summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp437
1 files changed, 0 insertions, 437 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp b/contrib/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp
deleted file mode 100644
index 20cb3213628e..000000000000
--- a/contrib/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp
+++ /dev/null
@@ -1,437 +0,0 @@
-//===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a transformation that attaches !callees metadata to
-// indirect call sites. For a given call site, the metadata, if present,
-// indicates the set of functions the call site could possibly target at
-// run-time. This metadata is added to indirect call sites when the set of
-// possible targets can be determined by analysis and is known to be small. The
-// analysis driving the transformation is similar to constant propagation and
-// makes uses of the generic sparse propagation solver.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/IPO/CalledValuePropagation.h"
-#include "llvm/Analysis/SparsePropagation.h"
-#include "llvm/Analysis/ValueLatticeUtils.h"
-#include "llvm/IR/InstVisitor.h"
-#include "llvm/IR/MDBuilder.h"
-#include "llvm/Transforms/IPO.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "called-value-propagation"
-
-/// The maximum number of functions to track per lattice value. Once the number
-/// of functions a call site can possibly target exceeds this threshold, it's
-/// lattice value becomes overdefined. The number of possible lattice values is
-/// bounded by Ch(F, M), where F is the number of functions in the module and M
-/// is MaxFunctionsPerValue. As such, this value should be kept very small. We
-/// likely can't do anything useful for call sites with a large number of
-/// possible targets, anyway.
-static cl::opt<unsigned> MaxFunctionsPerValue(
- "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
- cl::desc("The maximum number of functions to track per lattice value"));
-
-namespace {
-/// To enable interprocedural analysis, we assign LLVM values to the following
-/// groups. The register group represents SSA registers, the return group
-/// represents the return values of functions, and the memory group represents
-/// in-memory values. An LLVM Value can technically be in more than one group.
-/// It's necessary to distinguish these groups so we can, for example, track a
-/// global variable separately from the value stored at its location.
-enum class IPOGrouping { Register, Return, Memory };
-
-/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
-using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
-
-/// The lattice value type used by our custom lattice function. It holds the
-/// lattice state, and a set of functions.
-class CVPLatticeVal {
-public:
- /// The states of the lattice values. Only the FunctionSet state is
- /// interesting. It indicates the set of functions to which an LLVM value may
- /// refer.
- enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
-
- /// Comparator for sorting the functions set. We want to keep the order
- /// deterministic for testing, etc.
- struct Compare {
- bool operator()(const Function *LHS, const Function *RHS) const {
- return LHS->getName() < RHS->getName();
- }
- };
-
- CVPLatticeVal() : LatticeState(Undefined) {}
- CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
- CVPLatticeVal(std::vector<Function *> &&Functions)
- : LatticeState(FunctionSet), Functions(std::move(Functions)) {
- assert(std::is_sorted(this->Functions.begin(), this->Functions.end(),
- Compare()));
- }
-
- /// Get a reference to the functions held by this lattice value. The number
- /// of functions will be zero for states other than FunctionSet.
- const std::vector<Function *> &getFunctions() const {
- return Functions;
- }
-
- /// Returns true if the lattice value is in the FunctionSet state.
- bool isFunctionSet() const { return LatticeState == FunctionSet; }
-
- bool operator==(const CVPLatticeVal &RHS) const {
- return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
- }
-
- bool operator!=(const CVPLatticeVal &RHS) const {
- return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
- }
-
-private:
- /// Holds the state this lattice value is in.
- CVPLatticeStateTy LatticeState;
-
- /// Holds functions indicating the possible targets of call sites. This set
- /// is empty for lattice values in the undefined, overdefined, and untracked
- /// states. The maximum size of the set is controlled by
- /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
- /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
- /// small and efficiently copyable.
- // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
- std::vector<Function *> Functions;
-};
-
-/// The custom lattice function used by the generic sparse propagation solver.
-/// It handles merging lattice values and computing new lattice values for
-/// constants, arguments, values returned from trackable functions, and values
-/// located in trackable global variables. It also computes the lattice values
-/// that change as a result of executing instructions.
-class CVPLatticeFunc
- : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
-public:
- CVPLatticeFunc()
- : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
- CVPLatticeVal(CVPLatticeVal::Overdefined),
- CVPLatticeVal(CVPLatticeVal::Untracked)) {}
-
- /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
- CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
- switch (Key.getInt()) {
- case IPOGrouping::Register:
- if (isa<Instruction>(Key.getPointer())) {
- return getUndefVal();
- } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
- if (canTrackArgumentsInterprocedurally(A->getParent()))
- return getUndefVal();
- } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
- return computeConstant(C);
- }
- return getOverdefinedVal();
- case IPOGrouping::Memory:
- case IPOGrouping::Return:
- if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
- if (canTrackGlobalVariableInterprocedurally(GV))
- return computeConstant(GV->getInitializer());
- } else if (auto *F = cast<Function>(Key.getPointer()))
- if (canTrackReturnsInterprocedurally(F))
- return getUndefVal();
- }
- return getOverdefinedVal();
- }
-
- /// Merge the two given lattice values. The interesting cases are merging two
- /// FunctionSet values and a FunctionSet value with an Undefined value. For
- /// these cases, we simply union the function sets. If the size of the union
- /// is greater than the maximum functions we track, the merged value is
- /// overdefined.
- CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
- if (X == getOverdefinedVal() || Y == getOverdefinedVal())
- return getOverdefinedVal();
- if (X == getUndefVal() && Y == getUndefVal())
- return getUndefVal();
- std::vector<Function *> Union;
- std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
- Y.getFunctions().begin(), Y.getFunctions().end(),
- std::back_inserter(Union), CVPLatticeVal::Compare{});
- if (Union.size() > MaxFunctionsPerValue)
- return getOverdefinedVal();
- return CVPLatticeVal(std::move(Union));
- }
-
- /// Compute the lattice values that change as a result of executing the given
- /// instruction. The changed values are stored in \p ChangedValues. We handle
- /// just a few kinds of instructions since we're only propagating values that
- /// can be called.
- void ComputeInstructionState(
- Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
- switch (I.getOpcode()) {
- case Instruction::Call:
- return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
- case Instruction::Invoke:
- return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS);
- case Instruction::Load:
- return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
- case Instruction::Ret:
- return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
- case Instruction::Select:
- return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
- case Instruction::Store:
- return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
- default:
- return visitInst(I, ChangedValues, SS);
- }
- }
-
- /// Print the given CVPLatticeVal to the specified stream.
- void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
- if (LV == getUndefVal())
- OS << "Undefined ";
- else if (LV == getOverdefinedVal())
- OS << "Overdefined";
- else if (LV == getUntrackedVal())
- OS << "Untracked ";
- else
- OS << "FunctionSet";
- }
-
- /// Print the given CVPLatticeKey to the specified stream.
- void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
- if (Key.getInt() == IPOGrouping::Register)
- OS << "<reg> ";
- else if (Key.getInt() == IPOGrouping::Memory)
- OS << "<mem> ";
- else if (Key.getInt() == IPOGrouping::Return)
- OS << "<ret> ";
- if (isa<Function>(Key.getPointer()))
- OS << Key.getPointer()->getName();
- else
- OS << *Key.getPointer();
- }
-
- /// We collect a set of indirect calls when visiting call sites. This method
- /// returns a reference to that set.
- SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; }
-
-private:
- /// Holds the indirect calls we encounter during the analysis. We will attach
- /// metadata to these calls after the analysis indicating the functions the
- /// calls can possibly target.
- SmallPtrSet<Instruction *, 32> IndirectCalls;
-
- /// Compute a new lattice value for the given constant. The constant, after
- /// stripping any pointer casts, should be a Function. We ignore null
- /// pointers as an optimization, since calling these values is undefined
- /// behavior.
- CVPLatticeVal computeConstant(Constant *C) {
- if (isa<ConstantPointerNull>(C))
- return CVPLatticeVal(CVPLatticeVal::FunctionSet);
- if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
- return CVPLatticeVal({F});
- return getOverdefinedVal();
- }
-
- /// Handle return instructions. The function's return state is the merge of
- /// the returned value state and the function's return state.
- void visitReturn(ReturnInst &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- Function *F = I.getParent()->getParent();
- if (F->getReturnType()->isVoidTy())
- return;
- auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
- auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
- ChangedValues[RetF] =
- MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
- }
-
- /// Handle call sites. The state of a called function's formal arguments is
- /// the merge of the argument state with the call sites corresponding actual
- /// argument state. The call site state is the merge of the call site state
- /// with the returned value state of the called function.
- void visitCallSite(CallSite CS,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- Function *F = CS.getCalledFunction();
- Instruction *I = CS.getInstruction();
- auto RegI = CVPLatticeKey(I, IPOGrouping::Register);
-
- // If this is an indirect call, save it so we can quickly revisit it when
- // attaching metadata.
- if (!F)
- IndirectCalls.insert(I);
-
- // If we can't track the function's return values, there's nothing to do.
- if (!F || !canTrackReturnsInterprocedurally(F)) {
- // Void return, No need to create and update CVPLattice state as no one
- // can use it.
- if (I->getType()->isVoidTy())
- return;
- ChangedValues[RegI] = getOverdefinedVal();
- return;
- }
-
- // Inform the solver that the called function is executable, and perform
- // the merges for the arguments and return value.
- SS.MarkBlockExecutable(&F->front());
- auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
- for (Argument &A : F->args()) {
- auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
- auto RegActual =
- CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
- ChangedValues[RegFormal] =
- MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
- }
-
- // Void return, No need to create and update CVPLattice state as no one can
- // use it.
- if (I->getType()->isVoidTy())
- return;
-
- ChangedValues[RegI] =
- MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
- }
-
- /// Handle select instructions. The select instruction state is the merge the
- /// true and false value states.
- void visitSelect(SelectInst &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
- auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
- auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
- ChangedValues[RegI] =
- MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
- }
-
- /// Handle load instructions. If the pointer operand of the load is a global
- /// variable, we attempt to track the value. The loaded value state is the
- /// merge of the loaded value state with the global variable state.
- void visitLoad(LoadInst &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
- if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
- auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
- ChangedValues[RegI] =
- MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
- } else {
- ChangedValues[RegI] = getOverdefinedVal();
- }
- }
-
- /// Handle store instructions. If the pointer operand of the store is a
- /// global variable, we attempt to track the value. The global variable state
- /// is the merge of the stored value state with the global variable state.
- void visitStore(StoreInst &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
- if (!GV)
- return;
- auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
- auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
- ChangedValues[MemGV] =
- MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
- }
-
- /// Handle all other instructions. All other instructions are marked
- /// overdefined.
- void visitInst(Instruction &I,
- DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
- SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
- // Simply bail if this instruction has no user.
- if (I.use_empty())
- return;
- auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
- ChangedValues[RegI] = getOverdefinedVal();
- }
-};
-} // namespace
-
-namespace llvm {
-/// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
-/// must translate between LatticeKeys and LLVM Values when adding Values to
-/// its work list and inspecting the state of control-flow related values.
-template <> struct LatticeKeyInfo<CVPLatticeKey> {
- static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
- return Key.getPointer();
- }
- static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
- return CVPLatticeKey(V, IPOGrouping::Register);
- }
-};
-} // namespace llvm
-
-static bool runCVP(Module &M) {
- // Our custom lattice function and generic sparse propagation solver.
- CVPLatticeFunc Lattice;
- SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
-
- // For each function in the module, if we can't track its arguments, let the
- // generic solver assume it is executable.
- for (Function &F : M)
- if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
- Solver.MarkBlockExecutable(&F.front());
-
- // Solver our custom lattice. In doing so, we will also build a set of
- // indirect call sites.
- Solver.Solve();
-
- // Attach metadata to the indirect call sites that were collected indicating
- // the set of functions they can possibly target.
- bool Changed = false;
- MDBuilder MDB(M.getContext());
- for (Instruction *C : Lattice.getIndirectCalls()) {
- CallSite CS(C);
- auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register);
- CVPLatticeVal LV = Solver.getExistingValueState(RegI);
- if (!LV.isFunctionSet() || LV.getFunctions().empty())
- continue;
- MDNode *Callees = MDB.createCallees(LV.getFunctions());
- C->setMetadata(LLVMContext::MD_callees, Callees);
- Changed = true;
- }
-
- return Changed;
-}
-
-PreservedAnalyses CalledValuePropagationPass::run(Module &M,
- ModuleAnalysisManager &) {
- runCVP(M);
- return PreservedAnalyses::all();
-}
-
-namespace {
-class CalledValuePropagationLegacyPass : public ModulePass {
-public:
- static char ID;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- }
-
- CalledValuePropagationLegacyPass() : ModulePass(ID) {
- initializeCalledValuePropagationLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
-
- bool runOnModule(Module &M) override {
- if (skipModule(M))
- return false;
- return runCVP(M);
- }
-};
-} // namespace
-
-char CalledValuePropagationLegacyPass::ID = 0;
-INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
- "Called Value Propagation", false, false)
-
-ModulePass *llvm::createCalledValuePropagationPass() {
- return new CalledValuePropagationLegacyPass();
-}