summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp1984
1 files changed, 0 insertions, 1984 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
deleted file mode 100644
index ba15b023f2a3..000000000000
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ /dev/null
@@ -1,1984 +0,0 @@
-//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the visit functions for add, fadd, sub, and fsub.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/AlignOf.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/KnownBits.h"
-#include <cassert>
-#include <utility>
-
-using namespace llvm;
-using namespace PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-namespace {
-
- /// Class representing coefficient of floating-point addend.
- /// This class needs to be highly efficient, which is especially true for
- /// the constructor. As of I write this comment, the cost of the default
- /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
- /// perform write-merging).
- ///
- class FAddendCoef {
- public:
- // The constructor has to initialize a APFloat, which is unnecessary for
- // most addends which have coefficient either 1 or -1. So, the constructor
- // is expensive. In order to avoid the cost of the constructor, we should
- // reuse some instances whenever possible. The pre-created instances
- // FAddCombine::Add[0-5] embodies this idea.
- FAddendCoef() = default;
- ~FAddendCoef();
-
- // If possible, don't define operator+/operator- etc because these
- // operators inevitably call FAddendCoef's constructor which is not cheap.
- void operator=(const FAddendCoef &A);
- void operator+=(const FAddendCoef &A);
- void operator*=(const FAddendCoef &S);
-
- void set(short C) {
- assert(!insaneIntVal(C) && "Insane coefficient");
- IsFp = false; IntVal = C;
- }
-
- void set(const APFloat& C);
-
- void negate();
-
- bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
- Value *getValue(Type *) const;
-
- bool isOne() const { return isInt() && IntVal == 1; }
- bool isTwo() const { return isInt() && IntVal == 2; }
- bool isMinusOne() const { return isInt() && IntVal == -1; }
- bool isMinusTwo() const { return isInt() && IntVal == -2; }
-
- private:
- bool insaneIntVal(int V) { return V > 4 || V < -4; }
-
- APFloat *getFpValPtr()
- { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
-
- const APFloat *getFpValPtr() const
- { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
-
- const APFloat &getFpVal() const {
- assert(IsFp && BufHasFpVal && "Incorret state");
- return *getFpValPtr();
- }
-
- APFloat &getFpVal() {
- assert(IsFp && BufHasFpVal && "Incorret state");
- return *getFpValPtr();
- }
-
- bool isInt() const { return !IsFp; }
-
- // If the coefficient is represented by an integer, promote it to a
- // floating point.
- void convertToFpType(const fltSemantics &Sem);
-
- // Construct an APFloat from a signed integer.
- // TODO: We should get rid of this function when APFloat can be constructed
- // from an *SIGNED* integer.
- APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
-
- bool IsFp = false;
-
- // True iff FpValBuf contains an instance of APFloat.
- bool BufHasFpVal = false;
-
- // The integer coefficient of an individual addend is either 1 or -1,
- // and we try to simplify at most 4 addends from neighboring at most
- // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
- // is overkill of this end.
- short IntVal = 0;
-
- AlignedCharArrayUnion<APFloat> FpValBuf;
- };
-
- /// FAddend is used to represent floating-point addend. An addend is
- /// represented as <C, V>, where the V is a symbolic value, and C is a
- /// constant coefficient. A constant addend is represented as <C, 0>.
- class FAddend {
- public:
- FAddend() = default;
-
- void operator+=(const FAddend &T) {
- assert((Val == T.Val) && "Symbolic-values disagree");
- Coeff += T.Coeff;
- }
-
- Value *getSymVal() const { return Val; }
- const FAddendCoef &getCoef() const { return Coeff; }
-
- bool isConstant() const { return Val == nullptr; }
- bool isZero() const { return Coeff.isZero(); }
-
- void set(short Coefficient, Value *V) {
- Coeff.set(Coefficient);
- Val = V;
- }
- void set(const APFloat &Coefficient, Value *V) {
- Coeff.set(Coefficient);
- Val = V;
- }
- void set(const ConstantFP *Coefficient, Value *V) {
- Coeff.set(Coefficient->getValueAPF());
- Val = V;
- }
-
- void negate() { Coeff.negate(); }
-
- /// Drill down the U-D chain one step to find the definition of V, and
- /// try to break the definition into one or two addends.
- static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
-
- /// Similar to FAddend::drillDownOneStep() except that the value being
- /// splitted is the addend itself.
- unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
-
- private:
- void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
-
- // This addend has the value of "Coeff * Val".
- Value *Val = nullptr;
- FAddendCoef Coeff;
- };
-
- /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
- /// with its neighboring at most two instructions.
- ///
- class FAddCombine {
- public:
- FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
-
- Value *simplify(Instruction *FAdd);
-
- private:
- using AddendVect = SmallVector<const FAddend *, 4>;
-
- Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
-
- /// Convert given addend to a Value
- Value *createAddendVal(const FAddend &A, bool& NeedNeg);
-
- /// Return the number of instructions needed to emit the N-ary addition.
- unsigned calcInstrNumber(const AddendVect& Vect);
-
- Value *createFSub(Value *Opnd0, Value *Opnd1);
- Value *createFAdd(Value *Opnd0, Value *Opnd1);
- Value *createFMul(Value *Opnd0, Value *Opnd1);
- Value *createFNeg(Value *V);
- Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
- void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
-
- // Debugging stuff are clustered here.
- #ifndef NDEBUG
- unsigned CreateInstrNum;
- void initCreateInstNum() { CreateInstrNum = 0; }
- void incCreateInstNum() { CreateInstrNum++; }
- #else
- void initCreateInstNum() {}
- void incCreateInstNum() {}
- #endif
-
- InstCombiner::BuilderTy &Builder;
- Instruction *Instr = nullptr;
- };
-
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-//
-// Implementation of
-// {FAddendCoef, FAddend, FAddition, FAddCombine}.
-//
-//===----------------------------------------------------------------------===//
-FAddendCoef::~FAddendCoef() {
- if (BufHasFpVal)
- getFpValPtr()->~APFloat();
-}
-
-void FAddendCoef::set(const APFloat& C) {
- APFloat *P = getFpValPtr();
-
- if (isInt()) {
- // As the buffer is meanless byte stream, we cannot call
- // APFloat::operator=().
- new(P) APFloat(C);
- } else
- *P = C;
-
- IsFp = BufHasFpVal = true;
-}
-
-void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
- if (!isInt())
- return;
-
- APFloat *P = getFpValPtr();
- if (IntVal > 0)
- new(P) APFloat(Sem, IntVal);
- else {
- new(P) APFloat(Sem, 0 - IntVal);
- P->changeSign();
- }
- IsFp = BufHasFpVal = true;
-}
-
-APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
- if (Val >= 0)
- return APFloat(Sem, Val);
-
- APFloat T(Sem, 0 - Val);
- T.changeSign();
-
- return T;
-}
-
-void FAddendCoef::operator=(const FAddendCoef &That) {
- if (That.isInt())
- set(That.IntVal);
- else
- set(That.getFpVal());
-}
-
-void FAddendCoef::operator+=(const FAddendCoef &That) {
- enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
- if (isInt() == That.isInt()) {
- if (isInt())
- IntVal += That.IntVal;
- else
- getFpVal().add(That.getFpVal(), RndMode);
- return;
- }
-
- if (isInt()) {
- const APFloat &T = That.getFpVal();
- convertToFpType(T.getSemantics());
- getFpVal().add(T, RndMode);
- return;
- }
-
- APFloat &T = getFpVal();
- T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
-}
-
-void FAddendCoef::operator*=(const FAddendCoef &That) {
- if (That.isOne())
- return;
-
- if (That.isMinusOne()) {
- negate();
- return;
- }
-
- if (isInt() && That.isInt()) {
- int Res = IntVal * (int)That.IntVal;
- assert(!insaneIntVal(Res) && "Insane int value");
- IntVal = Res;
- return;
- }
-
- const fltSemantics &Semantic =
- isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
-
- if (isInt())
- convertToFpType(Semantic);
- APFloat &F0 = getFpVal();
-
- if (That.isInt())
- F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
- APFloat::rmNearestTiesToEven);
- else
- F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
-}
-
-void FAddendCoef::negate() {
- if (isInt())
- IntVal = 0 - IntVal;
- else
- getFpVal().changeSign();
-}
-
-Value *FAddendCoef::getValue(Type *Ty) const {
- return isInt() ?
- ConstantFP::get(Ty, float(IntVal)) :
- ConstantFP::get(Ty->getContext(), getFpVal());
-}
-
-// The definition of <Val> Addends
-// =========================================
-// A + B <1, A>, <1,B>
-// A - B <1, A>, <1,B>
-// 0 - B <-1, B>
-// C * A, <C, A>
-// A + C <1, A> <C, NULL>
-// 0 +/- 0 <0, NULL> (corner case)
-//
-// Legend: A and B are not constant, C is constant
-unsigned FAddend::drillValueDownOneStep
- (Value *Val, FAddend &Addend0, FAddend &Addend1) {
- Instruction *I = nullptr;
- if (!Val || !(I = dyn_cast<Instruction>(Val)))
- return 0;
-
- unsigned Opcode = I->getOpcode();
-
- if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
- ConstantFP *C0, *C1;
- Value *Opnd0 = I->getOperand(0);
- Value *Opnd1 = I->getOperand(1);
- if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
- Opnd0 = nullptr;
-
- if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
- Opnd1 = nullptr;
-
- if (Opnd0) {
- if (!C0)
- Addend0.set(1, Opnd0);
- else
- Addend0.set(C0, nullptr);
- }
-
- if (Opnd1) {
- FAddend &Addend = Opnd0 ? Addend1 : Addend0;
- if (!C1)
- Addend.set(1, Opnd1);
- else
- Addend.set(C1, nullptr);
- if (Opcode == Instruction::FSub)
- Addend.negate();
- }
-
- if (Opnd0 || Opnd1)
- return Opnd0 && Opnd1 ? 2 : 1;
-
- // Both operands are zero. Weird!
- Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
- return 1;
- }
-
- if (I->getOpcode() == Instruction::FMul) {
- Value *V0 = I->getOperand(0);
- Value *V1 = I->getOperand(1);
- if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
- Addend0.set(C, V1);
- return 1;
- }
-
- if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
- Addend0.set(C, V0);
- return 1;
- }
- }
-
- return 0;
-}
-
-// Try to break *this* addend into two addends. e.g. Suppose this addend is
-// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
-// i.e. <2.3, X> and <2.3, Y>.
-unsigned FAddend::drillAddendDownOneStep
- (FAddend &Addend0, FAddend &Addend1) const {
- if (isConstant())
- return 0;
-
- unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
- if (!BreakNum || Coeff.isOne())
- return BreakNum;
-
- Addend0.Scale(Coeff);
-
- if (BreakNum == 2)
- Addend1.Scale(Coeff);
-
- return BreakNum;
-}
-
-Value *FAddCombine::simplify(Instruction *I) {
- assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
- "Expected 'reassoc'+'nsz' instruction");
-
- // Currently we are not able to handle vector type.
- if (I->getType()->isVectorTy())
- return nullptr;
-
- assert((I->getOpcode() == Instruction::FAdd ||
- I->getOpcode() == Instruction::FSub) && "Expect add/sub");
-
- // Save the instruction before calling other member-functions.
- Instr = I;
-
- FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
-
- unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
-
- // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
- unsigned Opnd0_ExpNum = 0;
- unsigned Opnd1_ExpNum = 0;
-
- if (!Opnd0.isConstant())
- Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
-
- // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
- if (OpndNum == 2 && !Opnd1.isConstant())
- Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
-
- // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
- if (Opnd0_ExpNum && Opnd1_ExpNum) {
- AddendVect AllOpnds;
- AllOpnds.push_back(&Opnd0_0);
- AllOpnds.push_back(&Opnd1_0);
- if (Opnd0_ExpNum == 2)
- AllOpnds.push_back(&Opnd0_1);
- if (Opnd1_ExpNum == 2)
- AllOpnds.push_back(&Opnd1_1);
-
- // Compute instruction quota. We should save at least one instruction.
- unsigned InstQuota = 0;
-
- Value *V0 = I->getOperand(0);
- Value *V1 = I->getOperand(1);
- InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
- (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
-
- if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
- return R;
- }
-
- if (OpndNum != 2) {
- // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
- // splitted into two addends, say "V = X - Y", the instruction would have
- // been optimized into "I = Y - X" in the previous steps.
- //
- const FAddendCoef &CE = Opnd0.getCoef();
- return CE.isOne() ? Opnd0.getSymVal() : nullptr;
- }
-
- // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
- if (Opnd1_ExpNum) {
- AddendVect AllOpnds;
- AllOpnds.push_back(&Opnd0);
- AllOpnds.push_back(&Opnd1_0);
- if (Opnd1_ExpNum == 2)
- AllOpnds.push_back(&Opnd1_1);
-
- if (Value *R = simplifyFAdd(AllOpnds, 1))
- return R;
- }
-
- // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
- if (Opnd0_ExpNum) {
- AddendVect AllOpnds;
- AllOpnds.push_back(&Opnd1);
- AllOpnds.push_back(&Opnd0_0);
- if (Opnd0_ExpNum == 2)
- AllOpnds.push_back(&Opnd0_1);
-
- if (Value *R = simplifyFAdd(AllOpnds, 1))
- return R;
- }
-
- return nullptr;
-}
-
-Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
- unsigned AddendNum = Addends.size();
- assert(AddendNum <= 4 && "Too many addends");
-
- // For saving intermediate results;
- unsigned NextTmpIdx = 0;
- FAddend TmpResult[3];
-
- // Points to the constant addend of the resulting simplified expression.
- // If the resulting expr has constant-addend, this constant-addend is
- // desirable to reside at the top of the resulting expression tree. Placing
- // constant close to supper-expr(s) will potentially reveal some optimization
- // opportunities in super-expr(s).
- const FAddend *ConstAdd = nullptr;
-
- // Simplified addends are placed <SimpVect>.
- AddendVect SimpVect;
-
- // The outer loop works on one symbolic-value at a time. Suppose the input
- // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
- // The symbolic-values will be processed in this order: x, y, z.
- for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
-
- const FAddend *ThisAddend = Addends[SymIdx];
- if (!ThisAddend) {
- // This addend was processed before.
- continue;
- }
-
- Value *Val = ThisAddend->getSymVal();
- unsigned StartIdx = SimpVect.size();
- SimpVect.push_back(ThisAddend);
-
- // The inner loop collects addends sharing same symbolic-value, and these
- // addends will be later on folded into a single addend. Following above
- // example, if the symbolic value "y" is being processed, the inner loop
- // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
- // be later on folded into "<b1+b2, y>".
- for (unsigned SameSymIdx = SymIdx + 1;
- SameSymIdx < AddendNum; SameSymIdx++) {
- const FAddend *T = Addends[SameSymIdx];
- if (T && T->getSymVal() == Val) {
- // Set null such that next iteration of the outer loop will not process
- // this addend again.
- Addends[SameSymIdx] = nullptr;
- SimpVect.push_back(T);
- }
- }
-
- // If multiple addends share same symbolic value, fold them together.
- if (StartIdx + 1 != SimpVect.size()) {
- FAddend &R = TmpResult[NextTmpIdx ++];
- R = *SimpVect[StartIdx];
- for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
- R += *SimpVect[Idx];
-
- // Pop all addends being folded and push the resulting folded addend.
- SimpVect.resize(StartIdx);
- if (Val) {
- if (!R.isZero()) {
- SimpVect.push_back(&R);
- }
- } else {
- // Don't push constant addend at this time. It will be the last element
- // of <SimpVect>.
- ConstAdd = &R;
- }
- }
- }
-
- assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
- "out-of-bound access");
-
- if (ConstAdd)
- SimpVect.push_back(ConstAdd);
-
- Value *Result;
- if (!SimpVect.empty())
- Result = createNaryFAdd(SimpVect, InstrQuota);
- else {
- // The addition is folded to 0.0.
- Result = ConstantFP::get(Instr->getType(), 0.0);
- }
-
- return Result;
-}
-
-Value *FAddCombine::createNaryFAdd
- (const AddendVect &Opnds, unsigned InstrQuota) {
- assert(!Opnds.empty() && "Expect at least one addend");
-
- // Step 1: Check if the # of instructions needed exceeds the quota.
-
- unsigned InstrNeeded = calcInstrNumber(Opnds);
- if (InstrNeeded > InstrQuota)
- return nullptr;
-
- initCreateInstNum();
-
- // step 2: Emit the N-ary addition.
- // Note that at most three instructions are involved in Fadd-InstCombine: the
- // addition in question, and at most two neighboring instructions.
- // The resulting optimized addition should have at least one less instruction
- // than the original addition expression tree. This implies that the resulting
- // N-ary addition has at most two instructions, and we don't need to worry
- // about tree-height when constructing the N-ary addition.
-
- Value *LastVal = nullptr;
- bool LastValNeedNeg = false;
-
- // Iterate the addends, creating fadd/fsub using adjacent two addends.
- for (const FAddend *Opnd : Opnds) {
- bool NeedNeg;
- Value *V = createAddendVal(*Opnd, NeedNeg);
- if (!LastVal) {
- LastVal = V;
- LastValNeedNeg = NeedNeg;
- continue;
- }
-
- if (LastValNeedNeg == NeedNeg) {
- LastVal = createFAdd(LastVal, V);
- continue;
- }
-
- if (LastValNeedNeg)
- LastVal = createFSub(V, LastVal);
- else
- LastVal = createFSub(LastVal, V);
-
- LastValNeedNeg = false;
- }
-
- if (LastValNeedNeg) {
- LastVal = createFNeg(LastVal);
- }
-
-#ifndef NDEBUG
- assert(CreateInstrNum == InstrNeeded &&
- "Inconsistent in instruction numbers");
-#endif
-
- return LastVal;
-}
-
-Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder.CreateFSub(Opnd0, Opnd1);
- if (Instruction *I = dyn_cast<Instruction>(V))
- createInstPostProc(I);
- return V;
-}
-
-Value *FAddCombine::createFNeg(Value *V) {
- Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
- Value *NewV = createFSub(Zero, V);
- if (Instruction *I = dyn_cast<Instruction>(NewV))
- createInstPostProc(I, true); // fneg's don't receive instruction numbers.
- return NewV;
-}
-
-Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
- if (Instruction *I = dyn_cast<Instruction>(V))
- createInstPostProc(I);
- return V;
-}
-
-Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder.CreateFMul(Opnd0, Opnd1);
- if (Instruction *I = dyn_cast<Instruction>(V))
- createInstPostProc(I);
- return V;
-}
-
-void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
- NewInstr->setDebugLoc(Instr->getDebugLoc());
-
- // Keep track of the number of instruction created.
- if (!NoNumber)
- incCreateInstNum();
-
- // Propagate fast-math flags
- NewInstr->setFastMathFlags(Instr->getFastMathFlags());
-}
-
-// Return the number of instruction needed to emit the N-ary addition.
-// NOTE: Keep this function in sync with createAddendVal().
-unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
- unsigned OpndNum = Opnds.size();
- unsigned InstrNeeded = OpndNum - 1;
-
- // The number of addends in the form of "(-1)*x".
- unsigned NegOpndNum = 0;
-
- // Adjust the number of instructions needed to emit the N-ary add.
- for (const FAddend *Opnd : Opnds) {
- if (Opnd->isConstant())
- continue;
-
- // The constant check above is really for a few special constant
- // coefficients.
- if (isa<UndefValue>(Opnd->getSymVal()))
- continue;
-
- const FAddendCoef &CE = Opnd->getCoef();
- if (CE.isMinusOne() || CE.isMinusTwo())
- NegOpndNum++;
-
- // Let the addend be "c * x". If "c == +/-1", the value of the addend
- // is immediately available; otherwise, it needs exactly one instruction
- // to evaluate the value.
- if (!CE.isMinusOne() && !CE.isOne())
- InstrNeeded++;
- }
- if (NegOpndNum == OpndNum)
- InstrNeeded++;
- return InstrNeeded;
-}
-
-// Input Addend Value NeedNeg(output)
-// ================================================================
-// Constant C C false
-// <+/-1, V> V coefficient is -1
-// <2/-2, V> "fadd V, V" coefficient is -2
-// <C, V> "fmul V, C" false
-//
-// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
-Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
- const FAddendCoef &Coeff = Opnd.getCoef();
-
- if (Opnd.isConstant()) {
- NeedNeg = false;
- return Coeff.getValue(Instr->getType());
- }
-
- Value *OpndVal = Opnd.getSymVal();
-
- if (Coeff.isMinusOne() || Coeff.isOne()) {
- NeedNeg = Coeff.isMinusOne();
- return OpndVal;
- }
-
- if (Coeff.isTwo() || Coeff.isMinusTwo()) {
- NeedNeg = Coeff.isMinusTwo();
- return createFAdd(OpndVal, OpndVal);
- }
-
- NeedNeg = false;
- return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
-}
-
-// Checks if any operand is negative and we can convert add to sub.
-// This function checks for following negative patterns
-// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
-// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
-// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
-static Value *checkForNegativeOperand(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
-
- // This function creates 2 instructions to replace ADD, we need at least one
- // of LHS or RHS to have one use to ensure benefit in transform.
- if (!LHS->hasOneUse() && !RHS->hasOneUse())
- return nullptr;
-
- Value *X = nullptr, *Y = nullptr, *Z = nullptr;
- const APInt *C1 = nullptr, *C2 = nullptr;
-
- // if ONE is on other side, swap
- if (match(RHS, m_Add(m_Value(X), m_One())))
- std::swap(LHS, RHS);
-
- if (match(LHS, m_Add(m_Value(X), m_One()))) {
- // if XOR on other side, swap
- if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
- std::swap(X, RHS);
-
- if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
- // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
- // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
- if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
- Value *NewAnd = Builder.CreateAnd(Z, *C1);
- return Builder.CreateSub(RHS, NewAnd, "sub");
- } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
- // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
- // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
- Value *NewOr = Builder.CreateOr(Z, ~(*C1));
- return Builder.CreateSub(RHS, NewOr, "sub");
- }
- }
- }
-
- // Restore LHS and RHS
- LHS = I.getOperand(0);
- RHS = I.getOperand(1);
-
- // if XOR is on other side, swap
- if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
- std::swap(LHS, RHS);
-
- // C2 is ODD
- // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
- // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
- if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
- if (C1->countTrailingZeros() == 0)
- if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
- Value *NewOr = Builder.CreateOr(Z, ~(*C2));
- return Builder.CreateSub(RHS, NewOr, "sub");
- }
- return nullptr;
-}
-
-/// Wrapping flags may allow combining constants separated by an extend.
-static Instruction *foldNoWrapAdd(BinaryOperator &Add,
- InstCombiner::BuilderTy &Builder) {
- Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
- Type *Ty = Add.getType();
- Constant *Op1C;
- if (!match(Op1, m_Constant(Op1C)))
- return nullptr;
-
- // Try this match first because it results in an add in the narrow type.
- // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
- Value *X;
- const APInt *C1, *C2;
- if (match(Op1, m_APInt(C1)) &&
- match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
- C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
- Constant *NewC =
- ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
- return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
- }
-
- // More general combining of constants in the wide type.
- // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
- Constant *NarrowC;
- if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
- Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
- Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
- Value *WideX = Builder.CreateSExt(X, Ty);
- return BinaryOperator::CreateAdd(WideX, NewC);
- }
- // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
- if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
- Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
- Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
- Value *WideX = Builder.CreateZExt(X, Ty);
- return BinaryOperator::CreateAdd(WideX, NewC);
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
- Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
- Constant *Op1C;
- if (!match(Op1, m_Constant(Op1C)))
- return nullptr;
-
- if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
- return NV;
-
- Value *X;
- Constant *Op00C;
-
- // add (sub C1, X), C2 --> sub (add C1, C2), X
- if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
- return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
-
- Value *Y;
-
- // add (sub X, Y), -1 --> add (not Y), X
- if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
- match(Op1, m_AllOnes()))
- return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
-
- // zext(bool) + C -> bool ? C + 1 : C
- if (match(Op0, m_ZExt(m_Value(X))) &&
- X->getType()->getScalarSizeInBits() == 1)
- return SelectInst::Create(X, AddOne(Op1C), Op1);
-
- // ~X + C --> (C-1) - X
- if (match(Op0, m_Not(m_Value(X))))
- return BinaryOperator::CreateSub(SubOne(Op1C), X);
-
- const APInt *C;
- if (!match(Op1, m_APInt(C)))
- return nullptr;
-
- // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
- const APInt *C2;
- if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
- return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
-
- if (C->isSignMask()) {
- // If wrapping is not allowed, then the addition must set the sign bit:
- // X + (signmask) --> X | signmask
- if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
- return BinaryOperator::CreateOr(Op0, Op1);
-
- // If wrapping is allowed, then the addition flips the sign bit of LHS:
- // X + (signmask) --> X ^ signmask
- return BinaryOperator::CreateXor(Op0, Op1);
- }
-
- // Is this add the last step in a convoluted sext?
- // add(zext(xor i16 X, -32768), -32768) --> sext X
- Type *Ty = Add.getType();
- if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
- C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
- return CastInst::Create(Instruction::SExt, X, Ty);
-
- if (C->isOneValue() && Op0->hasOneUse()) {
- // add (sext i1 X), 1 --> zext (not X)
- // TODO: The smallest IR representation is (select X, 0, 1), and that would
- // not require the one-use check. But we need to remove a transform in
- // visitSelect and make sure that IR value tracking for select is equal or
- // better than for these ops.
- if (match(Op0, m_SExt(m_Value(X))) &&
- X->getType()->getScalarSizeInBits() == 1)
- return new ZExtInst(Builder.CreateNot(X), Ty);
-
- // Shifts and add used to flip and mask off the low bit:
- // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
- const APInt *C3;
- if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
- C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
- Value *NotX = Builder.CreateNot(X);
- return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
- }
- }
-
- return nullptr;
-}
-
-// Matches multiplication expression Op * C where C is a constant. Returns the
-// constant value in C and the other operand in Op. Returns true if such a
-// match is found.
-static bool MatchMul(Value *E, Value *&Op, APInt &C) {
- const APInt *AI;
- if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
- C = *AI;
- return true;
- }
- if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
- C = APInt(AI->getBitWidth(), 1);
- C <<= *AI;
- return true;
- }
- return false;
-}
-
-// Matches remainder expression Op % C where C is a constant. Returns the
-// constant value in C and the other operand in Op. Returns the signedness of
-// the remainder operation in IsSigned. Returns true if such a match is
-// found.
-static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
- const APInt *AI;
- IsSigned = false;
- if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
- IsSigned = true;
- C = *AI;
- return true;
- }
- if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
- C = *AI;
- return true;
- }
- if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
- C = *AI + 1;
- return true;
- }
- return false;
-}
-
-// Matches division expression Op / C with the given signedness as indicated
-// by IsSigned, where C is a constant. Returns the constant value in C and the
-// other operand in Op. Returns true if such a match is found.
-static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
- const APInt *AI;
- if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
- C = *AI;
- return true;
- }
- if (!IsSigned) {
- if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
- C = *AI;
- return true;
- }
- if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
- C = APInt(AI->getBitWidth(), 1);
- C <<= *AI;
- return true;
- }
- }
- return false;
-}
-
-// Returns whether C0 * C1 with the given signedness overflows.
-static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
- bool overflow;
- if (IsSigned)
- (void)C0.smul_ov(C1, overflow);
- else
- (void)C0.umul_ov(C1, overflow);
- return overflow;
-}
-
-// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
-// does not overflow.
-Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- Value *X, *MulOpV;
- APInt C0, MulOpC;
- bool IsSigned;
- // Match I = X % C0 + MulOpV * C0
- if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
- (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
- C0 == MulOpC) {
- Value *RemOpV;
- APInt C1;
- bool Rem2IsSigned;
- // Match MulOpC = RemOpV % C1
- if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
- IsSigned == Rem2IsSigned) {
- Value *DivOpV;
- APInt DivOpC;
- // Match RemOpV = X / C0
- if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
- C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
- Value *NewDivisor =
- ConstantInt::get(X->getType()->getContext(), C0 * C1);
- return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
- : Builder.CreateURem(X, NewDivisor, "urem");
- }
- }
- }
-
- return nullptr;
-}
-
-/// Fold
-/// (1 << NBits) - 1
-/// Into:
-/// ~(-(1 << NBits))
-/// Because a 'not' is better for bit-tracking analysis and other transforms
-/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
-static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *NBits;
- if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
- return nullptr;
-
- Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
- Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
- // Be wary of constant folding.
- if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
- // Always NSW. But NUW propagates from `add`.
- BOp->setHasNoSignedWrap();
- BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- }
-
- return BinaryOperator::CreateNot(NotMask, I.getName());
-}
-
-static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
- assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
- Type *Ty = I.getType();
- auto getUAddSat = [&]() {
- return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
- };
-
- // add (umin X, ~Y), Y --> uaddsat X, Y
- Value *X, *Y;
- if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
- m_Deferred(Y))))
- return CallInst::Create(getUAddSat(), { X, Y });
-
- // add (umin X, ~C), C --> uaddsat X, C
- const APInt *C, *NotC;
- if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
- *C == ~*NotC)
- return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
- if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
- I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- // (A*B)+(A*C) -> A*(B+C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldAddWithConstant(I))
- return X;
-
- if (Instruction *X = foldNoWrapAdd(I, Builder))
- return X;
-
- // FIXME: This should be moved into the above helper function to allow these
- // transforms for general constant or constant splat vectors.
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- Type *Ty = I.getType();
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
- if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
- unsigned TySizeBits = Ty->getScalarSizeInBits();
- const APInt &RHSVal = CI->getValue();
- unsigned ExtendAmt = 0;
- // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
- // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
- if (XorRHS->getValue() == -RHSVal) {
- if (RHSVal.isPowerOf2())
- ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
- else if (XorRHS->getValue().isPowerOf2())
- ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
- }
-
- if (ExtendAmt) {
- APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
- if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
- ExtendAmt = 0;
- }
-
- if (ExtendAmt) {
- Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
- Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
- return BinaryOperator::CreateAShr(NewShl, ShAmt);
- }
-
- // If this is a xor that was canonicalized from a sub, turn it back into
- // a sub and fuse this add with it.
- if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
- KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
- if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
- return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
- XorLHS);
- }
- // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
- // transform them into (X + (signmask ^ C))
- if (XorRHS->getValue().isSignMask())
- return BinaryOperator::CreateAdd(XorLHS,
- ConstantExpr::getXor(XorRHS, CI));
- }
- }
-
- if (Ty->isIntOrIntVectorTy(1))
- return BinaryOperator::CreateXor(LHS, RHS);
-
- // X + X --> X << 1
- if (LHS == RHS) {
- auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
- Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
- Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- return Shl;
- }
-
- Value *A, *B;
- if (match(LHS, m_Neg(m_Value(A)))) {
- // -A + -B --> -(A + B)
- if (match(RHS, m_Neg(m_Value(B))))
- return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
-
- // -A + B --> B - A
- return BinaryOperator::CreateSub(RHS, A);
- }
-
- // Canonicalize sext to zext for better value tracking potential.
- // add A, sext(B) --> sub A, zext(B)
- if (match(&I, m_c_Add(m_Value(A), m_OneUse(m_SExt(m_Value(B))))) &&
- B->getType()->isIntOrIntVectorTy(1))
- return BinaryOperator::CreateSub(A, Builder.CreateZExt(B, Ty));
-
- // A + -B --> A - B
- if (match(RHS, m_Neg(m_Value(B))))
- return BinaryOperator::CreateSub(LHS, B);
-
- if (Value *V = checkForNegativeOperand(I, Builder))
- return replaceInstUsesWith(I, V);
-
- // (A + 1) + ~B --> A - B
- // ~B + (A + 1) --> A - B
- // (~B + A) + 1 --> A - B
- // (A + ~B) + 1 --> A - B
- if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
- match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
- return BinaryOperator::CreateSub(A, B);
-
- // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
- if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
-
- // A+B --> A|B iff A and B have no bits set in common.
- if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
- return BinaryOperator::CreateOr(LHS, RHS);
-
- // FIXME: We already did a check for ConstantInt RHS above this.
- // FIXME: Is this pattern covered by another fold? No regression tests fail on
- // removal.
- if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
- // (X & FF00) + xx00 -> (X+xx00) & FF00
- Value *X;
- ConstantInt *C2;
- if (LHS->hasOneUse() &&
- match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
- CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
- // See if all bits from the first bit set in the Add RHS up are included
- // in the mask. First, get the rightmost bit.
- const APInt &AddRHSV = CRHS->getValue();
-
- // Form a mask of all bits from the lowest bit added through the top.
- APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
-
- // See if the and mask includes all of these bits.
- APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
-
- if (AddRHSHighBits == AddRHSHighBitsAnd) {
- // Okay, the xform is safe. Insert the new add pronto.
- Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
- return BinaryOperator::CreateAnd(NewAdd, C2);
- }
- }
- }
-
- // add (select X 0 (sub n A)) A --> select X A n
- {
- SelectInst *SI = dyn_cast<SelectInst>(LHS);
- Value *A = RHS;
- if (!SI) {
- SI = dyn_cast<SelectInst>(RHS);
- A = LHS;
- }
- if (SI && SI->hasOneUse()) {
- Value *TV = SI->getTrueValue();
- Value *FV = SI->getFalseValue();
- Value *N;
-
- // Can we fold the add into the argument of the select?
- // We check both true and false select arguments for a matching subtract.
- if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
- // Fold the add into the true select value.
- return SelectInst::Create(SI->getCondition(), N, A);
-
- if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
- // Fold the add into the false select value.
- return SelectInst::Create(SI->getCondition(), A, N);
- }
- }
-
- if (Instruction *Ext = narrowMathIfNoOverflow(I))
- return Ext;
-
- // (add (xor A, B) (and A, B)) --> (or A, B)
- // (add (and A, B) (xor A, B)) --> (or A, B)
- if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
- m_c_And(m_Deferred(A), m_Deferred(B)))))
- return BinaryOperator::CreateOr(A, B);
-
- // (add (or A, B) (and A, B)) --> (add A, B)
- // (add (and A, B) (or A, B)) --> (add A, B)
- if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
- m_c_And(m_Deferred(A), m_Deferred(B))))) {
- I.setOperand(0, A);
- I.setOperand(1, B);
- return &I;
- }
-
- // TODO(jingyue): Consider willNotOverflowSignedAdd and
- // willNotOverflowUnsignedAdd to reduce the number of invocations of
- // computeKnownBits.
- bool Changed = false;
- if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
- Changed = true;
- I.setHasNoSignedWrap(true);
- }
- if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
- Changed = true;
- I.setHasNoUnsignedWrap(true);
- }
-
- if (Instruction *V = canonicalizeLowbitMask(I, Builder))
- return V;
-
- if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
- return SatAdd;
-
- return Changed ? &I : nullptr;
-}
-
-/// Factor a common operand out of fadd/fsub of fmul/fdiv.
-static Instruction *factorizeFAddFSub(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- assert((I.getOpcode() == Instruction::FAdd ||
- I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
- assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
- "FP factorization requires FMF");
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *X, *Y, *Z;
- bool IsFMul;
- if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
- match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
- (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
- match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
- IsFMul = true;
- else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
- match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
- IsFMul = false;
- else
- return nullptr;
-
- // (X * Z) + (Y * Z) --> (X + Y) * Z
- // (X * Z) - (Y * Z) --> (X - Y) * Z
- // (X / Z) + (Y / Z) --> (X + Y) / Z
- // (X / Z) - (Y / Z) --> (X - Y) / Z
- bool IsFAdd = I.getOpcode() == Instruction::FAdd;
- Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
- : Builder.CreateFSubFMF(X, Y, &I);
-
- // Bail out if we just created a denormal constant.
- // TODO: This is copied from a previous implementation. Is it necessary?
- const APFloat *C;
- if (match(XY, m_APFloat(C)) && !C->isNormal())
- return nullptr;
-
- return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
- : BinaryOperator::CreateFDivFMF(XY, Z, &I);
-}
-
-Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
- if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
- return FoldedFAdd;
-
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- Value *X;
- // (-X) + Y --> Y - X
- if (match(LHS, m_FNeg(m_Value(X))))
- return BinaryOperator::CreateFSubFMF(RHS, X, &I);
- // Y + (-X) --> Y - X
- if (match(RHS, m_FNeg(m_Value(X))))
- return BinaryOperator::CreateFSubFMF(LHS, X, &I);
-
- // Check for (fadd double (sitofp x), y), see if we can merge this into an
- // integer add followed by a promotion.
- if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
- Value *LHSIntVal = LHSConv->getOperand(0);
- Type *FPType = LHSConv->getType();
-
- // TODO: This check is overly conservative. In many cases known bits
- // analysis can tell us that the result of the addition has less significant
- // bits than the integer type can hold.
- auto IsValidPromotion = [](Type *FTy, Type *ITy) {
- Type *FScalarTy = FTy->getScalarType();
- Type *IScalarTy = ITy->getScalarType();
-
- // Do we have enough bits in the significand to represent the result of
- // the integer addition?
- unsigned MaxRepresentableBits =
- APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
- return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
- };
-
- // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
- // ... if the constant fits in the integer value. This is useful for things
- // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
- // requires a constant pool load, and generally allows the add to be better
- // instcombined.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
- if (IsValidPromotion(FPType, LHSIntVal->getType())) {
- Constant *CI =
- ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
- if (LHSConv->hasOneUse() &&
- ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
- willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
- // Insert the new integer add.
- Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
- return new SIToFPInst(NewAdd, I.getType());
- }
- }
-
- // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
- if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
- Value *RHSIntVal = RHSConv->getOperand(0);
- // It's enough to check LHS types only because we require int types to
- // be the same for this transform.
- if (IsValidPromotion(FPType, LHSIntVal->getType())) {
- // Only do this if x/y have the same type, if at least one of them has a
- // single use (so we don't increase the number of int->fp conversions),
- // and if the integer add will not overflow.
- if (LHSIntVal->getType() == RHSIntVal->getType() &&
- (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
- willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
- // Insert the new integer add.
- Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
- return new SIToFPInst(NewAdd, I.getType());
- }
- }
- }
- }
-
- // Handle specials cases for FAdd with selects feeding the operation
- if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
- return replaceInstUsesWith(I, V);
-
- if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
- if (Instruction *F = factorizeFAddFSub(I, Builder))
- return F;
- if (Value *V = FAddCombine(Builder).simplify(&I))
- return replaceInstUsesWith(I, V);
- }
-
- return nullptr;
-}
-
-/// Optimize pointer differences into the same array into a size. Consider:
-/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
-/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
-Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
- Type *Ty) {
- // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
- // this.
- bool Swapped = false;
- GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
-
- // For now we require one side to be the base pointer "A" or a constant
- // GEP derived from it.
- if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
- // (gep X, ...) - X
- if (LHSGEP->getOperand(0) == RHS) {
- GEP1 = LHSGEP;
- Swapped = false;
- } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
- // (gep X, ...) - (gep X, ...)
- if (LHSGEP->getOperand(0)->stripPointerCasts() ==
- RHSGEP->getOperand(0)->stripPointerCasts()) {
- GEP2 = RHSGEP;
- GEP1 = LHSGEP;
- Swapped = false;
- }
- }
- }
-
- if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
- // X - (gep X, ...)
- if (RHSGEP->getOperand(0) == LHS) {
- GEP1 = RHSGEP;
- Swapped = true;
- } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
- // (gep X, ...) - (gep X, ...)
- if (RHSGEP->getOperand(0)->stripPointerCasts() ==
- LHSGEP->getOperand(0)->stripPointerCasts()) {
- GEP2 = LHSGEP;
- GEP1 = RHSGEP;
- Swapped = true;
- }
- }
- }
-
- if (!GEP1)
- // No GEP found.
- return nullptr;
-
- if (GEP2) {
- // (gep X, ...) - (gep X, ...)
- //
- // Avoid duplicating the arithmetic if there are more than one non-constant
- // indices between the two GEPs and either GEP has a non-constant index and
- // multiple users. If zero non-constant index, the result is a constant and
- // there is no duplication. If one non-constant index, the result is an add
- // or sub with a constant, which is no larger than the original code, and
- // there's no duplicated arithmetic, even if either GEP has multiple
- // users. If more than one non-constant indices combined, as long as the GEP
- // with at least one non-constant index doesn't have multiple users, there
- // is no duplication.
- unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
- unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
- if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
- ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
- (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
- return nullptr;
- }
- }
-
- // Emit the offset of the GEP and an intptr_t.
- Value *Result = EmitGEPOffset(GEP1);
-
- // If we had a constant expression GEP on the other side offsetting the
- // pointer, subtract it from the offset we have.
- if (GEP2) {
- Value *Offset = EmitGEPOffset(GEP2);
- Result = Builder.CreateSub(Result, Offset);
- }
-
- // If we have p - gep(p, ...) then we have to negate the result.
- if (Swapped)
- Result = Builder.CreateNeg(Result, "diff.neg");
-
- return Builder.CreateIntCast(Result, Ty, true);
-}
-
-Instruction *InstCombiner::visitSub(BinaryOperator &I) {
- if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
- I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- // (A*B)-(A*C) -> A*(B-C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
-
- // If this is a 'B = x-(-A)', change to B = x+A.
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (Value *V = dyn_castNegVal(Op1)) {
- BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
-
- if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
- assert(BO->getOpcode() == Instruction::Sub &&
- "Expected a subtraction operator!");
- if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
- Res->setHasNoSignedWrap(true);
- } else {
- if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
- Res->setHasNoSignedWrap(true);
- }
-
- return Res;
- }
-
- if (I.getType()->isIntOrIntVectorTy(1))
- return BinaryOperator::CreateXor(Op0, Op1);
-
- // Replace (-1 - A) with (~A).
- if (match(Op0, m_AllOnes()))
- return BinaryOperator::CreateNot(Op1);
-
- // (~X) - (~Y) --> Y - X
- Value *X, *Y;
- if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
- return BinaryOperator::CreateSub(Y, X);
-
- // (X + -1) - Y --> ~Y + X
- if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
- return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
-
- // Y - (X + 1) --> ~X + Y
- if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
- return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
-
- // Y - ~X --> (X + 1) + Y
- if (match(Op1, m_OneUse(m_Not(m_Value(X))))) {
- return BinaryOperator::CreateAdd(
- Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X);
- }
-
- if (Constant *C = dyn_cast<Constant>(Op0)) {
- bool IsNegate = match(C, m_ZeroInt());
- Value *X;
- if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- // 0 - (zext bool) --> sext bool
- // C - (zext bool) --> bool ? C - 1 : C
- if (IsNegate)
- return CastInst::CreateSExtOrBitCast(X, I.getType());
- return SelectInst::Create(X, SubOne(C), C);
- }
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- // 0 - (sext bool) --> zext bool
- // C - (sext bool) --> bool ? C + 1 : C
- if (IsNegate)
- return CastInst::CreateZExtOrBitCast(X, I.getType());
- return SelectInst::Create(X, AddOne(C), C);
- }
-
- // C - ~X == X + (1+C)
- if (match(Op1, m_Not(m_Value(X))))
- return BinaryOperator::CreateAdd(X, AddOne(C));
-
- // Try to fold constant sub into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
-
- // Try to fold constant sub into PHI values.
- if (PHINode *PN = dyn_cast<PHINode>(Op1))
- if (Instruction *R = foldOpIntoPhi(I, PN))
- return R;
-
- Constant *C2;
-
- // C-(C2-X) --> X+(C-C2)
- if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))))
- return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
-
- // C-(X+C2) --> (C-C2)-X
- if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
- return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
- }
-
- const APInt *Op0C;
- if (match(Op0, m_APInt(Op0C))) {
- unsigned BitWidth = I.getType()->getScalarSizeInBits();
-
- // -(X >>u 31) -> (X >>s 31)
- // -(X >>s 31) -> (X >>u 31)
- if (Op0C->isNullValue()) {
- Value *X;
- const APInt *ShAmt;
- if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
- *ShAmt == BitWidth - 1) {
- Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
- return BinaryOperator::CreateAShr(X, ShAmtOp);
- }
- if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
- *ShAmt == BitWidth - 1) {
- Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
- return BinaryOperator::CreateLShr(X, ShAmtOp);
- }
-
- if (Op1->hasOneUse()) {
- Value *LHS, *RHS;
- SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
- if (SPF == SPF_ABS || SPF == SPF_NABS) {
- // This is a negate of an ABS/NABS pattern. Just swap the operands
- // of the select.
- SelectInst *SI = cast<SelectInst>(Op1);
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- SI->setTrueValue(FalseVal);
- SI->setFalseValue(TrueVal);
- // Don't swap prof metadata, we didn't change the branch behavior.
- return replaceInstUsesWith(I, SI);
- }
- }
- }
-
- // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
- // zero.
- if (Op0C->isMask()) {
- KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
- if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
- return BinaryOperator::CreateXor(Op1, Op0);
- }
- }
-
- {
- Value *Y;
- // X-(X+Y) == -Y X-(Y+X) == -Y
- if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
- return BinaryOperator::CreateNeg(Y);
-
- // (X-Y)-X == -Y
- if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
- return BinaryOperator::CreateNeg(Y);
- }
-
- // (sub (or A, B), (xor A, B)) --> (and A, B)
- {
- Value *A, *B;
- if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
- match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateAnd(A, B);
- }
-
- {
- Value *Y;
- // ((X | Y) - X) --> (~X & Y)
- if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
- return BinaryOperator::CreateAnd(
- Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
- }
-
- if (Op1->hasOneUse()) {
- Value *X = nullptr, *Y = nullptr, *Z = nullptr;
- Constant *C = nullptr;
-
- // (X - (Y - Z)) --> (X + (Z - Y)).
- if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
- return BinaryOperator::CreateAdd(Op0,
- Builder.CreateSub(Z, Y, Op1->getName()));
-
- // (X - (X & Y)) --> (X & ~Y)
- if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
- return BinaryOperator::CreateAnd(Op0,
- Builder.CreateNot(Y, Y->getName() + ".not"));
-
- // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow.
- // TODO: This could be extended to match arbitrary vector constants.
- const APInt *DivC;
- if (match(Op0, m_Zero()) && match(Op1, m_SDiv(m_Value(X), m_APInt(DivC))) &&
- !DivC->isMinSignedValue() && *DivC != 1) {
- Constant *NegDivC = ConstantInt::get(I.getType(), -(*DivC));
- Instruction *BO = BinaryOperator::CreateSDiv(X, NegDivC);
- BO->setIsExact(cast<BinaryOperator>(Op1)->isExact());
- return BO;
- }
-
- // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
- if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
- if (Value *XNeg = dyn_castNegVal(X))
- return BinaryOperator::CreateShl(XNeg, Y);
-
- // Subtracting -1/0 is the same as adding 1/0:
- // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
- // 'nuw' is dropped in favor of the canonical form.
- if (match(Op1, m_SExt(m_Value(Y))) &&
- Y->getType()->getScalarSizeInBits() == 1) {
- Value *Zext = Builder.CreateZExt(Y, I.getType());
- BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
- Add->setHasNoSignedWrap(I.hasNoSignedWrap());
- return Add;
- }
-
- // X - A*-B -> X + A*B
- // X - -A*B -> X + A*B
- Value *A, *B;
- if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
- return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
-
- // X - A*C -> X + A*-C
- // No need to handle commuted multiply because multiply handling will
- // ensure constant will be move to the right hand side.
- if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) {
- Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C));
- return BinaryOperator::CreateAdd(Op0, NewMul);
- }
- }
-
- {
- // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
- // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
- // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
- // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
- // So long as O here is freely invertible, this will be neutral or a win.
- Value *LHS, *RHS, *A;
- Value *NotA = Op0, *MinMax = Op1;
- SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
- if (!SelectPatternResult::isMinOrMax(SPF)) {
- NotA = Op1;
- MinMax = Op0;
- SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
- }
- if (SelectPatternResult::isMinOrMax(SPF) &&
- match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
- if (NotA == LHS)
- std::swap(LHS, RHS);
- // LHS is now O above and expected to have at least 2 uses (the min/max)
- // NotA is epected to have 2 uses from the min/max and 1 from the sub.
- if (IsFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
- !NotA->hasNUsesOrMore(4)) {
- // Note: We don't generate the inverse max/min, just create the not of
- // it and let other folds do the rest.
- Value *Not = Builder.CreateNot(MinMax);
- if (NotA == Op0)
- return BinaryOperator::CreateSub(Not, A);
- else
- return BinaryOperator::CreateSub(A, Not);
- }
- }
- }
-
- // Optimize pointer differences into the same array into a size. Consider:
- // &A[10] - &A[0]: we should compile this to "10".
- Value *LHSOp, *RHSOp;
- if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
- match(Op1, m_PtrToInt(m_Value(RHSOp))))
- if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
- return replaceInstUsesWith(I, Res);
-
- // trunc(p)-trunc(q) -> trunc(p-q)
- if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
- match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
- if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
- return replaceInstUsesWith(I, Res);
-
- // Canonicalize a shifty way to code absolute value to the common pattern.
- // There are 2 potential commuted variants.
- // We're relying on the fact that we only do this transform when the shift has
- // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
- // instructions).
- Value *A;
- const APInt *ShAmt;
- Type *Ty = I.getType();
- if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
- Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
- match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
- // B = ashr i32 A, 31 ; smear the sign bit
- // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
- // --> (A < 0) ? -A : A
- Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
- // Copy the nuw/nsw flags from the sub to the negate.
- Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
- I.hasNoSignedWrap());
- return SelectInst::Create(Cmp, Neg, A);
- }
-
- if (Instruction *Ext = narrowMathIfNoOverflow(I))
- return Ext;
-
- bool Changed = false;
- if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoSignedWrap(true);
- }
- if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoUnsignedWrap(true);
- }
-
- return Changed ? &I : nullptr;
-}
-
-/// This eliminates floating-point negation in either 'fneg(X)' or
-/// 'fsub(-0.0, X)' form by combining into a constant operand.
-static Instruction *foldFNegIntoConstant(Instruction &I) {
- Value *X;
- Constant *C;
-
- // Fold negation into constant operand. This is limited with one-use because
- // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
- // -(X * C) --> X * (-C)
- // FIXME: It's arguable whether these should be m_OneUse or not. The current
- // belief is that the FNeg allows for better reassociation opportunities.
- if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
- return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
- // -(X / C) --> X / (-C)
- if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
- return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
- // -(C / X) --> (-C) / X
- if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
- return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitFNeg(UnaryOperator &I) {
- Value *Op = I.getOperand(0);
-
- if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldFNegIntoConstant(I))
- return X;
-
- Value *X, *Y;
-
- // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
- if (I.hasNoSignedZeros() &&
- match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
- return BinaryOperator::CreateFSubFMF(Y, X, &I);
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
- if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
-
- if (Instruction *X = foldVectorBinop(I))
- return X;
-
- // Subtraction from -0.0 is the canonical form of fneg.
- // fsub nsz 0, X ==> fsub nsz -0.0, X
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
- return BinaryOperator::CreateFNegFMF(Op1, &I);
-
- if (Instruction *X = foldFNegIntoConstant(I))
- return X;
-
- Value *X, *Y;
- Constant *C;
-
- // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
- // Canonicalize to fadd to make analysis easier.
- // This can also help codegen because fadd is commutative.
- // Note that if this fsub was really an fneg, the fadd with -0.0 will get
- // killed later. We still limit that particular transform with 'hasOneUse'
- // because an fneg is assumed better/cheaper than a generic fsub.
- if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
- if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
- Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
- return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
- }
- }
-
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *NV = FoldOpIntoSelect(I, SI))
- return NV;
-
- // X - C --> X + (-C)
- // But don't transform constant expressions because there's an inverse fold
- // for X + (-Y) --> X - Y.
- if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
- return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
-
- // X - (-Y) --> X + Y
- if (match(Op1, m_FNeg(m_Value(Y))))
- return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
-
- // Similar to above, but look through a cast of the negated value:
- // X - (fptrunc(-Y)) --> X + fptrunc(Y)
- Type *Ty = I.getType();
- if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
- return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
-
- // X - (fpext(-Y)) --> X + fpext(Y)
- if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
- return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
-
- // Handle special cases for FSub with selects feeding the operation
- if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
- return replaceInstUsesWith(I, V);
-
- if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
- // (Y - X) - Y --> -X
- if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
- return BinaryOperator::CreateFNegFMF(X, &I);
-
- // Y - (X + Y) --> -X
- // Y - (Y + X) --> -X
- if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
- return BinaryOperator::CreateFNegFMF(X, &I);
-
- // (X * C) - X --> X * (C - 1.0)
- if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
- Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
- return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
- }
- // X - (X * C) --> X * (1.0 - C)
- if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
- Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
- return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
- }
-
- if (Instruction *F = factorizeFAddFSub(I, Builder))
- return F;
-
- // TODO: This performs reassociative folds for FP ops. Some fraction of the
- // functionality has been subsumed by simple pattern matching here and in
- // InstSimplify. We should let a dedicated reassociation pass handle more
- // complex pattern matching and remove this from InstCombine.
- if (Value *V = FAddCombine(Builder).simplify(&I))
- return replaceInstUsesWith(I, V);
- }
-
- return nullptr;
-}