summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp1726
1 files changed, 0 insertions, 1726 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp b/contrib/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
deleted file mode 100644
index 6b6dd6194e17..000000000000
--- a/contrib/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
+++ /dev/null
@@ -1,1726 +0,0 @@
-//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass implements whole program optimization of virtual calls in cases
-// where we know (via !type metadata) that the list of callees is fixed. This
-// includes the following:
-// - Single implementation devirtualization: if a virtual call has a single
-// possible callee, replace all calls with a direct call to that callee.
-// - Virtual constant propagation: if the virtual function's return type is an
-// integer <=64 bits and all possible callees are readnone, for each class and
-// each list of constant arguments: evaluate the function, store the return
-// value alongside the virtual table, and rewrite each virtual call as a load
-// from the virtual table.
-// - Uniform return value optimization: if the conditions for virtual constant
-// propagation hold and each function returns the same constant value, replace
-// each virtual call with that constant.
-// - Unique return value optimization for i1 return values: if the conditions
-// for virtual constant propagation hold and a single vtable's function
-// returns 0, or a single vtable's function returns 1, replace each virtual
-// call with a comparison of the vptr against that vtable's address.
-//
-// This pass is intended to be used during the regular and thin LTO pipelines.
-// During regular LTO, the pass determines the best optimization for each
-// virtual call and applies the resolutions directly to virtual calls that are
-// eligible for virtual call optimization (i.e. calls that use either of the
-// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During
-// ThinLTO, the pass operates in two phases:
-// - Export phase: this is run during the thin link over a single merged module
-// that contains all vtables with !type metadata that participate in the link.
-// The pass computes a resolution for each virtual call and stores it in the
-// type identifier summary.
-// - Import phase: this is run during the thin backends over the individual
-// modules. The pass applies the resolutions previously computed during the
-// import phase to each eligible virtual call.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseMapInfo.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/BasicAliasAnalysis.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/TypeMetadataUtils.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/ModuleSummaryIndexYAML.h"
-#include "llvm/Pass.h"
-#include "llvm/PassRegistry.h"
-#include "llvm/PassSupport.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Error.h"
-#include "llvm/Support/FileSystem.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Transforms/IPO.h"
-#include "llvm/Transforms/IPO/FunctionAttrs.h"
-#include "llvm/Transforms/Utils/Evaluator.h"
-#include <algorithm>
-#include <cstddef>
-#include <map>
-#include <set>
-#include <string>
-
-using namespace llvm;
-using namespace wholeprogramdevirt;
-
-#define DEBUG_TYPE "wholeprogramdevirt"
-
-static cl::opt<PassSummaryAction> ClSummaryAction(
- "wholeprogramdevirt-summary-action",
- cl::desc("What to do with the summary when running this pass"),
- cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
- clEnumValN(PassSummaryAction::Import, "import",
- "Import typeid resolutions from summary and globals"),
- clEnumValN(PassSummaryAction::Export, "export",
- "Export typeid resolutions to summary and globals")),
- cl::Hidden);
-
-static cl::opt<std::string> ClReadSummary(
- "wholeprogramdevirt-read-summary",
- cl::desc("Read summary from given YAML file before running pass"),
- cl::Hidden);
-
-static cl::opt<std::string> ClWriteSummary(
- "wholeprogramdevirt-write-summary",
- cl::desc("Write summary to given YAML file after running pass"),
- cl::Hidden);
-
-static cl::opt<unsigned>
- ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
- cl::init(10), cl::ZeroOrMore,
- cl::desc("Maximum number of call targets per "
- "call site to enable branch funnels"));
-
-// Find the minimum offset that we may store a value of size Size bits at. If
-// IsAfter is set, look for an offset before the object, otherwise look for an
-// offset after the object.
-uint64_t
-wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
- bool IsAfter, uint64_t Size) {
- // Find a minimum offset taking into account only vtable sizes.
- uint64_t MinByte = 0;
- for (const VirtualCallTarget &Target : Targets) {
- if (IsAfter)
- MinByte = std::max(MinByte, Target.minAfterBytes());
- else
- MinByte = std::max(MinByte, Target.minBeforeBytes());
- }
-
- // Build a vector of arrays of bytes covering, for each target, a slice of the
- // used region (see AccumBitVector::BytesUsed in
- // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
- // this aligns the used regions to start at MinByte.
- //
- // In this example, A, B and C are vtables, # is a byte already allocated for
- // a virtual function pointer, AAAA... (etc.) are the used regions for the
- // vtables and Offset(X) is the value computed for the Offset variable below
- // for X.
- //
- // Offset(A)
- // | |
- // |MinByte
- // A: ################AAAAAAAA|AAAAAAAA
- // B: ########BBBBBBBBBBBBBBBB|BBBB
- // C: ########################|CCCCCCCCCCCCCCCC
- // | Offset(B) |
- //
- // This code produces the slices of A, B and C that appear after the divider
- // at MinByte.
- std::vector<ArrayRef<uint8_t>> Used;
- for (const VirtualCallTarget &Target : Targets) {
- ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
- : Target.TM->Bits->Before.BytesUsed;
- uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
- : MinByte - Target.minBeforeBytes();
-
- // Disregard used regions that are smaller than Offset. These are
- // effectively all-free regions that do not need to be checked.
- if (VTUsed.size() > Offset)
- Used.push_back(VTUsed.slice(Offset));
- }
-
- if (Size == 1) {
- // Find a free bit in each member of Used.
- for (unsigned I = 0;; ++I) {
- uint8_t BitsUsed = 0;
- for (auto &&B : Used)
- if (I < B.size())
- BitsUsed |= B[I];
- if (BitsUsed != 0xff)
- return (MinByte + I) * 8 +
- countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
- }
- } else {
- // Find a free (Size/8) byte region in each member of Used.
- // FIXME: see if alignment helps.
- for (unsigned I = 0;; ++I) {
- for (auto &&B : Used) {
- unsigned Byte = 0;
- while ((I + Byte) < B.size() && Byte < (Size / 8)) {
- if (B[I + Byte])
- goto NextI;
- ++Byte;
- }
- }
- return (MinByte + I) * 8;
- NextI:;
- }
- }
-}
-
-void wholeprogramdevirt::setBeforeReturnValues(
- MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
- unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
- if (BitWidth == 1)
- OffsetByte = -(AllocBefore / 8 + 1);
- else
- OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
- OffsetBit = AllocBefore % 8;
-
- for (VirtualCallTarget &Target : Targets) {
- if (BitWidth == 1)
- Target.setBeforeBit(AllocBefore);
- else
- Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
- }
-}
-
-void wholeprogramdevirt::setAfterReturnValues(
- MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
- unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
- if (BitWidth == 1)
- OffsetByte = AllocAfter / 8;
- else
- OffsetByte = (AllocAfter + 7) / 8;
- OffsetBit = AllocAfter % 8;
-
- for (VirtualCallTarget &Target : Targets) {
- if (BitWidth == 1)
- Target.setAfterBit(AllocAfter);
- else
- Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
- }
-}
-
-VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
- : Fn(Fn), TM(TM),
- IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
-
-namespace {
-
-// A slot in a set of virtual tables. The TypeID identifies the set of virtual
-// tables, and the ByteOffset is the offset in bytes from the address point to
-// the virtual function pointer.
-struct VTableSlot {
- Metadata *TypeID;
- uint64_t ByteOffset;
-};
-
-} // end anonymous namespace
-
-namespace llvm {
-
-template <> struct DenseMapInfo<VTableSlot> {
- static VTableSlot getEmptyKey() {
- return {DenseMapInfo<Metadata *>::getEmptyKey(),
- DenseMapInfo<uint64_t>::getEmptyKey()};
- }
- static VTableSlot getTombstoneKey() {
- return {DenseMapInfo<Metadata *>::getTombstoneKey(),
- DenseMapInfo<uint64_t>::getTombstoneKey()};
- }
- static unsigned getHashValue(const VTableSlot &I) {
- return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
- DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
- }
- static bool isEqual(const VTableSlot &LHS,
- const VTableSlot &RHS) {
- return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
- }
-};
-
-} // end namespace llvm
-
-namespace {
-
-// A virtual call site. VTable is the loaded virtual table pointer, and CS is
-// the indirect virtual call.
-struct VirtualCallSite {
- Value *VTable;
- CallSite CS;
-
- // If non-null, this field points to the associated unsafe use count stored in
- // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
- // of that field for details.
- unsigned *NumUnsafeUses;
-
- void
- emitRemark(const StringRef OptName, const StringRef TargetName,
- function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
- Function *F = CS.getCaller();
- DebugLoc DLoc = CS->getDebugLoc();
- BasicBlock *Block = CS.getParent();
-
- using namespace ore;
- OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
- << NV("Optimization", OptName)
- << ": devirtualized a call to "
- << NV("FunctionName", TargetName));
- }
-
- void replaceAndErase(
- const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
- function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
- Value *New) {
- if (RemarksEnabled)
- emitRemark(OptName, TargetName, OREGetter);
- CS->replaceAllUsesWith(New);
- if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
- BranchInst::Create(II->getNormalDest(), CS.getInstruction());
- II->getUnwindDest()->removePredecessor(II->getParent());
- }
- CS->eraseFromParent();
- // This use is no longer unsafe.
- if (NumUnsafeUses)
- --*NumUnsafeUses;
- }
-};
-
-// Call site information collected for a specific VTableSlot and possibly a list
-// of constant integer arguments. The grouping by arguments is handled by the
-// VTableSlotInfo class.
-struct CallSiteInfo {
- /// The set of call sites for this slot. Used during regular LTO and the
- /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
- /// call sites that appear in the merged module itself); in each of these
- /// cases we are directly operating on the call sites at the IR level.
- std::vector<VirtualCallSite> CallSites;
-
- /// Whether all call sites represented by this CallSiteInfo, including those
- /// in summaries, have been devirtualized. This starts off as true because a
- /// default constructed CallSiteInfo represents no call sites.
- bool AllCallSitesDevirted = true;
-
- // These fields are used during the export phase of ThinLTO and reflect
- // information collected from function summaries.
-
- /// Whether any function summary contains an llvm.assume(llvm.type.test) for
- /// this slot.
- bool SummaryHasTypeTestAssumeUsers = false;
-
- /// CFI-specific: a vector containing the list of function summaries that use
- /// the llvm.type.checked.load intrinsic and therefore will require
- /// resolutions for llvm.type.test in order to implement CFI checks if
- /// devirtualization was unsuccessful. If devirtualization was successful, the
- /// pass will clear this vector by calling markDevirt(). If at the end of the
- /// pass the vector is non-empty, we will need to add a use of llvm.type.test
- /// to each of the function summaries in the vector.
- std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
-
- bool isExported() const {
- return SummaryHasTypeTestAssumeUsers ||
- !SummaryTypeCheckedLoadUsers.empty();
- }
-
- void markSummaryHasTypeTestAssumeUsers() {
- SummaryHasTypeTestAssumeUsers = true;
- AllCallSitesDevirted = false;
- }
-
- void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
- SummaryTypeCheckedLoadUsers.push_back(FS);
- AllCallSitesDevirted = false;
- }
-
- void markDevirt() {
- AllCallSitesDevirted = true;
-
- // As explained in the comment for SummaryTypeCheckedLoadUsers.
- SummaryTypeCheckedLoadUsers.clear();
- }
-};
-
-// Call site information collected for a specific VTableSlot.
-struct VTableSlotInfo {
- // The set of call sites which do not have all constant integer arguments
- // (excluding "this").
- CallSiteInfo CSInfo;
-
- // The set of call sites with all constant integer arguments (excluding
- // "this"), grouped by argument list.
- std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
-
- void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
-
-private:
- CallSiteInfo &findCallSiteInfo(CallSite CS);
-};
-
-CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
- std::vector<uint64_t> Args;
- auto *CI = dyn_cast<IntegerType>(CS.getType());
- if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
- return CSInfo;
- for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
- auto *CI = dyn_cast<ConstantInt>(Arg);
- if (!CI || CI->getBitWidth() > 64)
- return CSInfo;
- Args.push_back(CI->getZExtValue());
- }
- return ConstCSInfo[Args];
-}
-
-void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
- unsigned *NumUnsafeUses) {
- auto &CSI = findCallSiteInfo(CS);
- CSI.AllCallSitesDevirted = false;
- CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
-}
-
-struct DevirtModule {
- Module &M;
- function_ref<AAResults &(Function &)> AARGetter;
- function_ref<DominatorTree &(Function &)> LookupDomTree;
-
- ModuleSummaryIndex *ExportSummary;
- const ModuleSummaryIndex *ImportSummary;
-
- IntegerType *Int8Ty;
- PointerType *Int8PtrTy;
- IntegerType *Int32Ty;
- IntegerType *Int64Ty;
- IntegerType *IntPtrTy;
-
- bool RemarksEnabled;
- function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
-
- MapVector<VTableSlot, VTableSlotInfo> CallSlots;
-
- // This map keeps track of the number of "unsafe" uses of a loaded function
- // pointer. The key is the associated llvm.type.test intrinsic call generated
- // by this pass. An unsafe use is one that calls the loaded function pointer
- // directly. Every time we eliminate an unsafe use (for example, by
- // devirtualizing it or by applying virtual constant propagation), we
- // decrement the value stored in this map. If a value reaches zero, we can
- // eliminate the type check by RAUWing the associated llvm.type.test call with
- // true.
- std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
-
- DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
- function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
- function_ref<DominatorTree &(Function &)> LookupDomTree,
- ModuleSummaryIndex *ExportSummary,
- const ModuleSummaryIndex *ImportSummary)
- : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
- ExportSummary(ExportSummary), ImportSummary(ImportSummary),
- Int8Ty(Type::getInt8Ty(M.getContext())),
- Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
- Int32Ty(Type::getInt32Ty(M.getContext())),
- Int64Ty(Type::getInt64Ty(M.getContext())),
- IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
- RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
- assert(!(ExportSummary && ImportSummary));
- }
-
- bool areRemarksEnabled();
-
- void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
- void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
-
- void buildTypeIdentifierMap(
- std::vector<VTableBits> &Bits,
- DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
- Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
- bool
- tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
- const std::set<TypeMemberInfo> &TypeMemberInfos,
- uint64_t ByteOffset);
-
- void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
- bool &IsExported);
- bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
- VTableSlotInfo &SlotInfo,
- WholeProgramDevirtResolution *Res);
-
- void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
- bool &IsExported);
- void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
- VTableSlotInfo &SlotInfo,
- WholeProgramDevirtResolution *Res, VTableSlot Slot);
-
- bool tryEvaluateFunctionsWithArgs(
- MutableArrayRef<VirtualCallTarget> TargetsForSlot,
- ArrayRef<uint64_t> Args);
-
- void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
- uint64_t TheRetVal);
- bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
- CallSiteInfo &CSInfo,
- WholeProgramDevirtResolution::ByArg *Res);
-
- // Returns the global symbol name that is used to export information about the
- // given vtable slot and list of arguments.
- std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
- StringRef Name);
-
- bool shouldExportConstantsAsAbsoluteSymbols();
-
- // This function is called during the export phase to create a symbol
- // definition containing information about the given vtable slot and list of
- // arguments.
- void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
- Constant *C);
- void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
- uint32_t Const, uint32_t &Storage);
-
- // This function is called during the import phase to create a reference to
- // the symbol definition created during the export phase.
- Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
- StringRef Name);
- Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
- StringRef Name, IntegerType *IntTy,
- uint32_t Storage);
-
- Constant *getMemberAddr(const TypeMemberInfo *M);
-
- void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
- Constant *UniqueMemberAddr);
- bool tryUniqueRetValOpt(unsigned BitWidth,
- MutableArrayRef<VirtualCallTarget> TargetsForSlot,
- CallSiteInfo &CSInfo,
- WholeProgramDevirtResolution::ByArg *Res,
- VTableSlot Slot, ArrayRef<uint64_t> Args);
-
- void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
- Constant *Byte, Constant *Bit);
- bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
- VTableSlotInfo &SlotInfo,
- WholeProgramDevirtResolution *Res, VTableSlot Slot);
-
- void rebuildGlobal(VTableBits &B);
-
- // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
- void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
-
- // If we were able to eliminate all unsafe uses for a type checked load,
- // eliminate the associated type tests by replacing them with true.
- void removeRedundantTypeTests();
-
- bool run();
-
- // Lower the module using the action and summary passed as command line
- // arguments. For testing purposes only.
- static bool
- runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
- function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
- function_ref<DominatorTree &(Function &)> LookupDomTree);
-};
-
-struct WholeProgramDevirt : public ModulePass {
- static char ID;
-
- bool UseCommandLine = false;
-
- ModuleSummaryIndex *ExportSummary;
- const ModuleSummaryIndex *ImportSummary;
-
- WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
- initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
- }
-
- WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
- const ModuleSummaryIndex *ImportSummary)
- : ModulePass(ID), ExportSummary(ExportSummary),
- ImportSummary(ImportSummary) {
- initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnModule(Module &M) override {
- if (skipModule(M))
- return false;
-
- // In the new pass manager, we can request the optimization
- // remark emitter pass on a per-function-basis, which the
- // OREGetter will do for us.
- // In the old pass manager, this is harder, so we just build
- // an optimization remark emitter on the fly, when we need it.
- std::unique_ptr<OptimizationRemarkEmitter> ORE;
- auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
- ORE = make_unique<OptimizationRemarkEmitter>(F);
- return *ORE;
- };
-
- auto LookupDomTree = [this](Function &F) -> DominatorTree & {
- return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
- };
-
- if (UseCommandLine)
- return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
- LookupDomTree);
-
- return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
- ExportSummary, ImportSummary)
- .run();
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- }
-};
-
-} // end anonymous namespace
-
-INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
- "Whole program devirtualization", false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
- "Whole program devirtualization", false, false)
-char WholeProgramDevirt::ID = 0;
-
-ModulePass *
-llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
- const ModuleSummaryIndex *ImportSummary) {
- return new WholeProgramDevirt(ExportSummary, ImportSummary);
-}
-
-PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
- ModuleAnalysisManager &AM) {
- auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
- auto AARGetter = [&](Function &F) -> AAResults & {
- return FAM.getResult<AAManager>(F);
- };
- auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
- return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
- };
- auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
- return FAM.getResult<DominatorTreeAnalysis>(F);
- };
- if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
- ImportSummary)
- .run())
- return PreservedAnalyses::all();
- return PreservedAnalyses::none();
-}
-
-bool DevirtModule::runForTesting(
- Module &M, function_ref<AAResults &(Function &)> AARGetter,
- function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
- function_ref<DominatorTree &(Function &)> LookupDomTree) {
- ModuleSummaryIndex Summary(/*HaveGVs=*/false);
-
- // Handle the command-line summary arguments. This code is for testing
- // purposes only, so we handle errors directly.
- if (!ClReadSummary.empty()) {
- ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
- ": ");
- auto ReadSummaryFile =
- ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
-
- yaml::Input In(ReadSummaryFile->getBuffer());
- In >> Summary;
- ExitOnErr(errorCodeToError(In.error()));
- }
-
- bool Changed =
- DevirtModule(
- M, AARGetter, OREGetter, LookupDomTree,
- ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
- ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
- .run();
-
- if (!ClWriteSummary.empty()) {
- ExitOnError ExitOnErr(
- "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
- std::error_code EC;
- raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
- ExitOnErr(errorCodeToError(EC));
-
- yaml::Output Out(OS);
- Out << Summary;
- }
-
- return Changed;
-}
-
-void DevirtModule::buildTypeIdentifierMap(
- std::vector<VTableBits> &Bits,
- DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
- DenseMap<GlobalVariable *, VTableBits *> GVToBits;
- Bits.reserve(M.getGlobalList().size());
- SmallVector<MDNode *, 2> Types;
- for (GlobalVariable &GV : M.globals()) {
- Types.clear();
- GV.getMetadata(LLVMContext::MD_type, Types);
- if (GV.isDeclaration() || Types.empty())
- continue;
-
- VTableBits *&BitsPtr = GVToBits[&GV];
- if (!BitsPtr) {
- Bits.emplace_back();
- Bits.back().GV = &GV;
- Bits.back().ObjectSize =
- M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
- BitsPtr = &Bits.back();
- }
-
- for (MDNode *Type : Types) {
- auto TypeID = Type->getOperand(1).get();
-
- uint64_t Offset =
- cast<ConstantInt>(
- cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
- ->getZExtValue();
-
- TypeIdMap[TypeID].insert({BitsPtr, Offset});
- }
- }
-}
-
-Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
- if (I->getType()->isPointerTy()) {
- if (Offset == 0)
- return I;
- return nullptr;
- }
-
- const DataLayout &DL = M.getDataLayout();
-
- if (auto *C = dyn_cast<ConstantStruct>(I)) {
- const StructLayout *SL = DL.getStructLayout(C->getType());
- if (Offset >= SL->getSizeInBytes())
- return nullptr;
-
- unsigned Op = SL->getElementContainingOffset(Offset);
- return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
- Offset - SL->getElementOffset(Op));
- }
- if (auto *C = dyn_cast<ConstantArray>(I)) {
- ArrayType *VTableTy = C->getType();
- uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
-
- unsigned Op = Offset / ElemSize;
- if (Op >= C->getNumOperands())
- return nullptr;
-
- return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
- Offset % ElemSize);
- }
- return nullptr;
-}
-
-bool DevirtModule::tryFindVirtualCallTargets(
- std::vector<VirtualCallTarget> &TargetsForSlot,
- const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
- for (const TypeMemberInfo &TM : TypeMemberInfos) {
- if (!TM.Bits->GV->isConstant())
- return false;
-
- Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
- TM.Offset + ByteOffset);
- if (!Ptr)
- return false;
-
- auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
- if (!Fn)
- return false;
-
- // We can disregard __cxa_pure_virtual as a possible call target, as
- // calls to pure virtuals are UB.
- if (Fn->getName() == "__cxa_pure_virtual")
- continue;
-
- TargetsForSlot.push_back({Fn, &TM});
- }
-
- // Give up if we couldn't find any targets.
- return !TargetsForSlot.empty();
-}
-
-void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
- Constant *TheFn, bool &IsExported) {
- auto Apply = [&](CallSiteInfo &CSInfo) {
- for (auto &&VCallSite : CSInfo.CallSites) {
- if (RemarksEnabled)
- VCallSite.emitRemark("single-impl",
- TheFn->stripPointerCasts()->getName(), OREGetter);
- VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
- TheFn, VCallSite.CS.getCalledValue()->getType()));
- // This use is no longer unsafe.
- if (VCallSite.NumUnsafeUses)
- --*VCallSite.NumUnsafeUses;
- }
- if (CSInfo.isExported())
- IsExported = true;
- CSInfo.markDevirt();
- };
- Apply(SlotInfo.CSInfo);
- for (auto &P : SlotInfo.ConstCSInfo)
- Apply(P.second);
-}
-
-bool DevirtModule::trySingleImplDevirt(
- MutableArrayRef<VirtualCallTarget> TargetsForSlot,
- VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
- // See if the program contains a single implementation of this virtual
- // function.
- Function *TheFn = TargetsForSlot[0].Fn;
- for (auto &&Target : TargetsForSlot)
- if (TheFn != Target.Fn)
- return false;
-
- // If so, update each call site to call that implementation directly.
- if (RemarksEnabled)
- TargetsForSlot[0].WasDevirt = true;
-
- bool IsExported = false;
- applySingleImplDevirt(SlotInfo, TheFn, IsExported);
- if (!IsExported)
- return false;
-
- // If the only implementation has local linkage, we must promote to external
- // to make it visible to thin LTO objects. We can only get here during the
- // ThinLTO export phase.
- if (TheFn->hasLocalLinkage()) {
- std::string NewName = (TheFn->getName() + "$merged").str();
-
- // Since we are renaming the function, any comdats with the same name must
- // also be renamed. This is required when targeting COFF, as the comdat name
- // must match one of the names of the symbols in the comdat.
- if (Comdat *C = TheFn->getComdat()) {
- if (C->getName() == TheFn->getName()) {
- Comdat *NewC = M.getOrInsertComdat(NewName);
- NewC->setSelectionKind(C->getSelectionKind());
- for (GlobalObject &GO : M.global_objects())
- if (GO.getComdat() == C)
- GO.setComdat(NewC);
- }
- }
-
- TheFn->setLinkage(GlobalValue::ExternalLinkage);
- TheFn->setVisibility(GlobalValue::HiddenVisibility);
- TheFn->setName(NewName);
- }
-
- Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
- Res->SingleImplName = TheFn->getName();
-
- return true;
-}
-
-void DevirtModule::tryICallBranchFunnel(
- MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
- WholeProgramDevirtResolution *Res, VTableSlot Slot) {
- Triple T(M.getTargetTriple());
- if (T.getArch() != Triple::x86_64)
- return;
-
- if (TargetsForSlot.size() > ClThreshold)
- return;
-
- bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
- if (!HasNonDevirt)
- for (auto &P : SlotInfo.ConstCSInfo)
- if (!P.second.AllCallSitesDevirted) {
- HasNonDevirt = true;
- break;
- }
-
- if (!HasNonDevirt)
- return;
-
- FunctionType *FT =
- FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
- Function *JT;
- if (isa<MDString>(Slot.TypeID)) {
- JT = Function::Create(FT, Function::ExternalLinkage,
- M.getDataLayout().getProgramAddressSpace(),
- getGlobalName(Slot, {}, "branch_funnel"), &M);
- JT->setVisibility(GlobalValue::HiddenVisibility);
- } else {
- JT = Function::Create(FT, Function::InternalLinkage,
- M.getDataLayout().getProgramAddressSpace(),
- "branch_funnel", &M);
- }
- JT->addAttribute(1, Attribute::Nest);
-
- std::vector<Value *> JTArgs;
- JTArgs.push_back(JT->arg_begin());
- for (auto &T : TargetsForSlot) {
- JTArgs.push_back(getMemberAddr(T.TM));
- JTArgs.push_back(T.Fn);
- }
-
- BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
- Function *Intr =
- Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
-
- auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
- CI->setTailCallKind(CallInst::TCK_MustTail);
- ReturnInst::Create(M.getContext(), nullptr, BB);
-
- bool IsExported = false;
- applyICallBranchFunnel(SlotInfo, JT, IsExported);
- if (IsExported)
- Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
-}
-
-void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
- Constant *JT, bool &IsExported) {
- auto Apply = [&](CallSiteInfo &CSInfo) {
- if (CSInfo.isExported())
- IsExported = true;
- if (CSInfo.AllCallSitesDevirted)
- return;
- for (auto &&VCallSite : CSInfo.CallSites) {
- CallSite CS = VCallSite.CS;
-
- // Jump tables are only profitable if the retpoline mitigation is enabled.
- Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
- if (FSAttr.hasAttribute(Attribute::None) ||
- !FSAttr.getValueAsString().contains("+retpoline"))
- continue;
-
- if (RemarksEnabled)
- VCallSite.emitRemark("branch-funnel",
- JT->stripPointerCasts()->getName(), OREGetter);
-
- // Pass the address of the vtable in the nest register, which is r10 on
- // x86_64.
- std::vector<Type *> NewArgs;
- NewArgs.push_back(Int8PtrTy);
- for (Type *T : CS.getFunctionType()->params())
- NewArgs.push_back(T);
- FunctionType *NewFT =
- FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
- CS.getFunctionType()->isVarArg());
- PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
-
- IRBuilder<> IRB(CS.getInstruction());
- std::vector<Value *> Args;
- Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
- for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
- Args.push_back(CS.getArgOperand(I));
-
- CallSite NewCS;
- if (CS.isCall())
- NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
- else
- NewCS = IRB.CreateInvoke(
- NewFT, IRB.CreateBitCast(JT, NewFTPtr),
- cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
- cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
- NewCS.setCallingConv(CS.getCallingConv());
-
- AttributeList Attrs = CS.getAttributes();
- std::vector<AttributeSet> NewArgAttrs;
- NewArgAttrs.push_back(AttributeSet::get(
- M.getContext(), ArrayRef<Attribute>{Attribute::get(
- M.getContext(), Attribute::Nest)}));
- for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I)
- NewArgAttrs.push_back(Attrs.getParamAttributes(I));
- NewCS.setAttributes(
- AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
- Attrs.getRetAttributes(), NewArgAttrs));
-
- CS->replaceAllUsesWith(NewCS.getInstruction());
- CS->eraseFromParent();
-
- // This use is no longer unsafe.
- if (VCallSite.NumUnsafeUses)
- --*VCallSite.NumUnsafeUses;
- }
- // Don't mark as devirtualized because there may be callers compiled without
- // retpoline mitigation, which would mean that they are lowered to
- // llvm.type.test and therefore require an llvm.type.test resolution for the
- // type identifier.
- };
- Apply(SlotInfo.CSInfo);
- for (auto &P : SlotInfo.ConstCSInfo)
- Apply(P.second);
-}
-
-bool DevirtModule::tryEvaluateFunctionsWithArgs(
- MutableArrayRef<VirtualCallTarget> TargetsForSlot,
- ArrayRef<uint64_t> Args) {
- // Evaluate each function and store the result in each target's RetVal
- // field.
- for (VirtualCallTarget &Target : TargetsForSlot) {
- if (Target.Fn->arg_size() != Args.size() + 1)
- return false;
-
- Evaluator Eval(M.getDataLayout(), nullptr);
- SmallVector<Constant *, 2> EvalArgs;
- EvalArgs.push_back(
- Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
- for (unsigned I = 0; I != Args.size(); ++I) {
- auto *ArgTy = dyn_cast<IntegerType>(
- Target.Fn->getFunctionType()->getParamType(I + 1));
- if (!ArgTy)
- return false;
- EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
- }
-
- Constant *RetVal;
- if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
- !isa<ConstantInt>(RetVal))
- return false;
- Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
- }
- return true;
-}
-
-void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
- uint64_t TheRetVal) {
- for (auto Call : CSInfo.CallSites)
- Call.replaceAndErase(
- "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
- ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
- CSInfo.markDevirt();
-}
-
-bool DevirtModule::tryUniformRetValOpt(
- MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
- WholeProgramDevirtResolution::ByArg *Res) {
- // Uniform return value optimization. If all functions return the same
- // constant, replace all calls with that constant.
- uint64_t TheRetVal = TargetsForSlot[0].RetVal;
- for (const VirtualCallTarget &Target : TargetsForSlot)
- if (Target.RetVal != TheRetVal)
- return false;
-
- if (CSInfo.isExported()) {
- Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
- Res->Info = TheRetVal;
- }
-
- applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
- if (RemarksEnabled)
- for (auto &&Target : TargetsForSlot)
- Target.WasDevirt = true;
- return true;
-}
-
-std::string DevirtModule::getGlobalName(VTableSlot Slot,
- ArrayRef<uint64_t> Args,
- StringRef Name) {
- std::string FullName = "__typeid_";
- raw_string_ostream OS(FullName);
- OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
- for (uint64_t Arg : Args)
- OS << '_' << Arg;
- OS << '_' << Name;
- return OS.str();
-}
-
-bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
- Triple T(M.getTargetTriple());
- return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
- T.getObjectFormat() == Triple::ELF;
-}
-
-void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
- StringRef Name, Constant *C) {
- GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
- getGlobalName(Slot, Args, Name), C, &M);
- GA->setVisibility(GlobalValue::HiddenVisibility);
-}
-
-void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
- StringRef Name, uint32_t Const,
- uint32_t &Storage) {
- if (shouldExportConstantsAsAbsoluteSymbols()) {
- exportGlobal(
- Slot, Args, Name,
- ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
- return;
- }
-
- Storage = Const;
-}
-
-Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
- StringRef Name) {
- Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
- auto *GV = dyn_cast<GlobalVariable>(C);
- if (GV)
- GV->setVisibility(GlobalValue::HiddenVisibility);
- return C;
-}
-
-Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
- StringRef Name, IntegerType *IntTy,
- uint32_t Storage) {
- if (!shouldExportConstantsAsAbsoluteSymbols())
- return ConstantInt::get(IntTy, Storage);
-
- Constant *C = importGlobal(Slot, Args, Name);
- auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
- C = ConstantExpr::getPtrToInt(C, IntTy);
-
- // We only need to set metadata if the global is newly created, in which
- // case it would not have hidden visibility.
- if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
- return C;
-
- auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
- auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
- auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
- GV->setMetadata(LLVMContext::MD_absolute_symbol,
- MDNode::get(M.getContext(), {MinC, MaxC}));
- };
- unsigned AbsWidth = IntTy->getBitWidth();
- if (AbsWidth == IntPtrTy->getBitWidth())
- SetAbsRange(~0ull, ~0ull); // Full set.
- else
- SetAbsRange(0, 1ull << AbsWidth);
- return C;
-}
-
-void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
- bool IsOne,
- Constant *UniqueMemberAddr) {
- for (auto &&Call : CSInfo.CallSites) {
- IRBuilder<> B(Call.CS.getInstruction());
- Value *Cmp =
- B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
- B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
- Cmp = B.CreateZExt(Cmp, Call.CS->getType());
- Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
- Cmp);
- }
- CSInfo.markDevirt();
-}
-
-Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
- Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
- return ConstantExpr::getGetElementPtr(Int8Ty, C,
- ConstantInt::get(Int64Ty, M->Offset));
-}
-
-bool DevirtModule::tryUniqueRetValOpt(
- unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
- CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
- VTableSlot Slot, ArrayRef<uint64_t> Args) {
- // IsOne controls whether we look for a 0 or a 1.
- auto tryUniqueRetValOptFor = [&](bool IsOne) {
- const TypeMemberInfo *UniqueMember = nullptr;
- for (const VirtualCallTarget &Target : TargetsForSlot) {
- if (Target.RetVal == (IsOne ? 1 : 0)) {
- if (UniqueMember)
- return false;
- UniqueMember = Target.TM;
- }
- }
-
- // We should have found a unique member or bailed out by now. We already
- // checked for a uniform return value in tryUniformRetValOpt.
- assert(UniqueMember);
-
- Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
- if (CSInfo.isExported()) {
- Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
- Res->Info = IsOne;
-
- exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
- }
-
- // Replace each call with the comparison.
- applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
- UniqueMemberAddr);
-
- // Update devirtualization statistics for targets.
- if (RemarksEnabled)
- for (auto &&Target : TargetsForSlot)
- Target.WasDevirt = true;
-
- return true;
- };
-
- if (BitWidth == 1) {
- if (tryUniqueRetValOptFor(true))
- return true;
- if (tryUniqueRetValOptFor(false))
- return true;
- }
- return false;
-}
-
-void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
- Constant *Byte, Constant *Bit) {
- for (auto Call : CSInfo.CallSites) {
- auto *RetType = cast<IntegerType>(Call.CS.getType());
- IRBuilder<> B(Call.CS.getInstruction());
- Value *Addr =
- B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
- if (RetType->getBitWidth() == 1) {
- Value *Bits = B.CreateLoad(Int8Ty, Addr);
- Value *BitsAndBit = B.CreateAnd(Bits, Bit);
- auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
- Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
- OREGetter, IsBitSet);
- } else {
- Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
- Value *Val = B.CreateLoad(RetType, ValAddr);
- Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
- OREGetter, Val);
- }
- }
- CSInfo.markDevirt();
-}
-
-bool DevirtModule::tryVirtualConstProp(
- MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
- WholeProgramDevirtResolution *Res, VTableSlot Slot) {
- // This only works if the function returns an integer.
- auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
- if (!RetType)
- return false;
- unsigned BitWidth = RetType->getBitWidth();
- if (BitWidth > 64)
- return false;
-
- // Make sure that each function is defined, does not access memory, takes at
- // least one argument, does not use its first argument (which we assume is
- // 'this'), and has the same return type.
- //
- // Note that we test whether this copy of the function is readnone, rather
- // than testing function attributes, which must hold for any copy of the
- // function, even a less optimized version substituted at link time. This is
- // sound because the virtual constant propagation optimizations effectively
- // inline all implementations of the virtual function into each call site,
- // rather than using function attributes to perform local optimization.
- for (VirtualCallTarget &Target : TargetsForSlot) {
- if (Target.Fn->isDeclaration() ||
- computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
- MAK_ReadNone ||
- Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
- Target.Fn->getReturnType() != RetType)
- return false;
- }
-
- for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
- if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
- continue;
-
- WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
- if (Res)
- ResByArg = &Res->ResByArg[CSByConstantArg.first];
-
- if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
- continue;
-
- if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
- ResByArg, Slot, CSByConstantArg.first))
- continue;
-
- // Find an allocation offset in bits in all vtables associated with the
- // type.
- uint64_t AllocBefore =
- findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
- uint64_t AllocAfter =
- findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
-
- // Calculate the total amount of padding needed to store a value at both
- // ends of the object.
- uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
- for (auto &&Target : TargetsForSlot) {
- TotalPaddingBefore += std::max<int64_t>(
- (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
- TotalPaddingAfter += std::max<int64_t>(
- (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
- }
-
- // If the amount of padding is too large, give up.
- // FIXME: do something smarter here.
- if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
- continue;
-
- // Calculate the offset to the value as a (possibly negative) byte offset
- // and (if applicable) a bit offset, and store the values in the targets.
- int64_t OffsetByte;
- uint64_t OffsetBit;
- if (TotalPaddingBefore <= TotalPaddingAfter)
- setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
- OffsetBit);
- else
- setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
- OffsetBit);
-
- if (RemarksEnabled)
- for (auto &&Target : TargetsForSlot)
- Target.WasDevirt = true;
-
-
- if (CSByConstantArg.second.isExported()) {
- ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
- exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
- ResByArg->Byte);
- exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
- ResByArg->Bit);
- }
-
- // Rewrite each call to a load from OffsetByte/OffsetBit.
- Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
- Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
- applyVirtualConstProp(CSByConstantArg.second,
- TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
- }
- return true;
-}
-
-void DevirtModule::rebuildGlobal(VTableBits &B) {
- if (B.Before.Bytes.empty() && B.After.Bytes.empty())
- return;
-
- // Align each byte array to pointer width.
- unsigned PointerSize = M.getDataLayout().getPointerSize();
- B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
- B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
-
- // Before was stored in reverse order; flip it now.
- for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
- std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
-
- // Build an anonymous global containing the before bytes, followed by the
- // original initializer, followed by the after bytes.
- auto NewInit = ConstantStruct::getAnon(
- {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
- B.GV->getInitializer(),
- ConstantDataArray::get(M.getContext(), B.After.Bytes)});
- auto NewGV =
- new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
- GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
- NewGV->setSection(B.GV->getSection());
- NewGV->setComdat(B.GV->getComdat());
-
- // Copy the original vtable's metadata to the anonymous global, adjusting
- // offsets as required.
- NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
-
- // Build an alias named after the original global, pointing at the second
- // element (the original initializer).
- auto Alias = GlobalAlias::create(
- B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
- ConstantExpr::getGetElementPtr(
- NewInit->getType(), NewGV,
- ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
- ConstantInt::get(Int32Ty, 1)}),
- &M);
- Alias->setVisibility(B.GV->getVisibility());
- Alias->takeName(B.GV);
-
- B.GV->replaceAllUsesWith(Alias);
- B.GV->eraseFromParent();
-}
-
-bool DevirtModule::areRemarksEnabled() {
- const auto &FL = M.getFunctionList();
- for (const Function &Fn : FL) {
- const auto &BBL = Fn.getBasicBlockList();
- if (BBL.empty())
- continue;
- auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
- return DI.isEnabled();
- }
- return false;
-}
-
-void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
- Function *AssumeFunc) {
- // Find all virtual calls via a virtual table pointer %p under an assumption
- // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
- // points to a member of the type identifier %md. Group calls by (type ID,
- // offset) pair (effectively the identity of the virtual function) and store
- // to CallSlots.
- DenseSet<CallSite> SeenCallSites;
- for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
- I != E;) {
- auto CI = dyn_cast<CallInst>(I->getUser());
- ++I;
- if (!CI)
- continue;
-
- // Search for virtual calls based on %p and add them to DevirtCalls.
- SmallVector<DevirtCallSite, 1> DevirtCalls;
- SmallVector<CallInst *, 1> Assumes;
- auto &DT = LookupDomTree(*CI->getFunction());
- findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
-
- // If we found any, add them to CallSlots.
- if (!Assumes.empty()) {
- Metadata *TypeId =
- cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
- Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
- for (DevirtCallSite Call : DevirtCalls) {
- // Only add this CallSite if we haven't seen it before. The vtable
- // pointer may have been CSE'd with pointers from other call sites,
- // and we don't want to process call sites multiple times. We can't
- // just skip the vtable Ptr if it has been seen before, however, since
- // it may be shared by type tests that dominate different calls.
- if (SeenCallSites.insert(Call.CS).second)
- CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
- }
- }
-
- // We no longer need the assumes or the type test.
- for (auto Assume : Assumes)
- Assume->eraseFromParent();
- // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
- // may use the vtable argument later.
- if (CI->use_empty())
- CI->eraseFromParent();
- }
-}
-
-void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
- Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
-
- for (auto I = TypeCheckedLoadFunc->use_begin(),
- E = TypeCheckedLoadFunc->use_end();
- I != E;) {
- auto CI = dyn_cast<CallInst>(I->getUser());
- ++I;
- if (!CI)
- continue;
-
- Value *Ptr = CI->getArgOperand(0);
- Value *Offset = CI->getArgOperand(1);
- Value *TypeIdValue = CI->getArgOperand(2);
- Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
-
- SmallVector<DevirtCallSite, 1> DevirtCalls;
- SmallVector<Instruction *, 1> LoadedPtrs;
- SmallVector<Instruction *, 1> Preds;
- bool HasNonCallUses = false;
- auto &DT = LookupDomTree(*CI->getFunction());
- findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
- HasNonCallUses, CI, DT);
-
- // Start by generating "pessimistic" code that explicitly loads the function
- // pointer from the vtable and performs the type check. If possible, we will
- // eliminate the load and the type check later.
-
- // If possible, only generate the load at the point where it is used.
- // This helps avoid unnecessary spills.
- IRBuilder<> LoadB(
- (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
- Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
- Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
- Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
-
- for (Instruction *LoadedPtr : LoadedPtrs) {
- LoadedPtr->replaceAllUsesWith(LoadedValue);
- LoadedPtr->eraseFromParent();
- }
-
- // Likewise for the type test.
- IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
- CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
-
- for (Instruction *Pred : Preds) {
- Pred->replaceAllUsesWith(TypeTestCall);
- Pred->eraseFromParent();
- }
-
- // We have already erased any extractvalue instructions that refer to the
- // intrinsic call, but the intrinsic may have other non-extractvalue uses
- // (although this is unlikely). In that case, explicitly build a pair and
- // RAUW it.
- if (!CI->use_empty()) {
- Value *Pair = UndefValue::get(CI->getType());
- IRBuilder<> B(CI);
- Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
- Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
- CI->replaceAllUsesWith(Pair);
- }
-
- // The number of unsafe uses is initially the number of uses.
- auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
- NumUnsafeUses = DevirtCalls.size();
-
- // If the function pointer has a non-call user, we cannot eliminate the type
- // check, as one of those users may eventually call the pointer. Increment
- // the unsafe use count to make sure it cannot reach zero.
- if (HasNonCallUses)
- ++NumUnsafeUses;
- for (DevirtCallSite Call : DevirtCalls) {
- CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
- &NumUnsafeUses);
- }
-
- CI->eraseFromParent();
- }
-}
-
-void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
- const TypeIdSummary *TidSummary =
- ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString());
- if (!TidSummary)
- return;
- auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
- if (ResI == TidSummary->WPDRes.end())
- return;
- const WholeProgramDevirtResolution &Res = ResI->second;
-
- if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
- // The type of the function in the declaration is irrelevant because every
- // call site will cast it to the correct type.
- Constant *SingleImpl =
- cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
- Type::getVoidTy(M.getContext()))
- .getCallee());
-
- // This is the import phase so we should not be exporting anything.
- bool IsExported = false;
- applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
- assert(!IsExported);
- }
-
- for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
- auto I = Res.ResByArg.find(CSByConstantArg.first);
- if (I == Res.ResByArg.end())
- continue;
- auto &ResByArg = I->second;
- // FIXME: We should figure out what to do about the "function name" argument
- // to the apply* functions, as the function names are unavailable during the
- // importing phase. For now we just pass the empty string. This does not
- // impact correctness because the function names are just used for remarks.
- switch (ResByArg.TheKind) {
- case WholeProgramDevirtResolution::ByArg::UniformRetVal:
- applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
- break;
- case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
- Constant *UniqueMemberAddr =
- importGlobal(Slot, CSByConstantArg.first, "unique_member");
- applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
- UniqueMemberAddr);
- break;
- }
- case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
- Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
- Int32Ty, ResByArg.Byte);
- Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
- ResByArg.Bit);
- applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
- break;
- }
- default:
- break;
- }
- }
-
- if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
- // The type of the function is irrelevant, because it's bitcast at calls
- // anyhow.
- Constant *JT = cast<Constant>(
- M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
- Type::getVoidTy(M.getContext()))
- .getCallee());
- bool IsExported = false;
- applyICallBranchFunnel(SlotInfo, JT, IsExported);
- assert(!IsExported);
- }
-}
-
-void DevirtModule::removeRedundantTypeTests() {
- auto True = ConstantInt::getTrue(M.getContext());
- for (auto &&U : NumUnsafeUsesForTypeTest) {
- if (U.second == 0) {
- U.first->replaceAllUsesWith(True);
- U.first->eraseFromParent();
- }
- }
-}
-
-bool DevirtModule::run() {
- // If only some of the modules were split, we cannot correctly perform
- // this transformation. We already checked for the presense of type tests
- // with partially split modules during the thin link, and would have emitted
- // an error if any were found, so here we can simply return.
- if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
- (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
- return false;
-
- Function *TypeTestFunc =
- M.getFunction(Intrinsic::getName(Intrinsic::type_test));
- Function *TypeCheckedLoadFunc =
- M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
- Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
-
- // Normally if there are no users of the devirtualization intrinsics in the
- // module, this pass has nothing to do. But if we are exporting, we also need
- // to handle any users that appear only in the function summaries.
- if (!ExportSummary &&
- (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
- AssumeFunc->use_empty()) &&
- (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
- return false;
-
- if (TypeTestFunc && AssumeFunc)
- scanTypeTestUsers(TypeTestFunc, AssumeFunc);
-
- if (TypeCheckedLoadFunc)
- scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
-
- if (ImportSummary) {
- for (auto &S : CallSlots)
- importResolution(S.first, S.second);
-
- removeRedundantTypeTests();
-
- // The rest of the code is only necessary when exporting or during regular
- // LTO, so we are done.
- return true;
- }
-
- // Rebuild type metadata into a map for easy lookup.
- std::vector<VTableBits> Bits;
- DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
- buildTypeIdentifierMap(Bits, TypeIdMap);
- if (TypeIdMap.empty())
- return true;
-
- // Collect information from summary about which calls to try to devirtualize.
- if (ExportSummary) {
- DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
- for (auto &P : TypeIdMap) {
- if (auto *TypeId = dyn_cast<MDString>(P.first))
- MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
- TypeId);
- }
-
- for (auto &P : *ExportSummary) {
- for (auto &S : P.second.SummaryList) {
- auto *FS = dyn_cast<FunctionSummary>(S.get());
- if (!FS)
- continue;
- // FIXME: Only add live functions.
- for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
- for (Metadata *MD : MetadataByGUID[VF.GUID]) {
- CallSlots[{MD, VF.Offset}]
- .CSInfo.markSummaryHasTypeTestAssumeUsers();
- }
- }
- for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
- for (Metadata *MD : MetadataByGUID[VF.GUID]) {
- CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
- }
- }
- for (const FunctionSummary::ConstVCall &VC :
- FS->type_test_assume_const_vcalls()) {
- for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
- CallSlots[{MD, VC.VFunc.Offset}]
- .ConstCSInfo[VC.Args]
- .markSummaryHasTypeTestAssumeUsers();
- }
- }
- for (const FunctionSummary::ConstVCall &VC :
- FS->type_checked_load_const_vcalls()) {
- for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
- CallSlots[{MD, VC.VFunc.Offset}]
- .ConstCSInfo[VC.Args]
- .addSummaryTypeCheckedLoadUser(FS);
- }
- }
- }
- }
- }
-
- // For each (type, offset) pair:
- bool DidVirtualConstProp = false;
- std::map<std::string, Function*> DevirtTargets;
- for (auto &S : CallSlots) {
- // Search each of the members of the type identifier for the virtual
- // function implementation at offset S.first.ByteOffset, and add to
- // TargetsForSlot.
- std::vector<VirtualCallTarget> TargetsForSlot;
- if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
- S.first.ByteOffset)) {
- WholeProgramDevirtResolution *Res = nullptr;
- if (ExportSummary && isa<MDString>(S.first.TypeID))
- Res = &ExportSummary
- ->getOrInsertTypeIdSummary(
- cast<MDString>(S.first.TypeID)->getString())
- .WPDRes[S.first.ByteOffset];
-
- if (!trySingleImplDevirt(TargetsForSlot, S.second, Res)) {
- DidVirtualConstProp |=
- tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
-
- tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
- }
-
- // Collect functions devirtualized at least for one call site for stats.
- if (RemarksEnabled)
- for (const auto &T : TargetsForSlot)
- if (T.WasDevirt)
- DevirtTargets[T.Fn->getName()] = T.Fn;
- }
-
- // CFI-specific: if we are exporting and any llvm.type.checked.load
- // intrinsics were *not* devirtualized, we need to add the resulting
- // llvm.type.test intrinsics to the function summaries so that the
- // LowerTypeTests pass will export them.
- if (ExportSummary && isa<MDString>(S.first.TypeID)) {
- auto GUID =
- GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
- for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
- FS->addTypeTest(GUID);
- for (auto &CCS : S.second.ConstCSInfo)
- for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
- FS->addTypeTest(GUID);
- }
- }
-
- if (RemarksEnabled) {
- // Generate remarks for each devirtualized function.
- for (const auto &DT : DevirtTargets) {
- Function *F = DT.second;
-
- using namespace ore;
- OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
- << "devirtualized "
- << NV("FunctionName", F->getName()));
- }
- }
-
- removeRedundantTypeTests();
-
- // Rebuild each global we touched as part of virtual constant propagation to
- // include the before and after bytes.
- if (DidVirtualConstProp)
- for (VTableBits &B : Bits)
- rebuildGlobal(B);
-
- return true;
-}