero, ISD::SETEQ); + HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ); + } else { + HiZ = DAG.getSetCC(DL, CurrVT, Hi, Zero, ISD::SETEQ); + } + + Lo = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Lo); + Hi = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Hi); + Lo = DAG.getNode(ISD::AND, DL, CurrVT, Lo, HiZ); + SDValue Res = DAG.getNode(ISD::ADD, DL, CurrVT, Lo, Hi); + + // Merge result back from vXi8 back to VT, working on the lo/hi halves + // of the current vector width in the same way we did for the nibbles. + // If the upper half of the input element is zero then add the halves' + // leading zero counts together, otherwise just use the upper half's. + // Double the width of the result until we are at target width. + while (CurrVT != VT) { + int CurrScalarSizeInBits = CurrVT.getScalarSizeInBits(); + int CurrNumElts = CurrVT.getVectorNumElements(); + MVT NextSVT = MVT::getIntegerVT(CurrScalarSizeInBits * 2); + MVT NextVT = MVT::getVectorVT(NextSVT, CurrNumElts / 2); + SDValue Shift = DAG.getConstant(CurrScalarSizeInBits, DL, NextVT); + + // Check if the upper half of the input element is zero. + if (CurrVT.is512BitVector()) { + MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements()); + HiZ = DAG.getSetCC(DL, MaskVT, DAG.getBitcast(CurrVT, Op0), + DAG.getBitcast(CurrVT, Zero), ISD::SETEQ); + HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ); + } else { + HiZ = DAG.getSetCC(DL, CurrVT, DAG.getBitcast(CurrVT, Op0), + DAG.getBitcast(CurrVT, Zero), ISD::SETEQ); + } + HiZ = DAG.getBitcast(NextVT, HiZ); + + // Move the upper/lower halves to the lower bits as we'll be extending to + // NextVT. Mask the lower result to zero if HiZ is true and add the results + // together. + SDValue ResNext = Res = DAG.getBitcast(NextVT, Res); + SDValue R0 = DAG.getNode(ISD::SRL, DL, NextVT, ResNext, Shift); + SDValue R1 = DAG.getNode(ISD::SRL, DL, NextVT, HiZ, Shift); + R1 = DAG.getNode(ISD::AND, DL, NextVT, ResNext, R1); + Res = DAG.getNode(ISD::ADD, DL, NextVT, R0, R1); + CurrVT = NextVT; + } + + return Res; +} + +static SDValue LowerVectorCTLZ(SDValue Op, const SDLoc &DL, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + + if (Subtarget.hasCDI()) + return LowerVectorCTLZ_AVX512CDI(Op, DAG); + + // Decompose 256-bit ops into smaller 128-bit ops. + if (VT.is256BitVector() && !Subtarget.hasInt256()) + return Lower256IntUnary(Op, DAG); + + // Decompose 512-bit ops into smaller 256-bit ops. + if (VT.is512BitVector() && !Subtarget.hasBWI()) + return Lower512IntUnary(Op, DAG); + + assert(Subtarget.hasSSSE3() && "Expected SSSE3 support for PSHUFB"); + return LowerVectorCTLZInRegLUT(Op, DL, Subtarget, DAG); +} + +static SDValue LowerCTLZ(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + MVT OpVT = VT; + unsigned NumBits = VT.getSizeInBits(); + SDLoc dl(Op); + unsigned Opc = Op.getOpcode(); + + if (VT.isVector()) + return LowerVectorCTLZ(Op, dl, Subtarget, DAG); + + Op = Op.getOperand(0); + if (VT == MVT::i8) { + // Zero extend to i32 since there is not an i8 bsr. + OpVT = MVT::i32; + Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); + } + + // Issue a bsr (scan bits in reverse) which also sets EFLAGS. + SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); + Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); + + if (Opc == ISD::CTLZ) { + // If src is zero (i.e. bsr sets ZF), returns NumBits. + SDValue Ops[] = { + Op, + DAG.getConstant(NumBits + NumBits - 1, dl, OpVT), + DAG.getConstant(X86::COND_E, dl, MVT::i8), + Op.getValue(1) + }; + Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops); + } + + // Finally xor with NumBits-1. + Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, + DAG.getConstant(NumBits - 1, dl, OpVT)); + + if (VT == MVT::i8) + Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); + return Op; +} + +static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + unsigned NumBits = VT.getScalarSizeInBits(); + SDLoc dl(Op); + + if (VT.isVector()) { + SDValue N0 = Op.getOperand(0); + SDValue Zero = DAG.getConstant(0, dl, VT); + + // lsb(x) = (x & -x) + SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0, + DAG.getNode(ISD::SUB, dl, VT, Zero, N0)); + + // cttz_undef(x) = (width - 1) - ctlz(lsb) + if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) { + SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT); + return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne, + DAG.getNode(ISD::CTLZ, dl, VT, LSB)); + } + + // cttz(x) = ctpop(lsb - 1) + SDValue One = DAG.getConstant(1, dl, VT); + return DAG.getNode(ISD::CTPOP, dl, VT, + DAG.getNode(ISD::SUB, dl, VT, LSB, One)); + } + + assert(Op.getOpcode() == ISD::CTTZ && + "Only scalar CTTZ requires custom lowering"); + + // Issue a bsf (scan bits forward) which also sets EFLAGS. + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0)); + + // If src is zero (i.e. bsf sets ZF), returns NumBits. + SDValue Ops[] = { + Op, + DAG.getConstant(NumBits, dl, VT), + DAG.getConstant(X86::COND_E, dl, MVT::i8), + Op.getValue(1) + }; + return DAG.getNode(X86ISD::CMOV, dl, VT, Ops); +} + +/// Break a 256-bit integer operation into two new 128-bit ones and then +/// concatenate the result back. +static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + + assert(VT.is256BitVector() && VT.isInteger() && + "Unsupported value type for operation"); + + unsigned NumElems = VT.getVectorNumElements(); + SDLoc dl(Op); + + // Extract the LHS vectors + SDValue LHS = Op.getOperand(0); + SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl); + SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl); + + // Extract the RHS vectors + SDValue RHS = Op.getOperand(1); + SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl); + SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl); + + MVT EltVT = VT.getVectorElementType(); + MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); +} + +/// Break a 512-bit integer operation into two new 256-bit ones and then +/// concatenate the result back. +static SDValue Lower512IntArith(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + + assert(VT.is512BitVector() && VT.isInteger() && + "Unsupported value type for operation"); + + unsigned NumElems = VT.getVectorNumElements(); + SDLoc dl(Op); + + // Extract the LHS vectors + SDValue LHS = Op.getOperand(0); + SDValue LHS1 = extract256BitVector(LHS, 0, DAG, dl); + SDValue LHS2 = extract256BitVector(LHS, NumElems / 2, DAG, dl); + + // Extract the RHS vectors + SDValue RHS = Op.getOperand(1); + SDValue RHS1 = extract256BitVector(RHS, 0, DAG, dl); + SDValue RHS2 = extract256BitVector(RHS, NumElems / 2, DAG, dl); + + MVT EltVT = VT.getVectorElementType(); + MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); +} + +static SDValue LowerADD_SUB(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + if (VT.getScalarType() == MVT::i1) + return DAG.getNode(ISD::XOR, SDLoc(Op), VT, + Op.getOperand(0), Op.getOperand(1)); + assert(Op.getSimpleValueType().is256BitVector() && + Op.getSimpleValueType().isInteger() && + "Only handle AVX 256-bit vector integer operation"); + return Lower256IntArith(Op, DAG); +} + +static SDValue LowerABS(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) { + // Since X86 does not have CMOV for 8-bit integer, we don't convert + // 8-bit integer abs to NEG and CMOV. + SDLoc DL(Op); + SDValue N0 = Op.getOperand(0); + SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), + DAG.getConstant(0, DL, VT), N0); + SDValue Ops[] = {N0, Neg, DAG.getConstant(X86::COND_GE, DL, MVT::i8), + SDValue(Neg.getNode(), 1)}; + return DAG.getNode(X86ISD::CMOV, DL, VT, Ops); + } + + assert(Op.getSimpleValueType().is256BitVector() && + Op.getSimpleValueType().isInteger() && + "Only handle AVX 256-bit vector integer operation"); + return Lower256IntUnary(Op, DAG); +} + +static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) { + assert(Op.getSimpleValueType().is256BitVector() && + Op.getSimpleValueType().isInteger() && + "Only handle AVX 256-bit vector integer operation"); + return Lower256IntArith(Op, DAG); +} + +static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + if (VT.getScalarType() == MVT::i1) + return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1)); + + // Decompose 256-bit ops into smaller 128-bit ops. + if (VT.is256BitVector() && !Subtarget.hasInt256()) + return Lower256IntArith(Op, DAG); + + SDValue A = Op.getOperand(0); + SDValue B = Op.getOperand(1); + + // Lower v16i8/v32i8/v64i8 mul as sign-extension to v8i16/v16i16/v32i16 + // vector pairs, multiply and truncate. + if (VT == MVT::v16i8 || VT == MVT::v32i8 || VT == MVT::v64i8) { + if (Subtarget.hasInt256()) { + // For 512-bit vectors, split into 256-bit vectors to allow the + // sign-extension to occur. + if (VT == MVT::v64i8) + return Lower512IntArith(Op, DAG); + + // For 256-bit vectors, split into 128-bit vectors to allow the + // sign-extension to occur. We don't need this on AVX512BW as we can + // safely sign-extend to v32i16. + if (VT == MVT::v32i8 && !Subtarget.hasBWI()) + return Lower256IntArith(Op, DAG); + + MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements()); + return DAG.getNode( + ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::MUL, dl, ExVT, + DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A), + DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B))); + } + + assert(VT == MVT::v16i8 && + "Pre-AVX2 support only supports v16i8 multiplication"); + MVT ExVT = MVT::v8i16; + + // Extract the lo parts and sign extend to i16 + SDValue ALo, BLo; + if (Subtarget.hasSSE41()) { + ALo = DAG.getSignExtendVectorInReg(A, dl, ExVT); + BLo = DAG.getSignExtendVectorInReg(B, dl, ExVT); + } else { + const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3, + -1, 4, -1, 5, -1, 6, -1, 7}; + ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); + BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); + ALo = DAG.getBitcast(ExVT, ALo); + BLo = DAG.getBitcast(ExVT, BLo); + ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT)); + BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT)); + } + + // Extract the hi parts and sign extend to i16 + SDValue AHi, BHi; + if (Subtarget.hasSSE41()) { + const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15, + -1, -1, -1, -1, -1, -1, -1, -1}; + AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); + BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); + AHi = DAG.getSignExtendVectorInReg(AHi, dl, ExVT); + BHi = DAG.getSignExtendVectorInReg(BHi, dl, ExVT); + } else { + const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11, + -1, 12, -1, 13, -1, 14, -1, 15}; + AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); + BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); + AHi = DAG.getBitcast(ExVT, AHi); + BHi = DAG.getBitcast(ExVT, BHi); + AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT)); + BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT)); + } + + // Multiply, mask the lower 8bits of the lo/hi results and pack + SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo); + SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi); + RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT)); + RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT)); + return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); + } + + // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. + if (VT == MVT::v4i32) { + assert(Subtarget.hasSSE2() && !Subtarget.hasSSE41() && + "Should not custom lower when pmulld is available!"); + + // If the upper 17 bits of each element are zero then we can use PMADD. + APInt Mask17 = APInt::getHighBitsSet(32, 17); + if (DAG.MaskedValueIsZero(A, Mask17) && DAG.MaskedValueIsZero(B, Mask17)) + return DAG.getNode(X86ISD::VPMADDWD, dl, VT, + DAG.getBitcast(MVT::v8i16, A), + DAG.getBitcast(MVT::v8i16, B)); + + // Extract the odd parts. + static const int UnpackMask[] = { 1, -1, 3, -1 }; + SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); + SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); + + // Multiply the even parts. + SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B); + // Now multiply odd parts. + SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds); + + Evens = DAG.getBitcast(VT, Evens); + Odds = DAG.getBitcast(VT, Odds); + + // Merge the two vectors back together with a shuffle. This expands into 2 + // shuffles. + static const int ShufMask[] = { 0, 4, 2, 6 }; + return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); + } + + assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) && + "Only know how to lower V2I64/V4I64/V8I64 multiply"); + + // 32-bit vector types used for MULDQ/MULUDQ. + MVT MulVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits() / 32); + + // MULDQ returns the 64-bit result of the signed multiplication of the lower + // 32-bits. We can lower with this if the sign bits stretch that far. + if (Subtarget.hasSSE41() && DAG.ComputeNumSignBits(A) > 32 && + DAG.ComputeNumSignBits(B) > 32) { + return DAG.getNode(X86ISD::PMULDQ, dl, VT, DAG.getBitcast(MulVT, A), + DAG.getBitcast(MulVT, B)); + } + + // Ahi = psrlqi(a, 32); + // Bhi = psrlqi(b, 32); + // + // AloBlo = pmuludq(a, b); + // AloBhi = pmuludq(a, Bhi); + // AhiBlo = pmuludq(Ahi, b); + // + // Hi = psllqi(AloBhi + AhiBlo, 32); + // return AloBlo + Hi; + APInt LowerBitsMask = APInt::getLowBitsSet(64, 32); + bool ALoIsZero = DAG.MaskedValueIsZero(A, LowerBitsMask); + bool BLoIsZero = DAG.MaskedValueIsZero(B, LowerBitsMask); + + APInt UpperBitsMask = APInt::getHighBitsSet(64, 32); + bool AHiIsZero = DAG.MaskedValueIsZero(A, UpperBitsMask); + bool BHiIsZero = DAG.MaskedValueIsZero(B, UpperBitsMask); + + // If DQI is supported we can use MULLQ, but MULUDQ is still better if the + // the high bits are known to be zero. + if (Subtarget.hasDQI() && (!AHiIsZero || !BHiIsZero)) + return Op; + + // Bit cast to 32-bit vectors for MULUDQ. + SDValue Alo = DAG.getBitcast(MulVT, A); + SDValue Blo = DAG.getBitcast(MulVT, B); + + SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl); + + // Only multiply lo/hi halves that aren't known to be zero. + SDValue AloBlo = Zero; + if (!ALoIsZero && !BLoIsZero) + AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Alo, Blo); + + SDValue AloBhi = Zero; + if (!ALoIsZero && !BHiIsZero) { + SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG); + Bhi = DAG.getBitcast(MulVT, Bhi); + AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Alo, Bhi); + } + + SDValue AhiBlo = Zero; + if (!AHiIsZero && !BLoIsZero) { + SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG); + Ahi = DAG.getBitcast(MulVT, Ahi); + AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, Blo); + } + + SDValue Hi = DAG.getNode(ISD::ADD, dl, VT, AloBhi, AhiBlo); + Hi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Hi, 32, DAG); + + return DAG.getNode(ISD::ADD, dl, VT, AloBlo, Hi); +} + +static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + // Decompose 256-bit ops into smaller 128-bit ops. + if (VT.is256BitVector() && !Subtarget.hasInt256()) + return Lower256IntArith(Op, DAG); + + // Only i8 vectors should need custom lowering after this. + assert((VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget.hasInt256()) || + (VT == MVT::v64i8 && Subtarget.hasBWI())) && + "Unsupported vector type"); + + // Lower v16i8/v32i8 as extension to v8i16/v16i16 vector pairs, multiply, + // logical shift down the upper half and pack back to i8. + SDValue A = Op.getOperand(0); + SDValue B = Op.getOperand(1); + + // With SSE41 we can use sign/zero extend, but for pre-SSE41 we unpack + // and then ashr/lshr the upper bits down to the lower bits before multiply. + unsigned Opcode = Op.getOpcode(); + unsigned ExShift = (ISD::MULHU == Opcode ? ISD::SRL : ISD::SRA); + unsigned ExAVX = (ISD::MULHU == Opcode ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); + + // For 512-bit vectors, split into 256-bit vectors to allow the + // sign-extension to occur. + if (VT == MVT::v64i8) + return Lower512IntArith(Op, DAG); + + // AVX2 implementations - extend xmm subvectors to ymm. + if (Subtarget.hasInt256()) { + unsigned NumElems = VT.getVectorNumElements(); + SDValue Lo = DAG.getIntPtrConstant(0, dl); + SDValue Hi = DAG.getIntPtrConstant(NumElems / 2, dl); + + if (VT == MVT::v32i8) { + if (Subtarget.hasBWI()) { + SDValue ExA = DAG.getNode(ExAVX, dl, MVT::v32i16, A); + SDValue ExB = DAG.getNode(ExAVX, dl, MVT::v32i16, B); + SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v32i16, ExA, ExB); + Mul = DAG.getNode(ISD::SRL, dl, MVT::v32i16, Mul, + DAG.getConstant(8, dl, MVT::v32i16)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); + } + SDValue ALo = extract128BitVector(A, 0, DAG, dl); + SDValue BLo = extract128BitVector(B, 0, DAG, dl); + SDValue AHi = extract128BitVector(A, NumElems / 2, DAG, dl); + SDValue BHi = extract128BitVector(B, NumElems / 2, DAG, dl); + ALo = DAG.getNode(ExAVX, dl, MVT::v16i16, ALo); + BLo = DAG.getNode(ExAVX, dl, MVT::v16i16, BLo); + AHi = DAG.getNode(ExAVX, dl, MVT::v16i16, AHi); + BHi = DAG.getNode(ExAVX, dl, MVT::v16i16, BHi); + Lo = DAG.getNode(ISD::SRL, dl, MVT::v16i16, + DAG.getNode(ISD::MUL, dl, MVT::v16i16, ALo, BLo), + DAG.getConstant(8, dl, MVT::v16i16)); + Hi = DAG.getNode(ISD::SRL, dl, MVT::v16i16, + DAG.getNode(ISD::MUL, dl, MVT::v16i16, AHi, BHi), + DAG.getConstant(8, dl, MVT::v16i16)); + // The ymm variant of PACKUS treats the 128-bit lanes separately, so before + // using PACKUS we need to permute the inputs to the correct lo/hi xmm lane. + const int LoMask[] = {0, 1, 2, 3, 4, 5, 6, 7, + 16, 17, 18, 19, 20, 21, 22, 23}; + const int HiMask[] = {8, 9, 10, 11, 12, 13, 14, 15, + 24, 25, 26, 27, 28, 29, 30, 31}; + return DAG.getNode(X86ISD::PACKUS, dl, VT, + DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, LoMask), + DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, HiMask)); + } + + assert(VT == MVT::v16i8 && "Unexpected VT"); + + SDValue ExA = DAG.getNode(ExAVX, dl, MVT::v16i16, A); + SDValue ExB = DAG.getNode(ExAVX, dl, MVT::v16i16, B); + SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v16i16, ExA, ExB); + Mul = DAG.getNode(ISD::SRL, dl, MVT::v16i16, Mul, + DAG.getConstant(8, dl, MVT::v16i16)); + // If we have BWI we can use truncate instruction. + if (Subtarget.hasBWI()) + return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); + Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, Mul, Lo); + Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, Mul, Hi); + return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi); + } + + assert(VT == MVT::v16i8 && + "Pre-AVX2 support only supports v16i8 multiplication"); + MVT ExVT = MVT::v8i16; + unsigned ExSSE41 = (ISD::MULHU == Opcode ? X86ISD::VZEXT : X86ISD::VSEXT); + + // Extract the lo parts and zero/sign extend to i16. + SDValue ALo, BLo; + if (Subtarget.hasSSE41()) { + ALo = getExtendInVec(ExSSE41, dl, ExVT, A, DAG); + BLo = getExtendInVec(ExSSE41, dl, ExVT, B, DAG); + } else { + const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3, + -1, 4, -1, 5, -1, 6, -1, 7}; + ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); + BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); + ALo = DAG.getBitcast(ExVT, ALo); + BLo = DAG.getBitcast(ExVT, BLo); + ALo = DAG.getNode(ExShift, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT)); + BLo = DAG.getNode(ExShift, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT)); + } + + // Extract the hi parts and zero/sign extend to i16. + SDValue AHi, BHi; + if (Subtarget.hasSSE41()) { + const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15, + -1, -1, -1, -1, -1, -1, -1, -1}; + AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); + BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); + AHi = getExtendInVec(ExSSE41, dl, ExVT, AHi, DAG); + BHi = getExtendInVec(ExSSE41, dl, ExVT, BHi, DAG); + } else { + const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11, + -1, 12, -1, 13, -1, 14, -1, 15}; + AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); + BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); + AHi = DAG.getBitcast(ExVT, AHi); + BHi = DAG.getBitcast(ExVT, BHi); + AHi = DAG.getNode(ExShift, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT)); + BHi = DAG.getNode(ExShift, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT)); + } + + // Multiply, lshr the upper 8bits to the lower 8bits of the lo/hi results and + // pack back to v16i8. + SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo); + SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi); + RLo = DAG.getNode(ISD::SRL, dl, ExVT, RLo, DAG.getConstant(8, dl, ExVT)); + RHi = DAG.getNode(ISD::SRL, dl, ExVT, RHi, DAG.getConstant(8, dl, ExVT)); + return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); +} + +SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const { + assert(Subtarget.isTargetWin64() && "Unexpected target"); + EVT VT = Op.getValueType(); + assert(VT.isInteger() && VT.getSizeInBits() == 128 && + "Unexpected return type for lowering"); + + RTLIB::Libcall LC; + bool isSigned; + switch (Op->getOpcode()) { + default: llvm_unreachable("Unexpected request for libcall!"); + case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break; + case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break; + case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break; + case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break; + case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break; + case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break; + } + + SDLoc dl(Op); + SDValue InChain = DAG.getEntryNode(); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { + EVT ArgVT = Op->getOperand(i).getValueType(); + assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 && + "Unexpected argument type for lowering"); + SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16); + Entry.Node = StackPtr; + InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, + MachinePointerInfo(), /* Alignment = */ 16); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + Entry.Ty = PointerType::get(ArgTy,0); + Entry.IsSExt = false; + Entry.IsZExt = false; + Args.push_back(Entry); + } + + SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), + getPointerTy(DAG.getDataLayout())); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl) + .setChain(InChain) + .setLibCallee( + getLibcallCallingConv(LC), + static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()), Callee, + std::move(Args)) + .setInRegister() + .setSExtResult(isSigned) + .setZExtResult(!isSigned); + + std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); + return DAG.getBitcast(VT, CallInfo.first); +} + +static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); + MVT VT = Op0.getSimpleValueType(); + SDLoc dl(Op); + + // Decompose 256-bit ops into smaller 128-bit ops. + if (VT.is256BitVector() && !Subtarget.hasInt256()) { + unsigned Opcode = Op.getOpcode(); + unsigned NumElems = VT.getVectorNumElements(); + MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), NumElems / 2); + SDValue Lo0 = extract128BitVector(Op0, 0, DAG, dl); + SDValue Lo1 = extract128BitVector(Op1, 0, DAG, dl); + SDValue Hi0 = extract128BitVector(Op0, NumElems / 2, DAG, dl); + SDValue Hi1 = extract128BitVector(Op1, NumElems / 2, DAG, dl); + SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Lo0, Lo1); + SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Hi0, Hi1); + SDValue Ops[] = { + DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(0), Hi.getValue(0)), + DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(1), Hi.getValue(1)) + }; + return DAG.getMergeValues(Ops, dl); + } + + assert((VT == MVT::v4i32 && Subtarget.hasSSE2()) || + (VT == MVT::v8i32 && Subtarget.hasInt256()) || + (VT == MVT::v16i32 && Subtarget.hasAVX512())); + + int NumElts = VT.getVectorNumElements(); + + // PMULxD operations multiply each even value (starting at 0) of LHS with + // the related value of RHS and produce a widen result. + // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> + // => <2 x i64> <ae|cg> + // + // In other word, to have all the results, we need to perform two PMULxD: + // 1. one with the even values. + // 2. one with the odd values. + // To achieve #2, with need to place the odd values at an even position. + // + // Place the odd value at an even position (basically, shift all values 1 + // step to the left): + const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1, 9, -1, 11, -1, 13, -1, 15, -1}; + // <a|b|c|d> => <b|undef|d|undef> + SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, + makeArrayRef(&Mask[0], NumElts)); + // <e|f|g|h> => <f|undef|h|undef> + SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, + makeArrayRef(&Mask[0], NumElts)); + + // Emit two multiplies, one for the lower 2 ints and one for the higher 2 + // ints. + MVT MulVT = MVT::getVectorVT(MVT::i64, NumElts / 2); + bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI; + unsigned Opcode = + (!IsSigned || !Subtarget.hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ; + // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> + // => <2 x i64> <ae|cg> + SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1)); + // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef> + // => <2 x i64> <bf|dh> + SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1)); + + // Shuffle it back into the right order. + SmallVector<int, 16> HighMask(NumElts); + SmallVector<int, 16> LowMask(NumElts); + for (int i = 0; i != NumElts; ++i) { + HighMask[i] = (i / 2) * 2 + ((i % 2) * NumElts) + 1; + LowMask[i] = (i / 2) * 2 + ((i % 2) * NumElts); + } + + SDValue Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); + SDValue Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); + + // If we have a signed multiply but no PMULDQ fix up the high parts of a + // unsigned multiply. + if (IsSigned && !Subtarget.hasSSE41()) { + SDValue ShAmt = DAG.getConstant( + 31, dl, + DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout())); + SDValue T1 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1); + SDValue T2 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0); + + SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2); + Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup); + } + + // The first result of MUL_LOHI is actually the low value, followed by the + // high value. + SDValue Ops[] = {Lows, Highs}; + return DAG.getMergeValues(Ops, dl); +} + +// Return true if the required (according to Opcode) shift-imm form is natively +// supported by the Subtarget +static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget &Subtarget, + unsigned Opcode) { + if (VT.getScalarSizeInBits() < 16) + return false; + + if (VT.is512BitVector() && Subtarget.hasAVX512() && + (VT.getScalarSizeInBits() > 16 || Subtarget.hasBWI())) + return true; + + bool LShift = (VT.is128BitVector() && Subtarget.hasSSE2()) || + (VT.is256BitVector() && Subtarget.hasInt256()); + + bool AShift = LShift && (Subtarget.hasAVX512() || + (VT != MVT::v2i64 && VT != MVT::v4i64)); + return (Opcode == ISD::SRA) ? AShift : LShift; +} + +// The shift amount is a variable, but it is the same for all vector lanes. +// These instructions are defined together with shift-immediate. +static +bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget &Subtarget, + unsigned Opcode) { + return SupportedVectorShiftWithImm(VT, Subtarget, Opcode); +} + +// Return true if the required (according to Opcode) variable-shift form is +// natively supported by the Subtarget +static bool SupportedVectorVarShift(MVT VT, const X86Subtarget &Subtarget, + unsigned Opcode) { + + if (!Subtarget.hasInt256() || VT.getScalarSizeInBits() < 16) + return false; + + // vXi16 supported only on AVX-512, BWI + if (VT.getScalarSizeInBits() == 16 && !Subtarget.hasBWI()) + return false; + + if (Subtarget.hasAVX512()) + return true; + + bool LShift = VT.is128BitVector() || VT.is256BitVector(); + bool AShift = LShift && VT != MVT::v2i64 && VT != MVT::v4i64; + return (Opcode == ISD::SRA) ? AShift : LShift; +} + +static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + + unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI : + (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; + + auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) { + assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type"); + MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2); + SDValue Ex = DAG.getBitcast(ExVT, R); + + // ashr(R, 63) === cmp_slt(R, 0) + if (ShiftAmt == 63 && Subtarget.hasSSE42()) { + assert((VT != MVT::v4i64 || Subtarget.hasInt256()) && + "Unsupported PCMPGT op"); + return DAG.getNode(X86ISD::PCMPGT, dl, VT, + getZeroVector(VT, Subtarget, DAG, dl), R); + } + + if (ShiftAmt >= 32) { + // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32. + SDValue Upper = + getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG); + SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, + ShiftAmt - 32, DAG); + if (VT == MVT::v2i64) + Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3}); + if (VT == MVT::v4i64) + Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, + {9, 1, 11, 3, 13, 5, 15, 7}); + } else { + // SRA upper i32, SHL whole i64 and select lower i32. + SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, + ShiftAmt, DAG); + SDValue Lower = + getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG); + Lower = DAG.getBitcast(ExVT, Lower); + if (VT == MVT::v2i64) + Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3}); + if (VT == MVT::v4i64) + Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, + {8, 1, 10, 3, 12, 5, 14, 7}); + } + return DAG.getBitcast(VT, Ex); + }; + + // Optimize shl/srl/sra with constant shift amount. + if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { + if (auto *ShiftConst = BVAmt->getConstantSplatNode()) { + uint64_t ShiftAmt = ShiftConst->getZExtValue(); + + if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) + return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); + + // i64 SRA needs to be performed as partial shifts. + if (((!Subtarget.hasXOP() && VT == MVT::v2i64) || + (Subtarget.hasInt256() && VT == MVT::v4i64)) && + Op.getOpcode() == ISD::SRA) + return ArithmeticShiftRight64(ShiftAmt); + + if (VT == MVT::v16i8 || + (Subtarget.hasInt256() && VT == MVT::v32i8) || + VT == MVT::v64i8) { + unsigned NumElts = VT.getVectorNumElements(); + MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2); + + // Simple i8 add case + if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1) + return DAG.getNode(ISD::ADD, dl, VT, R, R); + + // ashr(R, 7) === cmp_slt(R, 0) + if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) { + SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); + if (VT.is512BitVector()) { + assert(VT == MVT::v64i8 && "Unexpected element type!"); + SDValue CMP = DAG.getNode(X86ISD::PCMPGTM, dl, MVT::v64i1, Zeros, R); + return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, CMP); + } + return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); + } + + // XOP can shift v16i8 directly instead of as shift v8i16 + mask. + if (VT == MVT::v16i8 && Subtarget.hasXOP()) + return SDValue(); + + if (Op.getOpcode() == ISD::SHL) { + // Make a large shift. + SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT, + R, ShiftAmt, DAG); + SHL = DAG.getBitcast(VT, SHL); + // Zero out the rightmost bits. + return DAG.getNode(ISD::AND, dl, VT, SHL, + DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, VT)); + } + if (Op.getOpcode() == ISD::SRL) { + // Make a large shift. + SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT, + R, ShiftAmt, DAG); + SRL = DAG.getBitcast(VT, SRL); + // Zero out the leftmost bits. + return DAG.getNode(ISD::AND, dl, VT, SRL, + DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT)); + } + if (Op.getOpcode() == ISD::SRA) { + // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask) + SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); + + SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT); + Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); + Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); + return Res; + } + llvm_unreachable("Unknown shift opcode."); + } + } + } + + // Check cases (mainly 32-bit) where i64 is expanded into high and low parts. + // TODO: Replace constant extraction with getTargetConstantBitsFromNode. + if (!Subtarget.hasXOP() && + (VT == MVT::v2i64 || (Subtarget.hasInt256() && VT == MVT::v4i64) || + (Subtarget.hasAVX512() && VT == MVT::v8i64))) { + + // AVX1 targets maybe extracting a 128-bit vector from a 256-bit constant. + unsigned SubVectorScale = 1; + if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) { + SubVectorScale = + Amt.getOperand(0).getValueSizeInBits() / Amt.getValueSizeInBits(); + Amt = Amt.getOperand(0); + } + + // Peek through any splat that was introduced for i64 shift vectorization. + int SplatIndex = -1; + if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode())) + if (SVN->isSplat()) { + SplatIndex = SVN->getSplatIndex(); + Amt = Amt.getOperand(0); + assert(SplatIndex < (int)VT.getVectorNumElements() && + "Splat shuffle referencing second operand"); + } + + if (Amt.getOpcode() != ISD::BITCAST || + Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR) + return SDValue(); + + Amt = Amt.getOperand(0); + unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / + (SubVectorScale * VT.getVectorNumElements()); + unsigned RatioInLog2 = Log2_32_Ceil(Ratio); + uint64_t ShiftAmt = 0; + unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio); + for (unsigned i = 0; i != Ratio; ++i) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp)); + if (!C) + return SDValue(); + // 6 == Log2(64) + ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2))); + } + + // Check remaining shift amounts (if not a splat). + if (SplatIndex < 0) { + for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { + uint64_t ShAmt = 0; + for (unsigned j = 0; j != Ratio; ++j) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j)); + if (!C) + return SDValue(); + // 6 == Log2(64) + ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2))); + } + if (ShAmt != ShiftAmt) + return SDValue(); + } + } + + if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) + return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); + + if (Op.getOpcode() == ISD::SRA) + return ArithmeticShiftRight64(ShiftAmt); + } + + return SDValue(); +} + +static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + + unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI : + (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; + + unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL : + (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA; + + if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) { + SDValue BaseShAmt; + MVT EltVT = VT.getVectorElementType(); + + if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) { + // Check if this build_vector node is doing a splat. + // If so, then set BaseShAmt equal to the splat value. + BaseShAmt = BV->getSplatValue(); + if (BaseShAmt && BaseShAmt.isUndef()) + BaseShAmt = SDValue(); + } else { + if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) + Amt = Amt.getOperand(0); + + ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt); + if (SVN && SVN->isSplat()) { + unsigned SplatIdx = (unsigned)SVN->getSplatIndex(); + SDValue InVec = Amt.getOperand(0); + if (InVec.getOpcode() == ISD::BUILD_VECTOR) { + assert((SplatIdx < InVec.getSimpleValueType().getVectorNumElements()) && + "Unexpected shuffle index found!"); + BaseShAmt = InVec.getOperand(SplatIdx); + } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { + if (ConstantSDNode *C = + dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { + if (C->getZExtValue() == SplatIdx) + BaseShAmt = InVec.getOperand(1); + } + } + + if (!BaseShAmt) + // Avoid introducing an extract element from a shuffle. + BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec, + DAG.getIntPtrConstant(SplatIdx, dl)); + } + } + + if (BaseShAmt.getNode()) { + assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!"); + if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt); + else if (EltVT.bitsLT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt); + + return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, Subtarget, DAG); + } + } + + // Check cases (mainly 32-bit) where i64 is expanded into high and low parts. + if (VT == MVT::v2i64 && Amt.getOpcode() == ISD::BITCAST && + Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { + Amt = Amt.getOperand(0); + unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / + VT.getVectorNumElements(); + std::vector<SDValue> Vals(Ratio); + for (unsigned i = 0; i != Ratio; ++i) + Vals[i] = Amt.getOperand(i); + for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { + for (unsigned j = 0; j != Ratio; ++j) + if (Vals[j] != Amt.getOperand(i + j)) + return SDValue(); + } + + if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) + return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1)); + } + return SDValue(); +} + +static SDValue LowerShift(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode()); + + assert(VT.isVector() && "Custom lowering only for vector shifts!"); + assert(Subtarget.hasSSE2() && "Only custom lower when we have SSE2!"); + + if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget)) + return V; + + if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget)) + return V; + + if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode())) + return Op; + + // XOP has 128-bit variable logical/arithmetic shifts. + // +ve/-ve Amt = shift left/right. + if (Subtarget.hasXOP() && + (VT == MVT::v2i64 || VT == MVT::v4i32 || + VT == MVT::v8i16 || VT == MVT::v16i8)) { + if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) { + SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl); + Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt); + } + if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL) + return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt); + if (Op.getOpcode() == ISD::SRA) + return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt); + } + + // 2i64 vector logical shifts can efficiently avoid scalarization - do the + // shifts per-lane and then shuffle the partial results back together. + if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) { + // Splat the shift amounts so the scalar shifts above will catch it. + SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0}); + SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1}); + SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0); + SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1); + return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3}); + } + + // i64 vector arithmetic shift can be emulated with the transform: + // M = lshr(SIGN_MASK, Amt) + // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M) + if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget.hasInt256())) && + Op.getOpcode() == ISD::SRA) { + SDValue S = DAG.getConstant(APInt::getSignMask(64), dl, VT); + SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt); + R = DAG.getNode(ISD::SRL, dl, VT, R, Amt); + R = DAG.getNode(ISD::XOR, dl, VT, R, M); + R = DAG.getNode(ISD::SUB, dl, VT, R, M); + return R; + } + + // If possible, lower this packed shift into a vector multiply instead of + // expanding it into a sequence of scalar shifts. + // Do this only if the vector shift count is a constant build_vector. + if (ConstantAmt && Op.getOpcode() == ISD::SHL && + (VT == MVT::v8i16 || VT == MVT::v4i32 || + (Subtarget.hasInt256() && VT == MVT::v16i16))) { + SmallVector<SDValue, 8> Elts; + MVT SVT = VT.getVectorElementType(); + unsigned SVTBits = SVT.getSizeInBits(); + APInt One(SVTBits, 1); + unsigned NumElems = VT.getVectorNumElements(); + + for (unsigned i=0; i !=NumElems; ++i) { + SDValue Op = Amt->getOperand(i); + if (Op->isUndef()) { + Elts.push_back(Op); + continue; + } + + ConstantSDNode *ND = cast<ConstantSDNode>(Op); + APInt C(SVTBits, ND->getAPIntValue().getZExtValue()); + uint64_t ShAmt = C.getZExtValue(); + if (ShAmt >= SVTBits) { + Elts.push_back(DAG.getUNDEF(SVT)); + continue; + } + Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT)); + } + SDValue BV = DAG.getBuildVector(VT, dl, Elts); + return DAG.getNode(ISD::MUL, dl, VT, R, BV); + } + + // Lower SHL with variable shift amount. + if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { + Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT)); + + Op = DAG.getNode(ISD::ADD, dl, VT, Op, + DAG.getConstant(0x3f800000U, dl, VT)); + Op = DAG.getBitcast(MVT::v4f32, Op); + Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); + return DAG.getNode(ISD::MUL, dl, VT, Op, R); + } + + // If possible, lower this shift as a sequence of two shifts by + // constant plus a MOVSS/MOVSD/PBLEND instead of scalarizing it. + // Example: + // (v4i32 (srl A, (build_vector < X, Y, Y, Y>))) + // + // Could be rewritten as: + // (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>))) + // + // The advantage is that the two shifts from the example would be + // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing + // the vector shift into four scalar shifts plus four pairs of vector + // insert/extract. + if (ConstantAmt && (VT == MVT::v8i16 || VT == MVT::v4i32)) { + bool UseMOVSD = false; + bool CanBeSimplified; + // The splat value for the first packed shift (the 'X' from the example). + SDValue Amt1 = Amt->getOperand(0); + // The splat value for the second packed shift (the 'Y' from the example). + SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) : Amt->getOperand(2); + + // See if it is possible to replace this node with a sequence of + // two shifts followed by a MOVSS/MOVSD/PBLEND. + if (VT == MVT::v4i32) { + // Check if it is legal to use a MOVSS. + CanBeSimplified = Amt2 == Amt->getOperand(2) && + Amt2 == Amt->getOperand(3); + if (!CanBeSimplified) { + // Otherwise, check if we can still simplify this node using a MOVSD. + CanBeSimplified = Amt1 == Amt->getOperand(1) && + Amt->getOperand(2) == Amt->getOperand(3); + UseMOVSD = true; + Amt2 = Amt->getOperand(2); + } + } else { + // Do similar checks for the case where the machine value type + // is MVT::v8i16. + CanBeSimplified = Amt1 == Amt->getOperand(1); + for (unsigned i=3; i != 8 && CanBeSimplified; ++i) + CanBeSimplified = Amt2 == Amt->getOperand(i); + + if (!CanBeSimplified) { + UseMOVSD = true; + CanBeSimplified = true; + Amt2 = Amt->getOperand(4); + for (unsigned i=0; i != 4 && CanBeSimplified; ++i) + CanBeSimplified = Amt1 == Amt->getOperand(i); + for (unsigned j=4; j != 8 && CanBeSimplified; ++j) + CanBeSimplified = Amt2 == Amt->getOperand(j); + } + } + + if (CanBeSimplified && isa<ConstantSDNode>(Amt1) && + isa<ConstantSDNode>(Amt2)) { + // Replace this node with two shifts followed by a MOVSS/MOVSD/PBLEND. + SDValue Splat1 = + DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT); + SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1); + SDValue Splat2 = + DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT); + SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2); + SDValue BitCast1 = DAG.getBitcast(MVT::v4i32, Shift1); + SDValue BitCast2 = DAG.getBitcast(MVT::v4i32, Shift2); + if (UseMOVSD) + return DAG.getBitcast(VT, DAG.getVectorShuffle(MVT::v4i32, dl, BitCast1, + BitCast2, {0, 1, 6, 7})); + return DAG.getBitcast(VT, DAG.getVectorShuffle(MVT::v4i32, dl, BitCast1, + BitCast2, {0, 5, 6, 7})); + } + } + + // v4i32 Non Uniform Shifts. + // If the shift amount is constant we can shift each lane using the SSE2 + // immediate shifts, else we need to zero-extend each lane to the lower i64 + // and shift using the SSE2 variable shifts. + // The separate results can then be blended together. + if (VT == MVT::v4i32) { + unsigned Opc = Op.getOpcode(); + SDValue Amt0, Amt1, Amt2, Amt3; + if (ConstantAmt) { + Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0}); + Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1}); + Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2}); + Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3}); + } else { + // ISD::SHL is handled above but we include it here for completeness. + switch (Opc) { + default: + llvm_unreachable("Unknown target vector shift node"); + case ISD::SHL: + Opc = X86ISD::VSHL; + break; + case ISD::SRL: + Opc = X86ISD::VSRL; + break; + case ISD::SRA: + Opc = X86ISD::VSRA; + break; + } + // The SSE2 shifts use the lower i64 as the same shift amount for + // all lanes and the upper i64 is ignored. These shuffle masks + // optimally zero-extend each lanes on SSE2/SSE41/AVX targets. + SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); + Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1}); + Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1}); + Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1}); + Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1}); + } + + SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0); + SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1); + SDValue R2 = DAG.getNode(Opc, dl, VT, R, Amt2); + SDValue R3 = DAG.getNode(Opc, dl, VT, R, Amt3); + SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1}); + SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7}); + return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7}); + } + + // It's worth extending once and using the vXi16/vXi32 shifts for smaller + // types, but without AVX512 the extra overheads to get from vXi8 to vXi32 + // make the existing SSE solution better. + if ((Subtarget.hasInt256() && VT == MVT::v8i16) || + (Subtarget.hasAVX512() && VT == MVT::v16i16) || + (Subtarget.hasAVX512() && VT == MVT::v16i8) || + (Subtarget.hasBWI() && VT == MVT::v32i8)) { + assert((!Subtarget.hasBWI() || VT == MVT::v32i8 || VT == MVT::v16i8) && + "Unexpected vector type"); + MVT EvtSVT = Subtarget.hasBWI() ? MVT::i16 : MVT::i32; + MVT ExtVT = MVT::getVectorVT(EvtSVT, VT.getVectorNumElements()); + unsigned ExtOpc = + Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + R = DAG.getNode(ExtOpc, dl, ExtVT, R); + Amt = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Amt); + return DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt)); + } + + if (VT == MVT::v16i8 || + (VT == MVT::v32i8 && Subtarget.hasInt256() && !Subtarget.hasXOP()) || + (VT == MVT::v64i8 && Subtarget.hasBWI())) { + MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2); + unsigned ShiftOpcode = Op->getOpcode(); + + auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) { + if (VT.is512BitVector()) { + // On AVX512BW targets we make use of the fact that VSELECT lowers + // to a masked blend which selects bytes based just on the sign bit + // extracted to a mask. + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + V0 = DAG.getBitcast(VT, V0); + V1 = DAG.getBitcast(VT, V1); + Sel = DAG.getBitcast(VT, Sel); + Sel = DAG.getNode(X86ISD::CVT2MASK, dl, MaskVT, Sel); + return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1)); + } else if (Subtarget.hasSSE41()) { + // On SSE41 targets we make use of the fact that VSELECT lowers + // to PBLENDVB which selects bytes based just on the sign bit. + V0 = DAG.getBitcast(VT, V0); + V1 = DAG.getBitcast(VT, V1); + Sel = DAG.getBitcast(VT, Sel); + return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1)); + } + // On pre-SSE41 targets we test for the sign bit by comparing to + // zero - a negative value will set all bits of the lanes to true + // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering. + SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl); + SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel); + return DAG.getSelect(dl, SelVT, C, V0, V1); + }; + + // Turn 'a' into a mask suitable for VSELECT: a = a << 5; + // We can safely do this using i16 shifts as we're only interested in + // the 3 lower bits of each byte. + Amt = DAG.getBitcast(ExtVT, Amt); + Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT)); + Amt = DAG.getBitcast(VT, Amt); + + if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) { + // r = VSELECT(r, shift(r, 4), a); + SDValue M = + DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); + R = SignBitSelect(VT, Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // r = VSELECT(r, shift(r, 2), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); + R = SignBitSelect(VT, Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // return VSELECT(r, shift(r, 1), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); + R = SignBitSelect(VT, Amt, M, R); + return R; + } + + if (Op->getOpcode() == ISD::SRA) { + // For SRA we need to unpack each byte to the higher byte of a i16 vector + // so we can correctly sign extend. We don't care what happens to the + // lower byte. + SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt); + SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt); + SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R); + SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R); + ALo = DAG.getBitcast(ExtVT, ALo); + AHi = DAG.getBitcast(ExtVT, AHi); + RLo = DAG.getBitcast(ExtVT, RLo); + RHi = DAG.getBitcast(ExtVT, RHi); + + // r = VSELECT(r, shift(r, 4), a); + SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, + DAG.getConstant(4, dl, ExtVT)); + SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, + DAG.getConstant(4, dl, ExtVT)); + RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); + RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); + + // a += a + ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); + AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); + + // r = VSELECT(r, shift(r, 2), a); + MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, + DAG.getConstant(2, dl, ExtVT)); + MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, + DAG.getConstant(2, dl, ExtVT)); + RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); + RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); + + // a += a + ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); + AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); + + // r = VSELECT(r, shift(r, 1), a); + MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, + DAG.getConstant(1, dl, ExtVT)); + MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, + DAG.getConstant(1, dl, ExtVT)); + RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); + RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); + + // Logical shift the result back to the lower byte, leaving a zero upper + // byte + // meaning that we can safely pack with PACKUSWB. + RLo = + DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT)); + RHi = + DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT)); + return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); + } + } + + if (Subtarget.hasInt256() && !Subtarget.hasXOP() && VT == MVT::v16i16) { + MVT ExtVT = MVT::v8i32; + SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); + SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z); + SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z); + SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Z, R); + SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Z, R); + ALo = DAG.getBitcast(ExtVT, ALo); + AHi = DAG.getBitcast(ExtVT, AHi); + RLo = DAG.getBitcast(ExtVT, RLo); + RHi = DAG.getBitcast(ExtVT, RHi); + SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo); + SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi); + Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT)); + Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT)); + return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi); + } + + if (VT == MVT::v8i16) { + unsigned ShiftOpcode = Op->getOpcode(); + + // If we have a constant shift amount, the non-SSE41 path is best as + // avoiding bitcasts make it easier to constant fold and reduce to PBLENDW. + bool UseSSE41 = Subtarget.hasSSE41() && + !ISD::isBuildVectorOfConstantSDNodes(Amt.getNode()); + + auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) { + // On SSE41 targets we make use of the fact that VSELECT lowers + // to PBLENDVB which selects bytes based just on the sign bit. + if (UseSSE41) { + MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2); + V0 = DAG.getBitcast(ExtVT, V0); + V1 = DAG.getBitcast(ExtVT, V1); + Sel = DAG.getBitcast(ExtVT, Sel); + return DAG.getBitcast(VT, DAG.getSelect(dl, ExtVT, Sel, V0, V1)); + } + // On pre-SSE41 targets we splat the sign bit - a negative value will + // set all bits of the lanes to true and VSELECT uses that in + // its OR(AND(V0,C),AND(V1,~C)) lowering. + SDValue C = + DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT)); + return DAG.getSelect(dl, VT, C, V0, V1); + }; + + // Turn 'a' into a mask suitable for VSELECT: a = a << 12; + if (UseSSE41) { + // On SSE41 targets we need to replicate the shift mask in both + // bytes for PBLENDVB. + Amt = DAG.getNode( + ISD::OR, dl, VT, + DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)), + DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT))); + } else { + Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)); + } + + // r = VSELECT(r, shift(r, 8), a); + SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT)); + R = SignBitSelect(Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // r = VSELECT(r, shift(r, 4), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); + R = SignBitSelect(Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // r = VSELECT(r, shift(r, 2), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); + R = SignBitSelect(Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // return VSELECT(r, shift(r, 1), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); + R = SignBitSelect(Amt, M, R); + return R; + } + + // Decompose 256-bit shifts into smaller 128-bit shifts. + if (VT.is256BitVector()) + return Lower256IntArith(Op, DAG); + + return SDValue(); +} + +static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + SDLoc DL(Op); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + unsigned Opcode = Op.getOpcode(); + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + + if (Subtarget.hasAVX512()) { + // Attempt to rotate by immediate. + APInt UndefElts; + SmallVector<APInt, 16> EltBits; + if (getTargetConstantBitsFromNode(Amt, EltSizeInBits, UndefElts, EltBits)) { + if (!UndefElts && llvm::all_of(EltBits, [EltBits](APInt &V) { + return EltBits[0] == V; + })) { + unsigned Op = (Opcode == ISD::ROTL ? X86ISD::VROTLI : X86ISD::VROTRI); + uint64_t RotateAmt = EltBits[0].urem(EltSizeInBits); + return DAG.getNode(Op, DL, VT, R, + DAG.getConstant(RotateAmt, DL, MVT::i8)); + } + } + + // Else, fall-back on VPROLV/VPRORV. + return Op; + } + + assert(VT.isVector() && "Custom lowering only for vector rotates!"); + assert(Subtarget.hasXOP() && "XOP support required for vector rotates!"); + assert((Opcode == ISD::ROTL) && "Only ROTL supported"); + + // XOP has 128-bit vector variable + immediate rotates. + // +ve/-ve Amt = rotate left/right - just need to handle ISD::ROTL. + + // Split 256-bit integers. + if (VT.is256BitVector()) + return Lower256IntArith(Op, DAG); + + assert(VT.is128BitVector() && "Only rotate 128-bit vectors!"); + + // Attempt to rotate by immediate. + if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { + if (auto *RotateConst = BVAmt->getConstantSplatNode()) { + uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue(); + assert(RotateAmt < EltSizeInBits && "Rotation out of range"); + return DAG.getNode(X86ISD::VROTLI, DL, VT, R, + DAG.getConstant(RotateAmt, DL, MVT::i8)); + } + } + + // Use general rotate by variable (per-element). + return Op; +} + +static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { + // Lower the "add/sub/mul with overflow" instruction into a regular ins plus + // a "setcc" instruction that checks the overflow flag. The "brcond" lowering + // looks for this combo and may remove the "setcc" instruction if the "setcc" + // has only one use. + SDNode *N = Op.getNode(); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + unsigned BaseOp = 0; + X86::CondCode Cond; + SDLoc DL(Op); + switch (Op.getOpcode()) { + default: llvm_unreachable("Unknown ovf instruction!"); + case ISD::SADDO: + // A subtract of one will be selected as a INC. Note that INC doesn't + // set CF, so we can't do this for UADDO. + if (isOneConstant(RHS)) { + BaseOp = X86ISD::INC; + Cond = X86::COND_O; + break; + } + BaseOp = X86ISD::ADD; + Cond = X86::COND_O; + break; + case ISD::UADDO: + BaseOp = X86ISD::ADD; + Cond = X86::COND_B; + break; + case ISD::SSUBO: + // A subtract of one will be selected as a DEC. Note that DEC doesn't + // set CF, so we can't do this for USUBO. + if (isOneConstant(RHS)) { + BaseOp = X86ISD::DEC; + Cond = X86::COND_O; + break; + } + BaseOp = X86ISD::SUB; + Cond = X86::COND_O; + break; + case ISD::USUBO: + BaseOp = X86ISD::SUB; + Cond = X86::COND_B; + break; + case ISD::SMULO: + BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL; + Cond = X86::COND_O; + break; + case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs + if (N->getValueType(0) == MVT::i8) { + BaseOp = X86ISD::UMUL8; + Cond = X86::COND_O; + break; + } + SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), + MVT::i32); + SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); + + SDValue SetCC = getSETCC(X86::COND_O, SDValue(Sum.getNode(), 2), DL, DAG); + + if (N->getValueType(1) == MVT::i1) + SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); + + return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); + } + } + + // Also sets EFLAGS. + SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); + SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); + + SDValue SetCC = getSETCC(Cond, SDValue(Sum.getNode(), 1), DL, DAG); + + if (N->getValueType(1) == MVT::i1) + SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); + + return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); +} + +/// Returns true if the operand type is exactly twice the native width, and +/// the corresponding cmpxchg8b or cmpxchg16b instruction is available. +/// Used to know whether to use cmpxchg8/16b when expanding atomic operations +/// (otherwise we leave them alone to become __sync_fetch_and_... calls). +bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const { + unsigned OpWidth = MemType->getPrimitiveSizeInBits(); + + if (OpWidth == 64) + return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b + else if (OpWidth == 128) + return Subtarget.hasCmpxchg16b(); + else + return false; +} + +bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { + return needsCmpXchgNb(SI->getValueOperand()->getType()); +} + +// Note: this turns large loads into lock cmpxchg8b/16b. +// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b. +TargetLowering::AtomicExpansionKind +X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { + auto PTy = cast<PointerType>(LI->getPointerOperandType()); + return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg + : AtomicExpansionKind::None; +} + +TargetLowering::AtomicExpansionKind +X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { + unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32; + Type *MemType = AI->getType(); + + // If the operand is too big, we must see if cmpxchg8/16b is available + // and default to library calls otherwise. + if (MemType->getPrimitiveSizeInBits() > NativeWidth) { + return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg + : AtomicExpansionKind::None; + } + + AtomicRMWInst::BinOp Op = AI->getOperation(); + switch (Op) { + default: + llvm_unreachable("Unknown atomic operation"); + case AtomicRMWInst::Xchg: + case AtomicRMWInst::Add: + case AtomicRMWInst::Sub: + // It's better to use xadd, xsub or xchg for these in all cases. + return AtomicExpansionKind::None; + case AtomicRMWInst::Or: + case AtomicRMWInst::And: + case AtomicRMWInst::Xor: + // If the atomicrmw's result isn't actually used, we can just add a "lock" + // prefix to a normal instruction for these operations. + return !AI->use_empty() ? AtomicExpansionKind::CmpXChg + : AtomicExpansionKind::None; + case AtomicRMWInst::Nand: + case AtomicRMWInst::Max: + case AtomicRMWInst::Min: + case AtomicRMWInst::UMax: + case AtomicRMWInst::UMin: + // These always require a non-trivial set of data operations on x86. We must + // use a cmpxchg loop. + return AtomicExpansionKind::CmpXChg; + } +} + +LoadInst * +X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { + unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32; + Type *MemType = AI->getType(); + // Accesses larger than the native width are turned into cmpxchg/libcalls, so + // there is no benefit in turning such RMWs into loads, and it is actually + // harmful as it introduces a mfence. + if (MemType->getPrimitiveSizeInBits() > NativeWidth) + return nullptr; + + auto Builder = IRBuilder<>(AI); + Module *M = Builder.GetInsertBlock()->getParent()->getParent(); + auto SSID = AI->getSyncScopeID(); + // We must restrict the ordering to avoid generating loads with Release or + // ReleaseAcquire orderings. + auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering()); + auto Ptr = AI->getPointerOperand(); + + // Before the load we need a fence. Here is an example lifted from + // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence + // is required: + // Thread 0: + // x.store(1, relaxed); + // r1 = y.fetch_add(0, release); + // Thread 1: + // y.fetch_add(42, acquire); + // r2 = x.load(relaxed); + // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is + // lowered to just a load without a fence. A mfence flushes the store buffer, + // making the optimization clearly correct. + // FIXME: it is required if isReleaseOrStronger(Order) but it is not clear + // otherwise, we might be able to be more aggressive on relaxed idempotent + // rmw. In practice, they do not look useful, so we don't try to be + // especially clever. + if (SSID == SyncScope::SingleThread) + // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at + // the IR level, so we must wrap it in an intrinsic. + return nullptr; + + if (!Subtarget.hasMFence()) + // FIXME: it might make sense to use a locked operation here but on a + // different cache-line to prevent cache-line bouncing. In practice it + // is probably a small win, and x86 processors without mfence are rare + // enough that we do not bother. + return nullptr; + + Function *MFence = + llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence); + Builder.CreateCall(MFence, {}); + + // Finally we can emit the atomic load. + LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr, + AI->getType()->getPrimitiveSizeInBits()); + Loaded->setAtomic(Order, SSID); + AI->replaceAllUsesWith(Loaded); + AI->eraseFromParent(); + return Loaded; +} + +static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDLoc dl(Op); + AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( + cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); + SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( + cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); + + // The only fence that needs an instruction is a sequentially-consistent + // cross-thread fence. + if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && + FenceSSID == SyncScope::System) { + if (Subtarget.hasMFence()) + return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); + + SDValue Chain = Op.getOperand(0); + SDValue Zero = DAG.getConstant(0, dl, MVT::i32); + SDValue Ops[] = { + DAG.getRegister(X86::ESP, MVT::i32), // Base + DAG.getTargetConstant(1, dl, MVT::i8), // Scale + DAG.getRegister(0, MVT::i32), // Index + DAG.getTargetConstant(0, dl, MVT::i32), // Disp + DAG.getRegister(0, MVT::i32), // Segment. + Zero, + Chain + }; + SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops); + return SDValue(Res, 0); + } + + // MEMBARRIER is a compiler barrier; it codegens to a no-op. + return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); +} + +static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT T = Op.getSimpleValueType(); + SDLoc DL(Op); + unsigned Reg = 0; + unsigned size = 0; + switch(T.SimpleTy) { + default: llvm_unreachable("Invalid value type!"); + case MVT::i8: Reg = X86::AL; size = 1; break; + case MVT::i16: Reg = X86::AX; size = 2; break; + case MVT::i32: Reg = X86::EAX; size = 4; break; + case MVT::i64: + assert(Subtarget.is64Bit() && "Node not type legal!"); + Reg = X86::RAX; size = 8; + break; + } + SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, + Op.getOperand(2), SDValue()); + SDValue Ops[] = { cpIn.getValue(0), + Op.getOperand(1), + Op.getOperand(3), + DAG.getTargetConstant(size, DL, MVT::i8), + cpIn.getValue(1) }; + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); + SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, + Ops, T, MMO); + + SDValue cpOut = + DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); + SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS, + MVT::i32, cpOut.getValue(2)); + SDValue Success = getSETCC(X86::COND_E, EFLAGS, DL, DAG); + + DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut); + DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); + DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1)); + return SDValue(); +} + +static SDValue LowerBITCAST(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT SrcVT = Op.getOperand(0).getSimpleValueType(); + MVT DstVT = Op.getSimpleValueType(); + + if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8 || + SrcVT == MVT::i64) { + assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); + if (DstVT != MVT::f64) + // This conversion needs to be expanded. + return SDValue(); + + SDValue Op0 = Op->getOperand(0); + SmallVector<SDValue, 16> Elts; + SDLoc dl(Op); + unsigned NumElts; + MVT SVT; + if (SrcVT.isVector()) { + NumElts = SrcVT.getVectorNumElements(); + SVT = SrcVT.getVectorElementType(); + + // Widen the vector in input in the case of MVT::v2i32. + // Example: from MVT::v2i32 to MVT::v4i32. + for (unsigned i = 0, e = NumElts; i != e; ++i) + Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, Op0, + DAG.getIntPtrConstant(i, dl))); + } else { + assert(SrcVT == MVT::i64 && !Subtarget.is64Bit() && + "Unexpected source type in LowerBITCAST"); + Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op0, + DAG.getIntPtrConstant(0, dl))); + Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op0, + DAG.getIntPtrConstant(1, dl))); + NumElts = 2; + SVT = MVT::i32; + } + // Explicitly mark the extra elements as Undef. + Elts.append(NumElts, DAG.getUNDEF(SVT)); + + EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); + SDValue BV = DAG.getBuildVector(NewVT, dl, Elts); + SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64, + DAG.getIntPtrConstant(0, dl)); + } + + assert(Subtarget.is64Bit() && !Subtarget.hasSSE2() && + Subtarget.hasMMX() && "Unexpected custom BITCAST"); + assert((DstVT == MVT::i64 || + (DstVT.isVector() && DstVT.getSizeInBits()==64)) && + "Unexpected custom BITCAST"); + // i64 <=> MMX conversions are Legal. + if (SrcVT==MVT::i64 && DstVT.isVector()) + return Op; + if (DstVT==MVT::i64 && SrcVT.isVector()) + return Op; + // MMX <=> MMX conversions are Legal. + if (SrcVT.isVector() && DstVT.isVector()) + return Op; + // All other conversions need to be expanded. + return SDValue(); +} + +/// Compute the horizontal sum of bytes in V for the elements of VT. +/// +/// Requires V to be a byte vector and VT to be an integer vector type with +/// wider elements than V's type. The width of the elements of VT determines +/// how many bytes of V are summed horizontally to produce each element of the +/// result. +static SDValue LowerHorizontalByteSum(SDValue V, MVT VT, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDLoc DL(V); + MVT ByteVecVT = V.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + assert(ByteVecVT.getVectorElementType() == MVT::i8 && + "Expected value to have byte element type."); + assert(EltVT != MVT::i8 && + "Horizontal byte sum only makes sense for wider elements!"); + unsigned VecSize = VT.getSizeInBits(); + assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!"); + + // PSADBW instruction horizontally add all bytes and leave the result in i64 + // chunks, thus directly computes the pop count for v2i64 and v4i64. + if (EltVT == MVT::i64) { + SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); + MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64); + V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros); + return DAG.getBitcast(VT, V); + } + + if (EltVT == MVT::i32) { + // We unpack the low half and high half into i32s interleaved with zeros so + // that we can use PSADBW to horizontally sum them. The most useful part of + // this is that it lines up the results of two PSADBW instructions to be + // two v2i64 vectors which concatenated are the 4 population counts. We can + // then use PACKUSWB to shrink and concatenate them into a v4i32 again. + SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL); + SDValue V32 = DAG.getBitcast(VT, V); + SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V32, Zeros); + SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V32, Zeros); + + // Do the horizontal sums into two v2i64s. + Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); + MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64); + Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, + DAG.getBitcast(ByteVecVT, Low), Zeros); + High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, + DAG.getBitcast(ByteVecVT, High), Zeros); + + // Merge them together. + MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16); + V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT, + DAG.getBitcast(ShortVecVT, Low), + DAG.getBitcast(ShortVecVT, High)); + + return DAG.getBitcast(VT, V); + } + + // The only element type left is i16. + assert(EltVT == MVT::i16 && "Unknown how to handle type"); + + // To obtain pop count for each i16 element starting from the pop count for + // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s + // right by 8. It is important to shift as i16s as i8 vector shift isn't + // directly supported. + SDValue ShifterV = DAG.getConstant(8, DL, VT); + SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), ShifterV); + V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl), + DAG.getBitcast(ByteVecVT, V)); + return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), ShifterV); +} + +static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, const SDLoc &DL, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + unsigned VecSize = VT.getSizeInBits(); + + // Implement a lookup table in register by using an algorithm based on: + // http://wm.ite.pl/articles/sse-popcount.html + // + // The general idea is that every lower byte nibble in the input vector is an + // index into a in-register pre-computed pop count table. We then split up the + // input vector in two new ones: (1) a vector with only the shifted-right + // higher nibbles for each byte and (2) a vector with the lower nibbles (and + // masked out higher ones) for each byte. PSHUFB is used separately with both + // to index the in-register table. Next, both are added and the result is a + // i8 vector where each element contains the pop count for input byte. + // + // To obtain the pop count for elements != i8, we follow up with the same + // approach and use additional tricks as described below. + // + const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2, + /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3, + /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3, + /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4}; + + int NumByteElts = VecSize / 8; + MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts); + SDValue In = DAG.getBitcast(ByteVecVT, Op); + SmallVector<SDValue, 64> LUTVec; + for (int i = 0; i < NumByteElts; ++i) + LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8)); + SDValue InRegLUT = DAG.getBuildVector(ByteVecVT, DL, LUTVec); + SDValue M0F = DAG.getConstant(0x0F, DL, ByteVecVT); + + // High nibbles + SDValue FourV = DAG.getConstant(4, DL, ByteVecVT); + SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV); + + // Low nibbles + SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F); + + // The input vector is used as the shuffle mask that index elements into the + // LUT. After counting low and high nibbles, add the vector to obtain the + // final pop count per i8 element. + SDValue HighPopCnt = + DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles); + SDValue LowPopCnt = + DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles); + SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt); + + if (EltVT == MVT::i8) + return PopCnt; + + return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG); +} + +static SDValue LowerVectorCTPOPBitmath(SDValue Op, const SDLoc &DL, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + assert(VT.is128BitVector() && + "Only 128-bit vector bitmath lowering supported."); + + int VecSize = VT.getSizeInBits(); + MVT EltVT = VT.getVectorElementType(); + int Len = EltVT.getSizeInBits(); + + // This is the vectorized version of the "best" algorithm from + // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel + // with a minor tweak to use a series of adds + shifts instead of vector + // multiplications. Implemented for all integer vector types. We only use + // this when we don't have SSSE3 which allows a LUT-based lowering that is + // much faster, even faster than using native popcnt instructions. + + auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) { + MVT VT = V.getSimpleValueType(); + SDValue ShifterV = DAG.getConstant(Shifter, DL, VT); + return DAG.getNode(OpCode, DL, VT, V, ShifterV); + }; + auto GetMask = [&](SDValue V, APInt Mask) { + MVT VT = V.getSimpleValueType(); + SDValue MaskV = DAG.getConstant(Mask, DL, VT); + return DAG.getNode(ISD::AND, DL, VT, V, MaskV); + }; + + // We don't want to incur the implicit masks required to SRL vNi8 vectors on + // x86, so set the SRL type to have elements at least i16 wide. This is + // correct because all of our SRLs are followed immediately by a mask anyways + // that handles any bits that sneak into the high bits of the byte elements. + MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16); + + SDValue V = Op; + + // v = v - ((v >> 1) & 0x55555555...) + SDValue Srl = + DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1)); + SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55))); + V = DAG.getNode(ISD::SUB, DL, VT, V, And); + + // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) + SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33))); + Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2)); + SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33))); + V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS); + + // v = (v + (v >> 4)) & 0x0F0F0F0F... + Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4)); + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl); + V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F))); + + // At this point, V contains the byte-wise population count, and we are + // merely doing a horizontal sum if necessary to get the wider element + // counts. + if (EltVT == MVT::i8) + return V; + + return LowerHorizontalByteSum( + DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget, + DAG); +} + +// Please ensure that any codegen change from LowerVectorCTPOP is reflected in +// updated cost models in X86TTIImpl::getIntrinsicInstrCost. +static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + assert((VT.is512BitVector() || VT.is256BitVector() || VT.is128BitVector()) && + "Unknown CTPOP type to handle"); + SDLoc DL(Op.getNode()); + SDValue Op0 = Op.getOperand(0); + + // TRUNC(CTPOP(ZEXT(X))) to make use of vXi32/vXi64 VPOPCNT instructions. + if (Subtarget.hasVPOPCNTDQ()) { + unsigned NumElems = VT.getVectorNumElements(); + assert((VT.getVectorElementType() == MVT::i8 || + VT.getVectorElementType() == MVT::i16) && "Unexpected type"); + if (NumElems <= 16) { + MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems); + Op = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, Op0); + Op = DAG.getNode(ISD::CTPOP, DL, NewVT, Op); + return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); + } + } + + if (!Subtarget.hasSSSE3()) { + // We can't use the fast LUT approach, so fall back on vectorized bitmath. + assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!"); + return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG); + } + + // Decompose 256-bit ops into smaller 128-bit ops. + if (VT.is256BitVector() && !Subtarget.hasInt256()) + return Lower256IntUnary(Op, DAG); + + // Decompose 512-bit ops into smaller 256-bit ops. + if (VT.is512BitVector() && !Subtarget.hasBWI()) + return Lower512IntUnary(Op, DAG); + + return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG); +} + +static SDValue LowerCTPOP(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(Op.getSimpleValueType().isVector() && + "We only do custom lowering for vector population count."); + return LowerVectorCTPOP(Op, Subtarget, DAG); +} + +static SDValue LowerBITREVERSE_XOP(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + SDValue In = Op.getOperand(0); + SDLoc DL(Op); + + // For scalars, its still beneficial to transfer to/from the SIMD unit to + // perform the BITREVERSE. + if (!VT.isVector()) { + MVT VecVT = MVT::getVectorVT(VT, 128 / VT.getSizeInBits()); + SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, In); + Res = DAG.getNode(ISD::BITREVERSE, DL, VecVT, Res); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Res, + DAG.getIntPtrConstant(0, DL)); + } + + int NumElts = VT.getVectorNumElements(); + int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; + + // Decompose 256-bit ops into smaller 128-bit ops. + if (VT.is256BitVector()) + return Lower256IntUnary(Op, DAG); + + assert(VT.is128BitVector() && + "Only 128-bit vector bitreverse lowering supported."); + + // VPPERM reverses the bits of a byte with the permute Op (2 << 5), and we + // perform the BSWAP in the shuffle. + // Its best to shuffle using the second operand as this will implicitly allow + // memory folding for multiple vectors. + SmallVector<SDValue, 16> MaskElts; + for (int i = 0; i != NumElts; ++i) { + for (int j = ScalarSizeInBytes - 1; j >= 0; --j) { + int SourceByte = 16 + (i * ScalarSizeInBytes) + j; + int PermuteByte = SourceByte | (2 << 5); + MaskElts.push_back(DAG.getConstant(PermuteByte, DL, MVT::i8)); + } + } + + SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, MaskElts); + SDValue Res = DAG.getBitcast(MVT::v16i8, In); + Res = DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, DAG.getUNDEF(MVT::v16i8), + Res, Mask); + return DAG.getBitcast(VT, Res); +} + +static SDValue LowerBITREVERSE(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + + if (Subtarget.hasXOP() && !VT.is512BitVector()) + return LowerBITREVERSE_XOP(Op, DAG); + + assert(Subtarget.hasSSSE3() && "SSSE3 required for BITREVERSE"); + + SDValue In = Op.getOperand(0); + SDLoc DL(Op); + + unsigned NumElts = VT.getVectorNumElements(); + assert(VT.getScalarType() == MVT::i8 && + "Only byte vector BITREVERSE supported"); + + // Decompose 256-bit ops into smaller 128-bit ops on pre-AVX2. + if (VT.is256BitVector() && !Subtarget.hasInt256()) + return Lower256IntUnary(Op, DAG); + + // Perform BITREVERSE using PSHUFB lookups. Each byte is split into + // two nibbles and a PSHUFB lookup to find the bitreverse of each + // 0-15 value (moved to the other nibble). + SDValue NibbleMask = DAG.getConstant(0xF, DL, VT); + SDValue Lo = DAG.getNode(ISD::AND, DL, VT, In, NibbleMask); + SDValue Hi = DAG.getNode(ISD::SRL, DL, VT, In, DAG.getConstant(4, DL, VT)); + + const int LoLUT[16] = { + /* 0 */ 0x00, /* 1 */ 0x80, /* 2 */ 0x40, /* 3 */ 0xC0, + /* 4 */ 0x20, /* 5 */ 0xA0, /* 6 */ 0x60, /* 7 */ 0xE0, + /* 8 */ 0x10, /* 9 */ 0x90, /* a */ 0x50, /* b */ 0xD0, + /* c */ 0x30, /* d */ 0xB0, /* e */ 0x70, /* f */ 0xF0}; + const int HiLUT[16] = { + /* 0 */ 0x00, /* 1 */ 0x08, /* 2 */ 0x04, /* 3 */ 0x0C, + /* 4 */ 0x02, /* 5 */ 0x0A, /* 6 */ 0x06, /* 7 */ 0x0E, + /* 8 */ 0x01, /* 9 */ 0x09, /* a */ 0x05, /* b */ 0x0D, + /* c */ 0x03, /* d */ 0x0B, /* e */ 0x07, /* f */ 0x0F}; + + SmallVector<SDValue, 16> LoMaskElts, HiMaskElts; + for (unsigned i = 0; i < NumElts; ++i) { + LoMaskElts.push_back(DAG.getConstant(LoLUT[i % 16], DL, MVT::i8)); + HiMaskElts.push_back(DAG.getConstant(HiLUT[i % 16], DL, MVT::i8)); + } + + SDValue LoMask = DAG.getBuildVector(VT, DL, LoMaskElts); + SDValue HiMask = DAG.getBuildVector(VT, DL, HiMaskElts); + Lo = DAG.getNode(X86ISD::PSHUFB, DL, VT, LoMask, Lo); + Hi = DAG.getNode(X86ISD::PSHUFB, DL, VT, HiMask, Hi); + return DAG.getNode(ISD::OR, DL, VT, Lo, Hi); +} + +static SDValue lowerAtomicArithWithLOCK(SDValue N, SelectionDAG &DAG, + const X86Subtarget &Subtarget, + bool AllowIncDec = true) { + unsigned NewOpc = 0; + switch (N->getOpcode()) { + case ISD::ATOMIC_LOAD_ADD: + NewOpc = X86ISD::LADD; + break; + case ISD::ATOMIC_LOAD_SUB: + NewOpc = X86ISD::LSUB; + break; + case ISD::ATOMIC_LOAD_OR: + NewOpc = X86ISD::LOR; + break; + case ISD::ATOMIC_LOAD_XOR: + NewOpc = X86ISD::LXOR; + break; + case ISD::ATOMIC_LOAD_AND: + NewOpc = X86ISD::LAND; + break; + default: + llvm_unreachable("Unknown ATOMIC_LOAD_ opcode"); + } + + MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand(); + + if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) { + // Convert to inc/dec if they aren't slow or we are optimizing for size. + if (AllowIncDec && (!Subtarget.slowIncDec() || + DAG.getMachineFunction().getFunction().optForSize())) { + if ((NewOpc == X86ISD::LADD && C->isOne()) || + (NewOpc == X86ISD::LSUB && C->isAllOnesValue())) + return DAG.getMemIntrinsicNode(X86ISD::LINC, SDLoc(N), + DAG.getVTList(MVT::i32, MVT::Other), + {N->getOperand(0), N->getOperand(1)}, + /*MemVT=*/N->getSimpleValueType(0), MMO); + if ((NewOpc == X86ISD::LSUB && C->isOne()) || + (NewOpc == X86ISD::LADD && C->isAllOnesValue())) + return DAG.getMemIntrinsicNode(X86ISD::LDEC, SDLoc(N), + DAG.getVTList(MVT::i32, MVT::Other), + {N->getOperand(0), N->getOperand(1)}, + /*MemVT=*/N->getSimpleValueType(0), MMO); + } + } + + return DAG.getMemIntrinsicNode( + NewOpc, SDLoc(N), DAG.getVTList(MVT::i32, MVT::Other), + {N->getOperand(0), N->getOperand(1), N->getOperand(2)}, + /*MemVT=*/N->getSimpleValueType(0), MMO); +} + +/// Lower atomic_load_ops into LOCK-prefixed operations. +static SDValue lowerAtomicArith(SDValue N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDValue Chain = N->getOperand(0); + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + unsigned Opc = N->getOpcode(); + MVT VT = N->getSimpleValueType(0); + SDLoc DL(N); + + // We can lower atomic_load_add into LXADD. However, any other atomicrmw op + // can only be lowered when the result is unused. They should have already + // been transformed into a cmpxchg loop in AtomicExpand. + if (N->hasAnyUseOfValue(0)) { + // Handle (atomic_load_sub p, v) as (atomic_load_add p, -v), to be able to + // select LXADD if LOCK_SUB can't be selected. + if (Opc == ISD::ATOMIC_LOAD_SUB) { + AtomicSDNode *AN = cast<AtomicSDNode>(N.getNode()); + RHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS); + return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, VT, Chain, LHS, + RHS, AN->getMemOperand()); + } + assert(Opc == ISD::ATOMIC_LOAD_ADD && + "Used AtomicRMW ops other than Add should have been expanded!"); + return N; + } + + SDValue LockOp = lowerAtomicArithWithLOCK(N, DAG, Subtarget); + // RAUW the chain, but don't worry about the result, as it's unused. + assert(!N->hasAnyUseOfValue(0)); + DAG.ReplaceAllUsesOfValueWith(N.getValue(1), LockOp.getValue(1)); + return SDValue(); +} + +static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { + SDNode *Node = Op.getNode(); + SDLoc dl(Node); + EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); + + // Convert seq_cst store -> xchg + // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) + // FIXME: On 32-bit, store -> fist or movq would be more efficient + // (The only way to get a 16-byte store is cmpxchg16b) + // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. + if (cast<AtomicSDNode>(Node)->getOrdering() == + AtomicOrdering::SequentiallyConsistent || + !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { + SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, + cast<AtomicSDNode>(Node)->getMemoryVT(), + Node->getOperand(0), + Node->getOperand(1), Node->getOperand(2), + cast<AtomicSDNode>(Node)->getMemOperand()); + return Swap.getValue(1); + } + // Other atomic stores have a simple pattern. + return Op; +} + +static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) { + SDNode *N = Op.getNode(); + MVT VT = N->getSimpleValueType(0); + + // Let legalize expand this if it isn't a legal type yet. + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + SDLoc DL(N); + + // Set the carry flag. + SDValue Carry = Op.getOperand(2); + EVT CarryVT = Carry.getValueType(); + APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits()); + Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32), + Carry, DAG.getConstant(NegOne, DL, CarryVT)); + + unsigned Opc = Op.getOpcode() == ISD::ADDCARRY ? X86ISD::ADC : X86ISD::SBB; + SDValue Sum = DAG.getNode(Opc, DL, VTs, Op.getOperand(0), + Op.getOperand(1), Carry.getValue(1)); + + SDValue SetCC = getSETCC(X86::COND_B, Sum.getValue(1), DL, DAG); + if (N->getValueType(1) == MVT::i1) + SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); + + return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); +} + +static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(Subtarget.isTargetDarwin() && Subtarget.is64Bit()); + + // For MacOSX, we want to call an alternative entry point: __sincos_stret, + // which returns the values as { float, float } (in XMM0) or + // { double, double } (which is returned in XMM0, XMM1). + SDLoc dl(Op); + SDValue Arg = Op.getOperand(0); + EVT ArgVT = Arg.getValueType(); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + + Entry.Node = Arg; + Entry.Ty = ArgTy; + Entry.IsSExt = false; + Entry.IsZExt = false; + Args.push_back(Entry); + + bool isF64 = ArgVT == MVT::f64; + // Only optimize x86_64 for now. i386 is a bit messy. For f32, + // the small struct {f32, f32} is returned in (eax, edx). For f64, + // the results are returned via SRet in memory. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + RTLIB::Libcall LC = isF64 ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32; + const char *LibcallName = TLI.getLibcallName(LC); + SDValue Callee = + DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout())); + + Type *RetTy = isF64 ? (Type *)StructType::get(ArgTy, ArgTy) + : (Type *)VectorType::get(ArgTy, 4); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl) + .setChain(DAG.getEntryNode()) + .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)); + + std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); + + if (isF64) + // Returned in xmm0 and xmm1. + return CallResult.first; + + // Returned in bits 0:31 and 32:64 xmm0. + SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, + CallResult.first, DAG.getIntPtrConstant(0, dl)); + SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, + CallResult.first, DAG.getIntPtrConstant(1, dl)); + SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); + return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal); +} + +/// Widen a vector input to a vector of NVT. The +/// input vector must have the same element type as NVT. +static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG, + bool FillWithZeroes = false) { + // Check if InOp already has the right width. + MVT InVT = InOp.getSimpleValueType(); + if (InVT == NVT) + return InOp; + + if (InOp.isUndef()) + return DAG.getUNDEF(NVT); + + assert(InVT.getVectorElementType() == NVT.getVectorElementType() && + "input and widen element type must match"); + + unsigned InNumElts = InVT.getVectorNumElements(); + unsigned WidenNumElts = NVT.getVectorNumElements(); + assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 && + "Unexpected request for vector widening"); + + SDLoc dl(InOp); + if (InOp.getOpcode() == ISD::CONCAT_VECTORS && + InOp.getNumOperands() == 2) { + SDValue N1 = InOp.getOperand(1); + if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) || + N1.isUndef()) { + InOp = InOp.getOperand(0); + InVT = InOp.getSimpleValueType(); + InNumElts = InVT.getVectorNumElements(); + } + } + if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) || + ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) { + SmallVector<SDValue, 16> Ops; + for (unsigned i = 0; i < InNumElts; ++i) + Ops.push_back(InOp.getOperand(i)); + + EVT EltVT = InOp.getOperand(0).getValueType(); + + SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) : + DAG.getUNDEF(EltVT); + for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i) + Ops.push_back(FillVal); + return DAG.getBuildVector(NVT, dl, Ops); + } + SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) : + DAG.getUNDEF(NVT); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal, + InOp, DAG.getIntPtrConstant(0, dl)); +} + +static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(Subtarget.hasAVX512() && + "MGATHER/MSCATTER are supported on AVX-512 arch only"); + + MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode()); + SDValue Src = N->getValue(); + MVT VT = Src.getSimpleValueType(); + assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op"); + SDLoc dl(Op); + + SDValue Index = N->getIndex(); + SDValue Mask = N->getMask(); + SDValue Chain = N->getChain(); + SDValue BasePtr = N->getBasePtr(); + MVT MemVT = N->getMemoryVT().getSimpleVT(); + MVT IndexVT = Index.getSimpleValueType(); + MVT MaskVT = Mask.getSimpleValueType(); + + if (MemVT.getScalarSizeInBits() < VT.getScalarSizeInBits()) { + // The v2i32 value was promoted to v2i64. + // Now we "redo" the type legalizer's work and widen the original + // v2i32 value to v4i32. The original v2i32 is retrieved from v2i64 + // with a shuffle. + assert((MemVT == MVT::v2i32 && VT == MVT::v2i64) && + "Unexpected memory type"); + int ShuffleMask[] = {0, 2, -1, -1}; + Src = DAG.getVectorShuffle(MVT::v4i32, dl, DAG.getBitcast(MVT::v4i32, Src), + DAG.getUNDEF(MVT::v4i32), ShuffleMask); + // Now we have 4 elements instead of 2. + // Expand the index. + MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), 4); + Index = ExtendToType(Index, NewIndexVT, DAG); + + // Expand the mask with zeroes + // Mask may be <2 x i64> or <2 x i1> at this moment + assert((MaskVT == MVT::v2i1 || MaskVT == MVT::v2i64) && + "Unexpected mask type"); + MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), 4); + Mask = ExtendToType(Mask, ExtMaskVT, DAG, true); + VT = MVT::v4i32; + } + + unsigned NumElts = VT.getVectorNumElements(); + if (!Subtarget.hasVLX() && !VT.is512BitVector() && + !Index.getSimpleValueType().is512BitVector()) { + // AVX512F supports only 512-bit vectors. Or data or index should + // be 512 bit wide. If now the both index and data are 256-bit, but + // the vector contains 8 elements, we just sign-extend the index + if (IndexVT == MVT::v8i32) + // Just extend index + Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); + else { + // The minimal number of elts in scatter is 8 + NumElts = 8; + // Index + MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts); + // Use original index here, do not modify the index twice + Index = ExtendToType(N->getIndex(), NewIndexVT, DAG); + if (IndexVT.getScalarType() == MVT::i32) + Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); + + // Mask + // At this point we have promoted mask operand + assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type"); + MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts); + // Use the original mask here, do not modify the mask twice + Mask = ExtendToType(N->getMask(), ExtMaskVT, DAG, true); + + // The value that should be stored + MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts); + Src = ExtendToType(Src, NewVT, DAG); + } + } + // If the mask is "wide" at this point - truncate it to i1 vector + MVT BitMaskVT = MVT::getVectorVT(MVT::i1, NumElts); + Mask = DAG.getNode(ISD::TRUNCATE, dl, BitMaskVT, Mask); + + // The mask is killed by scatter, add it to the values + SDVTList VTs = DAG.getVTList(BitMaskVT, MVT::Other); + SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index}; + SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>( + VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand()); + DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1)); + return SDValue(NewScatter.getNode(), 1); +} + +static SDValue LowerMLOAD(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + + MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode()); + MVT VT = Op.getSimpleValueType(); + MVT ScalarVT = VT.getScalarType(); + SDValue Mask = N->getMask(); + SDLoc dl(Op); + + assert((!N->isExpandingLoad() || Subtarget.hasAVX512()) && + "Expanding masked load is supported on AVX-512 target only!"); + + assert((!N->isExpandingLoad() || ScalarVT.getSizeInBits() >= 32) && + "Expanding masked load is supported for 32 and 64-bit types only!"); + + // 4x32, 4x64 and 2x64 vectors of non-expanding loads are legal regardless of + // VLX. These types for exp-loads are handled here. + if (!N->isExpandingLoad() && VT.getVectorNumElements() <= 4) + return Op; + + assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() && + "Cannot lower masked load op."); + + assert((ScalarVT.getSizeInBits() >= 32 || + (Subtarget.hasBWI() && + (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) && + "Unsupported masked load op."); + + // This operation is legal for targets with VLX, but without + // VLX the vector should be widened to 512 bit + unsigned NumEltsInWideVec = 512 / VT.getScalarSizeInBits(); + MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec); + SDValue Src0 = N->getSrc0(); + Src0 = ExtendToType(Src0, WideDataVT, DAG); + + // Mask element has to be i1. + MVT MaskEltTy = Mask.getSimpleValueType().getScalarType(); + assert((MaskEltTy == MVT::i1 || VT.getVectorNumElements() <= 4) && + "We handle 4x32, 4x64 and 2x64 vectors only in this case"); + + MVT WideMaskVT = MVT::getVectorVT(MaskEltTy, NumEltsInWideVec); + + Mask = ExtendToType(Mask, WideMaskVT, DAG, true); + if (MaskEltTy != MVT::i1) + Mask = DAG.getNode(ISD::TRUNCATE, dl, + MVT::getVectorVT(MVT::i1, NumEltsInWideVec), Mask); + SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(), + N->getBasePtr(), Mask, Src0, + N->getMemoryVT(), N->getMemOperand(), + N->getExtensionType(), + N->isExpandingLoad()); + + SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, + NewLoad.getValue(0), + DAG.getIntPtrConstant(0, dl)); + SDValue RetOps[] = {Exract, NewLoad.getValue(1)}; + return DAG.getMergeValues(RetOps, dl); +} + +static SDValue LowerMSTORE(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode()); + SDValue DataToStore = N->getValue(); + MVT VT = DataToStore.getSimpleValueType(); + MVT ScalarVT = VT.getScalarType(); + SDValue Mask = N->getMask(); + SDLoc dl(Op); + + assert((!N->isCompressingStore() || Subtarget.hasAVX512()) && + "Expanding masked load is supported on AVX-512 target only!"); + + assert((!N->isCompressingStore() || ScalarVT.getSizeInBits() >= 32) && + "Expanding masked load is supported for 32 and 64-bit types only!"); + + // 4x32 and 2x64 vectors of non-compressing stores are legal regardless to VLX. + if (!N->isCompressingStore() && VT.getVectorNumElements() <= 4) + return Op; + + assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() && + "Cannot lower masked store op."); + + assert((ScalarVT.getSizeInBits() >= 32 || + (Subtarget.hasBWI() && + (ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) && + "Unsupported masked store op."); + + // This operation is legal for targets with VLX, but without + // VLX the vector should be widened to 512 bit + unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits(); + MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec); + + // Mask element has to be i1. + MVT MaskEltTy = Mask.getSimpleValueType().getScalarType(); + assert((MaskEltTy == MVT::i1 || VT.getVectorNumElements() <= 4) && + "We handle 4x32, 4x64 and 2x64 vectors only in this case"); + + MVT WideMaskVT = MVT::getVectorVT(MaskEltTy, NumEltsInWideVec); + + DataToStore = ExtendToType(DataToStore, WideDataVT, DAG); + Mask = ExtendToType(Mask, WideMaskVT, DAG, true); + if (MaskEltTy != MVT::i1) + Mask = DAG.getNode(ISD::TRUNCATE, dl, + MVT::getVectorVT(MVT::i1, NumEltsInWideVec), Mask); + return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(), + Mask, N->getMemoryVT(), N->getMemOperand(), + N->isTruncatingStore(), N->isCompressingStore()); +} + +static SDValue LowerMGATHER(SDValue Op, const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + assert(Subtarget.hasAVX2() && + "MGATHER/MSCATTER are supported on AVX-512/AVX-2 arch only"); + + MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode()); + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + SDValue Index = N->getIndex(); + SDValue Mask = N->getMask(); + SDValue Src0 = N->getValue(); + MVT IndexVT = Index.getSimpleValueType(); + MVT MaskVT = Mask.getSimpleValueType(); + + unsigned NumElts = VT.getVectorNumElements(); + assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op"); + + // If the index is v2i32, we're being called by type legalization. + if (IndexVT == MVT::v2i32) + return SDValue(); + + if (Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() && + !Index.getSimpleValueType().is512BitVector()) { + // AVX512F supports only 512-bit vectors. Or data or index should + // be 512 bit wide. If now the both index and data are 256-bit, but + // the vector contains 8 elements, we just sign-extend the index + if (NumElts == 8) { + Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); + SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index }; + SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>( + DAG.getVTList(VT, MaskVT, MVT::Other), Ops, dl, N->getMemoryVT(), + N->getMemOperand()); + return DAG.getMergeValues({NewGather, NewGather.getValue(2)}, dl); + } + + // Minimal number of elements in Gather + NumElts = 8; + // Index + MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts); + Index = ExtendToType(Index, NewIndexVT, DAG); + if (IndexVT.getScalarType() == MVT::i32) + Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); + + // Mask + MVT MaskBitVT = MVT::getVectorVT(MVT::i1, NumElts); + // At this point we have promoted mask operand + assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type"); + MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts); + Mask = ExtendToType(Mask, ExtMaskVT, DAG, true); + Mask = DAG.getNode(ISD::TRUNCATE, dl, MaskBitVT, Mask); + + // The pass-through value + MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts); + Src0 = ExtendToType(Src0, NewVT, DAG); + + SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index }; + SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>( + DAG.getVTList(NewVT, MaskBitVT, MVT::Other), Ops, dl, N->getMemoryVT(), + N->getMemOperand()); + SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, + NewGather.getValue(0), + DAG.getIntPtrConstant(0, dl)); + SDValue RetOps[] = {Extract, NewGather.getValue(2)}; + return DAG.getMergeValues(RetOps, dl); + } + + SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index }; + SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>( + DAG.getVTList(VT, MaskVT, MVT::Other), Ops, dl, N->getMemoryVT(), + N->getMemOperand()); + return DAG.getMergeValues({NewGather, NewGather.getValue(2)}, dl); +} + +SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op, + SelectionDAG &DAG) const { + // TODO: Eventually, the lowering of these nodes should be informed by or + // deferred to the GC strategy for the function in which they appear. For + // now, however, they must be lowered to something. Since they are logically + // no-ops in the case of a null GC strategy (or a GC strategy which does not + // require special handling for these nodes), lower them as literal NOOPs for + // the time being. + SmallVector<SDValue, 2> Ops; + + Ops.push_back(Op.getOperand(0)); + if (Op->getGluedNode()) + Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); + + SDLoc OpDL(Op); + SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); + + return NOOP; +} + +SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op, + SelectionDAG &DAG) const { + // TODO: Eventually, the lowering of these nodes should be informed by or + // deferred to the GC strategy for the function in which they appear. For + // now, however, they must be lowered to something. Since they are logically + // no-ops in the case of a null GC strategy (or a GC strategy which does not + // require special handling for these nodes), lower them as literal NOOPs for + // the time being. + SmallVector<SDValue, 2> Ops; + + Ops.push_back(Op.getOperand(0)); + if (Op->getGluedNode()) + Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); + + SDLoc OpDL(Op); + SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); + + return NOOP; +} + +/// Provide custom lowering hooks for some operations. +SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: llvm_unreachable("Should not custom lower this!"); + case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG); + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: + return LowerCMP_SWAP(Op, Subtarget, DAG); + case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG); + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_AND: return lowerAtomicArith(Op, DAG, Subtarget); + case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); + case ISD::BITREVERSE: return LowerBITREVERSE(Op, Subtarget, DAG); + case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); + case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, Subtarget, DAG); + case ISD::VECTOR_SHUFFLE: return lowerVectorShuffle(Op, Subtarget, DAG); + case ISD::VSELECT: return LowerVSELECT(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); + case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); + case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG); + case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, Subtarget,DAG); + case ISD::ConstantPool: return LowerConstantPool(Op, DAG); + case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); + case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); + case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); + case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); + case ISD::SHL_PARTS: + case ISD::SRA_PARTS: + case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); + case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); + case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); + case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); + case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG); + case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG); + case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG); + case ISD::ZERO_EXTEND_VECTOR_INREG: + case ISD::SIGN_EXTEND_VECTOR_INREG: + return LowerEXTEND_VECTOR_INREG(Op, Subtarget, DAG); + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); + case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); + case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG); + case ISD::FABS: + case ISD::FNEG: return LowerFABSorFNEG(Op, DAG); + case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); + case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG); + case ISD::SETCC: return LowerSETCC(Op, DAG); + case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG); + case ISD::SELECT: return LowerSELECT(Op, DAG); + case ISD::BRCOND: return LowerBRCOND(Op, DAG); + case ISD::JumpTable: return LowerJumpTable(Op, DAG); + case ISD::VASTART: return LowerVASTART(Op, DAG); + case ISD::VAARG: return LowerVAARG(Op, DAG); + case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG); + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::INTRINSIC_VOID: + case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG); + case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); + case ISD::ADDROFRETURNADDR: return LowerADDROFRETURNADDR(Op, DAG); + case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); + case ISD::FRAME_TO_ARGS_OFFSET: + return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); + case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); + case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); + case ISD::EH_SJLJ_SETUP_DISPATCH: + return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); + case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); + case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); + case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ(Op, Subtarget, DAG); + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op, DAG); + case ISD::MUL: return LowerMUL(Op, Subtarget, DAG); + case ISD::MULHS: + case ISD::MULHU: return LowerMULH(Op, Subtarget, DAG); + case ISD::UMUL_LOHI: + case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG); + case ISD::ROTL: + case ISD::ROTR: return LowerRotate(Op, Subtarget, DAG); + case ISD::SRA: + case ISD::SRL: + case ISD::SHL: return LowerShift(Op, Subtarget, DAG); + case ISD::SADDO: + case ISD::UADDO: + case ISD::SSUBO: + case ISD::USUBO: + case ISD::SMULO: + case ISD::UMULO: return LowerXALUO(Op, DAG); + case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG); + case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG); + case ISD::ADDCARRY: + case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG); + case ISD::ADD: + case ISD::SUB: return LowerADD_SUB(Op, DAG); + case ISD::SMAX: + case ISD::SMIN: + case ISD::UMAX: + case ISD::UMIN: return LowerMINMAX(Op, DAG); + case ISD::ABS: return LowerABS(Op, DAG); + case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG); + case ISD::MLOAD: return LowerMLOAD(Op, Subtarget, DAG); + case ISD::MSTORE: return LowerMSTORE(Op, Subtarget, DAG); + case ISD::MGATHER: return LowerMGATHER(Op, Subtarget, DAG); + case ISD::MSCATTER: return LowerMSCATTER(Op, Subtarget, DAG); + case ISD::GC_TRANSITION_START: + return LowerGC_TRANSITION_START(Op, DAG); + case ISD::GC_TRANSITION_END: return LowerGC_TRANSITION_END(Op, DAG); + case ISD::STORE: return LowerTruncatingStore(Op, Subtarget, DAG); + } +} + +/// Places new result values for the node in Results (their number +/// and types must exactly match those of the original return values of +/// the node), or leaves Results empty, which indicates that the node is not +/// to be custom lowered after all. +void X86TargetLowering::LowerOperationWrapper(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + SDValue Res = LowerOperation(SDValue(N, 0), DAG); + + if (!Res.getNode()) + return; + + assert((N->getNumValues() <= Res->getNumValues()) && + "Lowering returned the wrong number of results!"); + + // Places new result values base on N result number. + // In some cases (LowerSINT_TO_FP for example) Res has more result values + // than original node, chain should be dropped(last value). + for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) + Results.push_back(Res.getValue(I)); +} + +/// Replace a node with an illegal result type with a new node built out of +/// custom code. +void X86TargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue>&Results, + SelectionDAG &DAG) const { + SDLoc dl(N); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + switch (N->getOpcode()) { + default: + llvm_unreachable("Do not know how to custom type legalize this operation!"); + case X86ISD::AVG: { + // Legalize types for X86ISD::AVG by expanding vectors. + assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); + + auto InVT = N->getValueType(0); + auto InVTSize = InVT.getSizeInBits(); + const unsigned RegSize = + (InVTSize > 128) ? ((InVTSize > 256) ? 512 : 256) : 128; + assert((Subtarget.hasBWI() || RegSize < 512) && + "512-bit vector requires AVX512BW"); + assert((Subtarget.hasAVX2() || RegSize < 256) && + "256-bit vector requires AVX2"); + + auto ElemVT = InVT.getVectorElementType(); + auto RegVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, + RegSize / ElemVT.getSizeInBits()); + assert(RegSize % InVT.getSizeInBits() == 0); + unsigned NumConcat = RegSize / InVT.getSizeInBits(); + + SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT)); + Ops[0] = N->getOperand(0); + SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops); + Ops[0] = N->getOperand(1); + SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops); + + SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1); + if (!ExperimentalVectorWideningLegalization) + Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res, + DAG.getIntPtrConstant(0, dl)); + Results.push_back(Res); + return; + } + // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32. + case X86ISD::FMINC: + case X86ISD::FMIN: + case X86ISD::FMAXC: + case X86ISD::FMAX: { + EVT VT = N->getValueType(0); + assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX."); + SDValue UNDEF = DAG.getUNDEF(VT); + SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, + N->getOperand(0), UNDEF); + SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, + N->getOperand(1), UNDEF); + Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS)); + return; + } + case ISD::SDIV: + case ISD::UDIV: + case ISD::SREM: + case ISD::UREM: + case ISD::SDIVREM: + case ISD::UDIVREM: { + SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG); + Results.push_back(V); + return; + } + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: { + bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; + + if (N->getValueType(0) == MVT::v2i32) { + assert((IsSigned || Subtarget.hasAVX512()) && + "Can only handle signed conversion without AVX512"); + assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); + SDValue Src = N->getOperand(0); + if (Src.getValueType() == MVT::v2f64) { + MVT ResVT = MVT::v4i32; + unsigned Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI; + if (!IsSigned && !Subtarget.hasVLX()) { + // Widen to 512-bits. + ResVT = MVT::v8i32; + Opc = ISD::FP_TO_UINT; + Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8f64, + DAG.getUNDEF(MVT::v8f64), + Src, DAG.getIntPtrConstant(0, dl)); + } + SDValue Res = DAG.getNode(Opc, dl, ResVT, Src); + ResVT = ExperimentalVectorWideningLegalization ? MVT::v4i32 + : MVT::v2i32; + Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResVT, Res, + DAG.getIntPtrConstant(0, dl)); + Results.push_back(Res); + return; + } + if (Src.getValueType() == MVT::v2f32) { + SDValue Idx = DAG.getIntPtrConstant(0, dl); + SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src, + DAG.getUNDEF(MVT::v2f32)); + Res = DAG.getNode(IsSigned ? ISD::FP_TO_SINT + : ISD::FP_TO_UINT, dl, MVT::v4i32, Res); + if (!ExperimentalVectorWideningLegalization) + Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, Idx); + Results.push_back(Res); + return; + } + + // The FP_TO_INTHelper below only handles f32/f64/f80 scalar inputs, + // so early out here. + return; + } + + std::pair<SDValue,SDValue> Vals = + FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); + SDValue FIST = Vals.first, StackSlot = Vals.second; + if (FIST.getNode()) { + EVT VT = N->getValueType(0); + // Return a load from the stack slot. + if (StackSlot.getNode()) + Results.push_back( + DAG.getLoad(VT, dl, FIST, StackSlot, MachinePointerInfo())); + else + Results.push_back(FIST); + } + return; + } + case ISD::SINT_TO_FP: { + assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL!"); + SDValue Src = N->getOperand(0); + if (N->getValueType(0) != MVT::v2f32 || Src.getValueType() != MVT::v2i64) + return; + Results.push_back(DAG.getNode(X86ISD::CVTSI2P, dl, MVT::v4f32, Src)); + return; + } + case ISD::UINT_TO_FP: { + assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); + EVT VT = N->getValueType(0); + if (VT != MVT::v2f32) + return; + SDValue Src = N->getOperand(0); + EVT SrcVT = Src.getValueType(); + if (Subtarget.hasDQI() && Subtarget.hasVLX() && SrcVT == MVT::v2i64) { + Results.push_back(DAG.getNode(X86ISD::CVTUI2P, dl, MVT::v4f32, Src)); + return; + } + if (SrcVT != MVT::v2i32) + return; + SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, Src); + SDValue VBias = + DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::v2f64); + SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn, + DAG.getBitcast(MVT::v2i64, VBias)); + Or = DAG.getBitcast(MVT::v2f64, Or); + // TODO: Are there any fast-math-flags to propagate here? + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias); + Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub)); + return; + } + case ISD::FP_ROUND: { + if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) + return; + SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); + Results.push_back(V); + return; + } + case ISD::FP_EXTEND: { + // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND. + // No other ValueType for FP_EXTEND should reach this point. + assert(N->getValueType(0) == MVT::v2f32 && + "Do not know how to legalize this Node"); + return; + } + case ISD::INTRINSIC_W_CHAIN: { + unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); + switch (IntNo) { + default : llvm_unreachable("Do not know how to custom type " + "legalize this intrinsic operation!"); + case Intrinsic::x86_rdtsc: + return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, + Results); + case Intrinsic::x86_rdtscp: + return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget, + Results); + case Intrinsic::x86_rdpmc: + return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results); + + case Intrinsic::x86_xgetbv: + return getExtendedControlRegister(N, dl, DAG, Subtarget, Results); + } + } + case ISD::INTRINSIC_WO_CHAIN: { + if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)) + Results.push_back(V); + return; + } + case ISD::READCYCLECOUNTER: { + return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, + Results); + } + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { + EVT T = N->getValueType(0); + assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); + bool Regs64bit = T == MVT::i128; + MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; + SDValue cpInL, cpInH; + cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), + DAG.getConstant(0, dl, HalfT)); + cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), + DAG.getConstant(1, dl, HalfT)); + cpInL = DAG.getCopyToReg(N->getOperand(0), dl, + Regs64bit ? X86::RAX : X86::EAX, + cpInL, SDValue()); + cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, + Regs64bit ? X86::RDX : X86::EDX, + cpInH, cpInL.getValue(1)); + SDValue swapInL, swapInH; + swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), + DAG.getConstant(0, dl, HalfT)); + swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), + DAG.getConstant(1, dl, HalfT)); + swapInH = + DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX, + swapInH, cpInH.getValue(1)); + // If the current function needs the base pointer, RBX, + // we shouldn't use cmpxchg directly. + // Indeed the lowering of that instruction will clobber + // that register and since RBX will be a reserved register + // the register allocator will not make sure its value will + // be properly saved and restored around this live-range. + const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); + SDValue Result; + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + unsigned BasePtr = TRI->getBaseRegister(); + MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); + if (TRI->hasBasePointer(DAG.getMachineFunction()) && + (BasePtr == X86::RBX || BasePtr == X86::EBX)) { + // ISel prefers the LCMPXCHG64 variant. + // If that assert breaks, that means it is not the case anymore, + // and we need to teach LCMPXCHG8_SAVE_EBX_DAG how to save RBX, + // not just EBX. This is a matter of accepting i64 input for that + // pseudo, and restoring into the register of the right wide + // in expand pseudo. Everything else should just work. + assert(((Regs64bit == (BasePtr == X86::RBX)) || BasePtr == X86::EBX) && + "Saving only half of the RBX"); + unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_SAVE_RBX_DAG + : X86ISD::LCMPXCHG8_SAVE_EBX_DAG; + SDValue RBXSave = DAG.getCopyFromReg(swapInH.getValue(0), dl, + Regs64bit ? X86::RBX : X86::EBX, + HalfT, swapInH.getValue(1)); + SDValue Ops[] = {/*Chain*/ RBXSave.getValue(1), N->getOperand(1), swapInL, + RBXSave, + /*Glue*/ RBXSave.getValue(2)}; + Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO); + } else { + unsigned Opcode = + Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG; + swapInL = DAG.getCopyToReg(swapInH.getValue(0), dl, + Regs64bit ? X86::RBX : X86::EBX, swapInL, + swapInH.getValue(1)); + SDValue Ops[] = {swapInL.getValue(0), N->getOperand(1), + swapInL.getValue(1)}; + Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO); + } + SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, + Regs64bit ? X86::RAX : X86::EAX, + HalfT, Result.getValue(1)); + SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, + Regs64bit ? X86::RDX : X86::EDX, + HalfT, cpOutL.getValue(2)); + SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; + + SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS, + MVT::i32, cpOutH.getValue(2)); + SDValue Success = getSETCC(X86::COND_E, EFLAGS, dl, DAG); + Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1)); + + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF)); + Results.push_back(Success); + Results.push_back(EFLAGS.getValue(1)); + return; + } + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: + case ISD::ATOMIC_LOAD: { + // Delegate to generic TypeLegalization. Situations we can really handle + // should have already been dealt with by AtomicExpandPass.cpp. + break; + } + case ISD::BITCAST: { + assert(Subtarget.hasSSE2() && "Requires at least SSE2!"); + EVT DstVT = N->getValueType(0); + EVT SrcVT = N->getOperand(0).getValueType(); + + if (SrcVT != MVT::f64 || + (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8)) + return; + + unsigned NumElts = DstVT.getVectorNumElements(); + EVT SVT = DstVT.getVectorElementType(); + EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); + SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + MVT::v2f64, N->getOperand(0)); + SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded); + + if (ExperimentalVectorWideningLegalization) { + // If we are legalizing vectors by widening, we already have the desired + // legal vector type, just return it. + Results.push_back(ToVecInt); + return; + } + + SmallVector<SDValue, 8> Elts; + for (unsigned i = 0, e = NumElts; i != e; ++i) + Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, + ToVecInt, DAG.getIntPtrConstant(i, dl))); + + Results.push_back(DAG.getBuildVector(DstVT, dl, Elts)); + return; + } + case ISD::MGATHER: { + EVT VT = N->getValueType(0); + if (VT == MVT::v2f32 && (Subtarget.hasVLX() || !Subtarget.hasAVX512())) { + auto *Gather = cast<MaskedGatherSDNode>(N); + SDValue Index = Gather->getIndex(); + if (Index.getValueType() != MVT::v2i64) + return; + SDValue Mask = Gather->getMask(); + assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type"); + SDValue Src0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, + Gather->getValue(), + DAG.getUNDEF(MVT::v2f32)); + if (!Subtarget.hasVLX()) { + // We need to widen the mask, but the instruction will only use 2 + // of its elements. So we can use undef. + Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask, + DAG.getUNDEF(MVT::v2i1)); + Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask); + } + SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(), + Index }; + SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>( + DAG.getVTList(MVT::v4f32, Mask.getValueType(), MVT::Other), Ops, dl, + Gather->getMemoryVT(), Gather->getMemOperand()); + Results.push_back(Res); + Results.push_back(Res.getValue(2)); + return; + } + if (VT == MVT::v2i32) { + auto *Gather = cast<MaskedGatherSDNode>(N); + SDValue Index = Gather->getIndex(); + SDValue Mask = Gather->getMask(); + assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type"); + SDValue Src0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, + Gather->getValue(), + DAG.getUNDEF(MVT::v2i32)); + // If the index is v2i64 we can use it directly. + if (Index.getValueType() == MVT::v2i64 && + (Subtarget.hasVLX() || !Subtarget.hasAVX512())) { + if (!Subtarget.hasVLX()) { + // We need to widen the mask, but the instruction will only use 2 + // of its elements. So we can use undef. + Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask, + DAG.getUNDEF(MVT::v2i1)); + Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask); + } + SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(), + Index }; + SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>( + DAG.getVTList(MVT::v4i32, Mask.getValueType(), MVT::Other), Ops, dl, + Gather->getMemoryVT(), Gather->getMemOperand()); + SDValue Chain = Res.getValue(2); + if (!ExperimentalVectorWideningLegalization) + Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, + DAG.getIntPtrConstant(0, dl)); + Results.push_back(Res); + Results.push_back(Chain); + return; + } + EVT IndexVT = Index.getValueType(); + EVT NewIndexVT = EVT::getVectorVT(*DAG.getContext(), + IndexVT.getScalarType(), 4); + // Otherwise we need to custom widen everything to avoid promotion. + Index = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewIndexVT, Index, + DAG.getUNDEF(IndexVT)); + Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask, + DAG.getConstant(0, dl, MVT::v2i1)); + SDValue Ops[] = { Gather->getChain(), Src0, Mask, Gather->getBasePtr(), + Index }; + SDValue Res = DAG.getMaskedGather(DAG.getVTList(MVT::v4i32, MVT::Other), + Gather->getMemoryVT(), dl, Ops, + Gather->getMemOperand()); + SDValue Chain = Res.getValue(1); + if (!ExperimentalVectorWideningLegalization) + Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i32, Res, + DAG.getIntPtrConstant(0, dl)); + Results.push_back(Res); + Results.push_back(Chain); + return; + } + break; + } + } +} + +const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((X86ISD::NodeType)Opcode) { + case X86ISD::FIRST_NUMBER: break; + case X86ISD::BSF: return "X86ISD::BSF"; + case X86ISD::BSR: return "X86ISD::BSR"; + case X86ISD::SHLD: return "X86ISD::SHLD"; + case X86ISD::SHRD: return "X86ISD::SHRD"; + case X86ISD::FAND: return "X86ISD::FAND"; + case X86ISD::FANDN: return "X86ISD::FANDN"; + case X86ISD::FOR: return "X86ISD::FOR"; + case X86ISD::FXOR: return "X86ISD::FXOR"; + case X86ISD::FILD: return "X86ISD::FILD"; + case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; + case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; + case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; + case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; + case X86ISD::FLD: return "X86ISD::FLD"; + case X86ISD::FST: return "X86ISD::FST"; + case X86ISD::CALL: return "X86ISD::CALL"; + case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; + case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG"; + case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG"; + case X86ISD::BT: return "X86ISD::BT"; + case X86ISD::CMP: return "X86ISD::CMP"; + case X86ISD::COMI: return "X86ISD::COMI"; + case X86ISD::UCOMI: return "X86ISD::UCOMI"; + case X86ISD::CMPM: return "X86ISD::CMPM"; + case X86ISD::CMPMU: return "X86ISD::CMPMU"; + case X86ISD::CMPM_RND: return "X86ISD::CMPM_RND"; + case X86ISD::SETCC: return "X86ISD::SETCC"; + case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; + case X86ISD::FSETCC: return "X86ISD::FSETCC"; + case X86ISD::FSETCCM: return "X86ISD::FSETCCM"; + case X86ISD::FSETCCM_RND: return "X86ISD::FSETCCM_RND"; + case X86ISD::CMOV: return "X86ISD::CMOV"; + case X86ISD::BRCOND: return "X86ISD::BRCOND"; + case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; + case X86ISD::IRET: return "X86ISD::IRET"; + case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; + case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; + case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; + case X86ISD::Wrapper: return "X86ISD::Wrapper"; + case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; + case X86ISD::MOVDQ2Q: return "X86ISD::MOVDQ2Q"; + case X86ISD::MMX_MOVD2W: return "X86ISD::MMX_MOVD2W"; + case X86ISD::MMX_MOVW2D: return "X86ISD::MMX_MOVW2D"; + case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; + case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; + case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; + case X86ISD::PINSRB: return "X86ISD::PINSRB"; + case X86ISD::PINSRW: return "X86ISD::PINSRW"; + case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; + case X86ISD::ANDNP: return "X86ISD::ANDNP"; + case X86ISD::BLENDI: return "X86ISD::BLENDI"; + case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND"; + case X86ISD::ADDUS: return "X86ISD::ADDUS"; + case X86ISD::SUBUS: return "X86ISD::SUBUS"; + case X86ISD::HADD: return "X86ISD::HADD"; + case X86ISD::HSUB: return "X86ISD::HSUB"; + case X86ISD::FHADD: return "X86ISD::FHADD"; + case X86ISD::FHSUB: return "X86ISD::FHSUB"; + case X86ISD::CONFLICT: return "X86ISD::CONFLICT"; + case X86ISD::FMAX: return "X86ISD::FMAX"; + case X86ISD::FMAXS: return "X86ISD::FMAXS"; + case X86ISD::FMAX_RND: return "X86ISD::FMAX_RND"; + case X86ISD::FMAXS_RND: return "X86ISD::FMAX_RND"; + case X86ISD::FMIN: return "X86ISD::FMIN"; + case X86ISD::FMINS: return "X86ISD::FMINS"; + case X86ISD::FMIN_RND: return "X86ISD::FMIN_RND"; + case X86ISD::FMINS_RND: return "X86ISD::FMINS_RND"; + case X86ISD::FMAXC: return "X86ISD::FMAXC"; + case X86ISD::FMINC: return "X86ISD::FMINC"; + case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; + case X86ISD::FRCP: return "X86ISD::FRCP"; + case X86ISD::EXTRQI: return "X86ISD::EXTRQI"; + case X86ISD::INSERTQI: return "X86ISD::INSERTQI"; + case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; + case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR"; + case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; + case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP"; + case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP"; + case X86ISD::EH_SJLJ_SETUP_DISPATCH: + return "X86ISD::EH_SJLJ_SETUP_DISPATCH"; + case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; + case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; + case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; + case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r"; + case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; + case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; + case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG"; + case X86ISD::LCMPXCHG8_SAVE_EBX_DAG: + return "X86ISD::LCMPXCHG8_SAVE_EBX_DAG"; + case X86ISD::LCMPXCHG16_SAVE_RBX_DAG: + return "X86ISD::LCMPXCHG16_SAVE_RBX_DAG"; + case X86ISD::LADD: return "X86ISD::LADD"; + case X86ISD::LSUB: return "X86ISD::LSUB"; + case X86ISD::LOR: return "X86ISD::LOR"; + case X86ISD::LXOR: return "X86ISD::LXOR"; + case X86ISD::LAND: return "X86ISD::LAND"; + case X86ISD::LINC: return "X86ISD::LINC"; + case X86ISD::LDEC: return "X86ISD::LDEC"; + case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; + case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; + case X86ISD::VZEXT: return "X86ISD::VZEXT"; + case X86ISD::VSEXT: return "X86ISD::VSEXT"; + case X86ISD::VTRUNC: return "X86ISD::VTRUNC"; + case X86ISD::VTRUNCS: return "X86ISD::VTRUNCS"; + case X86ISD::VTRUNCUS: return "X86ISD::VTRUNCUS"; + case X86ISD::VTRUNCSTORES: return "X86ISD::VTRUNCSTORES"; + case X86ISD::VTRUNCSTOREUS: return "X86ISD::VTRUNCSTOREUS"; + case X86ISD::VMTRUNCSTORES: return "X86ISD::VMTRUNCSTORES"; + case X86ISD::VMTRUNCSTOREUS: return "X86ISD::VMTRUNCSTOREUS"; + case X86ISD::VFPEXT: return "X86ISD::VFPEXT"; + case X86ISD::VFPEXT_RND: return "X86ISD::VFPEXT_RND"; + case X86ISD::VFPEXTS_RND: return "X86ISD::VFPEXTS_RND"; + case X86ISD::VFPROUND: return "X86ISD::VFPROUND"; + case X86ISD::VFPROUND_RND: return "X86ISD::VFPROUND_RND"; + case X86ISD::VFPROUNDS_RND: return "X86ISD::VFPROUNDS_RND"; + case X86ISD::CVT2MASK: return "X86ISD::CVT2MASK"; + case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ"; + case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ"; + case X86ISD::VSHL: return "X86ISD::VSHL"; + case X86ISD::VSRL: return "X86ISD::VSRL"; + case X86ISD::VSRA: return "X86ISD::VSRA"; + case X86ISD::VSHLI: return "X86ISD::VSHLI"; + case X86ISD::VSRLI: return "X86ISD::VSRLI"; + case X86ISD::VSRAI: return "X86ISD::VSRAI"; + case X86ISD::VSRAV: return "X86ISD::VSRAV"; + case X86ISD::VROTLI: return "X86ISD::VROTLI"; + case X86ISD::VROTRI: return "X86ISD::VROTRI"; + case X86ISD::VPPERM: return "X86ISD::VPPERM"; + case X86ISD::CMPP: return "X86ISD::CMPP"; + case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ"; + case X86ISD::PCMPGT: return "X86ISD::PCMPGT"; + case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM"; + case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM"; + case X86ISD::PHMINPOS: return "X86ISD::PHMINPOS"; + case X86ISD::ADD: return "X86ISD::ADD"; + case X86ISD::SUB: return "X86ISD::SUB"; + case X86ISD::ADC: return "X86ISD::ADC"; + case X86ISD::SBB: return "X86ISD::SBB"; + case X86ISD::SMUL: return "X86ISD::SMUL"; + case X86ISD::UMUL: return "X86ISD::UMUL"; + case X86ISD::SMUL8: return "X86ISD::SMUL8"; + case X86ISD::UMUL8: return "X86ISD::UMUL8"; + case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG"; + case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG"; + case X86ISD::INC: return "X86ISD::INC"; + case X86ISD::DEC: return "X86ISD::DEC"; + case X86ISD::OR: return "X86ISD::OR"; + case X86ISD::XOR: return "X86ISD::XOR"; + case X86ISD::AND: return "X86ISD::AND"; + case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; + case X86ISD::MOVMSK: return "X86ISD::MOVMSK"; + case X86ISD::PTEST: return "X86ISD::PTEST"; + case X86ISD::TESTP: return "X86ISD::TESTP"; + case X86ISD::TESTM: return "X86ISD::TESTM"; + case X86ISD::TESTNM: return "X86ISD::TESTNM"; + case X86ISD::KORTEST: return "X86ISD::KORTEST"; + case X86ISD::KTEST: return "X86ISD::KTEST"; + case X86ISD::KSHIFTL: return "X86ISD::KSHIFTL"; + case X86ISD::KSHIFTR: return "X86ISD::KSHIFTR"; + case X86ISD::PACKSS: return "X86ISD::PACKSS"; + case X86ISD::PACKUS: return "X86ISD::PACKUS"; + case X86ISD::PALIGNR: return "X86ISD::PALIGNR"; + case X86ISD::VALIGN: return "X86ISD::VALIGN"; + case X86ISD::VSHLD: return "X86ISD::VSHLD"; + case X86ISD::VSHRD: return "X86ISD::VSHRD"; + case X86ISD::VSHLDV: return "X86ISD::VSHLDV"; + case X86ISD::VSHRDV: return "X86ISD::VSHRDV"; + case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; + case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; + case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; + case X86ISD::SHUFP: return "X86ISD::SHUFP"; + case X86ISD::SHUF128: return "X86ISD::SHUF128"; + case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS"; + case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS"; + case X86ISD::MOVLPS: return "X86ISD::MOVLPS"; + case X86ISD::MOVLPD: return "X86ISD::MOVLPD"; + case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP"; + case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP"; + case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP"; + case X86ISD::MOVSD: return "X86ISD::MOVSD"; + case X86ISD::MOVSS: return "X86ISD::MOVSS"; + case X86ISD::UNPCKL: return "X86ISD::UNPCKL"; + case X86ISD::UNPCKH: return "X86ISD::UNPCKH"; + case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST"; + case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM"; + case X86ISD::SUBV_BROADCAST: return "X86ISD::SUBV_BROADCAST"; + case X86ISD::VPERMILPV: return "X86ISD::VPERMILPV"; + case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI"; + case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128"; + case X86ISD::VPERMV: return "X86ISD::VPERMV"; + case X86ISD::VPERMV3: return "X86ISD::VPERMV3"; + case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3"; + case X86ISD::VPERMI: return "X86ISD::VPERMI"; + case X86ISD::VPTERNLOG: return "X86ISD::VPTERNLOG"; + case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM"; + case X86ISD::VFIXUPIMMS: return "X86ISD::VFIXUPIMMS"; + case X86ISD::VRANGE: return "X86ISD::VRANGE"; + case X86ISD::VRANGE_RND: return "X86ISD::VRANGE_RND"; + case X86ISD::VRANGES: return "X86ISD::VRANGES"; + case X86ISD::VRANGES_RND: return "X86ISD::VRANGES_RND"; + case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ"; + case X86ISD::PMULDQ: return "X86ISD::PMULDQ"; + case X86ISD::PSADBW: return "X86ISD::PSADBW"; + case X86ISD::DBPSADBW: return "X86ISD::DBPSADBW"; + case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; + case X86ISD::VAARG_64: return "X86ISD::VAARG_64"; + case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA"; + case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER"; + case X86ISD::MFENCE: return "X86ISD::MFENCE"; + case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA"; + case X86ISD::SAHF: return "X86ISD::SAHF"; + case X86ISD::RDRAND: return "X86ISD::RDRAND"; + case X86ISD::RDSEED: return "X86ISD::RDSEED"; + case X86ISD::VPMADDUBSW: return "X86ISD::VPMADDUBSW"; + case X86ISD::VPMADDWD: return "X86ISD::VPMADDWD"; + case X86ISD::VPSHA: return "X86ISD::VPSHA"; + case X86ISD::VPSHL: return "X86ISD::VPSHL"; + case X86ISD::VPCOM: return "X86ISD::VPCOM"; + case X86ISD::VPCOMU: return "X86ISD::VPCOMU"; + case X86ISD::VPERMIL2: return "X86ISD::VPERMIL2"; + case X86ISD::FMSUB: return "X86ISD::FMSUB"; + case X86ISD::FNMADD: return "X86ISD::FNMADD"; + case X86ISD::FNMSUB: return "X86ISD::FNMSUB"; + case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB"; + case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD"; + case X86ISD::FMADD_RND: return "X86ISD::FMADD_RND"; + case X86ISD::FNMADD_RND: return "X86ISD::FNMADD_RND"; + case X86ISD::FMSUB_RND: return "X86ISD::FMSUB_RND"; + case X86ISD::FNMSUB_RND: return "X86ISD::FNMSUB_RND"; + case X86ISD::FMADDSUB_RND: return "X86ISD::FMADDSUB_RND"; + case X86ISD::FMSUBADD_RND: return "X86ISD::FMSUBADD_RND"; + case X86ISD::FMADDS1: return "X86ISD::FMADDS1"; + case X86ISD::FNMADDS1: return "X86ISD::FNMADDS1"; + case X86ISD::FMSUBS1: return "X86ISD::FMSUBS1"; + case X86ISD::FNMSUBS1: return "X86ISD::FNMSUBS1"; + case X86ISD::FMADDS1_RND: return "X86ISD::FMADDS1_RND"; + case X86ISD::FNMADDS1_RND: return "X86ISD::FNMADDS1_RND"; + case X86ISD::FMSUBS1_RND: return "X86ISD::FMSUBS1_RND"; + case X86ISD::FNMSUBS1_RND: return "X86ISD::FNMSUBS1_RND"; + case X86ISD::FMADDS3: return "X86ISD::FMADDS3"; + case X86ISD::FNMADDS3: return "X86ISD::FNMADDS3"; + case X86ISD::FMSUBS3: return "X86ISD::FMSUBS3"; + case X86ISD::FNMSUBS3: return "X86ISD::FNMSUBS3"; + case X86ISD::FMADDS3_RND: return "X86ISD::FMADDS3_RND"; + case X86ISD::FNMADDS3_RND: return "X86ISD::FNMADDS3_RND"; + case X86ISD::FMSUBS3_RND: return "X86ISD::FMSUBS3_RND"; + case X86ISD::FNMSUBS3_RND: return "X86ISD::FNMSUBS3_RND"; + case X86ISD::FMADD4S: return "X86ISD::FMADD4S"; + case X86ISD::FNMADD4S: return "X86ISD::FNMADD4S"; + case X86ISD::FMSUB4S: return "X86ISD::FMSUB4S"; + case X86ISD::FNMSUB4S: return "X86ISD::FNMSUB4S"; + case X86ISD::VPMADD52H: return "X86ISD::VPMADD52H"; + case X86ISD::VPMADD52L: return "X86ISD::VPMADD52L"; + case X86ISD::VRNDSCALE: return "X86ISD::VRNDSCALE"; + case X86ISD::VRNDSCALE_RND: return "X86ISD::VRNDSCALE_RND"; + case X86ISD::VRNDSCALES: return "X86ISD::VRNDSCALES"; + case X86ISD::VRNDSCALES_RND: return "X86ISD::VRNDSCALES_RND"; + case X86ISD::VREDUCE: return "X86ISD::VREDUCE"; + case X86ISD::VREDUCE_RND: return "X86ISD::VREDUCE_RND"; + case X86ISD::VREDUCES: return "X86ISD::VREDUCES"; + case X86ISD::VREDUCES_RND: return "X86ISD::VREDUCES_RND"; + case X86ISD::VGETMANT: return "X86ISD::VGETMANT"; + case X86ISD::VGETMANT_RND: return "X86ISD::VGETMANT_RND"; + case X86ISD::VGETMANTS: return "X86ISD::VGETMANTS"; + case X86ISD::VGETMANTS_RND: return "X86ISD::VGETMANTS_RND"; + case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI"; + case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI"; + case X86ISD::XTEST: return "X86ISD::XTEST"; + case X86ISD::COMPRESS: return "X86ISD::COMPRESS"; + case X86ISD::EXPAND: return "X86ISD::EXPAND"; + case X86ISD::SELECT: return "X86ISD::SELECT"; + case X86ISD::SELECTS: return "X86ISD::SELECTS"; + case X86ISD::ADDSUB: return "X86ISD::ADDSUB"; + case X86ISD::RCP14: return "X86ISD::RCP14"; + case X86ISD::RCP14S: return "X86ISD::RCP14S"; + case X86ISD::RCP28: return "X86ISD::RCP28"; + case X86ISD::RCP28S: return "X86ISD::RCP28S"; + case X86ISD::EXP2: return "X86ISD::EXP2"; + case X86ISD::RSQRT14: return "X86ISD::RSQRT14"; + case X86ISD::RSQRT14S: return "X86ISD::RSQRT14S"; + case X86ISD::RSQRT28: return "X86ISD::RSQRT28"; + case X86ISD::RSQRT28S: return "X86ISD::RSQRT28S"; + case X86ISD::FADD_RND: return "X86ISD::FADD_RND"; + case X86ISD::FADDS_RND: return "X86ISD::FADDS_RND"; + case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND"; + case X86ISD::FSUBS_RND: return "X86ISD::FSUBS_RND"; + case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND"; + case X86ISD::FMULS_RND: return "X86ISD::FMULS_RND"; + case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND"; + case X86ISD::FDIVS_RND: return "X86ISD::FDIVS_RND"; + case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND"; + case X86ISD::FSQRTS_RND: return "X86ISD::FSQRTS_RND"; + case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND"; + case X86ISD::FGETEXPS_RND: return "X86ISD::FGETEXPS_RND"; + case X86ISD::SCALEF: return "X86ISD::SCALEF"; + case X86ISD::SCALEFS: return "X86ISD::SCALEFS"; + case X86ISD::ADDS: return "X86ISD::ADDS"; + case X86ISD::SUBS: return "X86ISD::SUBS"; + case X86ISD::AVG: return "X86ISD::AVG"; + case X86ISD::MULHRS: return "X86ISD::MULHRS"; + case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND"; + case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND"; + case X86ISD::CVTTP2SI: return "X86ISD::CVTTP2SI"; + case X86ISD::CVTTP2UI: return "X86ISD::CVTTP2UI"; + case X86ISD::CVTTP2SI_RND: return "X86ISD::CVTTP2SI_RND"; + case X86ISD::CVTTP2UI_RND: return "X86ISD::CVTTP2UI_RND"; + case X86ISD::CVTTS2SI_RND: return "X86ISD::CVTTS2SI_RND"; + case X86ISD::CVTTS2UI_RND: return "X86ISD::CVTTS2UI_RND"; + case X86ISD::CVTSI2P: return "X86ISD::CVTSI2P"; + case X86ISD::CVTUI2P: return "X86ISD::CVTUI2P"; + case X86ISD::VFPCLASS: return "X86ISD::VFPCLASS"; + case X86ISD::VFPCLASSS: return "X86ISD::VFPCLASSS"; + case X86ISD::MULTISHIFT: return "X86ISD::MULTISHIFT"; + case X86ISD::SCALAR_SINT_TO_FP_RND: return "X86ISD::SCALAR_SINT_TO_FP_RND"; + case X86ISD::SCALAR_UINT_TO_FP_RND: return "X86ISD::SCALAR_UINT_TO_FP_RND"; + case X86ISD::CVTPS2PH: return "X86ISD::CVTPS2PH"; + case X86ISD::CVTPH2PS: return "X86ISD::CVTPH2PS"; + case X86ISD::CVTPH2PS_RND: return "X86ISD::CVTPH2PS_RND"; + case X86ISD::CVTP2SI: return "X86ISD::CVTP2SI"; + case X86ISD::CVTP2UI: return "X86ISD::CVTP2UI"; + case X86ISD::CVTP2SI_RND: return "X86ISD::CVTP2SI_RND"; + case X86ISD::CVTP2UI_RND: return "X86ISD::CVTP2UI_RND"; + case X86ISD::CVTS2SI_RND: return "X86ISD::CVTS2SI_RND"; + case X86ISD::CVTS2UI_RND: return "X86ISD::CVTS2UI_RND"; + case X86ISD::LWPINS: return "X86ISD::LWPINS"; + case X86ISD::MGATHER: return "X86ISD::MGATHER"; + case X86ISD::MSCATTER: return "X86ISD::MSCATTER"; + case X86ISD::VPDPBUSD: return "X86ISD::VPDPBUSD"; + case X86ISD::VPDPBUSDS: return "X86ISD::VPDPBUSDS"; + case X86ISD::VPDPWSSD: return "X86ISD::VPDPWSSD"; + case X86ISD::VPDPWSSDS: return "X86ISD::VPDPWSSDS"; + case X86ISD::VPSHUFBITQMB: return "X86ISD::VPSHUFBITQMB"; + case X86ISD::GF2P8MULB: return "X86ISD::GF2P8MULB"; + case X86ISD::GF2P8AFFINEQB: return "X86ISD::GF2P8AFFINEQB"; + case X86ISD::GF2P8AFFINEINVQB: return "X86ISD::GF2P8AFFINEINVQB"; + } + return nullptr; +} + +/// Return true if the addressing mode represented by AM is legal for this +/// target, for a load/store of the specified type. +bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS, + Instruction *I) const { + // X86 supports extremely general addressing modes. + CodeModel::Model M = getTargetMachine().getCodeModel(); + + // X86 allows a sign-extended 32-bit immediate field as a displacement. + if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr)) + return false; + + if (AM.BaseGV) { + unsigned GVFlags = Subtarget.classifyGlobalReference(AM.BaseGV); + + // If a reference to this global requires an extra load, we can't fold it. + if (isGlobalStubReference(GVFlags)) + return false; + + // If BaseGV requires a register for the PIC base, we cannot also have a + // BaseReg specified. + if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) + return false; + + // If lower 4G is not available, then we must use rip-relative addressing. + if ((M != CodeModel::Small || isPositionIndependent()) && + Subtarget.is64Bit() && (AM.BaseOffs || AM.Scale > 1)) + return false; + } + + switch (AM.Scale) { + case 0: + case 1: + case 2: + case 4: + case 8: + // These scales always work. + break; + case 3: + case 5: + case 9: + // These scales are formed with basereg+scalereg. Only accept if there is + // no basereg yet. + if (AM.HasBaseReg) + return false; + break; + default: // Other stuff never works. + return false; + } + + return true; +} + +bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const { + unsigned Bits = Ty->getScalarSizeInBits(); + + // 8-bit shifts are always expensive, but versions with a scalar amount aren't + // particularly cheaper than those without. + if (Bits == 8) + return false; + + // AVX2 has vpsllv[dq] instructions (and other shifts) that make variable + // shifts just as cheap as scalar ones. + if (Subtarget.hasAVX2() && (Bits == 32 || Bits == 64)) + return false; + + // Otherwise, it's significantly cheaper to shift by a scalar amount than by a + // fully general vector. + return true; +} + +bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { + if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) + return false; + unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); + unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); + return NumBits1 > NumBits2; +} + +bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { + if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) + return false; + + if (!isTypeLegal(EVT::getEVT(Ty1))) + return false; + + assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); + + // Assuming the caller doesn't have a zeroext or signext return parameter, + // truncation all the way down to i1 is valid. + return true; +} + +bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { + return isInt<32>(Imm); +} + +bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { + // Can also use sub to handle negated immediates. + return isInt<32>(Imm); +} + +bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { + if (!VT1.isInteger() || !VT2.isInteger()) + return false; + unsigned NumBits1 = VT1.getSizeInBits(); + unsigned NumBits2 = VT2.getSizeInBits(); + return NumBits1 > NumBits2; +} + +bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { + // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. + return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget.is64Bit(); +} + +bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { + // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. + return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget.is64Bit(); +} + +bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { + EVT VT1 = Val.getValueType(); + if (isZExtFree(VT1, VT2)) + return true; + + if (Val.getOpcode() != ISD::LOAD) + return false; + + if (!VT1.isSimple() || !VT1.isInteger() || + !VT2.isSimple() || !VT2.isInteger()) + return false; + + switch (VT1.getSimpleVT().SimpleTy) { + default: break; + case MVT::i8: + case MVT::i16: + case MVT::i32: + // X86 has 8, 16, and 32-bit zero-extending loads. + return true; + } + + return false; +} + +bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; } + +bool +X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { + if (!Subtarget.hasAnyFMA()) + return false; + + VT = VT.getScalarType(); + + if (!VT.isSimple()) + return false; + + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f32: + case MVT::f64: + return true; + default: + break; + } + + return false; +} + +bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { + // i16 instructions are longer (0x66 prefix) and potentially slower. + return !(VT1 == MVT::i32 && VT2 == MVT::i16); +} + +/// Targets can use this to indicate that they only support *some* +/// VECTOR_SHUFFLE operations, those with specific masks. +/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values +/// are assumed to be legal. +bool X86TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { + if (!VT.isSimple()) + return false; + + // Not for i1 vectors + if (VT.getSimpleVT().getScalarType() == MVT::i1) + return false; + + // Very little shuffling can be done for 64-bit vectors right now. + if (VT.getSimpleVT().getSizeInBits() == 64) + return false; + + // We only care that the types being shuffled are legal. The lowering can + // handle any possible shuffle mask that results. + return isTypeLegal(VT.getSimpleVT()); +} + +bool +X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, + EVT VT) const { + // Just delegate to the generic legality, clear masks aren't special. + return isShuffleMaskLegal(Mask, VT); +} + +//===----------------------------------------------------------------------===// +// X86 Scheduler Hooks +//===----------------------------------------------------------------------===// + +/// Utility function to emit xbegin specifying the start of an RTM region. +static MachineBasicBlock *emitXBegin(MachineInstr &MI, MachineBasicBlock *MBB, + const TargetInstrInfo *TII) { + DebugLoc DL = MI.getDebugLoc(); + + const BasicBlock *BB = MBB->getBasicBlock(); + MachineFunction::iterator I = ++MBB->getIterator(); + + // For the v = xbegin(), we generate + // + // thisMBB: + // xbegin sinkMBB + // + // mainMBB: + // s0 = -1 + // + // fallBB: + // eax = # XABORT_DEF + // s1 = eax + // + // sinkMBB: + // v = phi(s0/mainBB, s1/fallBB) + + MachineBasicBlock *thisMBB = MBB; + MachineFunction *MF = MBB->getParent(); + MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); + MF->insert(I, mainMBB); + MF->insert(I, fallMBB); + MF->insert(I, sinkMBB); + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), MBB, + std::next(MachineBasicBlock::iterator(MI)), MBB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); + + MachineRegisterInfo &MRI = MF->getRegInfo(); + unsigned DstReg = MI.getOperand(0).getReg(); + const TargetRegisterClass *RC = MRI.getRegClass(DstReg); + unsigned mainDstReg = MRI.createVirtualRegister(RC); + unsigned fallDstReg = MRI.createVirtualRegister(RC); + + // thisMBB: + // xbegin fallMBB + // # fallthrough to mainMBB + // # abortion to fallMBB + BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(fallMBB); + thisMBB->addSuccessor(mainMBB); + thisMBB->addSuccessor(fallMBB); + + // mainMBB: + // mainDstReg := -1 + BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), mainDstReg).addImm(-1); + BuildMI(mainMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB); + mainMBB->addSuccessor(sinkMBB); + + // fallMBB: + // ; pseudo instruction to model hardware's definition from XABORT + // EAX := XABORT_DEF + // fallDstReg := EAX + BuildMI(fallMBB, DL, TII->get(X86::XABORT_DEF)); + BuildMI(fallMBB, DL, TII->get(TargetOpcode::COPY), fallDstReg) + .addReg(X86::EAX); + fallMBB->addSuccessor(sinkMBB); + + // sinkMBB: + // DstReg := phi(mainDstReg/mainBB, fallDstReg/fallBB) + BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), DstReg) + .addReg(mainDstReg).addMBB(mainMBB) + .addReg(fallDstReg).addMBB(fallMBB); + + MI.eraseFromParent(); + return sinkMBB; +} + +// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 +// or XMM0_V32I8 in AVX all of this code can be replaced with that +// in the .td file. +static MachineBasicBlock *emitPCMPSTRM(MachineInstr &MI, MachineBasicBlock *BB, + const TargetInstrInfo *TII) { + unsigned Opc; + switch (MI.getOpcode()) { + default: llvm_unreachable("illegal opcode!"); + case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break; + case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break; + case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break; + case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break; + case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break; + case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break; + case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break; + case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break; + } + + DebugLoc dl = MI.getDebugLoc(); + MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); + + unsigned NumArgs = MI.getNumOperands(); + for (unsigned i = 1; i < NumArgs; ++i) { + MachineOperand &Op = MI.getOperand(i); + if (!(Op.isReg() && Op.isImplicit())) + MIB.add(Op); + } + if (MI.hasOneMemOperand()) + MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); + + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg()) + .addReg(X86::XMM0); + + MI.eraseFromParent(); + return BB; +} + +// FIXME: Custom handling because TableGen doesn't support multiple implicit +// defs in an instruction pattern +static MachineBasicBlock *emitPCMPSTRI(MachineInstr &MI, MachineBasicBlock *BB, + const TargetInstrInfo *TII) { + unsigned Opc; + switch (MI.getOpcode()) { + default: llvm_unreachable("illegal opcode!"); + case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break; + case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break; + case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break; + case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break; + case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break; + case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break; + case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break; + case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break; + } + + DebugLoc dl = MI.getDebugLoc(); + MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); + + unsigned NumArgs = MI.getNumOperands(); // remove the results + for (unsigned i = 1; i < NumArgs; ++i) { + MachineOperand &Op = MI.getOperand(i); + if (!(Op.isReg() && Op.isImplicit())) + MIB.add(Op); + } + if (MI.hasOneMemOperand()) + MIB->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); + + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg()) + .addReg(X86::ECX); + + MI.eraseFromParent(); + return BB; +} + +static MachineBasicBlock *emitWRPKRU(MachineInstr &MI, MachineBasicBlock *BB, + const X86Subtarget &Subtarget) { + DebugLoc dl = MI.getDebugLoc(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + + // insert input VAL into EAX + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX) + .addReg(MI.getOperand(0).getReg()); + // insert zero to ECX + BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX); + + // insert zero to EDX + BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::EDX); + + // insert WRPKRU instruction + BuildMI(*BB, MI, dl, TII->get(X86::WRPKRUr)); + + MI.eraseFromParent(); // The pseudo is gone now. + return BB; +} + +static MachineBasicBlock *emitRDPKRU(MachineInstr &MI, MachineBasicBlock *BB, + const X86Subtarget &Subtarget) { + DebugLoc dl = MI.getDebugLoc(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + + // insert zero to ECX + BuildMI(*BB, MI, dl, TII->get(X86::MOV32r0), X86::ECX); + + // insert RDPKRU instruction + BuildMI(*BB, MI, dl, TII->get(X86::RDPKRUr)); + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg()) + .addReg(X86::EAX); + + MI.eraseFromParent(); // The pseudo is gone now. + return BB; +} + +static MachineBasicBlock *emitMonitor(MachineInstr &MI, MachineBasicBlock *BB, + const X86Subtarget &Subtarget, + unsigned Opc) { + DebugLoc dl = MI.getDebugLoc(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + // Address into RAX/EAX, other two args into ECX, EDX. + unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r; + unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; + MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); + for (int i = 0; i < X86::AddrNumOperands; ++i) + MIB.add(MI.getOperand(i)); + + unsigned ValOps = X86::AddrNumOperands; + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) + .addReg(MI.getOperand(ValOps).getReg()); + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) + .addReg(MI.getOperand(ValOps + 1).getReg()); + + // The instruction doesn't actually take any operands though. + BuildMI(*BB, MI, dl, TII->get(Opc)); + + MI.eraseFromParent(); // The pseudo is gone now. + return BB; +} + +static MachineBasicBlock *emitClzero(MachineInstr *MI, MachineBasicBlock *BB, + const X86Subtarget &Subtarget) { + DebugLoc dl = MI->getDebugLoc(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + // Address into RAX/EAX + unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r; + unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX; + MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); + for (int i = 0; i < X86::AddrNumOperands; ++i) + MIB.add(MI->getOperand(i)); + + // The instruction doesn't actually take any operands though. + BuildMI(*BB, MI, dl, TII->get(X86::CLZEROr)); + + MI->eraseFromParent(); // The pseudo is gone now. + return BB; +} + + + +MachineBasicBlock * +X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr &MI, + MachineBasicBlock *MBB) const { + // Emit va_arg instruction on X86-64. + + // Operands to this pseudo-instruction: + // 0 ) Output : destination address (reg) + // 1-5) Input : va_list address (addr, i64mem) + // 6 ) ArgSize : Size (in bytes) of vararg type + // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset + // 8 ) Align : Alignment of type + // 9 ) EFLAGS (implicit-def) + + assert(MI.getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); + static_assert(X86::AddrNumOperands == 5, + "VAARG_64 assumes 5 address operands"); + + unsigned DestReg = MI.getOperand(0).getReg(); + MachineOperand &Base = MI.getOperand(1); + MachineOperand &Scale = MI.getOperand(2); + MachineOperand &Index = MI.getOperand(3); + MachineOperand &Disp = MI.getOperand(4); + MachineOperand &Segment = MI.getOperand(5); + unsigned ArgSize = MI.getOperand(6).getImm(); + unsigned ArgMode = MI.getOperand(7).getImm(); + unsigned Align = MI.getOperand(8).getImm(); + + // Memory Reference + assert(MI.hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); + MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); + + // Machine Information + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); + const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); + DebugLoc DL = MI.getDebugLoc(); + + // struct va_list { + // i32 gp_offset + // i32 fp_offset + // i64 overflow_area (address) + // i64 reg_save_area (address) + // } + // sizeof(va_list) = 24 + // alignment(va_list) = 8 + + unsigned TotalNumIntRegs = 6; + unsigned TotalNumXMMRegs = 8; + bool UseGPOffset = (ArgMode == 1); + bool UseFPOffset = (ArgMode == 2); + unsigned MaxOffset = TotalNumIntRegs * 8 + + (UseFPOffset ? TotalNumXMMRegs * 16 : 0); + + /* Align ArgSize to a multiple of 8 */ + unsigned ArgSizeA8 = (ArgSize + 7) & ~7; + bool NeedsAlign = (Align > 8); + + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *overflowMBB; + MachineBasicBlock *offsetMBB; + MachineBasicBlock *endMBB; + + unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB + unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB + unsigned OffsetReg = 0; + + if (!UseGPOffset && !UseFPOffset) { + // If we only pull from the overflow region, we don't create a branch. + // We don't need to alter control flow. + OffsetDestReg = 0; // unused + OverflowDestReg = DestReg; + + offsetMBB = nullptr; + overflowMBB = thisMBB; + endMBB = thisMBB; + } else { + // First emit code to check if gp_offset (or fp_offset) is below the bound. + // If so, pull the argument from reg_save_area. (branch to offsetMBB) + // If not, pull from overflow_area. (branch to overflowMBB) + // + // thisMBB + // | . + // | . + // offsetMBB overflowMBB + // | . + // | . + // endMBB + + // Registers for the PHI in endMBB + OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); + OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); + + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction *MF = MBB->getParent(); + overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); + offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); + endMBB = MF->CreateMachineBasicBlock(LLVM_BB); + + MachineFunction::iterator MBBIter = ++MBB->getIterator(); + + // Insert the new basic blocks + MF->insert(MBBIter, offsetMBB); + MF->insert(MBBIter, overflowMBB); + MF->insert(MBBIter, endMBB); + + // Transfer the remainder of MBB and its successor edges to endMBB. + endMBB->splice(endMBB->begin(), thisMBB, + std::next(MachineBasicBlock::iterator(MI)), thisMBB->end()); + endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); + + // Make offsetMBB and overflowMBB successors of thisMBB + thisMBB->addSuccessor(offsetMBB); + thisMBB->addSuccessor(overflowMBB); + + // endMBB is a successor of both offsetMBB and overflowMBB + offsetMBB->addSuccessor(endMBB); + overflowMBB->addSuccessor(endMBB); + + // Load the offset value into a register + OffsetReg = MRI.createVirtualRegister(OffsetRegClass); + BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) + .add(Base) + .add(Scale) + .add(Index) + .addDisp(Disp, UseFPOffset ? 4 : 0) + .add(Segment) + .setMemRefs(MMOBegin, MMOEnd); + + // Check if there is enough room left to pull this argument. + BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) + .addReg(OffsetReg) + .addImm(MaxOffset + 8 - ArgSizeA8); + + // Branch to "overflowMBB" if offset >= max + // Fall through to "offsetMBB" otherwise + BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) + .addMBB(overflowMBB); + } + + // In offsetMBB, emit code to use the reg_save_area. + if (offsetMBB) { + assert(OffsetReg != 0); + + // Read the reg_save_area address. + unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); + BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) + .add(Base) + .add(Scale) + .add(Index) + .addDisp(Disp, 16) + .add(Segment) + .setMemRefs(MMOBegin, MMOEnd); + + // Zero-extend the offset + unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); + BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) + .addImm(0) + .addReg(OffsetReg) + .addImm(X86::sub_32bit); + + // Add the offset to the reg_save_area to get the final address. + BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) + .addReg(OffsetReg64) + .addReg(RegSaveReg); + + // Compute the offset for the next argument + unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); + BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) + .addReg(OffsetReg) + .addImm(UseFPOffset ? 16 : 8); + + // Store it back into the va_list. + BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) + .add(Base) + .add(Scale) + .add(Index) + .addDisp(Disp, UseFPOffset ? 4 : 0) + .add(Segment) + .addReg(NextOffsetReg) + .setMemRefs(MMOBegin, MMOEnd); + + // Jump to endMBB + BuildMI(offsetMBB, DL, TII->get(X86::JMP_1)) + .addMBB(endMBB); + } + + // + // Emit code to use overflow area + // + + // Load the overflow_area address into a register. + unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); + BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) + .add(Base) + .add(Scale) + .add(Index) + .addDisp(Disp, 8) + .add(Segment) + .setMemRefs(MMOBegin, MMOEnd); + + // If we need to align it, do so. Otherwise, just copy the address + // to OverflowDestReg. + if (NeedsAlign) { + // Align the overflow address + assert(isPowerOf2_32(Align) && "Alignment must be a power of 2"); + unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); + + // aligned_addr = (addr + (align-1)) & ~(align-1) + BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) + .addReg(OverflowAddrReg) + .addImm(Align-1); + + BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) + .addReg(TmpReg) + .addImm(~(uint64_t)(Align-1)); + } else { + BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) + .addReg(OverflowAddrReg); + } + + // Compute the next overflow address after this argument. + // (the overflow address should be kept 8-byte aligned) + unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); + BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) + .addReg(OverflowDestReg) + .addImm(ArgSizeA8); + + // Store the new overflow address. + BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) + .add(Base) + .add(Scale) + .add(Index) + .addDisp(Disp, 8) + .add(Segment) + .addReg(NextAddrReg) + .setMemRefs(MMOBegin, MMOEnd); + + // If we branched, emit the PHI to the front of endMBB. + if (offsetMBB) { + BuildMI(*endMBB, endMBB->begin(), DL, + TII->get(X86::PHI), DestReg) + .addReg(OffsetDestReg).addMBB(offsetMBB) + .addReg(OverflowDestReg).addMBB(overflowMBB); + } + + // Erase the pseudo instruction + MI.eraseFromParent(); + + return endMBB; +} + +MachineBasicBlock *X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( + MachineInstr &MI, MachineBasicBlock *MBB) const { + // Emit code to save XMM registers to the stack. The ABI says that the + // number of registers to save is given in %al, so it's theoretically + // possible to do an indirect jump trick to avoid saving all of them, + // however this code takes a simpler approach and just executes all + // of the stores if %al is non-zero. It's less code, and it's probably + // easier on the hardware branch predictor, and stores aren't all that + // expensive anyway. + + // Create the new basic blocks. One block contains all the XMM stores, + // and one block is the final destination regardless of whether any + // stores were performed. + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction *F = MBB->getParent(); + MachineFunction::iterator MBBIter = ++MBB->getIterator(); + MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, XMMSaveMBB); + F->insert(MBBIter, EndMBB); + + // Transfer the remainder of MBB and its successor edges to EndMBB. + EndMBB->splice(EndMBB->begin(), MBB, + std::next(MachineBasicBlock::iterator(MI)), MBB->end()); + EndMBB->transferSuccessorsAndUpdatePHIs(MBB); + + // The original block will now fall through to the XMM save block. + MBB->addSuccessor(XMMSaveMBB); + // The XMMSaveMBB will fall through to the end block. + XMMSaveMBB->addSuccessor(EndMBB); + + // Now add the instructions. + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + unsigned CountReg = MI.getOperand(0).getReg(); + int64_t RegSaveFrameIndex = MI.getOperand(1).getImm(); + int64_t VarArgsFPOffset = MI.getOperand(2).getImm(); + + if (!Subtarget.isCallingConvWin64(F->getFunction().getCallingConv())) { + // If %al is 0, branch around the XMM save block. + BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); + BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB); + MBB->addSuccessor(EndMBB); + } + + // Make sure the last operand is EFLAGS, which gets clobbered by the branch + // that was just emitted, but clearly shouldn't be "saved". + assert((MI.getNumOperands() <= 3 || + !MI.getOperand(MI.getNumOperands() - 1).isReg() || + MI.getOperand(MI.getNumOperands() - 1).getReg() == X86::EFLAGS) && + "Expected last argument to be EFLAGS"); + unsigned MOVOpc = Subtarget.hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr; + // In the XMM save block, save all the XMM argument registers. + for (int i = 3, e = MI.getNumOperands() - 1; i != e; ++i) { + int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; + MachineMemOperand *MMO = F->getMachineMemOperand( + MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset), + MachineMemOperand::MOStore, + /*Size=*/16, /*Align=*/16); + BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) + .addFrameIndex(RegSaveFrameIndex) + .addImm(/*Scale=*/1) + .addReg(/*IndexReg=*/0) + .addImm(/*Disp=*/Offset) + .addReg(/*Segment=*/0) + .addReg(MI.getOperand(i).getReg()) + .addMemOperand(MMO); + } + + MI.eraseFromParent(); // The pseudo instruction is gone now. + + return EndMBB; +} + +// The EFLAGS operand of SelectItr might be missing a kill marker +// because there were multiple uses of EFLAGS, and ISel didn't know +// which to mark. Figure out whether SelectItr should have had a +// kill marker, and set it if it should. Returns the correct kill +// marker value. +static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, + MachineBasicBlock* BB, + const TargetRegisterInfo* TRI) { + // Scan forward through BB for a use/def of EFLAGS. + MachineBasicBlock::iterator miI(std::next(SelectItr)); + for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { + const MachineInstr& mi = *miI; + if (mi.readsRegister(X86::EFLAGS)) + return false; + if (mi.definesRegister(X86::EFLAGS)) + break; // Should have kill-flag - update below. + } + + // If we hit the end of the block, check whether EFLAGS is live into a + // successor. + if (miI == BB->end()) { + for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), + sEnd = BB->succ_end(); + sItr != sEnd; ++sItr) { + MachineBasicBlock* succ = *sItr; + if (succ->isLiveIn(X86::EFLAGS)) + return false; + } + } + + // We found a def, or hit the end of the basic block and EFLAGS wasn't live + // out. SelectMI should have a kill flag on EFLAGS. + SelectItr->addRegisterKilled(X86::EFLAGS, TRI); + return true; +} + +// Return true if it is OK for this CMOV pseudo-opcode to be cascaded +// together with other CMOV pseudo-opcodes into a single basic-block with +// conditional jump around it. +static bool isCMOVPseudo(MachineInstr &MI) { + switch (MI.getOpcode()) { + case X86::CMOV_FR32: + case X86::CMOV_FR64: + case X86::CMOV_GR8: + case X86::CMOV_GR16: + case X86::CMOV_GR32: + case X86::CMOV_RFP32: + case X86::CMOV_RFP64: + case X86::CMOV_RFP80: + case X86::CMOV_V2F64: + case X86::CMOV_V2I64: + case X86::CMOV_V4F32: + case X86::CMOV_V4F64: + case X86::CMOV_V4I64: + case X86::CMOV_V16F32: + case X86::CMOV_V8F32: + case X86::CMOV_V8F64: + case X86::CMOV_V8I64: + case X86::CMOV_V8I1: + case X86::CMOV_V16I1: + case X86::CMOV_V32I1: + case X86::CMOV_V64I1: + return true; + + default: + return false; + } +} + +// Helper function, which inserts PHI functions into SinkMBB: +// %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], +// where %FalseValue(i) and %TrueValue(i) are taken from the consequent CMOVs +// in [MIItBegin, MIItEnd) range. It returns the last MachineInstrBuilder for +// the last PHI function inserted. +static MachineInstrBuilder createPHIsForCMOVsInSinkBB( + MachineBasicBlock::iterator MIItBegin, MachineBasicBlock::iterator MIItEnd, + MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB, + MachineBasicBlock *SinkMBB) { + MachineFunction *MF = TrueMBB->getParent(); + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + DebugLoc DL = MIItBegin->getDebugLoc(); + + X86::CondCode CC = X86::CondCode(MIItBegin->getOperand(3).getImm()); + X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); + + MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); + + // As we are creating the PHIs, we have to be careful if there is more than + // one. Later CMOVs may reference the results of earlier CMOVs, but later + // PHIs have to reference the individual true/false inputs from earlier PHIs. + // That also means that PHI construction must work forward from earlier to + // later, and that the code must maintain a mapping from earlier PHI's + // destination registers, and the registers that went into the PHI. + DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; + MachineInstrBuilder MIB; + + for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { + unsigned DestReg = MIIt->getOperand(0).getReg(); + unsigned Op1Reg = MIIt->getOperand(1).getReg(); + unsigned Op2Reg = MIIt->getOperand(2).getReg(); + + // If this CMOV we are generating is the opposite condition from + // the jump we generated, then we have to swap the operands for the + // PHI that is going to be generated. + if (MIIt->getOperand(3).getImm() == OppCC) + std::swap(Op1Reg, Op2Reg); + + if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end()) + Op1Reg = RegRewriteTable[Op1Reg].first; + + if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end()) + Op2Reg = RegRewriteTable[Op2Reg].second; + + MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg) + .addReg(Op1Reg) + .addMBB(FalseMBB) + .addReg(Op2Reg) + .addMBB(TrueMBB); + + // Add this PHI to the rewrite table. + RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); + } + + return MIB; +} + +// Lower cascaded selects in form of (SecondCmov (FirstCMOV F, T, cc1), T, cc2). +MachineBasicBlock * +X86TargetLowering::EmitLoweredCascadedSelect(MachineInstr &FirstCMOV, + MachineInstr &SecondCascadedCMOV, + MachineBasicBlock *ThisMBB) const { + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = FirstCMOV.getDebugLoc(); + + // We lower cascaded CMOVs such as + // + // (SecondCascadedCMOV (FirstCMOV F, T, cc1), T, cc2) + // + // to two successive branches. + // + // Without this, we would add a PHI between the two jumps, which ends up + // creating a few copies all around. For instance, for + // + // (sitofp (zext (fcmp une))) + // + // we would generate: + // + // ucomiss %xmm1, %xmm0 + // movss <1.0f>, %xmm0 + // movaps %xmm0, %xmm1 + // jne .LBB5_2 + // xorps %xmm1, %xmm1 + // .LBB5_2: + // jp .LBB5_4 + // movaps %xmm1, %xmm0 + // .LBB5_4: + // retq + // + // because this custom-inserter would have generated: + // + // A + // | \ + // | B + // | / + // C + // | \ + // | D + // | / + // E + // + // A: X = ...; Y = ... + // B: empty + // C: Z = PHI [X, A], [Y, B] + // D: empty + // E: PHI [X, C], [Z, D] + // + // If we lower both CMOVs in a single step, we can instead generate: + // + // A + // | \ + // | C + // | /| + // |/ | + // | | + // | D + // | / + // E + // + // A: X = ...; Y = ... + // D: empty + // E: PHI [X, A], [X, C], [Y, D] + // + // Which, in our sitofp/fcmp example, gives us something like: + // + // ucomiss %xmm1, %xmm0 + // movss <1.0f>, %xmm0 + // jne .LBB5_4 + // jp .LBB5_4 + // xorps %xmm0, %xmm0 + // .LBB5_4: + // retq + // + + // We lower cascaded CMOV into two successive branches to the same block. + // EFLAGS is used by both, so mark it as live in the second. + const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); + MachineFunction *F = ThisMBB->getParent(); + MachineBasicBlock *FirstInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *SecondInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + + MachineFunction::iterator It = ++ThisMBB->getIterator(); + F->insert(It, FirstInsertedMBB); + F->insert(It, SecondInsertedMBB); + F->insert(It, SinkMBB); + + // For a cascaded CMOV, we lower it to two successive branches to + // the same block (SinkMBB). EFLAGS is used by both, so mark it as live in + // the FirstInsertedMBB. + FirstInsertedMBB->addLiveIn(X86::EFLAGS); + + // If the EFLAGS register isn't dead in the terminator, then claim that it's + // live into the sink and copy blocks. + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + if (!SecondCascadedCMOV.killsRegister(X86::EFLAGS) && + !checkAndUpdateEFLAGSKill(SecondCascadedCMOV, ThisMBB, TRI)) { + SecondInsertedMBB->addLiveIn(X86::EFLAGS); + SinkMBB->addLiveIn(X86::EFLAGS); + } + + // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. + SinkMBB->splice(SinkMBB->begin(), ThisMBB, + std::next(MachineBasicBlock::iterator(FirstCMOV)), + ThisMBB->end()); + SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); + + // Fallthrough block for ThisMBB. + ThisMBB->addSuccessor(FirstInsertedMBB); + // The true block target of the first branch is always SinkMBB. + ThisMBB->addSuccessor(SinkMBB); + // Fallthrough block for FirstInsertedMBB. + FirstInsertedMBB->addSuccessor(SecondInsertedMBB); + // The true block for the branch of FirstInsertedMBB. + FirstInsertedMBB->addSuccessor(SinkMBB); + // This is fallthrough. + SecondInsertedMBB->addSuccessor(SinkMBB); + + // Create the conditional branch instructions. + X86::CondCode FirstCC = X86::CondCode(FirstCMOV.getOperand(3).getImm()); + unsigned Opc = X86::GetCondBranchFromCond(FirstCC); + BuildMI(ThisMBB, DL, TII->get(Opc)).addMBB(SinkMBB); + + X86::CondCode SecondCC = + X86::CondCode(SecondCascadedCMOV.getOperand(3).getImm()); + unsigned Opc2 = X86::GetCondBranchFromCond(SecondCC); + BuildMI(FirstInsertedMBB, DL, TII->get(Opc2)).addMBB(SinkMBB); + + // SinkMBB: + // %Result = phi [ %FalseValue, SecondInsertedMBB ], [ %TrueValue, ThisMBB ] + unsigned DestReg = FirstCMOV.getOperand(0).getReg(); + unsigned Op1Reg = FirstCMOV.getOperand(1).getReg(); + unsigned Op2Reg = FirstCMOV.getOperand(2).getReg(); + MachineInstrBuilder MIB = + BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(X86::PHI), DestReg) + .addReg(Op1Reg) + .addMBB(SecondInsertedMBB) + .addReg(Op2Reg) + .addMBB(ThisMBB); + + // The second SecondInsertedMBB provides the same incoming value as the + // FirstInsertedMBB (the True operand of the SELECT_CC/CMOV nodes). + MIB.addReg(FirstCMOV.getOperand(2).getReg()).addMBB(FirstInsertedMBB); + // Copy the PHI result to the register defined by the second CMOV. + BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), DL, + TII->get(TargetOpcode::COPY), + SecondCascadedCMOV.getOperand(0).getReg()) + .addReg(FirstCMOV.getOperand(0).getReg()); + + // Now remove the CMOVs. + FirstCMOV.eraseFromParent(); + SecondCascadedCMOV.eraseFromParent(); + + return SinkMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredSelect(MachineInstr &MI, + MachineBasicBlock *ThisMBB) const { + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + // To "insert" a SELECT_CC instruction, we actually have to insert the + // diamond control-flow pattern. The incoming instruction knows the + // destination vreg to set, the condition code register to branch on, the + // true/false values to select between and a branch opcode to use. + + // ThisMBB: + // ... + // TrueVal = ... + // cmpTY ccX, r1, r2 + // bCC copy1MBB + // fallthrough --> FalseMBB + + // This code lowers all pseudo-CMOV instructions. Generally it lowers these + // as described above, by inserting a BB, and then making a PHI at the join + // point to select the true and false operands of the CMOV in the PHI. + // + // The code also handles two different cases of multiple CMOV opcodes + // in a row. + // + // Case 1: + // In this case, there are multiple CMOVs in a row, all which are based on + // the same condition setting (or the exact opposite condition setting). + // In this case we can lower all the CMOVs using a single inserted BB, and + // then make a number of PHIs at the join point to model the CMOVs. The only + // trickiness here, is that in a case like: + // + // t2 = CMOV cond1 t1, f1 + // t3 = CMOV cond1 t2, f2 + // + // when rewriting this into PHIs, we have to perform some renaming on the + // temps since you cannot have a PHI operand refer to a PHI result earlier + // in the same block. The "simple" but wrong lowering would be: + // + // t2 = PHI t1(BB1), f1(BB2) + // t3 = PHI t2(BB1), f2(BB2) + // + // but clearly t2 is not defined in BB1, so that is incorrect. The proper + // renaming is to note that on the path through BB1, t2 is really just a + // copy of t1, and do that renaming, properly generating: + // + // t2 = PHI t1(BB1), f1(BB2) + // t3 = PHI t1(BB1), f2(BB2) + // + // Case 2: + // CMOV ((CMOV F, T, cc1), T, cc2) is checked here and handled by a separate + // function - EmitLoweredCascadedSelect. + + X86::CondCode CC = X86::CondCode(MI.getOperand(3).getImm()); + X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); + MachineInstr *LastCMOV = &MI; + MachineBasicBlock::iterator NextMIIt = + std::next(MachineBasicBlock::iterator(MI)); + + // Check for case 1, where there are multiple CMOVs with the same condition + // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the + // number of jumps the most. + + if (isCMOVPseudo(MI)) { + // See if we have a string of CMOVS with the same condition. + while (NextMIIt != ThisMBB->end() && isCMOVPseudo(*NextMIIt) && + (NextMIIt->getOperand(3).getImm() == CC || + NextMIIt->getOperand(3).getImm() == OppCC)) { + LastCMOV = &*NextMIIt; + ++NextMIIt; + } + } + + // This checks for case 2, but only do this if we didn't already find + // case 1, as indicated by LastCMOV == MI. + if (LastCMOV == &MI && NextMIIt != ThisMBB->end() && + NextMIIt->getOpcode() == MI.getOpcode() && + NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() && + NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() && + NextMIIt->getOperand(1).isKill()) { + return EmitLoweredCascadedSelect(MI, *NextMIIt, ThisMBB); + } + + const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); + MachineFunction *F = ThisMBB->getParent(); + MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + + MachineFunction::iterator It = ++ThisMBB->getIterator(); + F->insert(It, FalseMBB); + F->insert(It, SinkMBB); + + // If the EFLAGS register isn't dead in the terminator, then claim that it's + // live into the sink and copy blocks. + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + if (!LastCMOV->killsRegister(X86::EFLAGS) && + !checkAndUpdateEFLAGSKill(LastCMOV, ThisMBB, TRI)) { + FalseMBB->addLiveIn(X86::EFLAGS); + SinkMBB->addLiveIn(X86::EFLAGS); + } + + // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. + SinkMBB->splice(SinkMBB->begin(), ThisMBB, + std::next(MachineBasicBlock::iterator(LastCMOV)), + ThisMBB->end()); + SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); + + // Fallthrough block for ThisMBB. + ThisMBB->addSuccessor(FalseMBB); + // The true block target of the first (or only) branch is always a SinkMBB. + ThisMBB->addSuccessor(SinkMBB); + // Fallthrough block for FalseMBB. + FalseMBB->addSuccessor(SinkMBB); + + // Create the conditional branch instruction. + unsigned Opc = X86::GetCondBranchFromCond(CC); + BuildMI(ThisMBB, DL, TII->get(Opc)).addMBB(SinkMBB); + + // SinkMBB: + // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, ThisMBB ] + // ... + MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); + MachineBasicBlock::iterator MIItEnd = + std::next(MachineBasicBlock::iterator(LastCMOV)); + createPHIsForCMOVsInSinkBB(MIItBegin, MIItEnd, ThisMBB, FalseMBB, SinkMBB); + + // Now remove the CMOV(s). + ThisMBB->erase(MIItBegin, MIItEnd); + + return SinkMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredAtomicFP(MachineInstr &MI, + MachineBasicBlock *BB) const { + // Combine the following atomic floating-point modification pattern: + // a.store(reg OP a.load(acquire), release) + // Transform them into: + // OPss (%gpr), %xmm + // movss %xmm, (%gpr) + // Or sd equivalent for 64-bit operations. + unsigned MOp, FOp; + switch (MI.getOpcode()) { + default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP"); + case X86::RELEASE_FADD32mr: + FOp = X86::ADDSSrm; + MOp = X86::MOVSSmr; + break; + case X86::RELEASE_FADD64mr: + FOp = X86::ADDSDrm; + MOp = X86::MOVSDmr; + break; + } + const X86InstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + unsigned ValOpIdx = X86::AddrNumOperands; + unsigned VSrc = MI.getOperand(ValOpIdx).getReg(); + MachineInstrBuilder MIB = + BuildMI(*BB, MI, DL, TII->get(FOp), + MRI.createVirtualRegister(MRI.getRegClass(VSrc))) + .addReg(VSrc); + for (int i = 0; i < X86::AddrNumOperands; ++i) { + MachineOperand &Operand = MI.getOperand(i); + // Clear any kill flags on register operands as we'll create a second + // instruction using the same address operands. + if (Operand.isReg()) + Operand.setIsKill(false); + MIB.add(Operand); + } + MachineInstr *FOpMI = MIB; + MIB = BuildMI(*BB, MI, DL, TII->get(MOp)); + for (int i = 0; i < X86::AddrNumOperands; ++i) + MIB.add(MI.getOperand(i)); + MIB.addReg(FOpMI->getOperand(0).getReg(), RegState::Kill); + MI.eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredSegAlloca(MachineInstr &MI, + MachineBasicBlock *BB) const { + MachineFunction *MF = BB->getParent(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + + assert(MF->shouldSplitStack()); + + const bool Is64Bit = Subtarget.is64Bit(); + const bool IsLP64 = Subtarget.isTarget64BitLP64(); + + const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; + const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30; + + // BB: + // ... [Till the alloca] + // If stacklet is not large enough, jump to mallocMBB + // + // bumpMBB: + // Allocate by subtracting from RSP + // Jump to continueMBB + // + // mallocMBB: + // Allocate by call to runtime + // + // continueMBB: + // ... + // [rest of original BB] + // + + MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); + + MachineRegisterInfo &MRI = MF->getRegInfo(); + const TargetRegisterClass *AddrRegClass = + getRegClassFor(getPointerTy(MF->getDataLayout())); + + unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), + bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), + tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), + SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), + sizeVReg = MI.getOperand(1).getReg(), + physSPReg = + IsLP64 || Subtarget.isTargetNaCl64() ? X86::RSP : X86::ESP; + + MachineFunction::iterator MBBIter = ++BB->getIterator(); + + MF->insert(MBBIter, bumpMBB); + MF->insert(MBBIter, mallocMBB); + MF->insert(MBBIter, continueMBB); + + continueMBB->splice(continueMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + continueMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Add code to the main basic block to check if the stack limit has been hit, + // and if so, jump to mallocMBB otherwise to bumpMBB. + BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); + BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) + .addReg(tmpSPVReg).addReg(sizeVReg); + BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr)) + .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) + .addReg(SPLimitVReg); + BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB); + + // bumpMBB simply decreases the stack pointer, since we know the current + // stacklet has enough space. + BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) + .addReg(SPLimitVReg); + BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) + .addReg(SPLimitVReg); + BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); + + // Calls into a routine in libgcc to allocate more space from the heap. + const uint32_t *RegMask = + Subtarget.getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C); + if (IsLP64) { + BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) + .addReg(sizeVReg); + BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) + .addExternalSymbol("__morestack_allocate_stack_space") + .addRegMask(RegMask) + .addReg(X86::RDI, RegState::Implicit) + .addReg(X86::RAX, RegState::ImplicitDefine); + } else if (Is64Bit) { + BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI) + .addReg(sizeVReg); + BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) + .addExternalSymbol("__morestack_allocate_stack_space") + .addRegMask(RegMask) + .addReg(X86::EDI, RegState::Implicit) + .addReg(X86::EAX, RegState::ImplicitDefine); + } else { + BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) + .addImm(12); + BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); + BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) + .addExternalSymbol("__morestack_allocate_stack_space") + .addRegMask(RegMask) + .addReg(X86::EAX, RegState::ImplicitDefine); + } + + if (!Is64Bit) + BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) + .addImm(16); + + BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) + .addReg(IsLP64 ? X86::RAX : X86::EAX); + BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); + + // Set up the CFG correctly. + BB->addSuccessor(bumpMBB); + BB->addSuccessor(mallocMBB); + mallocMBB->addSuccessor(continueMBB); + bumpMBB->addSuccessor(continueMBB); + + // Take care of the PHI nodes. + BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), + MI.getOperand(0).getReg()) + .addReg(mallocPtrVReg) + .addMBB(mallocMBB) + .addReg(bumpSPPtrVReg) + .addMBB(bumpMBB); + + // Delete the original pseudo instruction. + MI.eraseFromParent(); + + // And we're done. + return continueMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredCatchRet(MachineInstr &MI, + MachineBasicBlock *BB) const { + MachineFunction *MF = BB->getParent(); + const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); + MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB(); + DebugLoc DL = MI.getDebugLoc(); + + assert(!isAsynchronousEHPersonality( + classifyEHPersonality(MF->getFunction().getPersonalityFn())) && + "SEH does not use catchret!"); + + // Only 32-bit EH needs to worry about manually restoring stack pointers. + if (!Subtarget.is32Bit()) + return BB; + + // C++ EH creates a new target block to hold the restore code, and wires up + // the new block to the return destination with a normal JMP_4. + MachineBasicBlock *RestoreMBB = + MF->CreateMachineBasicBlock(BB->getBasicBlock()); + assert(BB->succ_size() == 1); + MF->insert(std::next(BB->getIterator()), RestoreMBB); + RestoreMBB->transferSuccessorsAndUpdatePHIs(BB); + BB->addSuccessor(RestoreMBB); + MI.getOperand(0).setMBB(RestoreMBB); + + auto RestoreMBBI = RestoreMBB->begin(); + BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE)); + BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB); + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredCatchPad(MachineInstr &MI, + MachineBasicBlock *BB) const { + MachineFunction *MF = BB->getParent(); + const Constant *PerFn = MF->getFunction().getPersonalityFn(); + bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn)); + // Only 32-bit SEH requires special handling for catchpad. + if (IsSEH && Subtarget.is32Bit()) { + const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE)); + } + MI.eraseFromParent(); + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredTLSAddr(MachineInstr &MI, + MachineBasicBlock *BB) const { + // So, here we replace TLSADDR with the sequence: + // adjust_stackdown -> TLSADDR -> adjust_stackup. + // We need this because TLSADDR is lowered into calls + // inside MC, therefore without the two markers shrink-wrapping + // may push the prologue/epilogue pass them. + const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + MachineFunction &MF = *BB->getParent(); + + // Emit CALLSEQ_START right before the instruction. + unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); + MachineInstrBuilder CallseqStart = + BuildMI(MF, DL, TII.get(AdjStackDown)).addImm(0).addImm(0).addImm(0); + BB->insert(MachineBasicBlock::iterator(MI), CallseqStart); + + // Emit CALLSEQ_END right after the instruction. + // We don't call erase from parent because we want to keep the + // original instruction around. + unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); + MachineInstrBuilder CallseqEnd = + BuildMI(MF, DL, TII.get(AdjStackUp)).addImm(0).addImm(0); + BB->insertAfter(MachineBasicBlock::iterator(MI), CallseqEnd); + + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredTLSCall(MachineInstr &MI, + MachineBasicBlock *BB) const { + // This is pretty easy. We're taking the value that we received from + // our load from the relocation, sticking it in either RDI (x86-64) + // or EAX and doing an indirect call. The return value will then + // be in the normal return register. + MachineFunction *F = BB->getParent(); + const X86InstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + assert(Subtarget.isTargetDarwin() && "Darwin only instr emitted?"); + assert(MI.getOperand(3).isGlobal() && "This should be a global"); + + // Get a register mask for the lowered call. + // FIXME: The 32-bit calls have non-standard calling conventions. Use a + // proper register mask. + const uint32_t *RegMask = + Subtarget.is64Bit() ? + Subtarget.getRegisterInfo()->getDarwinTLSCallPreservedMask() : + Subtarget.getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C); + if (Subtarget.is64Bit()) { + MachineInstrBuilder MIB = + BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI) + .addReg(X86::RIP) + .addImm(0) + .addReg(0) + .addGlobalAddress(MI.getOperand(3).getGlobal(), 0, + MI.getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); + addDirectMem(MIB, X86::RDI); + MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); + } else if (!isPositionIndependent()) { + MachineInstrBuilder MIB = + BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) + .addReg(0) + .addImm(0) + .addReg(0) + .addGlobalAddress(MI.getOperand(3).getGlobal(), 0, + MI.getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); + addDirectMem(MIB, X86::EAX); + MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); + } else { + MachineInstrBuilder MIB = + BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX) + .addReg(TII->getGlobalBaseReg(F)) + .addImm(0) + .addReg(0) + .addGlobalAddress(MI.getOperand(3).getGlobal(), 0, + MI.getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); + addDirectMem(MIB, X86::EAX); + MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); + } + + MI.eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, + MachineBasicBlock *MBB) const { + DebugLoc DL = MI.getDebugLoc(); + MachineFunction *MF = MBB->getParent(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + + const BasicBlock *BB = MBB->getBasicBlock(); + MachineFunction::iterator I = ++MBB->getIterator(); + + // Memory Reference + MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); + + unsigned DstReg; + unsigned MemOpndSlot = 0; + + unsigned CurOp = 0; + + DstReg = MI.getOperand(CurOp++).getReg(); + const TargetRegisterClass *RC = MRI.getRegClass(DstReg); + assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); + (void)TRI; + unsigned mainDstReg = MRI.createVirtualRegister(RC); + unsigned restoreDstReg = MRI.createVirtualRegister(RC); + + MemOpndSlot = CurOp; + + MVT PVT = getPointerTy(MF->getDataLayout()); + assert((PVT == MVT::i64 || PVT == MVT::i32) && + "Invalid Pointer Size!"); + + // For v = setjmp(buf), we generate + // + // thisMBB: + // buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB + // SjLjSetup restoreMBB + // + // mainMBB: + // v_main = 0 + // + // sinkMBB: + // v = phi(main, restore) + // + // restoreMBB: + // if base pointer being used, load it from frame + // v_restore = 1 + + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); + MF->insert(I, mainMBB); + MF->insert(I, sinkMBB); + MF->push_back(restoreMBB); + restoreMBB->setHasAddressTaken(); + + MachineInstrBuilder MIB; + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), MBB, + std::next(MachineBasicBlock::iterator(MI)), MBB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); + + // thisMBB: + unsigned PtrStoreOpc = 0; + unsigned LabelReg = 0; + const int64_t LabelOffset = 1 * PVT.getStoreSize(); + bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) && + !isPositionIndependent(); + + // Prepare IP either in reg or imm. + if (!UseImmLabel) { + PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; + const TargetRegisterClass *PtrRC = getRegClassFor(PVT); + LabelReg = MRI.createVirtualRegister(PtrRC); + if (Subtarget.is64Bit()) { + MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg) + .addReg(X86::RIP) + .addImm(0) + .addReg(0) + .addMBB(restoreMBB) + .addReg(0); + } else { + const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII); + MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg) + .addReg(XII->getGlobalBaseReg(MF)) + .addImm(0) + .addReg(0) + .addMBB(restoreMBB, Subtarget.classifyBlockAddressReference()) + .addReg(0); + } + } else + PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; + // Store IP + MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc)); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + if (i == X86::AddrDisp) + MIB.addDisp(MI.getOperand(MemOpndSlot + i), LabelOffset); + else + MIB.add(MI.getOperand(MemOpndSlot + i)); + } + if (!UseImmLabel) + MIB.addReg(LabelReg); + else + MIB.addMBB(restoreMBB); + MIB.setMemRefs(MMOBegin, MMOEnd); + // Setup + MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup)) + .addMBB(restoreMBB); + + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + MIB.addRegMask(RegInfo->getNoPreservedMask()); + thisMBB->addSuccessor(mainMBB); + thisMBB->addSuccessor(restoreMBB); + + // mainMBB: + // EAX = 0 + BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg); + mainMBB->addSuccessor(sinkMBB); + + // sinkMBB: + BuildMI(*sinkMBB, sinkMBB->begin(), DL, + TII->get(X86::PHI), DstReg) + .addReg(mainDstReg).addMBB(mainMBB) + .addReg(restoreDstReg).addMBB(restoreMBB); + + // restoreMBB: + if (RegInfo->hasBasePointer(*MF)) { + const bool Uses64BitFramePtr = + Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64(); + X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); + X86FI->setRestoreBasePointer(MF); + unsigned FramePtr = RegInfo->getFrameRegister(*MF); + unsigned BasePtr = RegInfo->getBaseRegister(); + unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm; + addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr), + FramePtr, true, X86FI->getRestoreBasePointerOffset()) + .setMIFlag(MachineInstr::FrameSetup); + } + BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1); + BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB); + restoreMBB->addSuccessor(sinkMBB); + + MI.eraseFromParent(); + return sinkMBB; +} + +MachineBasicBlock * +X86TargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, + MachineBasicBlock *MBB) const { + DebugLoc DL = MI.getDebugLoc(); + MachineFunction *MF = MBB->getParent(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + + // Memory Reference + MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end(); + + MVT PVT = getPointerTy(MF->getDataLayout()); + assert((PVT == MVT::i64 || PVT == MVT::i32) && + "Invalid Pointer Size!"); + + const TargetRegisterClass *RC = + (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; + unsigned Tmp = MRI.createVirtualRegister(RC); + // Since FP is only updated here but NOT referenced, it's treated as GPR. + const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); + unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP; + unsigned SP = RegInfo->getStackRegister(); + + MachineInstrBuilder MIB; + + const int64_t LabelOffset = 1 * PVT.getStoreSize(); + const int64_t SPOffset = 2 * PVT.getStoreSize(); + + unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; + unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r; + + // Reload FP + MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) + MIB.add(MI.getOperand(i)); + MIB.setMemRefs(MMOBegin, MMOEnd); + // Reload IP + MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + if (i == X86::AddrDisp) + MIB.addDisp(MI.getOperand(i), LabelOffset); + else + MIB.add(MI.getOperand(i)); + } + MIB.setMemRefs(MMOBegin, MMOEnd); + // Reload SP + MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + if (i == X86::AddrDisp) + MIB.addDisp(MI.getOperand(i), SPOffset); + else + MIB.add(MI.getOperand(i)); + } + MIB.setMemRefs(MMOBegin, MMOEnd); + // Jump + BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp); + + MI.eraseFromParent(); + return MBB; +} + +void X86TargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI, + MachineBasicBlock *MBB, + MachineBasicBlock *DispatchBB, + int FI) const { + DebugLoc DL = MI.getDebugLoc(); + MachineFunction *MF = MBB->getParent(); + MachineRegisterInfo *MRI = &MF->getRegInfo(); + const X86InstrInfo *TII = Subtarget.getInstrInfo(); + + MVT PVT = getPointerTy(MF->getDataLayout()); + assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); + + unsigned Op = 0; + unsigned VR = 0; + + bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) && + !isPositionIndependent(); + + if (UseImmLabel) { + Op = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; + } else { + const TargetRegisterClass *TRC = + (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; + VR = MRI->createVirtualRegister(TRC); + Op = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; + + if (Subtarget.is64Bit()) + BuildMI(*MBB, MI, DL, TII->get(X86::LEA64r), VR) + .addReg(X86::RIP) + .addImm(1) + .addReg(0) + .addMBB(DispatchBB) + .addReg(0); + else + BuildMI(*MBB, MI, DL, TII->get(X86::LEA32r), VR) + .addReg(0) /* TII->getGlobalBaseReg(MF) */ + .addImm(1) + .addReg(0) + .addMBB(DispatchBB, Subtarget.classifyBlockAddressReference()) + .addReg(0); + } + + MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(Op)); + addFrameReference(MIB, FI, Subtarget.is64Bit() ? 56 : 36); + if (UseImmLabel) + MIB.addMBB(DispatchBB); + else + MIB.addReg(VR); +} + +MachineBasicBlock * +X86TargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI, + MachineBasicBlock *BB) const { + DebugLoc DL = MI.getDebugLoc(); + MachineFunction *MF = BB->getParent(); + MachineFrameInfo &MFI = MF->getFrameInfo(); + MachineRegisterInfo *MRI = &MF->getRegInfo(); + const X86InstrInfo *TII = Subtarget.getInstrInfo(); + int FI = MFI.getFunctionContextIndex(); + + // Get a mapping of the call site numbers to all of the landing pads they're + // associated with. + DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad; + unsigned MaxCSNum = 0; + for (auto &MBB : *MF) { + if (!MBB.isEHPad()) + continue; + + MCSymbol *Sym = nullptr; + for (const auto &MI : MBB) { + if (MI.isDebugValue()) + continue; + + assert(MI.isEHLabel() && "expected EH_LABEL"); + Sym = MI.getOperand(0).getMCSymbol(); + break; + } + + if (!MF->hasCallSiteLandingPad(Sym)) + continue; + + for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) { + CallSiteNumToLPad[CSI].push_back(&MBB); + MaxCSNum = std::max(MaxCSNum, CSI); + } + } + + // Get an ordered list of the machine basic blocks for the jump table. + std::vector<MachineBasicBlock *> LPadList; + SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs; + LPadList.reserve(CallSiteNumToLPad.size()); + + for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) { + for (auto &LP : CallSiteNumToLPad[CSI]) { + LPadList.push_back(LP); + InvokeBBs.insert(LP->pred_begin(), LP->pred_end()); + } + } + + assert(!LPadList.empty() && + "No landing pad destinations for the dispatch jump table!"); + + // Create the MBBs for the dispatch code. + + // Shove the dispatch's address into the return slot in the function context. + MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); + DispatchBB->setIsEHPad(true); + + MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); + BuildMI(TrapBB, DL, TII->get(X86::TRAP)); + DispatchBB->addSuccessor(TrapBB); + + MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); + DispatchBB->addSuccessor(DispContBB); + + // Insert MBBs. + MF->push_back(DispatchBB); + MF->push_back(DispContBB); + MF->push_back(TrapBB); + + // Insert code into the entry block that creates and registers the function + // context. + SetupEntryBlockForSjLj(MI, BB, DispatchBB, FI); + + // Create the jump table and associated information + unsigned JTE = getJumpTableEncoding(); + MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE); + unsigned MJTI = JTI->createJumpTableIndex(LPadList); + + const X86RegisterInfo &RI = TII->getRegisterInfo(); + // Add a register mask with no preserved registers. This results in all + // registers being marked as clobbered. + if (RI.hasBasePointer(*MF)) { + const bool FPIs64Bit = + Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64(); + X86MachineFunctionInfo *MFI = MF->getInfo<X86MachineFunctionInfo>(); + MFI->setRestoreBasePointer(MF); + + unsigned FP = RI.getFrameRegister(*MF); + unsigned BP = RI.getBaseRegister(); + unsigned Op = FPIs64Bit ? X86::MOV64rm : X86::MOV32rm; + addRegOffset(BuildMI(DispatchBB, DL, TII->get(Op), BP), FP, true, + MFI->getRestoreBasePointerOffset()) + .addRegMask(RI.getNoPreservedMask()); + } else { + BuildMI(DispatchBB, DL, TII->get(X86::NOOP)) + .addRegMask(RI.getNoPreservedMask()); + } + + // IReg is used as an index in a memory operand and therefore can't be SP + unsigned IReg = MRI->createVirtualRegister(&X86::GR32_NOSPRegClass); + addFrameReference(BuildMI(DispatchBB, DL, TII->get(X86::MOV32rm), IReg), FI, + Subtarget.is64Bit() ? 8 : 4); + BuildMI(DispatchBB, DL, TII->get(X86::CMP32ri)) + .addReg(IReg) + .addImm(LPadList.size()); + BuildMI(DispatchBB, DL, TII->get(X86::JAE_1)).addMBB(TrapBB); + + if (Subtarget.is64Bit()) { + unsigned BReg = MRI->createVirtualRegister(&X86::GR64RegClass); + unsigned IReg64 = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass); + + // leaq .LJTI0_0(%rip), BReg + BuildMI(DispContBB, DL, TII->get(X86::LEA64r), BReg) + .addReg(X86::RIP) + .addImm(1) + .addReg(0) + .addJumpTableIndex(MJTI) + .addReg(0); + // movzx IReg64, IReg + BuildMI(DispContBB, DL, TII->get(TargetOpcode::SUBREG_TO_REG), IReg64) + .addImm(0) + .addReg(IReg) + .addImm(X86::sub_32bit); + + switch (JTE) { + case MachineJumpTableInfo::EK_BlockAddress: + // jmpq *(BReg,IReg64,8) + BuildMI(DispContBB, DL, TII->get(X86::JMP64m)) + .addReg(BReg) + .addImm(8) + .addReg(IReg64) + .addImm(0) + .addReg(0); + break; + case MachineJumpTableInfo::EK_LabelDifference32: { + unsigned OReg = MRI->createVirtualRegister(&X86::GR32RegClass); + unsigned OReg64 = MRI->createVirtualRegister(&X86::GR64RegClass); + unsigned TReg = MRI->createVirtualRegister(&X86::GR64RegClass); + + // movl (BReg,IReg64,4), OReg + BuildMI(DispContBB, DL, TII->get(X86::MOV32rm), OReg) + .addReg(BReg) + .addImm(4) + .addReg(IReg64) + .addImm(0) + .addReg(0); + // movsx OReg64, OReg + BuildMI(DispContBB, DL, TII->get(X86::MOVSX64rr32), OReg64).addReg(OReg); + // addq BReg, OReg64, TReg + BuildMI(DispContBB, DL, TII->get(X86::ADD64rr), TReg) + .addReg(OReg64) + .addReg(BReg); + // jmpq *TReg + BuildMI(DispContBB, DL, TII->get(X86::JMP64r)).addReg(TReg); + break; + } + default: + llvm_unreachable("Unexpected jump table encoding"); + } + } else { + // jmpl *.LJTI0_0(,IReg,4) + BuildMI(DispContBB, DL, TII->get(X86::JMP32m)) + .addReg(0) + .addImm(4) + .addReg(IReg) + .addJumpTableIndex(MJTI) + .addReg(0); + } + + // Add the jump table entries as successors to the MBB. + SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs; + for (auto &LP : LPadList) + if (SeenMBBs.insert(LP).second) + DispContBB->addSuccessor(LP); + + // N.B. the order the invoke BBs are processed in doesn't matter here. + SmallVector<MachineBasicBlock *, 64> MBBLPads; + const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs(); + for (MachineBasicBlock *MBB : InvokeBBs) { + // Remove the landing pad successor from the invoke block and replace it + // with the new dispatch block. + // Keep a copy of Successors since it's modified inside the loop. + SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(), + MBB->succ_rend()); + // FIXME: Avoid quadratic complexity. + for (auto MBBS : Successors) { + if (MBBS->isEHPad()) { + MBB->removeSuccessor(MBBS); + MBBLPads.push_back(MBBS); + } + } + + MBB->addSuccessor(DispatchBB); + + // Find the invoke call and mark all of the callee-saved registers as + // 'implicit defined' so that they're spilled. This prevents code from + // moving instructions to before the EH block, where they will never be + // executed. + for (auto &II : reverse(*MBB)) { + if (!II.isCall()) + continue; + + DenseMap<unsigned, bool> DefRegs; + for (auto &MOp : II.operands()) + if (MOp.isReg()) + DefRegs[MOp.getReg()] = true; + + MachineInstrBuilder MIB(*MF, &II); + for (unsigned RI = 0; SavedRegs[RI]; ++RI) { + unsigned Reg = SavedRegs[RI]; + if (!DefRegs[Reg]) + MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); + } + + break; + } + } + + // Mark all former landing pads as non-landing pads. The dispatch is the only + // landing pad now. + for (auto &LP : MBBLPads) + LP->setIsEHPad(false); + + // The instruction is gone now. + MI.eraseFromParent(); + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, + MachineBasicBlock *BB) const { + MachineFunction *MF = BB->getParent(); + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + switch (MI.getOpcode()) { + default: llvm_unreachable("Unexpected instr type to insert"); + case X86::TAILJMPd64: + case X86::TAILJMPr64: + case X86::TAILJMPm64: + case X86::TAILJMPr64_REX: + case X86::TAILJMPm64_REX: + llvm_unreachable("TAILJMP64 would not be touched here."); + case X86::TCRETURNdi64: + case X86::TCRETURNri64: + case X86::TCRETURNmi64: + return BB; + case X86::TLS_addr32: + case X86::TLS_addr64: + case X86::TLS_base_addr32: + case X86::TLS_base_addr64: + return EmitLoweredTLSAddr(MI, BB); + case X86::CATCHRET: + return EmitLoweredCatchRet(MI, BB); + case X86::CATCHPAD: + return EmitLoweredCatchPad(MI, BB); + case X86::SEG_ALLOCA_32: + case X86::SEG_ALLOCA_64: + return EmitLoweredSegAlloca(MI, BB); + case X86::TLSCall_32: + case X86::TLSCall_64: + return EmitLoweredTLSCall(MI, BB); + case X86::CMOV_FR32: + case X86::CMOV_FR64: + case X86::CMOV_FR128: + case X86::CMOV_GR8: + case X86::CMOV_GR16: + case X86::CMOV_GR32: + case X86::CMOV_RFP32: + case X86::CMOV_RFP64: + case X86::CMOV_RFP80: + case X86::CMOV_V2F64: + case X86::CMOV_V2I64: + case X86::CMOV_V4F32: + case X86::CMOV_V4F64: + case X86::CMOV_V4I64: + case X86::CMOV_V16F32: + case X86::CMOV_V8F32: + case X86::CMOV_V8F64: + case X86::CMOV_V8I64: + case X86::CMOV_V8I1: + case X86::CMOV_V16I1: + case X86::CMOV_V32I1: + case X86::CMOV_V64I1: + return EmitLoweredSelect(MI, BB); + + case X86::RDFLAGS32: + case X86::RDFLAGS64: { + unsigned PushF = + MI.getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64; + unsigned Pop = MI.getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r; + MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF)); + // Permit reads of the FLAGS register without it being defined. + // This intrinsic exists to read external processor state in flags, such as + // the trap flag, interrupt flag, and direction flag, none of which are + // modeled by the backend. + Push->getOperand(2).setIsUndef(); + BuildMI(*BB, MI, DL, TII->get(Pop), MI.getOperand(0).getReg()); + + MI.eraseFromParent(); // The pseudo is gone now. + return BB; + } + + case X86::WRFLAGS32: + case X86::WRFLAGS64: { + unsigned Push = + MI.getOpcode() == X86::WRFLAGS32 ? X86::PUSH32r : X86::PUSH64r; + unsigned PopF = + MI.getOpcode() == X86::WRFLAGS32 ? X86::POPF32 : X86::POPF64; + BuildMI(*BB, MI, DL, TII->get(Push)).addReg(MI.getOperand(0).getReg()); + BuildMI(*BB, MI, DL, TII->get(PopF)); + + MI.eraseFromParent(); // The pseudo is gone now. + return BB; + } + + case X86::RELEASE_FADD32mr: + case X86::RELEASE_FADD64mr: + return EmitLoweredAtomicFP(MI, BB); + + case X86::FP32_TO_INT16_IN_MEM: + case X86::FP32_TO_INT32_IN_MEM: + case X86::FP32_TO_INT64_IN_MEM: + case X86::FP64_TO_INT16_IN_MEM: + case X86::FP64_TO_INT32_IN_MEM: + case X86::FP64_TO_INT64_IN_MEM: + case X86::FP80_TO_INT16_IN_MEM: + case X86::FP80_TO_INT32_IN_MEM: + case X86::FP80_TO_INT64_IN_MEM: { + // Change the floating point control register to use "round towards zero" + // mode when truncating to an integer value. + int CWFrameIdx = MF->getFrameInfo().CreateStackObject(2, 2, false); + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FNSTCW16m)), CWFrameIdx); + + // Load the old value of the high byte of the control word... + unsigned OldCW = + MF->getRegInfo().createVirtualRegister(&X86::GR16RegClass); + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), + CWFrameIdx); + + // Set the high part to be round to zero... + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) + .addImm(0xC7F); + + // Reload the modified control word now... + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FLDCW16m)), CWFrameIdx); + + // Restore the memory image of control word to original value + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) + .addReg(OldCW); + + // Get the X86 opcode to use. + unsigned Opc; + switch (MI.getOpcode()) { + default: llvm_unreachable("illegal opcode!"); + case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; + case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; + case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; + case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; + case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; + case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; + case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; + case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; + case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; + } + + X86AddressMode AM = getAddressFromInstr(&MI, 0); + addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) + .addReg(MI.getOperand(X86::AddrNumOperands).getReg()); + + // Reload the original control word now. + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FLDCW16m)), CWFrameIdx); + + MI.eraseFromParent(); // The pseudo instruction is gone now. + return BB; + } + // String/text processing lowering. + case X86::PCMPISTRM128REG: + case X86::VPCMPISTRM128REG: + case X86::PCMPISTRM128MEM: + case X86::VPCMPISTRM128MEM: + case X86::PCMPESTRM128REG: + case X86::VPCMPESTRM128REG: + case X86::PCMPESTRM128MEM: + case X86::VPCMPESTRM128MEM: + assert(Subtarget.hasSSE42() && + "Target must have SSE4.2 or AVX features enabled"); + return emitPCMPSTRM(MI, BB, Subtarget.getInstrInfo()); + + // String/text processing lowering. + case X86::PCMPISTRIREG: + case X86::VPCMPISTRIREG: + case X86::PCMPISTRIMEM: + case X86::VPCMPISTRIMEM: + case X86::PCMPESTRIREG: + case X86::VPCMPESTRIREG: + case X86::PCMPESTRIMEM: + case X86::VPCMPESTRIMEM: + assert(Subtarget.hasSSE42() && + "Target must have SSE4.2 or AVX features enabled"); + return emitPCMPSTRI(MI, BB, Subtarget.getInstrInfo()); + + // Thread synchronization. + case X86::MONITOR: + return emitMonitor(MI, BB, Subtarget, X86::MONITORrrr); + case X86::MONITORX: + return emitMonitor(MI, BB, Subtarget, X86::MONITORXrrr); + + // Cache line zero + case X86::CLZERO: + return emitClzero(&MI, BB, Subtarget); + + // PKU feature + case X86::WRPKRU: + return emitWRPKRU(MI, BB, Subtarget); + case X86::RDPKRU: + return emitRDPKRU(MI, BB, Subtarget); + // xbegin + case X86::XBEGIN: + return emitXBegin(MI, BB, Subtarget.getInstrInfo()); + + case X86::VASTART_SAVE_XMM_REGS: + return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); + + case X86::VAARG_64: + return EmitVAARG64WithCustomInserter(MI, BB); + + case X86::EH_SjLj_SetJmp32: + case X86::EH_SjLj_SetJmp64: + return emitEHSjLjSetJmp(MI, BB); + + case X86::EH_SjLj_LongJmp32: + case X86::EH_SjLj_LongJmp64: + return emitEHSjLjLongJmp(MI, BB); + + case X86::Int_eh_sjlj_setup_dispatch: + return EmitSjLjDispatchBlock(MI, BB); + + case TargetOpcode::STATEPOINT: + // As an implementation detail, STATEPOINT shares the STACKMAP format at + // this point in the process. We diverge later. + return emitPatchPoint(MI, BB); + + case TargetOpcode::STACKMAP: + case TargetOpcode::PATCHPOINT: + return emitPatchPoint(MI, BB); + + case TargetOpcode::PATCHABLE_EVENT_CALL: + // Do nothing here, handle in xray instrumentation pass. + return BB; + + case X86::LCMPXCHG8B: { + const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); + // In addition to 4 E[ABCD] registers implied by encoding, CMPXCHG8B + // requires a memory operand. If it happens that current architecture is + // i686 and for current function we need a base pointer + // - which is ESI for i686 - register allocator would not be able to + // allocate registers for an address in form of X(%reg, %reg, Y) + // - there never would be enough unreserved registers during regalloc + // (without the need for base ptr the only option would be X(%edi, %esi, Y). + // We are giving a hand to register allocator by precomputing the address in + // a new vreg using LEA. + + // If it is not i686 or there is no base pointer - nothing to do here. + if (!Subtarget.is32Bit() || !TRI->hasBasePointer(*MF)) + return BB; + + // Even though this code does not necessarily needs the base pointer to + // be ESI, we check for that. The reason: if this assert fails, there are + // some changes happened in the compiler base pointer handling, which most + // probably have to be addressed somehow here. + assert(TRI->getBaseRegister() == X86::ESI && + "LCMPXCHG8B custom insertion for i686 is written with X86::ESI as a " + "base pointer in mind"); + + MachineRegisterInfo &MRI = MF->getRegInfo(); + MVT SPTy = getPointerTy(MF->getDataLayout()); + const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy); + unsigned computedAddrVReg = MRI.createVirtualRegister(AddrRegClass); + + X86AddressMode AM = getAddressFromInstr(&MI, 0); + // Regalloc does not need any help when the memory operand of CMPXCHG8B + // does not use index register. + if (AM.IndexReg == X86::NoRegister) + return BB; + + // After X86TargetLowering::ReplaceNodeResults CMPXCHG8B is glued to its + // four operand definitions that are E[ABCD] registers. We skip them and + // then insert the LEA. + MachineBasicBlock::iterator MBBI(MI); + while (MBBI->definesRegister(X86::EAX) || MBBI->definesRegister(X86::EBX) || + MBBI->definesRegister(X86::ECX) || MBBI->definesRegister(X86::EDX)) + --MBBI; + addFullAddress( + BuildMI(*BB, *MBBI, DL, TII->get(X86::LEA32r), computedAddrVReg), AM); + + setDirectAddressInInstr(&MI, 0, computedAddrVReg); + + return BB; + } + case X86::LCMPXCHG16B: + return BB; + case X86::LCMPXCHG8B_SAVE_EBX: + case X86::LCMPXCHG16B_SAVE_RBX: { + unsigned BasePtr = + MI.getOpcode() == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX; + if (!BB->isLiveIn(BasePtr)) + BB->addLiveIn(BasePtr); + return BB; + } + } +} + +//===----------------------------------------------------------------------===// +// X86 Optimization Hooks +//===----------------------------------------------------------------------===// + +void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth) const { + unsigned BitWidth = Known.getBitWidth(); + unsigned Opc = Op.getOpcode(); + EVT VT = Op.getValueType(); + assert((Opc >= ISD::BUILTIN_OP_END || + Opc == ISD::INTRINSIC_WO_CHAIN || + Opc == ISD::INTRINSIC_W_CHAIN || + Opc == ISD::INTRINSIC_VOID) && + "Should use MaskedValueIsZero if you don't know whether Op" + " is a target node!"); + + Known.resetAll(); + switch (Opc) { + default: break; + case X86ISD::SETCC: + Known.Zero.setBitsFrom(1); + break; + case X86ISD::MOVMSK: { + unsigned NumLoBits = Op.getOperand(0).getValueType().getVectorNumElements(); + Known.Zero.setBitsFrom(NumLoBits); + break; + } + case X86ISD::PEXTRB: + case X86ISD::PEXTRW: { + SDValue Src = Op.getOperand(0); + EVT SrcVT = Src.getValueType(); + APInt DemandedElt = APInt::getOneBitSet(SrcVT.getVectorNumElements(), + Op.getConstantOperandVal(1)); + DAG.computeKnownBits(Src, Known, DemandedElt, Depth + 1); + Known = Known.zextOrTrunc(BitWidth); + Known.Zero.setBitsFrom(SrcVT.getScalarSizeInBits()); + break; + } + case X86ISD::VSHLI: + case X86ISD::VSRLI: { + if (auto *ShiftImm = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + if (ShiftImm->getAPIntValue().uge(VT.getScalarSizeInBits())) { + Known.setAllZero(); + break; + } + + DAG.computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + unsigned ShAmt = ShiftImm->getZExtValue(); + if (Opc == X86ISD::VSHLI) { + Known.Zero <<= ShAmt; + Known.One <<= ShAmt; + // Low bits are known zero. + Known.Zero.setLowBits(ShAmt); + } else { + Known.Zero.lshrInPlace(ShAmt); + Known.One.lshrInPlace(ShAmt); + // High bits are known zero. + Known.Zero.setHighBits(ShAmt); + } + } + break; + } + case X86ISD::VZEXT: { + // TODO: Add DemandedElts support. + SDValue N0 = Op.getOperand(0); + unsigned NumElts = VT.getVectorNumElements(); + + EVT SrcVT = N0.getValueType(); + unsigned InNumElts = SrcVT.getVectorNumElements(); + unsigned InBitWidth = SrcVT.getScalarSizeInBits(); + assert(InNumElts >= NumElts && "Illegal VZEXT input"); + + Known = KnownBits(InBitWidth); + APInt DemandedSrcElts = APInt::getLowBitsSet(InNumElts, NumElts); + DAG.computeKnownBits(N0, Known, DemandedSrcElts, Depth + 1); + Known = Known.zext(BitWidth); + Known.Zero.setBitsFrom(InBitWidth); + break; + } + case X86ISD::CMOV: { + DAG.computeKnownBits(Op.getOperand(1), Known, Depth+1); + // If we don't know any bits, early out. + if (Known.isUnknown()) + break; + KnownBits Known2; + DAG.computeKnownBits(Op.getOperand(0), Known2, Depth+1); + + // Only known if known in both the LHS and RHS. + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + break; + } + case X86ISD::UDIVREM8_ZEXT_HREG: + // TODO: Support more than just the zero extended bits? + if (Op.getResNo() != 1) + break; + // The remainder is zero extended. + Known.Zero.setBitsFrom(8); + break; + } +} + +unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode( + SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, + unsigned Depth) const { + unsigned VTBits = Op.getScalarValueSizeInBits(); + unsigned Opcode = Op.getOpcode(); + switch (Opcode) { + case X86ISD::SETCC_CARRY: + // SETCC_CARRY sets the dest to ~0 for true or 0 for false. + return VTBits; + + case X86ISD::VSEXT: { + // TODO: Add DemandedElts support. + SDValue Src = Op.getOperand(0); + unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1); + Tmp += VTBits - Src.getScalarValueSizeInBits(); + return Tmp; + } + + case X86ISD::VTRUNC: { + // TODO: Add DemandedElts support. + SDValue Src = Op.getOperand(0); + unsigned NumSrcBits = Src.getScalarValueSizeInBits(); + assert(VTBits < NumSrcBits && "Illegal truncation input type"); + unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1); + if (Tmp > (NumSrcBits - VTBits)) + return Tmp - (NumSrcBits - VTBits); + return 1; + } + + case X86ISD::PACKSS: { + // PACKSS is just a truncation if the sign bits extend to the packed size. + // TODO: Add DemandedElts support. + unsigned SrcBits = Op.getOperand(0).getScalarValueSizeInBits(); + unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); + unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth + 1); + unsigned Tmp = std::min(Tmp0, Tmp1); + if (Tmp > (SrcBits - VTBits)) + return Tmp - (SrcBits - VTBits); + return 1; + } + + case X86ISD::VSHLI: { + SDValue Src = Op.getOperand(0); + APInt ShiftVal = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue(); + if (ShiftVal.uge(VTBits)) + return VTBits; // Shifted all bits out --> zero. + unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1); + if (ShiftVal.uge(Tmp)) + return 1; // Shifted all sign bits out --> unknown. + return Tmp - ShiftVal.getZExtValue(); + } + + case X86ISD::VSRAI: { + SDValue Src = Op.getOperand(0); + APInt ShiftVal = cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue(); + if (ShiftVal.uge(VTBits - 1)) + return VTBits; // Sign splat. + unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1); + ShiftVal += Tmp; + return ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); + } + + case X86ISD::PCMPGT: + case X86ISD::PCMPEQ: + case X86ISD::CMPP: + case X86ISD::VPCOM: + case X86ISD::VPCOMU: + // Vector compares return zero/all-bits result values. + return VTBits; + + case X86ISD::CMOV: { + unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp0 == 1) return 1; // Early out. + unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth+1); + return std::min(Tmp0, Tmp1); + } + case X86ISD::SDIVREM8_SEXT_HREG: + // TODO: Support more than just the sign extended bits? + if (Op.getResNo() != 1) + break; + // The remainder is sign extended. + return VTBits - 7; + } + + // Fallback case. + return 1; +} + +SDValue X86TargetLowering::unwrapAddress(SDValue N) const { + if (N->getOpcode() == X86ISD::Wrapper || N->getOpcode() == X86ISD::WrapperRIP) + return N->getOperand(0); + return N; +} + +/// Returns true (and the GlobalValue and the offset) if the node is a +/// GlobalAddress + offset. +bool X86TargetLowering::isGAPlusOffset(SDNode *N, + const GlobalValue* &GA, + int64_t &Offset) const { + if (N->getOpcode() == X86ISD::Wrapper) { + if (isa<GlobalAddressSDNode>(N->getOperand(0))) { + GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); + Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); + return true; + } + } + return TargetLowering::isGAPlusOffset(N, GA, Offset); +} + +// Attempt to match a combined shuffle mask against supported unary shuffle +// instructions. +// TODO: Investigate sharing more of this with shuffle lowering. +static bool matchUnaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask, + bool AllowFloatDomain, bool AllowIntDomain, + SDValue &V1, SDLoc &DL, SelectionDAG &DAG, + const X86Subtarget &Subtarget, + unsigned &Shuffle, MVT &SrcVT, MVT &DstVT) { + unsigned NumMaskElts = Mask.size(); + unsigned MaskEltSize = MaskVT.getScalarSizeInBits(); + + // Match against a ZERO_EXTEND_VECTOR_INREG/VZEXT instruction. + // TODO: Add 512-bit vector support (split AVX512F and AVX512BW). + if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE41()) || + (MaskVT.is256BitVector() && Subtarget.hasInt256()))) { + unsigned MaxScale = 64 / MaskEltSize; + for (unsigned Scale = 2; Scale <= MaxScale; Scale *= 2) { + bool Match = true; + unsigned NumDstElts = NumMaskElts / Scale; + for (unsigned i = 0; i != NumDstElts && Match; ++i) { + Match &= isUndefOrEqual(Mask[i * Scale], (int)i); + Match &= isUndefOrZeroInRange(Mask, (i * Scale) + 1, Scale - 1); + } + if (Match) { + unsigned SrcSize = std::max(128u, NumDstElts * MaskEltSize); + MVT ScalarTy = MaskVT.isInteger() ? MaskVT.getScalarType() : + MVT::getIntegerVT(MaskEltSize); + SrcVT = MVT::getVectorVT(ScalarTy, SrcSize / MaskEltSize); + + if (SrcVT.getSizeInBits() != MaskVT.getSizeInBits()) { + V1 = extractSubVector(V1, 0, DAG, DL, SrcSize); + Shuffle = unsigned(X86ISD::VZEXT); + } else + Shuffle = unsigned(ISD::ZERO_EXTEND_VECTOR_INREG); + + DstVT = MVT::getIntegerVT(Scale * MaskEltSize); + DstVT = MVT::getVectorVT(DstVT, NumDstElts); + return true; + } + } + } + + // Match against a VZEXT_MOVL instruction, SSE1 only supports 32-bits (MOVSS). + if (((MaskEltSize == 32) || (MaskEltSize == 64 && Subtarget.hasSSE2())) && + isUndefOrEqual(Mask[0], 0) && + isUndefOrZeroInRange(Mask, 1, NumMaskElts - 1)) { + Shuffle = X86ISD::VZEXT_MOVL; + SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT; + return true; + } + + // Check if we have SSE3 which will let us use MOVDDUP etc. The + // instructions are no slower than UNPCKLPD but has the option to + // fold the input operand into even an unaligned memory load. + if (MaskVT.is128BitVector() && Subtarget.hasSSE3() && AllowFloatDomain) { + if (!Subtarget.hasAVX2() && isTargetShuffleEquivalent(Mask, {0, 0})) { + Shuffle = X86ISD::MOVDDUP; + SrcVT = DstVT = MVT::v2f64; + return true; + } + if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) { + Shuffle = X86ISD::MOVSLDUP; + SrcVT = DstVT = MVT::v4f32; + return true; + } + if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3})) { + Shuffle = X86ISD::MOVSHDUP; + SrcVT = DstVT = MVT::v4f32; + return true; + } + } + + if (MaskVT.is256BitVector() && AllowFloatDomain) { + assert(Subtarget.hasAVX() && "AVX required for 256-bit vector shuffles"); + if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) { + Shuffle = X86ISD::MOVDDUP; + SrcVT = DstVT = MVT::v4f64; + return true; + } + if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) { + Shuffle = X86ISD::MOVSLDUP; + SrcVT = DstVT = MVT::v8f32; + return true; + } + if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3, 5, 5, 7, 7})) { + Shuffle = X86ISD::MOVSHDUP; + SrcVT = DstVT = MVT::v8f32; + return true; + } + } + + if (MaskVT.is512BitVector() && AllowFloatDomain) { + assert(Subtarget.hasAVX512() && + "AVX512 required for 512-bit vector shuffles"); + if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) { + Shuffle = X86ISD::MOVDDUP; + SrcVT = DstVT = MVT::v8f64; + return true; + } + if (isTargetShuffleEquivalent( + Mask, {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14})) { + Shuffle = X86ISD::MOVSLDUP; + SrcVT = DstVT = MVT::v16f32; + return true; + } + if (isTargetShuffleEquivalent( + Mask, {1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15})) { + Shuffle = X86ISD::MOVSHDUP; + SrcVT = DstVT = MVT::v16f32; + return true; + } + } + + // Attempt to match against broadcast-from-vector. + if (Subtarget.hasAVX2()) { + SmallVector<int, 64> BroadcastMask(NumMaskElts, 0); + if (isTargetShuffleEquivalent(Mask, BroadcastMask)) { + SrcVT = DstVT = MaskVT; + Shuffle = X86ISD::VBROADCAST; + return true; + } + } + + return false; +} + +// Attempt to match a combined shuffle mask against supported unary immediate +// permute instructions. +// TODO: Investigate sharing more of this with shuffle lowering. +static bool matchUnaryPermuteVectorShuffle(MVT MaskVT, ArrayRef<int> Mask, + const APInt &Zeroable, + bool AllowFloatDomain, + bool AllowIntDomain, + const X86Subtarget &Subtarget, + unsigned &Shuffle, MVT &ShuffleVT, + unsigned &PermuteImm) { + unsigned NumMaskElts = Mask.size(); + unsigned InputSizeInBits = MaskVT.getSizeInBits(); + unsigned MaskScalarSizeInBits = InputSizeInBits / NumMaskElts; + MVT MaskEltVT = MVT::getIntegerVT(MaskScalarSizeInBits); + + bool ContainsZeros = + llvm::any_of(Mask, [](int M) { return M == SM_SentinelZero; }); + + // Handle VPERMI/VPERMILPD vXi64/vXi64 patterns. + if (!ContainsZeros && MaskScalarSizeInBits == 64) { + // Check for lane crossing permutes. + if (is128BitLaneCrossingShuffleMask(MaskEltVT, Mask)) { + // PERMPD/PERMQ permutes within a 256-bit vector (AVX2+). + if (Subtarget.hasAVX2() && MaskVT.is256BitVector()) { + Shuffle = X86ISD::VPERMI; + ShuffleVT = (AllowFloatDomain ? MVT::v4f64 : MVT::v4i64); + PermuteImm = getV4X86ShuffleImm(Mask); + return true; + } + if (Subtarget.hasAVX512() && MaskVT.is512BitVector()) { + SmallVector<int, 4> RepeatedMask; + if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask)) { + Shuffle = X86ISD::VPERMI; + ShuffleVT = (AllowFloatDomain ? MVT::v8f64 : MVT::v8i64); + PermuteImm = getV4X86ShuffleImm(RepeatedMask); + return true; + } + } + } else if (AllowFloatDomain && Subtarget.hasAVX()) { + // VPERMILPD can permute with a non-repeating shuffle. + Shuffle = X86ISD::VPERMILPI; + ShuffleVT = MVT::getVectorVT(MVT::f64, Mask.size()); + PermuteImm = 0; + for (int i = 0, e = Mask.size(); i != e; ++i) { + int M = Mask[i]; + if (M == SM_SentinelUndef) + continue; + assert(((M / 2) == (i / 2)) && "Out of range shuffle mask index"); + PermuteImm |= (M & 1) << i; + } + return true; + } + } + + // Handle PSHUFD/VPERMILPI vXi32/vXf32 repeated patterns. + // AVX introduced the VPERMILPD/VPERMILPS float permutes, before then we + // had to use 2-input SHUFPD/SHUFPS shuffles (not handled here). + if ((MaskScalarSizeInBits == 64 || MaskScalarSizeInBits == 32) && + !ContainsZeros && (AllowIntDomain || Subtarget.hasAVX())) { + SmallVector<int, 4> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) { + // Narrow the repeated mask to create 32-bit element permutes. + SmallVector<int, 4> WordMask = RepeatedMask; + if (MaskScalarSizeInBits == 64) + scaleShuffleMask<int>(2, RepeatedMask, WordMask); + + Shuffle = (AllowIntDomain ? X86ISD::PSHUFD : X86ISD::VPERMILPI); + ShuffleVT = (AllowIntDomain ? MVT::i32 : MVT::f32); + ShuffleVT = MVT::getVectorVT(ShuffleVT, InputSizeInBits / 32); + PermuteImm = getV4X86ShuffleImm(WordMask); + return true; + } + } + + // Handle PSHUFLW/PSHUFHW vXi16 repeated patterns. + if (!ContainsZeros && AllowIntDomain && MaskScalarSizeInBits == 16) { + SmallVector<int, 4> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) { + ArrayRef<int> LoMask(Mask.data() + 0, 4); + ArrayRef<int> HiMask(Mask.data() + 4, 4); + + // PSHUFLW: permute lower 4 elements only. + if (isUndefOrInRange(LoMask, 0, 4) && + isSequentialOrUndefInRange(HiMask, 0, 4, 4)) { + Shuffle = X86ISD::PSHUFLW; + ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16); + PermuteImm = getV4X86ShuffleImm(LoMask); + return true; + } + + // PSHUFHW: permute upper 4 elements only. + if (isUndefOrInRange(HiMask, 4, 8) && + isSequentialOrUndefInRange(LoMask, 0, 4, 0)) { + // Offset the HiMask so that we can create the shuffle immediate. + int OffsetHiMask[4]; + for (int i = 0; i != 4; ++i) + OffsetHiMask[i] = (HiMask[i] < 0 ? HiMask[i] : HiMask[i] - 4); + + Shuffle = X86ISD::PSHUFHW; + ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16); + PermuteImm = getV4X86ShuffleImm(OffsetHiMask); + return true; + } + } + } + + // Attempt to match against byte/bit shifts. + // FIXME: Add 512-bit support. + if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) || + (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) { + int ShiftAmt = matchVectorShuffleAsShift(ShuffleVT, Shuffle, + MaskScalarSizeInBits, Mask, + 0, Zeroable, Subtarget); + if (0 < ShiftAmt) { + PermuteImm = (unsigned)ShiftAmt; + return true; + } + } + + return false; +} + +// Attempt to match a combined unary shuffle mask against supported binary +// shuffle instructions. +// TODO: Investigate sharing more of this with shuffle lowering. +static bool matchBinaryVectorShuffle(MVT MaskVT, ArrayRef<int> Mask, + bool AllowFloatDomain, bool AllowIntDomain, + SDValue &V1, SDValue &V2, SDLoc &DL, + SelectionDAG &DAG, + const X86Subtarget &Subtarget, + unsigned &Shuffle, MVT &SrcVT, MVT &DstVT, + bool IsUnary) { + unsigned EltSizeInBits = MaskVT.getScalarSizeInBits(); + + if (MaskVT.is128BitVector()) { + if (isTargetShuffleEquivalent(Mask, {0, 0}) && AllowFloatDomain) { + V2 = V1; + Shuffle = X86ISD::MOVLHPS; + SrcVT = DstVT = MVT::v4f32; + return true; + } + if (isTargetShuffleEquivalent(Mask, {1, 1}) && AllowFloatDomain) { + V2 = V1; + Shuffle = X86ISD::MOVHLPS; + SrcVT = DstVT = MVT::v4f32; + return true; + } + if (isTargetShuffleEquivalent(Mask, {0, 3}) && Subtarget.hasSSE2() && + (AllowFloatDomain || !Subtarget.hasSSE41())) { + std::swap(V1, V2); + Shuffle = X86ISD::MOVSD; + SrcVT = DstVT = MaskVT; + return true; + } + if (isTargetShuffleEquivalent(Mask, {4, 1, 2, 3}) && + (AllowFloatDomain || !Subtarget.hasSSE41())) { + Shuffle = X86ISD::MOVSS; + SrcVT = DstVT = MaskVT; + return true; + } + } + + // Attempt to match against either a unary or binary PACKSS/PACKUS shuffle. + // TODO add support for 256/512-bit types. + if ((MaskVT == MVT::v8i16 || MaskVT == MVT::v16i8) && Subtarget.hasSSE2()) { + if (matchVectorShuffleWithPACK(MaskVT, SrcVT, V1, V2, Shuffle, Mask, DAG, + Subtarget)) { + DstVT = MaskVT; + return true; + } + } + + // Attempt to match against either a unary or binary UNPCKL/UNPCKH shuffle. + if ((MaskVT == MVT::v4f32 && Subtarget.hasSSE1()) || + (MaskVT.is128BitVector() && Subtarget.hasSSE2()) || + (MaskVT.is256BitVector() && 32 <= EltSizeInBits && Subtarget.hasAVX()) || + (MaskVT.is256BitVector() && Subtarget.hasAVX2()) || + (MaskVT.is512BitVector() && Subtarget.hasAVX512())) { + if (matchVectorShuffleWithUNPCK(MaskVT, V1, V2, Shuffle, IsUnary, Mask, DL, + DAG, Subtarget)) { + SrcVT = DstVT = MaskVT; + if (MaskVT.is256BitVector() && !Subtarget.hasAVX2()) + SrcVT = DstVT = (32 == EltSizeInBits ? MVT::v8f32 : MVT::v4f64); + return true; + } + } + + return false; +} + +static bool matchBinaryPermuteVectorShuffle(MVT MaskVT, ArrayRef<int> Mask, + const APInt &Zeroable, + bool AllowFloatDomain, + bool AllowIntDomain, + SDValue &V1, SDValue &V2, SDLoc &DL, + SelectionDAG &DAG, + const X86Subtarget &Subtarget, + unsigned &Shuffle, MVT &ShuffleVT, + unsigned &PermuteImm) { + unsigned NumMaskElts = Mask.size(); + unsigned EltSizeInBits = MaskVT.getScalarSizeInBits(); + + // Attempt to match against PALIGNR byte rotate. + if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSSE3()) || + (MaskVT.is256BitVector() && Subtarget.hasAVX2()))) { + int ByteRotation = matchVectorShuffleAsByteRotate(MaskVT, V1, V2, Mask); + if (0 < ByteRotation) { + Shuffle = X86ISD::PALIGNR; + ShuffleVT = MVT::getVectorVT(MVT::i8, MaskVT.getSizeInBits() / 8); + PermuteImm = ByteRotation; + return true; + } + } + + // Attempt to combine to X86ISD::BLENDI. + if ((NumMaskElts <= 8 && ((Subtarget.hasSSE41() && MaskVT.is128BitVector()) || + (Subtarget.hasAVX() && MaskVT.is256BitVector()))) || + (MaskVT == MVT::v16i16 && Subtarget.hasAVX2())) { + uint64_t BlendMask = 0; + bool ForceV1Zero = false, ForceV2Zero = false; + SmallVector<int, 8> TargetMask(Mask.begin(), Mask.end()); + if (matchVectorShuffleAsBlend(V1, V2, TargetMask, ForceV1Zero, ForceV2Zero, + BlendMask)) { + if (MaskVT == MVT::v16i16) { + // We can only use v16i16 PBLENDW if the lanes are repeated. + SmallVector<int, 8> RepeatedMask; + if (isRepeatedTargetShuffleMask(128, MaskVT, TargetMask, + RepeatedMask)) { + assert(RepeatedMask.size() == 8 && + "Repeated mask size doesn't match!"); + PermuteImm = 0; + for (int i = 0; i < 8; ++i) + if (RepeatedMask[i] >= 8) + PermuteImm |= 1 << i; + V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1; + V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2; + Shuffle = X86ISD::BLENDI; + ShuffleVT = MaskVT; + return true; + } + } else { + // Determine a type compatible with X86ISD::BLENDI. + ShuffleVT = MaskVT; + if (Subtarget.hasAVX2()) { + if (ShuffleVT == MVT::v4i64) + ShuffleVT = MVT::v8i32; + else if (ShuffleVT == MVT::v2i64) + ShuffleVT = MVT::v4i32; + } else { + if (ShuffleVT == MVT::v2i64 || ShuffleVT == MVT::v4i32) + ShuffleVT = MVT::v8i16; + else if (ShuffleVT == MVT::v4i64) + ShuffleVT = MVT::v4f64; + else if (ShuffleVT == MVT::v8i32) + ShuffleVT = MVT::v8f32; + } + + if (!ShuffleVT.isFloatingPoint()) { + int Scale = EltSizeInBits / ShuffleVT.getScalarSizeInBits(); + BlendMask = + scaleVectorShuffleBlendMask(BlendMask, NumMaskElts, Scale); + ShuffleVT = MVT::getIntegerVT(EltSizeInBits / Scale); + ShuffleVT = MVT::getVectorVT(ShuffleVT, NumMaskElts * Scale); + } + + V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1; + V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2; + PermuteImm = (unsigned)BlendMask; + Shuffle = X86ISD::BLENDI; + return true; + } + } + } + + // Attempt to combine to INSERTPS. + if (AllowFloatDomain && EltSizeInBits == 32 && Subtarget.hasSSE41() && + MaskVT.is128BitVector()) { + if (Zeroable.getBoolValue() && + matchVectorShuffleAsInsertPS(V1, V2, PermuteImm, Zeroable, Mask, DAG)) { + Shuffle = X86ISD::INSERTPS; + ShuffleVT = MVT::v4f32; + return true; + } + } + + // Attempt to combine to SHUFPD. + if (AllowFloatDomain && EltSizeInBits == 64 && + ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) || + (MaskVT.is256BitVector() && Subtarget.hasAVX()) || + (MaskVT.is512BitVector() && Subtarget.hasAVX512()))) { + if (matchVectorShuffleWithSHUFPD(MaskVT, V1, V2, PermuteImm, Mask)) { + Shuffle = X86ISD::SHUFP; + ShuffleVT = MVT::getVectorVT(MVT::f64, MaskVT.getSizeInBits() / 64); + return true; + } + } + + // Attempt to combine to SHUFPS. + if (AllowFloatDomain && EltSizeInBits == 32 && + ((MaskVT.is128BitVector() && Subtarget.hasSSE1()) || + (MaskVT.is256BitVector() && Subtarget.hasAVX()) || + (MaskVT.is512BitVector() && Subtarget.hasAVX512()))) { + SmallVector<int, 4> RepeatedMask; + if (isRepeatedTargetShuffleMask(128, MaskVT, Mask, RepeatedMask)) { + // Match each half of the repeated mask, to determine if its just + // referencing one of the vectors, is zeroable or entirely undef. + auto MatchHalf = [&](unsigned Offset, int &S0, int &S1) { + int M0 = RepeatedMask[Offset]; + int M1 = RepeatedMask[Offset + 1]; + + if (isUndefInRange(RepeatedMask, Offset, 2)) { + return DAG.getUNDEF(MaskVT); + } else if (isUndefOrZeroInRange(RepeatedMask, Offset, 2)) { + S0 = (SM_SentinelUndef == M0 ? -1 : 0); + S1 = (SM_SentinelUndef == M1 ? -1 : 1); + return getZeroVector(MaskVT, Subtarget, DAG, DL); + } else if (isUndefOrInRange(M0, 0, 4) && isUndefOrInRange(M1, 0, 4)) { + S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3); + S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3); + return V1; + } else if (isUndefOrInRange(M0, 4, 8) && isUndefOrInRange(M1, 4, 8)) { + S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3); + S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3); + return V2; + } + + return SDValue(); + }; + + int ShufMask[4] = {-1, -1, -1, -1}; + SDValue Lo = MatchHalf(0, ShufMask[0], ShufMask[1]); + SDValue Hi = MatchHalf(2, ShufMask[2], ShufMask[3]); + + if (Lo && Hi) { + V1 = Lo; + V2 = Hi; + Shuffle = X86ISD::SHUFP; + ShuffleVT = MVT::getVectorVT(MVT::f32, MaskVT.getSizeInBits() / 32); + PermuteImm = getV4X86ShuffleImm(ShufMask); + return true; + } + } + } + + return false; +} + +/// \brief Combine an arbitrary chain of shuffles into a single instruction if +/// possible. +/// +/// This is the leaf of the recursive combine below. When we have found some +/// chain of single-use x86 shuffle instructions and accumulated the combined +/// shuffle mask represented by them, this will try to pattern match that mask +/// into either a single instruction if there is a special purpose instruction +/// for this operation, or into a PSHUFB instruction which is a fully general +/// instruction but should only be used to replace chains over a certain depth. +static SDValue combineX86ShuffleChain(ArrayRef<SDValue> Inputs, SDValue Root, + ArrayRef<int> BaseMask, int Depth, + bool HasVariableMask, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + assert(!BaseMask.empty() && "Cannot combine an empty shuffle mask!"); + assert((Inputs.size() == 1 || Inputs.size() == 2) && + "Unexpected number of shuffle inputs!"); + + // Find the inputs that enter the chain. Note that multiple uses are OK + // here, we're not going to remove the operands we find. + bool UnaryShuffle = (Inputs.size() == 1); + SDValue V1 = peekThroughBitcasts(Inputs[0]); + SDValue V2 = (UnaryShuffle ? DAG.getUNDEF(V1.getValueType()) + : peekThroughBitcasts(Inputs[1])); + + MVT VT1 = V1.getSimpleValueType(); + MVT VT2 = V2.getSimpleValueType(); + MVT RootVT = Root.getSimpleValueType(); + assert(VT1.getSizeInBits() == RootVT.getSizeInBits() && + VT2.getSizeInBits() == RootVT.getSizeInBits() && + "Vector size mismatch"); + + SDLoc DL(Root); + SDValue Res; + + unsigned NumBaseMaskElts = BaseMask.size(); + if (NumBaseMaskElts == 1) { + assert(BaseMask[0] == 0 && "Invalid shuffle index found!"); + return DAG.getBitcast(RootVT, V1); + } + + unsigned RootSizeInBits = RootVT.getSizeInBits(); + unsigned NumRootElts = RootVT.getVectorNumElements(); + unsigned BaseMaskEltSizeInBits = RootSizeInBits / NumBaseMaskElts; + bool FloatDomain = VT1.isFloatingPoint() || VT2.isFloatingPoint() || + (RootVT.is256BitVector() && !Subtarget.hasAVX2()); + + // Don't combine if we are a AVX512/EVEX target and the mask element size + // is different from the root element size - this would prevent writemasks + // from being reused. + // TODO - this currently prevents all lane shuffles from occurring. + // TODO - check for writemasks usage instead of always preventing combining. + // TODO - attempt to narrow Mask back to writemask size. + bool IsEVEXShuffle = + RootSizeInBits == 512 || (Subtarget.hasVLX() && RootSizeInBits >= 128); + + // TODO - handle 128/256-bit lane shuffles of 512-bit vectors. + + // Handle 128-bit lane shuffles of 256-bit vectors. + // If we have AVX2, prefer to use VPERMQ/VPERMPD for unary shuffles unless + // we need to use the zeroing feature. + // TODO - this should support binary shuffles. + if (UnaryShuffle && RootVT.is256BitVector() && NumBaseMaskElts == 2 && + !(Subtarget.hasAVX2() && BaseMask[0] >= -1 && BaseMask[1] >= -1) && + !isSequentialOrUndefOrZeroInRange(BaseMask, 0, 2, 0)) { + if (Depth == 1 && Root.getOpcode() == X86ISD::VPERM2X128) + return SDValue(); // Nothing to do! + MVT ShuffleVT = (FloatDomain ? MVT::v4f64 : MVT::v4i64); + unsigned PermMask = 0; + PermMask |= ((BaseMask[0] < 0 ? 0x8 : (BaseMask[0] & 1)) << 0); + PermMask |= ((BaseMask[1] < 0 ? 0x8 : (BaseMask[1] & 1)) << 4); + + Res = DAG.getBitcast(ShuffleVT, V1); + DCI.AddToWorklist(Res.getNode()); + Res = DAG.getNode(X86ISD::VPERM2X128, DL, ShuffleVT, Res, + DAG.getUNDEF(ShuffleVT), + DAG.getConstant(PermMask, DL, MVT::i8)); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + // For masks that have been widened to 128-bit elements or more, + // narrow back down to 64-bit elements. + SmallVector<int, 64> Mask; + if (BaseMaskEltSizeInBits > 64) { + assert((BaseMaskEltSizeInBits % 64) == 0 && "Illegal mask size"); + int MaskScale = BaseMaskEltSizeInBits / 64; + scaleShuffleMask<int>(MaskScale, BaseMask, Mask); + } else { + Mask = SmallVector<int, 64>(BaseMask.begin(), BaseMask.end()); + } + + unsigned NumMaskElts = Mask.size(); + unsigned MaskEltSizeInBits = RootSizeInBits / NumMaskElts; + + // Determine the effective mask value type. + FloatDomain &= (32 <= MaskEltSizeInBits); + MVT MaskVT = FloatDomain ? MVT::getFloatingPointVT(MaskEltSizeInBits) + : MVT::getIntegerVT(MaskEltSizeInBits); + MaskVT = MVT::getVectorVT(MaskVT, NumMaskElts); + + // Only allow legal mask types. + if (!DAG.getTargetLoweringInfo().isTypeLegal(MaskVT)) + return SDValue(); + + // Attempt to match the mask against known shuffle patterns. + MVT ShuffleSrcVT, ShuffleVT; + unsigned Shuffle, PermuteImm; + + // Which shuffle domains are permitted? + // Permit domain crossing at higher combine depths. + bool AllowFloatDomain = FloatDomain || (Depth > 3); + bool AllowIntDomain = (!FloatDomain || (Depth > 3)) && Subtarget.hasSSE2() && + (!MaskVT.is256BitVector() || Subtarget.hasAVX2()); + + // Determine zeroable mask elements. + APInt Zeroable(NumMaskElts, 0); + for (unsigned i = 0; i != NumMaskElts; ++i) + if (isUndefOrZero(Mask[i])) + Zeroable.setBit(i); + + if (UnaryShuffle) { + // If we are shuffling a X86ISD::VZEXT_LOAD then we can use the load + // directly if we don't shuffle the lower element and we shuffle the upper + // (zero) elements within themselves. + if (V1.getOpcode() == X86ISD::VZEXT_LOAD && + (V1.getScalarValueSizeInBits() % MaskEltSizeInBits) == 0) { + unsigned Scale = V1.getScalarValueSizeInBits() / MaskEltSizeInBits; + ArrayRef<int> HiMask(Mask.data() + Scale, NumMaskElts - Scale); + if (isSequentialOrUndefInRange(Mask, 0, Scale, 0) && + isUndefOrZeroOrInRange(HiMask, Scale, NumMaskElts)) { + return DAG.getBitcast(RootVT, V1); + } + } + + if (matchUnaryVectorShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain, + V1, DL, DAG, Subtarget, Shuffle, ShuffleSrcVT, + ShuffleVT) && + (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) { + if (Depth == 1 && Root.getOpcode() == Shuffle) + return SDValue(); // Nothing to do! + Res = DAG.getBitcast(ShuffleSrcVT, V1); + DCI.AddToWorklist(Res.getNode()); + Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + if (matchUnaryPermuteVectorShuffle(MaskVT, Mask, Zeroable, AllowFloatDomain, + AllowIntDomain, Subtarget, Shuffle, + ShuffleVT, PermuteImm) && + (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) { + if (Depth == 1 && Root.getOpcode() == Shuffle) + return SDValue(); // Nothing to do! + Res = DAG.getBitcast(ShuffleVT, V1); + DCI.AddToWorklist(Res.getNode()); + Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res, + DAG.getConstant(PermuteImm, DL, MVT::i8)); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + } + + if (matchBinaryVectorShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain, + V1, V2, DL, DAG, Subtarget, Shuffle, + ShuffleSrcVT, ShuffleVT, UnaryShuffle) && + (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) { + if (Depth == 1 && Root.getOpcode() == Shuffle) + return SDValue(); // Nothing to do! + V1 = DAG.getBitcast(ShuffleSrcVT, V1); + DCI.AddToWorklist(V1.getNode()); + V2 = DAG.getBitcast(ShuffleSrcVT, V2); + DCI.AddToWorklist(V2.getNode()); + Res = DAG.getNode(Shuffle, DL, ShuffleVT, V1, V2); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + if (matchBinaryPermuteVectorShuffle(MaskVT, Mask, Zeroable, AllowFloatDomain, + AllowIntDomain, V1, V2, DL, DAG, + Subtarget, Shuffle, ShuffleVT, + PermuteImm) && + (!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) { + if (Depth == 1 && Root.getOpcode() == Shuffle) + return SDValue(); // Nothing to do! + V1 = DAG.getBitcast(ShuffleVT, V1); + DCI.AddToWorklist(V1.getNode()); + V2 = DAG.getBitcast(ShuffleVT, V2); + DCI.AddToWorklist(V2.getNode()); + Res = DAG.getNode(Shuffle, DL, ShuffleVT, V1, V2, + DAG.getConstant(PermuteImm, DL, MVT::i8)); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + // Typically from here on, we need an integer version of MaskVT. + MVT IntMaskVT = MVT::getIntegerVT(MaskEltSizeInBits); + IntMaskVT = MVT::getVectorVT(IntMaskVT, NumMaskElts); + + // Annoyingly, SSE4A instructions don't map into the above match helpers. + if (Subtarget.hasSSE4A() && AllowIntDomain && RootSizeInBits == 128) { + uint64_t BitLen, BitIdx; + if (matchVectorShuffleAsEXTRQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx, + Zeroable)) { + if (Depth == 1 && Root.getOpcode() == X86ISD::EXTRQI) + return SDValue(); // Nothing to do! + V1 = DAG.getBitcast(IntMaskVT, V1); + DCI.AddToWorklist(V1.getNode()); + Res = DAG.getNode(X86ISD::EXTRQI, DL, IntMaskVT, V1, + DAG.getConstant(BitLen, DL, MVT::i8), + DAG.getConstant(BitIdx, DL, MVT::i8)); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + if (matchVectorShuffleAsINSERTQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx)) { + if (Depth == 1 && Root.getOpcode() == X86ISD::INSERTQI) + return SDValue(); // Nothing to do! + V1 = DAG.getBitcast(IntMaskVT, V1); + DCI.AddToWorklist(V1.getNode()); + V2 = DAG.getBitcast(IntMaskVT, V2); + DCI.AddToWorklist(V2.getNode()); + Res = DAG.getNode(X86ISD::INSERTQI, DL, IntMaskVT, V1, V2, + DAG.getConstant(BitLen, DL, MVT::i8), + DAG.getConstant(BitIdx, DL, MVT::i8)); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + } + + // Don't try to re-form single instruction chains under any circumstances now + // that we've done encoding canonicalization for them. + if (Depth < 2) + return SDValue(); + + // Depth threshold above which we can efficiently use variable mask shuffles. + int VariableShuffleDepth = Subtarget.hasFastVariableShuffle() ? 2 : 3; + bool AllowVariableMask = (Depth >= VariableShuffleDepth) || HasVariableMask; + + bool MaskContainsZeros = + any_of(Mask, [](int M) { return M == SM_SentinelZero; }); + + if (is128BitLaneCrossingShuffleMask(MaskVT, Mask)) { + // If we have a single input lane-crossing shuffle then lower to VPERMV. + if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros && + ((Subtarget.hasAVX2() && + (MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) || + (Subtarget.hasAVX512() && + (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 || + MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) || + (Subtarget.hasBWI() && MaskVT == MVT::v32i16) || + (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) || + (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) || + (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) { + SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true); + DCI.AddToWorklist(VPermMask.getNode()); + Res = DAG.getBitcast(MaskVT, V1); + DCI.AddToWorklist(Res.getNode()); + Res = DAG.getNode(X86ISD::VPERMV, DL, MaskVT, VPermMask, Res); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + // Lower a unary+zero lane-crossing shuffle as VPERMV3 with a zero + // vector as the second source. + if (UnaryShuffle && AllowVariableMask && + ((Subtarget.hasAVX512() && + (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 || + MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) || + (Subtarget.hasVLX() && + (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 || + MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) || + (Subtarget.hasBWI() && MaskVT == MVT::v32i16) || + (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) || + (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) || + (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) { + // Adjust shuffle mask - replace SM_SentinelZero with second source index. + for (unsigned i = 0; i != NumMaskElts; ++i) + if (Mask[i] == SM_SentinelZero) + Mask[i] = NumMaskElts + i; + + SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true); + DCI.AddToWorklist(VPermMask.getNode()); + Res = DAG.getBitcast(MaskVT, V1); + DCI.AddToWorklist(Res.getNode()); + SDValue Zero = getZeroVector(MaskVT, Subtarget, DAG, DL); + DCI.AddToWorklist(Zero.getNode()); + Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, Res, VPermMask, Zero); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + // If we have a dual input lane-crossing shuffle then lower to VPERMV3. + if (AllowVariableMask && !MaskContainsZeros && + ((Subtarget.hasAVX512() && + (MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 || + MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) || + (Subtarget.hasVLX() && + (MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 || + MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) || + (Subtarget.hasBWI() && MaskVT == MVT::v32i16) || + (Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) || + (Subtarget.hasVBMI() && MaskVT == MVT::v64i8) || + (Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) { + SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true); + DCI.AddToWorklist(VPermMask.getNode()); + V1 = DAG.getBitcast(MaskVT, V1); + DCI.AddToWorklist(V1.getNode()); + V2 = DAG.getBitcast(MaskVT, V2); + DCI.AddToWorklist(V2.getNode()); + Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, V1, VPermMask, V2); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + return SDValue(); + } + + // See if we can combine a single input shuffle with zeros to a bit-mask, + // which is much simpler than any shuffle. + if (UnaryShuffle && MaskContainsZeros && AllowVariableMask && + isSequentialOrUndefOrZeroInRange(Mask, 0, NumMaskElts, 0) && + DAG.getTargetLoweringInfo().isTypeLegal(MaskVT)) { + APInt Zero = APInt::getNullValue(MaskEltSizeInBits); + APInt AllOnes = APInt::getAllOnesValue(MaskEltSizeInBits); + APInt UndefElts(NumMaskElts, 0); + SmallVector<APInt, 64> EltBits(NumMaskElts, Zero); + for (unsigned i = 0; i != NumMaskElts; ++i) { + int M = Mask[i]; + if (M == SM_SentinelUndef) { + UndefElts.setBit(i); + continue; + } + if (M == SM_SentinelZero) + continue; + EltBits[i] = AllOnes; + } + SDValue BitMask = getConstVector(EltBits, UndefElts, MaskVT, DAG, DL); + DCI.AddToWorklist(BitMask.getNode()); + Res = DAG.getBitcast(MaskVT, V1); + DCI.AddToWorklist(Res.getNode()); + unsigned AndOpcode = + FloatDomain ? unsigned(X86ISD::FAND) : unsigned(ISD::AND); + Res = DAG.getNode(AndOpcode, DL, MaskVT, Res, BitMask); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + // If we have a single input shuffle with different shuffle patterns in the + // the 128-bit lanes use the variable mask to VPERMILPS. + // TODO Combine other mask types at higher depths. + if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros && + ((MaskVT == MVT::v8f32 && Subtarget.hasAVX()) || + (MaskVT == MVT::v16f32 && Subtarget.hasAVX512()))) { + SmallVector<SDValue, 16> VPermIdx; + for (int M : Mask) { + SDValue Idx = + M < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(M % 4, DL, MVT::i32); + VPermIdx.push_back(Idx); + } + SDValue VPermMask = DAG.getBuildVector(IntMaskVT, DL, VPermIdx); + DCI.AddToWorklist(VPermMask.getNode()); + Res = DAG.getBitcast(MaskVT, V1); + DCI.AddToWorklist(Res.getNode()); + Res = DAG.getNode(X86ISD::VPERMILPV, DL, MaskVT, Res, VPermMask); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + // With XOP, binary shuffles of 128/256-bit floating point vectors can combine + // to VPERMIL2PD/VPERMIL2PS. + if (AllowVariableMask && Subtarget.hasXOP() && + (MaskVT == MVT::v2f64 || MaskVT == MVT::v4f64 || MaskVT == MVT::v4f32 || + MaskVT == MVT::v8f32)) { + // VPERMIL2 Operation. + // Bits[3] - Match Bit. + // Bits[2:1] - (Per Lane) PD Shuffle Mask. + // Bits[2:0] - (Per Lane) PS Shuffle Mask. + unsigned NumLanes = MaskVT.getSizeInBits() / 128; + unsigned NumEltsPerLane = NumMaskElts / NumLanes; + SmallVector<int, 8> VPerm2Idx; + unsigned M2ZImm = 0; + for (int M : Mask) { + if (M == SM_SentinelUndef) { + VPerm2Idx.push_back(-1); + continue; + } + if (M == SM_SentinelZero) { + M2ZImm = 2; + VPerm2Idx.push_back(8); + continue; + } + int Index = (M % NumEltsPerLane) + ((M / NumMaskElts) * NumEltsPerLane); + Index = (MaskVT.getScalarSizeInBits() == 64 ? Index << 1 : Index); + VPerm2Idx.push_back(Index); + } + V1 = DAG.getBitcast(MaskVT, V1); + DCI.AddToWorklist(V1.getNode()); + V2 = DAG.getBitcast(MaskVT, V2); + DCI.AddToWorklist(V2.getNode()); + SDValue VPerm2MaskOp = getConstVector(VPerm2Idx, IntMaskVT, DAG, DL, true); + DCI.AddToWorklist(VPerm2MaskOp.getNode()); + Res = DAG.getNode(X86ISD::VPERMIL2, DL, MaskVT, V1, V2, VPerm2MaskOp, + DAG.getConstant(M2ZImm, DL, MVT::i8)); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + // If we have 3 or more shuffle instructions or a chain involving a variable + // mask, we can replace them with a single PSHUFB instruction profitably. + // Intel's manuals suggest only using PSHUFB if doing so replacing 5 + // instructions, but in practice PSHUFB tends to be *very* fast so we're + // more aggressive. + if (UnaryShuffle && AllowVariableMask && + ((RootVT.is128BitVector() && Subtarget.hasSSSE3()) || + (RootVT.is256BitVector() && Subtarget.hasAVX2()) || + (RootVT.is512BitVector() && Subtarget.hasBWI()))) { + SmallVector<SDValue, 16> PSHUFBMask; + int NumBytes = RootVT.getSizeInBits() / 8; + int Ratio = NumBytes / NumMaskElts; + for (int i = 0; i < NumBytes; ++i) { + int M = Mask[i / Ratio]; + if (M == SM_SentinelUndef) { + PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8)); + continue; + } + if (M == SM_SentinelZero) { + PSHUFBMask.push_back(DAG.getConstant(255, DL, MVT::i8)); + continue; + } + M = Ratio * M + i % Ratio; + assert((M / 16) == (i / 16) && "Lane crossing detected"); + PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8)); + } + MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes); + Res = DAG.getBitcast(ByteVT, V1); + DCI.AddToWorklist(Res.getNode()); + SDValue PSHUFBMaskOp = DAG.getBuildVector(ByteVT, DL, PSHUFBMask); + DCI.AddToWorklist(PSHUFBMaskOp.getNode()); + Res = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Res, PSHUFBMaskOp); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + // With XOP, if we have a 128-bit binary input shuffle we can always combine + // to VPPERM. We match the depth requirement of PSHUFB - VPPERM is never + // slower than PSHUFB on targets that support both. + if (AllowVariableMask && RootVT.is128BitVector() && Subtarget.hasXOP()) { + // VPPERM Mask Operation + // Bits[4:0] - Byte Index (0 - 31) + // Bits[7:5] - Permute Operation (0 - Source byte, 4 - ZERO) + SmallVector<SDValue, 16> VPPERMMask; + int NumBytes = 16; + int Ratio = NumBytes / NumMaskElts; + for (int i = 0; i < NumBytes; ++i) { + int M = Mask[i / Ratio]; + if (M == SM_SentinelUndef) { + VPPERMMask.push_back(DAG.getUNDEF(MVT::i8)); + continue; + } + if (M == SM_SentinelZero) { + VPPERMMask.push_back(DAG.getConstant(128, DL, MVT::i8)); + continue; + } + M = Ratio * M + i % Ratio; + VPPERMMask.push_back(DAG.getConstant(M, DL, MVT::i8)); + } + MVT ByteVT = MVT::v16i8; + V1 = DAG.getBitcast(ByteVT, V1); + DCI.AddToWorklist(V1.getNode()); + V2 = DAG.getBitcast(ByteVT, V2); + DCI.AddToWorklist(V2.getNode()); + SDValue VPPERMMaskOp = DAG.getBuildVector(ByteVT, DL, VPPERMMask); + DCI.AddToWorklist(VPPERMMaskOp.getNode()); + Res = DAG.getNode(X86ISD::VPPERM, DL, ByteVT, V1, V2, VPPERMMaskOp); + DCI.AddToWorklist(Res.getNode()); + return DAG.getBitcast(RootVT, Res); + } + + // Failed to find any combines. + return SDValue(); +} + +// Attempt to constant fold all of the constant source ops. +// Returns true if the entire shuffle is folded to a constant. +// TODO: Extend this to merge multiple constant Ops and update the mask. +static SDValue combineX86ShufflesConstants(const SmallVectorImpl<SDValue> &Ops, + ArrayRef<int> Mask, SDValue Root, + bool HasVariableMask, + SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + MVT VT = Root.getSimpleValueType(); + + unsigned SizeInBits = VT.getSizeInBits(); + unsigned NumMaskElts = Mask.size(); + unsigned MaskSizeInBits = SizeInBits / NumMaskElts; + unsigned NumOps = Ops.size(); + + // Extract constant bits from each source op. + bool OneUseConstantOp = false; + SmallVector<APInt, 16> UndefEltsOps(NumOps); + SmallVector<SmallVector<APInt, 16>, 16> RawBitsOps(NumOps); + for (unsigned i = 0; i != NumOps; ++i) { + SDValue SrcOp = Ops[i]; + OneUseConstantOp |= SrcOp.hasOneUse(); + if (!getTargetConstantBitsFromNode(SrcOp, MaskSizeInBits, UndefEltsOps[i], + RawBitsOps[i])) + return SDValue(); + } + + // Only fold if at least one of the constants is only used once or + // the combined shuffle has included a variable mask shuffle, this + // is to avoid constant pool bloat. + if (!OneUseConstantOp && !HasVariableMask) + return SDValue(); + + // Shuffle the constant bits according to the mask. + APInt UndefElts(NumMaskElts, 0); + APInt ZeroElts(NumMaskElts, 0); + APInt ConstantElts(NumMaskElts, 0); + SmallVector<APInt, 8> ConstantBitData(NumMaskElts, + APInt::getNullValue(MaskSizeInBits)); + for (unsigned i = 0; i != NumMaskElts; ++i) { + int M = Mask[i]; + if (M == SM_SentinelUndef) { + UndefElts.setBit(i); + continue; + } else if (M == SM_SentinelZero) { + ZeroElts.setBit(i); + continue; + } + assert(0 <= M && M < (int)(NumMaskElts * NumOps)); + + unsigned SrcOpIdx = (unsigned)M / NumMaskElts; + unsigned SrcMaskIdx = (unsigned)M % NumMaskElts; + + auto &SrcUndefElts = UndefEltsOps[SrcOpIdx]; + if (SrcUndefElts[SrcMaskIdx]) { + UndefElts.setBit(i); + continue; + } + + auto &SrcEltBits = RawBitsOps[SrcOpIdx]; + APInt &Bits = SrcEltBits[SrcMaskIdx]; + if (!Bits) { + ZeroElts.setBit(i); + continue; + } + + ConstantElts.setBit(i); + ConstantBitData[i] = Bits; + } + assert((UndefElts | ZeroElts | ConstantElts).isAllOnesValue()); + + // Create the constant data. + MVT MaskSVT; + if (VT.isFloatingPoint() && (MaskSizeInBits == 32 || MaskSizeInBits == 64)) + MaskSVT = MVT::getFloatingPointVT(MaskSizeInBits); + else + MaskSVT = MVT::getIntegerVT(MaskSizeInBits); + + MVT MaskVT = MVT::getVectorVT(MaskSVT, NumMaskElts); + + SDLoc DL(Root); + SDValue CstOp = getConstVector(ConstantBitData, UndefElts, MaskVT, DAG, DL); + DCI.AddToWorklist(CstOp.getNode()); + return DAG.getBitcast(VT, CstOp); +} + +/// \brief Fully generic combining of x86 shuffle instructions. +/// +/// This should be the last combine run over the x86 shuffle instructions. Once +/// they have been fully optimized, this will recursively consider all chains +/// of single-use shuffle instructions, build a generic model of the cumulative +/// shuffle operation, and check for simpler instructions which implement this +/// operation. We use this primarily for two purposes: +/// +/// 1) Collapse generic shuffles to specialized single instructions when +/// equivalent. In most cases, this is just an encoding size win, but +/// sometimes we will collapse multiple generic shuffles into a single +/// special-purpose shuffle. +/// 2) Look for sequences of shuffle instructions with 3 or more total +/// instructions, and replace them with the slightly more expensive SSSE3 +/// PSHUFB instruction if available. We do this as the last combining step +/// to ensure we avoid using PSHUFB if we can implement the shuffle with +/// a suitable short sequence of other instructions. The PSHUFB will either +/// use a register or have to read from memory and so is slightly (but only +/// slightly) more expensive than the other shuffle instructions. +/// +/// Because this is inherently a quadratic operation (for each shuffle in +/// a chain, we recurse up the chain), the depth is limited to 8 instructions. +/// This should never be an issue in practice as the shuffle lowering doesn't +/// produce sequences of more than 8 instructions. +/// +/// FIXME: We will currently miss some cases where the redundant shuffling +/// would simplify under the threshold for PSHUFB formation because of +/// combine-ordering. To fix this, we should do the redundant instruction +/// combining in this recursive walk. +static SDValue combineX86ShufflesRecursively( + ArrayRef<SDValue> SrcOps, int SrcOpIndex, SDValue Root, + ArrayRef<int> RootMask, ArrayRef<const SDNode *> SrcNodes, int Depth, + bool HasVariableMask, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget &Subtarget) { + // Bound the depth of our recursive combine because this is ultimately + // quadratic in nature. + if (Depth > 8) + return SDValue(); + + // Directly rip through bitcasts to find the underlying operand. + SDValue Op = SrcOps[SrcOpIndex]; + Op = peekThroughOneUseBitcasts(Op); + + MVT VT = Op.getSimpleValueType(); + if (!VT.isVector()) + return SDValue(); // Bail if we hit a non-vector. + + assert(Root.getSimpleValueType().isVector() && + "Shuffles operate on vector types!"); + assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() && + "Can only combine shuffles of the same vector register size."); + + // Extract target shuffle mask and resolve sentinels and inputs. + SmallVector<int, 64> OpMask; + SmallVector<SDValue, 2> OpInputs; + if (!resolveTargetShuffleInputs(Op, OpInputs, OpMask, DAG)) + return SDValue(); + + assert(OpInputs.size() <= 2 && "Too many shuffle inputs"); + SDValue Input0 = (OpInputs.size() > 0 ? OpInputs[0] : SDValue()); + SDValue Input1 = (OpInputs.size() > 1 ? OpInputs[1] : SDValue()); + + // Add the inputs to the Ops list, avoiding duplicates. + SmallVector<SDValue, 16> Ops(SrcOps.begin(), SrcOps.end()); + + int InputIdx0 = -1, InputIdx1 = -1; + for (int i = 0, e = Ops.size(); i < e; ++i) { + SDValue BC = peekThroughBitcasts(Ops[i]); + if (Input0 && BC == peekThroughBitcasts(Input0)) + InputIdx0 = i; + if (Input1 && BC == peekThroughBitcasts(Input1)) + InputIdx1 = i; + } + + if (Input0 && InputIdx0 < 0) { + InputIdx0 = SrcOpIndex; + Ops[SrcOpIndex] = Input0; + } + if (Input1 && InputIdx1 < 0) { + InputIdx1 = Ops.size(); + Ops.push_back(Input1); + } + + assert(((RootMask.size() > OpMask.size() && + RootMask.size() % OpMask.size() == 0) || + (OpMask.size() > RootMask.size() && + OpMask.size() % RootMask.size() == 0) || + OpMask.size() == RootMask.size()) && + "The smaller number of elements must divide the larger."); + + // This function can be performance-critical, so we rely on the power-of-2 + // knowledge that we have about the mask sizes to replace div/rem ops with + // bit-masks and shifts. + assert(isPowerOf2_32(RootMask.size()) && "Non-power-of-2 shuffle mask sizes"); + assert(isPowerOf2_32(OpMask.size()) && "Non-power-of-2 shuffle mask sizes"); + unsigned RootMaskSizeLog2 = countTrailingZeros(RootMask.size()); + unsigned OpMaskSizeLog2 = countTrailingZeros(OpMask.size()); + + unsigned MaskWidth = std::max<unsigned>(OpMask.size(), RootMask.size()); + unsigned RootRatio = std::max<unsigned>(1, OpMask.size() >> RootMaskSizeLog2); + unsigned OpRatio = std::max<unsigned>(1, RootMask.size() >> OpMaskSizeLog2); + assert((RootRatio == 1 || OpRatio == 1) && + "Must not have a ratio for both incoming and op masks!"); + + assert(isPowerOf2_32(MaskWidth) && "Non-power-of-2 shuffle mask sizes"); + assert(isPowerOf2_32(RootRatio) && "Non-power-of-2 shuffle mask sizes"); + assert(isPowerOf2_32(OpRatio) && "Non-power-of-2 shuffle mask sizes"); + unsigned RootRatioLog2 = countTrailingZeros(RootRatio); + unsigned OpRatioLog2 = countTrailingZeros(OpRatio); + + SmallVector<int, 64> Mask(MaskWidth, SM_SentinelUndef); + + // Merge this shuffle operation's mask into our accumulated mask. Note that + // this shuffle's mask will be the first applied to the input, followed by the + // root mask to get us all the way to the root value arrangement. The reason + // for this order is that we are recursing up the operation chain. + for (unsigned i = 0; i < MaskWidth; ++i) { + unsigned RootIdx = i >> RootRatioLog2; + if (RootMask[RootIdx] < 0) { + // This is a zero or undef lane, we're done. + Mask[i] = RootMask[RootIdx]; + continue; + } + + unsigned RootMaskedIdx = + RootRatio == 1 + ? RootMask[RootIdx] + : (RootMask[RootIdx] << RootRatioLog2) + (i & (RootRatio - 1)); + + // Just insert the scaled root mask value if it references an input other + // than the SrcOp we're currently inserting. + if ((RootMaskedIdx < (SrcOpIndex * MaskWidth)) || + (((SrcOpIndex + 1) * MaskWidth) <= RootMaskedIdx)) { + Mask[i] = RootMaskedIdx; + continue; + } + + RootMaskedIdx = RootMaskedIdx & (MaskWidth - 1); + unsigned OpIdx = RootMaskedIdx >> OpRatioLog2; + if (OpMask[OpIdx] < 0) { + // The incoming lanes are zero or undef, it doesn't matter which ones we + // are using. + Mask[i] = OpMask[OpIdx]; + continue; + } + + // Ok, we have non-zero lanes, map them through to one of the Op's inputs. + unsigned OpMaskedIdx = + OpRatio == 1 + ? OpMask[OpIdx] + : (OpMask[OpIdx] << OpRatioLog2) + (RootMaskedIdx & (OpRatio - 1)); + + OpMaskedIdx = OpMaskedIdx & (MaskWidth - 1); + if (OpMask[OpIdx] < (int)OpMask.size()) { + assert(0 <= InputIdx0 && "Unknown target shuffle input"); + OpMaskedIdx += InputIdx0 * MaskWidth; + } else { + assert(0 <= InputIdx1 && "Unknown target shuffle input"); + OpMaskedIdx += InputIdx1 * MaskWidth; + } + + Mask[i] = OpMaskedIdx; + } + + // Handle the all undef/zero cases early. + if (all_of(Mask, [](int Idx) { return Idx == SM_SentinelUndef; })) + return DAG.getUNDEF(Root.getValueType()); + + // TODO - should we handle the mixed zero/undef case as well? Just returning + // a zero mask will lose information on undef elements possibly reducing + // future combine possibilities. + if (all_of(Mask, [](int Idx) { return Idx < 0; })) + return getZeroVector(Root.getSimpleValueType(), Subtarget, DAG, + SDLoc(Root)); + + // Remove unused shuffle source ops. + resolveTargetShuffleInputsAndMask(Ops, Mask); + assert(!Ops.empty() && "Shuffle with no inputs detected"); + + HasVariableMask |= isTargetShuffleVariableMask(Op.getOpcode()); + + // Update the list of shuffle nodes that have been combined so far. + SmallVector<const SDNode *, 16> CombinedNodes(SrcNodes.begin(), + SrcNodes.end()); + CombinedNodes.push_back(Op.getNode()); + + // See if we can recurse into each shuffle source op (if it's a target + // shuffle). The source op should only be combined if it either has a + // single use (i.e. current Op) or all its users have already been combined. + for (int i = 0, e = Ops.size(); i < e; ++i) + if (Ops[i].getNode()->hasOneUse() || + SDNode::areOnlyUsersOf(CombinedNodes, Ops[i].getNode())) + if (SDValue Res = combineX86ShufflesRecursively( + Ops, i, Root, Mask, CombinedNodes, Depth + 1, HasVariableMask, + DAG, DCI, Subtarget)) + return Res; + + // Attempt to constant fold all of the constant source ops. + if (SDValue Cst = combineX86ShufflesConstants( + Ops, Mask, Root, HasVariableMask, DAG, DCI, Subtarget)) + return Cst; + + // We can only combine unary and binary shuffle mask cases. + if (Ops.size() > 2) + return SDValue(); + + // Minor canonicalization of the accumulated shuffle mask to make it easier + // to match below. All this does is detect masks with sequential pairs of + // elements, and shrink them to the half-width mask. It does this in a loop + // so it will reduce the size of the mask to the minimal width mask which + // performs an equivalent shuffle. + SmallVector<int, 64> WidenedMask; + while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) { + Mask = std::move(WidenedMask); + } + + // Canonicalization of binary shuffle masks to improve pattern matching by + // commuting the inputs. + if (Ops.size() == 2 && canonicalizeShuffleMaskWithCommute(Mask)) { + ShuffleVectorSDNode::commuteMask(Mask); + std::swap(Ops[0], Ops[1]); + } + + // Finally, try to combine into a single shuffle instruction. + return combineX86ShuffleChain(Ops, Root, Mask, Depth, HasVariableMask, DAG, + DCI, Subtarget); +} + +/// \brief Get the PSHUF-style mask from PSHUF node. +/// +/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4 +/// PSHUF-style masks that can be reused with such instructions. +static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) { + MVT VT = N.getSimpleValueType(); + SmallVector<int, 4> Mask; + SmallVector<SDValue, 2> Ops; + bool IsUnary; + bool HaveMask = + getTargetShuffleMask(N.getNode(), VT, false, Ops, Mask, IsUnary); + (void)HaveMask; + assert(HaveMask); + + // If we have more than 128-bits, only the low 128-bits of shuffle mask + // matter. Check that the upper masks are repeats and remove them. + if (VT.getSizeInBits() > 128) { + int LaneElts = 128 / VT.getScalarSizeInBits(); +#ifndef NDEBUG + for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i) + for (int j = 0; j < LaneElts; ++j) + assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) && + "Mask doesn't repeat in high 128-bit lanes!"); +#endif + Mask.resize(LaneElts); + } + + switch (N.getOpcode()) { + case X86ISD::PSHUFD: + return Mask; + case X86ISD::PSHUFLW: + Mask.resize(4); + return Mask; + case X86ISD::PSHUFHW: + Mask.erase(Mask.begin(), Mask.begin() + 4); + for (int &M : Mask) + M -= 4; + return Mask; + default: + llvm_unreachable("No valid shuffle instruction found!"); + } +} + +/// \brief Search for a combinable shuffle across a chain ending in pshufd. +/// +/// We walk up the chain and look for a combinable shuffle, skipping over +/// shuffles that we could hoist this shuffle's transformation past without +/// altering anything. +static SDValue +combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(N.getOpcode() == X86ISD::PSHUFD && + "Called with something other than an x86 128-bit half shuffle!"); + SDLoc DL(N); + + // Walk up a single-use chain looking for a combinable shuffle. Keep a stack + // of the shuffles in the chain so that we can form a fresh chain to replace + // this one. + SmallVector<SDValue, 8> Chain; + SDValue V = N.getOperand(0); + for (; V.hasOneUse(); V = V.getOperand(0)) { + switch (V.getOpcode()) { + default: + return SDValue(); // Nothing combined! + + case ISD::BITCAST: + // Skip bitcasts as we always know the type for the target specific + // instructions. + continue; + + case X86ISD::PSHUFD: + // Found another dword shuffle. + break; + + case X86ISD::PSHUFLW: + // Check that the low words (being shuffled) are the identity in the + // dword shuffle, and the high words are self-contained. + if (Mask[0] != 0 || Mask[1] != 1 || + !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4)) + return SDValue(); + + Chain.push_back(V); + continue; + + case X86ISD::PSHUFHW: + // Check that the high words (being shuffled) are the identity in the + // dword shuffle, and the low words are self-contained. + if (Mask[2] != 2 || Mask[3] != 3 || + !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2)) + return SDValue(); + + Chain.push_back(V); + continue; + + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword + // shuffle into a preceding word shuffle. + if (V.getSimpleValueType().getVectorElementType() != MVT::i8 && + V.getSimpleValueType().getVectorElementType() != MVT::i16) + return SDValue(); + + // Search for a half-shuffle which we can combine with. + unsigned CombineOp = + V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW; + if (V.getOperand(0) != V.getOperand(1) || + !V->isOnlyUserOf(V.getOperand(0).getNode())) + return SDValue(); + Chain.push_back(V); + V = V.getOperand(0); + do { + switch (V.getOpcode()) { + default: + return SDValue(); // Nothing to combine. + + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + if (V.getOpcode() == CombineOp) + break; + + Chain.push_back(V); + + LLVM_FALLTHROUGH; + case ISD::BITCAST: + V = V.getOperand(0); + continue; + } + break; + } while (V.hasOneUse()); + break; + } + // Break out of the loop if we break out of the switch. + break; + } + + if (!V.hasOneUse()) + // We fell out of the loop without finding a viable combining instruction. + return SDValue(); + + // Merge this node's mask and our incoming mask. + SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); + for (int &M : Mask) + M = VMask[M]; + V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0), + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + + // Rebuild the chain around this new shuffle. + while (!Chain.empty()) { + SDValue W = Chain.pop_back_val(); + + if (V.getValueType() != W.getOperand(0).getValueType()) + V = DAG.getBitcast(W.getOperand(0).getValueType(), V); + + switch (W.getOpcode()) { + default: + llvm_unreachable("Only PSHUF and UNPCK instructions get here!"); + + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V); + break; + + case X86ISD::PSHUFD: + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1)); + break; + } + } + if (V.getValueType() != N.getValueType()) + V = DAG.getBitcast(N.getValueType(), V); + + // Return the new chain to replace N. + return V; +} + +/// \brief Search for a combinable shuffle across a chain ending in pshuflw or +/// pshufhw. +/// +/// We walk up the chain, skipping shuffles of the other half and looking +/// through shuffles which switch halves trying to find a shuffle of the same +/// pair of dwords. +static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask, + SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + assert( + (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) && + "Called with something other than an x86 128-bit half shuffle!"); + SDLoc DL(N); + unsigned CombineOpcode = N.getOpcode(); + + // Walk up a single-use chain looking for a combinable shuffle. + SDValue V = N.getOperand(0); + for (; V.hasOneUse(); V = V.getOperand(0)) { + switch (V.getOpcode()) { + default: + return false; // Nothing combined! + + case ISD::BITCAST: + // Skip bitcasts as we always know the type for the target specific + // instructions. + continue; + + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + if (V.getOpcode() == CombineOpcode) + break; + + // Other-half shuffles are no-ops. + continue; + } + // Break out of the loop if we break out of the switch. + break; + } + + if (!V.hasOneUse()) + // We fell out of the loop without finding a viable combining instruction. + return false; + + // Combine away the bottom node as its shuffle will be accumulated into + // a preceding shuffle. + DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); + + // Record the old value. + SDValue Old = V; + + // Merge this node's mask and our incoming mask (adjusted to account for all + // the pshufd instructions encountered). + SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); + for (int &M : Mask) + M = VMask[M]; + V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0), + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + + // Check that the shuffles didn't cancel each other out. If not, we need to + // combine to the new one. + if (Old != V) + // Replace the combinable shuffle with the combined one, updating all users + // so that we re-evaluate the chain here. + DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true); + + return true; +} + +/// \brief Try to combine x86 target specific shuffles. +static SDValue combineTargetShuffle(SDValue N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + SDLoc DL(N); + MVT VT = N.getSimpleValueType(); + SmallVector<int, 4> Mask; + unsigned Opcode = N.getOpcode(); + + // Combine binary shuffle of 2 similar 'Horizontal' instructions into a + // single instruction. + if (VT.getScalarSizeInBits() == 64 && + (Opcode == X86ISD::MOVSD || Opcode == X86ISD::UNPCKH || + Opcode == X86ISD::UNPCKL)) { + auto BC0 = peekThroughBitcasts(N.getOperand(0)); + auto BC1 = peekThroughBitcasts(N.getOperand(1)); + EVT VT0 = BC0.getValueType(); + EVT VT1 = BC1.getValueType(); + unsigned Opcode0 = BC0.getOpcode(); + unsigned Opcode1 = BC1.getOpcode(); + if (Opcode0 == Opcode1 && VT0 == VT1 && + (Opcode0 == X86ISD::FHADD || Opcode0 == X86ISD::HADD || + Opcode0 == X86ISD::FHSUB || Opcode0 == X86ISD::HSUB || + Opcode0 == X86ISD::PACKSS || Opcode0 == X86ISD::PACKUS)) { + SDValue Lo, Hi; + if (Opcode == X86ISD::MOVSD) { + Lo = BC1.getOperand(0); + Hi = BC0.getOperand(1); + } else { + Lo = BC0.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0); + Hi = BC1.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0); + } + SDValue Horiz = DAG.getNode(Opcode0, DL, VT0, Lo, Hi); + DCI.AddToWorklist(Horiz.getNode()); + return DAG.getBitcast(VT, Horiz); + } + } + + switch (Opcode) { + case X86ISD::PSHUFD: + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + Mask = getPSHUFShuffleMask(N); + assert(Mask.size() == 4); + break; + case X86ISD::UNPCKL: { + // Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in + // which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE + // moves upper half elements into the lower half part. For example: + // + // t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1, + // undef:v16i8 + // t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2 + // + // will be combined to: + // + // t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1 + + // This is only for 128-bit vectors. From SSE4.1 onward this combine may not + // happen due to advanced instructions. + if (!VT.is128BitVector()) + return SDValue(); + + auto Op0 = N.getOperand(0); + auto Op1 = N.getOperand(1); + if (Op0.isUndef() && Op1.getOpcode() == ISD::VECTOR_SHUFFLE) { + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask(); + + unsigned NumElts = VT.getVectorNumElements(); + SmallVector<int, 8> ExpectedMask(NumElts, -1); + std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2, + NumElts / 2); + + auto ShufOp = Op1.getOperand(0); + if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask)) + return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp); + } + return SDValue(); + } + case X86ISD::BLENDI: { + SDValue V0 = N->getOperand(0); + SDValue V1 = N->getOperand(1); + assert(VT == V0.getSimpleValueType() && VT == V1.getSimpleValueType() && + "Unexpected input vector types"); + + // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector + // operands and changing the mask to 1. This saves us a bunch of + // pattern-matching possibilities related to scalar math ops in SSE/AVX. + // x86InstrInfo knows how to commute this back after instruction selection + // if it would help register allocation. + + // TODO: If optimizing for size or a processor that doesn't suffer from + // partial register update stalls, this should be transformed into a MOVSD + // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD. + + if (VT == MVT::v2f64) + if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2))) + if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) { + SDValue NewMask = DAG.getConstant(1, DL, MVT::i8); + return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask); + } + + return SDValue(); + } + case X86ISD::MOVSD: + case X86ISD::MOVSS: { + SDValue V0 = peekThroughBitcasts(N->getOperand(0)); + SDValue V1 = peekThroughBitcasts(N->getOperand(1)); + bool isZero0 = ISD::isBuildVectorAllZeros(V0.getNode()); + bool isZero1 = ISD::isBuildVectorAllZeros(V1.getNode()); + if (isZero0 && isZero1) + return SDValue(); + + // We often lower to MOVSD/MOVSS from integer as well as native float + // types; remove unnecessary domain-crossing bitcasts if we can to make it + // easier to combine shuffles later on. We've already accounted for the + // domain switching cost when we decided to lower with it. + bool isFloat = VT.isFloatingPoint(); + bool isFloat0 = V0.getSimpleValueType().isFloatingPoint(); + bool isFloat1 = V1.getSimpleValueType().isFloatingPoint(); + if ((isFloat != isFloat0 || isZero0) && (isFloat != isFloat1 || isZero1)) { + MVT NewVT = isFloat ? (X86ISD::MOVSD == Opcode ? MVT::v2i64 : MVT::v4i32) + : (X86ISD::MOVSD == Opcode ? MVT::v2f64 : MVT::v4f32); + V0 = DAG.getBitcast(NewVT, V0); + V1 = DAG.getBitcast(NewVT, V1); + return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, NewVT, V0, V1)); + } + + return SDValue(); + } + case X86ISD::INSERTPS: { + assert(VT == MVT::v4f32 && "INSERTPS ValueType must be MVT::v4f32"); + SDValue Op0 = N.getOperand(0); + SDValue Op1 = N.getOperand(1); + SDValue Op2 = N.getOperand(2); + unsigned InsertPSMask = cast<ConstantSDNode>(Op2)->getZExtValue(); + unsigned SrcIdx = (InsertPSMask >> 6) & 0x3; + unsigned DstIdx = (InsertPSMask >> 4) & 0x3; + unsigned ZeroMask = InsertPSMask & 0xF; + + // If we zero out all elements from Op0 then we don't need to reference it. + if (((ZeroMask | (1u << DstIdx)) == 0xF) && !Op0.isUndef()) + return DAG.getNode(X86ISD::INSERTPS, DL, VT, DAG.getUNDEF(VT), Op1, + DAG.getConstant(InsertPSMask, DL, MVT::i8)); + + // If we zero out the element from Op1 then we don't need to reference it. + if ((ZeroMask & (1u << DstIdx)) && !Op1.isUndef()) + return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT), + DAG.getConstant(InsertPSMask, DL, MVT::i8)); + + // Attempt to merge insertps Op1 with an inner target shuffle node. + SmallVector<int, 8> TargetMask1; + SmallVector<SDValue, 2> Ops1; + if (setTargetShuffleZeroElements(Op1, TargetMask1, Ops1)) { + int M = TargetMask1[SrcIdx]; + if (isUndefOrZero(M)) { + // Zero/UNDEF insertion - zero out element and remove dependency. + InsertPSMask |= (1u << DstIdx); + return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT), + DAG.getConstant(InsertPSMask, DL, MVT::i8)); + } + // Update insertps mask srcidx and reference the source input directly. + assert(0 <= M && M < 8 && "Shuffle index out of range"); + InsertPSMask = (InsertPSMask & 0x3f) | ((M & 0x3) << 6); + Op1 = Ops1[M < 4 ? 0 : 1]; + return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1, + DAG.getConstant(InsertPSMask, DL, MVT::i8)); + } + + // Attempt to merge insertps Op0 with an inner target shuffle node. + SmallVector<int, 8> TargetMask0; + SmallVector<SDValue, 2> Ops0; + if (!setTargetShuffleZeroElements(Op0, TargetMask0, Ops0)) + return SDValue(); + + bool Updated = false; + bool UseInput00 = false; + bool UseInput01 = false; + for (int i = 0; i != 4; ++i) { + int M = TargetMask0[i]; + if ((InsertPSMask & (1u << i)) || (i == (int)DstIdx)) { + // No change if element is already zero or the inserted element. + continue; + } else if (isUndefOrZero(M)) { + // If the target mask is undef/zero then we must zero the element. + InsertPSMask |= (1u << i); + Updated = true; + continue; + } + + // The input vector element must be inline. + if (M != i && M != (i + 4)) + return SDValue(); + + // Determine which inputs of the target shuffle we're using. + UseInput00 |= (0 <= M && M < 4); + UseInput01 |= (4 <= M); + } + + // If we're not using both inputs of the target shuffle then use the + // referenced input directly. + if (UseInput00 && !UseInput01) { + Updated = true; + Op0 = Ops0[0]; + } else if (!UseInput00 && UseInput01) { + Updated = true; + Op0 = Ops0[1]; + } + + if (Updated) + return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1, + DAG.getConstant(InsertPSMask, DL, MVT::i8)); + + return SDValue(); + } + default: + return SDValue(); + } + + // Nuke no-op shuffles that show up after combining. + if (isNoopShuffleMask(Mask)) + return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); + + // Look for simplifications involving one or two shuffle instructions. + SDValue V = N.getOperand(0); + switch (N.getOpcode()) { + default: + break; + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!"); + + if (combineRedundantHalfShuffle(N, Mask, DAG, DCI)) + return SDValue(); // We combined away this shuffle, so we're done. + + // See if this reduces to a PSHUFD which is no more expensive and can + // combine with more operations. Note that it has to at least flip the + // dwords as otherwise it would have been removed as a no-op. + if (makeArrayRef(Mask).equals({2, 3, 0, 1})) { + int DMask[] = {0, 1, 2, 3}; + int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2; + DMask[DOffset + 0] = DOffset + 1; + DMask[DOffset + 1] = DOffset + 0; + MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); + V = DAG.getBitcast(DVT, V); + DCI.AddToWorklist(V.getNode()); + V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V, + getV4X86ShuffleImm8ForMask(DMask, DL, DAG)); + DCI.AddToWorklist(V.getNode()); + return DAG.getBitcast(VT, V); + } + + // Look for shuffle patterns which can be implemented as a single unpack. + // FIXME: This doesn't handle the location of the PSHUFD generically, and + // only works when we have a PSHUFD followed by two half-shuffles. + if (Mask[0] == Mask[1] && Mask[2] == Mask[3] && + (V.getOpcode() == X86ISD::PSHUFLW || + V.getOpcode() == X86ISD::PSHUFHW) && + V.getOpcode() != N.getOpcode() && + V.hasOneUse()) { + SDValue D = peekThroughOneUseBitcasts(V.getOperand(0)); + if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) { + SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); + SmallVector<int, 4> DMask = getPSHUFShuffleMask(D); + int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; + int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; + int WordMask[8]; + for (int i = 0; i < 4; ++i) { + WordMask[i + NOffset] = Mask[i] + NOffset; + WordMask[i + VOffset] = VMask[i] + VOffset; + } + // Map the word mask through the DWord mask. + int MappedMask[8]; + for (int i = 0; i < 8; ++i) + MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2; + if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) || + makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) { + // We can replace all three shuffles with an unpack. + V = DAG.getBitcast(VT, D.getOperand(0)); + DCI.AddToWorklist(V.getNode()); + return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL + : X86ISD::UNPCKH, + DL, VT, V, V); + } + } + } + + break; + + case X86ISD::PSHUFD: + if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG)) + return NewN; + + break; + } + + return SDValue(); +} + +/// Returns true iff the shuffle node \p N can be replaced with ADDSUB(SUBADD) +/// operation. If true is returned then the operands of ADDSUB(SUBADD) operation +/// are written to the parameters \p Opnd0 and \p Opnd1. +/// +/// We combine shuffle to ADDSUB(SUBADD) directly on the abstract vector shuffle nodes +/// so it is easier to generically match. We also insert dummy vector shuffle +/// nodes for the operands which explicitly discard the lanes which are unused +/// by this operation to try to flow through the rest of the combiner +/// the fact that they're unused. +static bool isAddSubOrSubAdd(SDNode *N, const X86Subtarget &Subtarget, + SDValue &Opnd0, SDValue &Opnd1, + bool matchSubAdd = false) { + + EVT VT = N->getValueType(0); + if ((!Subtarget.hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) && + (!Subtarget.hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)) && + (!Subtarget.hasAVX512() || (VT != MVT::v16f32 && VT != MVT::v8f64))) + return false; + + // We only handle target-independent shuffles. + // FIXME: It would be easy and harmless to use the target shuffle mask + // extraction tool to support more. + if (N->getOpcode() != ISD::VECTOR_SHUFFLE) + return false; + + ArrayRef<int> OrigMask = cast<ShuffleVectorSDNode>(N)->getMask(); + SmallVector<int, 16> Mask(OrigMask.begin(), OrigMask.end()); + + SDValue V1 = N->getOperand(0); + SDValue V2 = N->getOperand(1); + + unsigned ExpectedOpcode = matchSubAdd ? ISD::FADD : ISD::FSUB; + unsigned NextExpectedOpcode = matchSubAdd ? ISD::FSUB : ISD::FADD; + + // We require the first shuffle operand to be the ExpectedOpcode node, + // and the second to be the NextExpectedOpcode node. + if (V1.getOpcode() == NextExpectedOpcode && V2.getOpcode() == ExpectedOpcode) { + ShuffleVectorSDNode::commuteMask(Mask); + std::swap(V1, V2); + } else if (V1.getOpcode() != ExpectedOpcode || V2.getOpcode() != NextExpectedOpcode) + return false; + + // If there are other uses of these operations we can't fold them. + if (!V1->hasOneUse() || !V2->hasOneUse()) + return false; + + // Ensure that both operations have the same operands. Note that we can + // commute the FADD operands. + SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1); + if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) && + (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS)) + return false; + + // We're looking for blends between FADD and FSUB nodes. We insist on these + // nodes being lined up in a specific expected pattern. + if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) || + isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) || + isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15}) || + isShuffleEquivalent(V1, V2, Mask, {0, 17, 2, 19, 4, 21, 6, 23, + 8, 25, 10, 27, 12, 29, 14, 31}))) + return false; + + Opnd0 = LHS; + Opnd1 = RHS; + return true; +} + +/// \brief Try to combine a shuffle into a target-specific add-sub or +/// mul-add-sub node. +static SDValue combineShuffleToAddSubOrFMAddSub(SDNode *N, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDValue Opnd0, Opnd1; + if (!isAddSubOrSubAdd(N, Subtarget, Opnd0, Opnd1)) + return SDValue(); + + EVT VT = N->getValueType(0); + SDLoc DL(N); + + // Try to generate X86ISD::FMADDSUB node here. + SDValue Opnd2; + if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, 2)) + return DAG.getNode(X86ISD::FMADDSUB, DL, VT, Opnd0, Opnd1, Opnd2); + + // Do not generate X86ISD::ADDSUB node for 512-bit types even though + // the ADDSUB idiom has been successfully recognized. There are no known + // X86 targets with 512-bit ADDSUB instructions! + if (VT.is512BitVector()) + return SDValue(); + + return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1); +} + +/// \brief Try to combine a shuffle into a target-specific +/// mul-sub-add node. +static SDValue combineShuffleToFMSubAdd(SDNode *N, + const X86Subtarget &Subtarget, + SelectionDAG &DAG) { + SDValue Opnd0, Opnd1; + if (!isAddSubOrSubAdd(N, Subtarget, Opnd0, Opnd1, true)) + return SDValue(); + + EVT VT = N->getValueType(0); + SDLoc DL(N); + + // Try to generate X86ISD::FMSUBADD node here. + SDValue Opnd2; + if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, 2)) + return DAG.getNode(X86ISD::FMSUBADD, DL, VT, Opnd0, Opnd1, Opnd2); + + return SDValue(); +} + +// We are looking for a shuffle where both sources are concatenated with undef +// and have a width that is half of the output's width. AVX2 has VPERMD/Q, so +// if we can express this as a single-source shuffle, that's preferable. +static SDValue combineShuffleOfConcatUndef(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (!Subtarget.hasAVX2() || !isa<ShuffleVectorSDNode>(N)) + return SDValue(); + + EVT VT = N->getValueType(0); + + // We only care about shuffles of 128/256-bit vectors of 32/64-bit values. + if (!VT.is128BitVector() && !VT.is256BitVector()) + return SDValue(); + + if (VT.getVectorElementType() != MVT::i32 && + VT.getVectorElementType() != MVT::i64 && + VT.getVectorElementType() != MVT::f32 && + VT.getVectorElementType() != MVT::f64) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // Check that both sources are concats with undef. + if (N0.getOpcode() != ISD::CONCAT_VECTORS || + N1.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || + N1.getNumOperands() != 2 || !N0.getOperand(1).isUndef() || + !N1.getOperand(1).isUndef()) + return SDValue(); + + // Construct the new shuffle mask. Elements from the first source retain their + // index, but elements from the second source no longer need to skip an undef. + SmallVector<int, 8> Mask; + int NumElts = VT.getVectorNumElements(); + + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + for (int Elt : SVOp->getMask()) + Mask.push_back(Elt < NumElts ? Elt : (Elt - NumElts / 2)); + + SDLoc DL(N); + SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, N0.getOperand(0), + N1.getOperand(0)); + return DAG.getVectorShuffle(VT, DL, Concat, DAG.getUNDEF(VT), Mask); +} + +/// Eliminate a redundant shuffle of a horizontal math op. +static SDValue foldShuffleOfHorizOp(SDNode *N) { + if (N->getOpcode() != ISD::VECTOR_SHUFFLE || !N->getOperand(1).isUndef()) + return SDValue(); + + SDValue HOp = N->getOperand(0); + if (HOp.getOpcode() != X86ISD::HADD && HOp.getOpcode() != X86ISD::FHADD && + HOp.getOpcode() != X86ISD::HSUB && HOp.getOpcode() != X86ISD::FHSUB) + return SDValue(); + + // 128-bit horizontal math instructions are defined to operate on adjacent + // lanes of each operand as: + // v4X32: A[0] + A[1] , A[2] + A[3] , B[0] + B[1] , B[2] + B[3] + // ...similarly for v2f64 and v8i16. + // TODO: 256-bit is not the same because...x86. + if (HOp.getOperand(0) != HOp.getOperand(1) || HOp.getValueSizeInBits() != 128) + return SDValue(); + + // When the operands of a horizontal math op are identical, the low half of + // the result is the same as the high half. If the shuffle is also replicating + // low and high halves, we don't need the shuffle. + // shuffle (hadd X, X), undef, [low half...high half] --> hadd X, X + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask(); + // TODO: Other mask possibilities like {1,1} and {1,0} could be added here, + // but this should be tied to whatever horizontal op matching and shuffle + // canonicalization are producing. + if (isTargetShuffleEquivalent(Mask, { 0, 0 }) || + isTargetShuffleEquivalent(Mask, { 0, 1, 0, 1 }) || + isTargetShuffleEquivalent(Mask, { 0, 1, 2, 3, 0, 1, 2, 3 })) + return HOp; + + return SDValue(); +} + +static SDValue combineShuffle(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + SDLoc dl(N); + EVT VT = N->getValueType(0); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + // If we have legalized the vector types, look for blends of FADD and FSUB + // nodes that we can fuse into an ADDSUB, FMADDSUB, or FMSUBADD node. + if (TLI.isTypeLegal(VT)) { + if (SDValue AddSub = combineShuffleToAddSubOrFMAddSub(N, Subtarget, DAG)) + return AddSub; + + if (SDValue FMSubAdd = combineShuffleToFMSubAdd(N, Subtarget, DAG)) + return FMSubAdd; + + if (SDValue HAddSub = foldShuffleOfHorizOp(N)) + return HAddSub; + } + + // During Type Legalization, when promoting illegal vector types, + // the backend might introduce new shuffle dag nodes and bitcasts. + // + // This code performs the following transformation: + // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) -> + // (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>) + // + // We do this only if both the bitcast and the BINOP dag nodes have + // one use. Also, perform this transformation only if the new binary + // operation is legal. This is to avoid introducing dag nodes that + // potentially need to be further expanded (or custom lowered) into a + // less optimal sequence of dag nodes. + if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() && + N->getOpcode() == ISD::VECTOR_SHUFFLE && + N->getOperand(0).getOpcode() == ISD::BITCAST && + N->getOperand(1).isUndef() && N->getOperand(0).hasOneUse()) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + SDValue BC0 = N0.getOperand(0); + EVT SVT = BC0.getValueType(); + unsigned Opcode = BC0.getOpcode(); + unsigned NumElts = VT.getVectorNumElements(); + + if (BC0.hasOneUse() && SVT.isVector() && + SVT.getVectorNumElements() * 2 == NumElts && + TLI.isOperationLegal(Opcode, VT)) { + bool CanFold = false; + switch (Opcode) { + default : break; + case ISD::ADD: + case ISD::SUB: + case ISD::MUL: + // isOperationLegal lies for integer ops on floating point types. + CanFold = VT.isInteger(); + break; + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + // isOperationLegal lies for floating point ops on integer types. + CanFold = VT.isFloatingPoint(); + break; + } + + unsigned SVTNumElts = SVT.getVectorNumElements(); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i) + CanFold = SVOp->getMaskElt(i) == (int)(i * 2); + for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i) + CanFold = SVOp->getMaskElt(i) < 0; + + if (CanFold) { + SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0)); + SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1)); + SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01); + return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, SVOp->getMask()); + } + } + } + + // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, + // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are + // consecutive, non-overlapping, and in the right order. + SmallVector<SDValue, 16> Elts; + for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { + if (SDValue Elt = getShuffleScalarElt(N, i, DAG, 0)) { + Elts.push_back(Elt); + continue; + } + Elts.clear(); + break; + } + + if (Elts.size() == VT.getVectorNumElements()) + if (SDValue LD = + EltsFromConsecutiveLoads(VT, Elts, dl, DAG, Subtarget, true)) + return LD; + + // For AVX2, we sometimes want to combine + // (vector_shuffle <mask> (concat_vectors t1, undef) + // (concat_vectors t2, undef)) + // Into: + // (vector_shuffle <mask> (concat_vectors t1, t2), undef) + // Since the latter can be efficiently lowered with VPERMD/VPERMQ + if (SDValue ShufConcat = combineShuffleOfConcatUndef(N, DAG, Subtarget)) + return ShufConcat; + + if (isTargetShuffle(N->getOpcode())) { + SDValue Op(N, 0); + if (SDValue Shuffle = combineTargetShuffle(Op, DAG, DCI, Subtarget)) + return Shuffle; + + // Try recursively combining arbitrary sequences of x86 shuffle + // instructions into higher-order shuffles. We do this after combining + // specific PSHUF instruction sequences into their minimal form so that we + // can evaluate how many specialized shuffle instructions are involved in + // a particular chain. + if (SDValue Res = combineX86ShufflesRecursively( + {Op}, 0, Op, {0}, {}, /*Depth*/ 1, + /*HasVarMask*/ false, DAG, DCI, Subtarget)) { + DCI.CombineTo(N, Res); + return SDValue(); + } + } + + return SDValue(); +} + +/// Check if a vector extract from a target-specific shuffle of a load can be +/// folded into a single element load. +/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but +/// shuffles have been custom lowered so we need to handle those here. +static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue InVec = N->getOperand(0); + SDValue EltNo = N->getOperand(1); + EVT EltVT = N->getValueType(0); + + if (!isa<ConstantSDNode>(EltNo)) + return SDValue(); + + EVT OriginalVT = InVec.getValueType(); + + // Peek through bitcasts, don't duplicate a load with other uses. + InVec = peekThroughOneUseBitcasts(InVec); + + EVT CurrentVT = InVec.getValueType(); + if (!CurrentVT.isVector() || + CurrentVT.getVectorNumElements() != OriginalVT.getVectorNumElements()) + return SDValue(); + + if (!isTargetShuffle(InVec.getOpcode())) + return SDValue(); + + // Don't duplicate a load with other uses. + if (!InVec.hasOneUse()) + return SDValue(); + + SmallVector<int, 16> ShuffleMask; + SmallVector<SDValue, 2> ShuffleOps; + bool UnaryShuffle; + if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), true, + ShuffleOps, ShuffleMask, UnaryShuffle)) + return SDValue(); + + // Select the input vector, guarding against out of range extract vector. + unsigned NumElems = CurrentVT.getVectorNumElements(); + int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); + int Idx = (Elt > (int)NumElems) ? SM_SentinelUndef : ShuffleMask[Elt]; + + if (Idx == SM_SentinelZero) + return EltVT.isInteger() ? DAG.getConstant(0, SDLoc(N), EltVT) + : DAG.getConstantFP(+0.0, SDLoc(N), EltVT); + if (Idx == SM_SentinelUndef) + return DAG.getUNDEF(EltVT); + + assert(0 <= Idx && Idx < (int)(2 * NumElems) && "Shuffle index out of range"); + SDValue LdNode = (Idx < (int)NumElems) ? ShuffleOps[0] + : ShuffleOps[1]; + + // If inputs to shuffle are the same for both ops, then allow 2 uses + unsigned AllowedUses = + (ShuffleOps.size() > 1 && ShuffleOps[0] == ShuffleOps[1]) ? 2 : 1; + + if (LdNode.getOpcode() == ISD::BITCAST) { + // Don't duplicate a load with other uses. + if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) + return SDValue(); + + AllowedUses = 1; // only allow 1 load use if we have a bitcast + LdNode = LdNode.getOperand(0); + } + + if (!ISD::isNormalLoad(LdNode.getNode())) + return SDValue(); + + LoadSDNode *LN0 = cast<LoadSDNode>(LdNode); + + if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) + return SDValue(); + + // If there's a bitcast before the shuffle, check if the load type and + // alignment is valid. + unsigned Align = LN0->getAlignment(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( + EltVT.getTypeForEVT(*DAG.getContext())); + + if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT)) + return SDValue(); + + // All checks match so transform back to vector_shuffle so that DAG combiner + // can finish the job + SDLoc dl(N); + + // Create shuffle node taking into account the case that its a unary shuffle + SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) : ShuffleOps[1]; + Shuffle = DAG.getVectorShuffle(CurrentVT, dl, ShuffleOps[0], Shuffle, + ShuffleMask); + Shuffle = DAG.getBitcast(OriginalVT, Shuffle); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, + EltNo); +} + +// Try to match patterns such as +// (i16 bitcast (v16i1 x)) +// -> +// (i16 movmsk (16i8 sext (v16i1 x))) +// before the illegal vector is scalarized on subtargets that don't have legal +// vxi1 types. +static SDValue combineBitcastvxi1(SelectionDAG &DAG, SDValue BitCast, + const X86Subtarget &Subtarget) { + EVT VT = BitCast.getValueType(); + SDValue N0 = BitCast.getOperand(0); + EVT VecVT = N0->getValueType(0); + + if (VT.isVector() && VecVT.isScalarInteger() && Subtarget.hasAVX512() && + N0->getOpcode() == ISD::OR) { + SDValue Op0 = N0->getOperand(0); + SDValue Op1 = N0->getOperand(1); + MVT TrunckVT; + MVT BitcastVT; + switch (VT.getSimpleVT().SimpleTy) { + default: + return SDValue(); + case MVT::v16i1: + TrunckVT = MVT::i8; + BitcastVT = MVT::v8i1; + break; + case MVT::v32i1: + TrunckVT = MVT::i16; + BitcastVT = MVT::v16i1; + break; + case MVT::v64i1: + TrunckVT = MVT::i32; + BitcastVT = MVT::v32i1; + break; + } + bool isArg0UndefRight = Op0->getOpcode() == ISD::SHL; + bool isArg0UndefLeft = + Op0->getOpcode() == ISD::ZERO_EXTEND || Op0->getOpcode() == ISD::AND; + bool isArg1UndefRight = Op1->getOpcode() == ISD::SHL; + bool isArg1UndefLeft = + Op1->getOpcode() == ISD::ZERO_EXTEND || Op1->getOpcode() == ISD::AND; + SDValue OpLeft; + SDValue OpRight; + if (isArg0UndefRight && isArg1UndefLeft) { + OpLeft = Op0; + OpRight = Op1; + } else if (isArg1UndefRight && isArg0UndefLeft) { + OpLeft = Op1; + OpRight = Op0; + } else + return SDValue(); + SDLoc DL(BitCast); + SDValue Shr = OpLeft->getOperand(0); + SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, TrunckVT, Shr); + SDValue Bitcast1 = DAG.getBitcast(BitcastVT, Trunc1); + SDValue Trunc2 = DAG.getNode(ISD::TRUNCATE, DL, TrunckVT, OpRight); + SDValue Bitcast2 = DAG.getBitcast(BitcastVT, Trunc2); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Bitcast1, Bitcast2); + } + + if (!VT.isScalarInteger() || !VecVT.isSimple()) + return SDValue(); + + // With AVX512 vxi1 types are legal and we prefer using k-regs. + // MOVMSK is supported in SSE2 or later. + if (Subtarget.hasAVX512() || !Subtarget.hasSSE2()) + return SDValue(); + + // There are MOVMSK flavors for types v16i8, v32i8, v4f32, v8f32, v4f64 and + // v8f64. So all legal 128-bit and 256-bit vectors are covered except for + // v8i16 and v16i16. + // For these two cases, we can shuffle the upper element bytes to a + // consecutive sequence at the start of the vector and treat the results as + // v16i8 or v32i8, and for v16i8 this is the preferable solution. However, + // for v16i16 this is not the case, because the shuffle is expensive, so we + // avoid sign-extending to this type entirely. + // For example, t0 := (v8i16 sext(v8i1 x)) needs to be shuffled as: + // (v16i8 shuffle <0,2,4,6,8,10,12,14,u,u,...,u> (v16i8 bitcast t0), undef) + MVT SExtVT; + MVT FPCastVT = MVT::INVALID_SIMPLE_VALUE_TYPE; + switch (VecVT.getSimpleVT().SimpleTy) { + default: + return SDValue(); + case MVT::v2i1: + SExtVT = MVT::v2i64; + FPCastVT = MVT::v2f64; + break; + case MVT::v4i1: + SExtVT = MVT::v4i32; + FPCastVT = MVT::v4f32; + // For cases such as (i4 bitcast (v4i1 setcc v4i64 v1, v2)) + // sign-extend to a 256-bit operation to avoid truncation. + if (N0->getOpcode() == ISD::SETCC && Subtarget.hasAVX() && + N0->getOperand(0).getValueType().is256BitVector()) { + SExtVT = MVT::v4i64; + FPCastVT = MVT::v4f64; + } + break; + case MVT::v8i1: + SExtVT = MVT::v8i16; + // For cases such as (i8 bitcast (v8i1 setcc v8i32 v1, v2)), + // sign-extend to a 256-bit operation to match the compare. + // If the setcc operand is 128-bit, prefer sign-extending to 128-bit over + // 256-bit because the shuffle is cheaper than sign extending the result of + // the compare. + if (N0->getOpcode() == ISD::SETCC && Subtarget.hasAVX() && + (N0->getOperand(0).getValueType().is256BitVector() || + N0->getOperand(0).getValueType().is512BitVector())) { + SExtVT = MVT::v8i32; + FPCastVT = MVT::v8f32; + } + break; + case MVT::v16i1: + SExtVT = MVT::v16i8; + // For the case (i16 bitcast (v16i1 setcc v16i16 v1, v2)), + // it is not profitable to sign-extend to 256-bit because this will + // require an extra cross-lane shuffle which is more expensive than + // truncating the result of the compare to 128-bits. + break; + case MVT::v32i1: + SExtVT = MVT::v32i8; + break; + }; + + SDLoc DL(BitCast); + SDValue V = DAG.getSExtOrTrunc(N0, DL, SExtVT); + + if (SExtVT == MVT::v32i8 && !Subtarget.hasInt256()) { + // Handle pre-AVX2 cases by splitting to two v16i1's. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT ShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), MVT::i32); + SDValue Lo = extract128BitVector(V, 0, DAG, DL); + SDValue Hi = extract128BitVector(V, 16, DAG, DL); + Lo = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Lo); + Hi = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Hi); + Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, + DAG.getConstant(16, DL, ShiftTy)); + V = DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi); + return DAG.getZExtOrTrunc(V, DL, VT); + } + + if (SExtVT == MVT::v8i16) { + assert(16 == DAG.ComputeNumSignBits(V) && "Expected all/none bit vector"); + V = DAG.getNode(X86ISD::PACKSS, DL, MVT::v16i8, V, + DAG.getUNDEF(MVT::v8i16)); + } else + assert(SExtVT.getScalarType() != MVT::i16 && + "Vectors of i16 must be packed"); + if (FPCastVT != MVT::INVALID_SIMPLE_VALUE_TYPE) + V = DAG.getBitcast(FPCastVT, V); + V = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V); + return DAG.getZExtOrTrunc(V, DL, VT); +} + +static SDValue combineBitcast(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT SrcVT = N0.getValueType(); + + // Try to match patterns such as + // (i16 bitcast (v16i1 x)) + // -> + // (i16 movmsk (16i8 sext (v16i1 x))) + // before the setcc result is scalarized on subtargets that don't have legal + // vxi1 types. + if (DCI.isBeforeLegalize()) + if (SDValue V = combineBitcastvxi1(DAG, SDValue(N, 0), Subtarget)) + return V; + // Since MMX types are special and don't usually play with other vector types, + // it's better to handle them early to be sure we emit efficient code by + // avoiding store-load conversions. + + // Detect bitcasts between i32 to x86mmx low word. + if (VT == MVT::x86mmx && N0.getOpcode() == ISD::BUILD_VECTOR && + SrcVT == MVT::v2i32 && isNullConstant(N0.getOperand(1))) { + SDValue N00 = N0->getOperand(0); + if (N00.getValueType() == MVT::i32) + return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(N00), VT, N00); + } + + // Detect bitcasts between element or subvector extraction to x86mmx. + if (VT == MVT::x86mmx && + (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT || + N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) && + isNullConstant(N0.getOperand(1))) { + SDValue N00 = N0->getOperand(0); + if (N00.getValueType().is128BitVector()) + return DAG.getNode(X86ISD::MOVDQ2Q, SDLoc(N00), VT, + DAG.getBitcast(MVT::v2i64, N00)); + } + + // Detect bitcasts from FP_TO_SINT to x86mmx. + if (VT == MVT::x86mmx && SrcVT == MVT::v2i32 && + N0.getOpcode() == ISD::FP_TO_SINT) { + SDLoc DL(N0); + SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0, + DAG.getUNDEF(MVT::v2i32)); + return DAG.getNode(X86ISD::MOVDQ2Q, DL, VT, + DAG.getBitcast(MVT::v2i64, Res)); + } + + // Convert a bitcasted integer logic operation that has one bitcasted + // floating-point operand into a floating-point logic operation. This may + // create a load of a constant, but that is cheaper than materializing the + // constant in an integer register and transferring it to an SSE register or + // transferring the SSE operand to integer register and back. + unsigned FPOpcode; + switch (N0.getOpcode()) { + case ISD::AND: FPOpcode = X86ISD::FAND; break; + case ISD::OR: FPOpcode = X86ISD::FOR; break; + case ISD::XOR: FPOpcode = X86ISD::FXOR; break; + default: return SDValue(); + } + + if (!((Subtarget.hasSSE1() && VT == MVT::f32) || + (Subtarget.hasSSE2() && VT == MVT::f64))) + return SDValue(); + + SDValue LogicOp0 = N0.getOperand(0); + SDValue LogicOp1 = N0.getOperand(1); + SDLoc DL0(N0); + + // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) + if (N0.hasOneUse() && LogicOp0.getOpcode() == ISD::BITCAST && + LogicOp0.hasOneUse() && LogicOp0.getOperand(0).getValueType() == VT && + !isa<ConstantSDNode>(LogicOp0.getOperand(0))) { + SDValue CastedOp1 = DAG.getBitcast(VT, LogicOp1); + return DAG.getNode(FPOpcode, DL0, VT, LogicOp0.getOperand(0), CastedOp1); + } + // bitcast(logic(X, bitcast(Y))) --> logic'(bitcast(X), Y) + if (N0.hasOneUse() && LogicOp1.getOpcode() == ISD::BITCAST && + LogicOp1.hasOneUse() && LogicOp1.getOperand(0).getValueType() == VT && + !isa<ConstantSDNode>(LogicOp1.getOperand(0))) { + SDValue CastedOp0 = DAG.getBitcast(VT, LogicOp0); + return DAG.getNode(FPOpcode, DL0, VT, LogicOp1.getOperand(0), CastedOp0); + } + + return SDValue(); +} + +// Match a binop + shuffle pyramid that represents a horizontal reduction over +// the elements of a vector. +// Returns the vector that is being reduced on, or SDValue() if a reduction +// was not matched. +static SDValue matchBinOpReduction(SDNode *Extract, unsigned &BinOp, + ArrayRef<ISD::NodeType> CandidateBinOps) { + // The pattern must end in an extract from index 0. + if ((Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) || + !isNullConstant(Extract->getOperand(1))) + return SDValue(); + + SDValue Op = Extract->getOperand(0); + unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); + + // Match against one of the candidate binary ops. + if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { + return Op.getOpcode() == unsigned(BinOp); + })) + return SDValue(); + + // At each stage, we're looking for something that looks like: + // %s = shufflevector <8 x i32> %op, <8 x i32> undef, + // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, + // i32 undef, i32 undef, i32 undef, i32 undef> + // %a = binop <8 x i32> %op, %s + // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, + // we expect something like: + // <4,5,6,7,u,u,u,u> + // <2,3,u,u,u,u,u,u> + // <1,u,u,u,u,u,u,u> + unsigned CandidateBinOp = Op.getOpcode(); + for (unsigned i = 0; i < Stages; ++i) { + if (Op.getOpcode() != CandidateBinOp) + return SDValue(); + + ShuffleVectorSDNode *Shuffle = + dyn_cast<ShuffleVectorSDNode>(Op.getOperand(0).getNode()); + if (Shuffle) { + Op = Op.getOperand(1); + } else { + Shuffle = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(1).getNode()); + Op = Op.getOperand(0); + } + + // The first operand of the shuffle should be the same as the other operand + // of the binop. + if (!Shuffle || Shuffle->getOperand(0) != Op) + return SDValue(); + + // Verify the shuffle has the expected (at this stage of the pyramid) mask. + for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index) + if (Shuffle->getMaskElt(Index) != MaskEnd + Index) + return SDValue(); + } + + BinOp = CandidateBinOp; + return Op; +} + +// Given a select, detect the following pattern: +// 1: %2 = zext <N x i8> %0 to <N x i32> +// 2: %3 = zext <N x i8> %1 to <N x i32> +// 3: %4 = sub nsw <N x i32> %2, %3 +// 4: %5 = icmp sgt <N x i32> %4, [0 x N] or [-1 x N] +// 5: %6 = sub nsw <N x i32> zeroinitializer, %4 +// 6: %7 = select <N x i1> %5, <N x i32> %4, <N x i32> %6 +// This is useful as it is the input into a SAD pattern. +static bool detectZextAbsDiff(const SDValue &Select, SDValue &Op0, + SDValue &Op1) { + // Check the condition of the select instruction is greater-than. + SDValue SetCC = Select->getOperand(0); + if (SetCC.getOpcode() != ISD::SETCC) + return false; + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); + if (CC != ISD::SETGT && CC != ISD::SETLT) + return false; + + SDValue SelectOp1 = Select->getOperand(1); + SDValue SelectOp2 = Select->getOperand(2); + + // The following instructions assume SelectOp1 is the subtraction operand + // and SelectOp2 is the negation operand. + // In the case of SETLT this is the other way around. + if (CC == ISD::SETLT) + std::swap(SelectOp1, SelectOp2); + + // The second operand of the select should be the negation of the first + // operand, which is implemented as 0 - SelectOp1. + if (!(SelectOp2.getOpcode() == ISD::SUB && + ISD::isBuildVectorAllZeros(SelectOp2.getOperand(0).getNode()) && + SelectOp2.getOperand(1) == SelectOp1)) + return false; + + // The first operand of SetCC is the first operand of the select, which is the + // difference between the two input vectors. + if (SetCC.getOperand(0) != SelectOp1) + return false; + + // In SetLT case, The second operand of the comparison can be either 1 or 0. + APInt SplatVal; + if ((CC == ISD::SETLT) && + !((ISD::isConstantSplatVector(SetCC.getOperand(1).getNode(), SplatVal) && + SplatVal.isOneValue()) || + (ISD::isBuildVectorAllZeros(SetCC.getOperand(1).getNode())))) + return false; + + // In SetGT case, The second operand of the comparison can be either -1 or 0. + if ((CC == ISD::SETGT) && + !(ISD::isBuildVectorAllZeros(SetCC.getOperand(1).getNode()) || + ISD::isBuildVectorAllOnes(SetCC.getOperand(1).getNode()))) + return false; + + // The first operand of the select is the difference between the two input + // vectors. + if (SelectOp1.getOpcode() != ISD::SUB) + return false; + + Op0 = SelectOp1.getOperand(0); + Op1 = SelectOp1.getOperand(1); + + // Check if the operands of the sub are zero-extended from vectors of i8. + if (Op0.getOpcode() != ISD::ZERO_EXTEND || + Op0.getOperand(0).getValueType().getVectorElementType() != MVT::i8 || + Op1.getOpcode() != ISD::ZERO_EXTEND || + Op1.getOperand(0).getValueType().getVectorElementType() != MVT::i8) + return false; + + return true; +} + +// Given two zexts of <k x i8> to <k x i32>, create a PSADBW of the inputs +// to these zexts. +static SDValue createPSADBW(SelectionDAG &DAG, const SDValue &Zext0, + const SDValue &Zext1, const SDLoc &DL) { + + // Find the appropriate width for the PSADBW. + EVT InVT = Zext0.getOperand(0).getValueType(); + unsigned RegSize = std::max(128u, InVT.getSizeInBits()); + + // "Zero-extend" the i8 vectors. This is not a per-element zext, rather we + // fill in the missing vector elements with 0. + unsigned NumConcat = RegSize / InVT.getSizeInBits(); + SmallVector<SDValue, 16> Ops(NumConcat, DAG.getConstant(0, DL, InVT)); + Ops[0] = Zext0.getOperand(0); + MVT ExtendedVT = MVT::getVectorVT(MVT::i8, RegSize / 8); + SDValue SadOp0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops); + Ops[0] = Zext1.getOperand(0); + SDValue SadOp1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops); + + // Actually build the SAD + MVT SadVT = MVT::getVectorVT(MVT::i64, RegSize / 64); + return DAG.getNode(X86ISD::PSADBW, DL, SadVT, SadOp0, SadOp1); +} + +// Attempt to replace an min/max v8i16/v16i8 horizontal reduction with +// PHMINPOSUW. +static SDValue combineHorizontalMinMaxResult(SDNode *Extract, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // Bail without SSE41. + if (!Subtarget.hasSSE41()) + return SDValue(); + + EVT ExtractVT = Extract->getValueType(0); + if (ExtractVT != MVT::i16 && ExtractVT != MVT::i8) + return SDValue(); + + // Check for SMAX/SMIN/UMAX/UMIN horizontal reduction patterns. + unsigned BinOp; + SDValue Src = matchBinOpReduction( + Extract, BinOp, {ISD::SMAX, ISD::SMIN, ISD::UMAX, ISD::UMIN}); + if (!Src) + return SDValue(); + + EVT SrcVT = Src.getValueType(); + EVT SrcSVT = SrcVT.getScalarType(); + if (SrcSVT != ExtractVT || (SrcVT.getSizeInBits() % 128) != 0) + return SDValue(); + + SDLoc DL(Extract); + SDValue MinPos = Src; + + // First, reduce the source down to 128-bit, applying BinOp to lo/hi. + while (SrcVT.getSizeInBits() > 128) { + unsigned NumElts = SrcVT.getVectorNumElements(); + unsigned NumSubElts = NumElts / 2; + SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcSVT, NumSubElts); + unsigned SubSizeInBits = SrcVT.getSizeInBits(); + SDValue Lo = extractSubVector(MinPos, 0, DAG, DL, SubSizeInBits); + SDValue Hi = extractSubVector(MinPos, NumSubElts, DAG, DL, SubSizeInBits); + MinPos = DAG.getNode(BinOp, DL, SrcVT, Lo, Hi); + } + assert(((SrcVT == MVT::v8i16 && ExtractVT == MVT::i16) || + (SrcVT == MVT::v16i8 && ExtractVT == MVT::i8)) && + "Unexpected value type"); + + // PHMINPOSUW applies to UMIN(v8i16), for SMIN/SMAX/UMAX we must apply a mask + // to flip the value accordingly. + SDValue Mask; + unsigned MaskEltsBits = ExtractVT.getSizeInBits(); + if (BinOp == ISD::SMAX) + Mask = DAG.getConstant(APInt::getSignedMaxValue(MaskEltsBits), DL, SrcVT); + else if (BinOp == ISD::SMIN) + Mask = DAG.getConstant(APInt::getSignedMinValue(MaskEltsBits), DL, SrcVT); + else if (BinOp == ISD::UMAX) + Mask = DAG.getConstant(APInt::getAllOnesValue(MaskEltsBits), DL, SrcVT); + + if (Mask) + MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos); + + // For v16i8 cases we need to perform UMIN on pairs of byte elements, + // shuffling each upper element down and insert zeros. This means that the + // v16i8 UMIN will leave the upper element as zero, performing zero-extension + // ready for the PHMINPOS. + if (ExtractVT == MVT::i8) { + SDValue Upper = DAG.getVectorShuffle( + SrcVT, DL, MinPos, getZeroVector(MVT::v16i8, Subtarget, DAG, DL), + {1, 16, 3, 16, 5, 16, 7, 16, 9, 16, 11, 16, 13, 16, 15, 16}); + MinPos = DAG.getNode(ISD::UMIN, DL, SrcVT, MinPos, Upper); + } + + // Perform the PHMINPOS on a v8i16 vector, + MinPos = DAG.getBitcast(MVT::v8i16, MinPos); + MinPos = DAG.getNode(X86ISD::PHMINPOS, DL, MVT::v8i16, MinPos); + MinPos = DAG.getBitcast(SrcVT, MinPos); + + if (Mask) + MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos); + + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractVT, MinPos, + DAG.getIntPtrConstant(0, DL)); +} + +// Attempt to replace an all_of/any_of style horizontal reduction with a MOVMSK. +static SDValue combineHorizontalPredicateResult(SDNode *Extract, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // Bail without SSE2 or with AVX512VL (which uses predicate registers). + if (!Subtarget.hasSSE2() || Subtarget.hasVLX()) + return SDValue(); + + EVT ExtractVT = Extract->getValueType(0); + unsigned BitWidth = ExtractVT.getSizeInBits(); + if (ExtractVT != MVT::i64 && ExtractVT != MVT::i32 && ExtractVT != MVT::i16 && + ExtractVT != MVT::i8) + return SDValue(); + + // Check for OR(any_of) and AND(all_of) horizontal reduction patterns. + unsigned BinOp = 0; + SDValue Match = matchBinOpReduction(Extract, BinOp, {ISD::OR, ISD::AND}); + if (!Match) + return SDValue(); + + // EXTRACT_VECTOR_ELT can require implicit extension of the vector element + // which we can't support here for now. + if (Match.getScalarValueSizeInBits() != BitWidth) + return SDValue(); + + // We require AVX2 for PMOVMSKB for v16i16/v32i8; + unsigned MatchSizeInBits = Match.getValueSizeInBits(); + if (!(MatchSizeInBits == 128 || + (MatchSizeInBits == 256 && + ((Subtarget.hasAVX() && BitWidth >= 32) || Subtarget.hasAVX2())))) + return SDValue(); + + // Don't bother performing this for 2-element vectors. + if (Match.getValueType().getVectorNumElements() <= 2) + return SDValue(); + + // Check that we are extracting a reduction of all sign bits. + if (DAG.ComputeNumSignBits(Match) != BitWidth) + return SDValue(); + + // For 32/64 bit comparisons use MOVMSKPS/MOVMSKPD, else PMOVMSKB. + MVT MaskVT; + if (64 == BitWidth || 32 == BitWidth) + MaskVT = MVT::getVectorVT(MVT::getFloatingPointVT(BitWidth), + MatchSizeInBits / BitWidth); + else + MaskVT = MVT::getVectorVT(MVT::i8, MatchSizeInBits / 8); + + APInt CompareBits; + ISD::CondCode CondCode; + if (BinOp == ISD::OR) { + // any_of -> MOVMSK != 0 + CompareBits = APInt::getNullValue(32); + CondCode = ISD::CondCode::SETNE; + } else { + // all_of -> MOVMSK == ((1 << NumElts) - 1) + CompareBits = APInt::getLowBitsSet(32, MaskVT.getVectorNumElements()); + CondCode = ISD::CondCode::SETEQ; + } + + // Perform the select as i32/i64 and then truncate to avoid partial register + // stalls. + unsigned ResWidth = std::max(BitWidth, 32u); + EVT ResVT = EVT::getIntegerVT(*DAG.getContext(), ResWidth); + SDLoc DL(Extract); + SDValue Zero = DAG.getConstant(0, DL, ResVT); + SDValue Ones = DAG.getAllOnesConstant(DL, ResVT); + SDValue Res = DAG.getBitcast(MaskVT, Match); + Res = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Res); + Res = DAG.getSelectCC(DL, Res, DAG.getConstant(CompareBits, DL, MVT::i32), + Ones, Zero, CondCode); + return DAG.getSExtOrTrunc(Res, DL, ExtractVT); +} + +static SDValue combineBasicSADPattern(SDNode *Extract, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // PSADBW is only supported on SSE2 and up. + if (!Subtarget.hasSSE2()) + return SDValue(); + + // Verify the type we're extracting from is any integer type above i16. + EVT VT = Extract->getOperand(0).getValueType(); + if (!VT.isSimple() || !(VT.getVectorElementType().getSizeInBits() > 16)) + return SDValue(); + + unsigned RegSize = 128; + if (Subtarget.hasBWI()) + RegSize = 512; + else if (Subtarget.hasAVX2()) + RegSize = 256; + + // We handle upto v16i* for SSE2 / v32i* for AVX2 / v64i* for AVX512. + // TODO: We should be able to handle larger vectors by splitting them before + // feeding them into several SADs, and then reducing over those. + if (RegSize / VT.getVectorNumElements() < 8) + return SDValue(); + + // Match shuffle + add pyramid. + unsigned BinOp = 0; + SDValue Root = matchBinOpReduction(Extract, BinOp, {ISD::ADD}); + + // The operand is expected to be zero extended from i8 + // (verified in detectZextAbsDiff). + // In order to convert to i64 and above, additional any/zero/sign + // extend is expected. + // The zero extend from 32 bit has no mathematical effect on the result. + // Also the sign extend is basically zero extend + // (extends the sign bit which is zero). + // So it is correct to skip the sign/zero extend instruction. + if (Root && (Root.getOpcode() == ISD::SIGN_EXTEND || + Root.getOpcode() == ISD::ZERO_EXTEND || + Root.getOpcode() == ISD::ANY_EXTEND)) + Root = Root.getOperand(0); + + // If there was a match, we want Root to be a select that is the root of an + // abs-diff pattern. + if (!Root || (Root.getOpcode() != ISD::VSELECT)) + return SDValue(); + + // Check whether we have an abs-diff pattern feeding into the select. + SDValue Zext0, Zext1; + if (!detectZextAbsDiff(Root, Zext0, Zext1)) + return SDValue(); + + // Create the SAD instruction. + SDLoc DL(Extract); + SDValue SAD = createPSADBW(DAG, Zext0, Zext1, DL); + + // If the original vector was wider than 8 elements, sum over the results + // in the SAD vector. + unsigned Stages = Log2_32(VT.getVectorNumElements()); + MVT SadVT = SAD.getSimpleValueType(); + if (Stages > 3) { + unsigned SadElems = SadVT.getVectorNumElements(); + + for(unsigned i = Stages - 3; i > 0; --i) { + SmallVector<int, 16> Mask(SadElems, -1); + for(unsigned j = 0, MaskEnd = 1 << (i - 1); j < MaskEnd; ++j) + Mask[j] = MaskEnd + j; + + SDValue Shuffle = + DAG.getVectorShuffle(SadVT, DL, SAD, DAG.getUNDEF(SadVT), Mask); + SAD = DAG.getNode(ISD::ADD, DL, SadVT, SAD, Shuffle); + } + } + + MVT Type = Extract->getSimpleValueType(0); + unsigned TypeSizeInBits = Type.getSizeInBits(); + // Return the lowest TypeSizeInBits bits. + MVT ResVT = MVT::getVectorVT(Type, SadVT.getSizeInBits() / TypeSizeInBits); + SAD = DAG.getBitcast(ResVT, SAD); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Type, SAD, + Extract->getOperand(1)); +} + +// Attempt to peek through a target shuffle and extract the scalar from the +// source. +static SDValue combineExtractWithShuffle(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue Src = N->getOperand(0); + SDValue Idx = N->getOperand(1); + + EVT VT = N->getValueType(0); + EVT SrcVT = Src.getValueType(); + EVT SrcSVT = SrcVT.getVectorElementType(); + unsigned NumSrcElts = SrcVT.getVectorNumElements(); + + // Don't attempt this for boolean mask vectors or unknown extraction indices. + if (SrcSVT == MVT::i1 || !isa<ConstantSDNode>(Idx)) + return SDValue(); + + // Resolve the target shuffle inputs and mask. + SmallVector<int, 16> Mask; + SmallVector<SDValue, 2> Ops; + if (!resolveTargetShuffleInputs(peekThroughBitcasts(Src), Ops, Mask, DAG)) + return SDValue(); + + // Attempt to narrow/widen the shuffle mask to the correct size. + if (Mask.size() != NumSrcElts) { + if ((NumSrcElts % Mask.size()) == 0) { + SmallVector<int, 16> ScaledMask; + int Scale = NumSrcElts / Mask.size(); + scaleShuffleMask<int>(Scale, Mask, ScaledMask); + Mask = std::move(ScaledMask); + } else if ((Mask.size() % NumSrcElts) == 0) { + SmallVector<int, 16> WidenedMask; + while (Mask.size() > NumSrcElts && + canWidenShuffleElements(Mask, WidenedMask)) + Mask = std::move(WidenedMask); + // TODO - investigate support for wider shuffle masks with known upper + // undef/zero elements for implicit zero-extension. + } + } + + // Check if narrowing/widening failed. + if (Mask.size() != NumSrcElts) + return SDValue(); + + int SrcIdx = Mask[N->getConstantOperandVal(1)]; + SDLoc dl(N); + + // If the shuffle source element is undef/zero then we can just accept it. + if (SrcIdx == SM_SentinelUndef) + return DAG.getUNDEF(VT); + + if (SrcIdx == SM_SentinelZero) + return VT.isFloatingPoint() ? DAG.getConstantFP(0.0, dl, VT) + : DAG.getConstant(0, dl, VT); + + SDValue SrcOp = Ops[SrcIdx / Mask.size()]; + SrcOp = DAG.getBitcast(SrcVT, SrcOp); + SrcIdx = SrcIdx % Mask.size(); + + // We can only extract other elements from 128-bit vectors and in certain + // circumstances, depending on SSE-level. + // TODO: Investigate using extract_subvector for larger vectors. + // TODO: Investigate float/double extraction if it will be just stored. + if ((SrcVT == MVT::v4i32 || SrcVT == MVT::v2i64) && + ((SrcIdx == 0 && Subtarget.hasSSE2()) || Subtarget.hasSSE41())) { + assert(SrcSVT == VT && "Unexpected extraction type"); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcSVT, SrcOp, + DAG.getIntPtrConstant(SrcIdx, dl)); + } + + if ((SrcVT == MVT::v8i16 && Subtarget.hasSSE2()) || + (SrcVT == MVT::v16i8 && Subtarget.hasSSE41())) { + assert(VT.getSizeInBits() >= SrcSVT.getSizeInBits() && + "Unexpected extraction type"); + unsigned OpCode = (SrcVT == MVT::v8i16 ? X86ISD::PEXTRW : X86ISD::PEXTRB); + SDValue ExtOp = DAG.getNode(OpCode, dl, MVT::i32, SrcOp, + DAG.getIntPtrConstant(SrcIdx, dl)); + return DAG.getZExtOrTrunc(ExtOp, dl, VT); + } + + return SDValue(); +} + +/// Detect vector gather/scatter index generation and convert it from being a +/// bunch of shuffles and extracts into a somewhat faster sequence. +/// For i686, the best sequence is apparently storing the value and loading +/// scalars back, while for x64 we should use 64-bit extracts and shifts. +static SDValue combineExtractVectorElt(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + if (SDValue NewOp = combineExtractWithShuffle(N, DAG, DCI, Subtarget)) + return NewOp; + + // TODO - Remove this once we can handle the implicit zero-extension of + // X86ISD::PEXTRW/X86ISD::PEXTRB in: + // XFormVExtractWithShuffleIntoLoad, combineHorizontalPredicateResult and + // combineBasicSADPattern. + if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI)) + return NewOp; + + SDValue InputVector = N->getOperand(0); + SDValue EltIdx = N->getOperand(1); + + EVT SrcVT = InputVector.getValueType(); + EVT VT = N->getValueType(0); + SDLoc dl(InputVector); + + // Detect mmx extraction of all bits as a i64. It works better as a bitcast. + if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() && + VT == MVT::i64 && SrcVT == MVT::v1i64 && isNullConstant(EltIdx)) { + SDValue MMXSrc = InputVector.getOperand(0); + + // The bitcast source is a direct mmx result. + if (MMXSrc.getValueType() == MVT::x86mmx) + return DAG.getBitcast(VT, InputVector); + } + + // Detect mmx to i32 conversion through a v2i32 elt extract. + if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() && + VT == MVT::i32 && SrcVT == MVT::v2i32 && isNullConstant(EltIdx)) { + SDValue MMXSrc = InputVector.getOperand(0); + + // The bitcast source is a direct mmx result. + if (MMXSrc.getValueType() == MVT::x86mmx) + return DAG.getNode(X86ISD::MMX_MOVD2W, dl, MVT::i32, MMXSrc); + } + + if (VT == MVT::i1 && InputVector.getOpcode() == ISD::BITCAST && + isa<ConstantSDNode>(EltIdx) && + isa<ConstantSDNode>(InputVector.getOperand(0))) { + uint64_t ExtractedElt = N->getConstantOperandVal(1); + uint64_t InputValue = InputVector.getConstantOperandVal(0); + uint64_t Res = (InputValue >> ExtractedElt) & 1; + return DAG.getConstant(Res, dl, MVT::i1); + } + + // Check whether this extract is the root of a sum of absolute differences + // pattern. This has to be done here because we really want it to happen + // pre-legalization, + if (SDValue SAD = combineBasicSADPattern(N, DAG, Subtarget)) + return SAD; + + // Attempt to replace an all_of/any_of horizontal reduction with a MOVMSK. + if (SDValue Cmp = combineHorizontalPredicateResult(N, DAG, Subtarget)) + return Cmp; + + // Attempt to replace min/max v8i16/v16i8 reductions with PHMINPOSUW. + if (SDValue MinMax = combineHorizontalMinMaxResult(N, DAG, Subtarget)) + return MinMax; + + // Only operate on vectors of 4 elements, where the alternative shuffling + // gets to be more expensive. + if (SrcVT != MVT::v4i32) + return SDValue(); + + // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a + // single use which is a sign-extend or zero-extend, and all elements are + // used. + SmallVector<SDNode *, 4> Uses; + unsigned ExtractedElements = 0; + for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), + UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { + if (UI.getUse().getResNo() != InputVector.getResNo()) + return SDValue(); + + SDNode *Extract = *UI; + if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + if (Extract->getValueType(0) != MVT::i32) + return SDValue(); + if (!Extract->hasOneUse()) + return SDValue(); + if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && + Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) + return SDValue(); + if (!isa<ConstantSDNode>(Extract->getOperand(1))) + return SDValue(); + + // Record which element was extracted. + ExtractedElements |= 1 << Extract->getConstantOperandVal(1); + Uses.push_back(Extract); + } + + // If not all the elements were used, this may not be worthwhile. + if (ExtractedElements != 15) + return SDValue(); + + // Ok, we've now decided to do the transformation. + // If 64-bit shifts are legal, use the extract-shift sequence, + // otherwise bounce the vector off the cache. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Vals[4]; + + if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) { + SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector); + auto &DL = DAG.getDataLayout(); + EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(DL); + SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, + DAG.getConstant(0, dl, VecIdxTy)); + SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, + DAG.getConstant(1, dl, VecIdxTy)); + + SDValue ShAmt = DAG.getConstant( + 32, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64, DL)); + Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf); + Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, + DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt)); + Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf); + Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, + DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt)); + } else { + // Store the value to a temporary stack slot. + SDValue StackPtr = DAG.CreateStackTemporary(SrcVT); + SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, + MachinePointerInfo()); + + EVT ElementType = SrcVT.getVectorElementType(); + unsigned EltSize = ElementType.getSizeInBits() / 8; + + // Replace each use (extract) with a load of the appropriate element. + for (unsigned i = 0; i < 4; ++i) { + uint64_t Offset = EltSize * i; + auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + SDValue OffsetVal = DAG.getConstant(Offset, dl, PtrVT); + + SDValue ScalarAddr = + DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, OffsetVal); + + // Load the scalar. + Vals[i] = + DAG.getLoad(ElementType, dl, Ch, ScalarAddr, MachinePointerInfo()); + } + } + + // Replace the extracts + for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), + UE = Uses.end(); UI != UE; ++UI) { + SDNode *Extract = *UI; + + uint64_t IdxVal = Extract->getConstantOperandVal(1); + DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]); + } + + // The replacement was made in place; return N so it won't be revisited. + return SDValue(N, 0); +} + +/// If a vector select has an operand that is -1 or 0, try to simplify the +/// select to a bitwise logic operation. +/// TODO: Move to DAGCombiner, possibly using TargetLowering::hasAndNot()? +static SDValue +combineVSelectWithAllOnesOrZeros(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + SDValue Cond = N->getOperand(0); + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + EVT VT = LHS.getValueType(); + EVT CondVT = Cond.getValueType(); + SDLoc DL(N); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + if (N->getOpcode() != ISD::VSELECT) + return SDValue(); + + assert(CondVT.isVector() && "Vector select expects a vector selector!"); + + bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode()); + // Check if the first operand is all zeros and Cond type is vXi1. + // This situation only applies to avx512. + if (TValIsAllZeros && Subtarget.hasAVX512() && Cond.hasOneUse() && + CondVT.getVectorElementType() == MVT::i1) { + // Invert the cond to not(cond) : xor(op,allones)=not(op) + SDValue CondNew = DAG.getNode(ISD::XOR, DL, CondVT, Cond, + DAG.getAllOnesConstant(DL, CondVT)); + // Vselect cond, op1, op2 = Vselect not(cond), op2, op1 + return DAG.getSelect(DL, VT, CondNew, RHS, LHS); + } + + // To use the condition operand as a bitwise mask, it must have elements that + // are the same size as the select elements. Ie, the condition operand must + // have already been promoted from the IR select condition type <N x i1>. + // Don't check if the types themselves are equal because that excludes + // vector floating-point selects. + if (CondVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) + return SDValue(); + + bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode()); + bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); + + // Try to invert the condition if true value is not all 1s and false value is + // not all 0s. + if (!TValIsAllOnes && !FValIsAllZeros && + // Check if the selector will be produced by CMPP*/PCMP*. + Cond.getOpcode() == ISD::SETCC && + // Check if SETCC has already been promoted. + TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) == + CondVT) { + bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode()); + + if (TValIsAllZeros || FValIsAllOnes) { + SDValue CC = Cond.getOperand(2); + ISD::CondCode NewCC = + ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), + Cond.getOperand(0).getValueType().isInteger()); + Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), + NewCC); + std::swap(LHS, RHS); + TValIsAllOnes = FValIsAllOnes; + FValIsAllZeros = TValIsAllZeros; + } + } + + // Cond value must be 'sign splat' to be converted to a logical op. + if (DAG.ComputeNumSignBits(Cond) != CondVT.getScalarSizeInBits()) + return SDValue(); + + // vselect Cond, 111..., 000... -> Cond + if (TValIsAllOnes && FValIsAllZeros) + return DAG.getBitcast(VT, Cond); + + if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(CondVT)) + return SDValue(); + + // vselect Cond, 111..., X -> or Cond, X + if (TValIsAllOnes) { + SDValue CastRHS = DAG.getBitcast(CondVT, RHS); + SDValue Or = DAG.getNode(ISD::OR, DL, CondVT, Cond, CastRHS); + return DAG.getBitcast(VT, Or); + } + + // vselect Cond, X, 000... -> and Cond, X + if (FValIsAllZeros) { + SDValue CastLHS = DAG.getBitcast(CondVT, LHS); + SDValue And = DAG.getNode(ISD::AND, DL, CondVT, Cond, CastLHS); + return DAG.getBitcast(VT, And); + } + + // vselect Cond, 000..., X -> andn Cond, X + if (TValIsAllZeros) { + MVT AndNVT = MVT::getVectorVT(MVT::i64, CondVT.getSizeInBits() / 64); + SDValue CastCond = DAG.getBitcast(AndNVT, Cond); + SDValue CastRHS = DAG.getBitcast(AndNVT, RHS); + SDValue AndN = DAG.getNode(X86ISD::ANDNP, DL, AndNVT, CastCond, CastRHS); + return DAG.getBitcast(VT, AndN); + } + + return SDValue(); +} + +static SDValue combineSelectOfTwoConstants(SDNode *N, SelectionDAG &DAG) { + SDValue Cond = N->getOperand(0); + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + SDLoc DL(N); + + auto *TrueC = dyn_cast<ConstantSDNode>(LHS); + auto *FalseC = dyn_cast<ConstantSDNode>(RHS); + if (!TrueC || !FalseC) + return SDValue(); + + // Don't do this for crazy integer types. + EVT VT = N->getValueType(0); + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + // We're going to use the condition bit in math or logic ops. We could allow + // this with a wider condition value (post-legalization it becomes an i8), + // but if nothing is creating selects that late, it doesn't matter. + if (Cond.getValueType() != MVT::i1) + return SDValue(); + + // A power-of-2 multiply is just a shift. LEA also cheaply handles multiply by + // 3, 5, or 9 with i32/i64, so those get transformed too. + // TODO: For constants that overflow or do not differ by power-of-2 or small + // multiplier, convert to 'and' + 'add'. + const APInt &TrueVal = TrueC->getAPIntValue(); + const APInt &FalseVal = FalseC->getAPIntValue(); + bool OV; + APInt Diff = TrueVal.ssub_ov(FalseVal, OV); + if (OV) + return SDValue(); + + APInt AbsDiff = Diff.abs(); + if (AbsDiff.isPowerOf2() || + ((VT == MVT::i32 || VT == MVT::i64) && + (AbsDiff == 3 || AbsDiff == 5 || AbsDiff == 9))) { + + // We need a positive multiplier constant for shift/LEA codegen. The 'not' + // of the condition can usually be folded into a compare predicate, but even + // without that, the sequence should be cheaper than a CMOV alternative. + if (TrueVal.slt(FalseVal)) { + Cond = DAG.getNOT(DL, Cond, MVT::i1); + std::swap(TrueC, FalseC); + } + + // select Cond, TC, FC --> (zext(Cond) * (TC - FC)) + FC + SDValue R = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); + + // Multiply condition by the difference if non-one. + if (!AbsDiff.isOneValue()) + R = DAG.getNode(ISD::MUL, DL, VT, R, DAG.getConstant(AbsDiff, DL, VT)); + + // Add the base if non-zero. + if (!FalseC->isNullValue()) + R = DAG.getNode(ISD::ADD, DL, VT, R, SDValue(FalseC, 0)); + + return R; + } + + return SDValue(); +} + +// If this is a bitcasted op that can be represented as another type, push the +// the bitcast to the inputs. This allows more opportunities for pattern +// matching masked instructions. This is called when we know that the operation +// is used as one of the inputs of a vselect. +static bool combineBitcastForMaskedOp(SDValue OrigOp, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + // Make sure we have a bitcast. + if (OrigOp.getOpcode() != ISD::BITCAST) + return false; + + SDValue Op = OrigOp.getOperand(0); + + // If the operation is used by anything other than the bitcast, we shouldn't + // do this combine as that would replicate the operation. + if (!Op.hasOneUse()) + return false; + + MVT VT = OrigOp.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + SDLoc DL(Op.getNode()); + + auto BitcastAndCombineShuffle = [&](unsigned Opcode, SDValue Op0, SDValue Op1, + SDValue Op2) { + Op0 = DAG.getBitcast(VT, Op0); + DCI.AddToWorklist(Op0.getNode()); + Op1 = DAG.getBitcast(VT, Op1); + DCI.AddToWorklist(Op1.getNode()); + DCI.CombineTo(OrigOp.getNode(), + DAG.getNode(Opcode, DL, VT, Op0, Op1, Op2)); + return true; + }; + + unsigned Opcode = Op.getOpcode(); + switch (Opcode) { + case X86ISD::SHUF128: { + if (EltVT.getSizeInBits() != 32 && EltVT.getSizeInBits() != 64) + return false; + // Only change element size, not type. + if (VT.isInteger() != Op.getSimpleValueType().isInteger()) + return false; + return BitcastAndCombineShuffle(Opcode, Op.getOperand(0), Op.getOperand(1), + Op.getOperand(2)); + } + case X86ISD::SUBV_BROADCAST: { + unsigned EltSize = EltVT.getSizeInBits(); + if (EltSize != 32 && EltSize != 64) + return false; + // Only change element size, not type. + if (VT.isInteger() != Op.getSimpleValueType().isInteger()) + return false; + SDValue Op0 = Op.getOperand(0); + MVT Op0VT = MVT::getVectorVT(EltVT, + Op0.getSimpleValueType().getSizeInBits() / EltSize); + Op0 = DAG.getBitcast(Op0VT, Op.getOperand(0)); + DCI.AddToWorklist(Op0.getNode()); + DCI.CombineTo(OrigOp.getNode(), + DAG.getNode(Opcode, DL, VT, Op0)); + return true; + } + } + + return false; +} + +/// Do target-specific dag combines on SELECT and VSELECT nodes. +static SDValue combineSelect(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + SDLoc DL(N); + SDValue Cond = N->getOperand(0); + // Get the LHS/RHS of the select. + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + EVT VT = LHS.getValueType(); + EVT CondVT = Cond.getValueType(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // If we have SSE[12] support, try to form min/max nodes. SSE min/max + // instructions match the semantics of the common C idiom x<y?x:y but not + // x<=y?x:y, because of how they handle negative zero (which can be + // ignored in unsafe-math mode). + // We also try to create v2f32 min/max nodes, which we later widen to v4f32. + if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() && + VT != MVT::f80 && VT != MVT::f128 && + (TLI.isTypeLegal(VT) || VT == MVT::v2f32) && + (Subtarget.hasSSE2() || + (Subtarget.hasSSE1() && VT.getScalarType() == MVT::f32))) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + + unsigned Opcode = 0; + // Check for x CC y ? x : y. + if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && + DAG.isEqualTo(RHS, Cond.getOperand(1))) { + switch (CC) { + default: break; + case ISD::SETULT: + // Converting this to a min would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { + if (!DAG.getTarget().Options.UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMIN; + break; + case ISD::SETOLE: + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) + break; + Opcode = X86ISD::FMIN; + break; + case ISD::SETULE: + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + LLVM_FALLTHROUGH; + case ISD::SETOLT: + case ISD::SETLT: + case ISD::SETLE: + Opcode = X86ISD::FMIN; + break; + + case ISD::SETOGE: + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) + break; + Opcode = X86ISD::FMAX; + break; + case ISD::SETUGT: + // Converting this to a max would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { + if (!DAG.getTarget().Options.UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMAX; + break; + case ISD::SETUGE: + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + LLVM_FALLTHROUGH; + case ISD::SETOGT: + case ISD::SETGT: + case ISD::SETGE: + Opcode = X86ISD::FMAX; + break; + } + // Check for x CC y ? y : x -- a min/max with reversed arms. + } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && + DAG.isEqualTo(RHS, Cond.getOperand(0))) { + switch (CC) { + default: break; + case ISD::SETOGE: + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMIN; + break; + case ISD::SETUGT: + // Converting this to a min would handle NaNs incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) + break; + Opcode = X86ISD::FMIN; + break; + case ISD::SETUGE: + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + LLVM_FALLTHROUGH; + case ISD::SETOGT: + case ISD::SETGT: + case ISD::SETGE: + Opcode = X86ISD::FMIN; + break; + + case ISD::SETULT: + // Converting this to a max would handle NaNs incorrectly. + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) + break; + Opcode = X86ISD::FMAX; + break; + case ISD::SETOLE: + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMAX; + break; + case ISD::SETULE: + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + LLVM_FALLTHROUGH; + case ISD::SETOLT: + case ISD::SETLT: + case ISD::SETLE: + Opcode = X86ISD::FMAX; + break; + } + } + + if (Opcode) + return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); + } + + // v16i8 (select v16i1, v16i8, v16i8) does not have a proper + // lowering on KNL. In this case we convert it to + // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction. + // The same situation for all 128 and 256-bit vectors of i8 and i16. + // Since SKX these selects have a proper lowering. + if (Subtarget.hasAVX512() && CondVT.isVector() && + CondVT.getVectorElementType() == MVT::i1 && + (VT.is128BitVector() || VT.is256BitVector()) && + (VT.getVectorElementType() == MVT::i8 || + VT.getVectorElementType() == MVT::i16) && + !(Subtarget.hasBWI() && Subtarget.hasVLX())) { + Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); + DCI.AddToWorklist(Cond.getNode()); + return DAG.getNode(N->getOpcode(), DL, VT, Cond, LHS, RHS); + } + + if (SDValue V = combineSelectOfTwoConstants(N, DAG)) + return V; + + // Canonicalize max and min: + // (x > y) ? x : y -> (x >= y) ? x : y + // (x < y) ? x : y -> (x <= y) ? x : y + // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates + // the need for an extra compare + // against zero. e.g. + // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 + // subl %esi, %edi + // testl %edi, %edi + // movl $0, %eax + // cmovgl %edi, %eax + // => + // xorl %eax, %eax + // subl %esi, $edi + // cmovsl %eax, %edi + if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && + DAG.isEqualTo(LHS, Cond.getOperand(0)) && + DAG.isEqualTo(RHS, Cond.getOperand(1))) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + switch (CC) { + default: break; + case ISD::SETLT: + case ISD::SETGT: { + ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; + Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(), + Cond.getOperand(0), Cond.getOperand(1), NewCC); + return DAG.getSelect(DL, VT, Cond, LHS, RHS); + } + } + } + + // Early exit check + if (!TLI.isTypeLegal(VT)) + return SDValue(); + + // Match VSELECTs into subs with unsigned saturation. + if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && + // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. + ((Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || + (Subtarget.hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + + // Check if one of the arms of the VSELECT is a zero vector. If it's on the + // left side invert the predicate to simplify logic below. + SDValue Other; + if (ISD::isBuildVectorAllZeros(LHS.getNode())) { + Other = RHS; + CC = ISD::getSetCCInverse(CC, true); + } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { + Other = LHS; + } + + if (Other.getNode() && Other->getNumOperands() == 2 && + DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { + SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); + SDValue CondRHS = Cond->getOperand(1); + + // Look for a general sub with unsigned saturation first. + // x >= y ? x-y : 0 --> subus x, y + // x > y ? x-y : 0 --> subus x, y + if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && + Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) + return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); + + if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) + if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) { + if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS)) + if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode()) + // If the RHS is a constant we have to reverse the const + // canonicalization. + // x > C-1 ? x+-C : 0 --> subus x, C + if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && + CondRHSConst->getAPIntValue() == + (-OpRHSConst->getAPIntValue() - 1)) + return DAG.getNode( + X86ISD::SUBUS, DL, VT, OpLHS, + DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT)); + + // Another special case: If C was a sign bit, the sub has been + // canonicalized into a xor. + // FIXME: Would it be better to use computeKnownBits to determine + // whether it's safe to decanonicalize the xor? + // x s< 0 ? x^C : 0 --> subus x, C + if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR && + ISD::isBuildVectorAllZeros(CondRHS.getNode()) && + OpRHSConst->getAPIntValue().isSignMask()) + // Note that we have to rebuild the RHS constant here to ensure we + // don't rely on particular values of undef lanes. + return DAG.getNode( + X86ISD::SUBUS, DL, VT, OpLHS, + DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT)); + } + } + } + + if (SDValue V = combineVSelectWithAllOnesOrZeros(N, DAG, DCI, Subtarget)) + return V; + + // If this is a *dynamic* select (non-constant condition) and we can match + // this node with one of the variable blend instructions, restructure the + // condition so that blends can use the high (sign) bit of each element and + // use SimplifyDemandedBits to simplify the condition operand. + if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() && + !DCI.isBeforeLegalize() && + !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) { + unsigned BitWidth = Cond.getScalarValueSizeInBits(); + + // Don't optimize vector selects that map to mask-registers. + if (BitWidth == 1) + return SDValue(); + + // We can only handle the cases where VSELECT is directly legal on the + // subtarget. We custom lower VSELECT nodes with constant conditions and + // this makes it hard to see whether a dynamic VSELECT will correctly + // lower, so we both check the operation's status and explicitly handle the + // cases where a *dynamic* blend will fail even though a constant-condition + // blend could be custom lowered. + // FIXME: We should find a better way to handle this class of problems. + // Potentially, we should combine constant-condition vselect nodes + // pre-legalization into shuffles and not mark as many types as custom + // lowered. + if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) + return SDValue(); + // FIXME: We don't support i16-element blends currently. We could and + // should support them by making *all* the bits in the condition be set + // rather than just the high bit and using an i8-element blend. + if (VT.getVectorElementType() == MVT::i16) + return SDValue(); + // Dynamic blending was only available from SSE4.1 onward. + if (VT.is128BitVector() && !Subtarget.hasSSE41()) + return SDValue(); + // Byte blends are only available in AVX2 + if (VT == MVT::v32i8 && !Subtarget.hasAVX2()) + return SDValue(); + // There are no 512-bit blend instructions that use sign bits. + if (VT.is512BitVector()) + return SDValue(); + + assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size"); + APInt DemandedMask(APInt::getSignMask(BitWidth)); + KnownBits Known; + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + if (TLI.ShrinkDemandedConstant(Cond, DemandedMask, TLO) || + TLI.SimplifyDemandedBits(Cond, DemandedMask, Known, TLO)) { + // If we changed the computation somewhere in the DAG, this change will + // affect all users of Cond. Make sure it is fine and update all the nodes + // so that we do not use the generic VSELECT anymore. Otherwise, we may + // perform wrong optimizations as we messed with the actual expectation + // for the vector boolean values. + if (Cond != TLO.Old) { + // Check all uses of the condition operand to check whether it will be + // consumed by non-BLEND instructions. Those may require that all bits + // are set properly. + for (SDNode *U : Cond->uses()) { + // TODO: Add other opcodes eventually lowered into BLEND. + if (U->getOpcode() != ISD::VSELECT) + return SDValue(); + } + + // Update all users of the condition before committing the change, so + // that the VSELECT optimizations that expect the correct vector boolean + // value will not be triggered. + for (SDNode *U : Cond->uses()) { + SDValue SB = DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(U), + U->getValueType(0), Cond, U->getOperand(1), + U->getOperand(2)); + DAG.ReplaceAllUsesOfValueWith(SDValue(U, 0), SB); + } + DCI.CommitTargetLoweringOpt(TLO); + return SDValue(); + } + // Only Cond (rather than other nodes in the computation chain) was + // changed. Change the condition just for N to keep the opportunity to + // optimize all other users their own way. + SDValue SB = DAG.getNode(X86ISD::SHRUNKBLEND, DL, VT, TLO.New, LHS, RHS); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), SB); + return SDValue(); + } + } + + // Look for vselects with LHS/RHS being bitcasted from an operation that + // can be executed on another type. Push the bitcast to the inputs of + // the operation. This exposes opportunities for using masking instructions. + if (N->getOpcode() == ISD::VSELECT && DCI.isAfterLegalizeVectorOps() && + CondVT.getVectorElementType() == MVT::i1) { + if (combineBitcastForMaskedOp(LHS, DAG, DCI)) + return SDValue(N, 0); + if (combineBitcastForMaskedOp(RHS, DAG, DCI)) + return SDValue(N, 0); + } + + // Custom action for SELECT MMX + if (VT == MVT::x86mmx) { + LHS = DAG.getBitcast(MVT::i64, LHS); + RHS = DAG.getBitcast(MVT::i64, RHS); + SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::i64, Cond, LHS, RHS); + return DAG.getBitcast(VT, newSelect); + } + + return SDValue(); +} + +/// Combine: +/// (brcond/cmov/setcc .., (cmp (atomic_load_add x, 1), 0), COND_S) +/// to: +/// (brcond/cmov/setcc .., (LADD x, 1), COND_LE) +/// i.e., reusing the EFLAGS produced by the LOCKed instruction. +/// Note that this is only legal for some op/cc combinations. +static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // This combine only operates on CMP-like nodes. + if (!(Cmp.getOpcode() == X86ISD::CMP || + (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0)))) + return SDValue(); + + // Can't replace the cmp if it has more uses than the one we're looking at. + // FIXME: We would like to be able to handle this, but would need to make sure + // all uses were updated. + if (!Cmp.hasOneUse()) + return SDValue(); + + // This only applies to variations of the common case: + // (icmp slt x, 0) -> (icmp sle (add x, 1), 0) + // (icmp sge x, 0) -> (icmp sgt (add x, 1), 0) + // (icmp sle x, 0) -> (icmp slt (sub x, 1), 0) + // (icmp sgt x, 0) -> (icmp sge (sub x, 1), 0) + // Using the proper condcodes (see below), overflow is checked for. + + // FIXME: We can generalize both constraints: + // - XOR/OR/AND (if they were made to survive AtomicExpand) + // - LHS != 1 + // if the result is compared. + + SDValue CmpLHS = Cmp.getOperand(0); + SDValue CmpRHS = Cmp.getOperand(1); + + if (!CmpLHS.hasOneUse()) + return SDValue(); + + unsigned Opc = CmpLHS.getOpcode(); + if (Opc != ISD::ATOMIC_LOAD_ADD && Opc != ISD::ATOMIC_LOAD_SUB) + return SDValue(); + + SDValue OpRHS = CmpLHS.getOperand(2); + auto *OpRHSC = dyn_cast<ConstantSDNode>(OpRHS); + if (!OpRHSC) + return SDValue(); + + APInt Addend = OpRHSC->getAPIntValue(); + if (Opc == ISD::ATOMIC_LOAD_SUB) + Addend = -Addend; + + auto *CmpRHSC = dyn_cast<ConstantSDNode>(CmpRHS); + if (!CmpRHSC) + return SDValue(); + + APInt Comparison = CmpRHSC->getAPIntValue(); + + // If the addend is the negation of the comparison value, then we can do + // a full comparison by emitting the atomic arithmetic as a locked sub. + if (Comparison == -Addend) { + // The CC is fine, but we need to rewrite the LHS of the comparison as an + // atomic sub. + auto *AN = cast<AtomicSDNode>(CmpLHS.getNode()); + auto AtomicSub = DAG.getAtomic( + ISD::ATOMIC_LOAD_SUB, SDLoc(CmpLHS), CmpLHS.getValueType(), + /*Chain*/ CmpLHS.getOperand(0), /*LHS*/ CmpLHS.getOperand(1), + /*RHS*/ DAG.getConstant(-Addend, SDLoc(CmpRHS), CmpRHS.getValueType()), + AN->getMemOperand()); + // If the comparision uses the CF flag we can't use INC/DEC instructions. + bool NeedCF = false; + switch (CC) { + default: break; + case X86::COND_A: case X86::COND_AE: + case X86::COND_B: case X86::COND_BE: + NeedCF = true; + break; + } + auto LockOp = lowerAtomicArithWithLOCK(AtomicSub, DAG, Subtarget, !NeedCF); + DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0), + DAG.getUNDEF(CmpLHS.getValueType())); + DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1)); + return LockOp; + } + + // We can handle comparisons with zero in a number of cases by manipulating + // the CC used. + if (!Comparison.isNullValue()) + return SDValue(); + + if (CC == X86::COND_S && Addend == 1) + CC = X86::COND_LE; + else if (CC == X86::COND_NS && Addend == 1) + CC = X86::COND_G; + else if (CC == X86::COND_G && Addend == -1) + CC = X86::COND_GE; + else if (CC == X86::COND_LE && Addend == -1) + CC = X86::COND_L; + else + return SDValue(); + + SDValue LockOp = lowerAtomicArithWithLOCK(CmpLHS, DAG, Subtarget); + DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0), + DAG.getUNDEF(CmpLHS.getValueType())); + DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1)); + return LockOp; +} + +// Check whether a boolean test is testing a boolean value generated by +// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition +// code. +// +// Simplify the following patterns: +// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or +// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) +// to (Op EFLAGS Cond) +// +// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or +// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) +// to (Op EFLAGS !Cond) +// +// where Op could be BRCOND or CMOV. +// +static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { + // This combine only operates on CMP-like nodes. + if (!(Cmp.getOpcode() == X86ISD::CMP || + (Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0)))) + return SDValue(); + + // Quit if not used as a boolean value. + if (CC != X86::COND_E && CC != X86::COND_NE) + return SDValue(); + + // Check CMP operands. One of them should be 0 or 1 and the other should be + // an SetCC or extended from it. + SDValue Op1 = Cmp.getOperand(0); + SDValue Op2 = Cmp.getOperand(1); + + SDValue SetCC; + const ConstantSDNode* C = nullptr; + bool needOppositeCond = (CC == X86::COND_E); + bool checkAgainstTrue = false; // Is it a comparison against 1? + + if ((C = dyn_cast<ConstantSDNode>(Op1))) + SetCC = Op2; + else if ((C = dyn_cast<ConstantSDNode>(Op2))) + SetCC = Op1; + else // Quit if all operands are not constants. + return SDValue(); + + if (C->getZExtValue() == 1) { + needOppositeCond = !needOppositeCond; + checkAgainstTrue = true; + } else if (C->getZExtValue() != 0) + // Quit if the constant is neither 0 or 1. + return SDValue(); + + bool truncatedToBoolWithAnd = false; + // Skip (zext $x), (trunc $x), or (and $x, 1) node. + while (SetCC.getOpcode() == ISD::ZERO_EXTEND || + SetCC.getOpcode() == ISD::TRUNCATE || + SetCC.getOpcode() == ISD::AND) { + if (SetCC.getOpcode() == ISD::AND) { + int OpIdx = -1; + if (isOneConstant(SetCC.getOperand(0))) + OpIdx = 1; + if (isOneConstant(SetCC.getOperand(1))) + OpIdx = 0; + if (OpIdx < 0) + break; + SetCC = SetCC.getOperand(OpIdx); + truncatedToBoolWithAnd = true; + } else + SetCC = SetCC.getOperand(0); + } + + switch (SetCC.getOpcode()) { + case X86ISD::SETCC_CARRY: + // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to + // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1, + // i.e. it's a comparison against true but the result of SETCC_CARRY is not + // truncated to i1 using 'and'. + if (checkAgainstTrue && !truncatedToBoolWithAnd) + break; + assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B && + "Invalid use of SETCC_CARRY!"); + LLVM_FALLTHROUGH; + case X86ISD::SETCC: + // Set the condition code or opposite one if necessary. + CC = X86::CondCode(SetCC.getConstantOperandVal(0)); + if (needOppositeCond) + CC = X86::GetOppositeBranchCondition(CC); + return SetCC.getOperand(1); + case X86ISD::CMOV: { + // Check whether false/true value has canonical one, i.e. 0 or 1. + ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0)); + ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1)); + // Quit if true value is not a constant. + if (!TVal) + return SDValue(); + // Quit if false value is not a constant. + if (!FVal) { + SDValue Op = SetCC.getOperand(0); + // Skip 'zext' or 'trunc' node. + if (Op.getOpcode() == ISD::ZERO_EXTEND || + Op.getOpcode() == ISD::TRUNCATE) + Op = Op.getOperand(0); + // A special case for rdrand/rdseed, where 0 is set if false cond is + // found. + if ((Op.getOpcode() != X86ISD::RDRAND && + Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0) + return SDValue(); + } + // Quit if false value is not the constant 0 or 1. + bool FValIsFalse = true; + if (FVal && FVal->getZExtValue() != 0) { + if (FVal->getZExtValue() != 1) + return SDValue(); + // If FVal is 1, opposite cond is needed. + needOppositeCond = !needOppositeCond; + FValIsFalse = false; + } + // Quit if TVal is not the constant opposite of FVal. + if (FValIsFalse && TVal->getZExtValue() != 1) + return SDValue(); + if (!FValIsFalse && TVal->getZExtValue() != 0) + return SDValue(); + CC = X86::CondCode(SetCC.getConstantOperandVal(2)); + if (needOppositeCond) + CC = X86::GetOppositeBranchCondition(CC); + return SetCC.getOperand(3); + } + } + + return SDValue(); +} + +/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS. +/// Match: +/// (X86or (X86setcc) (X86setcc)) +/// (X86cmp (and (X86setcc) (X86setcc)), 0) +static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0, + X86::CondCode &CC1, SDValue &Flags, + bool &isAnd) { + if (Cond->getOpcode() == X86ISD::CMP) { + if (!isNullConstant(Cond->getOperand(1))) + return false; + + Cond = Cond->getOperand(0); + } + + isAnd = false; + + SDValue SetCC0, SetCC1; + switch (Cond->getOpcode()) { + default: return false; + case ISD::AND: + case X86ISD::AND: + isAnd = true; + LLVM_FALLTHROUGH; + case ISD::OR: + case X86ISD::OR: + SetCC0 = Cond->getOperand(0); + SetCC1 = Cond->getOperand(1); + break; + }; + + // Make sure we have SETCC nodes, using the same flags value. + if (SetCC0.getOpcode() != X86ISD::SETCC || + SetCC1.getOpcode() != X86ISD::SETCC || + SetCC0->getOperand(1) != SetCC1->getOperand(1)) + return false; + + CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0); + CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0); + Flags = SetCC0->getOperand(1); + return true; +} + +// When legalizing carry, we create carries via add X, -1 +// If that comes from an actual carry, via setcc, we use the +// carry directly. +static SDValue combineCarryThroughADD(SDValue EFLAGS) { + if (EFLAGS.getOpcode() == X86ISD::ADD) { + if (isAllOnesConstant(EFLAGS.getOperand(1))) { + SDValue Carry = EFLAGS.getOperand(0); + while (Carry.getOpcode() == ISD::TRUNCATE || + Carry.getOpcode() == ISD::ZERO_EXTEND || + Carry.getOpcode() == ISD::SIGN_EXTEND || + Carry.getOpcode() == ISD::ANY_EXTEND || + (Carry.getOpcode() == ISD::AND && + isOneConstant(Carry.getOperand(1)))) + Carry = Carry.getOperand(0); + if (Carry.getOpcode() == X86ISD::SETCC || + Carry.getOpcode() == X86ISD::SETCC_CARRY) { + if (Carry.getConstantOperandVal(0) == X86::COND_B) + return Carry.getOperand(1); + } + } + } + + return SDValue(); +} + +/// Optimize an EFLAGS definition used according to the condition code \p CC +/// into a simpler EFLAGS value, potentially returning a new \p CC and replacing +/// uses of chain values. +static SDValue combineSetCCEFLAGS(SDValue EFLAGS, X86::CondCode &CC, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (CC == X86::COND_B) + if (SDValue Flags = combineCarryThroughADD(EFLAGS)) + return Flags; + + if (SDValue R = checkBoolTestSetCCCombine(EFLAGS, CC)) + return R; + return combineSetCCAtomicArith(EFLAGS, CC, DAG, Subtarget); +} + +/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] +static SDValue combineCMov(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + SDLoc DL(N); + + SDValue FalseOp = N->getOperand(0); + SDValue TrueOp = N->getOperand(1); + X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); + SDValue Cond = N->getOperand(3); + + if (CC == X86::COND_E || CC == X86::COND_NE) { + switch (Cond.getOpcode()) { + default: break; + case X86ISD::BSR: + case X86ISD::BSF: + // If operand of BSR / BSF are proven never zero, then ZF cannot be set. + if (DAG.isKnownNeverZero(Cond.getOperand(0))) + return (CC == X86::COND_E) ? FalseOp : TrueOp; + } + } + + // Try to simplify the EFLAGS and condition code operands. + // We can't always do this as FCMOV only supports a subset of X86 cond. + if (SDValue Flags = combineSetCCEFLAGS(Cond, CC, DAG, Subtarget)) { + if (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC)) { + SDValue Ops[] = {FalseOp, TrueOp, DAG.getConstant(CC, DL, MVT::i8), + Flags}; + return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops); + } + } + + // If this is a select between two integer constants, try to do some + // optimizations. Note that the operands are ordered the opposite of SELECT + // operands. + if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) { + if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) { + // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is + // larger than FalseC (the false value). + if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { + CC = X86::GetOppositeBranchCondition(CC); + std::swap(TrueC, FalseC); + std::swap(TrueOp, FalseOp); + } + + // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. + // This is efficient for any integer data type (including i8/i16) and + // shift amount. + if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { + Cond = getSETCC(CC, Cond, DL, DAG); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); + + unsigned ShAmt = TrueC->getAPIntValue().logBase2(); + Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, + DAG.getConstant(ShAmt, DL, MVT::i8)); + return Cond; + } + + // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient + // for any integer data type, including i8/i16. + if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { + Cond = getSETCC(CC, Cond, DL, DAG); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, + FalseC->getValueType(0), Cond); + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + return Cond; + } + + // Optimize cases that will turn into an LEA instruction. This requires + // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). + if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { + uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); + if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; + + bool isFastMultiplier = false; + if (Diff < 10) { + switch ((unsigned char)Diff) { + default: break; + case 1: // result = add base, cond + case 2: // result = lea base( , cond*2) + case 3: // result = lea base(cond, cond*2) + case 4: // result = lea base( , cond*4) + case 5: // result = lea base(cond, cond*4) + case 8: // result = lea base( , cond*8) + case 9: // result = lea base(cond, cond*8) + isFastMultiplier = true; + break; + } + } + + if (isFastMultiplier) { + APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); + Cond = getSETCC(CC, Cond, DL ,DAG); + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), + Cond); + // Scale the condition by the difference. + if (Diff != 1) + Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, + DAG.getConstant(Diff, DL, Cond.getValueType())); + + // Add the base if non-zero. + if (FalseC->getAPIntValue() != 0) + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + return Cond; + } + } + } + } + + // Handle these cases: + // (select (x != c), e, c) -> select (x != c), e, x), + // (select (x == c), c, e) -> select (x == c), x, e) + // where the c is an integer constant, and the "select" is the combination + // of CMOV and CMP. + // + // The rationale for this change is that the conditional-move from a constant + // needs two instructions, however, conditional-move from a register needs + // only one instruction. + // + // CAVEAT: By replacing a constant with a symbolic value, it may obscure + // some instruction-combining opportunities. This opt needs to be + // postponed as late as possible. + // + if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) { + // the DCI.xxxx conditions are provided to postpone the optimization as + // late as possible. + + ConstantSDNode *CmpAgainst = nullptr; + if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && + (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) && + !isa<ConstantSDNode>(Cond.getOperand(0))) { + + if (CC == X86::COND_NE && + CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) { + CC = X86::GetOppositeBranchCondition(CC); + std::swap(TrueOp, FalseOp); + } + + if (CC == X86::COND_E && + CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) { + SDValue Ops[] = { FalseOp, Cond.getOperand(0), + DAG.getConstant(CC, DL, MVT::i8), Cond }; + return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops); + } + } + } + + // Fold and/or of setcc's to double CMOV: + // (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2) + // (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2) + // + // This combine lets us generate: + // cmovcc1 (jcc1 if we don't have CMOV) + // cmovcc2 (same) + // instead of: + // setcc1 + // setcc2 + // and/or + // cmovne (jne if we don't have CMOV) + // When we can't use the CMOV instruction, it might increase branch + // mispredicts. + // When we can use CMOV, or when there is no mispredict, this improves + // throughput and reduces register pressure. + // + if (CC == X86::COND_NE) { + SDValue Flags; + X86::CondCode CC0, CC1; + bool isAndSetCC; + if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) { + if (isAndSetCC) { + std::swap(FalseOp, TrueOp); + CC0 = X86::GetOppositeBranchCondition(CC0); + CC1 = X86::GetOppositeBranchCondition(CC1); + } + + SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8), + Flags}; + SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), LOps); + SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags}; + SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops); + return CMOV; + } + } + + return SDValue(); +} + +/// Different mul shrinking modes. +enum ShrinkMode { MULS8, MULU8, MULS16, MULU16 }; + +static bool canReduceVMulWidth(SDNode *N, SelectionDAG &DAG, ShrinkMode &Mode) { + EVT VT = N->getOperand(0).getValueType(); + if (VT.getScalarSizeInBits() != 32) + return false; + + assert(N->getNumOperands() == 2 && "NumOperands of Mul are 2"); + unsigned SignBits[2] = {1, 1}; + bool IsPositive[2] = {false, false}; + for (unsigned i = 0; i < 2; i++) { + SDValue Opd = N->getOperand(i); + + // DAG.ComputeNumSignBits return 1 for ISD::ANY_EXTEND, so we need to + // compute signbits for it separately. + if (Opd.getOpcode() == ISD::ANY_EXTEND) { + // For anyextend, it is safe to assume an appropriate number of leading + // sign/zero bits. + if (Opd.getOperand(0).getValueType().getVectorElementType() == MVT::i8) + SignBits[i] = 25; + else if (Opd.getOperand(0).getValueType().getVectorElementType() == + MVT::i16) + SignBits[i] = 17; + else + return false; + IsPositive[i] = true; + } else if (Opd.getOpcode() == ISD::BUILD_VECTOR) { + // All the operands of BUILD_VECTOR need to be int constant. + // Find the smallest value range which all the operands belong to. + SignBits[i] = 32; + IsPositive[i] = true; + for (const SDValue &SubOp : Opd.getNode()->op_values()) { + if (SubOp.isUndef()) + continue; + auto *CN = dyn_cast<ConstantSDNode>(SubOp); + if (!CN) + return false; + APInt IntVal = CN->getAPIntValue(); + if (IntVal.isNegative()) + IsPositive[i] = false; + SignBits[i] = std::min(SignBits[i], IntVal.getNumSignBits()); + } + } else { + SignBits[i] = DAG.ComputeNumSignBits(Opd); + if (Opd.getOpcode() == ISD::ZERO_EXTEND) + IsPositive[i] = true; + } + } + + bool AllPositive = IsPositive[0] && IsPositive[1]; + unsigned MinSignBits = std::min(SignBits[0], SignBits[1]); + // When ranges are from -128 ~ 127, use MULS8 mode. + if (MinSignBits >= 25) + Mode = MULS8; + // When ranges are from 0 ~ 255, use MULU8 mode. + else if (AllPositive && MinSignBits >= 24) + Mode = MULU8; + // When ranges are from -32768 ~ 32767, use MULS16 mode. + else if (MinSignBits >= 17) + Mode = MULS16; + // When ranges are from 0 ~ 65535, use MULU16 mode. + else if (AllPositive && MinSignBits >= 16) + Mode = MULU16; + else + return false; + return true; +} + +/// When the operands of vector mul are extended from smaller size values, +/// like i8 and i16, the type of mul may be shrinked to generate more +/// efficient code. Two typical patterns are handled: +/// Pattern1: +/// %2 = sext/zext <N x i8> %1 to <N x i32> +/// %4 = sext/zext <N x i8> %3 to <N x i32> +// or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants) +/// %5 = mul <N x i32> %2, %4 +/// +/// Pattern2: +/// %2 = zext/sext <N x i16> %1 to <N x i32> +/// %4 = zext/sext <N x i16> %3 to <N x i32> +/// or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants) +/// %5 = mul <N x i32> %2, %4 +/// +/// There are four mul shrinking modes: +/// If %2 == sext32(trunc8(%2)), i.e., the scalar value range of %2 is +/// -128 to 128, and the scalar value range of %4 is also -128 to 128, +/// generate pmullw+sext32 for it (MULS8 mode). +/// If %2 == zext32(trunc8(%2)), i.e., the scalar value range of %2 is +/// 0 to 255, and the scalar value range of %4 is also 0 to 255, +/// generate pmullw+zext32 for it (MULU8 mode). +/// If %2 == sext32(trunc16(%2)), i.e., the scalar value range of %2 is +/// -32768 to 32767, and the scalar value range of %4 is also -32768 to 32767, +/// generate pmullw+pmulhw for it (MULS16 mode). +/// If %2 == zext32(trunc16(%2)), i.e., the scalar value range of %2 is +/// 0 to 65535, and the scalar value range of %4 is also 0 to 65535, +/// generate pmullw+pmulhuw for it (MULU16 mode). +static SDValue reduceVMULWidth(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // Check for legality + // pmullw/pmulhw are not supported by SSE. + if (!Subtarget.hasSSE2()) + return SDValue(); + + // Check for profitability + // pmulld is supported since SSE41. It is better to use pmulld + // instead of pmullw+pmulhw, except for subtargets where pmulld is slower than + // the expansion. + bool OptForMinSize = DAG.getMachineFunction().getFunction().optForMinSize(); + if (Subtarget.hasSSE41() && (OptForMinSize || !Subtarget.isPMULLDSlow())) + return SDValue(); + + ShrinkMode Mode; + if (!canReduceVMulWidth(N, DAG, Mode)) + return SDValue(); + + SDLoc DL(N); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getOperand(0).getValueType(); + unsigned NumElts = VT.getVectorNumElements(); + if ((NumElts % 2) != 0) + return SDValue(); + + // If the upper 17 bits of each element are zero then we can use PMADD. + APInt Mask17 = APInt::getHighBitsSet(32, 17); + if (VT == MVT::v4i32 && DAG.MaskedValueIsZero(N0, Mask17) && + DAG.MaskedValueIsZero(N1, Mask17)) + return DAG.getNode(X86ISD::VPMADDWD, DL, VT, DAG.getBitcast(MVT::v8i16, N0), + DAG.getBitcast(MVT::v8i16, N1)); + + unsigned RegSize = 128; + MVT OpsVT = MVT::getVectorVT(MVT::i16, RegSize / 16); + EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, NumElts); + + // Shrink the operands of mul. + SDValue NewN0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N0); + SDValue NewN1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N1); + + if (NumElts >= OpsVT.getVectorNumElements()) { + // Generate the lower part of mul: pmullw. For MULU8/MULS8, only the + // lower part is needed. + SDValue MulLo = DAG.getNode(ISD::MUL, DL, ReducedVT, NewN0, NewN1); + if (Mode == MULU8 || Mode == MULS8) { + return DAG.getNode((Mode == MULU8) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND, + DL, VT, MulLo); + } else { + MVT ResVT = MVT::getVectorVT(MVT::i32, NumElts / 2); + // Generate the higher part of mul: pmulhw/pmulhuw. For MULU16/MULS16, + // the higher part is also needed. + SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL, + ReducedVT, NewN0, NewN1); + + // Repack the lower part and higher part result of mul into a wider + // result. + // Generate shuffle functioning as punpcklwd. + SmallVector<int, 16> ShuffleMask(NumElts); + for (unsigned i = 0, e = NumElts / 2; i < e; i++) { + ShuffleMask[2 * i] = i; + ShuffleMask[2 * i + 1] = i + NumElts; + } + SDValue ResLo = + DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask); + ResLo = DAG.getBitcast(ResVT, ResLo); + // Generate shuffle functioning as punpckhwd. + for (unsigned i = 0, e = NumElts / 2; i < e; i++) { + ShuffleMask[2 * i] = i + NumElts / 2; + ShuffleMask[2 * i + 1] = i + NumElts * 3 / 2; + } + SDValue ResHi = + DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask); + ResHi = DAG.getBitcast(ResVT, ResHi); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ResLo, ResHi); + } + } else { + // When VT.getVectorNumElements() < OpsVT.getVectorNumElements(), we want + // to legalize the mul explicitly because implicit legalization for type + // <4 x i16> to <4 x i32> sometimes involves unnecessary unpack + // instructions which will not exist when we explicitly legalize it by + // extending <4 x i16> to <8 x i16> (concatenating the <4 x i16> val with + // <4 x i16> undef). + // + // Legalize the operands of mul. + // FIXME: We may be able to handle non-concatenated vectors by insertion. + unsigned ReducedSizeInBits = ReducedVT.getSizeInBits(); + if ((RegSize % ReducedSizeInBits) != 0) + return SDValue(); + + SmallVector<SDValue, 16> Ops(RegSize / ReducedSizeInBits, + DAG.getUNDEF(ReducedVT)); + Ops[0] = NewN0; + NewN0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops); + Ops[0] = NewN1; + NewN1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, OpsVT, Ops); + + if (Mode == MULU8 || Mode == MULS8) { + // Generate lower part of mul: pmullw. For MULU8/MULS8, only the lower + // part is needed. + SDValue Mul = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1); + + // convert the type of mul result to VT. + MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32); + SDValue Res = DAG.getNode(Mode == MULU8 ? ISD::ZERO_EXTEND_VECTOR_INREG + : ISD::SIGN_EXTEND_VECTOR_INREG, + DL, ResVT, Mul); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res, + DAG.getIntPtrConstant(0, DL)); + } else { + // Generate the lower and higher part of mul: pmulhw/pmulhuw. For + // MULU16/MULS16, both parts are needed. + SDValue MulLo = DAG.getNode(ISD::MUL, DL, OpsVT, NewN0, NewN1); + SDValue MulHi = DAG.getNode(Mode == MULS16 ? ISD::MULHS : ISD::MULHU, DL, + OpsVT, NewN0, NewN1); + + // Repack the lower part and higher part result of mul into a wider + // result. Make sure the type of mul result is VT. + MVT ResVT = MVT::getVectorVT(MVT::i32, RegSize / 32); + SDValue Res = getUnpackl(DAG, DL, OpsVT, MulLo, MulHi); + Res = DAG.getBitcast(ResVT, Res); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res, + DAG.getIntPtrConstant(0, DL)); + } + } +} + +static SDValue combineMulSpecial(uint64_t MulAmt, SDNode *N, SelectionDAG &DAG, + EVT VT, SDLoc DL) { + + auto combineMulShlAddOrSub = [&](int Mult, int Shift, bool isAdd) { + SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), + DAG.getConstant(Mult, DL, VT)); + Result = DAG.getNode(ISD::SHL, DL, VT, Result, + DAG.getConstant(Shift, DL, MVT::i8)); + Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result, + N->getOperand(0)); + return Result; + }; + + auto combineMulMulAddOrSub = [&](bool isAdd) { + SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), + DAG.getConstant(9, DL, VT)); + Result = DAG.getNode(ISD::MUL, DL, VT, Result, DAG.getConstant(3, DL, VT)); + Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result, + N->getOperand(0)); + return Result; + }; + + switch (MulAmt) { + default: + break; + case 11: + // mul x, 11 => add ((shl (mul x, 5), 1), x) + return combineMulShlAddOrSub(5, 1, /*isAdd*/ true); + case 21: + // mul x, 21 => add ((shl (mul x, 5), 2), x) + return combineMulShlAddOrSub(5, 2, /*isAdd*/ true); + case 22: + // mul x, 22 => add (add ((shl (mul x, 5), 2), x), x) + return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0), + combineMulShlAddOrSub(5, 2, /*isAdd*/ true)); + case 19: + // mul x, 19 => sub ((shl (mul x, 5), 2), x) + return combineMulShlAddOrSub(5, 2, /*isAdd*/ false); + case 13: + // mul x, 13 => add ((shl (mul x, 3), 2), x) + return combineMulShlAddOrSub(3, 2, /*isAdd*/ true); + case 23: + // mul x, 13 => sub ((shl (mul x, 3), 3), x) + return combineMulShlAddOrSub(3, 3, /*isAdd*/ false); + case 14: + // mul x, 14 => add (add ((shl (mul x, 3), 2), x), x) + return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0), + combineMulShlAddOrSub(3, 2, /*isAdd*/ true)); + case 26: + // mul x, 26 => sub ((mul (mul x, 9), 3), x) + return combineMulMulAddOrSub(/*isAdd*/ false); + case 28: + // mul x, 28 => add ((mul (mul x, 9), 3), x) + return combineMulMulAddOrSub(/*isAdd*/ true); + case 29: + // mul x, 29 => add (add ((mul (mul x, 9), 3), x), x) + return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0), + combineMulMulAddOrSub(/*isAdd*/ true)); + case 30: + // mul x, 30 => sub (sub ((shl x, 5), x), x) + return DAG.getNode( + ISD::SUB, DL, VT, + DAG.getNode(ISD::SUB, DL, VT, + DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(5, DL, MVT::i8)), + N->getOperand(0)), + N->getOperand(0)); + } + return SDValue(); +} + +/// Optimize a single multiply with constant into two operations in order to +/// implement it with two cheaper instructions, e.g. LEA + SHL, LEA + LEA. +static SDValue combineMul(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + EVT VT = N->getValueType(0); + if (DCI.isBeforeLegalize() && VT.isVector()) + return reduceVMULWidth(N, DAG, Subtarget); + + if (!MulConstantOptimization) + return SDValue(); + // An imul is usually smaller than the alternative sequence. + if (DAG.getMachineFunction().getFunction().optForMinSize()) + return SDValue(); + + if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) + return SDValue(); + + if (VT != MVT::i64 && VT != MVT::i32) + return SDValue(); + + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!C) + return SDValue(); + uint64_t MulAmt = C->getZExtValue(); + if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) + return SDValue(); + + uint64_t MulAmt1 = 0; + uint64_t MulAmt2 = 0; + if ((MulAmt % 9) == 0) { + MulAmt1 = 9; + MulAmt2 = MulAmt / 9; + } else if ((MulAmt % 5) == 0) { + MulAmt1 = 5; + MulAmt2 = MulAmt / 5; + } else if ((MulAmt % 3) == 0) { + MulAmt1 = 3; + MulAmt2 = MulAmt / 3; + } + + SDLoc DL(N); + SDValue NewMul; + if (MulAmt2 && + (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ + + if (isPowerOf2_64(MulAmt2) && + !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) + // If second multiplifer is pow2, issue it first. We want the multiply by + // 3, 5, or 9 to be folded into the addressing mode unless the lone use + // is an add. + std::swap(MulAmt1, MulAmt2); + + if (isPowerOf2_64(MulAmt1)) + NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8)); + else + NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), + DAG.getConstant(MulAmt1, DL, VT)); + + if (isPowerOf2_64(MulAmt2)) + NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, + DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8)); + else + NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, + DAG.getConstant(MulAmt2, DL, VT)); + } else if (!Subtarget.slowLEA()) + NewMul = combineMulSpecial(MulAmt, N, DAG, VT, DL); + + if (!NewMul) { + assert(MulAmt != 0 && + MulAmt != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX) && + "Both cases that could cause potential overflows should have " + "already been handled."); + int64_t SignMulAmt = C->getSExtValue(); + if ((SignMulAmt != INT64_MIN) && (SignMulAmt != INT64_MAX) && + (SignMulAmt != -INT64_MAX)) { + int NumSign = SignMulAmt > 0 ? 1 : -1; + bool IsPowerOf2_64PlusOne = isPowerOf2_64(NumSign * SignMulAmt - 1); + bool IsPowerOf2_64MinusOne = isPowerOf2_64(NumSign * SignMulAmt + 1); + if (IsPowerOf2_64PlusOne) { + // (mul x, 2^N + 1) => (add (shl x, N), x) + NewMul = DAG.getNode( + ISD::ADD, DL, VT, N->getOperand(0), + DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(Log2_64(NumSign * SignMulAmt - 1), DL, + MVT::i8))); + } else if (IsPowerOf2_64MinusOne) { + // (mul x, 2^N - 1) => (sub (shl x, N), x) + NewMul = DAG.getNode( + ISD::SUB, DL, VT, + DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(Log2_64(NumSign * SignMulAmt + 1), DL, + MVT::i8)), + N->getOperand(0)); + } + // To negate, subtract the number from zero + if ((IsPowerOf2_64PlusOne || IsPowerOf2_64MinusOne) && NumSign == -1) + NewMul = + DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), NewMul); + } + } + + if (NewMul) + // Do not add new nodes to DAG combiner worklist. + DCI.CombineTo(N, NewMul, false); + + return SDValue(); +} + +static SDValue combineShiftLeft(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + EVT VT = N0.getValueType(); + + // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) + // since the result of setcc_c is all zero's or all ones. + if (VT.isInteger() && !VT.isVector() && + N1C && N0.getOpcode() == ISD::AND && + N0.getOperand(1).getOpcode() == ISD::Constant) { + SDValue N00 = N0.getOperand(0); + APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); + Mask <<= N1C->getAPIntValue(); + bool MaskOK = false; + // We can handle cases concerning bit-widening nodes containing setcc_c if + // we carefully interrogate the mask to make sure we are semantics + // preserving. + // The transform is not safe if the result of C1 << C2 exceeds the bitwidth + // of the underlying setcc_c operation if the setcc_c was zero extended. + // Consider the following example: + // zext(setcc_c) -> i32 0x0000FFFF + // c1 -> i32 0x0000FFFF + // c2 -> i32 0x00000001 + // (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE + // (and setcc_c, (c1 << c2)) -> i32 0x0000FFFE + if (N00.getOpcode() == X86ISD::SETCC_CARRY) { + MaskOK = true; + } else if (N00.getOpcode() == ISD::SIGN_EXTEND && + N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { + MaskOK = true; + } else if ((N00.getOpcode() == ISD::ZERO_EXTEND || + N00.getOpcode() == ISD::ANY_EXTEND) && + N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { + MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits()); + } + if (MaskOK && Mask != 0) { + SDLoc DL(N); + return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT)); + } + } + + // Hardware support for vector shifts is sparse which makes us scalarize the + // vector operations in many cases. Also, on sandybridge ADD is faster than + // shl. + // (shl V, 1) -> add V,V + if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) + if (auto *N1SplatC = N1BV->getConstantSplatNode()) { + assert(N0.getValueType().isVector() && "Invalid vector shift type"); + // We shift all of the values by one. In many cases we do not have + // hardware support for this operation. This is better expressed as an ADD + // of two values. + if (N1SplatC->getAPIntValue() == 1) + return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0); + } + + return SDValue(); +} + +static SDValue combineShiftRightArithmetic(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + unsigned Size = VT.getSizeInBits(); + + // fold (ashr (shl, a, [56,48,32,24,16]), SarConst) + // into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or + // into (lshr, (sext (a), SarConst - [56,48,32,24,16])) + // depending on sign of (SarConst - [56,48,32,24,16]) + + // sexts in X86 are MOVs. The MOVs have the same code size + // as above SHIFTs (only SHIFT on 1 has lower code size). + // However the MOVs have 2 advantages to a SHIFT: + // 1. MOVs can write to a register that differs from source + // 2. MOVs accept memory operands + + if (VT.isVector() || N1.getOpcode() != ISD::Constant || + N0.getOpcode() != ISD::SHL || !N0.hasOneUse() || + N0.getOperand(1).getOpcode() != ISD::Constant) + return SDValue(); + + SDValue N00 = N0.getOperand(0); + SDValue N01 = N0.getOperand(1); + APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue(); + APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue(); + EVT CVT = N1.getValueType(); + + if (SarConst.isNegative()) + return SDValue(); + + for (MVT SVT : { MVT::i8, MVT::i16, MVT::i32 }) { + unsigned ShiftSize = SVT.getSizeInBits(); + // skipping types without corresponding sext/zext and + // ShlConst that is not one of [56,48,32,24,16] + if (ShiftSize >= Size || ShlConst != Size - ShiftSize) + continue; + SDLoc DL(N); + SDValue NN = + DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT)); + SarConst = SarConst - (Size - ShiftSize); + if (SarConst == 0) + return NN; + else if (SarConst.isNegative()) + return DAG.getNode(ISD::SHL, DL, VT, NN, + DAG.getConstant(-SarConst, DL, CVT)); + else + return DAG.getNode(ISD::SRA, DL, VT, NN, + DAG.getConstant(SarConst, DL, CVT)); + } + return SDValue(); +} + +static SDValue combineShiftRightLogical(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + + // Try to improve a sequence of srl (and X, C1), C2 by inverting the order. + // TODO: This is a generic DAG combine that became an x86-only combine to + // avoid shortcomings in other folds such as bswap, bit-test ('bt'), and + // and-not ('andn'). + if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) + return SDValue(); + + auto *ShiftC = dyn_cast<ConstantSDNode>(N1); + auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (!ShiftC || !AndC) + return SDValue(); + + // If we can shrink the constant mask below 8-bits or 32-bits, then this + // transform should reduce code size. It may also enable secondary transforms + // from improved known-bits analysis or instruction selection. + APInt MaskVal = AndC->getAPIntValue(); + APInt NewMaskVal = MaskVal.lshr(ShiftC->getAPIntValue()); + unsigned OldMaskSize = MaskVal.getMinSignedBits(); + unsigned NewMaskSize = NewMaskVal.getMinSignedBits(); + if ((OldMaskSize > 8 && NewMaskSize <= 8) || + (OldMaskSize > 32 && NewMaskSize <= 32)) { + // srl (and X, AndC), ShiftC --> and (srl X, ShiftC), (AndC >> ShiftC) + SDLoc DL(N); + SDValue NewMask = DAG.getConstant(NewMaskVal, DL, VT); + SDValue NewShift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1); + return DAG.getNode(ISD::AND, DL, VT, NewShift, NewMask); + } + return SDValue(); +} + +static SDValue combineShift(SDNode* N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + if (N->getOpcode() == ISD::SHL) + if (SDValue V = combineShiftLeft(N, DAG)) + return V; + + if (N->getOpcode() == ISD::SRA) + if (SDValue V = combineShiftRightArithmetic(N, DAG)) + return V; + + if (N->getOpcode() == ISD::SRL) + if (SDValue V = combineShiftRightLogical(N, DAG)) + return V; + + return SDValue(); +} + +static SDValue combineVectorPack(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + unsigned Opcode = N->getOpcode(); + assert((X86ISD::PACKSS == Opcode || X86ISD::PACKUS == Opcode) && + "Unexpected shift opcode"); + + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + unsigned DstBitsPerElt = VT.getScalarSizeInBits(); + unsigned SrcBitsPerElt = 2 * DstBitsPerElt; + assert(N0.getScalarValueSizeInBits() == SrcBitsPerElt && + N1.getScalarValueSizeInBits() == SrcBitsPerElt && + "Unexpected PACKSS/PACKUS input type"); + + // Constant Folding. + APInt UndefElts0, UndefElts1; + SmallVector<APInt, 32> EltBits0, EltBits1; + if ((N0->isUndef() || N->isOnlyUserOf(N0.getNode())) && + (N1->isUndef() || N->isOnlyUserOf(N1.getNode())) && + getTargetConstantBitsFromNode(N0, SrcBitsPerElt, UndefElts0, EltBits0) && + getTargetConstantBitsFromNode(N1, SrcBitsPerElt, UndefElts1, EltBits1)) { + unsigned NumLanes = VT.getSizeInBits() / 128; + unsigned NumDstElts = VT.getVectorNumElements(); + unsigned NumSrcElts = NumDstElts / 2; + unsigned NumDstEltsPerLane = NumDstElts / NumLanes; + unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes; + bool IsSigned = (X86ISD::PACKSS == Opcode); + + APInt Undefs(NumDstElts, 0); + SmallVector<APInt, 32> Bits(NumDstElts, APInt::getNullValue(DstBitsPerElt)); + for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { + for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) { + unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane; + auto &UndefElts = (Elt >= NumSrcEltsPerLane ? UndefElts1 : UndefElts0); + auto &EltBits = (Elt >= NumSrcEltsPerLane ? EltBits1 : EltBits0); + + if (UndefElts[SrcIdx]) { + Undefs.setBit(Lane * NumDstEltsPerLane + Elt); + continue; + } + + APInt &Val = EltBits[SrcIdx]; + if (IsSigned) { + // PACKSS: Truncate signed value with signed saturation. + // Source values less than dst minint are saturated to minint. + // Source values greater than dst maxint are saturated to maxint. + if (Val.isSignedIntN(DstBitsPerElt)) + Val = Val.trunc(DstBitsPerElt); + else if (Val.isNegative()) + Val = APInt::getSignedMinValue(DstBitsPerElt); + else + Val = APInt::getSignedMaxValue(DstBitsPerElt); + } else { + // PACKUS: Truncate signed value with unsigned saturation. + // Source values less than zero are saturated to zero. + // Source values greater than dst maxuint are saturated to maxuint. + if (Val.isIntN(DstBitsPerElt)) + Val = Val.trunc(DstBitsPerElt); + else if (Val.isNegative()) + Val = APInt::getNullValue(DstBitsPerElt); + else + Val = APInt::getAllOnesValue(DstBitsPerElt); + } + Bits[Lane * NumDstEltsPerLane + Elt] = Val; + } + } + + return getConstVector(Bits, Undefs, VT.getSimpleVT(), DAG, SDLoc(N)); + } + + // Attempt to combine as shuffle. + SDValue Op(N, 0); + if (SDValue Res = combineX86ShufflesRecursively( + {Op}, 0, Op, {0}, {}, /*Depth*/ 1, + /*HasVarMask*/ false, DAG, DCI, Subtarget)) { + DCI.CombineTo(N, Res); + return SDValue(); + } + + return SDValue(); +} + +static SDValue combineVectorShiftImm(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + unsigned Opcode = N->getOpcode(); + assert((X86ISD::VSHLI == Opcode || X86ISD::VSRAI == Opcode || + X86ISD::VSRLI == Opcode) && + "Unexpected shift opcode"); + bool LogicalShift = X86ISD::VSHLI == Opcode || X86ISD::VSRLI == Opcode; + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + unsigned NumBitsPerElt = VT.getScalarSizeInBits(); + assert(VT == N0.getValueType() && (NumBitsPerElt % 8) == 0 && + "Unexpected value type"); + + // Out of range logical bit shifts are guaranteed to be zero. + // Out of range arithmetic bit shifts splat the sign bit. + APInt ShiftVal = cast<ConstantSDNode>(N1)->getAPIntValue(); + if (ShiftVal.zextOrTrunc(8).uge(NumBitsPerElt)) { + if (LogicalShift) + return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N)); + else + ShiftVal = NumBitsPerElt - 1; + } + + // Shift N0 by zero -> N0. + if (!ShiftVal) + return N0; + + // Shift zero -> zero. + if (ISD::isBuildVectorAllZeros(N0.getNode())) + return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(N)); + + // fold (VSRLI (VSRAI X, Y), 31) -> (VSRLI X, 31). + // This VSRLI only looks at the sign bit, which is unmodified by VSRAI. + // TODO - support other sra opcodes as needed. + if (Opcode == X86ISD::VSRLI && (ShiftVal + 1) == NumBitsPerElt && + N0.getOpcode() == X86ISD::VSRAI) + return DAG.getNode(X86ISD::VSRLI, SDLoc(N), VT, N0.getOperand(0), N1); + + // fold (VSRAI (VSHLI X, C1), C1) --> X iff NumSignBits(X) > C1 + if (Opcode == X86ISD::VSRAI && N0.getOpcode() == X86ISD::VSHLI && + N1 == N0.getOperand(1)) { + SDValue N00 = N0.getOperand(0); + unsigned NumSignBits = DAG.ComputeNumSignBits(N00); + if (ShiftVal.ult(NumSignBits)) + return N00; + } + + // We can decode 'whole byte' logical bit shifts as shuffles. + if (LogicalShift && (ShiftVal.getZExtValue() % 8) == 0) { + SDValue Op(N, 0); + if (SDValue Res = combineX86ShufflesRecursively( + {Op}, 0, Op, {0}, {}, /*Depth*/ 1, + /*HasVarMask*/ false, DAG, DCI, Subtarget)) { + DCI.CombineTo(N, Res); + return SDValue(); + } + } + + // Constant Folding. + APInt UndefElts; + SmallVector<APInt, 32> EltBits; + if (N->isOnlyUserOf(N0.getNode()) && + getTargetConstantBitsFromNode(N0, NumBitsPerElt, UndefElts, EltBits)) { + assert(EltBits.size() == VT.getVectorNumElements() && + "Unexpected shift value type"); + unsigned ShiftImm = ShiftVal.getZExtValue(); + for (APInt &Elt : EltBits) { + if (X86ISD::VSHLI == Opcode) + Elt <<= ShiftImm; + else if (X86ISD::VSRAI == Opcode) + Elt.ashrInPlace(ShiftImm); + else + Elt.lshrInPlace(ShiftImm); + } + return getConstVector(EltBits, UndefElts, VT.getSimpleVT(), DAG, SDLoc(N)); + } + + return SDValue(); +} + +static SDValue combineVectorInsert(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + assert( + ((N->getOpcode() == X86ISD::PINSRB && N->getValueType(0) == MVT::v16i8) || + (N->getOpcode() == X86ISD::PINSRW && + N->getValueType(0) == MVT::v8i16)) && + "Unexpected vector insertion"); + + // Attempt to combine PINSRB/PINSRW patterns to a shuffle. + SDValue Op(N, 0); + if (SDValue Res = combineX86ShufflesRecursively( + {Op}, 0, Op, {0}, {}, /*Depth*/ 1, + /*HasVarMask*/ false, DAG, DCI, Subtarget)) { + DCI.CombineTo(N, Res); + return SDValue(); + } + + return SDValue(); +} + +/// Recognize the distinctive (AND (setcc ...) (setcc ..)) where both setccs +/// reference the same FP CMP, and rewrite for CMPEQSS and friends. Likewise for +/// OR -> CMPNEQSS. +static SDValue combineCompareEqual(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + unsigned opcode; + + // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but + // we're requiring SSE2 for both. + if (Subtarget.hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue CMP0 = N0->getOperand(1); + SDValue CMP1 = N1->getOperand(1); + SDLoc DL(N); + + // The SETCCs should both refer to the same CMP. + if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) + return SDValue(); + + SDValue CMP00 = CMP0->getOperand(0); + SDValue CMP01 = CMP0->getOperand(1); + EVT VT = CMP00.getValueType(); + + if (VT == MVT::f32 || VT == MVT::f64) { + bool ExpectingFlags = false; + // Check for any users that want flags: + for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); + !ExpectingFlags && UI != UE; ++UI) + switch (UI->getOpcode()) { + default: + case ISD::BR_CC: + case ISD::BRCOND: + case ISD::SELECT: + ExpectingFlags = true; + break; + case ISD::CopyToReg: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + break; + } + + if (!ExpectingFlags) { + enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); + enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); + + if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { + X86::CondCode tmp = cc0; + cc0 = cc1; + cc1 = tmp; + } + + if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) || + (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { + // FIXME: need symbolic constants for these magic numbers. + // See X86ATTInstPrinter.cpp:printSSECC(). + unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; + if (Subtarget.hasAVX512()) { + SDValue FSetCC = + DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CMP00, CMP01, + DAG.getConstant(x86cc, DL, MVT::i8)); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, + N->getSimpleValueType(0), FSetCC, + DAG.getIntPtrConstant(0, DL)); + } + SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL, + CMP00.getValueType(), CMP00, CMP01, + DAG.getConstant(x86cc, DL, + MVT::i8)); + + bool is64BitFP = (CMP00.getValueType() == MVT::f64); + MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32; + + if (is64BitFP && !Subtarget.is64Bit()) { + // On a 32-bit target, we cannot bitcast the 64-bit float to a + // 64-bit integer, since that's not a legal type. Since + // OnesOrZeroesF is all ones of all zeroes, we don't need all the + // bits, but can do this little dance to extract the lowest 32 bits + // and work with those going forward. + SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, + OnesOrZeroesF); + SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64); + OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, + Vector32, DAG.getIntPtrConstant(0, DL)); + IntVT = MVT::i32; + } + + SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF); + SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI, + DAG.getConstant(1, DL, IntVT)); + SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, + ANDed); + return OneBitOfTruth; + } + } + } + } + return SDValue(); +} + +/// Try to fold: (and (xor X, -1), Y) -> (andnp X, Y). +static SDValue combineANDXORWithAllOnesIntoANDNP(SDNode *N, SelectionDAG &DAG) { + assert(N->getOpcode() == ISD::AND); + + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDLoc DL(N); + + if (VT != MVT::v2i64 && VT != MVT::v4i64 && VT != MVT::v8i64) + return SDValue(); + + if (N0.getOpcode() == ISD::XOR && + ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) + return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1); + + if (N1.getOpcode() == ISD::XOR && + ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) + return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0); + + return SDValue(); +} + +// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized +// register. In most cases we actually compare or select YMM-sized registers +// and mixing the two types creates horrible code. This method optimizes +// some of the transition sequences. +// Even with AVX-512 this is still useful for removing casts around logical +// operations on vXi1 mask types. +static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + EVT VT = N->getValueType(0); + assert(VT.isVector() && "Expected vector type"); + + assert((N->getOpcode() == ISD::ANY_EXTEND || + N->getOpcode() == ISD::ZERO_EXTEND || + N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); + + SDValue Narrow = N->getOperand(0); + EVT NarrowVT = Narrow.getValueType(); + + if (Narrow->getOpcode() != ISD::XOR && + Narrow->getOpcode() != ISD::AND && + Narrow->getOpcode() != ISD::OR) + return SDValue(); + + SDValue N0 = Narrow->getOperand(0); + SDValue N1 = Narrow->getOperand(1); + SDLoc DL(Narrow); + + // The Left side has to be a trunc. + if (N0.getOpcode() != ISD::TRUNCATE) + return SDValue(); + + // The type of the truncated inputs. + if (N0->getOperand(0).getValueType() != VT) + return SDValue(); + + // The right side has to be a 'trunc' or a constant vector. + bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE && + N1.getOperand(0).getValueType() == VT; + if (!RHSTrunc && + !ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) + return SDValue(); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), VT)) + return SDValue(); + + // Set N0 and N1 to hold the inputs to the new wide operation. + N0 = N0->getOperand(0); + if (RHSTrunc) + N1 = N1->getOperand(0); + else + N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N1); + + // Generate the wide operation. + SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, VT, N0, N1); + unsigned Opcode = N->getOpcode(); + switch (Opcode) { + default: llvm_unreachable("Unexpected opcode"); + case ISD::ANY_EXTEND: + return Op; + case ISD::ZERO_EXTEND: + return DAG.getZeroExtendInReg(Op, DL, NarrowVT.getScalarType()); + case ISD::SIGN_EXTEND: + return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, + Op, DAG.getValueType(NarrowVT)); + } +} + +/// If both input operands of a logic op are being cast from floating point +/// types, try to convert this into a floating point logic node to avoid +/// unnecessary moves from SSE to integer registers. +static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + unsigned FPOpcode = ISD::DELETED_NODE; + if (N->getOpcode() == ISD::AND) + FPOpcode = X86ISD::FAND; + else if (N->getOpcode() == ISD::OR) + FPOpcode = X86ISD::FOR; + else if (N->getOpcode() == ISD::XOR) + FPOpcode = X86ISD::FXOR; + + assert(FPOpcode != ISD::DELETED_NODE && + "Unexpected input node for FP logic conversion"); + + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDLoc DL(N); + if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST && + ((Subtarget.hasSSE1() && VT == MVT::i32) || + (Subtarget.hasSSE2() && VT == MVT::i64))) { + SDValue N00 = N0.getOperand(0); + SDValue N10 = N1.getOperand(0); + EVT N00Type = N00.getValueType(); + EVT N10Type = N10.getValueType(); + if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) { + SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10); + return DAG.getBitcast(VT, FPLogic); + } + } + return SDValue(); +} + +/// If this is a zero/all-bits result that is bitwise-anded with a low bits +/// mask. (Mask == 1 for the x86 lowering of a SETCC + ZEXT), replace the 'and' +/// with a shift-right to eliminate loading the vector constant mask value. +static SDValue combineAndMaskToShift(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDValue Op0 = peekThroughBitcasts(N->getOperand(0)); + SDValue Op1 = peekThroughBitcasts(N->getOperand(1)); + EVT VT0 = Op0.getValueType(); + EVT VT1 = Op1.getValueType(); + + if (VT0 != VT1 || !VT0.isSimple() || !VT0.isInteger()) + return SDValue(); + + APInt SplatVal; + if (!ISD::isConstantSplatVector(Op1.getNode(), SplatVal) || + !SplatVal.isMask()) + return SDValue(); + + if (!SupportedVectorShiftWithImm(VT0.getSimpleVT(), Subtarget, ISD::SRL)) + return SDValue(); + + unsigned EltBitWidth = VT0.getScalarSizeInBits(); + if (EltBitWidth != DAG.ComputeNumSignBits(Op0)) + return SDValue(); + + SDLoc DL(N); + unsigned ShiftVal = SplatVal.countTrailingOnes(); + SDValue ShAmt = DAG.getConstant(EltBitWidth - ShiftVal, DL, MVT::i8); + SDValue Shift = DAG.getNode(X86ISD::VSRLI, DL, VT0, Op0, ShAmt); + return DAG.getBitcast(N->getValueType(0), Shift); +} + +// Get the index node from the lowered DAG of a GEP IR instruction with one +// indexing dimension. +static SDValue getIndexFromUnindexedLoad(LoadSDNode *Ld) { + if (Ld->isIndexed()) + return SDValue(); + + SDValue Base = Ld->getBasePtr(); + + if (Base.getOpcode() != ISD::ADD) + return SDValue(); + + SDValue ShiftedIndex = Base.getOperand(0); + + if (ShiftedIndex.getOpcode() != ISD::SHL) + return SDValue(); + + return ShiftedIndex.getOperand(0); + +} + +static bool hasBZHI(const X86Subtarget &Subtarget, MVT VT) { + if (Subtarget.hasBMI2() && VT.isScalarInteger()) { + switch (VT.getSizeInBits()) { + default: return false; + case 64: return Subtarget.is64Bit() ? true : false; + case 32: return true; + } + } + return false; +} + +// This function recognizes cases where X86 bzhi instruction can replace and +// 'and-load' sequence. +// In case of loading integer value from an array of constants which is defined +// as follows: +// +// int array[SIZE] = {0x0, 0x1, 0x3, 0x7, 0xF ..., 2^(SIZE-1) - 1} +// +// then applying a bitwise and on the result with another input. +// It's equivalent to performing bzhi (zero high bits) on the input, with the +// same index of the load. +static SDValue combineAndLoadToBZHI(SDNode *Node, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + MVT VT = Node->getSimpleValueType(0); + SDLoc dl(Node); + + // Check if subtarget has BZHI instruction for the node's type + if (!hasBZHI(Subtarget, VT)) + return SDValue(); + + // Try matching the pattern for both operands. + for (unsigned i = 0; i < 2; i++) { + SDValue N = Node->getOperand(i); + LoadSDNode *Ld = dyn_cast<LoadSDNode>(N.getNode()); + + // continue if the operand is not a load instruction + if (!Ld) + return SDValue(); + + const Value *MemOp = Ld->getMemOperand()->getValue(); + + if (!MemOp) + return SDValue(); + + if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(MemOp)) { + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) { + if (GV->isConstant() && GV->hasDefinitiveInitializer()) { + + Constant *Init = GV->getInitializer(); + Type *Ty = Init->getType(); + if (!isa<ConstantDataArray>(Init) || + !Ty->getArrayElementType()->isIntegerTy() || + Ty->getArrayElementType()->getScalarSizeInBits() != + VT.getSizeInBits() || + Ty->getArrayNumElements() > + Ty->getArrayElementType()->getScalarSizeInBits()) + continue; + + // Check if the array's constant elements are suitable to our case. + uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); + bool ConstantsMatch = true; + for (uint64_t j = 0; j < ArrayElementCount; j++) { + ConstantInt *Elem = + dyn_cast<ConstantInt>(Init->getAggregateElement(j)); + if (Elem->getZExtValue() != (((uint64_t)1 << j) - 1)) { + ConstantsMatch = false; + break; + } + } + if (!ConstantsMatch) + continue; + + // Do the transformation (For 32-bit type): + // -> (and (load arr[idx]), inp) + // <- (and (srl 0xFFFFFFFF, (sub 32, idx))) + // that will be replaced with one bzhi instruction. + SDValue Inp = (i == 0) ? Node->getOperand(1) : Node->getOperand(0); + SDValue SizeC = DAG.getConstant(VT.getSizeInBits(), dl, VT); + + // Get the Node which indexes into the array. + SDValue Index = getIndexFromUnindexedLoad(Ld); + if (!Index) + return SDValue(); + Index = DAG.getZExtOrTrunc(Index, dl, VT); + + SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SizeC, Index); + + SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); + SDValue LShr = DAG.getNode(ISD::SRL, dl, VT, AllOnes, Sub); + + return DAG.getNode(ISD::AND, dl, VT, Inp, LShr); + } + } + } + } + return SDValue(); +} + +static SDValue combineAnd(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + EVT VT = N->getValueType(0); + + // If this is SSE1 only convert to FAND to avoid scalarization. + if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) { + return DAG.getBitcast( + MVT::v4i32, DAG.getNode(X86ISD::FAND, SDLoc(N), MVT::v4f32, + DAG.getBitcast(MVT::v4f32, N->getOperand(0)), + DAG.getBitcast(MVT::v4f32, N->getOperand(1)))); + } + + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget)) + return R; + + if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) + return FPLogic; + + if (SDValue R = combineANDXORWithAllOnesIntoANDNP(N, DAG)) + return R; + + if (SDValue ShiftRight = combineAndMaskToShift(N, DAG, Subtarget)) + return ShiftRight; + + if (SDValue R = combineAndLoadToBZHI(N, DAG, Subtarget)) + return R; + + // Attempt to recursively combine a bitmask AND with shuffles. + if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) { + SDValue Op(N, 0); + if (SDValue Res = combineX86ShufflesRecursively( + {Op}, 0, Op, {0}, {}, /*Depth*/ 1, + /*HasVarMask*/ false, DAG, DCI, Subtarget)) { + DCI.CombineTo(N, Res); + return SDValue(); + } + } + + // Attempt to combine a scalar bitmask AND with an extracted shuffle. + if ((VT.getScalarSizeInBits() % 8) == 0 && + N->getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && + isa<ConstantSDNode>(N->getOperand(0).getOperand(1))) { + SDValue BitMask = N->getOperand(1); + SDValue SrcVec = N->getOperand(0).getOperand(0); + EVT SrcVecVT = SrcVec.getValueType(); + + // Check that the constant bitmask masks whole bytes. + APInt UndefElts; + SmallVector<APInt, 64> EltBits; + if (VT == SrcVecVT.getScalarType() && + N->getOperand(0)->isOnlyUserOf(SrcVec.getNode()) && + getTargetConstantBitsFromNode(BitMask, 8, UndefElts, EltBits) && + llvm::all_of(EltBits, [](APInt M) { + return M.isNullValue() || M.isAllOnesValue(); + })) { + unsigned NumElts = SrcVecVT.getVectorNumElements(); + unsigned Scale = SrcVecVT.getScalarSizeInBits() / 8; + unsigned Idx = N->getOperand(0).getConstantOperandVal(1); + + // Create a root shuffle mask from the byte mask and the extracted index. + SmallVector<int, 16> ShuffleMask(NumElts * Scale, SM_SentinelUndef); + for (unsigned i = 0; i != Scale; ++i) { + if (UndefElts[i]) + continue; + int VecIdx = Scale * Idx + i; + ShuffleMask[VecIdx] = + EltBits[i].isNullValue() ? SM_SentinelZero : VecIdx; + } + + if (SDValue Shuffle = combineX86ShufflesRecursively( + {SrcVec}, 0, SrcVec, ShuffleMask, {}, /*Depth*/ 2, + /*HasVarMask*/ false, DAG, DCI, Subtarget)) + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), VT, Shuffle, + N->getOperand(0).getOperand(1)); + } + } + + return SDValue(); +} + +// Try to fold: +// (or (and (m, y), (pandn m, x))) +// into: +// (vselect m, x, y) +// As a special case, try to fold: +// (or (and (m, (sub 0, x)), (pandn m, x))) +// into: +// (sub (xor X, M), M) +static SDValue combineLogicBlendIntoPBLENDV(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + assert(N->getOpcode() == ISD::OR && "Unexpected Opcode"); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + + if (!((VT.is128BitVector() && Subtarget.hasSSE2()) || + (VT.is256BitVector() && Subtarget.hasInt256()))) + return SDValue(); + + // Canonicalize AND to LHS. + if (N1.getOpcode() == ISD::AND) + std::swap(N0, N1); + + // TODO: Attempt to match against AND(XOR(-1,X),Y) as well, waiting for + // ANDNP combine allows other combines to happen that prevent matching. + if (N0.getOpcode() != ISD::AND || N1.getOpcode() != X86ISD::ANDNP) + return SDValue(); + + SDValue Mask = N1.getOperand(0); + SDValue X = N1.getOperand(1); + SDValue Y; + if (N0.getOperand(0) == Mask) + Y = N0.getOperand(1); + if (N0.getOperand(1) == Mask) + Y = N0.getOperand(0); + + // Check to see if the mask appeared in both the AND and ANDNP. + if (!Y.getNode()) + return SDValue(); + + // Validate that X, Y, and Mask are bitcasts, and see through them. + Mask = peekThroughBitcasts(Mask); + X = peekThroughBitcasts(X); + Y = peekThroughBitcasts(Y); + + EVT MaskVT = Mask.getValueType(); + unsigned EltBits = MaskVT.getScalarSizeInBits(); + + // TODO: Attempt to handle floating point cases as well? + if (!MaskVT.isInteger() || DAG.ComputeNumSignBits(Mask) != EltBits) + return SDValue(); + + SDLoc DL(N); + + // Try to match: + // (or (and (M, (sub 0, X)), (pandn M, X))) + // which is a special case of vselect: + // (vselect M, (sub 0, X), X) + // Per: + // http://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate + // We know that, if fNegate is 0 or 1: + // (fNegate ? -v : v) == ((v ^ -fNegate) + fNegate) + // + // Here, we have a mask, M (all 1s or 0), and, similarly, we know that: + // ((M & 1) ? -X : X) == ((X ^ -(M & 1)) + (M & 1)) + // ( M ? -X : X) == ((X ^ M ) + (M & 1)) + // This lets us transform our vselect to: + // (add (xor X, M), (and M, 1)) + // And further to: + // (sub (xor X, M), M) + if (X.getValueType() == MaskVT && Y.getValueType() == MaskVT && + DAG.getTargetLoweringInfo().isOperationLegal(ISD::SUB, MaskVT)) { + auto IsNegV = [](SDNode *N, SDValue V) { + return N->getOpcode() == ISD::SUB && N->getOperand(1) == V && + ISD::isBuildVectorAllZeros(N->getOperand(0).getNode()); + }; + SDValue V; + if (IsNegV(Y.getNode(), X)) + V = X; + else if (IsNegV(X.getNode(), Y)) + V = Y; + + if (V) { + SDValue SubOp1 = DAG.getNode(ISD::XOR, DL, MaskVT, V, Mask); + SDValue SubOp2 = Mask; + + // If the negate was on the false side of the select, then + // the operands of the SUB need to be swapped. PR 27251. + // This is because the pattern being matched above is + // (vselect M, (sub (0, X), X) -> (sub (xor X, M), M) + // but if the pattern matched was + // (vselect M, X, (sub (0, X))), that is really negation of the pattern + // above, -(vselect M, (sub 0, X), X), and therefore the replacement + // pattern also needs to be a negation of the replacement pattern above. + // And -(sub X, Y) is just sub (Y, X), so swapping the operands of the + // sub accomplishes the negation of the replacement pattern. + if (V == Y) + std::swap(SubOp1, SubOp2); + + SDValue Res = DAG.getNode(ISD::SUB, DL, MaskVT, SubOp1, SubOp2); + return DAG.getBitcast(VT, Res); + } + } + + // PBLENDVB is only available on SSE 4.1. + if (!Subtarget.hasSSE41()) + return SDValue(); + + MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; + + X = DAG.getBitcast(BlendVT, X); + Y = DAG.getBitcast(BlendVT, Y); + Mask = DAG.getBitcast(BlendVT, Mask); + Mask = DAG.getSelect(DL, BlendVT, Mask, Y, X); + return DAG.getBitcast(VT, Mask); +} + +// Helper function for combineOrCmpEqZeroToCtlzSrl +// Transforms: +// seteq(cmp x, 0) +// into: +// srl(ctlz x), log2(bitsize(x)) +// Input pattern is checked by caller. +static SDValue lowerX86CmpEqZeroToCtlzSrl(SDValue Op, EVT ExtTy, + SelectionDAG &DAG) { + SDValue Cmp = Op.getOperand(1); + EVT VT = Cmp.getOperand(0).getValueType(); + unsigned Log2b = Log2_32(VT.getSizeInBits()); + SDLoc dl(Op); + SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Cmp->getOperand(0)); + // The result of the shift is true or false, and on X86, the 32-bit + // encoding of shr and lzcnt is more desirable. + SDValue Trunc = DAG.getZExtOrTrunc(Clz, dl, MVT::i32); + SDValue Scc = DAG.getNode(ISD::SRL, dl, MVT::i32, Trunc, + DAG.getConstant(Log2b, dl, VT)); + return DAG.getZExtOrTrunc(Scc, dl, ExtTy); +} + +// Try to transform: +// zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0)))) +// into: +// srl(or(ctlz(x), ctlz(y)), log2(bitsize(x)) +// Will also attempt to match more generic cases, eg: +// zext(or(or(setcc(eq, cmp 0), setcc(eq, cmp 0)), setcc(eq, cmp 0))) +// Only applies if the target supports the FastLZCNT feature. +static SDValue combineOrCmpEqZeroToCtlzSrl(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + if (DCI.isBeforeLegalize() || !Subtarget.getTargetLowering()->isCtlzFast()) + return SDValue(); + + auto isORCandidate = [](SDValue N) { + return (N->getOpcode() == ISD::OR && N->hasOneUse()); + }; + + // Check the zero extend is extending to 32-bit or more. The code generated by + // srl(ctlz) for 16-bit or less variants of the pattern would require extra + // instructions to clear the upper bits. + if (!N->hasOneUse() || !N->getSimpleValueType(0).bitsGE(MVT::i32) || + !isORCandidate(N->getOperand(0))) + return SDValue(); + + // Check the node matches: setcc(eq, cmp 0) + auto isSetCCCandidate = [](SDValue N) { + return N->getOpcode() == X86ISD::SETCC && N->hasOneUse() && + X86::CondCode(N->getConstantOperandVal(0)) == X86::COND_E && + N->getOperand(1).getOpcode() == X86ISD::CMP && + isNullConstant(N->getOperand(1).getOperand(1)) && + N->getOperand(1).getValueType().bitsGE(MVT::i32); + }; + + SDNode *OR = N->getOperand(0).getNode(); + SDValue LHS = OR->getOperand(0); + SDValue RHS = OR->getOperand(1); + + // Save nodes matching or(or, setcc(eq, cmp 0)). + SmallVector<SDNode *, 2> ORNodes; + while (((isORCandidate(LHS) && isSetCCCandidate(RHS)) || + (isORCandidate(RHS) && isSetCCCandidate(LHS)))) { + ORNodes.push_back(OR); + OR = (LHS->getOpcode() == ISD::OR) ? LHS.getNode() : RHS.getNode(); + LHS = OR->getOperand(0); + RHS = OR->getOperand(1); + } + + // The last OR node should match or(setcc(eq, cmp 0), setcc(eq, cmp 0)). + if (!(isSetCCCandidate(LHS) && isSetCCCandidate(RHS)) || + !isORCandidate(SDValue(OR, 0))) + return SDValue(); + + // We have a or(setcc(eq, cmp 0), setcc(eq, cmp 0)) pattern, try to lower it + // to + // or(srl(ctlz),srl(ctlz)). + // The dag combiner can then fold it into: + // srl(or(ctlz, ctlz)). + EVT VT = OR->getValueType(0); + SDValue NewLHS = lowerX86CmpEqZeroToCtlzSrl(LHS, VT, DAG); + SDValue Ret, NewRHS; + if (NewLHS && (NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG))) + Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, NewLHS, NewRHS); + + if (!Ret) + return SDValue(); + + // Try to lower nodes matching the or(or, setcc(eq, cmp 0)) pattern. + while (ORNodes.size() > 0) { + OR = ORNodes.pop_back_val(); + LHS = OR->getOperand(0); + RHS = OR->getOperand(1); + // Swap rhs with lhs to match or(setcc(eq, cmp, 0), or). + if (RHS->getOpcode() == ISD::OR) + std::swap(LHS, RHS); + EVT VT = OR->getValueType(0); + SDValue NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG); + if (!NewRHS) + return SDValue(); + Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, Ret, NewRHS); + } + + if (Ret) + Ret = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), Ret); + + return Ret; +} + +static SDValue combineOr(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + + // If this is SSE1 only convert to FOR to avoid scalarization. + if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) { + return DAG.getBitcast(MVT::v4i32, + DAG.getNode(X86ISD::FOR, SDLoc(N), MVT::v4f32, + DAG.getBitcast(MVT::v4f32, N0), + DAG.getBitcast(MVT::v4f32, N1))); + } + + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget)) + return R; + + if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) + return FPLogic; + + if (SDValue R = combineLogicBlendIntoPBLENDV(N, DAG, Subtarget)) + return R; + + if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) + bool OptForSize = DAG.getMachineFunction().getFunction().optForSize(); + + // SHLD/SHRD instructions have lower register pressure, but on some + // platforms they have higher latency than the equivalent + // series of shifts/or that would otherwise be generated. + // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions + // have higher latencies and we are not optimizing for size. + if (!OptForSize && Subtarget.isSHLDSlow()) + return SDValue(); + + if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) + std::swap(N0, N1); + if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) + return SDValue(); + if (!N0.hasOneUse() || !N1.hasOneUse()) + return SDValue(); + + SDValue ShAmt0 = N0.getOperand(1); + if (ShAmt0.getValueType() != MVT::i8) + return SDValue(); + SDValue ShAmt1 = N1.getOperand(1); + if (ShAmt1.getValueType() != MVT::i8) + return SDValue(); + if (ShAmt0.getOpcode() == ISD::TRUNCATE) + ShAmt0 = ShAmt0.getOperand(0); + if (ShAmt1.getOpcode() == ISD::TRUNCATE) + ShAmt1 = ShAmt1.getOperand(0); + + SDLoc DL(N); + unsigned Opc = X86ISD::SHLD; + SDValue Op0 = N0.getOperand(0); + SDValue Op1 = N1.getOperand(0); + if (ShAmt0.getOpcode() == ISD::SUB || + ShAmt0.getOpcode() == ISD::XOR) { + Opc = X86ISD::SHRD; + std::swap(Op0, Op1); + std::swap(ShAmt0, ShAmt1); + } + + // OR( SHL( X, C ), SRL( Y, 32 - C ) ) -> SHLD( X, Y, C ) + // OR( SRL( X, C ), SHL( Y, 32 - C ) ) -> SHRD( X, Y, C ) + // OR( SHL( X, C ), SRL( SRL( Y, 1 ), XOR( C, 31 ) ) ) -> SHLD( X, Y, C ) + // OR( SRL( X, C ), SHL( SHL( Y, 1 ), XOR( C, 31 ) ) ) -> SHRD( X, Y, C ) + unsigned Bits = VT.getSizeInBits(); + if (ShAmt1.getOpcode() == ISD::SUB) { + SDValue Sum = ShAmt1.getOperand(0); + if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { + SDValue ShAmt1Op1 = ShAmt1.getOperand(1); + if (ShAmt1Op1.getOpcode() == ISD::TRUNCATE) + ShAmt1Op1 = ShAmt1Op1.getOperand(0); + if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) + return DAG.getNode(Opc, DL, VT, + Op0, Op1, + DAG.getNode(ISD::TRUNCATE, DL, + MVT::i8, ShAmt0)); + } + } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { + ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); + if (ShAmt0C && (ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue()) == Bits) + return DAG.getNode(Opc, DL, VT, + N0.getOperand(0), N1.getOperand(0), + DAG.getNode(ISD::TRUNCATE, DL, + MVT::i8, ShAmt0)); + } else if (ShAmt1.getOpcode() == ISD::XOR) { + SDValue Mask = ShAmt1.getOperand(1); + if (ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask)) { + unsigned InnerShift = (X86ISD::SHLD == Opc ? ISD::SRL : ISD::SHL); + SDValue ShAmt1Op0 = ShAmt1.getOperand(0); + if (ShAmt1Op0.getOpcode() == ISD::TRUNCATE) + ShAmt1Op0 = ShAmt1Op0.getOperand(0); + if (MaskC->getSExtValue() == (Bits - 1) && ShAmt1Op0 == ShAmt0) { + if (Op1.getOpcode() == InnerShift && + isa<ConstantSDNode>(Op1.getOperand(1)) && + Op1.getConstantOperandVal(1) == 1) { + return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0), + DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); + } + // Test for ADD( Y, Y ) as an equivalent to SHL( Y, 1 ). + if (InnerShift == ISD::SHL && Op1.getOpcode() == ISD::ADD && + Op1.getOperand(0) == Op1.getOperand(1)) { + return DAG.getNode(Opc, DL, VT, Op0, Op1.getOperand(0), + DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ShAmt0)); + } + } + } + } + + return SDValue(); +} + +/// Try to turn tests against the signbit in the form of: +/// XOR(TRUNCATE(SRL(X, size(X)-1)), 1) +/// into: +/// SETGT(X, -1) +static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) { + // This is only worth doing if the output type is i8 or i1. + EVT ResultType = N->getValueType(0); + if (ResultType != MVT::i8 && ResultType != MVT::i1) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // We should be performing an xor against a truncated shift. + if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse()) + return SDValue(); + + // Make sure we are performing an xor against one. + if (!isOneConstant(N1)) + return SDValue(); + + // SetCC on x86 zero extends so only act on this if it's a logical shift. + SDValue Shift = N0.getOperand(0); + if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse()) + return SDValue(); + + // Make sure we are truncating from one of i16, i32 or i64. + EVT ShiftTy = Shift.getValueType(); + if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64) + return SDValue(); + + // Make sure the shift amount extracts the sign bit. + if (!isa<ConstantSDNode>(Shift.getOperand(1)) || + Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1) + return SDValue(); + + // Create a greater-than comparison against -1. + // N.B. Using SETGE against 0 works but we want a canonical looking + // comparison, using SETGT matches up with what TranslateX86CC. + SDLoc DL(N); + SDValue ShiftOp = Shift.getOperand(0); + EVT ShiftOpTy = ShiftOp.getValueType(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(), + *DAG.getContext(), ResultType); + SDValue Cond = DAG.getSetCC(DL, SetCCResultType, ShiftOp, + DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT); + if (SetCCResultType != ResultType) + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, ResultType, Cond); + return Cond; +} + +/// Turn vector tests of the signbit in the form of: +/// xor (sra X, elt_size(X)-1), -1 +/// into: +/// pcmpgt X, -1 +/// +/// This should be called before type legalization because the pattern may not +/// persist after that. +static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + EVT VT = N->getValueType(0); + if (!VT.isSimple()) + return SDValue(); + + switch (VT.getSimpleVT().SimpleTy) { + default: return SDValue(); + case MVT::v16i8: + case MVT::v8i16: + case MVT::v4i32: if (!Subtarget.hasSSE2()) return SDValue(); break; + case MVT::v2i64: if (!Subtarget.hasSSE42()) return SDValue(); break; + case MVT::v32i8: + case MVT::v16i16: + case MVT::v8i32: + case MVT::v4i64: if (!Subtarget.hasAVX2()) return SDValue(); break; + } + + // There must be a shift right algebraic before the xor, and the xor must be a + // 'not' operation. + SDValue Shift = N->getOperand(0); + SDValue Ones = N->getOperand(1); + if (Shift.getOpcode() != ISD::SRA || !Shift.hasOneUse() || + !ISD::isBuildVectorAllOnes(Ones.getNode())) + return SDValue(); + + // The shift should be smearing the sign bit across each vector element. + auto *ShiftBV = dyn_cast<BuildVectorSDNode>(Shift.getOperand(1)); + if (!ShiftBV) + return SDValue(); + + EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); + auto *ShiftAmt = ShiftBV->getConstantSplatNode(); + if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) + return SDValue(); + + // Create a greater-than comparison against -1. We don't use the more obvious + // greater-than-or-equal-to-zero because SSE/AVX don't have that instruction. + return DAG.getNode(X86ISD::PCMPGT, SDLoc(N), VT, Shift.getOperand(0), Ones); +} + +/// Check if truncation with saturation form type \p SrcVT to \p DstVT +/// is valid for the given \p Subtarget. +static bool isSATValidOnAVX512Subtarget(EVT SrcVT, EVT DstVT, + const X86Subtarget &Subtarget) { + if (!Subtarget.hasAVX512()) + return false; + + // FIXME: Scalar type may be supported if we move it to vector register. + if (!SrcVT.isVector() || !SrcVT.isSimple() || SrcVT.getSizeInBits() > 512) + return false; + + EVT SrcElVT = SrcVT.getScalarType(); + EVT DstElVT = DstVT.getScalarType(); + if (SrcElVT.getSizeInBits() < 16 || SrcElVT.getSizeInBits() > 64) + return false; + if (DstElVT.getSizeInBits() < 8 || DstElVT.getSizeInBits() > 32) + return false; + if (SrcVT.is512BitVector() || Subtarget.hasVLX()) + return SrcElVT.getSizeInBits() >= 32 || Subtarget.hasBWI(); + return false; +} + +/// Detect a pattern of truncation with saturation: +/// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type). +/// Return the source value to be truncated or SDValue() if the pattern was not +/// matched. +static SDValue detectUSatPattern(SDValue In, EVT VT) { + if (In.getOpcode() != ISD::UMIN) + return SDValue(); + + //Saturation with truncation. We truncate from InVT to VT. + assert(In.getScalarValueSizeInBits() > VT.getScalarSizeInBits() && + "Unexpected types for truncate operation"); + + APInt C; + if (ISD::isConstantSplatVector(In.getOperand(1).getNode(), C)) { + // C should be equal to UINT32_MAX / UINT16_MAX / UINT8_MAX according + // the element size of the destination type. + return C.isMask(VT.getScalarSizeInBits()) ? In.getOperand(0) : + SDValue(); + } + return SDValue(); +} + +/// Detect a pattern of truncation with saturation: +/// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type). +/// The types should allow to use VPMOVUS* instruction on AVX512. +/// Return the source value to be truncated or SDValue() if the pattern was not +/// matched. +static SDValue detectAVX512USatPattern(SDValue In, EVT VT, + const X86Subtarget &Subtarget) { + if (!isSATValidOnAVX512Subtarget(In.getValueType(), VT, Subtarget)) + return SDValue(); + return detectUSatPattern(In, VT); +} + +static SDValue +combineTruncateWithUSat(SDValue In, EVT VT, SDLoc &DL, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!TLI.isTypeLegal(In.getValueType()) || !TLI.isTypeLegal(VT)) + return SDValue(); + if (auto USatVal = detectUSatPattern(In, VT)) + if (isSATValidOnAVX512Subtarget(In.getValueType(), VT, Subtarget)) + return DAG.getNode(X86ISD::VTRUNCUS, DL, VT, USatVal); + return SDValue(); +} + +/// This function detects the AVG pattern between vectors of unsigned i8/i16, +/// which is c = (a + b + 1) / 2, and replace this operation with the efficient +/// X86ISD::AVG instruction. +static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG, + const X86Subtarget &Subtarget, + const SDLoc &DL) { + if (!VT.isVector() || !VT.isSimple()) + return SDValue(); + EVT InVT = In.getValueType(); + unsigned NumElems = VT.getVectorNumElements(); + + EVT ScalarVT = VT.getVectorElementType(); + if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) && + isPowerOf2_32(NumElems))) + return SDValue(); + + // InScalarVT is the intermediate type in AVG pattern and it should be greater + // than the original input type (i8/i16). + EVT InScalarVT = InVT.getVectorElementType(); + if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits()) + return SDValue(); + + if (!Subtarget.hasSSE2()) + return SDValue(); + + // Detect the following pattern: + // + // %1 = zext <N x i8> %a to <N x i32> + // %2 = zext <N x i8> %b to <N x i32> + // %3 = add nuw nsw <N x i32> %1, <i32 1 x N> + // %4 = add nuw nsw <N x i32> %3, %2 + // %5 = lshr <N x i32> %N, <i32 1 x N> + // %6 = trunc <N x i32> %5 to <N x i8> + // + // In AVX512, the last instruction can also be a trunc store. + if (In.getOpcode() != ISD::SRL) + return SDValue(); + + // A lambda checking the given SDValue is a constant vector and each element + // is in the range [Min, Max]. + auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) { + BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V); + if (!BV || !BV->isConstant()) + return false; + for (SDValue Op : V->ops()) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); + if (!C) + return false; + uint64_t Val = C->getZExtValue(); + if (Val < Min || Val > Max) + return false; + } + return true; + }; + + // Split vectors to legal target size and apply AVG. + auto LowerToAVG = [&](SDValue Op0, SDValue Op1) { + unsigned NumSubs = 1; + if (Subtarget.hasBWI()) { + if (VT.getSizeInBits() > 512) + NumSubs = VT.getSizeInBits() / 512; + } else if (Subtarget.hasAVX2()) { + if (VT.getSizeInBits() > 256) + NumSubs = VT.getSizeInBits() / 256; + } else { + if (VT.getSizeInBits() > 128) + NumSubs = VT.getSizeInBits() / 128; + } + + if (NumSubs == 1) + return DAG.getNode(X86ISD::AVG, DL, VT, Op0, Op1); + + SmallVector<SDValue, 4> Subs; + EVT SubVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), + VT.getVectorNumElements() / NumSubs); + for (unsigned i = 0; i != NumSubs; ++i) { + unsigned Idx = i * SubVT.getVectorNumElements(); + SDValue LHS = extractSubVector(Op0, Idx, DAG, DL, SubVT.getSizeInBits()); + SDValue RHS = extractSubVector(Op1, Idx, DAG, DL, SubVT.getSizeInBits()); + Subs.push_back(DAG.getNode(X86ISD::AVG, DL, SubVT, LHS, RHS)); + } + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Subs); + }; + + // Check if each element of the vector is left-shifted by one. + auto LHS = In.getOperand(0); + auto RHS = In.getOperand(1); + if (!IsConstVectorInRange(RHS, 1, 1)) + return SDValue(); + if (LHS.getOpcode() != ISD::ADD) + return SDValue(); + + // Detect a pattern of a + b + 1 where the order doesn't matter. + SDValue Operands[3]; + Operands[0] = LHS.getOperand(0); + Operands[1] = LHS.getOperand(1); + + // Take care of the case when one of the operands is a constant vector whose + // element is in the range [1, 256]. + if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) && + Operands[0].getOpcode() == ISD::ZERO_EXTEND && + Operands[0].getOperand(0).getValueType() == VT) { + // The pattern is detected. Subtract one from the constant vector, then + // demote it and emit X86ISD::AVG instruction. + SDValue VecOnes = DAG.getConstant(1, DL, InVT); + Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], VecOnes); + Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]); + return LowerToAVG(Operands[0].getOperand(0), Operands[1]); + } + + if (Operands[0].getOpcode() == ISD::ADD) + std::swap(Operands[0], Operands[1]); + else if (Operands[1].getOpcode() != ISD::ADD) + return SDValue(); + Operands[2] = Operands[1].getOperand(0); + Operands[1] = Operands[1].getOperand(1); + + // Now we have three operands of two additions. Check that one of them is a + // constant vector with ones, and the other two are promoted from i8/i16. + for (int i = 0; i < 3; ++i) { + if (!IsConstVectorInRange(Operands[i], 1, 1)) + continue; + std::swap(Operands[i], Operands[2]); + + // Check if Operands[0] and Operands[1] are results of type promotion. + for (int j = 0; j < 2; ++j) + if (Operands[j].getOpcode() != ISD::ZERO_EXTEND || + Operands[j].getOperand(0).getValueType() != VT) + return SDValue(); + + // The pattern is detected, emit X86ISD::AVG instruction. + return LowerToAVG(Operands[0].getOperand(0), Operands[1].getOperand(0)); + } + + return SDValue(); +} + +static SDValue combineLoad(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + LoadSDNode *Ld = cast<LoadSDNode>(N); + EVT RegVT = Ld->getValueType(0); + EVT MemVT = Ld->getMemoryVT(); + SDLoc dl(Ld); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // For chips with slow 32-byte unaligned loads, break the 32-byte operation + // into two 16-byte operations. Also split non-temporal aligned loads on + // pre-AVX2 targets as 32-byte loads will lower to regular temporal loads. + ISD::LoadExtType Ext = Ld->getExtensionType(); + bool Fast; + unsigned AddressSpace = Ld->getAddressSpace(); + unsigned Alignment = Ld->getAlignment(); + if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() && + Ext == ISD::NON_EXTLOAD && + ((Ld->isNonTemporal() && !Subtarget.hasInt256() && Alignment >= 16) || + (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT, + AddressSpace, Alignment, &Fast) && !Fast))) { + unsigned NumElems = RegVT.getVectorNumElements(); + if (NumElems < 2) + return SDValue(); + + SDValue Ptr = Ld->getBasePtr(); + + EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), + NumElems/2); + SDValue Load1 = + DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), + Alignment, Ld->getMemOperand()->getFlags()); + + Ptr = DAG.getMemBasePlusOffset(Ptr, 16, dl); + SDValue Load2 = + DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, + Ld->getPointerInfo().getWithOffset(16), + MinAlign(Alignment, 16U), Ld->getMemOperand()->getFlags()); + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + Load1.getValue(1), + Load2.getValue(1)); + + SDValue NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Load1, Load2); + return DCI.CombineTo(N, NewVec, TF, true); + } + + return SDValue(); +} + +/// If V is a build vector of boolean constants and exactly one of those +/// constants is true, return the operand index of that true element. +/// Otherwise, return -1. +static int getOneTrueElt(SDValue V) { + // This needs to be a build vector of booleans. + // TODO: Checking for the i1 type matches the IR definition for the mask, + // but the mask check could be loosened to i8 or other types. That might + // also require checking more than 'allOnesValue'; eg, the x86 HW + // instructions only require that the MSB is set for each mask element. + // The ISD::MSTORE comments/definition do not specify how the mask operand + // is formatted. + auto *BV = dyn_cast<BuildVectorSDNode>(V); + if (!BV || BV->getValueType(0).getVectorElementType() != MVT::i1) + return -1; + + int TrueIndex = -1; + unsigned NumElts = BV->getValueType(0).getVectorNumElements(); + for (unsigned i = 0; i < NumElts; ++i) { + const SDValue &Op = BV->getOperand(i); + if (Op.isUndef()) + continue; + auto *ConstNode = dyn_cast<ConstantSDNode>(Op); + if (!ConstNode) + return -1; + if (ConstNode->getAPIntValue().isAllOnesValue()) { + // If we already found a one, this is too many. + if (TrueIndex >= 0) + return -1; + TrueIndex = i; + } + } + return TrueIndex; +} + +/// Given a masked memory load/store operation, return true if it has one mask +/// bit set. If it has one mask bit set, then also return the memory address of +/// the scalar element to load/store, the vector index to insert/extract that +/// scalar element, and the alignment for the scalar memory access. +static bool getParamsForOneTrueMaskedElt(MaskedLoadStoreSDNode *MaskedOp, + SelectionDAG &DAG, SDValue &Addr, + SDValue &Index, unsigned &Alignment) { + int TrueMaskElt = getOneTrueElt(MaskedOp->getMask()); + if (TrueMaskElt < 0) + return false; + + // Get the address of the one scalar element that is specified by the mask + // using the appropriate offset from the base pointer. + EVT EltVT = MaskedOp->getMemoryVT().getVectorElementType(); + Addr = MaskedOp->getBasePtr(); + if (TrueMaskElt != 0) { + unsigned Offset = TrueMaskElt * EltVT.getStoreSize(); + Addr = DAG.getMemBasePlusOffset(Addr, Offset, SDLoc(MaskedOp)); + } + + Index = DAG.getIntPtrConstant(TrueMaskElt, SDLoc(MaskedOp)); + Alignment = MinAlign(MaskedOp->getAlignment(), EltVT.getStoreSize()); + return true; +} + +/// If exactly one element of the mask is set for a non-extending masked load, +/// it is a scalar load and vector insert. +/// Note: It is expected that the degenerate cases of an all-zeros or all-ones +/// mask have already been optimized in IR, so we don't bother with those here. +static SDValue +reduceMaskedLoadToScalarLoad(MaskedLoadSDNode *ML, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + // TODO: This is not x86-specific, so it could be lifted to DAGCombiner. + // However, some target hooks may need to be added to know when the transform + // is profitable. Endianness would also have to be considered. + + SDValue Addr, VecIndex; + unsigned Alignment; + if (!getParamsForOneTrueMaskedElt(ML, DAG, Addr, VecIndex, Alignment)) + return SDValue(); + + // Load the one scalar element that is specified by the mask using the + // appropriate offset from the base pointer. + SDLoc DL(ML); + EVT VT = ML->getValueType(0); + EVT EltVT = VT.getVectorElementType(); + SDValue Load = + DAG.getLoad(EltVT, DL, ML->getChain(), Addr, ML->getPointerInfo(), + Alignment, ML->getMemOperand()->getFlags()); + + // Insert the loaded element into the appropriate place in the vector. + SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, ML->getSrc0(), + Load, VecIndex); + return DCI.CombineTo(ML, Insert, Load.getValue(1), true); +} + +static SDValue +combineMaskedLoadConstantMask(MaskedLoadSDNode *ML, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + if (!ISD::isBuildVectorOfConstantSDNodes(ML->getMask().getNode())) + return SDValue(); + + SDLoc DL(ML); + EVT VT = ML->getValueType(0); + + // If we are loading the first and last elements of a vector, it is safe and + // always faster to load the whole vector. Replace the masked load with a + // vector load and select. + unsigned NumElts = VT.getVectorNumElements(); + BuildVectorSDNode *MaskBV = cast<BuildVectorSDNode>(ML->getMask()); + bool LoadFirstElt = !isNullConstant(MaskBV->getOperand(0)); + bool LoadLastElt = !isNullConstant(MaskBV->getOperand(NumElts - 1)); + if (LoadFirstElt && LoadLastElt) { + SDValue VecLd = DAG.getLoad(VT, DL, ML->getChain(), ML->getBasePtr(), + ML->getMemOperand()); + SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), VecLd, ML->getSrc0()); + return DCI.CombineTo(ML, Blend, VecLd.getValue(1), true); + } + + // Convert a masked load with a constant mask into a masked load and a select. + // This allows the select operation to use a faster kind of select instruction + // (for example, vblendvps -> vblendps). + + // Don't try this if the pass-through operand is already undefined. That would + // cause an infinite loop because that's what we're about to create. + if (ML->getSrc0().isUndef()) + return SDValue(); + + // The new masked load has an undef pass-through operand. The select uses the + // original pass-through operand. + SDValue NewML = DAG.getMaskedLoad(VT, DL, ML->getChain(), ML->getBasePtr(), + ML->getMask(), DAG.getUNDEF(VT), + ML->getMemoryVT(), ML->getMemOperand(), + ML->getExtensionType()); + SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), NewML, ML->getSrc0()); + + return DCI.CombineTo(ML, Blend, NewML.getValue(1), true); +} + +static SDValue combineMaskedLoad(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N); + + // TODO: Expanding load with constant mask may be optimized as well. + if (Mld->isExpandingLoad()) + return SDValue(); + + if (Mld->getExtensionType() == ISD::NON_EXTLOAD) { + if (SDValue ScalarLoad = reduceMaskedLoadToScalarLoad(Mld, DAG, DCI)) + return ScalarLoad; + // TODO: Do some AVX512 subsets benefit from this transform? + if (!Subtarget.hasAVX512()) + if (SDValue Blend = combineMaskedLoadConstantMask(Mld, DAG, DCI)) + return Blend; + } + + if (Mld->getExtensionType() != ISD::SEXTLOAD) + return SDValue(); + + // Resolve extending loads. + EVT VT = Mld->getValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + EVT LdVT = Mld->getMemoryVT(); + SDLoc dl(Mld); + + assert(LdVT != VT && "Cannot extend to the same type"); + unsigned ToSz = VT.getScalarSizeInBits(); + unsigned FromSz = LdVT.getScalarSizeInBits(); + // From/To sizes and ElemCount must be pow of two. + assert (isPowerOf2_32(NumElems * FromSz * ToSz) && + "Unexpected size for extending masked load"); + + unsigned SizeRatio = ToSz / FromSz; + assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits()); + + // Create a type on which we perform the shuffle. + EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), + LdVT.getScalarType(), NumElems*SizeRatio); + assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); + + // Convert Src0 value. + SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0()); + if (!Mld->getSrc0().isUndef()) { + SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + + // Can't shuffle using an illegal type. + assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && + "WideVecVT should be legal"); + WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0, + DAG.getUNDEF(WideVecVT), ShuffleVec); + } + + // Prepare the new mask. + SDValue NewMask; + SDValue Mask = Mld->getMask(); + if (Mask.getValueType() == VT) { + // Mask and original value have the same type. + NewMask = DAG.getBitcast(WideVecVT, Mask); + SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i) + ShuffleVec[i] = NumElems * SizeRatio; + NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, + DAG.getConstant(0, dl, WideVecVT), + ShuffleVec); + } else { + assert(Mask.getValueType().getVectorElementType() == MVT::i1); + unsigned WidenNumElts = NumElems*SizeRatio; + unsigned MaskNumElts = VT.getVectorNumElements(); + EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, + WidenNumElts); + + unsigned NumConcat = WidenNumElts / MaskNumElts; + SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); + SmallVector<SDValue, 16> Ops(NumConcat, ZeroVal); + Ops[0] = Mask; + NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); + } + + SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(), + Mld->getBasePtr(), NewMask, WideSrc0, + Mld->getMemoryVT(), Mld->getMemOperand(), + ISD::NON_EXTLOAD); + SDValue NewVec = getExtendInVec(X86ISD::VSEXT, dl, VT, WideLd, DAG); + return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true); +} + +/// If exactly one element of the mask is set for a non-truncating masked store, +/// it is a vector extract and scalar store. +/// Note: It is expected that the degenerate cases of an all-zeros or all-ones +/// mask have already been optimized in IR, so we don't bother with those here. +static SDValue reduceMaskedStoreToScalarStore(MaskedStoreSDNode *MS, + SelectionDAG &DAG) { + // TODO: This is not x86-specific, so it could be lifted to DAGCombiner. + // However, some target hooks may need to be added to know when the transform + // is profitable. Endianness would also have to be considered. + + SDValue Addr, VecIndex; + unsigned Alignment; + if (!getParamsForOneTrueMaskedElt(MS, DAG, Addr, VecIndex, Alignment)) + return SDValue(); + + // Extract the one scalar element that is actually being stored. + SDLoc DL(MS); + EVT VT = MS->getValue().getValueType(); + EVT EltVT = VT.getVectorElementType(); + SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, + MS->getValue(), VecIndex); + + // Store that element at the appropriate offset from the base pointer. + return DAG.getStore(MS->getChain(), DL, Extract, Addr, MS->getPointerInfo(), + Alignment, MS->getMemOperand()->getFlags()); +} + +static SDValue combineMaskedStore(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N); + + if (Mst->isCompressingStore()) + return SDValue(); + + if (!Mst->isTruncatingStore()) { + if (SDValue ScalarStore = reduceMaskedStoreToScalarStore(Mst, DAG)) + return ScalarStore; + + // If the mask is checking (0 > X), we're creating a vector with all-zeros + // or all-ones elements based on the sign bits of X. AVX1 masked store only + // cares about the sign bit of each mask element, so eliminate the compare: + // mstore val, ptr, (pcmpgt 0, X) --> mstore val, ptr, X + // Note that by waiting to match an x86-specific PCMPGT node, we're + // eliminating potentially more complex matching of a setcc node which has + // a full range of predicates. + SDValue Mask = Mst->getMask(); + if (Mask.getOpcode() == X86ISD::PCMPGT && + ISD::isBuildVectorAllZeros(Mask.getOperand(0).getNode())) { + assert(Mask.getValueType() == Mask.getOperand(1).getValueType() && + "Unexpected type for PCMPGT"); + return DAG.getMaskedStore( + Mst->getChain(), SDLoc(N), Mst->getValue(), Mst->getBasePtr(), + Mask.getOperand(1), Mst->getMemoryVT(), Mst->getMemOperand()); + } + + // TODO: AVX512 targets should also be able to simplify something like the + // pattern above, but that pattern will be different. It will either need to + // match setcc more generally or match PCMPGTM later (in tablegen?). + + return SDValue(); + } + + // Resolve truncating stores. + EVT VT = Mst->getValue().getValueType(); + unsigned NumElems = VT.getVectorNumElements(); + EVT StVT = Mst->getMemoryVT(); + SDLoc dl(Mst); + + assert(StVT != VT && "Cannot truncate to the same type"); + unsigned FromSz = VT.getScalarSizeInBits(); + unsigned ToSz = StVT.getScalarSizeInBits(); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // The truncating store is legal in some cases. For example + // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw + // are designated for truncate store. + // In this case we don't need any further transformations. + if (TLI.isTruncStoreLegal(VT, StVT)) + return SDValue(); + + // From/To sizes and ElemCount must be pow of two. + assert (isPowerOf2_32(NumElems * FromSz * ToSz) && + "Unexpected size for truncating masked store"); + // We are going to use the original vector elt for storing. + // Accumulated smaller vector elements must be a multiple of the store size. + assert (((NumElems * FromSz) % ToSz) == 0 && + "Unexpected ratio for truncating masked store"); + + unsigned SizeRatio = FromSz / ToSz; + assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); + + // Create a type on which we perform the shuffle. + EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), + StVT.getScalarType(), NumElems*SizeRatio); + + assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); + + SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue()); + SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + + // Can't shuffle using an illegal type. + assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && + "WideVecVT should be legal"); + + SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec, + DAG.getUNDEF(WideVecVT), + ShuffleVec); + + SDValue NewMask; + SDValue Mask = Mst->getMask(); + if (Mask.getValueType() == VT) { + // Mask and original value have the same type. + NewMask = DAG.getBitcast(WideVecVT, Mask); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i) + ShuffleVec[i] = NumElems*SizeRatio; + NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, + DAG.getConstant(0, dl, WideVecVT), + ShuffleVec); + } else { + assert(Mask.getValueType().getVectorElementType() == MVT::i1); + unsigned WidenNumElts = NumElems*SizeRatio; + unsigned MaskNumElts = VT.getVectorNumElements(); + EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, + WidenNumElts); + + unsigned NumConcat = WidenNumElts / MaskNumElts; + SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); + SmallVector<SDValue, 16> Ops(NumConcat, ZeroVal); + Ops[0] = Mask; + NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); + } + + return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal, + Mst->getBasePtr(), NewMask, StVT, + Mst->getMemOperand(), false); +} + +static SDValue combineStore(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + StoreSDNode *St = cast<StoreSDNode>(N); + EVT VT = St->getValue().getValueType(); + EVT StVT = St->getMemoryVT(); + SDLoc dl(St); + SDValue StoredVal = St->getOperand(1); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // If we are saving a concatenation of two XMM registers and 32-byte stores + // are slow, such as on Sandy Bridge, perform two 16-byte stores. + bool Fast; + unsigned AddressSpace = St->getAddressSpace(); + unsigned Alignment = St->getAlignment(); + if (VT.is256BitVector() && StVT == VT && + TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, + AddressSpace, Alignment, &Fast) && + !Fast) { + unsigned NumElems = VT.getVectorNumElements(); + if (NumElems < 2) + return SDValue(); + + SDValue Value0 = extract128BitVector(StoredVal, 0, DAG, dl); + SDValue Value1 = extract128BitVector(StoredVal, NumElems / 2, DAG, dl); + + SDValue Ptr0 = St->getBasePtr(); + SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 16, dl); + + SDValue Ch0 = + DAG.getStore(St->getChain(), dl, Value0, Ptr0, St->getPointerInfo(), + Alignment, St->getMemOperand()->getFlags()); + SDValue Ch1 = + DAG.getStore(St->getChain(), dl, Value1, Ptr1, + St->getPointerInfo().getWithOffset(16), + MinAlign(Alignment, 16U), St->getMemOperand()->getFlags()); + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); + } + + // Optimize trunc store (of multiple scalars) to shuffle and store. + // First, pack all of the elements in one place. Next, store to memory + // in fewer chunks. + if (St->isTruncatingStore() && VT.isVector()) { + // Check if we can detect an AVG pattern from the truncation. If yes, + // replace the trunc store by a normal store with the result of X86ISD::AVG + // instruction. + if (SDValue Avg = detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG, + Subtarget, dl)) + return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(), + St->getPointerInfo(), St->getAlignment(), + St->getMemOperand()->getFlags()); + + if (SDValue Val = + detectAVX512USatPattern(St->getValue(), St->getMemoryVT(), Subtarget)) + return EmitTruncSStore(false /* Unsigned saturation */, St->getChain(), + dl, Val, St->getBasePtr(), + St->getMemoryVT(), St->getMemOperand(), DAG); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned NumElems = VT.getVectorNumElements(); + assert(StVT != VT && "Cannot truncate to the same type"); + unsigned FromSz = VT.getScalarSizeInBits(); + unsigned ToSz = StVT.getScalarSizeInBits(); + + // The truncating store is legal in some cases. For example + // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw + // are designated for truncate store. + // In this case we don't need any further transformations. + if (TLI.isTruncStoreLegalOrCustom(VT, StVT)) + return SDValue(); + + // From, To sizes and ElemCount must be pow of two + if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); + // We are going to use the original vector elt for storing. + // Accumulated smaller vector elements must be a multiple of the store size. + if (0 != (NumElems * FromSz) % ToSz) return SDValue(); + + unsigned SizeRatio = FromSz / ToSz; + + assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); + + // Create a type on which we perform the shuffle + EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), + StVT.getScalarType(), NumElems*SizeRatio); + + assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); + + SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue()); + SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + + // Can't shuffle using an illegal type. + if (!TLI.isTypeLegal(WideVecVT)) + return SDValue(); + + SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, + DAG.getUNDEF(WideVecVT), + ShuffleVec); + // At this point all of the data is stored at the bottom of the + // register. We now need to save it to mem. + + // Find the largest store unit + MVT StoreType = MVT::i8; + for (MVT Tp : MVT::integer_valuetypes()) { + if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) + StoreType = Tp; + } + + // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. + if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && + (64 <= NumElems * ToSz)) + StoreType = MVT::f64; + + // Bitcast the original vector into a vector of store-size units + EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), + StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); + assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); + SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff); + SmallVector<SDValue, 8> Chains; + SDValue Ptr = St->getBasePtr(); + + // Perform one or more big stores into memory. + for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { + SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, + StoreType, ShuffWide, + DAG.getIntPtrConstant(i, dl)); + SDValue Ch = + DAG.getStore(St->getChain(), dl, SubVec, Ptr, St->getPointerInfo(), + St->getAlignment(), St->getMemOperand()->getFlags()); + Ptr = DAG.getMemBasePlusOffset(Ptr, StoreType.getStoreSize(), dl); + Chains.push_back(Ch); + } + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); + } + + // Turn load->store of MMX types into GPR load/stores. This avoids clobbering + // the FP state in cases where an emms may be missing. + // A preferable solution to the general problem is to figure out the right + // places to insert EMMS. This qualifies as a quick hack. + + // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. + if (VT.getSizeInBits() != 64) + return SDValue(); + + const Function &F = DAG.getMachineFunction().getFunction(); + bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat); + bool F64IsLegal = + !Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2(); + if ((VT.isVector() || + (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit())) && + isa<LoadSDNode>(St->getValue()) && + !cast<LoadSDNode>(St->getValue())->isVolatile() && + St->getChain().hasOneUse() && !St->isVolatile()) { + LoadSDNode *Ld = cast<LoadSDNode>(St->getValue().getNode()); + SmallVector<SDValue, 8> Ops; + + if (!ISD::isNormalLoad(Ld)) + return SDValue(); + + // If this is not the MMX case, i.e. we are just turning i64 load/store + // into f64 load/store, avoid the transformation if there are multiple + // uses of the loaded value. + if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) + return SDValue(); + + SDLoc LdDL(Ld); + SDLoc StDL(N); + // If we are a 64-bit capable x86, lower to a single movq load/store pair. + // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store + // pair instead. + if (Subtarget.is64Bit() || F64IsLegal) { + MVT LdVT = Subtarget.is64Bit() ? MVT::i64 : MVT::f64; + SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), + Ld->getMemOperand()); + + // Make sure new load is placed in same chain order. + DAG.makeEquivalentMemoryOrdering(Ld, NewLd); + return DAG.getStore(St->getChain(), StDL, NewLd, St->getBasePtr(), + St->getMemOperand()); + } + + // Otherwise, lower to two pairs of 32-bit loads / stores. + SDValue LoAddr = Ld->getBasePtr(); + SDValue HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, LdDL); + + SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, + Ld->getPointerInfo(), Ld->getAlignment(), + Ld->getMemOperand()->getFlags()); + SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, + Ld->getPointerInfo().getWithOffset(4), + MinAlign(Ld->getAlignment(), 4), + Ld->getMemOperand()->getFlags()); + // Make sure new loads are placed in same chain order. + DAG.makeEquivalentMemoryOrdering(Ld, LoLd); + DAG.makeEquivalentMemoryOrdering(Ld, HiLd); + + LoAddr = St->getBasePtr(); + HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, StDL); + + SDValue LoSt = + DAG.getStore(St->getChain(), StDL, LoLd, LoAddr, St->getPointerInfo(), + St->getAlignment(), St->getMemOperand()->getFlags()); + SDValue HiSt = DAG.getStore(St->getChain(), StDL, HiLd, HiAddr, + St->getPointerInfo().getWithOffset(4), + MinAlign(St->getAlignment(), 4), + St->getMemOperand()->getFlags()); + return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); + } + + // This is similar to the above case, but here we handle a scalar 64-bit + // integer store that is extracted from a vector on a 32-bit target. + // If we have SSE2, then we can treat it like a floating-point double + // to get past legalization. The execution dependencies fixup pass will + // choose the optimal machine instruction for the store if this really is + // an integer or v2f32 rather than an f64. + if (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit() && + St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { + SDValue OldExtract = St->getOperand(1); + SDValue ExtOp0 = OldExtract.getOperand(0); + unsigned VecSize = ExtOp0.getValueSizeInBits(); + EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64); + SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0); + SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + BitCast, OldExtract.getOperand(1)); + return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(), + St->getPointerInfo(), St->getAlignment(), + St->getMemOperand()->getFlags()); + } + + return SDValue(); +} + +/// Return 'true' if this vector operation is "horizontal" +/// and return the operands for the horizontal operation in LHS and RHS. A +/// horizontal operation performs the binary operation on successive elements +/// of its first operand, then on successive elements of its second operand, +/// returning the resulting values in a vector. For example, if +/// A = < float a0, float a1, float a2, float a3 > +/// and +/// B = < float b0, float b1, float b2, float b3 > +/// then the result of doing a horizontal operation on A and B is +/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. +/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form +/// A horizontal-op B, for some already available A and B, and if so then LHS is +/// set to A, RHS to B, and the routine returns 'true'. +/// Note that the binary operation should have the property that if one of the +/// operands is UNDEF then the result is UNDEF. +static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { + // Look for the following pattern: if + // A = < float a0, float a1, float a2, float a3 > + // B = < float b0, float b1, float b2, float b3 > + // and + // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> + // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> + // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > + // which is A horizontal-op B. + + // At least one of the operands should be a vector shuffle. + if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && + RHS.getOpcode() != ISD::VECTOR_SHUFFLE) + return false; + + MVT VT = LHS.getSimpleValueType(); + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Unsupported vector type for horizontal add/sub"); + + // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to + // operate independently on 128-bit lanes. + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts / NumLanes; + assert((NumLaneElts % 2 == 0) && + "Vector type should have an even number of elements in each lane"); + unsigned HalfLaneElts = NumLaneElts/2; + + // View LHS in the form + // LHS = VECTOR_SHUFFLE A, B, LMask + // If LHS is not a shuffle then pretend it is the shuffle + // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> + // NOTE: in what follows a default initialized SDValue represents an UNDEF of + // type VT. + SDValue A, B; + SmallVector<int, 16> LMask(NumElts); + if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { + if (!LHS.getOperand(0).isUndef()) + A = LHS.getOperand(0); + if (!LHS.getOperand(1).isUndef()) + B = LHS.getOperand(1); + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(); + std::copy(Mask.begin(), Mask.end(), LMask.begin()); + } else { + if (!LHS.isUndef()) + A = LHS; + for (unsigned i = 0; i != NumElts; ++i) + LMask[i] = i; + } + + // Likewise, view RHS in the form + // RHS = VECTOR_SHUFFLE C, D, RMask + SDValue C, D; + SmallVector<int, 16> RMask(NumElts); + if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { + if (!RHS.getOperand(0).isUndef()) + C = RHS.getOperand(0); + if (!RHS.getOperand(1).isUndef()) + D = RHS.getOperand(1); + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(); + std::copy(Mask.begin(), Mask.end(), RMask.begin()); + } else { + if (!RHS.isUndef()) + C = RHS; + for (unsigned i = 0; i != NumElts; ++i) + RMask[i] = i; + } + + // Check that the shuffles are both shuffling the same vectors. + if (!(A == C && B == D) && !(A == D && B == C)) + return false; + + // If everything is UNDEF then bail out: it would be better to fold to UNDEF. + if (!A.getNode() && !B.getNode()) + return false; + + // If A and B occur in reverse order in RHS, then "swap" them (which means + // rewriting the mask). + if (A != C) + ShuffleVectorSDNode::commuteMask(RMask); + + // At this point LHS and RHS are equivalent to + // LHS = VECTOR_SHUFFLE A, B, LMask + // RHS = VECTOR_SHUFFLE A, B, RMask + // Check that the masks correspond to performing a horizontal operation. + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = 0; i != NumLaneElts; ++i) { + int LIdx = LMask[i+l], RIdx = RMask[i+l]; + + // Ignore any UNDEF components. + if (LIdx < 0 || RIdx < 0 || + (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || + (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) + continue; + + // Check that successive elements are being operated on. If not, this is + // not a horizontal operation. + unsigned Src = (i/HalfLaneElts); // each lane is split between srcs + int Index = 2*(i%HalfLaneElts) + NumElts*Src + l; + if (!(LIdx == Index && RIdx == Index + 1) && + !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) + return false; + } + } + + LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. + RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. + return true; +} + +/// Do target-specific dag combines on floating-point adds/subs. +static SDValue combineFaddFsub(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + EVT VT = N->getValueType(0); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + bool IsFadd = N->getOpcode() == ISD::FADD; + assert((IsFadd || N->getOpcode() == ISD::FSUB) && "Wrong opcode"); + + // Try to synthesize horizontal add/sub from adds/subs of shuffles. + if (((Subtarget.hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || + (Subtarget.hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && + isHorizontalBinOp(LHS, RHS, IsFadd)) { + auto NewOpcode = IsFadd ? X86ISD::FHADD : X86ISD::FHSUB; + return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS); + } + return SDValue(); +} + +/// Attempt to pre-truncate inputs to arithmetic ops if it will simplify +/// the codegen. +/// e.g. TRUNC( BINOP( X, Y ) ) --> BINOP( TRUNC( X ), TRUNC( Y ) ) +static SDValue combineTruncatedArithmetic(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget, + SDLoc &DL) { + assert(N->getOpcode() == ISD::TRUNCATE && "Wrong opcode"); + SDValue Src = N->getOperand(0); + unsigned Opcode = Src.getOpcode(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + EVT VT = N->getValueType(0); + EVT SrcVT = Src.getValueType(); + + auto IsRepeatedOpOrFreeTruncation = [VT](SDValue Op0, SDValue Op1) { + unsigned TruncSizeInBits = VT.getScalarSizeInBits(); + + // Repeated operand, so we are only trading one output truncation for + // one input truncation. + if (Op0 == Op1) + return true; + + // See if either operand has been extended from a smaller/equal size to + // the truncation size, allowing a truncation to combine with the extend. + unsigned Opcode0 = Op0.getOpcode(); + if ((Opcode0 == ISD::ANY_EXTEND || Opcode0 == ISD::SIGN_EXTEND || + Opcode0 == ISD::ZERO_EXTEND) && + Op0.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits) + return true; + + unsigned Opcode1 = Op1.getOpcode(); + if ((Opcode1 == ISD::ANY_EXTEND || Opcode1 == ISD::SIGN_EXTEND || + Opcode1 == ISD::ZERO_EXTEND) && + Op1.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits) + return true; + + // See if either operand is a single use constant which can be constant + // folded. + SDValue BC0 = peekThroughOneUseBitcasts(Op0); + SDValue BC1 = peekThroughOneUseBitcasts(Op1); + return ISD::isBuildVectorOfConstantSDNodes(BC0.getNode()) || + ISD::isBuildVectorOfConstantSDNodes(BC1.getNode()); + }; + + auto TruncateArithmetic = [&](SDValue N0, SDValue N1) { + SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, VT, N0); + SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, VT, N1); + return DAG.getNode(Opcode, DL, VT, Trunc0, Trunc1); + }; + + // Don't combine if the operation has other uses. + if (!N->isOnlyUserOf(Src.getNode())) + return SDValue(); + + // Only support vector truncation for now. + // TODO: i64 scalar math would benefit as well. + if (!VT.isVector()) + return SDValue(); + + // In most cases its only worth pre-truncating if we're only facing the cost + // of one truncation. + // i.e. if one of the inputs will constant fold or the input is repeated. + switch (Opcode) { + case ISD::AND: + case ISD::XOR: + case ISD::OR: { + SDValue Op0 = Src.getOperand(0); + SDValue Op1 = Src.getOperand(1); + if (TLI.isOperationLegalOrPromote(Opcode, VT) && + IsRepeatedOpOrFreeTruncation(Op0, Op1)) + return TruncateArithmetic(Op0, Op1); + break; + } + + case ISD::MUL: + // X86 is rubbish at scalar and vector i64 multiplies (until AVX512DQ) - its + // better to truncate if we have the chance. + if (SrcVT.getScalarType() == MVT::i64 && TLI.isOperationLegal(Opcode, VT) && + !Subtarget.hasDQI()) + return TruncateArithmetic(Src.getOperand(0), Src.getOperand(1)); + LLVM_FALLTHROUGH; + case ISD::ADD: { + // TODO: ISD::SUB should be here but interferes with combineSubToSubus. + SDValue Op0 = Src.getOperand(0); + SDValue Op1 = Src.getOperand(1); + if (TLI.isOperationLegal(Opcode, VT) && + IsRepeatedOpOrFreeTruncation(Op0, Op1)) + return TruncateArithmetic(Op0, Op1); + break; + } + } + + return SDValue(); +} + +/// Truncate a group of v4i32 into v16i8/v8i16 using X86ISD::PACKUS. +static SDValue +combineVectorTruncationWithPACKUS(SDNode *N, SelectionDAG &DAG, + SmallVector<SDValue, 8> &Regs) { + assert(Regs.size() > 0 && (Regs[0].getValueType() == MVT::v4i32 || + Regs[0].getValueType() == MVT::v2i64)); + EVT OutVT = N->getValueType(0); + EVT OutSVT = OutVT.getVectorElementType(); + EVT InVT = Regs[0].getValueType(); + EVT InSVT = InVT.getVectorElementType(); + SDLoc DL(N); + + // First, use mask to unset all bits that won't appear in the result. + assert((OutSVT == MVT::i8 || OutSVT == MVT::i16) && + "OutSVT can only be either i8 or i16."); + APInt Mask = + APInt::getLowBitsSet(InSVT.getSizeInBits(), OutSVT.getSizeInBits()); + SDValue MaskVal = DAG.getConstant(Mask, DL, InVT); + for (auto &Reg : Regs) + Reg = DAG.getNode(ISD::AND, DL, InVT, MaskVal, Reg); + + MVT UnpackedVT, PackedVT; + if (OutSVT == MVT::i8) { + UnpackedVT = MVT::v8i16; + PackedVT = MVT::v16i8; + } else { + UnpackedVT = MVT::v4i32; + PackedVT = MVT::v8i16; + } + + // In each iteration, truncate the type by a half size. + auto RegNum = Regs.size(); + for (unsigned j = 1, e = InSVT.getSizeInBits() / OutSVT.getSizeInBits(); + j < e; j *= 2, RegNum /= 2) { + for (unsigned i = 0; i < RegNum; i++) + Regs[i] = DAG.getBitcast(UnpackedVT, Regs[i]); + for (unsigned i = 0; i < RegNum / 2; i++) + Regs[i] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[i * 2], + Regs[i * 2 + 1]); + } + + // If the type of the result is v8i8, we need do one more X86ISD::PACKUS, and + // then extract a subvector as the result since v8i8 is not a legal type. + if (OutVT == MVT::v8i8) { + Regs[0] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[0], Regs[0]); + Regs[0] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, Regs[0], + DAG.getIntPtrConstant(0, DL)); + return Regs[0]; + } else if (RegNum > 1) { + Regs.resize(RegNum); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs); + } else + return Regs[0]; +} + +/// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS. +static SDValue +combineVectorTruncationWithPACKSS(SDNode *N, const X86Subtarget &Subtarget, + SelectionDAG &DAG, + SmallVector<SDValue, 8> &Regs) { + assert(Regs.size() > 0 && Regs[0].getValueType() == MVT::v4i32); + EVT OutVT = N->getValueType(0); + SDLoc DL(N); + + // Shift left by 16 bits, then arithmetic-shift right by 16 bits. + SDValue ShAmt = DAG.getConstant(16, DL, MVT::i32); + for (auto &Reg : Regs) { + Reg = getTargetVShiftNode(X86ISD::VSHLI, DL, MVT::v4i32, Reg, ShAmt, + Subtarget, DAG); + Reg = getTargetVShiftNode(X86ISD::VSRAI, DL, MVT::v4i32, Reg, ShAmt, + Subtarget, DAG); + } + + for (unsigned i = 0, e = Regs.size() / 2; i < e; i++) + Regs[i] = DAG.getNode(X86ISD::PACKSS, DL, MVT::v8i16, Regs[i * 2], + Regs[i * 2 + 1]); + + if (Regs.size() > 2) { + Regs.resize(Regs.size() / 2); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs); + } else + return Regs[0]; +} + +/// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into +/// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type +/// legalization the truncation will be translated into a BUILD_VECTOR with each +/// element that is extracted from a vector and then truncated, and it is +/// difficult to do this optimization based on them. +static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + EVT OutVT = N->getValueType(0); + if (!OutVT.isVector()) + return SDValue(); + + SDValue In = N->getOperand(0); + if (!In.getValueType().isSimple()) + return SDValue(); + + EVT InVT = In.getValueType(); + unsigned NumElems = OutVT.getVectorNumElements(); + + // TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on + // SSE2, and we need to take care of it specially. + // AVX512 provides vpmovdb. + if (!Subtarget.hasSSE2() || Subtarget.hasAVX2()) + return SDValue(); + + EVT OutSVT = OutVT.getVectorElementType(); + EVT InSVT = InVT.getVectorElementType(); + if (!((InSVT == MVT::i32 || InSVT == MVT::i64) && + (OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) && + NumElems >= 8)) + return SDValue(); + + // SSSE3's pshufb results in less instructions in the cases below. + if (Subtarget.hasSSSE3() && NumElems == 8 && + ((OutSVT == MVT::i8 && InSVT != MVT::i64) || + (InSVT == MVT::i32 && OutSVT == MVT::i16))) + return SDValue(); + + SDLoc DL(N); + + // Split a long vector into vectors of legal type. + unsigned RegNum = InVT.getSizeInBits() / 128; + SmallVector<SDValue, 8> SubVec(RegNum); + unsigned NumSubRegElts = 128 / InSVT.getSizeInBits(); + EVT SubRegVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubRegElts); + + for (unsigned i = 0; i < RegNum; i++) + SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubRegVT, In, + DAG.getIntPtrConstant(i * NumSubRegElts, DL)); + + // SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PACKUS + // for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to + // truncate 2 x v4i32 to v8i16. + if (Subtarget.hasSSE41() || OutSVT == MVT::i8) + return combineVectorTruncationWithPACKUS(N, DAG, SubVec); + else if (InSVT == MVT::i32) + return combineVectorTruncationWithPACKSS(N, Subtarget, DAG, SubVec); + else + return SDValue(); +} + +/// This function transforms vector truncation of 'extended sign-bits' or +/// 'extended zero-bits' values. +/// vXi16/vXi32/vXi64 to vXi8/vXi16/vXi32 into X86ISD::PACKSS/PACKUS operations. +static SDValue combineVectorSignBitsTruncation(SDNode *N, SDLoc &DL, + SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // Requires SSE2 but AVX512 has fast truncate. + if (!Subtarget.hasSSE2() || Subtarget.hasAVX512()) + return SDValue(); + + if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple()) + return SDValue(); + + SDValue In = N->getOperand(0); + if (!In.getValueType().isSimple()) + return SDValue(); + + MVT VT = N->getValueType(0).getSimpleVT(); + MVT SVT = VT.getScalarType(); + + MVT InVT = In.getValueType().getSimpleVT(); + MVT InSVT = InVT.getScalarType(); + + // Check we have a truncation suited for PACKSS. + if (!VT.is128BitVector() && !VT.is256BitVector()) + return SDValue(); + if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32) + return SDValue(); + if (InSVT != MVT::i16 && InSVT != MVT::i32 && InSVT != MVT::i64) + return SDValue(); + + // Use PACKSS if the input has sign-bits that extend all the way to the + // packed/truncated value. e.g. Comparison result, sext_in_reg, etc. + unsigned NumSignBits = DAG.ComputeNumSignBits(In); + unsigned NumPackedBits = std::min<unsigned>(SVT.getSizeInBits(), 16); + if (NumSignBits > (InSVT.getSizeInBits() - NumPackedBits)) + return truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget); + + // Use PACKUS if the input has zero-bits that extend all the way to the + // packed/truncated value. e.g. masks, zext_in_reg, etc. + KnownBits Known; + DAG.computeKnownBits(In, Known); + unsigned NumLeadingZeroBits = Known.countMinLeadingZeros(); + NumPackedBits = Subtarget.hasSSE41() ? NumPackedBits : 8; + if (NumLeadingZeroBits >= (InSVT.getSizeInBits() - NumPackedBits)) + return truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget); + + return SDValue(); +} + +static SDValue combineTruncate(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + EVT VT = N->getValueType(0); + SDValue Src = N->getOperand(0); + SDLoc DL(N); + + // Attempt to pre-truncate inputs to arithmetic ops instead. + if (SDValue V = combineTruncatedArithmetic(N, DAG, Subtarget, DL)) + return V; + + // Try to detect AVG pattern first. + if (SDValue Avg = detectAVGPattern(Src, VT, DAG, Subtarget, DL)) + return Avg; + + // Try to combine truncation with unsigned saturation. + if (SDValue Val = combineTruncateWithUSat(Src, VT, DL, DAG, Subtarget)) + return Val; + + // The bitcast source is a direct mmx result. + // Detect bitcasts between i32 to x86mmx + if (Src.getOpcode() == ISD::BITCAST && VT == MVT::i32) { + SDValue BCSrc = Src.getOperand(0); + if (BCSrc.getValueType() == MVT::x86mmx) + return DAG.getNode(X86ISD::MMX_MOVD2W, DL, MVT::i32, BCSrc); + } + + // Try to truncate extended sign/zero bits with PACKSS/PACKUS. + if (SDValue V = combineVectorSignBitsTruncation(N, DL, DAG, Subtarget)) + return V; + + return combineVectorTruncation(N, DAG, Subtarget); +} + +/// Returns the negated value if the node \p N flips sign of FP value. +/// +/// FP-negation node may have different forms: FNEG(x) or FXOR (x, 0x80000000). +/// AVX512F does not have FXOR, so FNEG is lowered as +/// (bitcast (xor (bitcast x), (bitcast ConstantFP(0x80000000)))). +/// In this case we go though all bitcasts. +static SDValue isFNEG(SDNode *N) { + if (N->getOpcode() == ISD::FNEG) + return N->getOperand(0); + + SDValue Op = peekThroughBitcasts(SDValue(N, 0)); + if (Op.getOpcode() != X86ISD::FXOR && Op.getOpcode() != ISD::XOR) + return SDValue(); + + SDValue Op1 = peekThroughBitcasts(Op.getOperand(1)); + if (!Op1.getValueType().isFloatingPoint()) + return SDValue(); + + SDValue Op0 = peekThroughBitcasts(Op.getOperand(0)); + + unsigned EltBits = Op1.getScalarValueSizeInBits(); + auto isSignMask = [&](const ConstantFP *C) { + return C->getValueAPF().bitcastToAPInt() == APInt::getSignMask(EltBits); + }; + + // There is more than one way to represent the same constant on + // the different X86 targets. The type of the node may also depend on size. + // - load scalar value and broadcast + // - BUILD_VECTOR node + // - load from a constant pool. + // We check all variants here. + if (Op1.getOpcode() == X86ISD::VBROADCAST) { + if (auto *C = getTargetConstantFromNode(Op1.getOperand(0))) + if (isSignMask(cast<ConstantFP>(C))) + return Op0; + + } else if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1)) { + if (ConstantFPSDNode *CN = BV->getConstantFPSplatNode()) + if (isSignMask(CN->getConstantFPValue())) + return Op0; + + } else if (auto *C = getTargetConstantFromNode(Op1)) { + if (C->getType()->isVectorTy()) { + if (auto *SplatV = C->getSplatValue()) + if (isSignMask(cast<ConstantFP>(SplatV))) + return Op0; + } else if (auto *FPConst = dyn_cast<ConstantFP>(C)) + if (isSignMask(FPConst)) + return Op0; + } + return SDValue(); +} + +/// Do target-specific dag combines on floating point negations. +static SDValue combineFneg(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + EVT OrigVT = N->getValueType(0); + SDValue Arg = isFNEG(N); + assert(Arg.getNode() && "N is expected to be an FNEG node"); + + EVT VT = Arg.getValueType(); + EVT SVT = VT.getScalarType(); + SDLoc DL(N); + + // Let legalize expand this if it isn't a legal type yet. + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + // If we're negating a FMUL node on a target with FMA, then we can avoid the + // use of a constant by performing (-0 - A*B) instead. + // FIXME: Check rounding control flags as well once it becomes available. + if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) && + Arg->getFlags().hasNoSignedZeros() && Subtarget.hasAnyFMA()) { + SDValue Zero = DAG.getConstantFP(0.0, DL, VT); + SDValue NewNode = DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0), + Arg.getOperand(1), Zero); + return DAG.getBitcast(OrigVT, NewNode); + } + + // If we're negating an FMA node, then we can adjust the + // instruction to include the extra negation. + unsigned NewOpcode = 0; + if (Arg.hasOneUse()) { + switch (Arg.getOpcode()) { + case ISD::FMA: NewOpcode = X86ISD::FNMSUB; break; + case X86ISD::FMSUB: NewOpcode = X86ISD::FNMADD; break; + case X86ISD::FNMADD: NewOpcode = X86ISD::FMSUB; break; + case X86ISD::FNMSUB: NewOpcode = ISD::FMA; break; + case X86ISD::FMADD_RND: NewOpcode = X86ISD::FNMSUB_RND; break; + case X86ISD::FMSUB_RND: NewOpcode = X86ISD::FNMADD_RND; break; + case X86ISD::FNMADD_RND: NewOpcode = X86ISD::FMSUB_RND; break; + case X86ISD::FNMSUB_RND: NewOpcode = X86ISD::FMADD_RND; break; + // We can't handle scalar intrinsic node here because it would only + // invert one element and not the whole vector. But we could try to handle + // a negation of the lower element only. + } + } + if (NewOpcode) + return DAG.getBitcast(OrigVT, DAG.getNode(NewOpcode, DL, VT, + Arg.getNode()->ops())); + + return SDValue(); +} + +static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + MVT VT = N->getSimpleValueType(0); + // If we have integer vector types available, use the integer opcodes. + if (VT.isVector() && Subtarget.hasSSE2()) { + SDLoc dl(N); + + MVT IntVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64); + + SDValue Op0 = DAG.getBitcast(IntVT, N->getOperand(0)); + SDValue Op1 = DAG.getBitcast(IntVT, N->getOperand(1)); + unsigned IntOpcode; + switch (N->getOpcode()) { + default: llvm_unreachable("Unexpected FP logic op"); + case X86ISD::FOR: IntOpcode = ISD::OR; break; + case X86ISD::FXOR: IntOpcode = ISD::XOR; break; + case X86ISD::FAND: IntOpcode = ISD::AND; break; + case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break; + } + SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1); + return DAG.getBitcast(VT, IntOp); + } + return SDValue(); +} + + +/// Fold a xor(setcc cond, val), 1 --> setcc (inverted(cond), val) +static SDValue foldXor1SetCC(SDNode *N, SelectionDAG &DAG) { + if (N->getOpcode() != ISD::XOR) + return SDValue(); + + SDValue LHS = N->getOperand(0); + auto *RHSC = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!RHSC || RHSC->getZExtValue() != 1 || LHS->getOpcode() != X86ISD::SETCC) + return SDValue(); + + X86::CondCode NewCC = X86::GetOppositeBranchCondition( + X86::CondCode(LHS->getConstantOperandVal(0))); + SDLoc DL(N); + return getSETCC(NewCC, LHS->getOperand(1), DL, DAG); +} + +static SDValue combineXor(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + // If this is SSE1 only convert to FXOR to avoid scalarization. + if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && + N->getValueType(0) == MVT::v4i32) { + return DAG.getBitcast( + MVT::v4i32, DAG.getNode(X86ISD::FXOR, SDLoc(N), MVT::v4f32, + DAG.getBitcast(MVT::v4f32, N->getOperand(0)), + DAG.getBitcast(MVT::v4f32, N->getOperand(1)))); + } + + if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget)) + return Cmp; + + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (SDValue SetCC = foldXor1SetCC(N, DAG)) + return SetCC; + + if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG)) + return RV; + + if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) + return FPLogic; + + if (isFNEG(N)) + return combineFneg(N, DAG, Subtarget); + return SDValue(); +} + + +static bool isNullFPScalarOrVectorConst(SDValue V) { + return isNullFPConstant(V) || ISD::isBuildVectorAllZeros(V.getNode()); +} + +/// If a value is a scalar FP zero or a vector FP zero (potentially including +/// undefined elements), return a zero constant that may be used to fold away +/// that value. In the case of a vector, the returned constant will not contain +/// undefined elements even if the input parameter does. This makes it suitable +/// to be used as a replacement operand with operations (eg, bitwise-and) where +/// an undef should not propagate. +static SDValue getNullFPConstForNullVal(SDValue V, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (!isNullFPScalarOrVectorConst(V)) + return SDValue(); + + if (V.getValueType().isVector()) + return getZeroVector(V.getSimpleValueType(), Subtarget, DAG, SDLoc(V)); + + return V; +} + +static SDValue combineFAndFNotToFAndn(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + // Vector types are handled in combineANDXORWithAllOnesIntoANDNP(). + if (!((VT == MVT::f32 && Subtarget.hasSSE1()) || + (VT == MVT::f64 && Subtarget.hasSSE2()) || + (VT == MVT::v4f32 && Subtarget.hasSSE1() && !Subtarget.hasSSE2()))) + return SDValue(); + + auto isAllOnesConstantFP = [](SDValue V) { + if (V.getSimpleValueType().isVector()) + return ISD::isBuildVectorAllOnes(V.getNode()); + auto *C = dyn_cast<ConstantFPSDNode>(V); + return C && C->getConstantFPValue()->isAllOnesValue(); + }; + + // fand (fxor X, -1), Y --> fandn X, Y + if (N0.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N0.getOperand(1))) + return DAG.getNode(X86ISD::FANDN, DL, VT, N0.getOperand(0), N1); + + // fand X, (fxor Y, -1) --> fandn Y, X + if (N1.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N1.getOperand(1))) + return DAG.getNode(X86ISD::FANDN, DL, VT, N1.getOperand(0), N0); + + return SDValue(); +} + +/// Do target-specific dag combines on X86ISD::FAND nodes. +static SDValue combineFAnd(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // FAND(0.0, x) -> 0.0 + if (SDValue V = getNullFPConstForNullVal(N->getOperand(0), DAG, Subtarget)) + return V; + + // FAND(x, 0.0) -> 0.0 + if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget)) + return V; + + if (SDValue V = combineFAndFNotToFAndn(N, DAG, Subtarget)) + return V; + + return lowerX86FPLogicOp(N, DAG, Subtarget); +} + +/// Do target-specific dag combines on X86ISD::FANDN nodes. +static SDValue combineFAndn(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // FANDN(0.0, x) -> x + if (isNullFPScalarOrVectorConst(N->getOperand(0))) + return N->getOperand(1); + + // FANDN(x, 0.0) -> 0.0 + if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget)) + return V; + + return lowerX86FPLogicOp(N, DAG, Subtarget); +} + +/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes. +static SDValue combineFOr(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); + + // F[X]OR(0.0, x) -> x + if (isNullFPScalarOrVectorConst(N->getOperand(0))) + return N->getOperand(1); + + // F[X]OR(x, 0.0) -> x + if (isNullFPScalarOrVectorConst(N->getOperand(1))) + return N->getOperand(0); + + if (isFNEG(N)) + if (SDValue NewVal = combineFneg(N, DAG, Subtarget)) + return NewVal; + + return lowerX86FPLogicOp(N, DAG, Subtarget); +} + +/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes. +static SDValue combineFMinFMax(SDNode *N, SelectionDAG &DAG) { + assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX); + + // Only perform optimizations if UnsafeMath is used. + if (!DAG.getTarget().Options.UnsafeFPMath) + return SDValue(); + + // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes + // into FMINC and FMAXC, which are Commutative operations. + unsigned NewOp = 0; + switch (N->getOpcode()) { + default: llvm_unreachable("unknown opcode"); + case X86ISD::FMIN: NewOp = X86ISD::FMINC; break; + case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break; + } + + return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0), + N->getOperand(0), N->getOperand(1)); +} + +static SDValue combineFMinNumFMaxNum(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (Subtarget.useSoftFloat()) + return SDValue(); + + // TODO: Check for global or instruction-level "nnan". In that case, we + // should be able to lower to FMAX/FMIN alone. + // TODO: If an operand is already known to be a NaN or not a NaN, this + // should be an optional swap and FMAX/FMIN. + + EVT VT = N->getValueType(0); + if (!((Subtarget.hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) || + (Subtarget.hasSSE2() && (VT == MVT::f64 || VT == MVT::v2f64)) || + (Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64)))) + return SDValue(); + + // This takes at least 3 instructions, so favor a library call when operating + // on a scalar and minimizing code size. + if (!VT.isVector() && DAG.getMachineFunction().getFunction().optForMinSize()) + return SDValue(); + + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + SDLoc DL(N); + EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType( + DAG.getDataLayout(), *DAG.getContext(), VT); + + // There are 4 possibilities involving NaN inputs, and these are the required + // outputs: + // Op1 + // Num NaN + // ---------------- + // Num | Max | Op0 | + // Op0 ---------------- + // NaN | Op1 | NaN | + // ---------------- + // + // The SSE FP max/min instructions were not designed for this case, but rather + // to implement: + // Min = Op1 < Op0 ? Op1 : Op0 + // Max = Op1 > Op0 ? Op1 : Op0 + // + // So they always return Op0 if either input is a NaN. However, we can still + // use those instructions for fmaxnum by selecting away a NaN input. + + // If either operand is NaN, the 2nd source operand (Op0) is passed through. + auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN; + SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0); + SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType , Op0, Op0, ISD::SETUO); + + // If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands + // are NaN, the NaN value of Op1 is the result. + return DAG.getSelect(DL, VT, IsOp0Nan, Op1, MinOrMax); +} + +/// Do target-specific dag combines on X86ISD::ANDNP nodes. +static SDValue combineAndnp(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + // ANDNP(0, x) -> x + if (ISD::isBuildVectorAllZeros(N->getOperand(0).getNode())) + return N->getOperand(1); + + // ANDNP(x, 0) -> 0 + if (ISD::isBuildVectorAllZeros(N->getOperand(1).getNode())) + return getZeroVector(N->getSimpleValueType(0), Subtarget, DAG, SDLoc(N)); + + EVT VT = N->getValueType(0); + + // Attempt to recursively combine a bitmask ANDNP with shuffles. + if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) { + SDValue Op(N, 0); + if (SDValue Res = combineX86ShufflesRecursively( + {Op}, 0, Op, {0}, {}, /*Depth*/ 1, + /*HasVarMask*/ false, DAG, DCI, Subtarget)) { + DCI.CombineTo(N, Res); + return SDValue(); + } + } + + return SDValue(); +} + +static SDValue combineBT(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // BT ignores high bits in the bit index operand. + unsigned BitWidth = N1.getValueSizeInBits(); + APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); + if (SDValue DemandedN1 = DAG.GetDemandedBits(N1, DemandedMask)) + return DAG.getNode(X86ISD::BT, SDLoc(N), MVT::i32, N0, DemandedN1); + + return SDValue(); +} + +static SDValue combineSignExtendInReg(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + EVT VT = N->getValueType(0); + if (!VT.isVector()) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT ExtraVT = cast<VTSDNode>(N1)->getVT(); + SDLoc dl(N); + + // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the + // both SSE and AVX2 since there is no sign-extended shift right + // operation on a vector with 64-bit elements. + //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> + // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) + if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || + N0.getOpcode() == ISD::SIGN_EXTEND)) { + SDValue N00 = N0.getOperand(0); + + // EXTLOAD has a better solution on AVX2, + // it may be replaced with X86ISD::VSEXT node. + if (N00.getOpcode() == ISD::LOAD && Subtarget.hasInt256()) + if (!ISD::isNormalLoad(N00.getNode())) + return SDValue(); + + if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { + SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, + N00, N1); + return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); + } + } + return SDValue(); +} + +/// sext(add_nsw(x, C)) --> add(sext(x), C_sext) +/// zext(add_nuw(x, C)) --> add(zext(x), C_zext) +/// Promoting a sign/zero extension ahead of a no overflow 'add' exposes +/// opportunities to combine math ops, use an LEA, or use a complex addressing +/// mode. This can eliminate extend, add, and shift instructions. +static SDValue promoteExtBeforeAdd(SDNode *Ext, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (Ext->getOpcode() != ISD::SIGN_EXTEND && + Ext->getOpcode() != ISD::ZERO_EXTEND) + return SDValue(); + + // TODO: This should be valid for other integer types. + EVT VT = Ext->getValueType(0); + if (VT != MVT::i64) + return SDValue(); + + SDValue Add = Ext->getOperand(0); + if (Add.getOpcode() != ISD::ADD) + return SDValue(); + + bool Sext = Ext->getOpcode() == ISD::SIGN_EXTEND; + bool NSW = Add->getFlags().hasNoSignedWrap(); + bool NUW = Add->getFlags().hasNoUnsignedWrap(); + + // We need an 'add nsw' feeding into the 'sext' or 'add nuw' feeding + // into the 'zext' + if ((Sext && !NSW) || (!Sext && !NUW)) + return SDValue(); + + // Having a constant operand to the 'add' ensures that we are not increasing + // the instruction count because the constant is extended for free below. + // A constant operand can also become the displacement field of an LEA. + auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1)); + if (!AddOp1) + return SDValue(); + + // Don't make the 'add' bigger if there's no hope of combining it with some + // other 'add' or 'shl' instruction. + // TODO: It may be profitable to generate simpler LEA instructions in place + // of single 'add' instructions, but the cost model for selecting an LEA + // currently has a high threshold. + bool HasLEAPotential = false; + for (auto *User : Ext->uses()) { + if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) { + HasLEAPotential = true; + break; + } + } + if (!HasLEAPotential) + return SDValue(); + + // Everything looks good, so pull the '{s|z}ext' ahead of the 'add'. + int64_t AddConstant = Sext ? AddOp1->getSExtValue() : AddOp1->getZExtValue(); + SDValue AddOp0 = Add.getOperand(0); + SDValue NewExt = DAG.getNode(Ext->getOpcode(), SDLoc(Ext), VT, AddOp0); + SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT); + + // The wider add is guaranteed to not wrap because both operands are + // sign-extended. + SDNodeFlags Flags; + Flags.setNoSignedWrap(NSW); + Flags.setNoUnsignedWrap(NUW); + return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewExt, NewConstant, Flags); +} + +/// (i8,i32 {s/z}ext ({s/u}divrem (i8 x, i8 y)) -> +/// (i8,i32 ({s/u}divrem_sext_hreg (i8 x, i8 y) +/// This exposes the {s/z}ext to the sdivrem lowering, so that it directly +/// extends from AH (which we otherwise need to do contortions to access). +static SDValue getDivRem8(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + auto OpcodeN = N->getOpcode(); + auto OpcodeN0 = N0.getOpcode(); + if (!((OpcodeN == ISD::SIGN_EXTEND && OpcodeN0 == ISD::SDIVREM) || + (OpcodeN == ISD::ZERO_EXTEND && OpcodeN0 == ISD::UDIVREM))) + return SDValue(); + + EVT VT = N->getValueType(0); + EVT InVT = N0.getValueType(); + if (N0.getResNo() != 1 || InVT != MVT::i8 || + !(VT == MVT::i32 || VT == MVT::i64)) + return SDValue(); + + SDVTList NodeTys = DAG.getVTList(MVT::i8, MVT::i32); + auto DivRemOpcode = OpcodeN0 == ISD::SDIVREM ? X86ISD::SDIVREM8_SEXT_HREG + : X86ISD::UDIVREM8_ZEXT_HREG; + SDValue R = DAG.getNode(DivRemOpcode, SDLoc(N), NodeTys, N0.getOperand(0), + N0.getOperand(1)); + DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); + // If this was a 64-bit extend, complete it. + if (VT == MVT::i64) + return DAG.getNode(OpcodeN, SDLoc(N), VT, R.getValue(1)); + return R.getValue(1); +} + +// If we face {ANY,SIGN,ZERO}_EXTEND that is applied to a CMOV with constant +// operands and the result of CMOV is not used anywhere else - promote CMOV +// itself instead of promoting its result. This could be beneficial, because: +// 1) X86TargetLowering::EmitLoweredSelect later can do merging of two +// (or more) pseudo-CMOVs only when they go one-after-another and +// getting rid of result extension code after CMOV will help that. +// 2) Promotion of constant CMOV arguments is free, hence the +// {ANY,SIGN,ZERO}_EXTEND will just be deleted. +// 3) 16-bit CMOV encoding is 4 bytes, 32-bit CMOV is 3-byte, so this +// promotion is also good in terms of code-size. +// (64-bit CMOV is 4-bytes, that's why we don't do 32-bit => 64-bit +// promotion). +static SDValue combineToExtendCMOV(SDNode *Extend, SelectionDAG &DAG) { + SDValue CMovN = Extend->getOperand(0); + if (CMovN.getOpcode() != X86ISD::CMOV) + return SDValue(); + + EVT TargetVT = Extend->getValueType(0); + unsigned ExtendOpcode = Extend->getOpcode(); + SDLoc DL(Extend); + + EVT VT = CMovN.getValueType(); + SDValue CMovOp0 = CMovN.getOperand(0); + SDValue CMovOp1 = CMovN.getOperand(1); + + bool DoPromoteCMOV = + (VT == MVT::i16 && (TargetVT == MVT::i32 || TargetVT == MVT::i64)) && + CMovN.hasOneUse() && + (isa<ConstantSDNode>(CMovOp0.getNode()) && + isa<ConstantSDNode>(CMovOp1.getNode())); + + if (!DoPromoteCMOV) + return SDValue(); + + CMovOp0 = DAG.getNode(ExtendOpcode, DL, TargetVT, CMovOp0); + CMovOp1 = DAG.getNode(ExtendOpcode, DL, TargetVT, CMovOp1); + + return DAG.getNode(X86ISD::CMOV, DL, TargetVT, CMovOp0, CMovOp1, + CMovN.getOperand(2), CMovN.getOperand(3)); +} + +// Convert (vXiY *ext(vXi1 bitcast(iX))) to extend_in_reg(broadcast(iX)). +// This is more or less the reverse of combineBitcastvxi1. +static SDValue +combineToExtendBoolVectorInReg(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + unsigned Opcode = N->getOpcode(); + if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND && + Opcode != ISD::ANY_EXTEND) + return SDValue(); + if (!DCI.isBeforeLegalizeOps()) + return SDValue(); + if (!Subtarget.hasSSE2() || Subtarget.hasAVX512()) + return SDValue(); + + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT InSVT = N0.getValueType().getScalarType(); + unsigned EltSizeInBits = SVT.getSizeInBits(); + + // Input type must be extending a bool vector (bit-casted from a scalar + // integer) to legal integer types. + if (!VT.isVector()) + return SDValue(); + if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16 && SVT != MVT::i8) + return SDValue(); + if (InSVT != MVT::i1 || N0.getOpcode() != ISD::BITCAST) + return SDValue(); + + SDValue N00 = N0.getOperand(0); + EVT SclVT = N0.getOperand(0).getValueType(); + if (!SclVT.isScalarInteger()) + return SDValue(); + + SDLoc DL(N); + SDValue Vec; + SmallVector<int, 32> ShuffleMask; + unsigned NumElts = VT.getVectorNumElements(); + assert(NumElts == SclVT.getSizeInBits() && "Unexpected bool vector size"); + + // Broadcast the scalar integer to the vector elements. + if (NumElts > EltSizeInBits) { + // If the scalar integer is greater than the vector element size, then we + // must split it down into sub-sections for broadcasting. For example: + // i16 -> v16i8 (i16 -> v8i16 -> v16i8) with 2 sub-sections. + // i32 -> v32i8 (i32 -> v8i32 -> v32i8) with 4 sub-sections. + assert((NumElts % EltSizeInBits) == 0 && "Unexpected integer scale"); + unsigned Scale = NumElts / EltSizeInBits; + EVT BroadcastVT = + EVT::getVectorVT(*DAG.getContext(), SclVT, EltSizeInBits); + Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, BroadcastVT, N00); + Vec = DAG.getBitcast(VT, Vec); + + for (unsigned i = 0; i != Scale; ++i) + ShuffleMask.append(EltSizeInBits, i); + } else { + // For smaller scalar integers, we can simply any-extend it to the vector + // element size (we don't care about the upper bits) and broadcast it to all + // elements. + SDValue Scl = DAG.getAnyExtOrTrunc(N00, DL, SVT); + Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl); + ShuffleMask.append(NumElts, 0); + } + Vec = DAG.getVectorShuffle(VT, DL, Vec, Vec, ShuffleMask); + + // Now, mask the relevant bit in each element. + SmallVector<SDValue, 32> Bits; + for (unsigned i = 0; i != NumElts; ++i) { + int BitIdx = (i % EltSizeInBits); + APInt Bit = APInt::getBitsSet(EltSizeInBits, BitIdx, BitIdx + 1); + Bits.push_back(DAG.getConstant(Bit, DL, SVT)); + } + SDValue BitMask = DAG.getBuildVector(VT, DL, Bits); + Vec = DAG.getNode(ISD::AND, DL, VT, Vec, BitMask); + + // Compare against the bitmask and extend the result. + EVT CCVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumElts); + Vec = DAG.getSetCC(DL, CCVT, Vec, BitMask, ISD::SETEQ); + Vec = DAG.getSExtOrTrunc(Vec, DL, VT); + + // For SEXT, this is now done, otherwise shift the result down for + // zero-extension. + if (Opcode == ISD::SIGN_EXTEND) + return Vec; + return DAG.getNode(ISD::SRL, DL, VT, Vec, + DAG.getConstant(EltSizeInBits - 1, DL, VT)); +} + +/// Convert a SEXT or ZEXT of a vector to a SIGN_EXTEND_VECTOR_INREG or +/// ZERO_EXTEND_VECTOR_INREG, this requires the splitting (or concatenating +/// with UNDEFs) of the input to vectors of the same size as the target type +/// which then extends the lowest elements. +static SDValue combineToExtendVectorInReg(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + unsigned Opcode = N->getOpcode(); + if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND) + return SDValue(); + if (!DCI.isBeforeLegalizeOps()) + return SDValue(); + if (!Subtarget.hasSSE2()) + return SDValue(); + + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT InVT = N0.getValueType(); + EVT InSVT = InVT.getScalarType(); + + // Input type must be a vector and we must be extending legal integer types. + if (!VT.isVector()) + return SDValue(); + if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16) + return SDValue(); + if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8) + return SDValue(); + + // On AVX2+ targets, if the input/output types are both legal then we will be + // able to use SIGN_EXTEND/ZERO_EXTEND directly. + if (Subtarget.hasInt256() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && + DAG.getTargetLoweringInfo().isTypeLegal(InVT)) + return SDValue(); + + SDLoc DL(N); + + auto ExtendVecSize = [&DAG](const SDLoc &DL, SDValue N, unsigned Size) { + EVT InVT = N.getValueType(); + EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(), + Size / InVT.getScalarSizeInBits()); + SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(), + DAG.getUNDEF(InVT)); + Opnds[0] = N; + return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds); + }; + + // If target-size is less than 128-bits, extend to a type that would extend + // to 128 bits, extend that and extract the original target vector. + if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits())) { + unsigned Scale = 128 / VT.getSizeInBits(); + EVT ExVT = + EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits()); + SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits()); + SDValue SExt = DAG.getNode(Opcode, DL, ExVT, Ex); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt, + DAG.getIntPtrConstant(0, DL)); + } + + // If target-size is 128-bits (or 256-bits on AVX2 target), then convert to + // ISD::*_EXTEND_VECTOR_INREG which ensures lowering to X86ISD::V*EXT. + // Also use this if we don't have SSE41 to allow the legalizer do its job. + if (!Subtarget.hasSSE41() || VT.is128BitVector() || + (VT.is256BitVector() && Subtarget.hasInt256()) || + (VT.is512BitVector() && Subtarget.hasAVX512())) { + SDValue ExOp = ExtendVecSize(DL, N0, VT.getSizeInBits()); + return Opcode == ISD::SIGN_EXTEND + ? DAG.getSignExtendVectorInReg(ExOp, DL, VT) + : DAG.getZeroExtendVectorInReg(ExOp, DL, VT); + } + + auto SplitAndExtendInReg = [&](unsigned SplitSize) { + unsigned NumVecs = VT.getSizeInBits() / SplitSize; + unsigned NumSubElts = SplitSize / SVT.getSizeInBits(); + EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts); + EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts); + + SmallVector<SDValue, 8> Opnds; + for (unsigned i = 0, Offset = 0; i != NumVecs; ++i, Offset += NumSubElts) { + SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0, + DAG.getIntPtrConstant(Offset, DL)); + SrcVec = ExtendVecSize(DL, SrcVec, SplitSize); + SrcVec = Opcode == ISD::SIGN_EXTEND + ? DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT) + : DAG.getZeroExtendVectorInReg(SrcVec, DL, SubVT); + Opnds.push_back(SrcVec); + } + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds); + }; + + // On pre-AVX2 targets, split into 128-bit nodes of + // ISD::*_EXTEND_VECTOR_INREG. + if (!Subtarget.hasInt256() && !(VT.getSizeInBits() % 128)) + return SplitAndExtendInReg(128); + + // On pre-AVX512 targets, split into 256-bit nodes of + // ISD::*_EXTEND_VECTOR_INREG. + if (!Subtarget.hasAVX512() && !(VT.getSizeInBits() % 256)) + return SplitAndExtendInReg(256); + + return SDValue(); +} + +static SDValue combineSext(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT InVT = N0.getValueType(); + SDLoc DL(N); + + if (SDValue DivRem8 = getDivRem8(N, DAG)) + return DivRem8; + + if (SDValue NewCMov = combineToExtendCMOV(N, DAG)) + return NewCMov; + + if (!DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (InVT == MVT::i1 && N0.getOpcode() == ISD::XOR && + isAllOnesConstant(N0.getOperand(1)) && N0.hasOneUse()) { + // Invert and sign-extend a boolean is the same as zero-extend and subtract + // 1 because 0 becomes -1 and 1 becomes 0. The subtract is efficiently + // lowered with an LEA or a DEC. This is the same as: select Bool, 0, -1. + // sext (xor Bool, -1) --> sub (zext Bool), 1 + SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); + return DAG.getNode(ISD::SUB, DL, VT, Zext, DAG.getConstant(1, DL, VT)); + } + + if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget)) + return V; + + if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget)) + return V; + + if (VT.isVector()) + if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) + return R; + + if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget)) + return NewAdd; + + return SDValue(); +} + +static SDValue combineFMA(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // TODO: Handle FMSUB/FNMADD/FNMSUB as the starting opcode. + SDLoc dl(N); + EVT VT = N->getValueType(0); + + // Let legalize expand this if it isn't a legal type yet. + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + EVT ScalarVT = VT.getScalarType(); + if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA()) + return SDValue(); + + SDValue A = N->getOperand(0); + SDValue B = N->getOperand(1); + SDValue C = N->getOperand(2); + + auto invertIfNegative = [](SDValue &V) { + if (SDValue NegVal = isFNEG(V.getNode())) { + V = NegVal; + return true; + } + return false; + }; + + // Do not convert the passthru input of scalar intrinsics. + // FIXME: We could allow negations of the lower element only. + bool NegA = N->getOpcode() != X86ISD::FMADDS1 && + N->getOpcode() != X86ISD::FMADDS1_RND && invertIfNegative(A); + bool NegB = invertIfNegative(B); + bool NegC = N->getOpcode() != X86ISD::FMADDS3 && + N->getOpcode() != X86ISD::FMADDS3_RND && invertIfNegative(C); + + // Negative multiplication when NegA xor NegB + bool NegMul = (NegA != NegB); + bool HasNeg = NegA || NegB || NegC; + + unsigned NewOpcode; + if (!NegMul) + NewOpcode = (!NegC) ? unsigned(ISD::FMA) : unsigned(X86ISD::FMSUB); + else + NewOpcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB; + + // For FMA, we risk reconstructing the node we started with. + // In order to avoid this, we check for negation or opcode change. If + // one of the two happened, then it is a new node and we return it. + if (N->getOpcode() == ISD::FMA) { + if (HasNeg || NewOpcode != N->getOpcode()) + return DAG.getNode(NewOpcode, dl, VT, A, B, C); + return SDValue(); + } + + if (N->getOpcode() == X86ISD::FMADD_RND) { + switch (NewOpcode) { + case ISD::FMA: NewOpcode = X86ISD::FMADD_RND; break; + case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUB_RND; break; + case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADD_RND; break; + case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUB_RND; break; + } + } else if (N->getOpcode() == X86ISD::FMADDS1) { + switch (NewOpcode) { + case ISD::FMA: NewOpcode = X86ISD::FMADDS1; break; + case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUBS1; break; + case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS1; break; + case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS1; break; + } + } else if (N->getOpcode() == X86ISD::FMADDS3) { + switch (NewOpcode) { + case ISD::FMA: NewOpcode = X86ISD::FMADDS3; break; + case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUBS3; break; + case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS3; break; + case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS3; break; + } + } else if (N->getOpcode() == X86ISD::FMADDS1_RND) { + switch (NewOpcode) { + case ISD::FMA: NewOpcode = X86ISD::FMADDS1_RND; break; + case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUBS1_RND; break; + case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS1_RND; break; + case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS1_RND; break; + } + } else if (N->getOpcode() == X86ISD::FMADDS3_RND) { + switch (NewOpcode) { + case ISD::FMA: NewOpcode = X86ISD::FMADDS3_RND; break; + case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUBS3_RND; break; + case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADDS3_RND; break; + case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUBS3_RND; break; + } + } else if (N->getOpcode() == X86ISD::FMADD4S) { + switch (NewOpcode) { + case ISD::FMA: NewOpcode = X86ISD::FMADD4S; break; + case X86ISD::FMSUB: NewOpcode = X86ISD::FMSUB4S; break; + case X86ISD::FNMADD: NewOpcode = X86ISD::FNMADD4S; break; + case X86ISD::FNMSUB: NewOpcode = X86ISD::FNMSUB4S; break; + } + } else { + llvm_unreachable("Unexpected opcode!"); + } + + // Only return the node is the opcode was changed or one of the + // operand was negated. If not, we'll just recreate the same node. + if (HasNeg || NewOpcode != N->getOpcode()) { + if (N->getNumOperands() == 4) + return DAG.getNode(NewOpcode, dl, VT, A, B, C, N->getOperand(3)); + return DAG.getNode(NewOpcode, dl, VT, A, B, C); + } + + return SDValue(); +} + +// Combine FMADDSUB(A, B, FNEG(C)) -> FMSUBADD(A, B, C) +static SDValue combineFMADDSUB(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDLoc dl(N); + EVT VT = N->getValueType(0); + + SDValue NegVal = isFNEG(N->getOperand(2).getNode()); + if (!NegVal) + return SDValue(); + + unsigned NewOpcode; + switch (N->getOpcode()) { + default: llvm_unreachable("Unexpected opcode!"); + case X86ISD::FMADDSUB: NewOpcode = X86ISD::FMSUBADD; break; + case X86ISD::FMADDSUB_RND: NewOpcode = X86ISD::FMSUBADD_RND; break; + case X86ISD::FMSUBADD: NewOpcode = X86ISD::FMADDSUB; break; + case X86ISD::FMSUBADD_RND: NewOpcode = X86ISD::FMADDSUB_RND; break; + } + + if (N->getNumOperands() == 4) + return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1), + NegVal, N->getOperand(3)); + return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1), + NegVal); +} + +static SDValue combineZext(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> + // (and (i32 x86isd::setcc_carry), 1) + // This eliminates the zext. This transformation is necessary because + // ISD::SETCC is always legalized to i8. + SDLoc dl(N); + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + if (N0.getOpcode() == ISD::AND && + N0.hasOneUse() && + N0.getOperand(0).hasOneUse()) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == X86ISD::SETCC_CARRY) { + if (!isOneConstant(N0.getOperand(1))) + return SDValue(); + return DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, + N00.getOperand(0), N00.getOperand(1)), + DAG.getConstant(1, dl, VT)); + } + } + + if (N0.getOpcode() == ISD::TRUNCATE && + N0.hasOneUse() && + N0.getOperand(0).hasOneUse()) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == X86ISD::SETCC_CARRY) { + return DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, + N00.getOperand(0), N00.getOperand(1)), + DAG.getConstant(1, dl, VT)); + } + } + + if (SDValue NewCMov = combineToExtendCMOV(N, DAG)) + return NewCMov; + + if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget)) + return V; + + if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget)) + return V; + + if (VT.isVector()) + if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) + return R; + + if (SDValue DivRem8 = getDivRem8(N, DAG)) + return DivRem8; + + if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget)) + return NewAdd; + + if (SDValue R = combineOrCmpEqZeroToCtlzSrl(N, DAG, DCI, Subtarget)) + return R; + + return SDValue(); +} + +/// Try to map a 128-bit or larger integer comparison to vector instructions +/// before type legalization splits it up into chunks. +static SDValue combineVectorSizedSetCCEquality(SDNode *SetCC, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); + assert((CC == ISD::SETNE || CC == ISD::SETEQ) && "Bad comparison predicate"); + + // We're looking for an oversized integer equality comparison, but ignore a + // comparison with zero because that gets special treatment in EmitTest(). + SDValue X = SetCC->getOperand(0); + SDValue Y = SetCC->getOperand(1); + EVT OpVT = X.getValueType(); + unsigned OpSize = OpVT.getSizeInBits(); + if (!OpVT.isScalarInteger() || OpSize < 128 || isNullConstant(Y)) + return SDValue(); + + // Bail out if we know that this is not really just an oversized integer. + if (peekThroughBitcasts(X).getValueType() == MVT::f128 || + peekThroughBitcasts(Y).getValueType() == MVT::f128) + return SDValue(); + + // TODO: Use PXOR + PTEST for SSE4.1 or later? + // TODO: Add support for AVX-512. + EVT VT = SetCC->getValueType(0); + SDLoc DL(SetCC); + if ((OpSize == 128 && Subtarget.hasSSE2()) || + (OpSize == 256 && Subtarget.hasAVX2())) { + EVT VecVT = OpSize == 128 ? MVT::v16i8 : MVT::v32i8; + SDValue VecX = DAG.getBitcast(VecVT, X); + SDValue VecY = DAG.getBitcast(VecVT, Y); + + // If all bytes match (bitmask is 0x(FFFF)FFFF), that's equality. + // setcc i128 X, Y, eq --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, eq + // setcc i128 X, Y, ne --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, ne + // setcc i256 X, Y, eq --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, eq + // setcc i256 X, Y, ne --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, ne + SDValue Cmp = DAG.getNode(X86ISD::PCMPEQ, DL, VecVT, VecX, VecY); + SDValue MovMsk = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Cmp); + SDValue FFFFs = DAG.getConstant(OpSize == 128 ? 0xFFFF : 0xFFFFFFFF, DL, + MVT::i32); + return DAG.getSetCC(DL, VT, MovMsk, FFFFs, CC); + } + + return SDValue(); +} + +static SDValue combineSetCC(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + if (CC == ISD::SETNE || CC == ISD::SETEQ) { + EVT OpVT = LHS.getValueType(); + // 0-x == y --> x+y == 0 + // 0-x != y --> x+y != 0 + if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && + LHS.hasOneUse()) { + SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, RHS, LHS.getOperand(1)); + return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); + } + // x == 0-y --> x+y == 0 + // x != 0-y --> x+y != 0 + if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && + RHS.hasOneUse()) { + SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); + return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); + } + + if (SDValue V = combineVectorSizedSetCCEquality(N, DAG, Subtarget)) + return V; + } + + if (VT.isVector() && VT.getVectorElementType() == MVT::i1 && + (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) { + // Put build_vectors on the right. + if (LHS.getOpcode() == ISD::BUILD_VECTOR) { + std::swap(LHS, RHS); + CC = ISD::getSetCCSwappedOperands(CC); + } + + bool IsSEXT0 = + (LHS.getOpcode() == ISD::SIGN_EXTEND) && + (LHS.getOperand(0).getValueType().getVectorElementType() == MVT::i1); + bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); + + if (IsSEXT0 && IsVZero1) { + assert(VT == LHS.getOperand(0).getValueType() && + "Uexpected operand type"); + if (CC == ISD::SETGT) + return DAG.getConstant(0, DL, VT); + if (CC == ISD::SETLE) + return DAG.getConstant(1, DL, VT); + if (CC == ISD::SETEQ || CC == ISD::SETGE) + return DAG.getNOT(DL, LHS.getOperand(0), VT); + + assert((CC == ISD::SETNE || CC == ISD::SETLT) && + "Unexpected condition code!"); + return LHS.getOperand(0); + } + } + + // For an SSE1-only target, lower a comparison of v4f32 to X86ISD::CMPP early + // to avoid scalarization via legalization because v4i32 is not a legal type. + if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32 && + LHS.getValueType() == MVT::v4f32) + return LowerVSETCC(SDValue(N, 0), Subtarget, DAG); + + return SDValue(); +} + +static SDValue combineMOVMSK(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + SDValue Src = N->getOperand(0); + MVT SrcVT = Src.getSimpleValueType(); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + + // MOVMSK only uses the MSB from each vector element. + KnownBits Known; + APInt DemandedMask(APInt::getSignMask(SrcVT.getScalarSizeInBits())); + if (TLI.SimplifyDemandedBits(Src, DemandedMask, Known, TLO)) { + DCI.AddToWorklist(Src.getNode()); + DCI.CommitTargetLoweringOpt(TLO); + return SDValue(N, 0); + } + + return SDValue(); +} + +static SDValue combineGatherScatter(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + SDLoc DL(N); + + if (DCI.isBeforeLegalizeOps()) { + SDValue Index = N->getOperand(4); + // Remove any sign extends from 32 or smaller to larger than 32. + // Only do this before LegalizeOps in case we need the sign extend for + // legalization. + if (Index.getOpcode() == ISD::SIGN_EXTEND) { + if (Index.getScalarValueSizeInBits() > 32 && + Index.getOperand(0).getScalarValueSizeInBits() <= 32) { + SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); + NewOps[4] = Index.getOperand(0); + DAG.UpdateNodeOperands(N, NewOps); + // The original sign extend has less users, add back to worklist in case + // it needs to be removed + DCI.AddToWorklist(Index.getNode()); + DCI.AddToWorklist(N); + return SDValue(N, 0); + } + } + + // Make sure the index is either i32 or i64 + unsigned ScalarSize = Index.getScalarValueSizeInBits(); + if (ScalarSize != 32 && ScalarSize != 64) { + MVT EltVT = ScalarSize > 32 ? MVT::i64 : MVT::i32; + EVT IndexVT = EVT::getVectorVT(*DAG.getContext(), EltVT, + Index.getValueType().getVectorNumElements()); + Index = DAG.getSExtOrTrunc(Index, DL, IndexVT); + SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); + NewOps[4] = Index; + DAG.UpdateNodeOperands(N, NewOps); + DCI.AddToWorklist(N); + return SDValue(N, 0); + } + + // Try to remove zero extends from 32->64 if we know the sign bit of + // the input is zero. + if (Index.getOpcode() == ISD::ZERO_EXTEND && + Index.getScalarValueSizeInBits() == 64 && + Index.getOperand(0).getScalarValueSizeInBits() == 32) { + if (DAG.SignBitIsZero(Index.getOperand(0))) { + SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); + NewOps[4] = Index.getOperand(0); + DAG.UpdateNodeOperands(N, NewOps); + // The original zero extend has less users, add back to worklist in case + // it needs to be removed + DCI.AddToWorklist(Index.getNode()); + DCI.AddToWorklist(N); + return SDValue(N, 0); + } + } + } + + // Gather and Scatter instructions use k-registers for masks. The type of + // the masks is v*i1. So the mask will be truncated anyway. + // The SIGN_EXTEND_INREG my be dropped. + SDValue Mask = N->getOperand(2); + if (Subtarget.hasAVX512() && Mask.getOpcode() == ISD::SIGN_EXTEND_INREG) { + SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); + NewOps[2] = Mask.getOperand(0); + DAG.UpdateNodeOperands(N, NewOps); + return SDValue(N, 0); + } + + // With AVX2 we only demand the upper bit of the mask. + if (!Subtarget.hasAVX512()) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + KnownBits Known; + APInt DemandedMask(APInt::getSignMask(Mask.getScalarValueSizeInBits())); + if (TLI.SimplifyDemandedBits(Mask, DemandedMask, Known, TLO)) { + DCI.AddToWorklist(Mask.getNode()); + DCI.CommitTargetLoweringOpt(TLO); + return SDValue(N, 0); + } + } + + return SDValue(); +} + +// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT +static SDValue combineX86SetCC(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDLoc DL(N); + X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); + SDValue EFLAGS = N->getOperand(1); + + // Try to simplify the EFLAGS and condition code operands. + if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget)) + return getSETCC(CC, Flags, DL, DAG); + + return SDValue(); +} + +/// Optimize branch condition evaluation. +static SDValue combineBrCond(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDLoc DL(N); + SDValue EFLAGS = N->getOperand(3); + X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); + + // Try to simplify the EFLAGS and condition code operands. + // Make sure to not keep references to operands, as combineSetCCEFLAGS can + // RAUW them under us. + if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget)) { + SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); + return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), N->getOperand(0), + N->getOperand(1), Cond, Flags); + } + + return SDValue(); +} + +static SDValue combineVectorCompareAndMaskUnaryOp(SDNode *N, + SelectionDAG &DAG) { + // Take advantage of vector comparisons producing 0 or -1 in each lane to + // optimize away operation when it's from a constant. + // + // The general transformation is: + // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> + // AND(VECTOR_CMP(x,y), constant2) + // constant2 = UNARYOP(constant) + + // Early exit if this isn't a vector operation, the operand of the + // unary operation isn't a bitwise AND, or if the sizes of the operations + // aren't the same. + EVT VT = N->getValueType(0); + if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || + N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || + VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) + return SDValue(); + + // Now check that the other operand of the AND is a constant. We could + // make the transformation for non-constant splats as well, but it's unclear + // that would be a benefit as it would not eliminate any operations, just + // perform one more step in scalar code before moving to the vector unit. + if (BuildVectorSDNode *BV = + dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { + // Bail out if the vector isn't a constant. + if (!BV->isConstant()) + return SDValue(); + + // Everything checks out. Build up the new and improved node. + SDLoc DL(N); + EVT IntVT = BV->getValueType(0); + // Create a new constant of the appropriate type for the transformed + // DAG. + SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); + // The AND node needs bitcasts to/from an integer vector type around it. + SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst); + SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, + N->getOperand(0)->getOperand(0), MaskConst); + SDValue Res = DAG.getBitcast(VT, NewAnd); + return Res; + } + + return SDValue(); +} + +static SDValue combineUIntToFP(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDValue Op0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT InVT = Op0.getValueType(); + EVT InSVT = InVT.getScalarType(); + + // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32)) + // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32)) + if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) { + SDLoc dl(N); + EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, + InVT.getVectorNumElements()); + SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0); + + // UINT_TO_FP isn't legal without AVX512 so use SINT_TO_FP. + return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); + } + + // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't + // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform + // the optimization here. + if (DAG.SignBitIsZero(Op0)) + return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, Op0); + + return SDValue(); +} + +static SDValue combineSIntToFP(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // First try to optimize away the conversion entirely when it's + // conditionally from a constant. Vectors only. + if (SDValue Res = combineVectorCompareAndMaskUnaryOp(N, DAG)) + return Res; + + // Now move on to more general possibilities. + SDValue Op0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT InVT = Op0.getValueType(); + EVT InSVT = InVT.getScalarType(); + + // SINT_TO_FP(vXi1) -> SINT_TO_FP(SEXT(vXi1 to vXi32)) + // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32)) + // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32)) + if (InVT.isVector() && + (InSVT == MVT::i8 || InSVT == MVT::i16 || + (InSVT == MVT::i1 && !DAG.getTargetLoweringInfo().isTypeLegal(InVT)))) { + SDLoc dl(N); + EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, + InVT.getVectorNumElements()); + SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); + return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); + } + + // Without AVX512DQ we only support i64 to float scalar conversion. For both + // vectors and scalars, see if we know that the upper bits are all the sign + // bit, in which case we can truncate the input to i32 and convert from that. + if (InVT.getScalarSizeInBits() > 32 && !Subtarget.hasDQI()) { + unsigned BitWidth = InVT.getScalarSizeInBits(); + unsigned NumSignBits = DAG.ComputeNumSignBits(Op0); + if (NumSignBits >= (BitWidth - 31)) { + EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), 32); + if (InVT.isVector()) + TruncVT = EVT::getVectorVT(*DAG.getContext(), TruncVT, + InVT.getVectorNumElements()); + SDLoc dl(N); + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Op0); + return DAG.getNode(ISD::SINT_TO_FP, dl, VT, Trunc); + } + } + + // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have + // a 32-bit target where SSE doesn't support i64->FP operations. + if (!Subtarget.useSoftFloat() && Op0.getOpcode() == ISD::LOAD) { + LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode()); + EVT LdVT = Ld->getValueType(0); + + // This transformation is not supported if the result type is f16 or f128. + if (VT == MVT::f16 || VT == MVT::f128) + return SDValue(); + + if (!Ld->isVolatile() && !VT.isVector() && + ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && + !Subtarget.is64Bit() && LdVT == MVT::i64) { + SDValue FILDChain = Subtarget.getTargetLowering()->BuildFILD( + SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG); + DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); + return FILDChain; + } + } + return SDValue(); +} + +static SDValue combineSBB(SDNode *N, SelectionDAG &DAG) { + if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) { + MVT VT = N->getSimpleValueType(0); + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + return DAG.getNode(X86ISD::SBB, SDLoc(N), VTs, + N->getOperand(0), N->getOperand(1), + Flags); + } + + return SDValue(); +} + +// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS +static SDValue combineADC(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + // If the LHS and RHS of the ADC node are zero, then it can't overflow and + // the result is either zero or one (depending on the input carry bit). + // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. + if (X86::isZeroNode(N->getOperand(0)) && + X86::isZeroNode(N->getOperand(1)) && + // We don't have a good way to replace an EFLAGS use, so only do this when + // dead right now. + SDValue(N, 1).use_empty()) { + SDLoc DL(N); + EVT VT = N->getValueType(0); + SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1)); + SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, + DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, + DAG.getConstant(X86::COND_B, DL, + MVT::i8), + N->getOperand(2)), + DAG.getConstant(1, DL, VT)); + return DCI.CombineTo(N, Res1, CarryOut); + } + + if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) { + MVT VT = N->getSimpleValueType(0); + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + return DAG.getNode(X86ISD::ADC, SDLoc(N), VTs, + N->getOperand(0), N->getOperand(1), + Flags); + } + + return SDValue(); +} + +/// Materialize "setb reg" as "sbb reg,reg", since it produces an all-ones bit +/// which is more useful than 0/1 in some cases. +static SDValue materializeSBB(SDNode *N, SDValue EFLAGS, SelectionDAG &DAG) { + SDLoc DL(N); + // "Condition code B" is also known as "the carry flag" (CF). + SDValue CF = DAG.getConstant(X86::COND_B, DL, MVT::i8); + SDValue SBB = DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, CF, EFLAGS); + MVT VT = N->getSimpleValueType(0); + if (VT == MVT::i8) + return DAG.getNode(ISD::AND, DL, VT, SBB, DAG.getConstant(1, DL, VT)); + + assert(VT == MVT::i1 && "Unexpected type for SETCC node"); + return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SBB); +} + +/// If this is an add or subtract where one operand is produced by a cmp+setcc, +/// then try to convert it to an ADC or SBB. This replaces TEST+SET+{ADD/SUB} +/// with CMP+{ADC, SBB}. +static SDValue combineAddOrSubToADCOrSBB(SDNode *N, SelectionDAG &DAG) { + bool IsSub = N->getOpcode() == ISD::SUB; + SDValue X = N->getOperand(0); + SDValue Y = N->getOperand(1); + + // If this is an add, canonicalize a zext operand to the RHS. + // TODO: Incomplete? What if both sides are zexts? + if (!IsSub && X.getOpcode() == ISD::ZERO_EXTEND && + Y.getOpcode() != ISD::ZERO_EXTEND) + std::swap(X, Y); + + // Look through a one-use zext. + bool PeekedThroughZext = false; + if (Y.getOpcode() == ISD::ZERO_EXTEND && Y.hasOneUse()) { + Y = Y.getOperand(0); + PeekedThroughZext = true; + } + + // If this is an add, canonicalize a setcc operand to the RHS. + // TODO: Incomplete? What if both sides are setcc? + // TODO: Should we allow peeking through a zext of the other operand? + if (!IsSub && !PeekedThroughZext && X.getOpcode() == X86ISD::SETCC && + Y.getOpcode() != X86ISD::SETCC) + std::swap(X, Y); + + if (Y.getOpcode() != X86ISD::SETCC || !Y.hasOneUse()) + return SDValue(); + + SDLoc DL(N); + EVT VT = N->getValueType(0); + X86::CondCode CC = (X86::CondCode)Y.getConstantOperandVal(0); + + // If X is -1 or 0, then we have an opportunity to avoid constants required in + // the general case below. + auto *ConstantX = dyn_cast<ConstantSDNode>(X); + if (ConstantX) { + if ((!IsSub && CC == X86::COND_AE && ConstantX->isAllOnesValue()) || + (IsSub && CC == X86::COND_B && ConstantX->isNullValue())) { + // This is a complicated way to get -1 or 0 from the carry flag: + // -1 + SETAE --> -1 + (!CF) --> CF ? -1 : 0 --> SBB %eax, %eax + // 0 - SETB --> 0 - (CF) --> CF ? -1 : 0 --> SBB %eax, %eax + return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, + DAG.getConstant(X86::COND_B, DL, MVT::i8), + Y.getOperand(1)); + } + + if ((!IsSub && CC == X86::COND_BE && ConstantX->isAllOnesValue()) || + (IsSub && CC == X86::COND_A && ConstantX->isNullValue())) { + SDValue EFLAGS = Y->getOperand(1); + if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && + EFLAGS.getValueType().isInteger() && + !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { + // Swap the operands of a SUB, and we have the same pattern as above. + // -1 + SETBE (SUB A, B) --> -1 + SETAE (SUB B, A) --> SUB + SBB + // 0 - SETA (SUB A, B) --> 0 - SETB (SUB B, A) --> SUB + SBB + SDValue NewSub = DAG.getNode( + X86ISD::SUB, SDLoc(EFLAGS), EFLAGS.getNode()->getVTList(), + EFLAGS.getOperand(1), EFLAGS.getOperand(0)); + SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); + return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, + DAG.getConstant(X86::COND_B, DL, MVT::i8), + NewEFLAGS); + } + } + } + + if (CC == X86::COND_B) { + // X + SETB Z --> X + (mask SBB Z, Z) + // X - SETB Z --> X - (mask SBB Z, Z) + // TODO: Produce ADC/SBB here directly and avoid SETCC_CARRY? + SDValue SBB = materializeSBB(Y.getNode(), Y.getOperand(1), DAG); + if (SBB.getValueSizeInBits() != VT.getSizeInBits()) + SBB = DAG.getZExtOrTrunc(SBB, DL, VT); + return DAG.getNode(IsSub ? ISD::SUB : ISD::ADD, DL, VT, X, SBB); + } + + if (CC == X86::COND_A) { + SDValue EFLAGS = Y->getOperand(1); + // Try to convert COND_A into COND_B in an attempt to facilitate + // materializing "setb reg". + // + // Do not flip "e > c", where "c" is a constant, because Cmp instruction + // cannot take an immediate as its first operand. + // + if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && + EFLAGS.getValueType().isInteger() && + !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { + SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS), + EFLAGS.getNode()->getVTList(), + EFLAGS.getOperand(1), EFLAGS.getOperand(0)); + SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); + SDValue SBB = materializeSBB(Y.getNode(), NewEFLAGS, DAG); + if (SBB.getValueSizeInBits() != VT.getSizeInBits()) + SBB = DAG.getZExtOrTrunc(SBB, DL, VT); + return DAG.getNode(IsSub ? ISD::SUB : ISD::ADD, DL, VT, X, SBB); + } + } + + if (CC != X86::COND_E && CC != X86::COND_NE) + return SDValue(); + + SDValue Cmp = Y.getOperand(1); + if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || + !X86::isZeroNode(Cmp.getOperand(1)) || + !Cmp.getOperand(0).getValueType().isInteger()) + return SDValue(); + + SDValue Z = Cmp.getOperand(0); + EVT ZVT = Z.getValueType(); + + // If X is -1 or 0, then we have an opportunity to avoid constants required in + // the general case below. + if (ConstantX) { + // 'neg' sets the carry flag when Z != 0, so create 0 or -1 using 'sbb' with + // fake operands: + // 0 - (Z != 0) --> sbb %eax, %eax, (neg Z) + // -1 + (Z == 0) --> sbb %eax, %eax, (neg Z) + if ((IsSub && CC == X86::COND_NE && ConstantX->isNullValue()) || + (!IsSub && CC == X86::COND_E && ConstantX->isAllOnesValue())) { + SDValue Zero = DAG.getConstant(0, DL, ZVT); + SDVTList X86SubVTs = DAG.getVTList(ZVT, MVT::i32); + SDValue Neg = DAG.getNode(X86ISD::SUB, DL, X86SubVTs, Zero, Z); + return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, + DAG.getConstant(X86::COND_B, DL, MVT::i8), + SDValue(Neg.getNode(), 1)); + } + + // cmp with 1 sets the carry flag when Z == 0, so create 0 or -1 using 'sbb' + // with fake operands: + // 0 - (Z == 0) --> sbb %eax, %eax, (cmp Z, 1) + // -1 + (Z != 0) --> sbb %eax, %eax, (cmp Z, 1) + if ((IsSub && CC == X86::COND_E && ConstantX->isNullValue()) || + (!IsSub && CC == X86::COND_NE && ConstantX->isAllOnesValue())) { + SDValue One = DAG.getConstant(1, DL, ZVT); + SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One); + return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, + DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp1); + } + } + + // (cmp Z, 1) sets the carry flag if Z is 0. + SDValue One = DAG.getConstant(1, DL, ZVT); + SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One); + + // Add the flags type for ADC/SBB nodes. + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + + // X - (Z != 0) --> sub X, (zext(setne Z, 0)) --> adc X, -1, (cmp Z, 1) + // X + (Z != 0) --> add X, (zext(setne Z, 0)) --> sbb X, -1, (cmp Z, 1) + if (CC == X86::COND_NE) + return DAG.getNode(IsSub ? X86ISD::ADC : X86ISD::SBB, DL, VTs, X, + DAG.getConstant(-1ULL, DL, VT), Cmp1); + + // X - (Z == 0) --> sub X, (zext(sete Z, 0)) --> sbb X, 0, (cmp Z, 1) + // X + (Z == 0) --> add X, (zext(sete Z, 0)) --> adc X, 0, (cmp Z, 1) + return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL, VTs, X, + DAG.getConstant(0, DL, VT), Cmp1); +} + +static SDValue combineLoopMAddPattern(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (!Subtarget.hasSSE2()) + return SDValue(); + + SDValue MulOp = N->getOperand(0); + SDValue Phi = N->getOperand(1); + + if (MulOp.getOpcode() != ISD::MUL) + std::swap(MulOp, Phi); + if (MulOp.getOpcode() != ISD::MUL) + return SDValue(); + + ShrinkMode Mode; + if (!canReduceVMulWidth(MulOp.getNode(), DAG, Mode) || Mode == MULU16) + return SDValue(); + + EVT VT = N->getValueType(0); + + unsigned RegSize = 128; + if (Subtarget.hasBWI()) + RegSize = 512; + else if (Subtarget.hasAVX2()) + RegSize = 256; + unsigned VectorSize = VT.getVectorNumElements() * 16; + // If the vector size is less than 128, or greater than the supported RegSize, + // do not use PMADD. + if (VectorSize < 128 || VectorSize > RegSize) + return SDValue(); + + SDLoc DL(N); + EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, + VT.getVectorNumElements()); + EVT MAddVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, + VT.getVectorNumElements() / 2); + + // Shrink the operands of mul. + SDValue N0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(0)); + SDValue N1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(1)); + + // Madd vector size is half of the original vector size + SDValue Madd = DAG.getNode(X86ISD::VPMADDWD, DL, MAddVT, N0, N1); + // Fill the rest of the output with 0 + SDValue Zero = getZeroVector(Madd.getSimpleValueType(), Subtarget, DAG, DL); + SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Madd, Zero); + return DAG.getNode(ISD::ADD, DL, VT, Concat, Phi); +} + +static SDValue combineLoopSADPattern(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + if (!Subtarget.hasSSE2()) + return SDValue(); + + SDLoc DL(N); + EVT VT = N->getValueType(0); + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + // TODO: There's nothing special about i32, any integer type above i16 should + // work just as well. + if (!VT.isVector() || !VT.isSimple() || + !(VT.getVectorElementType() == MVT::i32)) + return SDValue(); + + unsigned RegSize = 128; + if (Subtarget.hasBWI()) + RegSize = 512; + else if (Subtarget.hasAVX2()) + RegSize = 256; + + // We only handle v16i32 for SSE2 / v32i32 for AVX2 / v64i32 for AVX512. + // TODO: We should be able to handle larger vectors by splitting them before + // feeding them into several SADs, and then reducing over those. + if (VT.getSizeInBits() / 4 > RegSize) + return SDValue(); + + // We know N is a reduction add, which means one of its operands is a phi. + // To match SAD, we need the other operand to be a vector select. + SDValue SelectOp, Phi; + if (Op0.getOpcode() == ISD::VSELECT) { + SelectOp = Op0; + Phi = Op1; + } else if (Op1.getOpcode() == ISD::VSELECT) { + SelectOp = Op1; + Phi = Op0; + } else + return SDValue(); + + // Check whether we have an abs-diff pattern feeding into the select. + if(!detectZextAbsDiff(SelectOp, Op0, Op1)) + return SDValue(); + + // SAD pattern detected. Now build a SAD instruction and an addition for + // reduction. Note that the number of elements of the result of SAD is less + // than the number of elements of its input. Therefore, we could only update + // part of elements in the reduction vector. + SDValue Sad = createPSADBW(DAG, Op0, Op1, DL); + + // The output of PSADBW is a vector of i64. + // We need to turn the vector of i64 into a vector of i32. + // If the reduction vector is at least as wide as the psadbw result, just + // bitcast. If it's narrower, truncate - the high i32 of each i64 is zero + // anyway. + MVT ResVT = MVT::getVectorVT(MVT::i32, Sad.getValueSizeInBits() / 32); + if (VT.getSizeInBits() >= ResVT.getSizeInBits()) + Sad = DAG.getNode(ISD::BITCAST, DL, ResVT, Sad); + else + Sad = DAG.getNode(ISD::TRUNCATE, DL, VT, Sad); + + if (VT.getSizeInBits() > ResVT.getSizeInBits()) { + // Fill the upper elements with zero to match the add width. + SDValue Zero = DAG.getConstant(0, DL, VT); + Sad = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Zero, Sad, + DAG.getIntPtrConstant(0, DL)); + } + + return DAG.getNode(ISD::ADD, DL, VT, Sad, Phi); +} + +/// Convert vector increment or decrement to sub/add with an all-ones constant: +/// add X, <1, 1...> --> sub X, <-1, -1...> +/// sub X, <1, 1...> --> add X, <-1, -1...> +/// The all-ones vector constant can be materialized using a pcmpeq instruction +/// that is commonly recognized as an idiom (has no register dependency), so +/// that's better/smaller than loading a splat 1 constant. +static SDValue combineIncDecVector(SDNode *N, SelectionDAG &DAG) { + assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && + "Unexpected opcode for increment/decrement transform"); + + // Pseudo-legality check: getOnesVector() expects one of these types, so bail + // out and wait for legalization if we have an unsupported vector length. + EVT VT = N->getValueType(0); + if (!VT.is128BitVector() && !VT.is256BitVector() && !VT.is512BitVector()) + return SDValue(); + + SDNode *N1 = N->getOperand(1).getNode(); + APInt SplatVal; + if (!ISD::isConstantSplatVector(N1, SplatVal) || + !SplatVal.isOneValue()) + return SDValue(); + + SDValue AllOnesVec = getOnesVector(VT, DAG, SDLoc(N)); + unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD; + return DAG.getNode(NewOpcode, SDLoc(N), VT, N->getOperand(0), AllOnesVec); +} + +static SDValue combineAdd(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + const SDNodeFlags Flags = N->getFlags(); + if (Flags.hasVectorReduction()) { + if (SDValue Sad = combineLoopSADPattern(N, DAG, Subtarget)) + return Sad; + if (SDValue MAdd = combineLoopMAddPattern(N, DAG, Subtarget)) + return MAdd; + } + EVT VT = N->getValueType(0); + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + // Try to synthesize horizontal adds from adds of shuffles. + if (((Subtarget.hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || + (Subtarget.hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && + isHorizontalBinOp(Op0, Op1, true)) + return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1); + + if (SDValue V = combineIncDecVector(N, DAG)) + return V; + + return combineAddOrSubToADCOrSBB(N, DAG); +} + +static SDValue combineSubToSubus(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + EVT VT = N->getValueType(0); + + // PSUBUS is supported, starting from SSE2, but special preprocessing + // for v8i32 requires umin, which appears in SSE41. + if (!(Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) && + !(Subtarget.hasSSE41() && (VT == MVT::v8i32)) && + !(Subtarget.hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)) && + !(Subtarget.hasAVX512() && Subtarget.hasBWI() && + (VT == MVT::v64i8 || VT == MVT::v32i16 || VT == MVT::v16i32 || + VT == MVT::v8i64))) + return SDValue(); + + SDValue SubusLHS, SubusRHS; + // Try to find umax(a,b) - b or a - umin(a,b) patterns + // they may be converted to subus(a,b). + // TODO: Need to add IR cannonicialization for this code. + if (Op0.getOpcode() == ISD::UMAX) { + SubusRHS = Op1; + SDValue MaxLHS = Op0.getOperand(0); + SDValue MaxRHS = Op0.getOperand(1); + if (MaxLHS == Op1) + SubusLHS = MaxRHS; + else if (MaxRHS == Op1) + SubusLHS = MaxLHS; + else + return SDValue(); + } else if (Op1.getOpcode() == ISD::UMIN) { + SubusLHS = Op0; + SDValue MinLHS = Op1.getOperand(0); + SDValue MinRHS = Op1.getOperand(1); + if (MinLHS == Op0) + SubusRHS = MinRHS; + else if (MinRHS == Op0) + SubusRHS = MinLHS; + else + return SDValue(); + } else + return SDValue(); + + // PSUBUS doesn't support v8i32/v8i64/v16i32, but it can be enabled with + // special preprocessing in some cases. + if (VT != MVT::v8i32 && VT != MVT::v16i32 && VT != MVT::v8i64) + return DAG.getNode(X86ISD::SUBUS, SDLoc(N), VT, SubusLHS, SubusRHS); + + // Special preprocessing case can be only applied + // if the value was zero extended from 16 bit, + // so we require first 16 bits to be zeros for 32 bit + // values, or first 48 bits for 64 bit values. + KnownBits Known; + DAG.computeKnownBits(SubusLHS, Known); + unsigned NumZeros = Known.countMinLeadingZeros(); + if ((VT == MVT::v8i64 && NumZeros < 48) || NumZeros < 16) + return SDValue(); + + EVT ExtType = SubusLHS.getValueType(); + EVT ShrinkedType; + if (VT == MVT::v8i32 || VT == MVT::v8i64) + ShrinkedType = MVT::v8i16; + else + ShrinkedType = NumZeros >= 24 ? MVT::v16i8 : MVT::v16i16; + + // If SubusLHS is zeroextended - truncate SubusRHS to it's + // size SubusRHS = umin(0xFFF.., SubusRHS). + SDValue SaturationConst = + DAG.getConstant(APInt::getLowBitsSet(ExtType.getScalarSizeInBits(), + ShrinkedType.getScalarSizeInBits()), + SDLoc(SubusLHS), ExtType); + SDValue UMin = DAG.getNode(ISD::UMIN, SDLoc(SubusLHS), ExtType, SubusRHS, + SaturationConst); + SDValue NewSubusLHS = + DAG.getZExtOrTrunc(SubusLHS, SDLoc(SubusLHS), ShrinkedType); + SDValue NewSubusRHS = DAG.getZExtOrTrunc(UMin, SDLoc(SubusRHS), ShrinkedType); + SDValue Psubus = DAG.getNode(X86ISD::SUBUS, SDLoc(N), ShrinkedType, + NewSubusLHS, NewSubusRHS); + // Zero extend the result, it may be used somewhere as 32 bit, + // if not zext and following trunc will shrink. + return DAG.getZExtOrTrunc(Psubus, SDLoc(N), ExtType); +} + +static SDValue combineSub(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + // X86 can't encode an immediate LHS of a sub. See if we can push the + // negation into a preceding instruction. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) { + // If the RHS of the sub is a XOR with one use and a constant, invert the + // immediate. Then add one to the LHS of the sub so we can turn + // X-Y -> X+~Y+1, saving one register. + if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && + isa<ConstantSDNode>(Op1.getOperand(1))) { + APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue(); + EVT VT = Op0.getValueType(); + SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT, + Op1.getOperand(0), + DAG.getConstant(~XorC, SDLoc(Op1), VT)); + return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor, + DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT)); + } + } + + // Try to synthesize horizontal subs from subs of shuffles. + EVT VT = N->getValueType(0); + if (((Subtarget.hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || + (Subtarget.hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && + isHorizontalBinOp(Op0, Op1, false)) + return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1); + + if (SDValue V = combineIncDecVector(N, DAG)) + return V; + + // Try to create PSUBUS if SUB's argument is max/min + if (SDValue V = combineSubToSubus(N, DAG, Subtarget)) + return V; + + return combineAddOrSubToADCOrSBB(N, DAG); +} + +static SDValue combineVSZext(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + if (DCI.isBeforeLegalize()) + return SDValue(); + + SDLoc DL(N); + unsigned Opcode = N->getOpcode(); + MVT VT = N->getSimpleValueType(0); + MVT SVT = VT.getVectorElementType(); + unsigned NumElts = VT.getVectorNumElements(); + unsigned EltSizeInBits = SVT.getSizeInBits(); + + SDValue Op = N->getOperand(0); + MVT OpVT = Op.getSimpleValueType(); + MVT OpEltVT = OpVT.getVectorElementType(); + unsigned OpEltSizeInBits = OpEltVT.getSizeInBits(); + unsigned InputBits = OpEltSizeInBits * NumElts; + + // Perform any constant folding. + // FIXME: Reduce constant pool usage and don't fold when OptSize is enabled. + APInt UndefElts; + SmallVector<APInt, 64> EltBits; + if (getTargetConstantBitsFromNode(Op, OpEltSizeInBits, UndefElts, EltBits)) { + APInt Undefs(NumElts, 0); + SmallVector<APInt, 4> Vals(NumElts, APInt(EltSizeInBits, 0)); + bool IsZEXT = + (Opcode == X86ISD::VZEXT) || (Opcode == ISD::ZERO_EXTEND_VECTOR_INREG); + for (unsigned i = 0; i != NumElts; ++i) { + if (UndefElts[i]) { + Undefs.setBit(i); + continue; + } + Vals[i] = IsZEXT ? EltBits[i].zextOrTrunc(EltSizeInBits) + : EltBits[i].sextOrTrunc(EltSizeInBits); + } + return getConstVector(Vals, Undefs, VT, DAG, DL); + } + + // (vzext (bitcast (vzext (x)) -> (vzext x) + // TODO: (vsext (bitcast (vsext (x)) -> (vsext x) + SDValue V = peekThroughBitcasts(Op); + if (Opcode == X86ISD::VZEXT && V != Op && V.getOpcode() == X86ISD::VZEXT) { + MVT InnerVT = V.getSimpleValueType(); + MVT InnerEltVT = InnerVT.getVectorElementType(); + + // If the element sizes match exactly, we can just do one larger vzext. This + // is always an exact type match as vzext operates on integer types. + if (OpEltVT == InnerEltVT) { + assert(OpVT == InnerVT && "Types must match for vzext!"); + return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0)); + } + + // The only other way we can combine them is if only a single element of the + // inner vzext is used in the input to the outer vzext. + if (InnerEltVT.getSizeInBits() < InputBits) + return SDValue(); + + // In this case, the inner vzext is completely dead because we're going to + // only look at bits inside of the low element. Just do the outer vzext on + // a bitcast of the input to the inner. + return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V)); + } + + // Check if we can bypass extracting and re-inserting an element of an input + // vector. Essentially: + // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x) + // TODO: Add X86ISD::VSEXT support + if (Opcode == X86ISD::VZEXT && + V.getOpcode() == ISD::SCALAR_TO_VECTOR && + V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && + V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) { + SDValue ExtractedV = V.getOperand(0); + SDValue OrigV = ExtractedV.getOperand(0); + if (isNullConstant(ExtractedV.getOperand(1))) { + MVT OrigVT = OrigV.getSimpleValueType(); + // Extract a subvector if necessary... + if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) { + int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits(); + OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(), + OrigVT.getVectorNumElements() / Ratio); + OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV, + DAG.getIntPtrConstant(0, DL)); + } + Op = DAG.getBitcast(OpVT, OrigV); + return DAG.getNode(X86ISD::VZEXT, DL, VT, Op); + } + } + + return SDValue(); +} + +static SDValue combineTestM(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + MVT VT = N->getSimpleValueType(0); + SDLoc DL(N); + + // TEST (AND a, b) ,(AND a, b) -> TEST a, b + if (Op0 == Op1 && Op1->getOpcode() == ISD::AND) + return DAG.getNode(X86ISD::TESTM, DL, VT, Op0->getOperand(0), + Op0->getOperand(1)); + + // TEST op0, BUILD_VECTOR(all_zero) -> BUILD_VECTOR(all_zero) + // TEST BUILD_VECTOR(all_zero), op1 -> BUILD_VECTOR(all_zero) + if (ISD::isBuildVectorAllZeros(Op0.getNode()) || + ISD::isBuildVectorAllZeros(Op1.getNode())) + return getZeroVector(VT, Subtarget, DAG, DL); + + return SDValue(); +} + +static SDValue combineVectorCompare(SDNode *N, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + MVT VT = N->getSimpleValueType(0); + SDLoc DL(N); + + if (N->getOperand(0) == N->getOperand(1)) { + if (N->getOpcode() == X86ISD::PCMPEQ) + return getOnesVector(VT, DAG, DL); + if (N->getOpcode() == X86ISD::PCMPGT) + return getZeroVector(VT, Subtarget, DAG, DL); + } + + return SDValue(); +} + +static SDValue combineInsertSubvector(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + MVT OpVT = N->getSimpleValueType(0); + + // Early out for mask vectors. + if (OpVT.getVectorElementType() == MVT::i1) + return SDValue(); + + SDLoc dl(N); + SDValue Vec = N->getOperand(0); + SDValue SubVec = N->getOperand(1); + + unsigned IdxVal = N->getConstantOperandVal(2); + MVT SubVecVT = SubVec.getSimpleValueType(); + + if (ISD::isBuildVectorAllZeros(Vec.getNode())) { + // Inserting zeros into zeros is a nop. + if (ISD::isBuildVectorAllZeros(SubVec.getNode())) + return Vec; + + // If we're inserting into a zero vector and then into a larger zero vector, + // just insert into the larger zero vector directly. + if (SubVec.getOpcode() == ISD::INSERT_SUBVECTOR && + ISD::isBuildVectorAllZeros(SubVec.getOperand(0).getNode())) { + unsigned Idx2Val = SubVec.getConstantOperandVal(2); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Vec, + SubVec.getOperand(1), + DAG.getIntPtrConstant(IdxVal + Idx2Val, dl)); + } + + // If we're inserting a bitcast into zeros, rewrite the insert and move the + // bitcast to the other side. This helps with detecting zero extending + // during isel. + // TODO: Is this useful for other indices than 0? + if (SubVec.getOpcode() == ISD::BITCAST && IdxVal == 0) { + MVT CastVT = SubVec.getOperand(0).getSimpleValueType(); + unsigned NumElems = OpVT.getSizeInBits() / CastVT.getScalarSizeInBits(); + MVT NewVT = MVT::getVectorVT(CastVT.getVectorElementType(), NumElems); + SDValue Insert = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT, + DAG.getBitcast(NewVT, Vec), + SubVec.getOperand(0), N->getOperand(2)); + return DAG.getBitcast(OpVT, Insert); + } + } + + // If this is an insert of an extract, combine to a shuffle. Don't do this + // if the insert or extract can be represented with a subregister operation. + if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR && + SubVec.getOperand(0).getSimpleValueType() == OpVT && + (IdxVal != 0 || !Vec.isUndef())) { + int ExtIdxVal = SubVec.getConstantOperandVal(1); + if (ExtIdxVal != 0) { + int VecNumElts = OpVT.getVectorNumElements(); + int SubVecNumElts = SubVecVT.getVectorNumElements(); + SmallVector<int, 64> Mask(VecNumElts); + // First create an identity shuffle mask. + for (int i = 0; i != VecNumElts; ++i) + Mask[i] = i; + // Now insert the extracted portion. + for (int i = 0; i != SubVecNumElts; ++i) + Mask[i + IdxVal] = i + ExtIdxVal + VecNumElts; + + return DAG.getVectorShuffle(OpVT, dl, Vec, SubVec.getOperand(0), Mask); + } + } + + // Fold two 16-byte or 32-byte subvector loads into one 32-byte or 64-byte + // load: + // (insert_subvector (insert_subvector undef, (load16 addr), 0), + // (load16 addr + 16), Elts/2) + // --> load32 addr + // or: + // (insert_subvector (insert_subvector undef, (load32 addr), 0), + // (load32 addr + 32), Elts/2) + // --> load64 addr + // or a 16-byte or 32-byte broadcast: + // (insert_subvector (insert_subvector undef, (load16 addr), 0), + // (load16 addr), Elts/2) + // --> X86SubVBroadcast(load16 addr) + // or: + // (insert_subvector (insert_subvector undef, (load32 addr), 0), + // (load32 addr), Elts/2) + // --> X86SubVBroadcast(load32 addr) + if ((IdxVal == OpVT.getVectorNumElements() / 2) && + Vec.getOpcode() == ISD::INSERT_SUBVECTOR && + OpVT.getSizeInBits() == SubVecVT.getSizeInBits() * 2) { + auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2)); + if (Idx2 && Idx2->getZExtValue() == 0) { + SDValue SubVec2 = Vec.getOperand(1); + // If needed, look through bitcasts to get to the load. + if (auto *FirstLd = dyn_cast<LoadSDNode>(peekThroughBitcasts(SubVec2))) { + bool Fast; + unsigned Alignment = FirstLd->getAlignment(); + unsigned AS = FirstLd->getAddressSpace(); + const X86TargetLowering *TLI = Subtarget.getTargetLowering(); + if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), + OpVT, AS, Alignment, &Fast) && Fast) { + SDValue Ops[] = {SubVec2, SubVec}; + if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, + Subtarget, false)) + return Ld; + } + } + // If lower/upper loads are the same and the only users of the load, then + // lower to a VBROADCASTF128/VBROADCASTI128/etc. + if (auto *Ld = dyn_cast<LoadSDNode>(peekThroughOneUseBitcasts(SubVec2))) + if (SubVec2 == SubVec && ISD::isNormalLoad(Ld) && + SDNode::areOnlyUsersOf({N, Vec.getNode()}, SubVec2.getNode())) + return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT, SubVec); + + // If this is subv_broadcast insert into both halves, use a larger + // subv_broadcast. + if (SubVec.getOpcode() == X86ISD::SUBV_BROADCAST && SubVec == SubVec2) + return DAG.getNode(X86ISD::SUBV_BROADCAST, dl, OpVT, + SubVec.getOperand(0)); + + // If we're inserting all zeros into the upper half, change this to + // an insert into an all zeros vector. We will match this to a move + // with implicit upper bit zeroing during isel. + if (ISD::isBuildVectorAllZeros(SubVec.getNode())) + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, + getZeroVector(OpVT, Subtarget, DAG, dl), SubVec2, + Vec.getOperand(2)); + + // If we are inserting into both halves of the vector, the starting + // vector should be undef. If it isn't, make it so. Only do this if the + // the early insert has no other uses. + // TODO: Should this be a generic DAG combine? + if (!Vec.getOperand(0).isUndef() && Vec.hasOneUse()) { + Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, DAG.getUNDEF(OpVT), + SubVec2, Vec.getOperand(2)); + DCI.AddToWorklist(Vec.getNode()); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Vec, SubVec, + N->getOperand(2)); + + } + } + } + + return SDValue(); +} + +static SDValue combineExtractSubvector(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget &Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + MVT OpVT = N->getSimpleValueType(0); + SDValue InVec = N->getOperand(0); + unsigned IdxVal = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); + + if (ISD::isBuildVectorAllZeros(InVec.getNode())) + return getZeroVector(OpVT, Subtarget, DAG, SDLoc(N)); + + if (ISD::isBuildVectorAllOnes(InVec.getNode())) { + if (OpVT.getScalarType() == MVT::i1) + return DAG.getConstant(1, SDLoc(N), OpVT); + return getOnesVector(OpVT, DAG, SDLoc(N)); + } + + if (InVec.getOpcode() == ISD::BUILD_VECTOR) + return DAG.getBuildVector( + OpVT, SDLoc(N), + InVec.getNode()->ops().slice(IdxVal, OpVT.getVectorNumElements())); + + return SDValue(); +} + +SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + switch (N->getOpcode()) { + default: break; + case ISD::EXTRACT_VECTOR_ELT: + case X86ISD::PEXTRW: + case X86ISD::PEXTRB: + return combineExtractVectorElt(N, DAG, DCI, Subtarget); + case ISD::INSERT_SUBVECTOR: + return combineInsertSubvector(N, DAG, DCI, Subtarget); + case ISD::EXTRACT_SUBVECTOR: + return combineExtractSubvector(N, DAG, DCI, Subtarget); + case ISD::VSELECT: + case ISD::SELECT: + case X86ISD::SHRUNKBLEND: return combineSelect(N, DAG, DCI, Subtarget); + case ISD::BITCAST: return combineBitcast(N, DAG, DCI, Subtarget); + case X86ISD::CMOV: return combineCMov(N, DAG, DCI, Subtarget); + case ISD::ADD: return combineAdd(N, DAG, Subtarget); + case ISD::SUB: return combineSub(N, DAG, Subtarget); + case X86ISD::SBB: return combineSBB(N, DAG); + case X86ISD::ADC: return combineADC(N, DAG, DCI); + case ISD::MUL: return combineMul(N, DAG, DCI, Subtarget); + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: return combineShift(N, DAG, DCI, Subtarget); + case ISD::AND: return combineAnd(N, DAG, DCI, Subtarget); + case ISD::OR: return combineOr(N, DAG, DCI, Subtarget); + case ISD::XOR: return combineXor(N, DAG, DCI, Subtarget); + case ISD::LOAD: return combineLoad(N, DAG, DCI, Subtarget); + case ISD::MLOAD: return combineMaskedLoad(N, DAG, DCI, Subtarget); + case ISD::STORE: return combineStore(N, DAG, Subtarget); + case ISD::MSTORE: return combineMaskedStore(N, DAG, Subtarget); + case ISD::SINT_TO_FP: return combineSIntToFP(N, DAG, Subtarget); + case ISD::UINT_TO_FP: return combineUIntToFP(N, DAG, Subtarget); + case ISD::FADD: + case ISD::FSUB: return combineFaddFsub(N, DAG, Subtarget); + case ISD::FNEG: return combineFneg(N, DAG, Subtarget); + case ISD::TRUNCATE: return combineTruncate(N, DAG, Subtarget); + case X86ISD::ANDNP: return combineAndnp(N, DAG, DCI, Subtarget); + case X86ISD::FAND: return combineFAnd(N, DAG, Subtarget); + case X86ISD::FANDN: return combineFAndn(N, DAG, Subtarget); + case X86ISD::FXOR: + case X86ISD::FOR: return combineFOr(N, DAG, Subtarget); + case X86ISD::FMIN: + case X86ISD::FMAX: return combineFMinFMax(N, DAG); + case ISD::FMINNUM: + case ISD::FMAXNUM: return combineFMinNumFMaxNum(N, DAG, Subtarget); + case X86ISD::BT: return combineBT(N, DAG, DCI); + case ISD::ANY_EXTEND: + case ISD::ZERO_EXTEND: return combineZext(N, DAG, DCI, Subtarget); + case ISD::SIGN_EXTEND: return combineSext(N, DAG, DCI, Subtarget); + case ISD::SIGN_EXTEND_INREG: return combineSignExtendInReg(N, DAG, Subtarget); + case ISD::SETCC: return combineSetCC(N, DAG, Subtarget); + case X86ISD::SETCC: return combineX86SetCC(N, DAG, Subtarget); + case X86ISD::BRCOND: return combineBrCond(N, DAG, Subtarget); + case X86ISD::PACKSS: + case X86ISD::PACKUS: return combineVectorPack(N, DAG, DCI, Subtarget); + case X86ISD::VSHLI: + case X86ISD::VSRAI: + case X86ISD::VSRLI: + return combineVectorShiftImm(N, DAG, DCI, Subtarget); + case ISD::SIGN_EXTEND_VECTOR_INREG: + case ISD::ZERO_EXTEND_VECTOR_INREG: + case X86ISD::VSEXT: + case X86ISD::VZEXT: return combineVSZext(N, DAG, DCI, Subtarget); + case X86ISD::PINSRB: + case X86ISD::PINSRW: return combineVectorInsert(N, DAG, DCI, Subtarget); + case X86ISD::SHUFP: // Handle all target specific shuffles + case X86ISD::INSERTPS: + case X86ISD::EXTRQI: + case X86ISD::INSERTQI: + case X86ISD::PALIGNR: + case X86ISD::VSHLDQ: + case X86ISD::VSRLDQ: + case X86ISD::BLENDI: + case X86ISD::UNPCKH: + case X86ISD::UNPCKL: + case X86ISD::MOVHLPS: + case X86ISD::MOVLHPS: + case X86ISD::PSHUFB: + case X86ISD::PSHUFD: + case X86ISD::PSHUFHW: + case X86ISD::PSHUFLW: + case X86ISD::MOVSHDUP: + case X86ISD::MOVSLDUP: + case X86ISD::MOVDDUP: + case X86ISD::MOVSS: + case X86ISD::MOVSD: + case X86ISD::VBROADCAST: + case X86ISD::VPPERM: + case X86ISD::VPERMI: + case X86ISD::VPERMV: + case X86ISD::VPERMV3: + case X86ISD::VPERMIV3: + case X86ISD::VPERMIL2: + case X86ISD::VPERMILPI: + case X86ISD::VPERMILPV: + case X86ISD::VPERM2X128: + case X86ISD::VZEXT_MOVL: + case ISD::VECTOR_SHUFFLE: return combineShuffle(N, DAG, DCI,Subtarget); + case X86ISD::FMADD_RND: + case X86ISD::FMADDS1_RND: + case X86ISD::FMADDS3_RND: + case X86ISD::FMADDS1: + case X86ISD::FMADDS3: + case X86ISD::FMADD4S: + case ISD::FMA: return combineFMA(N, DAG, Subtarget); + case X86ISD::FMADDSUB_RND: + case X86ISD::FMSUBADD_RND: + case X86ISD::FMADDSUB: + case X86ISD::FMSUBADD: return combineFMADDSUB(N, DAG, Subtarget); + case X86ISD::MOVMSK: return combineMOVMSK(N, DAG, DCI); + case X86ISD::MGATHER: + case X86ISD::MSCATTER: + case ISD::MGATHER: + case ISD::MSCATTER: return combineGatherScatter(N, DAG, DCI, Subtarget); + case X86ISD::TESTM: return combineTestM(N, DAG, Subtarget); + case X86ISD::PCMPEQ: + case X86ISD::PCMPGT: return combineVectorCompare(N, DAG, Subtarget); + } + + return SDValue(); +} + +/// Return true if the target has native support for the specified value type +/// and it is 'desirable' to use the type for the given node type. e.g. On x86 +/// i16 is legal, but undesirable since i16 instruction encodings are longer and +/// some i16 instructions are slow. +bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { + if (!isTypeLegal(VT)) + return false; + if (VT != MVT::i16) + return true; + + switch (Opc) { + default: + return true; + case ISD::LOAD: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + case ISD::SHL: + case ISD::SRL: + case ISD::SUB: + case ISD::ADD: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + return false; + } +} + +/// This function checks if any of the users of EFLAGS copies the EFLAGS. We +/// know that the code that lowers COPY of EFLAGS has to use the stack, and if +/// we don't adjust the stack we clobber the first frame index. +/// See X86InstrInfo::copyPhysReg. +static bool hasCopyImplyingStackAdjustment(const MachineFunction &MF) { + const MachineRegisterInfo &MRI = MF.getRegInfo(); + return any_of(MRI.reg_instructions(X86::EFLAGS), + [](const MachineInstr &RI) { return RI.isCopy(); }); +} + +void X86TargetLowering::finalizeLowering(MachineFunction &MF) const { + if (hasCopyImplyingStackAdjustment(MF)) { + MachineFrameInfo &MFI = MF.getFrameInfo(); + MFI.setHasCopyImplyingStackAdjustment(true); + } + + TargetLoweringBase::finalizeLowering(MF); +} + +/// This method query the target whether it is beneficial for dag combiner to +/// promote the specified node. If true, it should return the desired promotion +/// type by reference. +bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { + EVT VT = Op.getValueType(); + if (VT != MVT::i16) + return false; + + bool Promote = false; + bool Commute = false; + switch (Op.getOpcode()) { + default: break; + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + Promote = true; + break; + case ISD::SHL: + case ISD::SRL: { + SDValue N0 = Op.getOperand(0); + // Look out for (store (shl (load), x)). + if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) + return false; + Promote = true; + break; + } + case ISD::ADD: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + Commute = true; + LLVM_FALLTHROUGH; + case ISD::SUB: { + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + if (!Commute && MayFoldLoad(N1)) + return false; + // Avoid disabling potential load folding opportunities. + if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) + return false; + if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) + return false; + Promote = true; + } + } + + PVT = MVT::i32; + return Promote; +} + +bool X86TargetLowering:: + isDesirableToCombineBuildVectorToShuffleTruncate( + ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const { + + assert(SrcVT.getVectorNumElements() == ShuffleMask.size() && + "Element count mismatch"); + assert( + Subtarget.getTargetLowering()->isShuffleMaskLegal(ShuffleMask, SrcVT) && + "Shuffle Mask expected to be legal"); + + // For 32-bit elements VPERMD is better than shuffle+truncate. + // TODO: After we improve lowerBuildVector, add execption for VPERMW. + if (SrcVT.getScalarSizeInBits() == 32 || !Subtarget.hasAVX2()) + return false; + + if (is128BitLaneCrossingShuffleMask(SrcVT.getSimpleVT(), ShuffleMask)) + return false; + + return true; +} + +//===----------------------------------------------------------------------===// +// X86 Inline Assembly Support +//===----------------------------------------------------------------------===// + +// Helper to match a string separated by whitespace. +static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) { + S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace. + + for (StringRef Piece : Pieces) { + if (!S.startswith(Piece)) // Check if the piece matches. + return false; + + S = S.substr(Piece.size()); + StringRef::size_type Pos = S.find_first_not_of(" \t"); + if (Pos == 0) // We matched a prefix. + return false; + + S = S.substr(Pos); + } + + return S.empty(); +} + +static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) { + + if (AsmPieces.size() == 3 || AsmPieces.size() == 4) { + if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") && + std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") && + std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) { + + if (AsmPieces.size() == 3) + return true; + else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}")) + return true; + } + } + return false; +} + +bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { + InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); + + const std::string &AsmStr = IA->getAsmString(); + + IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); + if (!Ty || Ty->getBitWidth() % 16 != 0) + return false; + + // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" + SmallVector<StringRef, 4> AsmPieces; + SplitString(AsmStr, AsmPieces, ";\n"); + + switch (AsmPieces.size()) { + default: return false; + case 1: + // FIXME: this should verify that we are targeting a 486 or better. If not, + // we will turn this bswap into something that will be lowered to logical + // ops instead of emitting the bswap asm. For now, we don't support 486 or + // lower so don't worry about this. + // bswap $0 + if (matchAsm(AsmPieces[0], {"bswap", "$0"}) || + matchAsm(AsmPieces[0], {"bswapl", "$0"}) || + matchAsm(AsmPieces[0], {"bswapq", "$0"}) || + matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) || + matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) || + matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) { + // No need to check constraints, nothing other than the equivalent of + // "=r,0" would be valid here. + return IntrinsicLowering::LowerToByteSwap(CI); + } + + // rorw $$8, ${0:w} --> llvm.bswap.i16 + if (CI->getType()->isIntegerTy(16) && + IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && + (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) || + matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) { + AsmPieces.clear(); + StringRef ConstraintsStr = IA->getConstraintString(); + SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); + array_pod_sort(AsmPieces.begin(), AsmPieces.end()); + if (clobbersFlagRegisters(AsmPieces)) + return IntrinsicLowering::LowerToByteSwap(CI); + } + break; + case 3: + if (CI->getType()->isIntegerTy(32) && + IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && + matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) && + matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) && + matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) { + AsmPieces.clear(); + StringRef ConstraintsStr = IA->getConstraintString(); + SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); + array_pod_sort(AsmPieces.begin(), AsmPieces.end()); + if (clobbersFlagRegisters(AsmPieces)) + return IntrinsicLowering::LowerToByteSwap(CI); + } + + if (CI->getType()->isIntegerTy(64)) { + InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); + if (Constraints.size() >= 2 && + Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && + Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { + // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 + if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) && + matchAsm(AsmPieces[1], {"bswap", "%edx"}) && + matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"})) + return IntrinsicLowering::LowerToByteSwap(CI); + } + } + break; + } + return false; +} + +/// Given a constraint letter, return the type of constraint for this target. +X86TargetLowering::ConstraintType +X86TargetLowering::getConstraintType(StringRef Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'R': + case 'q': + case 'Q': + case 'f': + case 't': + case 'u': + case 'y': + case 'x': + case 'v': + case 'Y': + case 'l': + case 'k': // AVX512 masking registers. + return C_RegisterClass; + case 'a': + case 'b': + case 'c': + case 'd': + case 'S': + case 'D': + case 'A': + return C_Register; + case 'I': + case 'J': + case 'K': + case 'L': + case 'M': + case 'N': + case 'G': + case 'C': + case 'e': + case 'Z': + return C_Other; + default: + break; + } + } + else if (Constraint.size() == 2) { + switch (Constraint[0]) { + default: + break; + case 'Y': + switch (Constraint[1]) { + default: + break; + case 'z': + case '0': + return C_Register; + case 'i': + case 'm': + case 'k': + case 't': + case '2': + return C_RegisterClass; + } + } + } + return TargetLowering::getConstraintType(Constraint); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight + X86TargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (!CallOperandVal) + return CW_Default; + Type *type = CallOperandVal->getType(); + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + LLVM_FALLTHROUGH; + case 'R': + case 'q': + case 'Q': + case 'a': + case 'b': + case 'c': + case 'd': + case 'S': + case 'D': + case 'A': + if (CallOperandVal->getType()->isIntegerTy()) + weight = CW_SpecificReg; + break; + case 'f': + case 't': + case 'u': + if (type->isFloatingPointTy()) + weight = CW_SpecificReg; + break; + case 'y': + if (type->isX86_MMXTy() && Subtarget.hasMMX()) + weight = CW_SpecificReg; + break; + case 'Y': { + unsigned Size = StringRef(constraint).size(); + // Pick 'i' as the next char as 'Yi' and 'Y' are synonymous, when matching 'Y' + char NextChar = Size == 2 ? constraint[1] : 'i'; + if (Size > 2) + break; + switch (NextChar) { + default: + return CW_Invalid; + // XMM0 + case 'z': + case '0': + if ((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) + return CW_SpecificReg; + return CW_Invalid; + // Conditional OpMask regs (AVX512) + case 'k': + if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512()) + return CW_Register; + return CW_Invalid; + // Any MMX reg + case 'm': + if (type->isX86_MMXTy() && Subtarget.hasMMX()) + return weight; + return CW_Invalid; + // Any SSE reg when ISA >= SSE2, same as 'Y' + case 'i': + case 't': + case '2': + if (!Subtarget.hasSSE2()) + return CW_Invalid; + break; + } + // Fall through (handle "Y" constraint). + LLVM_FALLTHROUGH; + } + case 'v': + if ((type->getPrimitiveSizeInBits() == 512) && Subtarget.hasAVX512()) + weight = CW_Register; + LLVM_FALLTHROUGH; + case 'x': + if (((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) || + ((type->getPrimitiveSizeInBits() == 256) && Subtarget.hasFp256())) + weight = CW_Register; + break; + case 'k': + // Enable conditional vector operations using %k<#> registers. + if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512()) + weight = CW_Register; + break; + case 'I': + if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { + if (C->getZExtValue() <= 31) + weight = CW_Constant; + } + break; + case 'J': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 63) + weight = CW_Constant; + } + break; + case 'K': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) + weight = CW_Constant; + } + break; + case 'L': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) + weight = CW_Constant; + } + break; + case 'M': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 3) + weight = CW_Constant; + } + break; + case 'N': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 0xff) + weight = CW_Constant; + } + break; + case 'G': + case 'C': + if (isa<ConstantFP>(CallOperandVal)) { + weight = CW_Constant; + } + break; + case 'e': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if ((C->getSExtValue() >= -0x80000000LL) && + (C->getSExtValue() <= 0x7fffffffLL)) + weight = CW_Constant; + } + break; + case 'Z': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 0xffffffff) + weight = CW_Constant; + } + break; + } + return weight; +} + +/// Try to replace an X constraint, which matches anything, with another that +/// has more specific requirements based on the type of the corresponding +/// operand. +const char *X86TargetLowering:: +LowerXConstraint(EVT ConstraintVT) const { + // FP X constraints get lowered to SSE1/2 registers if available, otherwise + // 'f' like normal targets. + if (ConstraintVT.isFloatingPoint()) { + if (Subtarget.hasSSE2()) + return "Y"; + if (Subtarget.hasSSE1()) + return "x"; + } + + return TargetLowering::LowerXConstraint(ConstraintVT); +} + +/// Lower the specified operand into the Ops vector. +/// If it is invalid, don't add anything to Ops. +void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue>&Ops, + SelectionDAG &DAG) const { + SDValue Result; + + // Only support length 1 constraints for now. + if (Constraint.length() > 1) return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: break; + case 'I': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 31) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'J': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 63) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'K': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (isInt<8>(C->getSExtValue())) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'L': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff || + (Subtarget.is64Bit() && C->getZExtValue() == 0xffffffff)) { + Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'M': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 3) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'N': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 255) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'O': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 127) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'e': { + // 32-bit signed value + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getSExtValue())) { + // Widen to 64 bits here to get it sign extended. + Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64); + break; + } + // FIXME gcc accepts some relocatable values here too, but only in certain + // memory models; it's complicated. + } + return; + } + case 'Z': { + // 32-bit unsigned value + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getZExtValue())) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + // FIXME gcc accepts some relocatable values here too, but only in certain + // memory models; it's complicated. + return; + } + case 'i': { + // Literal immediates are always ok. + if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { + // Widen to 64 bits here to get it sign extended. + Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64); + break; + } + + // In any sort of PIC mode addresses need to be computed at runtime by + // adding in a register or some sort of table lookup. These can't + // be used as immediates. + if (Subtarget.isPICStyleGOT() || Subtarget.isPICStyleStubPIC()) + return; + + // If we are in non-pic codegen mode, we allow the address of a global (with + // an optional displacement) to be used with 'i'. + GlobalAddressSDNode *GA = nullptr; + int64_t Offset = 0; + + // Match either (GA), (GA+C), (GA+C1+C2), etc. + while (1) { + if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { + Offset += GA->getOffset(); + break; + } else if (Op.getOpcode() == ISD::ADD) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Offset += C->getZExtValue(); + Op = Op.getOperand(0); + continue; + } + } else if (Op.getOpcode() == ISD::SUB) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Offset += -C->getZExtValue(); + Op = Op.getOperand(0); + continue; + } + } + + // Otherwise, this isn't something we can handle, reject it. + return; + } + + const GlobalValue *GV = GA->getGlobal(); + // If we require an extra load to get this address, as in PIC mode, we + // can't accept it. + if (isGlobalStubReference(Subtarget.classifyGlobalReference(GV))) + return; + + Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), + GA->getValueType(0), Offset); + break; + } + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +/// Check if \p RC is a general purpose register class. +/// I.e., GR* or one of their variant. +static bool isGRClass(const TargetRegisterClass &RC) { + return RC.hasSuperClassEq(&X86::GR8RegClass) || + RC.hasSuperClassEq(&X86::GR16RegClass) || + RC.hasSuperClassEq(&X86::GR32RegClass) || + RC.hasSuperClassEq(&X86::GR64RegClass) || + RC.hasSuperClassEq(&X86::LOW32_ADDR_ACCESS_RBPRegClass); +} + +/// Check if \p RC is a vector register class. +/// I.e., FR* / VR* or one of their variant. +static bool isFRClass(const TargetRegisterClass &RC) { + return RC.hasSuperClassEq(&X86::FR32XRegClass) || + RC.hasSuperClassEq(&X86::FR64XRegClass) || + RC.hasSuperClassEq(&X86::VR128XRegClass) || + RC.hasSuperClassEq(&X86::VR256XRegClass) || + RC.hasSuperClassEq(&X86::VR512RegClass); +} + +std::pair<unsigned, const TargetRegisterClass *> +X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, + MVT VT) const { + // First, see if this is a constraint that directly corresponds to an LLVM + // register class. + if (Constraint.size() == 1) { + // GCC Constraint Letters + switch (Constraint[0]) { + default: break; + // TODO: Slight differences here in allocation order and leaving + // RIP in the class. Do they matter any more here than they do + // in the normal allocation? + case 'k': + if (Subtarget.hasAVX512()) { + // Only supported in AVX512 or later. + switch (VT.SimpleTy) { + default: break; + case MVT::i32: + return std::make_pair(0U, &X86::VK32RegClass); + case MVT::i16: + return std::make_pair(0U, &X86::VK16RegClass); + case MVT::i8: + return std::make_pair(0U, &X86::VK8RegClass); + case MVT::i1: + return std::make_pair(0U, &X86::VK1RegClass); + case MVT::i64: + return std::make_pair(0U, &X86::VK64RegClass); + } + } + break; + case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. + if (Subtarget.is64Bit()) { + if (VT == MVT::i32 || VT == MVT::f32) + return std::make_pair(0U, &X86::GR32RegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16RegClass); + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8RegClass); + if (VT == MVT::i64 || VT == MVT::f64) + return std::make_pair(0U, &X86::GR64RegClass); + break; + } + LLVM_FALLTHROUGH; + // 32-bit fallthrough + case 'Q': // Q_REGS + if (VT == MVT::i32 || VT == MVT::f32) + return std::make_pair(0U, &X86::GR32_ABCDRegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16_ABCDRegClass); + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); + if (VT == MVT::i64) + return std::make_pair(0U, &X86::GR64_ABCDRegClass); + break; + case 'r': // GENERAL_REGS + case 'l': // INDEX_REGS + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8RegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16RegClass); + if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget.is64Bit()) + return std::make_pair(0U, &X86::GR32RegClass); + return std::make_pair(0U, &X86::GR64RegClass); + case 'R': // LEGACY_REGS + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8_NOREXRegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16_NOREXRegClass); + if (VT == MVT::i32 || !Subtarget.is64Bit()) + return std::make_pair(0U, &X86::GR32_NOREXRegClass); + return std::make_pair(0U, &X86::GR64_NOREXRegClass); + case 'f': // FP Stack registers. + // If SSE is enabled for this VT, use f80 to ensure the isel moves the + // value to the correct fpstack register class. + if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) + return std::make_pair(0U, &X86::RFP32RegClass); + if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) + return std::make_pair(0U, &X86::RFP64RegClass); + return std::make_pair(0U, &X86::RFP80RegClass); + case 'y': // MMX_REGS if MMX allowed. + if (!Subtarget.hasMMX()) break; + return std::make_pair(0U, &X86::VR64RegClass); + case 'Y': // SSE_REGS if SSE2 allowed + if (!Subtarget.hasSSE2()) break; + LLVM_FALLTHROUGH; + case 'v': + case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed + if (!Subtarget.hasSSE1()) break; + bool VConstraint = (Constraint[0] == 'v'); + + switch (VT.SimpleTy) { + default: break; + // Scalar SSE types. + case MVT::f32: + case MVT::i32: + if (VConstraint && Subtarget.hasAVX512() && Subtarget.hasVLX()) + return std::make_pair(0U, &X86::FR32XRegClass); + return std::make_pair(0U, &X86::FR32RegClass); + case MVT::f64: + case MVT::i64: + if (VConstraint && Subtarget.hasVLX()) + return std::make_pair(0U, &X86::FR64XRegClass); + return std::make_pair(0U, &X86::FR64RegClass); + // TODO: Handle f128 and i128 in FR128RegClass after it is tested well. + // Vector types. + case MVT::v16i8: + case MVT::v8i16: + case MVT::v4i32: + case MVT::v2i64: + case MVT::v4f32: + case MVT::v2f64: + if (VConstraint && Subtarget.hasVLX()) + return std::make_pair(0U, &X86::VR128XRegClass); + return std::make_pair(0U, &X86::VR128RegClass); + // AVX types. + case MVT::v32i8: + case MVT::v16i16: + case MVT::v8i32: + case MVT::v4i64: + case MVT::v8f32: + case MVT::v4f64: + if (VConstraint && Subtarget.hasVLX()) + return std::make_pair(0U, &X86::VR256XRegClass); + return std::make_pair(0U, &X86::VR256RegClass); + case MVT::v8f64: + case MVT::v16f32: + case MVT::v16i32: + case MVT::v8i64: + return std::make_pair(0U, &X86::VR512RegClass); + } + break; + } + } else if (Constraint.size() == 2 && Constraint[0] == 'Y') { + switch (Constraint[1]) { + default: + break; + case 'i': + case 't': + case '2': + return getRegForInlineAsmConstraint(TRI, "Y", VT); + case 'm': + if (!Subtarget.hasMMX()) break; + return std::make_pair(0U, &X86::VR64RegClass); + case 'z': + case '0': + if (!Subtarget.hasSSE1()) break; + return std::make_pair(X86::XMM0, &X86::VR128RegClass); + case 'k': + // This register class doesn't allocate k0 for masked vector operation. + if (Subtarget.hasAVX512()) { // Only supported in AVX512. + switch (VT.SimpleTy) { + default: break; + case MVT::i32: + return std::make_pair(0U, &X86::VK32WMRegClass); + case MVT::i16: + return std::make_pair(0U, &X86::VK16WMRegClass); + case MVT::i8: + return std::make_pair(0U, &X86::VK8WMRegClass); + case MVT::i1: + return std::make_pair(0U, &X86::VK1WMRegClass); + case MVT::i64: + return std::make_pair(0U, &X86::VK64WMRegClass); + } + } + break; + } + } + + // Use the default implementation in TargetLowering to convert the register + // constraint into a member of a register class. + std::pair<unsigned, const TargetRegisterClass*> Res; + Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); + + // Not found as a standard register? + if (!Res.second) { + // Map st(0) -> st(7) -> ST0 + if (Constraint.size() == 7 && Constraint[0] == '{' && + tolower(Constraint[1]) == 's' && + tolower(Constraint[2]) == 't' && + Constraint[3] == '(' && + (Constraint[4] >= '0' && Constraint[4] <= '7') && + Constraint[5] == ')' && + Constraint[6] == '}') { + + Res.first = X86::FP0+Constraint[4]-'0'; + Res.second = &X86::RFP80RegClass; + return Res; + } + + // GCC allows "st(0)" to be called just plain "st". + if (StringRef("{st}").equals_lower(Constraint)) { + Res.first = X86::FP0; + Res.second = &X86::RFP80RegClass; + return Res; + } + + // flags -> EFLAGS + if (StringRef("{flags}").equals_lower(Constraint)) { + Res.first = X86::EFLAGS; + Res.second = &X86::CCRRegClass; + return Res; + } + + // 'A' means [ER]AX + [ER]DX. + if (Constraint == "A") { + if (Subtarget.is64Bit()) { + Res.first = X86::RAX; + Res.second = &X86::GR64_ADRegClass; + } else { + assert((Subtarget.is32Bit() || Subtarget.is16Bit()) && + "Expecting 64, 32 or 16 bit subtarget"); + Res.first = X86::EAX; + Res.second = &X86::GR32_ADRegClass; + } + return Res; + } + return Res; + } + + // Otherwise, check to see if this is a register class of the wrong value + // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to + // turn into {ax},{dx}. + // MVT::Other is used to specify clobber names. + if (TRI->isTypeLegalForClass(*Res.second, VT) || VT == MVT::Other) + return Res; // Correct type already, nothing to do. + + // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should + // return "eax". This should even work for things like getting 64bit integer + // registers when given an f64 type. + const TargetRegisterClass *Class = Res.second; + // The generic code will match the first register class that contains the + // given register. Thus, based on the ordering of the tablegened file, + // the "plain" GR classes might not come first. + // Therefore, use a helper method. + if (isGRClass(*Class)) { + unsigned Size = VT.getSizeInBits(); + if (Size == 1) Size = 8; + unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size); + if (DestReg > 0) { + bool is64Bit = Subtarget.is64Bit(); + const TargetRegisterClass *RC = + Size == 8 ? (is64Bit ? &X86::GR8RegClass : &X86::GR8_NOREXRegClass) + : Size == 16 ? (is64Bit ? &X86::GR16RegClass : &X86::GR16_NOREXRegClass) + : Size == 32 ? (is64Bit ? &X86::GR32RegClass : &X86::GR32_NOREXRegClass) + : &X86::GR64RegClass; + if (RC->contains(DestReg)) + Res = std::make_pair(DestReg, RC); + } else { + // No register found/type mismatch. + Res.first = 0; + Res.second = nullptr; + } + } else if (isFRClass(*Class)) { + // Handle references to XMM physical registers that got mapped into the + // wrong class. This can happen with constraints like {xmm0} where the + // target independent register mapper will just pick the first match it can + // find, ignoring the required type. + + // TODO: Handle f128 and i128 in FR128RegClass after it is tested well. + if (VT == MVT::f32 || VT == MVT::i32) + Res.second = &X86::FR32RegClass; + else if (VT == MVT::f64 || VT == MVT::i64) + Res.second = &X86::FR64RegClass; + else if (TRI->isTypeLegalForClass(X86::VR128RegClass, VT)) + Res.second = &X86::VR128RegClass; + else if (TRI->isTypeLegalForClass(X86::VR256RegClass, VT)) + Res.second = &X86::VR256RegClass; + else if (TRI->isTypeLegalForClass(X86::VR512RegClass, VT)) + Res.second = &X86::VR512RegClass; + else { + // Type mismatch and not a clobber: Return an error; + Res.first = 0; + Res.second = nullptr; + } + } + + return Res; +} + +int X86TargetLowering::getScalingFactorCost(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // Scaling factors are not free at all. + // An indexed folded instruction, i.e., inst (reg1, reg2, scale), + // will take 2 allocations in the out of order engine instead of 1 + // for plain addressing mode, i.e. inst (reg1). + // E.g., + // vaddps (%rsi,%drx), %ymm0, %ymm1 + // Requires two allocations (one for the load, one for the computation) + // whereas: + // vaddps (%rsi), %ymm0, %ymm1 + // Requires just 1 allocation, i.e., freeing allocations for other operations + // and having less micro operations to execute. + // + // For some X86 architectures, this is even worse because for instance for + // stores, the complex addressing mode forces the instruction to use the + // "load" ports instead of the dedicated "store" port. + // E.g., on Haswell: + // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3. + // vmovaps %ymm1, (%r8) can use port 2, 3, or 7. + if (isLegalAddressingMode(DL, AM, Ty, AS)) + // Scale represents reg2 * scale, thus account for 1 + // as soon as we use a second register. + return AM.Scale != 0; + return -1; +} + +bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { + // Integer division on x86 is expensive. However, when aggressively optimizing + // for code size, we prefer to use a div instruction, as it is usually smaller + // than the alternative sequence. + // The exception to this is vector division. Since x86 doesn't have vector + // integer division, leaving the division as-is is a loss even in terms of + // size, because it will have to be scalarized, while the alternative code + // sequence can be performed in vector form. + bool OptSize = + Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize); + return OptSize && !VT.isVector(); +} + +void X86TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { + if (!Subtarget.is64Bit()) + return; + + // Update IsSplitCSR in X86MachineFunctionInfo. + X86MachineFunctionInfo *AFI = + Entry->getParent()->getInfo<X86MachineFunctionInfo>(); + AFI->setIsSplitCSR(true); +} + +void X86TargetLowering::insertCopiesSplitCSR( + MachineBasicBlock *Entry, + const SmallVectorImpl<MachineBasicBlock *> &Exits) const { + const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); + const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); + if (!IStart) + return; + + const TargetInstrInfo *TII = Subtarget.getInstrInfo(); + MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); + MachineBasicBlock::iterator MBBI = Entry->begin(); + for (const MCPhysReg *I = IStart; *I; ++I) { + const TargetRegisterClass *RC = nullptr; + if (X86::GR64RegClass.contains(*I)) + RC = &X86::GR64RegClass; + else + llvm_unreachable("Unexpected register class in CSRsViaCopy!"); + + unsigned NewVR = MRI->createVirtualRegister(RC); + // Create copy from CSR to a virtual register. + // FIXME: this currently does not emit CFI pseudo-instructions, it works + // fine for CXX_FAST_TLS since the C++-style TLS access functions should be + // nounwind. If we want to generalize this later, we may need to emit + // CFI pseudo-instructions. + assert(Entry->getParent()->getFunction().hasFnAttribute( + Attribute::NoUnwind) && + "Function should be nounwind in insertCopiesSplitCSR!"); + Entry->addLiveIn(*I); + BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) + .addReg(*I); + + // Insert the copy-back instructions right before the terminator. + for (auto *Exit : Exits) + BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), + TII->get(TargetOpcode::COPY), *I) + .addReg(NewVR); + } +} + +bool X86TargetLowering::supportSwiftError() const { + return Subtarget.is64Bit(); +} + +/// Returns the name of the symbol used to emit stack probes or the empty +/// string if not applicable. +StringRef X86TargetLowering::getStackProbeSymbolName(MachineFunction &MF) const { + // If the function specifically requests stack probes, emit them. + if (MF.getFunction().hasFnAttribute("probe-stack")) + return MF.getFunction().getFnAttribute("probe-stack").getValueAsString(); + + // Generally, if we aren't on Windows, the platform ABI does not include + // support for stack probes, so don't emit them. + if (!Subtarget.isOSWindows() || Subtarget.isTargetMachO()) + return ""; + + // We need a stack probe to conform to the Windows ABI. Choose the right + // symbol. + if (Subtarget.is64Bit()) + return Subtarget.isTargetCygMing() ? "___chkstk_ms" : "__chkstk"; + return Subtarget.isTargetCygMing() ? "_alloca" : "_chkstk"; +} |
