diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp | 4751 |
1 files changed, 0 insertions, 4751 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp deleted file mode 100644 index 4b3333affa72..000000000000 --- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp +++ /dev/null @@ -1,4751 +0,0 @@ -//===- InstCombineCalls.cpp -----------------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements the visitCall, visitInvoke, and visitCallBr functions. -// -//===----------------------------------------------------------------------===// - -#include "InstCombineInternal.h" -#include "llvm/ADT/APFloat.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/APSInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/Loads.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Statepoint.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Support/AtomicOrdering.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/InstCombine/InstCombineWorklist.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/SimplifyLibCalls.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <cstring> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "instcombine" - -STATISTIC(NumSimplified, "Number of library calls simplified"); - -static cl::opt<unsigned> GuardWideningWindow( - "instcombine-guard-widening-window", - cl::init(3), - cl::desc("How wide an instruction window to bypass looking for " - "another guard")); - -/// Return the specified type promoted as it would be to pass though a va_arg -/// area. -static Type *getPromotedType(Type *Ty) { - if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { - if (ITy->getBitWidth() < 32) - return Type::getInt32Ty(Ty->getContext()); - } - return Ty; -} - -/// Return a constant boolean vector that has true elements in all positions -/// where the input constant data vector has an element with the sign bit set. -static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) { - SmallVector<Constant *, 32> BoolVec; - IntegerType *BoolTy = Type::getInt1Ty(V->getContext()); - for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) { - Constant *Elt = V->getElementAsConstant(I); - assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) && - "Unexpected constant data vector element type"); - bool Sign = V->getElementType()->isIntegerTy() - ? cast<ConstantInt>(Elt)->isNegative() - : cast<ConstantFP>(Elt)->isNegative(); - BoolVec.push_back(ConstantInt::get(BoolTy, Sign)); - } - return ConstantVector::get(BoolVec); -} - -Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { - unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); - unsigned CopyDstAlign = MI->getDestAlignment(); - if (CopyDstAlign < DstAlign){ - MI->setDestAlignment(DstAlign); - return MI; - } - - unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); - unsigned CopySrcAlign = MI->getSourceAlignment(); - if (CopySrcAlign < SrcAlign) { - MI->setSourceAlignment(SrcAlign); - return MI; - } - - // If we have a store to a location which is known constant, we can conclude - // that the store must be storing the constant value (else the memory - // wouldn't be constant), and this must be a noop. - if (AA->pointsToConstantMemory(MI->getDest())) { - // Set the size of the copy to 0, it will be deleted on the next iteration. - MI->setLength(Constant::getNullValue(MI->getLength()->getType())); - return MI; - } - - // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with - // load/store. - ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); - if (!MemOpLength) return nullptr; - - // Source and destination pointer types are always "i8*" for intrinsic. See - // if the size is something we can handle with a single primitive load/store. - // A single load+store correctly handles overlapping memory in the memmove - // case. - uint64_t Size = MemOpLength->getLimitedValue(); - assert(Size && "0-sized memory transferring should be removed already."); - - if (Size > 8 || (Size&(Size-1))) - return nullptr; // If not 1/2/4/8 bytes, exit. - - // If it is an atomic and alignment is less than the size then we will - // introduce the unaligned memory access which will be later transformed - // into libcall in CodeGen. This is not evident performance gain so disable - // it now. - if (isa<AtomicMemTransferInst>(MI)) - if (CopyDstAlign < Size || CopySrcAlign < Size) - return nullptr; - - // Use an integer load+store unless we can find something better. - unsigned SrcAddrSp = - cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); - unsigned DstAddrSp = - cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); - - IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); - Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); - Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); - - // If the memcpy has metadata describing the members, see if we can get the - // TBAA tag describing our copy. - MDNode *CopyMD = nullptr; - if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) { - CopyMD = M; - } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { - if (M->getNumOperands() == 3 && M->getOperand(0) && - mdconst::hasa<ConstantInt>(M->getOperand(0)) && - mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() && - M->getOperand(1) && - mdconst::hasa<ConstantInt>(M->getOperand(1)) && - mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == - Size && - M->getOperand(2) && isa<MDNode>(M->getOperand(2))) - CopyMD = cast<MDNode>(M->getOperand(2)); - } - - Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); - Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); - LoadInst *L = Builder.CreateLoad(IntType, Src); - // Alignment from the mem intrinsic will be better, so use it. - L->setAlignment(CopySrcAlign); - if (CopyMD) - L->setMetadata(LLVMContext::MD_tbaa, CopyMD); - MDNode *LoopMemParallelMD = - MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); - if (LoopMemParallelMD) - L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); - MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); - if (AccessGroupMD) - L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); - - StoreInst *S = Builder.CreateStore(L, Dest); - // Alignment from the mem intrinsic will be better, so use it. - S->setAlignment(CopyDstAlign); - if (CopyMD) - S->setMetadata(LLVMContext::MD_tbaa, CopyMD); - if (LoopMemParallelMD) - S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); - if (AccessGroupMD) - S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); - - if (auto *MT = dyn_cast<MemTransferInst>(MI)) { - // non-atomics can be volatile - L->setVolatile(MT->isVolatile()); - S->setVolatile(MT->isVolatile()); - } - if (isa<AtomicMemTransferInst>(MI)) { - // atomics have to be unordered - L->setOrdering(AtomicOrdering::Unordered); - S->setOrdering(AtomicOrdering::Unordered); - } - - // Set the size of the copy to 0, it will be deleted on the next iteration. - MI->setLength(Constant::getNullValue(MemOpLength->getType())); - return MI; -} - -Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) { - unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); - if (MI->getDestAlignment() < Alignment) { - MI->setDestAlignment(Alignment); - return MI; - } - - // If we have a store to a location which is known constant, we can conclude - // that the store must be storing the constant value (else the memory - // wouldn't be constant), and this must be a noop. - if (AA->pointsToConstantMemory(MI->getDest())) { - // Set the size of the copy to 0, it will be deleted on the next iteration. - MI->setLength(Constant::getNullValue(MI->getLength()->getType())); - return MI; - } - - // Extract the length and alignment and fill if they are constant. - ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); - ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); - if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) - return nullptr; - uint64_t Len = LenC->getLimitedValue(); - Alignment = MI->getDestAlignment(); - assert(Len && "0-sized memory setting should be removed already."); - - // Alignment 0 is identity for alignment 1 for memset, but not store. - if (Alignment == 0) - Alignment = 1; - - // If it is an atomic and alignment is less than the size then we will - // introduce the unaligned memory access which will be later transformed - // into libcall in CodeGen. This is not evident performance gain so disable - // it now. - if (isa<AtomicMemSetInst>(MI)) - if (Alignment < Len) - return nullptr; - - // memset(s,c,n) -> store s, c (for n=1,2,4,8) - if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { - Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. - - Value *Dest = MI->getDest(); - unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); - Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); - Dest = Builder.CreateBitCast(Dest, NewDstPtrTy); - - // Extract the fill value and store. - uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; - StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest, - MI->isVolatile()); - S->setAlignment(Alignment); - if (isa<AtomicMemSetInst>(MI)) - S->setOrdering(AtomicOrdering::Unordered); - - // Set the size of the copy to 0, it will be deleted on the next iteration. - MI->setLength(Constant::getNullValue(LenC->getType())); - return MI; - } - - return nullptr; -} - -static Value *simplifyX86immShift(const IntrinsicInst &II, - InstCombiner::BuilderTy &Builder) { - bool LogicalShift = false; - bool ShiftLeft = false; - - switch (II.getIntrinsicID()) { - default: llvm_unreachable("Unexpected intrinsic!"); - case Intrinsic::x86_sse2_psra_d: - case Intrinsic::x86_sse2_psra_w: - case Intrinsic::x86_sse2_psrai_d: - case Intrinsic::x86_sse2_psrai_w: - case Intrinsic::x86_avx2_psra_d: - case Intrinsic::x86_avx2_psra_w: - case Intrinsic::x86_avx2_psrai_d: - case Intrinsic::x86_avx2_psrai_w: - case Intrinsic::x86_avx512_psra_q_128: - case Intrinsic::x86_avx512_psrai_q_128: - case Intrinsic::x86_avx512_psra_q_256: - case Intrinsic::x86_avx512_psrai_q_256: - case Intrinsic::x86_avx512_psra_d_512: - case Intrinsic::x86_avx512_psra_q_512: - case Intrinsic::x86_avx512_psra_w_512: - case Intrinsic::x86_avx512_psrai_d_512: - case Intrinsic::x86_avx512_psrai_q_512: - case Intrinsic::x86_avx512_psrai_w_512: - LogicalShift = false; ShiftLeft = false; - break; - case Intrinsic::x86_sse2_psrl_d: - case Intrinsic::x86_sse2_psrl_q: - case Intrinsic::x86_sse2_psrl_w: - case Intrinsic::x86_sse2_psrli_d: - case Intrinsic::x86_sse2_psrli_q: - case Intrinsic::x86_sse2_psrli_w: - case Intrinsic::x86_avx2_psrl_d: - case Intrinsic::x86_avx2_psrl_q: - case Intrinsic::x86_avx2_psrl_w: - case Intrinsic::x86_avx2_psrli_d: - case Intrinsic::x86_avx2_psrli_q: - case Intrinsic::x86_avx2_psrli_w: - case Intrinsic::x86_avx512_psrl_d_512: - case Intrinsic::x86_avx512_psrl_q_512: - case Intrinsic::x86_avx512_psrl_w_512: - case Intrinsic::x86_avx512_psrli_d_512: - case Intrinsic::x86_avx512_psrli_q_512: - case Intrinsic::x86_avx512_psrli_w_512: - LogicalShift = true; ShiftLeft = false; - break; - case Intrinsic::x86_sse2_psll_d: - case Intrinsic::x86_sse2_psll_q: - case Intrinsic::x86_sse2_psll_w: - case Intrinsic::x86_sse2_pslli_d: - case Intrinsic::x86_sse2_pslli_q: - case Intrinsic::x86_sse2_pslli_w: - case Intrinsic::x86_avx2_psll_d: - case Intrinsic::x86_avx2_psll_q: - case Intrinsic::x86_avx2_psll_w: - case Intrinsic::x86_avx2_pslli_d: - case Intrinsic::x86_avx2_pslli_q: - case Intrinsic::x86_avx2_pslli_w: - case Intrinsic::x86_avx512_psll_d_512: - case Intrinsic::x86_avx512_psll_q_512: - case Intrinsic::x86_avx512_psll_w_512: - case Intrinsic::x86_avx512_pslli_d_512: - case Intrinsic::x86_avx512_pslli_q_512: - case Intrinsic::x86_avx512_pslli_w_512: - LogicalShift = true; ShiftLeft = true; - break; - } - assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); - - // Simplify if count is constant. - auto Arg1 = II.getArgOperand(1); - auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1); - auto CDV = dyn_cast<ConstantDataVector>(Arg1); - auto CInt = dyn_cast<ConstantInt>(Arg1); - if (!CAZ && !CDV && !CInt) - return nullptr; - - APInt Count(64, 0); - if (CDV) { - // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector - // operand to compute the shift amount. - auto VT = cast<VectorType>(CDV->getType()); - unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits(); - assert((64 % BitWidth) == 0 && "Unexpected packed shift size"); - unsigned NumSubElts = 64 / BitWidth; - - // Concatenate the sub-elements to create the 64-bit value. - for (unsigned i = 0; i != NumSubElts; ++i) { - unsigned SubEltIdx = (NumSubElts - 1) - i; - auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx)); - Count <<= BitWidth; - Count |= SubElt->getValue().zextOrTrunc(64); - } - } - else if (CInt) - Count = CInt->getValue(); - - auto Vec = II.getArgOperand(0); - auto VT = cast<VectorType>(Vec->getType()); - auto SVT = VT->getElementType(); - unsigned VWidth = VT->getNumElements(); - unsigned BitWidth = SVT->getPrimitiveSizeInBits(); - - // If shift-by-zero then just return the original value. - if (Count.isNullValue()) - return Vec; - - // Handle cases when Shift >= BitWidth. - if (Count.uge(BitWidth)) { - // If LogicalShift - just return zero. - if (LogicalShift) - return ConstantAggregateZero::get(VT); - - // If ArithmeticShift - clamp Shift to (BitWidth - 1). - Count = APInt(64, BitWidth - 1); - } - - // Get a constant vector of the same type as the first operand. - auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth)); - auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt); - - if (ShiftLeft) - return Builder.CreateShl(Vec, ShiftVec); - - if (LogicalShift) - return Builder.CreateLShr(Vec, ShiftVec); - - return Builder.CreateAShr(Vec, ShiftVec); -} - -// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift. -// Unlike the generic IR shifts, the intrinsics have defined behaviour for out -// of range shift amounts (logical - set to zero, arithmetic - splat sign bit). -static Value *simplifyX86varShift(const IntrinsicInst &II, - InstCombiner::BuilderTy &Builder) { - bool LogicalShift = false; - bool ShiftLeft = false; - - switch (II.getIntrinsicID()) { - default: llvm_unreachable("Unexpected intrinsic!"); - case Intrinsic::x86_avx2_psrav_d: - case Intrinsic::x86_avx2_psrav_d_256: - case Intrinsic::x86_avx512_psrav_q_128: - case Intrinsic::x86_avx512_psrav_q_256: - case Intrinsic::x86_avx512_psrav_d_512: - case Intrinsic::x86_avx512_psrav_q_512: - case Intrinsic::x86_avx512_psrav_w_128: - case Intrinsic::x86_avx512_psrav_w_256: - case Intrinsic::x86_avx512_psrav_w_512: - LogicalShift = false; - ShiftLeft = false; - break; - case Intrinsic::x86_avx2_psrlv_d: - case Intrinsic::x86_avx2_psrlv_d_256: - case Intrinsic::x86_avx2_psrlv_q: - case Intrinsic::x86_avx2_psrlv_q_256: - case Intrinsic::x86_avx512_psrlv_d_512: - case Intrinsic::x86_avx512_psrlv_q_512: - case Intrinsic::x86_avx512_psrlv_w_128: - case Intrinsic::x86_avx512_psrlv_w_256: - case Intrinsic::x86_avx512_psrlv_w_512: - LogicalShift = true; - ShiftLeft = false; - break; - case Intrinsic::x86_avx2_psllv_d: - case Intrinsic::x86_avx2_psllv_d_256: - case Intrinsic::x86_avx2_psllv_q: - case Intrinsic::x86_avx2_psllv_q_256: - case Intrinsic::x86_avx512_psllv_d_512: - case Intrinsic::x86_avx512_psllv_q_512: - case Intrinsic::x86_avx512_psllv_w_128: - case Intrinsic::x86_avx512_psllv_w_256: - case Intrinsic::x86_avx512_psllv_w_512: - LogicalShift = true; - ShiftLeft = true; - break; - } - assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); - - // Simplify if all shift amounts are constant/undef. - auto *CShift = dyn_cast<Constant>(II.getArgOperand(1)); - if (!CShift) - return nullptr; - - auto Vec = II.getArgOperand(0); - auto VT = cast<VectorType>(II.getType()); - auto SVT = VT->getVectorElementType(); - int NumElts = VT->getNumElements(); - int BitWidth = SVT->getIntegerBitWidth(); - - // Collect each element's shift amount. - // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth. - bool AnyOutOfRange = false; - SmallVector<int, 8> ShiftAmts; - for (int I = 0; I < NumElts; ++I) { - auto *CElt = CShift->getAggregateElement(I); - if (CElt && isa<UndefValue>(CElt)) { - ShiftAmts.push_back(-1); - continue; - } - - auto *COp = dyn_cast_or_null<ConstantInt>(CElt); - if (!COp) - return nullptr; - - // Handle out of range shifts. - // If LogicalShift - set to BitWidth (special case). - // If ArithmeticShift - set to (BitWidth - 1) (sign splat). - APInt ShiftVal = COp->getValue(); - if (ShiftVal.uge(BitWidth)) { - AnyOutOfRange = LogicalShift; - ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1); - continue; - } - - ShiftAmts.push_back((int)ShiftVal.getZExtValue()); - } - - // If all elements out of range or UNDEF, return vector of zeros/undefs. - // ArithmeticShift should only hit this if they are all UNDEF. - auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); }; - if (llvm::all_of(ShiftAmts, OutOfRange)) { - SmallVector<Constant *, 8> ConstantVec; - for (int Idx : ShiftAmts) { - if (Idx < 0) { - ConstantVec.push_back(UndefValue::get(SVT)); - } else { - assert(LogicalShift && "Logical shift expected"); - ConstantVec.push_back(ConstantInt::getNullValue(SVT)); - } - } - return ConstantVector::get(ConstantVec); - } - - // We can't handle only some out of range values with generic logical shifts. - if (AnyOutOfRange) - return nullptr; - - // Build the shift amount constant vector. - SmallVector<Constant *, 8> ShiftVecAmts; - for (int Idx : ShiftAmts) { - if (Idx < 0) - ShiftVecAmts.push_back(UndefValue::get(SVT)); - else - ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx)); - } - auto ShiftVec = ConstantVector::get(ShiftVecAmts); - - if (ShiftLeft) - return Builder.CreateShl(Vec, ShiftVec); - - if (LogicalShift) - return Builder.CreateLShr(Vec, ShiftVec); - - return Builder.CreateAShr(Vec, ShiftVec); -} - -static Value *simplifyX86pack(IntrinsicInst &II, - InstCombiner::BuilderTy &Builder, bool IsSigned) { - Value *Arg0 = II.getArgOperand(0); - Value *Arg1 = II.getArgOperand(1); - Type *ResTy = II.getType(); - - // Fast all undef handling. - if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1)) - return UndefValue::get(ResTy); - - Type *ArgTy = Arg0->getType(); - unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128; - unsigned NumSrcElts = ArgTy->getVectorNumElements(); - assert(ResTy->getVectorNumElements() == (2 * NumSrcElts) && - "Unexpected packing types"); - - unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes; - unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits(); - unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits(); - assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) && - "Unexpected packing types"); - - // Constant folding. - if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1)) - return nullptr; - - // Clamp Values - signed/unsigned both use signed clamp values, but they - // differ on the min/max values. - APInt MinValue, MaxValue; - if (IsSigned) { - // PACKSS: Truncate signed value with signed saturation. - // Source values less than dst minint are saturated to minint. - // Source values greater than dst maxint are saturated to maxint. - MinValue = - APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); - MaxValue = - APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); - } else { - // PACKUS: Truncate signed value with unsigned saturation. - // Source values less than zero are saturated to zero. - // Source values greater than dst maxuint are saturated to maxuint. - MinValue = APInt::getNullValue(SrcScalarSizeInBits); - MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits); - } - - auto *MinC = Constant::getIntegerValue(ArgTy, MinValue); - auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue); - Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0); - Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1); - Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0); - Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1); - - // Shuffle clamped args together at the lane level. - SmallVector<unsigned, 32> PackMask; - for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { - for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) - PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane)); - for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) - PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts); - } - auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask); - - // Truncate to dst size. - return Builder.CreateTrunc(Shuffle, ResTy); -} - -static Value *simplifyX86movmsk(const IntrinsicInst &II, - InstCombiner::BuilderTy &Builder) { - Value *Arg = II.getArgOperand(0); - Type *ResTy = II.getType(); - Type *ArgTy = Arg->getType(); - - // movmsk(undef) -> zero as we must ensure the upper bits are zero. - if (isa<UndefValue>(Arg)) - return Constant::getNullValue(ResTy); - - // We can't easily peek through x86_mmx types. - if (!ArgTy->isVectorTy()) - return nullptr; - - // Expand MOVMSK to compare/bitcast/zext: - // e.g. PMOVMSKB(v16i8 x): - // %cmp = icmp slt <16 x i8> %x, zeroinitializer - // %int = bitcast <16 x i1> %cmp to i16 - // %res = zext i16 %int to i32 - unsigned NumElts = ArgTy->getVectorNumElements(); - Type *IntegerVecTy = VectorType::getInteger(cast<VectorType>(ArgTy)); - Type *IntegerTy = Builder.getIntNTy(NumElts); - - Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy); - Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy)); - Res = Builder.CreateBitCast(Res, IntegerTy); - Res = Builder.CreateZExtOrTrunc(Res, ResTy); - return Res; -} - -static Value *simplifyX86addcarry(const IntrinsicInst &II, - InstCombiner::BuilderTy &Builder) { - Value *CarryIn = II.getArgOperand(0); - Value *Op1 = II.getArgOperand(1); - Value *Op2 = II.getArgOperand(2); - Type *RetTy = II.getType(); - Type *OpTy = Op1->getType(); - assert(RetTy->getStructElementType(0)->isIntegerTy(8) && - RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() && - "Unexpected types for x86 addcarry"); - - // If carry-in is zero, this is just an unsigned add with overflow. - if (match(CarryIn, m_ZeroInt())) { - Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy, - { Op1, Op2 }); - // The types have to be adjusted to match the x86 call types. - Value *UAddResult = Builder.CreateExtractValue(UAdd, 0); - Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1), - Builder.getInt8Ty()); - Value *Res = UndefValue::get(RetTy); - Res = Builder.CreateInsertValue(Res, UAddOV, 0); - return Builder.CreateInsertValue(Res, UAddResult, 1); - } - - return nullptr; -} - -static Value *simplifyX86insertps(const IntrinsicInst &II, - InstCombiner::BuilderTy &Builder) { - auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2)); - if (!CInt) - return nullptr; - - VectorType *VecTy = cast<VectorType>(II.getType()); - assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type"); - - // The immediate permute control byte looks like this: - // [3:0] - zero mask for each 32-bit lane - // [5:4] - select one 32-bit destination lane - // [7:6] - select one 32-bit source lane - - uint8_t Imm = CInt->getZExtValue(); - uint8_t ZMask = Imm & 0xf; - uint8_t DestLane = (Imm >> 4) & 0x3; - uint8_t SourceLane = (Imm >> 6) & 0x3; - - ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); - - // If all zero mask bits are set, this was just a weird way to - // generate a zero vector. - if (ZMask == 0xf) - return ZeroVector; - - // Initialize by passing all of the first source bits through. - uint32_t ShuffleMask[4] = { 0, 1, 2, 3 }; - - // We may replace the second operand with the zero vector. - Value *V1 = II.getArgOperand(1); - - if (ZMask) { - // If the zero mask is being used with a single input or the zero mask - // overrides the destination lane, this is a shuffle with the zero vector. - if ((II.getArgOperand(0) == II.getArgOperand(1)) || - (ZMask & (1 << DestLane))) { - V1 = ZeroVector; - // We may still move 32-bits of the first source vector from one lane - // to another. - ShuffleMask[DestLane] = SourceLane; - // The zero mask may override the previous insert operation. - for (unsigned i = 0; i < 4; ++i) - if ((ZMask >> i) & 0x1) - ShuffleMask[i] = i + 4; - } else { - // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? - return nullptr; - } - } else { - // Replace the selected destination lane with the selected source lane. - ShuffleMask[DestLane] = SourceLane + 4; - } - - return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask); -} - -/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding -/// or conversion to a shuffle vector. -static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0, - ConstantInt *CILength, ConstantInt *CIIndex, - InstCombiner::BuilderTy &Builder) { - auto LowConstantHighUndef = [&](uint64_t Val) { - Type *IntTy64 = Type::getInt64Ty(II.getContext()); - Constant *Args[] = {ConstantInt::get(IntTy64, Val), - UndefValue::get(IntTy64)}; - return ConstantVector::get(Args); - }; - - // See if we're dealing with constant values. - Constant *C0 = dyn_cast<Constant>(Op0); - ConstantInt *CI0 = - C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) - : nullptr; - - // Attempt to constant fold. - if (CILength && CIIndex) { - // From AMD documentation: "The bit index and field length are each six - // bits in length other bits of the field are ignored." - APInt APIndex = CIIndex->getValue().zextOrTrunc(6); - APInt APLength = CILength->getValue().zextOrTrunc(6); - - unsigned Index = APIndex.getZExtValue(); - - // From AMD documentation: "a value of zero in the field length is - // defined as length of 64". - unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); - - // From AMD documentation: "If the sum of the bit index + length field - // is greater than 64, the results are undefined". - unsigned End = Index + Length; - - // Note that both field index and field length are 8-bit quantities. - // Since variables 'Index' and 'Length' are unsigned values - // obtained from zero-extending field index and field length - // respectively, their sum should never wrap around. - if (End > 64) - return UndefValue::get(II.getType()); - - // If we are inserting whole bytes, we can convert this to a shuffle. - // Lowering can recognize EXTRQI shuffle masks. - if ((Length % 8) == 0 && (Index % 8) == 0) { - // Convert bit indices to byte indices. - Length /= 8; - Index /= 8; - - Type *IntTy8 = Type::getInt8Ty(II.getContext()); - Type *IntTy32 = Type::getInt32Ty(II.getContext()); - VectorType *ShufTy = VectorType::get(IntTy8, 16); - - SmallVector<Constant *, 16> ShuffleMask; - for (int i = 0; i != (int)Length; ++i) - ShuffleMask.push_back( - Constant::getIntegerValue(IntTy32, APInt(32, i + Index))); - for (int i = Length; i != 8; ++i) - ShuffleMask.push_back( - Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); - for (int i = 8; i != 16; ++i) - ShuffleMask.push_back(UndefValue::get(IntTy32)); - - Value *SV = Builder.CreateShuffleVector( - Builder.CreateBitCast(Op0, ShufTy), - ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask)); - return Builder.CreateBitCast(SV, II.getType()); - } - - // Constant Fold - shift Index'th bit to lowest position and mask off - // Length bits. - if (CI0) { - APInt Elt = CI0->getValue(); - Elt.lshrInPlace(Index); - Elt = Elt.zextOrTrunc(Length); - return LowConstantHighUndef(Elt.getZExtValue()); - } - - // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. - if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { - Value *Args[] = {Op0, CILength, CIIndex}; - Module *M = II.getModule(); - Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi); - return Builder.CreateCall(F, Args); - } - } - - // Constant Fold - extraction from zero is always {zero, undef}. - if (CI0 && CI0->isZero()) - return LowConstantHighUndef(0); - - return nullptr; -} - -/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant -/// folding or conversion to a shuffle vector. -static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, - APInt APLength, APInt APIndex, - InstCombiner::BuilderTy &Builder) { - // From AMD documentation: "The bit index and field length are each six bits - // in length other bits of the field are ignored." - APIndex = APIndex.zextOrTrunc(6); - APLength = APLength.zextOrTrunc(6); - - // Attempt to constant fold. - unsigned Index = APIndex.getZExtValue(); - - // From AMD documentation: "a value of zero in the field length is - // defined as length of 64". - unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); - - // From AMD documentation: "If the sum of the bit index + length field - // is greater than 64, the results are undefined". - unsigned End = Index + Length; - - // Note that both field index and field length are 8-bit quantities. - // Since variables 'Index' and 'Length' are unsigned values - // obtained from zero-extending field index and field length - // respectively, their sum should never wrap around. - if (End > 64) - return UndefValue::get(II.getType()); - - // If we are inserting whole bytes, we can convert this to a shuffle. - // Lowering can recognize INSERTQI shuffle masks. - if ((Length % 8) == 0 && (Index % 8) == 0) { - // Convert bit indices to byte indices. - Length /= 8; - Index /= 8; - - Type *IntTy8 = Type::getInt8Ty(II.getContext()); - Type *IntTy32 = Type::getInt32Ty(II.getContext()); - VectorType *ShufTy = VectorType::get(IntTy8, 16); - - SmallVector<Constant *, 16> ShuffleMask; - for (int i = 0; i != (int)Index; ++i) - ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); - for (int i = 0; i != (int)Length; ++i) - ShuffleMask.push_back( - Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); - for (int i = Index + Length; i != 8; ++i) - ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); - for (int i = 8; i != 16; ++i) - ShuffleMask.push_back(UndefValue::get(IntTy32)); - - Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy), - Builder.CreateBitCast(Op1, ShufTy), - ConstantVector::get(ShuffleMask)); - return Builder.CreateBitCast(SV, II.getType()); - } - - // See if we're dealing with constant values. - Constant *C0 = dyn_cast<Constant>(Op0); - Constant *C1 = dyn_cast<Constant>(Op1); - ConstantInt *CI00 = - C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) - : nullptr; - ConstantInt *CI10 = - C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) - : nullptr; - - // Constant Fold - insert bottom Length bits starting at the Index'th bit. - if (CI00 && CI10) { - APInt V00 = CI00->getValue(); - APInt V10 = CI10->getValue(); - APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index); - V00 = V00 & ~Mask; - V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index); - APInt Val = V00 | V10; - Type *IntTy64 = Type::getInt64Ty(II.getContext()); - Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()), - UndefValue::get(IntTy64)}; - return ConstantVector::get(Args); - } - - // If we were an INSERTQ call, we'll save demanded elements if we convert to - // INSERTQI. - if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { - Type *IntTy8 = Type::getInt8Ty(II.getContext()); - Constant *CILength = ConstantInt::get(IntTy8, Length, false); - Constant *CIIndex = ConstantInt::get(IntTy8, Index, false); - - Value *Args[] = {Op0, Op1, CILength, CIIndex}; - Module *M = II.getModule(); - Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi); - return Builder.CreateCall(F, Args); - } - - return nullptr; -} - -/// Attempt to convert pshufb* to shufflevector if the mask is constant. -static Value *simplifyX86pshufb(const IntrinsicInst &II, - InstCombiner::BuilderTy &Builder) { - Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); - if (!V) - return nullptr; - - auto *VecTy = cast<VectorType>(II.getType()); - auto *MaskEltTy = Type::getInt32Ty(II.getContext()); - unsigned NumElts = VecTy->getNumElements(); - assert((NumElts == 16 || NumElts == 32 || NumElts == 64) && - "Unexpected number of elements in shuffle mask!"); - - // Construct a shuffle mask from constant integers or UNDEFs. - Constant *Indexes[64] = {nullptr}; - - // Each byte in the shuffle control mask forms an index to permute the - // corresponding byte in the destination operand. - for (unsigned I = 0; I < NumElts; ++I) { - Constant *COp = V->getAggregateElement(I); - if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) - return nullptr; - - if (isa<UndefValue>(COp)) { - Indexes[I] = UndefValue::get(MaskEltTy); - continue; - } - - int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue(); - - // If the most significant bit (bit[7]) of each byte of the shuffle - // control mask is set, then zero is written in the result byte. - // The zero vector is in the right-hand side of the resulting - // shufflevector. - - // The value of each index for the high 128-bit lane is the least - // significant 4 bits of the respective shuffle control byte. - Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0); - Indexes[I] = ConstantInt::get(MaskEltTy, Index); - } - - auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); - auto V1 = II.getArgOperand(0); - auto V2 = Constant::getNullValue(VecTy); - return Builder.CreateShuffleVector(V1, V2, ShuffleMask); -} - -/// Attempt to convert vpermilvar* to shufflevector if the mask is constant. -static Value *simplifyX86vpermilvar(const IntrinsicInst &II, - InstCombiner::BuilderTy &Builder) { - Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); - if (!V) - return nullptr; - - auto *VecTy = cast<VectorType>(II.getType()); - auto *MaskEltTy = Type::getInt32Ty(II.getContext()); - unsigned NumElts = VecTy->getVectorNumElements(); - bool IsPD = VecTy->getScalarType()->isDoubleTy(); - unsigned NumLaneElts = IsPD ? 2 : 4; - assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2); - - // Construct a shuffle mask from constant integers or UNDEFs. - Constant *Indexes[16] = {nullptr}; - - // The intrinsics only read one or two bits, clear the rest. - for (unsigned I = 0; I < NumElts; ++I) { - Constant *COp = V->getAggregateElement(I); - if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) - return nullptr; - - if (isa<UndefValue>(COp)) { - Indexes[I] = UndefValue::get(MaskEltTy); - continue; - } - - APInt Index = cast<ConstantInt>(COp)->getValue(); - Index = Index.zextOrTrunc(32).getLoBits(2); - - // The PD variants uses bit 1 to select per-lane element index, so - // shift down to convert to generic shuffle mask index. - if (IsPD) - Index.lshrInPlace(1); - - // The _256 variants are a bit trickier since the mask bits always index - // into the corresponding 128 half. In order to convert to a generic - // shuffle, we have to make that explicit. - Index += APInt(32, (I / NumLaneElts) * NumLaneElts); - - Indexes[I] = ConstantInt::get(MaskEltTy, Index); - } - - auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); - auto V1 = II.getArgOperand(0); - auto V2 = UndefValue::get(V1->getType()); - return Builder.CreateShuffleVector(V1, V2, ShuffleMask); -} - -/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant. -static Value *simplifyX86vpermv(const IntrinsicInst &II, - InstCombiner::BuilderTy &Builder) { - auto *V = dyn_cast<Constant>(II.getArgOperand(1)); - if (!V) - return nullptr; - - auto *VecTy = cast<VectorType>(II.getType()); - auto *MaskEltTy = Type::getInt32Ty(II.getContext()); - unsigned Size = VecTy->getNumElements(); - assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) && - "Unexpected shuffle mask size"); - - // Construct a shuffle mask from constant integers or UNDEFs. - Constant *Indexes[64] = {nullptr}; - - for (unsigned I = 0; I < Size; ++I) { - Constant *COp = V->getAggregateElement(I); - if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) - return nullptr; - - if (isa<UndefValue>(COp)) { - Indexes[I] = UndefValue::get(MaskEltTy); - continue; - } - - uint32_t Index = cast<ConstantInt>(COp)->getZExtValue(); - Index &= Size - 1; - Indexes[I] = ConstantInt::get(MaskEltTy, Index); - } - - auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size)); - auto V1 = II.getArgOperand(0); - auto V2 = UndefValue::get(VecTy); - return Builder.CreateShuffleVector(V1, V2, ShuffleMask); -} - -// TODO, Obvious Missing Transforms: -// * Narrow width by halfs excluding zero/undef lanes -Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) { - Value *LoadPtr = II.getArgOperand(0); - unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue(); - - // If the mask is all ones or undefs, this is a plain vector load of the 1st - // argument. - if (maskIsAllOneOrUndef(II.getArgOperand(2))) - return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, - "unmaskedload"); - - // If we can unconditionally load from this address, replace with a - // load/select idiom. TODO: use DT for context sensitive query - if (isDereferenceableAndAlignedPointer(LoadPtr, II.getType(), Alignment, - II.getModule()->getDataLayout(), - &II, nullptr)) { - Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, - "unmaskedload"); - return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); - } - - return nullptr; -} - -// TODO, Obvious Missing Transforms: -// * Single constant active lane -> store -// * Narrow width by halfs excluding zero/undef lanes -Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) { - auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); - if (!ConstMask) - return nullptr; - - // If the mask is all zeros, this instruction does nothing. - if (ConstMask->isNullValue()) - return eraseInstFromFunction(II); - - // If the mask is all ones, this is a plain vector store of the 1st argument. - if (ConstMask->isAllOnesValue()) { - Value *StorePtr = II.getArgOperand(1); - unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue(); - return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); - } - - // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts - APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); - APInt UndefElts(DemandedElts.getBitWidth(), 0); - if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), - DemandedElts, UndefElts)) { - II.setOperand(0, V); - return &II; - } - - return nullptr; -} - -// TODO, Obvious Missing Transforms: -// * Single constant active lane load -> load -// * Dereferenceable address & few lanes -> scalarize speculative load/selects -// * Adjacent vector addresses -> masked.load -// * Narrow width by halfs excluding zero/undef lanes -// * Vector splat address w/known mask -> scalar load -// * Vector incrementing address -> vector masked load -Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) { - return nullptr; -} - -// TODO, Obvious Missing Transforms: -// * Single constant active lane -> store -// * Adjacent vector addresses -> masked.store -// * Narrow store width by halfs excluding zero/undef lanes -// * Vector splat address w/known mask -> scalar store -// * Vector incrementing address -> vector masked store -Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) { - auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); - if (!ConstMask) - return nullptr; - - // If the mask is all zeros, a scatter does nothing. - if (ConstMask->isNullValue()) - return eraseInstFromFunction(II); - - // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts - APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); - APInt UndefElts(DemandedElts.getBitWidth(), 0); - if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), - DemandedElts, UndefElts)) { - II.setOperand(0, V); - return &II; - } - if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), - DemandedElts, UndefElts)) { - II.setOperand(1, V); - return &II; - } - - return nullptr; -} - -/// This function transforms launder.invariant.group and strip.invariant.group -/// like: -/// launder(launder(%x)) -> launder(%x) (the result is not the argument) -/// launder(strip(%x)) -> launder(%x) -/// strip(strip(%x)) -> strip(%x) (the result is not the argument) -/// strip(launder(%x)) -> strip(%x) -/// This is legal because it preserves the most recent information about -/// the presence or absence of invariant.group. -static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, - InstCombiner &IC) { - auto *Arg = II.getArgOperand(0); - auto *StrippedArg = Arg->stripPointerCasts(); - auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups(); - if (StrippedArg == StrippedInvariantGroupsArg) - return nullptr; // No launders/strips to remove. - - Value *Result = nullptr; - - if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) - Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); - else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) - Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); - else - llvm_unreachable( - "simplifyInvariantGroupIntrinsic only handles launder and strip"); - if (Result->getType()->getPointerAddressSpace() != - II.getType()->getPointerAddressSpace()) - Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); - if (Result->getType() != II.getType()) - Result = IC.Builder.CreateBitCast(Result, II.getType()); - - return cast<Instruction>(Result); -} - -static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) { - assert((II.getIntrinsicID() == Intrinsic::cttz || - II.getIntrinsicID() == Intrinsic::ctlz) && - "Expected cttz or ctlz intrinsic"); - bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; - Value *Op0 = II.getArgOperand(0); - Value *X; - // ctlz(bitreverse(x)) -> cttz(x) - // cttz(bitreverse(x)) -> ctlz(x) - if (match(Op0, m_BitReverse(m_Value(X)))) { - Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; - Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); - return CallInst::Create(F, {X, II.getArgOperand(1)}); - } - - if (IsTZ) { - // cttz(-x) -> cttz(x) - if (match(Op0, m_Neg(m_Value(X)))) { - II.setOperand(0, X); - return &II; - } - - // cttz(abs(x)) -> cttz(x) - // cttz(nabs(x)) -> cttz(x) - Value *Y; - SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; - if (SPF == SPF_ABS || SPF == SPF_NABS) { - II.setOperand(0, X); - return &II; - } - } - - KnownBits Known = IC.computeKnownBits(Op0, 0, &II); - - // Create a mask for bits above (ctlz) or below (cttz) the first known one. - unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() - : Known.countMaxLeadingZeros(); - unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() - : Known.countMinLeadingZeros(); - - // If all bits above (ctlz) or below (cttz) the first known one are known - // zero, this value is constant. - // FIXME: This should be in InstSimplify because we're replacing an - // instruction with a constant. - if (PossibleZeros == DefiniteZeros) { - auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); - return IC.replaceInstUsesWith(II, C); - } - - // If the input to cttz/ctlz is known to be non-zero, - // then change the 'ZeroIsUndef' parameter to 'true' - // because we know the zero behavior can't affect the result. - if (!Known.One.isNullValue() || - isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, - &IC.getDominatorTree())) { - if (!match(II.getArgOperand(1), m_One())) { - II.setOperand(1, IC.Builder.getTrue()); - return &II; - } - } - - // Add range metadata since known bits can't completely reflect what we know. - // TODO: Handle splat vectors. - auto *IT = dyn_cast<IntegerType>(Op0->getType()); - if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { - Metadata *LowAndHigh[] = { - ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), - ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; - II.setMetadata(LLVMContext::MD_range, - MDNode::get(II.getContext(), LowAndHigh)); - return &II; - } - - return nullptr; -} - -static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) { - assert(II.getIntrinsicID() == Intrinsic::ctpop && - "Expected ctpop intrinsic"); - Value *Op0 = II.getArgOperand(0); - Value *X; - // ctpop(bitreverse(x)) -> ctpop(x) - // ctpop(bswap(x)) -> ctpop(x) - if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) { - II.setOperand(0, X); - return &II; - } - - // FIXME: Try to simplify vectors of integers. - auto *IT = dyn_cast<IntegerType>(Op0->getType()); - if (!IT) - return nullptr; - - unsigned BitWidth = IT->getBitWidth(); - KnownBits Known(BitWidth); - IC.computeKnownBits(Op0, Known, 0, &II); - - unsigned MinCount = Known.countMinPopulation(); - unsigned MaxCount = Known.countMaxPopulation(); - - // Add range metadata since known bits can't completely reflect what we know. - if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { - Metadata *LowAndHigh[] = { - ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), - ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; - II.setMetadata(LLVMContext::MD_range, - MDNode::get(II.getContext(), LowAndHigh)); - return &II; - } - - return nullptr; -} - -// TODO: If the x86 backend knew how to convert a bool vector mask back to an -// XMM register mask efficiently, we could transform all x86 masked intrinsics -// to LLVM masked intrinsics and remove the x86 masked intrinsic defs. -static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) { - Value *Ptr = II.getOperand(0); - Value *Mask = II.getOperand(1); - Constant *ZeroVec = Constant::getNullValue(II.getType()); - - // Special case a zero mask since that's not a ConstantDataVector. - // This masked load instruction creates a zero vector. - if (isa<ConstantAggregateZero>(Mask)) - return IC.replaceInstUsesWith(II, ZeroVec); - - auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); - if (!ConstMask) - return nullptr; - - // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic - // to allow target-independent optimizations. - - // First, cast the x86 intrinsic scalar pointer to a vector pointer to match - // the LLVM intrinsic definition for the pointer argument. - unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); - PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace); - Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); - - // Second, convert the x86 XMM integer vector mask to a vector of bools based - // on each element's most significant bit (the sign bit). - Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); - - // The pass-through vector for an x86 masked load is a zero vector. - CallInst *NewMaskedLoad = - IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec); - return IC.replaceInstUsesWith(II, NewMaskedLoad); -} - -// TODO: If the x86 backend knew how to convert a bool vector mask back to an -// XMM register mask efficiently, we could transform all x86 masked intrinsics -// to LLVM masked intrinsics and remove the x86 masked intrinsic defs. -static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) { - Value *Ptr = II.getOperand(0); - Value *Mask = II.getOperand(1); - Value *Vec = II.getOperand(2); - - // Special case a zero mask since that's not a ConstantDataVector: - // this masked store instruction does nothing. - if (isa<ConstantAggregateZero>(Mask)) { - IC.eraseInstFromFunction(II); - return true; - } - - // The SSE2 version is too weird (eg, unaligned but non-temporal) to do - // anything else at this level. - if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu) - return false; - - auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); - if (!ConstMask) - return false; - - // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic - // to allow target-independent optimizations. - - // First, cast the x86 intrinsic scalar pointer to a vector pointer to match - // the LLVM intrinsic definition for the pointer argument. - unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); - PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace); - Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); - - // Second, convert the x86 XMM integer vector mask to a vector of bools based - // on each element's most significant bit (the sign bit). - Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); - - IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask); - - // 'Replace uses' doesn't work for stores. Erase the original masked store. - IC.eraseInstFromFunction(II); - return true; -} - -// Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. -// -// A single NaN input is folded to minnum, so we rely on that folding for -// handling NaNs. -static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, - const APFloat &Src2) { - APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); - - APFloat::cmpResult Cmp0 = Max3.compare(Src0); - assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); - if (Cmp0 == APFloat::cmpEqual) - return maxnum(Src1, Src2); - - APFloat::cmpResult Cmp1 = Max3.compare(Src1); - assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); - if (Cmp1 == APFloat::cmpEqual) - return maxnum(Src0, Src2); - - return maxnum(Src0, Src1); -} - -/// Convert a table lookup to shufflevector if the mask is constant. -/// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in -/// which case we could lower the shufflevector with rev64 instructions -/// as it's actually a byte reverse. -static Value *simplifyNeonTbl1(const IntrinsicInst &II, - InstCombiner::BuilderTy &Builder) { - // Bail out if the mask is not a constant. - auto *C = dyn_cast<Constant>(II.getArgOperand(1)); - if (!C) - return nullptr; - - auto *VecTy = cast<VectorType>(II.getType()); - unsigned NumElts = VecTy->getNumElements(); - - // Only perform this transformation for <8 x i8> vector types. - if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) - return nullptr; - - uint32_t Indexes[8]; - - for (unsigned I = 0; I < NumElts; ++I) { - Constant *COp = C->getAggregateElement(I); - - if (!COp || !isa<ConstantInt>(COp)) - return nullptr; - - Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); - - // Make sure the mask indices are in range. - if (Indexes[I] >= NumElts) - return nullptr; - } - - auto *ShuffleMask = ConstantDataVector::get(II.getContext(), - makeArrayRef(Indexes)); - auto *V1 = II.getArgOperand(0); - auto *V2 = Constant::getNullValue(V1->getType()); - return Builder.CreateShuffleVector(V1, V2, ShuffleMask); -} - -/// Convert a vector load intrinsic into a simple llvm load instruction. -/// This is beneficial when the underlying object being addressed comes -/// from a constant, since we get constant-folding for free. -static Value *simplifyNeonVld1(const IntrinsicInst &II, - unsigned MemAlign, - InstCombiner::BuilderTy &Builder) { - auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); - - if (!IntrAlign) - return nullptr; - - unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ? - MemAlign : IntrAlign->getLimitedValue(); - - if (!isPowerOf2_32(Alignment)) - return nullptr; - - auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), - PointerType::get(II.getType(), 0)); - return Builder.CreateAlignedLoad(II.getType(), BCastInst, Alignment); -} - -// Returns true iff the 2 intrinsics have the same operands, limiting the -// comparison to the first NumOperands. -static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, - unsigned NumOperands) { - assert(I.getNumArgOperands() >= NumOperands && "Not enough operands"); - assert(E.getNumArgOperands() >= NumOperands && "Not enough operands"); - for (unsigned i = 0; i < NumOperands; i++) - if (I.getArgOperand(i) != E.getArgOperand(i)) - return false; - return true; -} - -// Remove trivially empty start/end intrinsic ranges, i.e. a start -// immediately followed by an end (ignoring debuginfo or other -// start/end intrinsics in between). As this handles only the most trivial -// cases, tracking the nesting level is not needed: -// -// call @llvm.foo.start(i1 0) ; &I -// call @llvm.foo.start(i1 0) -// call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed -// call @llvm.foo.end(i1 0) -static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID, - unsigned EndID, InstCombiner &IC) { - assert(I.getIntrinsicID() == StartID && - "Start intrinsic does not have expected ID"); - BasicBlock::iterator BI(I), BE(I.getParent()->end()); - for (++BI; BI != BE; ++BI) { - if (auto *E = dyn_cast<IntrinsicInst>(BI)) { - if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID) - continue; - if (E->getIntrinsicID() == EndID && - haveSameOperands(I, *E, E->getNumArgOperands())) { - IC.eraseInstFromFunction(*E); - IC.eraseInstFromFunction(I); - return true; - } - } - break; - } - - return false; -} - -// Convert NVVM intrinsics to target-generic LLVM code where possible. -static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) { - // Each NVVM intrinsic we can simplify can be replaced with one of: - // - // * an LLVM intrinsic, - // * an LLVM cast operation, - // * an LLVM binary operation, or - // * ad-hoc LLVM IR for the particular operation. - - // Some transformations are only valid when the module's - // flush-denormals-to-zero (ftz) setting is true/false, whereas other - // transformations are valid regardless of the module's ftz setting. - enum FtzRequirementTy { - FTZ_Any, // Any ftz setting is ok. - FTZ_MustBeOn, // Transformation is valid only if ftz is on. - FTZ_MustBeOff, // Transformation is valid only if ftz is off. - }; - // Classes of NVVM intrinsics that can't be replaced one-to-one with a - // target-generic intrinsic, cast op, or binary op but that we can nonetheless - // simplify. - enum SpecialCase { - SPC_Reciprocal, - }; - - // SimplifyAction is a poor-man's variant (plus an additional flag) that - // represents how to replace an NVVM intrinsic with target-generic LLVM IR. - struct SimplifyAction { - // Invariant: At most one of these Optionals has a value. - Optional<Intrinsic::ID> IID; - Optional<Instruction::CastOps> CastOp; - Optional<Instruction::BinaryOps> BinaryOp; - Optional<SpecialCase> Special; - - FtzRequirementTy FtzRequirement = FTZ_Any; - - SimplifyAction() = default; - - SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq) - : IID(IID), FtzRequirement(FtzReq) {} - - // Cast operations don't have anything to do with FTZ, so we skip that - // argument. - SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {} - - SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq) - : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {} - - SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq) - : Special(Special), FtzRequirement(FtzReq) {} - }; - - // Try to generate a SimplifyAction describing how to replace our - // IntrinsicInstr with target-generic LLVM IR. - const SimplifyAction Action = [II]() -> SimplifyAction { - switch (II->getIntrinsicID()) { - // NVVM intrinsics that map directly to LLVM intrinsics. - case Intrinsic::nvvm_ceil_d: - return {Intrinsic::ceil, FTZ_Any}; - case Intrinsic::nvvm_ceil_f: - return {Intrinsic::ceil, FTZ_MustBeOff}; - case Intrinsic::nvvm_ceil_ftz_f: - return {Intrinsic::ceil, FTZ_MustBeOn}; - case Intrinsic::nvvm_fabs_d: - return {Intrinsic::fabs, FTZ_Any}; - case Intrinsic::nvvm_fabs_f: - return {Intrinsic::fabs, FTZ_MustBeOff}; - case Intrinsic::nvvm_fabs_ftz_f: - return {Intrinsic::fabs, FTZ_MustBeOn}; - case Intrinsic::nvvm_floor_d: - return {Intrinsic::floor, FTZ_Any}; - case Intrinsic::nvvm_floor_f: - return {Intrinsic::floor, FTZ_MustBeOff}; - case Intrinsic::nvvm_floor_ftz_f: - return {Intrinsic::floor, FTZ_MustBeOn}; - case Intrinsic::nvvm_fma_rn_d: - return {Intrinsic::fma, FTZ_Any}; - case Intrinsic::nvvm_fma_rn_f: - return {Intrinsic::fma, FTZ_MustBeOff}; - case Intrinsic::nvvm_fma_rn_ftz_f: - return {Intrinsic::fma, FTZ_MustBeOn}; - case Intrinsic::nvvm_fmax_d: - return {Intrinsic::maxnum, FTZ_Any}; - case Intrinsic::nvvm_fmax_f: - return {Intrinsic::maxnum, FTZ_MustBeOff}; - case Intrinsic::nvvm_fmax_ftz_f: - return {Intrinsic::maxnum, FTZ_MustBeOn}; - case Intrinsic::nvvm_fmin_d: - return {Intrinsic::minnum, FTZ_Any}; - case Intrinsic::nvvm_fmin_f: - return {Intrinsic::minnum, FTZ_MustBeOff}; - case Intrinsic::nvvm_fmin_ftz_f: - return {Intrinsic::minnum, FTZ_MustBeOn}; - case Intrinsic::nvvm_round_d: - return {Intrinsic::round, FTZ_Any}; - case Intrinsic::nvvm_round_f: - return {Intrinsic::round, FTZ_MustBeOff}; - case Intrinsic::nvvm_round_ftz_f: - return {Intrinsic::round, FTZ_MustBeOn}; - case Intrinsic::nvvm_sqrt_rn_d: - return {Intrinsic::sqrt, FTZ_Any}; - case Intrinsic::nvvm_sqrt_f: - // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the - // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts - // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are - // the versions with explicit ftz-ness. - return {Intrinsic::sqrt, FTZ_Any}; - case Intrinsic::nvvm_sqrt_rn_f: - return {Intrinsic::sqrt, FTZ_MustBeOff}; - case Intrinsic::nvvm_sqrt_rn_ftz_f: - return {Intrinsic::sqrt, FTZ_MustBeOn}; - case Intrinsic::nvvm_trunc_d: - return {Intrinsic::trunc, FTZ_Any}; - case Intrinsic::nvvm_trunc_f: - return {Intrinsic::trunc, FTZ_MustBeOff}; - case Intrinsic::nvvm_trunc_ftz_f: - return {Intrinsic::trunc, FTZ_MustBeOn}; - - // NVVM intrinsics that map to LLVM cast operations. - // - // Note that llvm's target-generic conversion operators correspond to the rz - // (round to zero) versions of the nvvm conversion intrinsics, even though - // most everything else here uses the rn (round to nearest even) nvvm ops. - case Intrinsic::nvvm_d2i_rz: - case Intrinsic::nvvm_f2i_rz: - case Intrinsic::nvvm_d2ll_rz: - case Intrinsic::nvvm_f2ll_rz: - return {Instruction::FPToSI}; - case Intrinsic::nvvm_d2ui_rz: - case Intrinsic::nvvm_f2ui_rz: - case Intrinsic::nvvm_d2ull_rz: - case Intrinsic::nvvm_f2ull_rz: - return {Instruction::FPToUI}; - case Intrinsic::nvvm_i2d_rz: - case Intrinsic::nvvm_i2f_rz: - case Intrinsic::nvvm_ll2d_rz: - case Intrinsic::nvvm_ll2f_rz: - return {Instruction::SIToFP}; - case Intrinsic::nvvm_ui2d_rz: - case Intrinsic::nvvm_ui2f_rz: - case Intrinsic::nvvm_ull2d_rz: - case Intrinsic::nvvm_ull2f_rz: - return {Instruction::UIToFP}; - - // NVVM intrinsics that map to LLVM binary ops. - case Intrinsic::nvvm_add_rn_d: - return {Instruction::FAdd, FTZ_Any}; - case Intrinsic::nvvm_add_rn_f: - return {Instruction::FAdd, FTZ_MustBeOff}; - case Intrinsic::nvvm_add_rn_ftz_f: - return {Instruction::FAdd, FTZ_MustBeOn}; - case Intrinsic::nvvm_mul_rn_d: - return {Instruction::FMul, FTZ_Any}; - case Intrinsic::nvvm_mul_rn_f: - return {Instruction::FMul, FTZ_MustBeOff}; - case Intrinsic::nvvm_mul_rn_ftz_f: - return {Instruction::FMul, FTZ_MustBeOn}; - case Intrinsic::nvvm_div_rn_d: - return {Instruction::FDiv, FTZ_Any}; - case Intrinsic::nvvm_div_rn_f: - return {Instruction::FDiv, FTZ_MustBeOff}; - case Intrinsic::nvvm_div_rn_ftz_f: - return {Instruction::FDiv, FTZ_MustBeOn}; - - // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but - // need special handling. - // - // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just - // as well. - case Intrinsic::nvvm_rcp_rn_d: - return {SPC_Reciprocal, FTZ_Any}; - case Intrinsic::nvvm_rcp_rn_f: - return {SPC_Reciprocal, FTZ_MustBeOff}; - case Intrinsic::nvvm_rcp_rn_ftz_f: - return {SPC_Reciprocal, FTZ_MustBeOn}; - - // We do not currently simplify intrinsics that give an approximate answer. - // These include: - // - // - nvvm_cos_approx_{f,ftz_f} - // - nvvm_ex2_approx_{d,f,ftz_f} - // - nvvm_lg2_approx_{d,f,ftz_f} - // - nvvm_sin_approx_{f,ftz_f} - // - nvvm_sqrt_approx_{f,ftz_f} - // - nvvm_rsqrt_approx_{d,f,ftz_f} - // - nvvm_div_approx_{ftz_d,ftz_f,f} - // - nvvm_rcp_approx_ftz_d - // - // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast" - // means that fastmath is enabled in the intrinsic. Unfortunately only - // binary operators (currently) have a fastmath bit in SelectionDAG, so this - // information gets lost and we can't select on it. - // - // TODO: div and rcp are lowered to a binary op, so these we could in theory - // lower them to "fast fdiv". - - default: - return {}; - } - }(); - - // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we - // can bail out now. (Notice that in the case that IID is not an NVVM - // intrinsic, we don't have to look up any module metadata, as - // FtzRequirementTy will be FTZ_Any.) - if (Action.FtzRequirement != FTZ_Any) { - bool FtzEnabled = - II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() == - "true"; - - if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn)) - return nullptr; - } - - // Simplify to target-generic intrinsic. - if (Action.IID) { - SmallVector<Value *, 4> Args(II->arg_operands()); - // All the target-generic intrinsics currently of interest to us have one - // type argument, equal to that of the nvvm intrinsic's argument. - Type *Tys[] = {II->getArgOperand(0)->getType()}; - return CallInst::Create( - Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args); - } - - // Simplify to target-generic binary op. - if (Action.BinaryOp) - return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0), - II->getArgOperand(1), II->getName()); - - // Simplify to target-generic cast op. - if (Action.CastOp) - return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(), - II->getName()); - - // All that's left are the special cases. - if (!Action.Special) - return nullptr; - - switch (*Action.Special) { - case SPC_Reciprocal: - // Simplify reciprocal. - return BinaryOperator::Create( - Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1), - II->getArgOperand(0), II->getName()); - } - llvm_unreachable("All SpecialCase enumerators should be handled in switch."); -} - -Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) { - removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this); - return nullptr; -} - -Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) { - removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this); - return nullptr; -} - -static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) { - assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap"); - Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); - if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { - Call.setArgOperand(0, Arg1); - Call.setArgOperand(1, Arg0); - return &Call; - } - return nullptr; -} - -Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { - WithOverflowInst *WO = cast<WithOverflowInst>(II); - Value *OperationResult = nullptr; - Constant *OverflowResult = nullptr; - if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), - WO->getRHS(), *WO, OperationResult, OverflowResult)) - return CreateOverflowTuple(WO, OperationResult, OverflowResult); - return nullptr; -} - -/// CallInst simplification. This mostly only handles folding of intrinsic -/// instructions. For normal calls, it allows visitCallBase to do the heavy -/// lifting. -Instruction *InstCombiner::visitCallInst(CallInst &CI) { - if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI))) - return replaceInstUsesWith(CI, V); - - if (isFreeCall(&CI, &TLI)) - return visitFree(CI); - - // If the caller function is nounwind, mark the call as nounwind, even if the - // callee isn't. - if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { - CI.setDoesNotThrow(); - return &CI; - } - - IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); - if (!II) return visitCallBase(CI); - - // Intrinsics cannot occur in an invoke or a callbr, so handle them here - // instead of in visitCallBase. - if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { - bool Changed = false; - - // memmove/cpy/set of zero bytes is a noop. - if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { - if (NumBytes->isNullValue()) - return eraseInstFromFunction(CI); - - if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) - if (CI->getZExtValue() == 1) { - // Replace the instruction with just byte operations. We would - // transform other cases to loads/stores, but we don't know if - // alignment is sufficient. - } - } - - // No other transformations apply to volatile transfers. - if (auto *M = dyn_cast<MemIntrinsic>(MI)) - if (M->isVolatile()) - return nullptr; - - // If we have a memmove and the source operation is a constant global, - // then the source and dest pointers can't alias, so we can change this - // into a call to memcpy. - if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { - if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) - if (GVSrc->isConstant()) { - Module *M = CI.getModule(); - Intrinsic::ID MemCpyID = - isa<AtomicMemMoveInst>(MMI) - ? Intrinsic::memcpy_element_unordered_atomic - : Intrinsic::memcpy; - Type *Tys[3] = { CI.getArgOperand(0)->getType(), - CI.getArgOperand(1)->getType(), - CI.getArgOperand(2)->getType() }; - CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); - Changed = true; - } - } - - if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { - // memmove(x,x,size) -> noop. - if (MTI->getSource() == MTI->getDest()) - return eraseInstFromFunction(CI); - } - - // If we can determine a pointer alignment that is bigger than currently - // set, update the alignment. - if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { - if (Instruction *I = SimplifyAnyMemTransfer(MTI)) - return I; - } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { - if (Instruction *I = SimplifyAnyMemSet(MSI)) - return I; - } - - if (Changed) return II; - } - - // For vector result intrinsics, use the generic demanded vector support. - if (II->getType()->isVectorTy()) { - auto VWidth = II->getType()->getVectorNumElements(); - APInt UndefElts(VWidth, 0); - APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); - if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { - if (V != II) - return replaceInstUsesWith(*II, V); - return II; - } - } - - if (Instruction *I = SimplifyNVVMIntrinsic(II, *this)) - return I; - - auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, - unsigned DemandedWidth) { - APInt UndefElts(Width, 0); - APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth); - return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); - }; - - Intrinsic::ID IID = II->getIntrinsicID(); - switch (IID) { - default: break; - case Intrinsic::objectsize: - if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) - return replaceInstUsesWith(CI, V); - return nullptr; - case Intrinsic::bswap: { - Value *IIOperand = II->getArgOperand(0); - Value *X = nullptr; - - // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) - if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { - unsigned C = X->getType()->getPrimitiveSizeInBits() - - IIOperand->getType()->getPrimitiveSizeInBits(); - Value *CV = ConstantInt::get(X->getType(), C); - Value *V = Builder.CreateLShr(X, CV); - return new TruncInst(V, IIOperand->getType()); - } - break; - } - case Intrinsic::masked_load: - if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) - return replaceInstUsesWith(CI, SimplifiedMaskedOp); - break; - case Intrinsic::masked_store: - return simplifyMaskedStore(*II); - case Intrinsic::masked_gather: - return simplifyMaskedGather(*II); - case Intrinsic::masked_scatter: - return simplifyMaskedScatter(*II); - case Intrinsic::launder_invariant_group: - case Intrinsic::strip_invariant_group: - if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) - return replaceInstUsesWith(*II, SkippedBarrier); - break; - case Intrinsic::powi: - if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { - // 0 and 1 are handled in instsimplify - - // powi(x, -1) -> 1/x - if (Power->isMinusOne()) - return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), - II->getArgOperand(0)); - // powi(x, 2) -> x*x - if (Power->equalsInt(2)) - return BinaryOperator::CreateFMul(II->getArgOperand(0), - II->getArgOperand(0)); - } - break; - - case Intrinsic::cttz: - case Intrinsic::ctlz: - if (auto *I = foldCttzCtlz(*II, *this)) - return I; - break; - - case Intrinsic::ctpop: - if (auto *I = foldCtpop(*II, *this)) - return I; - break; - - case Intrinsic::fshl: - case Intrinsic::fshr: { - Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); - Type *Ty = II->getType(); - unsigned BitWidth = Ty->getScalarSizeInBits(); - Constant *ShAmtC; - if (match(II->getArgOperand(2), m_Constant(ShAmtC)) && - !isa<ConstantExpr>(ShAmtC) && !ShAmtC->containsConstantExpression()) { - // Canonicalize a shift amount constant operand to modulo the bit-width. - Constant *WidthC = ConstantInt::get(Ty, BitWidth); - Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC); - if (ModuloC != ShAmtC) { - II->setArgOperand(2, ModuloC); - return II; - } - assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == - ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && - "Shift amount expected to be modulo bitwidth"); - - // Canonicalize funnel shift right by constant to funnel shift left. This - // is not entirely arbitrary. For historical reasons, the backend may - // recognize rotate left patterns but miss rotate right patterns. - if (IID == Intrinsic::fshr) { - // fshr X, Y, C --> fshl X, Y, (BitWidth - C) - Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); - Module *Mod = II->getModule(); - Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); - return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); - } - assert(IID == Intrinsic::fshl && - "All funnel shifts by simple constants should go left"); - - // fshl(X, 0, C) --> shl X, C - // fshl(X, undef, C) --> shl X, C - if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) - return BinaryOperator::CreateShl(Op0, ShAmtC); - - // fshl(0, X, C) --> lshr X, (BW-C) - // fshl(undef, X, C) --> lshr X, (BW-C) - if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) - return BinaryOperator::CreateLShr(Op1, - ConstantExpr::getSub(WidthC, ShAmtC)); - - // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) - if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { - Module *Mod = II->getModule(); - Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); - return CallInst::Create(Bswap, { Op0 }); - } - } - - // Left or right might be masked. - if (SimplifyDemandedInstructionBits(*II)) - return &CI; - - // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, - // so only the low bits of the shift amount are demanded if the bitwidth is - // a power-of-2. - if (!isPowerOf2_32(BitWidth)) - break; - APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); - KnownBits Op2Known(BitWidth); - if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) - return &CI; - break; - } - case Intrinsic::uadd_with_overflow: - case Intrinsic::sadd_with_overflow: { - if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) - return I; - if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) - return I; - - // Given 2 constant operands whose sum does not overflow: - // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 - // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 - Value *X; - const APInt *C0, *C1; - Value *Arg0 = II->getArgOperand(0); - Value *Arg1 = II->getArgOperand(1); - bool IsSigned = IID == Intrinsic::sadd_with_overflow; - bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) - : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); - if (HasNWAdd && match(Arg1, m_APInt(C1))) { - bool Overflow; - APInt NewC = - IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); - if (!Overflow) - return replaceInstUsesWith( - *II, Builder.CreateBinaryIntrinsic( - IID, X, ConstantInt::get(Arg1->getType(), NewC))); - } - break; - } - - case Intrinsic::umul_with_overflow: - case Intrinsic::smul_with_overflow: - if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) - return I; - LLVM_FALLTHROUGH; - - case Intrinsic::usub_with_overflow: - if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) - return I; - break; - - case Intrinsic::ssub_with_overflow: { - if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) - return I; - - Constant *C; - Value *Arg0 = II->getArgOperand(0); - Value *Arg1 = II->getArgOperand(1); - // Given a constant C that is not the minimum signed value - // for an integer of a given bit width: - // - // ssubo X, C -> saddo X, -C - if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { - Value *NegVal = ConstantExpr::getNeg(C); - // Build a saddo call that is equivalent to the discovered - // ssubo call. - return replaceInstUsesWith( - *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, - Arg0, NegVal)); - } - - break; - } - - case Intrinsic::uadd_sat: - case Intrinsic::sadd_sat: - if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) - return I; - LLVM_FALLTHROUGH; - case Intrinsic::usub_sat: - case Intrinsic::ssub_sat: { - SaturatingInst *SI = cast<SaturatingInst>(II); - Type *Ty = SI->getType(); - Value *Arg0 = SI->getLHS(); - Value *Arg1 = SI->getRHS(); - - // Make use of known overflow information. - OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), - Arg0, Arg1, SI); - switch (OR) { - case OverflowResult::MayOverflow: - break; - case OverflowResult::NeverOverflows: - if (SI->isSigned()) - return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); - else - return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); - case OverflowResult::AlwaysOverflowsLow: { - unsigned BitWidth = Ty->getScalarSizeInBits(); - APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); - return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); - } - case OverflowResult::AlwaysOverflowsHigh: { - unsigned BitWidth = Ty->getScalarSizeInBits(); - APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); - return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); - } - } - - // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN - Constant *C; - if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && - C->isNotMinSignedValue()) { - Value *NegVal = ConstantExpr::getNeg(C); - return replaceInstUsesWith( - *II, Builder.CreateBinaryIntrinsic( - Intrinsic::sadd_sat, Arg0, NegVal)); - } - - // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) - // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) - // if Val and Val2 have the same sign - if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { - Value *X; - const APInt *Val, *Val2; - APInt NewVal; - bool IsUnsigned = - IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; - if (Other->getIntrinsicID() == IID && - match(Arg1, m_APInt(Val)) && - match(Other->getArgOperand(0), m_Value(X)) && - match(Other->getArgOperand(1), m_APInt(Val2))) { - if (IsUnsigned) - NewVal = Val->uadd_sat(*Val2); - else if (Val->isNonNegative() == Val2->isNonNegative()) { - bool Overflow; - NewVal = Val->sadd_ov(*Val2, Overflow); - if (Overflow) { - // Both adds together may add more than SignedMaxValue - // without saturating the final result. - break; - } - } else { - // Cannot fold saturated addition with different signs. - break; - } - - return replaceInstUsesWith( - *II, Builder.CreateBinaryIntrinsic( - IID, X, ConstantInt::get(II->getType(), NewVal))); - } - } - break; - } - - case Intrinsic::minnum: - case Intrinsic::maxnum: - case Intrinsic::minimum: - case Intrinsic::maximum: { - if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) - return I; - Value *Arg0 = II->getArgOperand(0); - Value *Arg1 = II->getArgOperand(1); - Value *X, *Y; - if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && - (Arg0->hasOneUse() || Arg1->hasOneUse())) { - // If both operands are negated, invert the call and negate the result: - // min(-X, -Y) --> -(max(X, Y)) - // max(-X, -Y) --> -(min(X, Y)) - Intrinsic::ID NewIID; - switch (IID) { - case Intrinsic::maxnum: - NewIID = Intrinsic::minnum; - break; - case Intrinsic::minnum: - NewIID = Intrinsic::maxnum; - break; - case Intrinsic::maximum: - NewIID = Intrinsic::minimum; - break; - case Intrinsic::minimum: - NewIID = Intrinsic::maximum; - break; - default: - llvm_unreachable("unexpected intrinsic ID"); - } - Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); - Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall); - FNeg->copyIRFlags(II); - return FNeg; - } - - // m(m(X, C2), C1) -> m(X, C) - const APFloat *C1, *C2; - if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { - if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && - ((match(M->getArgOperand(0), m_Value(X)) && - match(M->getArgOperand(1), m_APFloat(C2))) || - (match(M->getArgOperand(1), m_Value(X)) && - match(M->getArgOperand(0), m_APFloat(C2))))) { - APFloat Res(0.0); - switch (IID) { - case Intrinsic::maxnum: - Res = maxnum(*C1, *C2); - break; - case Intrinsic::minnum: - Res = minnum(*C1, *C2); - break; - case Intrinsic::maximum: - Res = maximum(*C1, *C2); - break; - case Intrinsic::minimum: - Res = minimum(*C1, *C2); - break; - default: - llvm_unreachable("unexpected intrinsic ID"); - } - Instruction *NewCall = Builder.CreateBinaryIntrinsic( - IID, X, ConstantFP::get(Arg0->getType(), Res)); - NewCall->copyIRFlags(II); - return replaceInstUsesWith(*II, NewCall); - } - } - - break; - } - case Intrinsic::fmuladd: { - // Canonicalize fast fmuladd to the separate fmul + fadd. - if (II->isFast()) { - BuilderTy::FastMathFlagGuard Guard(Builder); - Builder.setFastMathFlags(II->getFastMathFlags()); - Value *Mul = Builder.CreateFMul(II->getArgOperand(0), - II->getArgOperand(1)); - Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); - Add->takeName(II); - return replaceInstUsesWith(*II, Add); - } - - LLVM_FALLTHROUGH; - } - case Intrinsic::fma: { - if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) - return I; - - // fma fneg(x), fneg(y), z -> fma x, y, z - Value *Src0 = II->getArgOperand(0); - Value *Src1 = II->getArgOperand(1); - Value *X, *Y; - if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { - II->setArgOperand(0, X); - II->setArgOperand(1, Y); - return II; - } - - // fma fabs(x), fabs(x), z -> fma x, x, z - if (match(Src0, m_FAbs(m_Value(X))) && - match(Src1, m_FAbs(m_Specific(X)))) { - II->setArgOperand(0, X); - II->setArgOperand(1, X); - return II; - } - - // fma x, 1, z -> fadd x, z - if (match(Src1, m_FPOne())) { - auto *FAdd = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2)); - FAdd->copyFastMathFlags(II); - return FAdd; - } - - break; - } - case Intrinsic::fabs: { - Value *Cond; - Constant *LHS, *RHS; - if (match(II->getArgOperand(0), - m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) { - CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS}); - CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS}); - return SelectInst::Create(Cond, Call0, Call1); - } - - LLVM_FALLTHROUGH; - } - case Intrinsic::ceil: - case Intrinsic::floor: - case Intrinsic::round: - case Intrinsic::nearbyint: - case Intrinsic::rint: - case Intrinsic::trunc: { - Value *ExtSrc; - if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { - // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) - Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); - return new FPExtInst(NarrowII, II->getType()); - } - break; - } - case Intrinsic::cos: - case Intrinsic::amdgcn_cos: { - Value *X; - Value *Src = II->getArgOperand(0); - if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { - // cos(-x) -> cos(x) - // cos(fabs(x)) -> cos(x) - II->setArgOperand(0, X); - return II; - } - break; - } - case Intrinsic::sin: { - Value *X; - if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { - // sin(-x) --> -sin(x) - Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); - Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin); - FNeg->copyFastMathFlags(II); - return FNeg; - } - break; - } - case Intrinsic::ppc_altivec_lvx: - case Intrinsic::ppc_altivec_lvxl: - // Turn PPC lvx -> load if the pointer is known aligned. - if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, - &DT) >= 16) { - Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), - PointerType::getUnqual(II->getType())); - return new LoadInst(II->getType(), Ptr); - } - break; - case Intrinsic::ppc_vsx_lxvw4x: - case Intrinsic::ppc_vsx_lxvd2x: { - // Turn PPC VSX loads into normal loads. - Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), - PointerType::getUnqual(II->getType())); - return new LoadInst(II->getType(), Ptr, Twine(""), false, 1); - } - case Intrinsic::ppc_altivec_stvx: - case Intrinsic::ppc_altivec_stvxl: - // Turn stvx -> store if the pointer is known aligned. - if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, - &DT) >= 16) { - Type *OpPtrTy = - PointerType::getUnqual(II->getArgOperand(0)->getType()); - Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); - return new StoreInst(II->getArgOperand(0), Ptr); - } - break; - case Intrinsic::ppc_vsx_stxvw4x: - case Intrinsic::ppc_vsx_stxvd2x: { - // Turn PPC VSX stores into normal stores. - Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); - Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); - return new StoreInst(II->getArgOperand(0), Ptr, false, 1); - } - case Intrinsic::ppc_qpx_qvlfs: - // Turn PPC QPX qvlfs -> load if the pointer is known aligned. - if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, - &DT) >= 16) { - Type *VTy = VectorType::get(Builder.getFloatTy(), - II->getType()->getVectorNumElements()); - Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), - PointerType::getUnqual(VTy)); - Value *Load = Builder.CreateLoad(VTy, Ptr); - return new FPExtInst(Load, II->getType()); - } - break; - case Intrinsic::ppc_qpx_qvlfd: - // Turn PPC QPX qvlfd -> load if the pointer is known aligned. - if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC, - &DT) >= 32) { - Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), - PointerType::getUnqual(II->getType())); - return new LoadInst(II->getType(), Ptr); - } - break; - case Intrinsic::ppc_qpx_qvstfs: - // Turn PPC QPX qvstfs -> store if the pointer is known aligned. - if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, - &DT) >= 16) { - Type *VTy = VectorType::get(Builder.getFloatTy(), - II->getArgOperand(0)->getType()->getVectorNumElements()); - Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy); - Type *OpPtrTy = PointerType::getUnqual(VTy); - Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); - return new StoreInst(TOp, Ptr); - } - break; - case Intrinsic::ppc_qpx_qvstfd: - // Turn PPC QPX qvstfd -> store if the pointer is known aligned. - if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC, - &DT) >= 32) { - Type *OpPtrTy = - PointerType::getUnqual(II->getArgOperand(0)->getType()); - Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); - return new StoreInst(II->getArgOperand(0), Ptr); - } - break; - - case Intrinsic::x86_bmi_bextr_32: - case Intrinsic::x86_bmi_bextr_64: - case Intrinsic::x86_tbm_bextri_u32: - case Intrinsic::x86_tbm_bextri_u64: - // If the RHS is a constant we can try some simplifications. - if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) { - uint64_t Shift = C->getZExtValue(); - uint64_t Length = (Shift >> 8) & 0xff; - Shift &= 0xff; - unsigned BitWidth = II->getType()->getIntegerBitWidth(); - // If the length is 0 or the shift is out of range, replace with zero. - if (Length == 0 || Shift >= BitWidth) - return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0)); - // If the LHS is also a constant, we can completely constant fold this. - if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) { - uint64_t Result = InC->getZExtValue() >> Shift; - if (Length > BitWidth) - Length = BitWidth; - Result &= maskTrailingOnes<uint64_t>(Length); - return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result)); - } - // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we - // are only masking bits that a shift already cleared? - } - break; - - case Intrinsic::x86_bmi_bzhi_32: - case Intrinsic::x86_bmi_bzhi_64: - // If the RHS is a constant we can try some simplifications. - if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) { - uint64_t Index = C->getZExtValue() & 0xff; - unsigned BitWidth = II->getType()->getIntegerBitWidth(); - if (Index >= BitWidth) - return replaceInstUsesWith(CI, II->getArgOperand(0)); - if (Index == 0) - return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0)); - // If the LHS is also a constant, we can completely constant fold this. - if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) { - uint64_t Result = InC->getZExtValue(); - Result &= maskTrailingOnes<uint64_t>(Index); - return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result)); - } - // TODO should we convert this to an AND if the RHS is constant? - } - break; - - case Intrinsic::x86_vcvtph2ps_128: - case Intrinsic::x86_vcvtph2ps_256: { - auto Arg = II->getArgOperand(0); - auto ArgType = cast<VectorType>(Arg->getType()); - auto RetType = cast<VectorType>(II->getType()); - unsigned ArgWidth = ArgType->getNumElements(); - unsigned RetWidth = RetType->getNumElements(); - assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths"); - assert(ArgType->isIntOrIntVectorTy() && - ArgType->getScalarSizeInBits() == 16 && - "CVTPH2PS input type should be 16-bit integer vector"); - assert(RetType->getScalarType()->isFloatTy() && - "CVTPH2PS output type should be 32-bit float vector"); - - // Constant folding: Convert to generic half to single conversion. - if (isa<ConstantAggregateZero>(Arg)) - return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType)); - - if (isa<ConstantDataVector>(Arg)) { - auto VectorHalfAsShorts = Arg; - if (RetWidth < ArgWidth) { - SmallVector<uint32_t, 8> SubVecMask; - for (unsigned i = 0; i != RetWidth; ++i) - SubVecMask.push_back((int)i); - VectorHalfAsShorts = Builder.CreateShuffleVector( - Arg, UndefValue::get(ArgType), SubVecMask); - } - - auto VectorHalfType = - VectorType::get(Type::getHalfTy(II->getContext()), RetWidth); - auto VectorHalfs = - Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType); - auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType); - return replaceInstUsesWith(*II, VectorFloats); - } - - // We only use the lowest lanes of the argument. - if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) { - II->setArgOperand(0, V); - return II; - } - break; - } - - case Intrinsic::x86_sse_cvtss2si: - case Intrinsic::x86_sse_cvtss2si64: - case Intrinsic::x86_sse_cvttss2si: - case Intrinsic::x86_sse_cvttss2si64: - case Intrinsic::x86_sse2_cvtsd2si: - case Intrinsic::x86_sse2_cvtsd2si64: - case Intrinsic::x86_sse2_cvttsd2si: - case Intrinsic::x86_sse2_cvttsd2si64: - case Intrinsic::x86_avx512_vcvtss2si32: - case Intrinsic::x86_avx512_vcvtss2si64: - case Intrinsic::x86_avx512_vcvtss2usi32: - case Intrinsic::x86_avx512_vcvtss2usi64: - case Intrinsic::x86_avx512_vcvtsd2si32: - case Intrinsic::x86_avx512_vcvtsd2si64: - case Intrinsic::x86_avx512_vcvtsd2usi32: - case Intrinsic::x86_avx512_vcvtsd2usi64: - case Intrinsic::x86_avx512_cvttss2si: - case Intrinsic::x86_avx512_cvttss2si64: - case Intrinsic::x86_avx512_cvttss2usi: - case Intrinsic::x86_avx512_cvttss2usi64: - case Intrinsic::x86_avx512_cvttsd2si: - case Intrinsic::x86_avx512_cvttsd2si64: - case Intrinsic::x86_avx512_cvttsd2usi: - case Intrinsic::x86_avx512_cvttsd2usi64: { - // These intrinsics only demand the 0th element of their input vectors. If - // we can simplify the input based on that, do so now. - Value *Arg = II->getArgOperand(0); - unsigned VWidth = Arg->getType()->getVectorNumElements(); - if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { - II->setArgOperand(0, V); - return II; - } - break; - } - - case Intrinsic::x86_mmx_pmovmskb: - case Intrinsic::x86_sse_movmsk_ps: - case Intrinsic::x86_sse2_movmsk_pd: - case Intrinsic::x86_sse2_pmovmskb_128: - case Intrinsic::x86_avx_movmsk_pd_256: - case Intrinsic::x86_avx_movmsk_ps_256: - case Intrinsic::x86_avx2_pmovmskb: - if (Value *V = simplifyX86movmsk(*II, Builder)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::x86_sse_comieq_ss: - case Intrinsic::x86_sse_comige_ss: - case Intrinsic::x86_sse_comigt_ss: - case Intrinsic::x86_sse_comile_ss: - case Intrinsic::x86_sse_comilt_ss: - case Intrinsic::x86_sse_comineq_ss: - case Intrinsic::x86_sse_ucomieq_ss: - case Intrinsic::x86_sse_ucomige_ss: - case Intrinsic::x86_sse_ucomigt_ss: - case Intrinsic::x86_sse_ucomile_ss: - case Intrinsic::x86_sse_ucomilt_ss: - case Intrinsic::x86_sse_ucomineq_ss: - case Intrinsic::x86_sse2_comieq_sd: - case Intrinsic::x86_sse2_comige_sd: - case Intrinsic::x86_sse2_comigt_sd: - case Intrinsic::x86_sse2_comile_sd: - case Intrinsic::x86_sse2_comilt_sd: - case Intrinsic::x86_sse2_comineq_sd: - case Intrinsic::x86_sse2_ucomieq_sd: - case Intrinsic::x86_sse2_ucomige_sd: - case Intrinsic::x86_sse2_ucomigt_sd: - case Intrinsic::x86_sse2_ucomile_sd: - case Intrinsic::x86_sse2_ucomilt_sd: - case Intrinsic::x86_sse2_ucomineq_sd: - case Intrinsic::x86_avx512_vcomi_ss: - case Intrinsic::x86_avx512_vcomi_sd: - case Intrinsic::x86_avx512_mask_cmp_ss: - case Intrinsic::x86_avx512_mask_cmp_sd: { - // These intrinsics only demand the 0th element of their input vectors. If - // we can simplify the input based on that, do so now. - bool MadeChange = false; - Value *Arg0 = II->getArgOperand(0); - Value *Arg1 = II->getArgOperand(1); - unsigned VWidth = Arg0->getType()->getVectorNumElements(); - if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) { - II->setArgOperand(0, V); - MadeChange = true; - } - if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { - II->setArgOperand(1, V); - MadeChange = true; - } - if (MadeChange) - return II; - break; - } - case Intrinsic::x86_avx512_cmp_pd_128: - case Intrinsic::x86_avx512_cmp_pd_256: - case Intrinsic::x86_avx512_cmp_pd_512: - case Intrinsic::x86_avx512_cmp_ps_128: - case Intrinsic::x86_avx512_cmp_ps_256: - case Intrinsic::x86_avx512_cmp_ps_512: { - // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a) - Value *Arg0 = II->getArgOperand(0); - Value *Arg1 = II->getArgOperand(1); - bool Arg0IsZero = match(Arg0, m_PosZeroFP()); - if (Arg0IsZero) - std::swap(Arg0, Arg1); - Value *A, *B; - // This fold requires only the NINF(not +/- inf) since inf minus - // inf is nan. - // NSZ(No Signed Zeros) is not needed because zeros of any sign are - // equal for both compares. - // NNAN is not needed because nans compare the same for both compares. - // The compare intrinsic uses the above assumptions and therefore - // doesn't require additional flags. - if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) && - match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) && - cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) { - if (Arg0IsZero) - std::swap(A, B); - II->setArgOperand(0, A); - II->setArgOperand(1, B); - return II; - } - break; - } - - case Intrinsic::x86_avx512_add_ps_512: - case Intrinsic::x86_avx512_div_ps_512: - case Intrinsic::x86_avx512_mul_ps_512: - case Intrinsic::x86_avx512_sub_ps_512: - case Intrinsic::x86_avx512_add_pd_512: - case Intrinsic::x86_avx512_div_pd_512: - case Intrinsic::x86_avx512_mul_pd_512: - case Intrinsic::x86_avx512_sub_pd_512: - // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular - // IR operations. - if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) { - if (R->getValue() == 4) { - Value *Arg0 = II->getArgOperand(0); - Value *Arg1 = II->getArgOperand(1); - - Value *V; - switch (IID) { - default: llvm_unreachable("Case stmts out of sync!"); - case Intrinsic::x86_avx512_add_ps_512: - case Intrinsic::x86_avx512_add_pd_512: - V = Builder.CreateFAdd(Arg0, Arg1); - break; - case Intrinsic::x86_avx512_sub_ps_512: - case Intrinsic::x86_avx512_sub_pd_512: - V = Builder.CreateFSub(Arg0, Arg1); - break; - case Intrinsic::x86_avx512_mul_ps_512: - case Intrinsic::x86_avx512_mul_pd_512: - V = Builder.CreateFMul(Arg0, Arg1); - break; - case Intrinsic::x86_avx512_div_ps_512: - case Intrinsic::x86_avx512_div_pd_512: - V = Builder.CreateFDiv(Arg0, Arg1); - break; - } - - return replaceInstUsesWith(*II, V); - } - } - break; - - case Intrinsic::x86_avx512_mask_add_ss_round: - case Intrinsic::x86_avx512_mask_div_ss_round: - case Intrinsic::x86_avx512_mask_mul_ss_round: - case Intrinsic::x86_avx512_mask_sub_ss_round: - case Intrinsic::x86_avx512_mask_add_sd_round: - case Intrinsic::x86_avx512_mask_div_sd_round: - case Intrinsic::x86_avx512_mask_mul_sd_round: - case Intrinsic::x86_avx512_mask_sub_sd_round: - // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular - // IR operations. - if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) { - if (R->getValue() == 4) { - // Extract the element as scalars. - Value *Arg0 = II->getArgOperand(0); - Value *Arg1 = II->getArgOperand(1); - Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0); - Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0); - - Value *V; - switch (IID) { - default: llvm_unreachable("Case stmts out of sync!"); - case Intrinsic::x86_avx512_mask_add_ss_round: - case Intrinsic::x86_avx512_mask_add_sd_round: - V = Builder.CreateFAdd(LHS, RHS); - break; - case Intrinsic::x86_avx512_mask_sub_ss_round: - case Intrinsic::x86_avx512_mask_sub_sd_round: - V = Builder.CreateFSub(LHS, RHS); - break; - case Intrinsic::x86_avx512_mask_mul_ss_round: - case Intrinsic::x86_avx512_mask_mul_sd_round: - V = Builder.CreateFMul(LHS, RHS); - break; - case Intrinsic::x86_avx512_mask_div_ss_round: - case Intrinsic::x86_avx512_mask_div_sd_round: - V = Builder.CreateFDiv(LHS, RHS); - break; - } - - // Handle the masking aspect of the intrinsic. - Value *Mask = II->getArgOperand(3); - auto *C = dyn_cast<ConstantInt>(Mask); - // We don't need a select if we know the mask bit is a 1. - if (!C || !C->getValue()[0]) { - // Cast the mask to an i1 vector and then extract the lowest element. - auto *MaskTy = VectorType::get(Builder.getInt1Ty(), - cast<IntegerType>(Mask->getType())->getBitWidth()); - Mask = Builder.CreateBitCast(Mask, MaskTy); - Mask = Builder.CreateExtractElement(Mask, (uint64_t)0); - // Extract the lowest element from the passthru operand. - Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2), - (uint64_t)0); - V = Builder.CreateSelect(Mask, V, Passthru); - } - - // Insert the result back into the original argument 0. - V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0); - - return replaceInstUsesWith(*II, V); - } - } - break; - - // Constant fold ashr( <A x Bi>, Ci ). - // Constant fold lshr( <A x Bi>, Ci ). - // Constant fold shl( <A x Bi>, Ci ). - case Intrinsic::x86_sse2_psrai_d: - case Intrinsic::x86_sse2_psrai_w: - case Intrinsic::x86_avx2_psrai_d: - case Intrinsic::x86_avx2_psrai_w: - case Intrinsic::x86_avx512_psrai_q_128: - case Intrinsic::x86_avx512_psrai_q_256: - case Intrinsic::x86_avx512_psrai_d_512: - case Intrinsic::x86_avx512_psrai_q_512: - case Intrinsic::x86_avx512_psrai_w_512: - case Intrinsic::x86_sse2_psrli_d: - case Intrinsic::x86_sse2_psrli_q: - case Intrinsic::x86_sse2_psrli_w: - case Intrinsic::x86_avx2_psrli_d: - case Intrinsic::x86_avx2_psrli_q: - case Intrinsic::x86_avx2_psrli_w: - case Intrinsic::x86_avx512_psrli_d_512: - case Intrinsic::x86_avx512_psrli_q_512: - case Intrinsic::x86_avx512_psrli_w_512: - case Intrinsic::x86_sse2_pslli_d: - case Intrinsic::x86_sse2_pslli_q: - case Intrinsic::x86_sse2_pslli_w: - case Intrinsic::x86_avx2_pslli_d: - case Intrinsic::x86_avx2_pslli_q: - case Intrinsic::x86_avx2_pslli_w: - case Intrinsic::x86_avx512_pslli_d_512: - case Intrinsic::x86_avx512_pslli_q_512: - case Intrinsic::x86_avx512_pslli_w_512: - if (Value *V = simplifyX86immShift(*II, Builder)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::x86_sse2_psra_d: - case Intrinsic::x86_sse2_psra_w: - case Intrinsic::x86_avx2_psra_d: - case Intrinsic::x86_avx2_psra_w: - case Intrinsic::x86_avx512_psra_q_128: - case Intrinsic::x86_avx512_psra_q_256: - case Intrinsic::x86_avx512_psra_d_512: - case Intrinsic::x86_avx512_psra_q_512: - case Intrinsic::x86_avx512_psra_w_512: - case Intrinsic::x86_sse2_psrl_d: - case Intrinsic::x86_sse2_psrl_q: - case Intrinsic::x86_sse2_psrl_w: - case Intrinsic::x86_avx2_psrl_d: - case Intrinsic::x86_avx2_psrl_q: - case Intrinsic::x86_avx2_psrl_w: - case Intrinsic::x86_avx512_psrl_d_512: - case Intrinsic::x86_avx512_psrl_q_512: - case Intrinsic::x86_avx512_psrl_w_512: - case Intrinsic::x86_sse2_psll_d: - case Intrinsic::x86_sse2_psll_q: - case Intrinsic::x86_sse2_psll_w: - case Intrinsic::x86_avx2_psll_d: - case Intrinsic::x86_avx2_psll_q: - case Intrinsic::x86_avx2_psll_w: - case Intrinsic::x86_avx512_psll_d_512: - case Intrinsic::x86_avx512_psll_q_512: - case Intrinsic::x86_avx512_psll_w_512: { - if (Value *V = simplifyX86immShift(*II, Builder)) - return replaceInstUsesWith(*II, V); - - // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector - // operand to compute the shift amount. - Value *Arg1 = II->getArgOperand(1); - assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && - "Unexpected packed shift size"); - unsigned VWidth = Arg1->getType()->getVectorNumElements(); - - if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { - II->setArgOperand(1, V); - return II; - } - break; - } - - case Intrinsic::x86_avx2_psllv_d: - case Intrinsic::x86_avx2_psllv_d_256: - case Intrinsic::x86_avx2_psllv_q: - case Intrinsic::x86_avx2_psllv_q_256: - case Intrinsic::x86_avx512_psllv_d_512: - case Intrinsic::x86_avx512_psllv_q_512: - case Intrinsic::x86_avx512_psllv_w_128: - case Intrinsic::x86_avx512_psllv_w_256: - case Intrinsic::x86_avx512_psllv_w_512: - case Intrinsic::x86_avx2_psrav_d: - case Intrinsic::x86_avx2_psrav_d_256: - case Intrinsic::x86_avx512_psrav_q_128: - case Intrinsic::x86_avx512_psrav_q_256: - case Intrinsic::x86_avx512_psrav_d_512: - case Intrinsic::x86_avx512_psrav_q_512: - case Intrinsic::x86_avx512_psrav_w_128: - case Intrinsic::x86_avx512_psrav_w_256: - case Intrinsic::x86_avx512_psrav_w_512: - case Intrinsic::x86_avx2_psrlv_d: - case Intrinsic::x86_avx2_psrlv_d_256: - case Intrinsic::x86_avx2_psrlv_q: - case Intrinsic::x86_avx2_psrlv_q_256: - case Intrinsic::x86_avx512_psrlv_d_512: - case Intrinsic::x86_avx512_psrlv_q_512: - case Intrinsic::x86_avx512_psrlv_w_128: - case Intrinsic::x86_avx512_psrlv_w_256: - case Intrinsic::x86_avx512_psrlv_w_512: - if (Value *V = simplifyX86varShift(*II, Builder)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::x86_sse2_packssdw_128: - case Intrinsic::x86_sse2_packsswb_128: - case Intrinsic::x86_avx2_packssdw: - case Intrinsic::x86_avx2_packsswb: - case Intrinsic::x86_avx512_packssdw_512: - case Intrinsic::x86_avx512_packsswb_512: - if (Value *V = simplifyX86pack(*II, Builder, true)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::x86_sse2_packuswb_128: - case Intrinsic::x86_sse41_packusdw: - case Intrinsic::x86_avx2_packusdw: - case Intrinsic::x86_avx2_packuswb: - case Intrinsic::x86_avx512_packusdw_512: - case Intrinsic::x86_avx512_packuswb_512: - if (Value *V = simplifyX86pack(*II, Builder, false)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::x86_pclmulqdq: - case Intrinsic::x86_pclmulqdq_256: - case Intrinsic::x86_pclmulqdq_512: { - if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) { - unsigned Imm = C->getZExtValue(); - - bool MadeChange = false; - Value *Arg0 = II->getArgOperand(0); - Value *Arg1 = II->getArgOperand(1); - unsigned VWidth = Arg0->getType()->getVectorNumElements(); - - APInt UndefElts1(VWidth, 0); - APInt DemandedElts1 = APInt::getSplat(VWidth, - APInt(2, (Imm & 0x01) ? 2 : 1)); - if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1, - UndefElts1)) { - II->setArgOperand(0, V); - MadeChange = true; - } - - APInt UndefElts2(VWidth, 0); - APInt DemandedElts2 = APInt::getSplat(VWidth, - APInt(2, (Imm & 0x10) ? 2 : 1)); - if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2, - UndefElts2)) { - II->setArgOperand(1, V); - MadeChange = true; - } - - // If either input elements are undef, the result is zero. - if (DemandedElts1.isSubsetOf(UndefElts1) || - DemandedElts2.isSubsetOf(UndefElts2)) - return replaceInstUsesWith(*II, - ConstantAggregateZero::get(II->getType())); - - if (MadeChange) - return II; - } - break; - } - - case Intrinsic::x86_sse41_insertps: - if (Value *V = simplifyX86insertps(*II, Builder)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::x86_sse4a_extrq: { - Value *Op0 = II->getArgOperand(0); - Value *Op1 = II->getArgOperand(1); - unsigned VWidth0 = Op0->getType()->getVectorNumElements(); - unsigned VWidth1 = Op1->getType()->getVectorNumElements(); - assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && - Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && - VWidth1 == 16 && "Unexpected operand sizes"); - - // See if we're dealing with constant values. - Constant *C1 = dyn_cast<Constant>(Op1); - ConstantInt *CILength = - C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) - : nullptr; - ConstantInt *CIIndex = - C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) - : nullptr; - - // Attempt to simplify to a constant, shuffle vector or EXTRQI call. - if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder)) - return replaceInstUsesWith(*II, V); - - // EXTRQ only uses the lowest 64-bits of the first 128-bit vector - // operands and the lowest 16-bits of the second. - bool MadeChange = false; - if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { - II->setArgOperand(0, V); - MadeChange = true; - } - if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { - II->setArgOperand(1, V); - MadeChange = true; - } - if (MadeChange) - return II; - break; - } - - case Intrinsic::x86_sse4a_extrqi: { - // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining - // bits of the lower 64-bits. The upper 64-bits are undefined. - Value *Op0 = II->getArgOperand(0); - unsigned VWidth = Op0->getType()->getVectorNumElements(); - assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && - "Unexpected operand size"); - - // See if we're dealing with constant values. - ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1)); - ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2)); - - // Attempt to simplify to a constant or shuffle vector. - if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder)) - return replaceInstUsesWith(*II, V); - - // EXTRQI only uses the lowest 64-bits of the first 128-bit vector - // operand. - if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { - II->setArgOperand(0, V); - return II; - } - break; - } - - case Intrinsic::x86_sse4a_insertq: { - Value *Op0 = II->getArgOperand(0); - Value *Op1 = II->getArgOperand(1); - unsigned VWidth = Op0->getType()->getVectorNumElements(); - assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && - Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && - Op1->getType()->getVectorNumElements() == 2 && - "Unexpected operand size"); - - // See if we're dealing with constant values. - Constant *C1 = dyn_cast<Constant>(Op1); - ConstantInt *CI11 = - C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) - : nullptr; - - // Attempt to simplify to a constant, shuffle vector or INSERTQI call. - if (CI11) { - const APInt &V11 = CI11->getValue(); - APInt Len = V11.zextOrTrunc(6); - APInt Idx = V11.lshr(8).zextOrTrunc(6); - if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder)) - return replaceInstUsesWith(*II, V); - } - - // INSERTQ only uses the lowest 64-bits of the first 128-bit vector - // operand. - if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { - II->setArgOperand(0, V); - return II; - } - break; - } - - case Intrinsic::x86_sse4a_insertqi: { - // INSERTQI: Extract lowest Length bits from lower half of second source and - // insert over first source starting at Index bit. The upper 64-bits are - // undefined. - Value *Op0 = II->getArgOperand(0); - Value *Op1 = II->getArgOperand(1); - unsigned VWidth0 = Op0->getType()->getVectorNumElements(); - unsigned VWidth1 = Op1->getType()->getVectorNumElements(); - assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && - Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && - VWidth1 == 2 && "Unexpected operand sizes"); - - // See if we're dealing with constant values. - ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2)); - ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3)); - - // Attempt to simplify to a constant or shuffle vector. - if (CILength && CIIndex) { - APInt Len = CILength->getValue().zextOrTrunc(6); - APInt Idx = CIIndex->getValue().zextOrTrunc(6); - if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder)) - return replaceInstUsesWith(*II, V); - } - - // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector - // operands. - bool MadeChange = false; - if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { - II->setArgOperand(0, V); - MadeChange = true; - } - if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { - II->setArgOperand(1, V); - MadeChange = true; - } - if (MadeChange) - return II; - break; - } - - case Intrinsic::x86_sse41_pblendvb: - case Intrinsic::x86_sse41_blendvps: - case Intrinsic::x86_sse41_blendvpd: - case Intrinsic::x86_avx_blendv_ps_256: - case Intrinsic::x86_avx_blendv_pd_256: - case Intrinsic::x86_avx2_pblendvb: { - // fold (blend A, A, Mask) -> A - Value *Op0 = II->getArgOperand(0); - Value *Op1 = II->getArgOperand(1); - Value *Mask = II->getArgOperand(2); - if (Op0 == Op1) - return replaceInstUsesWith(CI, Op0); - - // Zero Mask - select 1st argument. - if (isa<ConstantAggregateZero>(Mask)) - return replaceInstUsesWith(CI, Op0); - - // Constant Mask - select 1st/2nd argument lane based on top bit of mask. - if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) { - Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask); - return SelectInst::Create(NewSelector, Op1, Op0, "blendv"); - } - - // Convert to a vector select if we can bypass casts and find a boolean - // vector condition value. - Value *BoolVec; - Mask = peekThroughBitcast(Mask); - if (match(Mask, m_SExt(m_Value(BoolVec))) && - BoolVec->getType()->isVectorTy() && - BoolVec->getType()->getScalarSizeInBits() == 1) { - assert(Mask->getType()->getPrimitiveSizeInBits() == - II->getType()->getPrimitiveSizeInBits() && - "Not expecting mask and operands with different sizes"); - - unsigned NumMaskElts = Mask->getType()->getVectorNumElements(); - unsigned NumOperandElts = II->getType()->getVectorNumElements(); - if (NumMaskElts == NumOperandElts) - return SelectInst::Create(BoolVec, Op1, Op0); - - // If the mask has less elements than the operands, each mask bit maps to - // multiple elements of the operands. Bitcast back and forth. - if (NumMaskElts < NumOperandElts) { - Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType()); - Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType()); - Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0); - return new BitCastInst(Sel, II->getType()); - } - } - - break; - } - - case Intrinsic::x86_ssse3_pshuf_b_128: - case Intrinsic::x86_avx2_pshuf_b: - case Intrinsic::x86_avx512_pshuf_b_512: - if (Value *V = simplifyX86pshufb(*II, Builder)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::x86_avx_vpermilvar_ps: - case Intrinsic::x86_avx_vpermilvar_ps_256: - case Intrinsic::x86_avx512_vpermilvar_ps_512: - case Intrinsic::x86_avx_vpermilvar_pd: - case Intrinsic::x86_avx_vpermilvar_pd_256: - case Intrinsic::x86_avx512_vpermilvar_pd_512: - if (Value *V = simplifyX86vpermilvar(*II, Builder)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::x86_avx2_permd: - case Intrinsic::x86_avx2_permps: - case Intrinsic::x86_avx512_permvar_df_256: - case Intrinsic::x86_avx512_permvar_df_512: - case Intrinsic::x86_avx512_permvar_di_256: - case Intrinsic::x86_avx512_permvar_di_512: - case Intrinsic::x86_avx512_permvar_hi_128: - case Intrinsic::x86_avx512_permvar_hi_256: - case Intrinsic::x86_avx512_permvar_hi_512: - case Intrinsic::x86_avx512_permvar_qi_128: - case Intrinsic::x86_avx512_permvar_qi_256: - case Intrinsic::x86_avx512_permvar_qi_512: - case Intrinsic::x86_avx512_permvar_sf_512: - case Intrinsic::x86_avx512_permvar_si_512: - if (Value *V = simplifyX86vpermv(*II, Builder)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::x86_avx_maskload_ps: - case Intrinsic::x86_avx_maskload_pd: - case Intrinsic::x86_avx_maskload_ps_256: - case Intrinsic::x86_avx_maskload_pd_256: - case Intrinsic::x86_avx2_maskload_d: - case Intrinsic::x86_avx2_maskload_q: - case Intrinsic::x86_avx2_maskload_d_256: - case Intrinsic::x86_avx2_maskload_q_256: - if (Instruction *I = simplifyX86MaskedLoad(*II, *this)) - return I; - break; - - case Intrinsic::x86_sse2_maskmov_dqu: - case Intrinsic::x86_avx_maskstore_ps: - case Intrinsic::x86_avx_maskstore_pd: - case Intrinsic::x86_avx_maskstore_ps_256: - case Intrinsic::x86_avx_maskstore_pd_256: - case Intrinsic::x86_avx2_maskstore_d: - case Intrinsic::x86_avx2_maskstore_q: - case Intrinsic::x86_avx2_maskstore_d_256: - case Intrinsic::x86_avx2_maskstore_q_256: - if (simplifyX86MaskedStore(*II, *this)) - return nullptr; - break; - - case Intrinsic::x86_addcarry_32: - case Intrinsic::x86_addcarry_64: - if (Value *V = simplifyX86addcarry(*II, Builder)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::ppc_altivec_vperm: - // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. - // Note that ppc_altivec_vperm has a big-endian bias, so when creating - // a vectorshuffle for little endian, we must undo the transformation - // performed on vec_perm in altivec.h. That is, we must complement - // the permutation mask with respect to 31 and reverse the order of - // V1 and V2. - if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) { - assert(Mask->getType()->getVectorNumElements() == 16 && - "Bad type for intrinsic!"); - - // Check that all of the elements are integer constants or undefs. - bool AllEltsOk = true; - for (unsigned i = 0; i != 16; ++i) { - Constant *Elt = Mask->getAggregateElement(i); - if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { - AllEltsOk = false; - break; - } - } - - if (AllEltsOk) { - // Cast the input vectors to byte vectors. - Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0), - Mask->getType()); - Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1), - Mask->getType()); - Value *Result = UndefValue::get(Op0->getType()); - - // Only extract each element once. - Value *ExtractedElts[32]; - memset(ExtractedElts, 0, sizeof(ExtractedElts)); - - for (unsigned i = 0; i != 16; ++i) { - if (isa<UndefValue>(Mask->getAggregateElement(i))) - continue; - unsigned Idx = - cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); - Idx &= 31; // Match the hardware behavior. - if (DL.isLittleEndian()) - Idx = 31 - Idx; - - if (!ExtractedElts[Idx]) { - Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; - Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; - ExtractedElts[Idx] = - Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse, - Builder.getInt32(Idx&15)); - } - - // Insert this value into the result vector. - Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx], - Builder.getInt32(i)); - } - return CastInst::Create(Instruction::BitCast, Result, CI.getType()); - } - } - break; - - case Intrinsic::arm_neon_vld1: { - unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), - DL, II, &AC, &DT); - if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder)) - return replaceInstUsesWith(*II, V); - break; - } - - case Intrinsic::arm_neon_vld2: - case Intrinsic::arm_neon_vld3: - case Intrinsic::arm_neon_vld4: - case Intrinsic::arm_neon_vld2lane: - case Intrinsic::arm_neon_vld3lane: - case Intrinsic::arm_neon_vld4lane: - case Intrinsic::arm_neon_vst1: - case Intrinsic::arm_neon_vst2: - case Intrinsic::arm_neon_vst3: - case Intrinsic::arm_neon_vst4: - case Intrinsic::arm_neon_vst2lane: - case Intrinsic::arm_neon_vst3lane: - case Intrinsic::arm_neon_vst4lane: { - unsigned MemAlign = - getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT); - unsigned AlignArg = II->getNumArgOperands() - 1; - ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg)); - if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) { - II->setArgOperand(AlignArg, - ConstantInt::get(Type::getInt32Ty(II->getContext()), - MemAlign, false)); - return II; - } - break; - } - - case Intrinsic::arm_neon_vtbl1: - case Intrinsic::aarch64_neon_tbl1: - if (Value *V = simplifyNeonTbl1(*II, Builder)) - return replaceInstUsesWith(*II, V); - break; - - case Intrinsic::arm_neon_vmulls: - case Intrinsic::arm_neon_vmullu: - case Intrinsic::aarch64_neon_smull: - case Intrinsic::aarch64_neon_umull: { - Value *Arg0 = II->getArgOperand(0); - Value *Arg1 = II->getArgOperand(1); - - // Handle mul by zero first: - if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { - return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); - } - - // Check for constant LHS & RHS - in this case we just simplify. - bool Zext = (IID == Intrinsic::arm_neon_vmullu || - IID == Intrinsic::aarch64_neon_umull); - VectorType *NewVT = cast<VectorType>(II->getType()); - if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { - if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { - CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); - CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); - - return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); - } - - // Couldn't simplify - canonicalize constant to the RHS. - std::swap(Arg0, Arg1); - } - - // Handle mul by one: - if (Constant *CV1 = dyn_cast<Constant>(Arg1)) - if (ConstantInt *Splat = - dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) - if (Splat->isOne()) - return CastInst::CreateIntegerCast(Arg0, II->getType(), - /*isSigned=*/!Zext); - - break; - } - case Intrinsic::arm_neon_aesd: - case Intrinsic::arm_neon_aese: - case Intrinsic::aarch64_crypto_aesd: - case Intrinsic::aarch64_crypto_aese: { - Value *DataArg = II->getArgOperand(0); - Value *KeyArg = II->getArgOperand(1); - - // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR - Value *Data, *Key; - if (match(KeyArg, m_ZeroInt()) && - match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { - II->setArgOperand(0, Data); - II->setArgOperand(1, Key); - return II; - } - break; - } - case Intrinsic::amdgcn_rcp: { - Value *Src = II->getArgOperand(0); - - // TODO: Move to ConstantFolding/InstSimplify? - if (isa<UndefValue>(Src)) - return replaceInstUsesWith(CI, Src); - - if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { - const APFloat &ArgVal = C->getValueAPF(); - APFloat Val(ArgVal.getSemantics(), 1.0); - APFloat::opStatus Status = Val.divide(ArgVal, - APFloat::rmNearestTiesToEven); - // Only do this if it was exact and therefore not dependent on the - // rounding mode. - if (Status == APFloat::opOK) - return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val)); - } - - break; - } - case Intrinsic::amdgcn_rsq: { - Value *Src = II->getArgOperand(0); - - // TODO: Move to ConstantFolding/InstSimplify? - if (isa<UndefValue>(Src)) - return replaceInstUsesWith(CI, Src); - break; - } - case Intrinsic::amdgcn_frexp_mant: - case Intrinsic::amdgcn_frexp_exp: { - Value *Src = II->getArgOperand(0); - if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { - int Exp; - APFloat Significand = frexp(C->getValueAPF(), Exp, - APFloat::rmNearestTiesToEven); - - if (IID == Intrinsic::amdgcn_frexp_mant) { - return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), - Significand)); - } - - // Match instruction special case behavior. - if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) - Exp = 0; - - return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp)); - } - - if (isa<UndefValue>(Src)) - return replaceInstUsesWith(CI, UndefValue::get(II->getType())); - - break; - } - case Intrinsic::amdgcn_class: { - enum { - S_NAN = 1 << 0, // Signaling NaN - Q_NAN = 1 << 1, // Quiet NaN - N_INFINITY = 1 << 2, // Negative infinity - N_NORMAL = 1 << 3, // Negative normal - N_SUBNORMAL = 1 << 4, // Negative subnormal - N_ZERO = 1 << 5, // Negative zero - P_ZERO = 1 << 6, // Positive zero - P_SUBNORMAL = 1 << 7, // Positive subnormal - P_NORMAL = 1 << 8, // Positive normal - P_INFINITY = 1 << 9 // Positive infinity - }; - - const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL | - N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY; - - Value *Src0 = II->getArgOperand(0); - Value *Src1 = II->getArgOperand(1); - const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); - if (!CMask) { - if (isa<UndefValue>(Src0)) - return replaceInstUsesWith(*II, UndefValue::get(II->getType())); - - if (isa<UndefValue>(Src1)) - return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); - break; - } - - uint32_t Mask = CMask->getZExtValue(); - - // If all tests are made, it doesn't matter what the value is. - if ((Mask & FullMask) == FullMask) - return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true)); - - if ((Mask & FullMask) == 0) - return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); - - if (Mask == (S_NAN | Q_NAN)) { - // Equivalent of isnan. Replace with standard fcmp. - Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0); - FCmp->takeName(II); - return replaceInstUsesWith(*II, FCmp); - } - - if (Mask == (N_ZERO | P_ZERO)) { - // Equivalent of == 0. - Value *FCmp = Builder.CreateFCmpOEQ( - Src0, ConstantFP::get(Src0->getType(), 0.0)); - - FCmp->takeName(II); - return replaceInstUsesWith(*II, FCmp); - } - - // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other - if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) { - II->setArgOperand(1, ConstantInt::get(Src1->getType(), - Mask & ~(S_NAN | Q_NAN))); - return II; - } - - const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0); - if (!CVal) { - if (isa<UndefValue>(Src0)) - return replaceInstUsesWith(*II, UndefValue::get(II->getType())); - - // Clamp mask to used bits - if ((Mask & FullMask) != Mask) { - CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(), - { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) } - ); - - NewCall->takeName(II); - return replaceInstUsesWith(*II, NewCall); - } - - break; - } - - const APFloat &Val = CVal->getValueAPF(); - - bool Result = - ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) || - ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) || - ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) || - ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) || - ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) || - ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) || - ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) || - ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) || - ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) || - ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative()); - - return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result)); - } - case Intrinsic::amdgcn_cvt_pkrtz: { - Value *Src0 = II->getArgOperand(0); - Value *Src1 = II->getArgOperand(1); - if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { - if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { - const fltSemantics &HalfSem - = II->getType()->getScalarType()->getFltSemantics(); - bool LosesInfo; - APFloat Val0 = C0->getValueAPF(); - APFloat Val1 = C1->getValueAPF(); - Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); - Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); - - Constant *Folded = ConstantVector::get({ - ConstantFP::get(II->getContext(), Val0), - ConstantFP::get(II->getContext(), Val1) }); - return replaceInstUsesWith(*II, Folded); - } - } - - if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) - return replaceInstUsesWith(*II, UndefValue::get(II->getType())); - - break; - } - case Intrinsic::amdgcn_cvt_pknorm_i16: - case Intrinsic::amdgcn_cvt_pknorm_u16: - case Intrinsic::amdgcn_cvt_pk_i16: - case Intrinsic::amdgcn_cvt_pk_u16: { - Value *Src0 = II->getArgOperand(0); - Value *Src1 = II->getArgOperand(1); - - if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) - return replaceInstUsesWith(*II, UndefValue::get(II->getType())); - - break; - } - case Intrinsic::amdgcn_ubfe: - case Intrinsic::amdgcn_sbfe: { - // Decompose simple cases into standard shifts. - Value *Src = II->getArgOperand(0); - if (isa<UndefValue>(Src)) - return replaceInstUsesWith(*II, Src); - - unsigned Width; - Type *Ty = II->getType(); - unsigned IntSize = Ty->getIntegerBitWidth(); - - ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2)); - if (CWidth) { - Width = CWidth->getZExtValue(); - if ((Width & (IntSize - 1)) == 0) - return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty)); - - if (Width >= IntSize) { - // Hardware ignores high bits, so remove those. - II->setArgOperand(2, ConstantInt::get(CWidth->getType(), - Width & (IntSize - 1))); - return II; - } - } - - unsigned Offset; - ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1)); - if (COffset) { - Offset = COffset->getZExtValue(); - if (Offset >= IntSize) { - II->setArgOperand(1, ConstantInt::get(COffset->getType(), - Offset & (IntSize - 1))); - return II; - } - } - - bool Signed = IID == Intrinsic::amdgcn_sbfe; - - if (!CWidth || !COffset) - break; - - // The case of Width == 0 is handled above, which makes this tranformation - // safe. If Width == 0, then the ashr and lshr instructions become poison - // value since the shift amount would be equal to the bit size. - assert(Width != 0); - - // TODO: This allows folding to undef when the hardware has specific - // behavior? - if (Offset + Width < IntSize) { - Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width); - Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width) - : Builder.CreateLShr(Shl, IntSize - Width); - RightShift->takeName(II); - return replaceInstUsesWith(*II, RightShift); - } - - Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset) - : Builder.CreateLShr(Src, Offset); - - RightShift->takeName(II); - return replaceInstUsesWith(*II, RightShift); - } - case Intrinsic::amdgcn_exp: - case Intrinsic::amdgcn_exp_compr: { - ConstantInt *En = cast<ConstantInt>(II->getArgOperand(1)); - unsigned EnBits = En->getZExtValue(); - if (EnBits == 0xf) - break; // All inputs enabled. - - bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; - bool Changed = false; - for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { - if ((!IsCompr && (EnBits & (1 << I)) == 0) || - (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { - Value *Src = II->getArgOperand(I + 2); - if (!isa<UndefValue>(Src)) { - II->setArgOperand(I + 2, UndefValue::get(Src->getType())); - Changed = true; - } - } - } - - if (Changed) - return II; - - break; - } - case Intrinsic::amdgcn_fmed3: { - // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled - // for the shader. - - Value *Src0 = II->getArgOperand(0); - Value *Src1 = II->getArgOperand(1); - Value *Src2 = II->getArgOperand(2); - - // Checking for NaN before canonicalization provides better fidelity when - // mapping other operations onto fmed3 since the order of operands is - // unchanged. - CallInst *NewCall = nullptr; - if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) { - NewCall = Builder.CreateMinNum(Src1, Src2); - } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) { - NewCall = Builder.CreateMinNum(Src0, Src2); - } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) { - NewCall = Builder.CreateMaxNum(Src0, Src1); - } - - if (NewCall) { - NewCall->copyFastMathFlags(II); - NewCall->takeName(II); - return replaceInstUsesWith(*II, NewCall); - } - - bool Swap = false; - // Canonicalize constants to RHS operands. - // - // fmed3(c0, x, c1) -> fmed3(x, c0, c1) - if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { - std::swap(Src0, Src1); - Swap = true; - } - - if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { - std::swap(Src1, Src2); - Swap = true; - } - - if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { - std::swap(Src0, Src1); - Swap = true; - } - - if (Swap) { - II->setArgOperand(0, Src0); - II->setArgOperand(1, Src1); - II->setArgOperand(2, Src2); - return II; - } - - if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { - if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { - if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { - APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), - C2->getValueAPF()); - return replaceInstUsesWith(*II, - ConstantFP::get(Builder.getContext(), Result)); - } - } - } - - break; - } - case Intrinsic::amdgcn_icmp: - case Intrinsic::amdgcn_fcmp: { - const ConstantInt *CC = cast<ConstantInt>(II->getArgOperand(2)); - // Guard against invalid arguments. - int64_t CCVal = CC->getZExtValue(); - bool IsInteger = IID == Intrinsic::amdgcn_icmp; - if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || - CCVal > CmpInst::LAST_ICMP_PREDICATE)) || - (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || - CCVal > CmpInst::LAST_FCMP_PREDICATE))) - break; - - Value *Src0 = II->getArgOperand(0); - Value *Src1 = II->getArgOperand(1); - - if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { - if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { - Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); - if (CCmp->isNullValue()) { - return replaceInstUsesWith( - *II, ConstantExpr::getSExt(CCmp, II->getType())); - } - - // The result of V_ICMP/V_FCMP assembly instructions (which this - // intrinsic exposes) is one bit per thread, masked with the EXEC - // register (which contains the bitmask of live threads). So a - // comparison that always returns true is the same as a read of the - // EXEC register. - Function *NewF = Intrinsic::getDeclaration( - II->getModule(), Intrinsic::read_register, II->getType()); - Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")}; - MDNode *MD = MDNode::get(II->getContext(), MDArgs); - Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)}; - CallInst *NewCall = Builder.CreateCall(NewF, Args); - NewCall->addAttribute(AttributeList::FunctionIndex, - Attribute::Convergent); - NewCall->takeName(II); - return replaceInstUsesWith(*II, NewCall); - } - - // Canonicalize constants to RHS. - CmpInst::Predicate SwapPred - = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); - II->setArgOperand(0, Src1); - II->setArgOperand(1, Src0); - II->setArgOperand(2, ConstantInt::get(CC->getType(), - static_cast<int>(SwapPred))); - return II; - } - - if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) - break; - - // Canonicalize compare eq with true value to compare != 0 - // llvm.amdgcn.icmp(zext (i1 x), 1, eq) - // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) - // llvm.amdgcn.icmp(sext (i1 x), -1, eq) - // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) - Value *ExtSrc; - if (CCVal == CmpInst::ICMP_EQ && - ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) || - (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) && - ExtSrc->getType()->isIntegerTy(1)) { - II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType())); - II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); - return II; - } - - CmpInst::Predicate SrcPred; - Value *SrcLHS; - Value *SrcRHS; - - // Fold compare eq/ne with 0 from a compare result as the predicate to the - // intrinsic. The typical use is a wave vote function in the library, which - // will be fed from a user code condition compared with 0. Fold in the - // redundant compare. - - // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) - // -> llvm.amdgcn.[if]cmp(a, b, pred) - // - // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) - // -> llvm.amdgcn.[if]cmp(a, b, inv pred) - if (match(Src1, m_Zero()) && - match(Src0, - m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) { - if (CCVal == CmpInst::ICMP_EQ) - SrcPred = CmpInst::getInversePredicate(SrcPred); - - Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ? - Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp; - - Type *Ty = SrcLHS->getType(); - if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { - // Promote to next legal integer type. - unsigned Width = CmpType->getBitWidth(); - unsigned NewWidth = Width; - - // Don't do anything for i1 comparisons. - if (Width == 1) - break; - - if (Width <= 16) - NewWidth = 16; - else if (Width <= 32) - NewWidth = 32; - else if (Width <= 64) - NewWidth = 64; - else if (Width > 64) - break; // Can't handle this. - - if (Width != NewWidth) { - IntegerType *CmpTy = Builder.getIntNTy(NewWidth); - if (CmpInst::isSigned(SrcPred)) { - SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy); - SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy); - } else { - SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy); - SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy); - } - } - } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) - break; - - Function *NewF = - Intrinsic::getDeclaration(II->getModule(), NewIID, - { II->getType(), - SrcLHS->getType() }); - Value *Args[] = { SrcLHS, SrcRHS, - ConstantInt::get(CC->getType(), SrcPred) }; - CallInst *NewCall = Builder.CreateCall(NewF, Args); - NewCall->takeName(II); - return replaceInstUsesWith(*II, NewCall); - } - - break; - } - case Intrinsic::amdgcn_wqm_vote: { - // wqm_vote is identity when the argument is constant. - if (!isa<Constant>(II->getArgOperand(0))) - break; - - return replaceInstUsesWith(*II, II->getArgOperand(0)); - } - case Intrinsic::amdgcn_kill: { - const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0)); - if (!C || !C->getZExtValue()) - break; - - // amdgcn.kill(i1 1) is a no-op - return eraseInstFromFunction(CI); - } - case Intrinsic::amdgcn_update_dpp: { - Value *Old = II->getArgOperand(0); - - auto BC = cast<ConstantInt>(II->getArgOperand(5)); - auto RM = cast<ConstantInt>(II->getArgOperand(3)); - auto BM = cast<ConstantInt>(II->getArgOperand(4)); - if (BC->isZeroValue() || - RM->getZExtValue() != 0xF || - BM->getZExtValue() != 0xF || - isa<UndefValue>(Old)) - break; - - // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. - II->setOperand(0, UndefValue::get(Old->getType())); - return II; - } - case Intrinsic::amdgcn_readfirstlane: - case Intrinsic::amdgcn_readlane: { - // A constant value is trivially uniform. - if (Constant *C = dyn_cast<Constant>(II->getArgOperand(0))) - return replaceInstUsesWith(*II, C); - - // The rest of these may not be safe if the exec may not be the same between - // the def and use. - Value *Src = II->getArgOperand(0); - Instruction *SrcInst = dyn_cast<Instruction>(Src); - if (SrcInst && SrcInst->getParent() != II->getParent()) - break; - - // readfirstlane (readfirstlane x) -> readfirstlane x - // readlane (readfirstlane x), y -> readfirstlane x - if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) - return replaceInstUsesWith(*II, Src); - - if (IID == Intrinsic::amdgcn_readfirstlane) { - // readfirstlane (readlane x, y) -> readlane x, y - if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>())) - return replaceInstUsesWith(*II, Src); - } else { - // readlane (readlane x, y), y -> readlane x, y - if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>( - m_Value(), m_Specific(II->getArgOperand(1))))) - return replaceInstUsesWith(*II, Src); - } - - break; - } - case Intrinsic::stackrestore: { - // If the save is right next to the restore, remove the restore. This can - // happen when variable allocas are DCE'd. - if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { - if (SS->getIntrinsicID() == Intrinsic::stacksave) { - // Skip over debug info. - if (SS->getNextNonDebugInstruction() == II) { - return eraseInstFromFunction(CI); - } - } - } - - // Scan down this block to see if there is another stack restore in the - // same block without an intervening call/alloca. - BasicBlock::iterator BI(II); - Instruction *TI = II->getParent()->getTerminator(); - bool CannotRemove = false; - for (++BI; &*BI != TI; ++BI) { - if (isa<AllocaInst>(BI)) { - CannotRemove = true; - break; - } - if (CallInst *BCI = dyn_cast<CallInst>(BI)) { - if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) { - // If there is a stackrestore below this one, remove this one. - if (II2->getIntrinsicID() == Intrinsic::stackrestore) - return eraseInstFromFunction(CI); - - // Bail if we cross over an intrinsic with side effects, such as - // llvm.stacksave, llvm.read_register, or llvm.setjmp. - if (II2->mayHaveSideEffects()) { - CannotRemove = true; - break; - } - } else { - // If we found a non-intrinsic call, we can't remove the stack - // restore. - CannotRemove = true; - break; - } - } - } - - // If the stack restore is in a return, resume, or unwind block and if there - // are no allocas or calls between the restore and the return, nuke the - // restore. - if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) - return eraseInstFromFunction(CI); - break; - } - case Intrinsic::lifetime_start: - // Asan needs to poison memory to detect invalid access which is possible - // even for empty lifetime range. - if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || - II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) - break; - - if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start, - Intrinsic::lifetime_end, *this)) - return nullptr; - break; - case Intrinsic::assume: { - Value *IIOperand = II->getArgOperand(0); - // Remove an assume if it is followed by an identical assume. - // TODO: Do we need this? Unless there are conflicting assumptions, the - // computeKnownBits(IIOperand) below here eliminates redundant assumes. - Instruction *Next = II->getNextNonDebugInstruction(); - if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) - return eraseInstFromFunction(CI); - - // Canonicalize assume(a && b) -> assume(a); assume(b); - // Note: New assumption intrinsics created here are registered by - // the InstCombineIRInserter object. - FunctionType *AssumeIntrinsicTy = II->getFunctionType(); - Value *AssumeIntrinsic = II->getCalledValue(); - Value *A, *B; - if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) { - Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName()); - Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); - return eraseInstFromFunction(*II); - } - // assume(!(a || b)) -> assume(!a); assume(!b); - if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) { - Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, - Builder.CreateNot(A), II->getName()); - Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, - Builder.CreateNot(B), II->getName()); - return eraseInstFromFunction(*II); - } - - // assume( (load addr) != null ) -> add 'nonnull' metadata to load - // (if assume is valid at the load) - CmpInst::Predicate Pred; - Instruction *LHS; - if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && - Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && - LHS->getType()->isPointerTy() && - isValidAssumeForContext(II, LHS, &DT)) { - MDNode *MD = MDNode::get(II->getContext(), None); - LHS->setMetadata(LLVMContext::MD_nonnull, MD); - return eraseInstFromFunction(*II); - - // TODO: apply nonnull return attributes to calls and invokes - // TODO: apply range metadata for range check patterns? - } - - // If there is a dominating assume with the same condition as this one, - // then this one is redundant, and should be removed. - KnownBits Known(1); - computeKnownBits(IIOperand, Known, 0, II); - if (Known.isAllOnes()) - return eraseInstFromFunction(*II); - - // Update the cache of affected values for this assumption (we might be - // here because we just simplified the condition). - AC.updateAffectedValues(II); - break; - } - case Intrinsic::experimental_gc_relocate: { - // Translate facts known about a pointer before relocating into - // facts about the relocate value, while being careful to - // preserve relocation semantics. - Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr(); - - // Remove the relocation if unused, note that this check is required - // to prevent the cases below from looping forever. - if (II->use_empty()) - return eraseInstFromFunction(*II); - - // Undef is undef, even after relocation. - // TODO: provide a hook for this in GCStrategy. This is clearly legal for - // most practical collectors, but there was discussion in the review thread - // about whether it was legal for all possible collectors. - if (isa<UndefValue>(DerivedPtr)) - // Use undef of gc_relocate's type to replace it. - return replaceInstUsesWith(*II, UndefValue::get(II->getType())); - - if (auto *PT = dyn_cast<PointerType>(II->getType())) { - // The relocation of null will be null for most any collector. - // TODO: provide a hook for this in GCStrategy. There might be some - // weird collector this property does not hold for. - if (isa<ConstantPointerNull>(DerivedPtr)) - // Use null-pointer of gc_relocate's type to replace it. - return replaceInstUsesWith(*II, ConstantPointerNull::get(PT)); - - // isKnownNonNull -> nonnull attribute - if (!II->hasRetAttr(Attribute::NonNull) && - isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) { - II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); - return II; - } - } - - // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) - // Canonicalize on the type from the uses to the defs - - // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) - break; - } - - case Intrinsic::experimental_guard: { - // Is this guard followed by another guard? We scan forward over a small - // fixed window of instructions to handle common cases with conditions - // computed between guards. - Instruction *NextInst = II->getNextNode(); - for (unsigned i = 0; i < GuardWideningWindow; i++) { - // Note: Using context-free form to avoid compile time blow up - if (!isSafeToSpeculativelyExecute(NextInst)) - break; - NextInst = NextInst->getNextNode(); - } - Value *NextCond = nullptr; - if (match(NextInst, - m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { - Value *CurrCond = II->getArgOperand(0); - - // Remove a guard that it is immediately preceded by an identical guard. - if (CurrCond == NextCond) - return eraseInstFromFunction(*NextInst); - - // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). - Instruction* MoveI = II->getNextNode(); - while (MoveI != NextInst) { - auto *Temp = MoveI; - MoveI = MoveI->getNextNode(); - Temp->moveBefore(II); - } - II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond)); - return eraseInstFromFunction(*NextInst); - } - break; - } - } - return visitCallBase(*II); -} - -// Fence instruction simplification -Instruction *InstCombiner::visitFenceInst(FenceInst &FI) { - // Remove identical consecutive fences. - Instruction *Next = FI.getNextNonDebugInstruction(); - if (auto *NFI = dyn_cast<FenceInst>(Next)) - if (FI.isIdenticalTo(NFI)) - return eraseInstFromFunction(FI); - return nullptr; -} - -// InvokeInst simplification -Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { - return visitCallBase(II); -} - -// CallBrInst simplification -Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) { - return visitCallBase(CBI); -} - -/// If this cast does not affect the value passed through the varargs area, we -/// can eliminate the use of the cast. -static bool isSafeToEliminateVarargsCast(const CallBase &Call, - const DataLayout &DL, - const CastInst *const CI, - const int ix) { - if (!CI->isLosslessCast()) - return false; - - // If this is a GC intrinsic, avoid munging types. We need types for - // statepoint reconstruction in SelectionDAG. - // TODO: This is probably something which should be expanded to all - // intrinsics since the entire point of intrinsics is that - // they are understandable by the optimizer. - if (isStatepoint(&Call) || isGCRelocate(&Call) || isGCResult(&Call)) - return false; - - // The size of ByVal or InAlloca arguments is derived from the type, so we - // can't change to a type with a different size. If the size were - // passed explicitly we could avoid this check. - if (!Call.isByValOrInAllocaArgument(ix)) - return true; - - Type* SrcTy = - cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); - Type *DstTy = Call.isByValArgument(ix) - ? Call.getParamByValType(ix) - : cast<PointerType>(CI->getType())->getElementType(); - if (!SrcTy->isSized() || !DstTy->isSized()) - return false; - if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy)) - return false; - return true; -} - -Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) { - if (!CI->getCalledFunction()) return nullptr; - - auto InstCombineRAUW = [this](Instruction *From, Value *With) { - replaceInstUsesWith(*From, With); - }; - auto InstCombineErase = [this](Instruction *I) { - eraseInstFromFunction(*I); - }; - LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW, - InstCombineErase); - if (Value *With = Simplifier.optimizeCall(CI)) { - ++NumSimplified; - return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); - } - - return nullptr; -} - -static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { - // Strip off at most one level of pointer casts, looking for an alloca. This - // is good enough in practice and simpler than handling any number of casts. - Value *Underlying = TrampMem->stripPointerCasts(); - if (Underlying != TrampMem && - (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) - return nullptr; - if (!isa<AllocaInst>(Underlying)) - return nullptr; - - IntrinsicInst *InitTrampoline = nullptr; - for (User *U : TrampMem->users()) { - IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); - if (!II) - return nullptr; - if (II->getIntrinsicID() == Intrinsic::init_trampoline) { - if (InitTrampoline) - // More than one init_trampoline writes to this value. Give up. - return nullptr; - InitTrampoline = II; - continue; - } - if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) - // Allow any number of calls to adjust.trampoline. - continue; - return nullptr; - } - - // No call to init.trampoline found. - if (!InitTrampoline) - return nullptr; - - // Check that the alloca is being used in the expected way. - if (InitTrampoline->getOperand(0) != TrampMem) - return nullptr; - - return InitTrampoline; -} - -static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, - Value *TrampMem) { - // Visit all the previous instructions in the basic block, and try to find a - // init.trampoline which has a direct path to the adjust.trampoline. - for (BasicBlock::iterator I = AdjustTramp->getIterator(), - E = AdjustTramp->getParent()->begin(); - I != E;) { - Instruction *Inst = &*--I; - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) - if (II->getIntrinsicID() == Intrinsic::init_trampoline && - II->getOperand(0) == TrampMem) - return II; - if (Inst->mayWriteToMemory()) - return nullptr; - } - return nullptr; -} - -// Given a call to llvm.adjust.trampoline, find and return the corresponding -// call to llvm.init.trampoline if the call to the trampoline can be optimized -// to a direct call to a function. Otherwise return NULL. -static IntrinsicInst *findInitTrampoline(Value *Callee) { - Callee = Callee->stripPointerCasts(); - IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); - if (!AdjustTramp || - AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) - return nullptr; - - Value *TrampMem = AdjustTramp->getOperand(0); - - if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) - return IT; - if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) - return IT; - return nullptr; -} - -/// Improvements for call, callbr and invoke instructions. -Instruction *InstCombiner::visitCallBase(CallBase &Call) { - if (isAllocLikeFn(&Call, &TLI)) - return visitAllocSite(Call); - - bool Changed = false; - - // Mark any parameters that are known to be non-null with the nonnull - // attribute. This is helpful for inlining calls to functions with null - // checks on their arguments. - SmallVector<unsigned, 4> ArgNos; - unsigned ArgNo = 0; - - for (Value *V : Call.args()) { - if (V->getType()->isPointerTy() && - !Call.paramHasAttr(ArgNo, Attribute::NonNull) && - isKnownNonZero(V, DL, 0, &AC, &Call, &DT)) - ArgNos.push_back(ArgNo); - ArgNo++; - } - - assert(ArgNo == Call.arg_size() && "sanity check"); - - if (!ArgNos.empty()) { - AttributeList AS = Call.getAttributes(); - LLVMContext &Ctx = Call.getContext(); - AS = AS.addParamAttribute(Ctx, ArgNos, - Attribute::get(Ctx, Attribute::NonNull)); - Call.setAttributes(AS); - Changed = true; - } - - // If the callee is a pointer to a function, attempt to move any casts to the - // arguments of the call/callbr/invoke. - Value *Callee = Call.getCalledValue(); - if (!isa<Function>(Callee) && transformConstExprCastCall(Call)) - return nullptr; - - if (Function *CalleeF = dyn_cast<Function>(Callee)) { - // Remove the convergent attr on calls when the callee is not convergent. - if (Call.isConvergent() && !CalleeF->isConvergent() && - !CalleeF->isIntrinsic()) { - LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call - << "\n"); - Call.setNotConvergent(); - return &Call; - } - - // If the call and callee calling conventions don't match, this call must - // be unreachable, as the call is undefined. - if (CalleeF->getCallingConv() != Call.getCallingConv() && - // Only do this for calls to a function with a body. A prototype may - // not actually end up matching the implementation's calling conv for a - // variety of reasons (e.g. it may be written in assembly). - !CalleeF->isDeclaration()) { - Instruction *OldCall = &Call; - CreateNonTerminatorUnreachable(OldCall); - // If OldCall does not return void then replaceAllUsesWith undef. - // This allows ValueHandlers and custom metadata to adjust itself. - if (!OldCall->getType()->isVoidTy()) - replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); - if (isa<CallInst>(OldCall)) - return eraseInstFromFunction(*OldCall); - - // We cannot remove an invoke or a callbr, because it would change thexi - // CFG, just change the callee to a null pointer. - cast<CallBase>(OldCall)->setCalledFunction( - CalleeF->getFunctionType(), - Constant::getNullValue(CalleeF->getType())); - return nullptr; - } - } - - if ((isa<ConstantPointerNull>(Callee) && - !NullPointerIsDefined(Call.getFunction())) || - isa<UndefValue>(Callee)) { - // If Call does not return void then replaceAllUsesWith undef. - // This allows ValueHandlers and custom metadata to adjust itself. - if (!Call.getType()->isVoidTy()) - replaceInstUsesWith(Call, UndefValue::get(Call.getType())); - - if (Call.isTerminator()) { - // Can't remove an invoke or callbr because we cannot change the CFG. - return nullptr; - } - - // This instruction is not reachable, just remove it. - CreateNonTerminatorUnreachable(&Call); - return eraseInstFromFunction(Call); - } - - if (IntrinsicInst *II = findInitTrampoline(Callee)) - return transformCallThroughTrampoline(Call, *II); - - PointerType *PTy = cast<PointerType>(Callee->getType()); - FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); - if (FTy->isVarArg()) { - int ix = FTy->getNumParams(); - // See if we can optimize any arguments passed through the varargs area of - // the call. - for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end(); - I != E; ++I, ++ix) { - CastInst *CI = dyn_cast<CastInst>(*I); - if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) { - *I = CI->getOperand(0); - - // Update the byval type to match the argument type. - if (Call.isByValArgument(ix)) { - Call.removeParamAttr(ix, Attribute::ByVal); - Call.addParamAttr( - ix, Attribute::getWithByValType( - Call.getContext(), - CI->getOperand(0)->getType()->getPointerElementType())); - } - Changed = true; - } - } - } - - if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { - // Inline asm calls cannot throw - mark them 'nounwind'. - Call.setDoesNotThrow(); - Changed = true; - } - - // Try to optimize the call if possible, we require DataLayout for most of - // this. None of these calls are seen as possibly dead so go ahead and - // delete the instruction now. - if (CallInst *CI = dyn_cast<CallInst>(&Call)) { - Instruction *I = tryOptimizeCall(CI); - // If we changed something return the result, etc. Otherwise let - // the fallthrough check. - if (I) return eraseInstFromFunction(*I); - } - - return Changed ? &Call : nullptr; -} - -/// If the callee is a constexpr cast of a function, attempt to move the cast to -/// the arguments of the call/callbr/invoke. -bool InstCombiner::transformConstExprCastCall(CallBase &Call) { - auto *Callee = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); - if (!Callee) - return false; - - // If this is a call to a thunk function, don't remove the cast. Thunks are - // used to transparently forward all incoming parameters and outgoing return - // values, so it's important to leave the cast in place. - if (Callee->hasFnAttribute("thunk")) - return false; - - // If this is a musttail call, the callee's prototype must match the caller's - // prototype with the exception of pointee types. The code below doesn't - // implement that, so we can't do this transform. - // TODO: Do the transform if it only requires adding pointer casts. - if (Call.isMustTailCall()) - return false; - - Instruction *Caller = &Call; - const AttributeList &CallerPAL = Call.getAttributes(); - - // Okay, this is a cast from a function to a different type. Unless doing so - // would cause a type conversion of one of our arguments, change this call to - // be a direct call with arguments casted to the appropriate types. - FunctionType *FT = Callee->getFunctionType(); - Type *OldRetTy = Caller->getType(); - Type *NewRetTy = FT->getReturnType(); - - // Check to see if we are changing the return type... - if (OldRetTy != NewRetTy) { - - if (NewRetTy->isStructTy()) - return false; // TODO: Handle multiple return values. - - if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { - if (Callee->isDeclaration()) - return false; // Cannot transform this return value. - - if (!Caller->use_empty() && - // void -> non-void is handled specially - !NewRetTy->isVoidTy()) - return false; // Cannot transform this return value. - } - - if (!CallerPAL.isEmpty() && !Caller->use_empty()) { - AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); - if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) - return false; // Attribute not compatible with transformed value. - } - - // If the callbase is an invoke/callbr instruction, and the return value is - // used by a PHI node in a successor, we cannot change the return type of - // the call because there is no place to put the cast instruction (without - // breaking the critical edge). Bail out in this case. - if (!Caller->use_empty()) { - if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) - for (User *U : II->users()) - if (PHINode *PN = dyn_cast<PHINode>(U)) - if (PN->getParent() == II->getNormalDest() || - PN->getParent() == II->getUnwindDest()) - return false; - // FIXME: Be conservative for callbr to avoid a quadratic search. - if (isa<CallBrInst>(Caller)) - return false; - } - } - - unsigned NumActualArgs = Call.arg_size(); - unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); - - // Prevent us turning: - // declare void @takes_i32_inalloca(i32* inalloca) - // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) - // - // into: - // call void @takes_i32_inalloca(i32* null) - // - // Similarly, avoid folding away bitcasts of byval calls. - if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || - Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) - return false; - - auto AI = Call.arg_begin(); - for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { - Type *ParamTy = FT->getParamType(i); - Type *ActTy = (*AI)->getType(); - - if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) - return false; // Cannot transform this parameter value. - - if (AttrBuilder(CallerPAL.getParamAttributes(i)) - .overlaps(AttributeFuncs::typeIncompatible(ParamTy))) - return false; // Attribute not compatible with transformed value. - - if (Call.isInAllocaArgument(i)) - return false; // Cannot transform to and from inalloca. - - // If the parameter is passed as a byval argument, then we have to have a - // sized type and the sized type has to have the same size as the old type. - if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { - PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); - if (!ParamPTy || !ParamPTy->getElementType()->isSized()) - return false; - - Type *CurElTy = Call.getParamByValType(i); - if (DL.getTypeAllocSize(CurElTy) != - DL.getTypeAllocSize(ParamPTy->getElementType())) - return false; - } - } - - if (Callee->isDeclaration()) { - // Do not delete arguments unless we have a function body. - if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) - return false; - - // If the callee is just a declaration, don't change the varargsness of the - // call. We don't want to introduce a varargs call where one doesn't - // already exist. - PointerType *APTy = cast<PointerType>(Call.getCalledValue()->getType()); - if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) - return false; - - // If both the callee and the cast type are varargs, we still have to make - // sure the number of fixed parameters are the same or we have the same - // ABI issues as if we introduce a varargs call. - if (FT->isVarArg() && - cast<FunctionType>(APTy->getElementType())->isVarArg() && - FT->getNumParams() != - cast<FunctionType>(APTy->getElementType())->getNumParams()) - return false; - } - - if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && - !CallerPAL.isEmpty()) { - // In this case we have more arguments than the new function type, but we - // won't be dropping them. Check that these extra arguments have attributes - // that are compatible with being a vararg call argument. - unsigned SRetIdx; - if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && - SRetIdx > FT->getNumParams()) - return false; - } - - // Okay, we decided that this is a safe thing to do: go ahead and start - // inserting cast instructions as necessary. - SmallVector<Value *, 8> Args; - SmallVector<AttributeSet, 8> ArgAttrs; - Args.reserve(NumActualArgs); - ArgAttrs.reserve(NumActualArgs); - - // Get any return attributes. - AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); - - // If the return value is not being used, the type may not be compatible - // with the existing attributes. Wipe out any problematic attributes. - RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); - - LLVMContext &Ctx = Call.getContext(); - AI = Call.arg_begin(); - for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { - Type *ParamTy = FT->getParamType(i); - - Value *NewArg = *AI; - if ((*AI)->getType() != ParamTy) - NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); - Args.push_back(NewArg); - - // Add any parameter attributes. - if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { - AttrBuilder AB(CallerPAL.getParamAttributes(i)); - AB.addByValAttr(NewArg->getType()->getPointerElementType()); - ArgAttrs.push_back(AttributeSet::get(Ctx, AB)); - } else - ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); - } - - // If the function takes more arguments than the call was taking, add them - // now. - for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { - Args.push_back(Constant::getNullValue(FT->getParamType(i))); - ArgAttrs.push_back(AttributeSet()); - } - - // If we are removing arguments to the function, emit an obnoxious warning. - if (FT->getNumParams() < NumActualArgs) { - // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 - if (FT->isVarArg()) { - // Add all of the arguments in their promoted form to the arg list. - for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { - Type *PTy = getPromotedType((*AI)->getType()); - Value *NewArg = *AI; - if (PTy != (*AI)->getType()) { - // Must promote to pass through va_arg area! - Instruction::CastOps opcode = - CastInst::getCastOpcode(*AI, false, PTy, false); - NewArg = Builder.CreateCast(opcode, *AI, PTy); - } - Args.push_back(NewArg); - - // Add any parameter attributes. - ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); - } - } - } - - AttributeSet FnAttrs = CallerPAL.getFnAttributes(); - - if (NewRetTy->isVoidTy()) - Caller->setName(""); // Void type should not have a name. - - assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && - "missing argument attributes"); - AttributeList NewCallerPAL = AttributeList::get( - Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); - - SmallVector<OperandBundleDef, 1> OpBundles; - Call.getOperandBundlesAsDefs(OpBundles); - - CallBase *NewCall; - if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { - NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), - II->getUnwindDest(), Args, OpBundles); - } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { - NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(), - CBI->getIndirectDests(), Args, OpBundles); - } else { - NewCall = Builder.CreateCall(Callee, Args, OpBundles); - cast<CallInst>(NewCall)->setTailCallKind( - cast<CallInst>(Caller)->getTailCallKind()); - } - NewCall->takeName(Caller); - NewCall->setCallingConv(Call.getCallingConv()); - NewCall->setAttributes(NewCallerPAL); - - // Preserve the weight metadata for the new call instruction. The metadata - // is used by SamplePGO to check callsite's hotness. - uint64_t W; - if (Caller->extractProfTotalWeight(W)) - NewCall->setProfWeight(W); - - // Insert a cast of the return type as necessary. - Instruction *NC = NewCall; - Value *NV = NC; - if (OldRetTy != NV->getType() && !Caller->use_empty()) { - if (!NV->getType()->isVoidTy()) { - NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); - NC->setDebugLoc(Caller->getDebugLoc()); - - // If this is an invoke/callbr instruction, we should insert it after the - // first non-phi instruction in the normal successor block. - if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { - BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); - InsertNewInstBefore(NC, *I); - } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { - BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt(); - InsertNewInstBefore(NC, *I); - } else { - // Otherwise, it's a call, just insert cast right after the call. - InsertNewInstBefore(NC, *Caller); - } - Worklist.AddUsersToWorkList(*Caller); - } else { - NV = UndefValue::get(Caller->getType()); - } - } - - if (!Caller->use_empty()) - replaceInstUsesWith(*Caller, NV); - else if (Caller->hasValueHandle()) { - if (OldRetTy == NV->getType()) - ValueHandleBase::ValueIsRAUWd(Caller, NV); - else - // We cannot call ValueIsRAUWd with a different type, and the - // actual tracked value will disappear. - ValueHandleBase::ValueIsDeleted(Caller); - } - - eraseInstFromFunction(*Caller); - return true; -} - -/// Turn a call to a function created by init_trampoline / adjust_trampoline -/// intrinsic pair into a direct call to the underlying function. -Instruction * -InstCombiner::transformCallThroughTrampoline(CallBase &Call, - IntrinsicInst &Tramp) { - Value *Callee = Call.getCalledValue(); - Type *CalleeTy = Callee->getType(); - FunctionType *FTy = Call.getFunctionType(); - AttributeList Attrs = Call.getAttributes(); - - // If the call already has the 'nest' attribute somewhere then give up - - // otherwise 'nest' would occur twice after splicing in the chain. - if (Attrs.hasAttrSomewhere(Attribute::Nest)) - return nullptr; - - Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); - FunctionType *NestFTy = NestF->getFunctionType(); - - AttributeList NestAttrs = NestF->getAttributes(); - if (!NestAttrs.isEmpty()) { - unsigned NestArgNo = 0; - Type *NestTy = nullptr; - AttributeSet NestAttr; - - // Look for a parameter marked with the 'nest' attribute. - for (FunctionType::param_iterator I = NestFTy->param_begin(), - E = NestFTy->param_end(); - I != E; ++NestArgNo, ++I) { - AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo); - if (AS.hasAttribute(Attribute::Nest)) { - // Record the parameter type and any other attributes. - NestTy = *I; - NestAttr = AS; - break; - } - } - - if (NestTy) { - std::vector<Value*> NewArgs; - std::vector<AttributeSet> NewArgAttrs; - NewArgs.reserve(Call.arg_size() + 1); - NewArgAttrs.reserve(Call.arg_size()); - - // Insert the nest argument into the call argument list, which may - // mean appending it. Likewise for attributes. - - { - unsigned ArgNo = 0; - auto I = Call.arg_begin(), E = Call.arg_end(); - do { - if (ArgNo == NestArgNo) { - // Add the chain argument and attributes. - Value *NestVal = Tramp.getArgOperand(2); - if (NestVal->getType() != NestTy) - NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); - NewArgs.push_back(NestVal); - NewArgAttrs.push_back(NestAttr); - } - - if (I == E) - break; - - // Add the original argument and attributes. - NewArgs.push_back(*I); - NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); - - ++ArgNo; - ++I; - } while (true); - } - - // The trampoline may have been bitcast to a bogus type (FTy). - // Handle this by synthesizing a new function type, equal to FTy - // with the chain parameter inserted. - - std::vector<Type*> NewTypes; - NewTypes.reserve(FTy->getNumParams()+1); - - // Insert the chain's type into the list of parameter types, which may - // mean appending it. - { - unsigned ArgNo = 0; - FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); - - do { - if (ArgNo == NestArgNo) - // Add the chain's type. - NewTypes.push_back(NestTy); - - if (I == E) - break; - - // Add the original type. - NewTypes.push_back(*I); - - ++ArgNo; - ++I; - } while (true); - } - - // Replace the trampoline call with a direct call. Let the generic - // code sort out any function type mismatches. - FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, - FTy->isVarArg()); - Constant *NewCallee = - NestF->getType() == PointerType::getUnqual(NewFTy) ? - NestF : ConstantExpr::getBitCast(NestF, - PointerType::getUnqual(NewFTy)); - AttributeList NewPAL = - AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(), - Attrs.getRetAttributes(), NewArgAttrs); - - SmallVector<OperandBundleDef, 1> OpBundles; - Call.getOperandBundlesAsDefs(OpBundles); - - Instruction *NewCaller; - if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { - NewCaller = InvokeInst::Create(NewFTy, NewCallee, - II->getNormalDest(), II->getUnwindDest(), - NewArgs, OpBundles); - cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); - cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); - } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { - NewCaller = - CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(), - CBI->getIndirectDests(), NewArgs, OpBundles); - cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); - cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); - } else { - NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles); - cast<CallInst>(NewCaller)->setTailCallKind( - cast<CallInst>(Call).getTailCallKind()); - cast<CallInst>(NewCaller)->setCallingConv( - cast<CallInst>(Call).getCallingConv()); - cast<CallInst>(NewCaller)->setAttributes(NewPAL); - } - NewCaller->setDebugLoc(Call.getDebugLoc()); - - return NewCaller; - } - } - - // Replace the trampoline call with a direct call. Since there is no 'nest' - // parameter, there is no need to adjust the argument list. Let the generic - // code sort out any function type mismatches. - Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy); - Call.setCalledFunction(FTy, NewCallee); - return &Call; -} |
