summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp2458
1 files changed, 0 insertions, 2458 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
deleted file mode 100644
index 2c9ba203fbf3..000000000000
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ /dev/null
@@ -1,2458 +0,0 @@
-//===- InstCombineCasts.cpp -----------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the visit functions for cast operations.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DIBuilder.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Support/KnownBits.h"
-using namespace llvm;
-using namespace PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-/// Analyze 'Val', seeing if it is a simple linear expression.
-/// If so, decompose it, returning some value X, such that Val is
-/// X*Scale+Offset.
-///
-static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
- uint64_t &Offset) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
- Offset = CI->getZExtValue();
- Scale = 0;
- return ConstantInt::get(Val->getType(), 0);
- }
-
- if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
- // Cannot look past anything that might overflow.
- OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
- if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
- Scale = 1;
- Offset = 0;
- return Val;
- }
-
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
- if (I->getOpcode() == Instruction::Shl) {
- // This is a value scaled by '1 << the shift amt'.
- Scale = UINT64_C(1) << RHS->getZExtValue();
- Offset = 0;
- return I->getOperand(0);
- }
-
- if (I->getOpcode() == Instruction::Mul) {
- // This value is scaled by 'RHS'.
- Scale = RHS->getZExtValue();
- Offset = 0;
- return I->getOperand(0);
- }
-
- if (I->getOpcode() == Instruction::Add) {
- // We have X+C. Check to see if we really have (X*C2)+C1,
- // where C1 is divisible by C2.
- unsigned SubScale;
- Value *SubVal =
- decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
- Offset += RHS->getZExtValue();
- Scale = SubScale;
- return SubVal;
- }
- }
- }
-
- // Otherwise, we can't look past this.
- Scale = 1;
- Offset = 0;
- return Val;
-}
-
-/// If we find a cast of an allocation instruction, try to eliminate the cast by
-/// moving the type information into the alloc.
-Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
- AllocaInst &AI) {
- PointerType *PTy = cast<PointerType>(CI.getType());
-
- BuilderTy AllocaBuilder(Builder);
- AllocaBuilder.SetInsertPoint(&AI);
-
- // Get the type really allocated and the type casted to.
- Type *AllocElTy = AI.getAllocatedType();
- Type *CastElTy = PTy->getElementType();
- if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
-
- unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
- unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
- if (CastElTyAlign < AllocElTyAlign) return nullptr;
-
- // If the allocation has multiple uses, only promote it if we are strictly
- // increasing the alignment of the resultant allocation. If we keep it the
- // same, we open the door to infinite loops of various kinds.
- if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
-
- uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
- uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
- if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
-
- // If the allocation has multiple uses, only promote it if we're not
- // shrinking the amount of memory being allocated.
- uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
- uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
- if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
-
- // See if we can satisfy the modulus by pulling a scale out of the array
- // size argument.
- unsigned ArraySizeScale;
- uint64_t ArrayOffset;
- Value *NumElements = // See if the array size is a decomposable linear expr.
- decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
-
- // If we can now satisfy the modulus, by using a non-1 scale, we really can
- // do the xform.
- if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
- (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
-
- unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
- Value *Amt = nullptr;
- if (Scale == 1) {
- Amt = NumElements;
- } else {
- Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
- // Insert before the alloca, not before the cast.
- Amt = AllocaBuilder.CreateMul(Amt, NumElements);
- }
-
- if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
- Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
- Offset, true);
- Amt = AllocaBuilder.CreateAdd(Amt, Off);
- }
-
- AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
- New->setAlignment(AI.getAlignment());
- New->takeName(&AI);
- New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
-
- // If the allocation has multiple real uses, insert a cast and change all
- // things that used it to use the new cast. This will also hack on CI, but it
- // will die soon.
- if (!AI.hasOneUse()) {
- // New is the allocation instruction, pointer typed. AI is the original
- // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
- Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
- replaceInstUsesWith(AI, NewCast);
- }
- return replaceInstUsesWith(CI, New);
-}
-
-/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
-/// true for, actually insert the code to evaluate the expression.
-Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
- bool isSigned) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
- // If we got a constantexpr back, try to simplify it with DL info.
- if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
- C = FoldedC;
- return C;
- }
-
- // Otherwise, it must be an instruction.
- Instruction *I = cast<Instruction>(V);
- Instruction *Res = nullptr;
- unsigned Opc = I->getOpcode();
- switch (Opc) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::AShr:
- case Instruction::LShr:
- case Instruction::Shl:
- case Instruction::UDiv:
- case Instruction::URem: {
- Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
- Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
- Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
- break;
- }
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- // If the source type of the cast is the type we're trying for then we can
- // just return the source. There's no need to insert it because it is not
- // new.
- if (I->getOperand(0)->getType() == Ty)
- return I->getOperand(0);
-
- // Otherwise, must be the same type of cast, so just reinsert a new one.
- // This also handles the case of zext(trunc(x)) -> zext(x).
- Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
- Opc == Instruction::SExt);
- break;
- case Instruction::Select: {
- Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
- Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
- Res = SelectInst::Create(I->getOperand(0), True, False);
- break;
- }
- case Instruction::PHI: {
- PHINode *OPN = cast<PHINode>(I);
- PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
- for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
- Value *V =
- EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
- NPN->addIncoming(V, OPN->getIncomingBlock(i));
- }
- Res = NPN;
- break;
- }
- default:
- // TODO: Can handle more cases here.
- llvm_unreachable("Unreachable!");
- }
-
- Res->takeName(I);
- return InsertNewInstWith(Res, *I);
-}
-
-Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
- const CastInst *CI2) {
- Type *SrcTy = CI1->getSrcTy();
- Type *MidTy = CI1->getDestTy();
- Type *DstTy = CI2->getDestTy();
-
- Instruction::CastOps firstOp = CI1->getOpcode();
- Instruction::CastOps secondOp = CI2->getOpcode();
- Type *SrcIntPtrTy =
- SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
- Type *MidIntPtrTy =
- MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
- Type *DstIntPtrTy =
- DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
- unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
- DstTy, SrcIntPtrTy, MidIntPtrTy,
- DstIntPtrTy);
-
- // We don't want to form an inttoptr or ptrtoint that converts to an integer
- // type that differs from the pointer size.
- if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
- (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
- Res = 0;
-
- return Instruction::CastOps(Res);
-}
-
-/// Implement the transforms common to all CastInst visitors.
-Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
- Value *Src = CI.getOperand(0);
-
- // Try to eliminate a cast of a cast.
- if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
- if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
- // The first cast (CSrc) is eliminable so we need to fix up or replace
- // the second cast (CI). CSrc will then have a good chance of being dead.
- auto *Ty = CI.getType();
- auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
- // Point debug users of the dying cast to the new one.
- if (CSrc->hasOneUse())
- replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
- return Res;
- }
- }
-
- if (auto *Sel = dyn_cast<SelectInst>(Src)) {
- // We are casting a select. Try to fold the cast into the select, but only
- // if the select does not have a compare instruction with matching operand
- // types. Creating a select with operands that are different sizes than its
- // condition may inhibit other folds and lead to worse codegen.
- auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
- if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
- if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
- replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
- return NV;
- }
- }
-
- // If we are casting a PHI, then fold the cast into the PHI.
- if (auto *PN = dyn_cast<PHINode>(Src)) {
- // Don't do this if it would create a PHI node with an illegal type from a
- // legal type.
- if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
- shouldChangeType(CI.getType(), Src->getType()))
- if (Instruction *NV = foldOpIntoPhi(CI, PN))
- return NV;
- }
-
- return nullptr;
-}
-
-/// Constants and extensions/truncates from the destination type are always
-/// free to be evaluated in that type. This is a helper for canEvaluate*.
-static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
- if (isa<Constant>(V))
- return true;
- Value *X;
- if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
- X->getType() == Ty)
- return true;
-
- return false;
-}
-
-/// Filter out values that we can not evaluate in the destination type for free.
-/// This is a helper for canEvaluate*.
-static bool canNotEvaluateInType(Value *V, Type *Ty) {
- assert(!isa<Constant>(V) && "Constant should already be handled.");
- if (!isa<Instruction>(V))
- return true;
- // We don't extend or shrink something that has multiple uses -- doing so
- // would require duplicating the instruction which isn't profitable.
- if (!V->hasOneUse())
- return true;
-
- return false;
-}
-
-/// Return true if we can evaluate the specified expression tree as type Ty
-/// instead of its larger type, and arrive with the same value.
-/// This is used by code that tries to eliminate truncates.
-///
-/// Ty will always be a type smaller than V. We should return true if trunc(V)
-/// can be computed by computing V in the smaller type. If V is an instruction,
-/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
-/// makes sense if x and y can be efficiently truncated.
-///
-/// This function works on both vectors and scalars.
-///
-static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
- Instruction *CxtI) {
- if (canAlwaysEvaluateInType(V, Ty))
- return true;
- if (canNotEvaluateInType(V, Ty))
- return false;
-
- auto *I = cast<Instruction>(V);
- Type *OrigTy = V->getType();
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // These operators can all arbitrarily be extended or truncated.
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
- canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
-
- case Instruction::UDiv:
- case Instruction::URem: {
- // UDiv and URem can be truncated if all the truncated bits are zero.
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
- APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
- if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
- IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
- canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
- }
- break;
- }
- case Instruction::Shl: {
- // If we are truncating the result of this SHL, and if it's a shift of a
- // constant amount, we can always perform a SHL in a smaller type.
- const APInt *Amt;
- if (match(I->getOperand(1), m_APInt(Amt))) {
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (Amt->getLimitedValue(BitWidth) < BitWidth)
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
- }
- break;
- }
- case Instruction::LShr: {
- // If this is a truncate of a logical shr, we can truncate it to a smaller
- // lshr iff we know that the bits we would otherwise be shifting in are
- // already zeros.
- const APInt *Amt;
- if (match(I->getOperand(1), m_APInt(Amt))) {
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (Amt->getLimitedValue(BitWidth) < BitWidth &&
- IC.MaskedValueIsZero(I->getOperand(0),
- APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
- }
- }
- break;
- }
- case Instruction::AShr: {
- // If this is a truncate of an arithmetic shr, we can truncate it to a
- // smaller ashr iff we know that all the bits from the sign bit of the
- // original type and the sign bit of the truncate type are similar.
- // TODO: It is enough to check that the bits we would be shifting in are
- // similar to sign bit of the truncate type.
- const APInt *Amt;
- if (match(I->getOperand(1), m_APInt(Amt))) {
- uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
- uint32_t BitWidth = Ty->getScalarSizeInBits();
- if (Amt->getLimitedValue(BitWidth) < BitWidth &&
- OrigBitWidth - BitWidth <
- IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
- return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
- }
- break;
- }
- case Instruction::Trunc:
- // trunc(trunc(x)) -> trunc(x)
- return true;
- case Instruction::ZExt:
- case Instruction::SExt:
- // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
- // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
- return true;
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
- canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
- }
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
- return false;
- return true;
- }
- default:
- // TODO: Can handle more cases here.
- break;
- }
-
- return false;
-}
-
-/// Given a vector that is bitcast to an integer, optionally logically
-/// right-shifted, and truncated, convert it to an extractelement.
-/// Example (big endian):
-/// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
-/// --->
-/// extractelement <4 x i32> %X, 1
-static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
- Value *TruncOp = Trunc.getOperand(0);
- Type *DestType = Trunc.getType();
- if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
- return nullptr;
-
- Value *VecInput = nullptr;
- ConstantInt *ShiftVal = nullptr;
- if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
- m_LShr(m_BitCast(m_Value(VecInput)),
- m_ConstantInt(ShiftVal)))) ||
- !isa<VectorType>(VecInput->getType()))
- return nullptr;
-
- VectorType *VecType = cast<VectorType>(VecInput->getType());
- unsigned VecWidth = VecType->getPrimitiveSizeInBits();
- unsigned DestWidth = DestType->getPrimitiveSizeInBits();
- unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
-
- if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
- return nullptr;
-
- // If the element type of the vector doesn't match the result type,
- // bitcast it to a vector type that we can extract from.
- unsigned NumVecElts = VecWidth / DestWidth;
- if (VecType->getElementType() != DestType) {
- VecType = VectorType::get(DestType, NumVecElts);
- VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
- }
-
- unsigned Elt = ShiftAmount / DestWidth;
- if (IC.getDataLayout().isBigEndian())
- Elt = NumVecElts - 1 - Elt;
-
- return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
-}
-
-/// Rotate left/right may occur in a wider type than necessary because of type
-/// promotion rules. Try to narrow the inputs and convert to funnel shift.
-Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
- assert((isa<VectorType>(Trunc.getSrcTy()) ||
- shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
- "Don't narrow to an illegal scalar type");
-
- // Bail out on strange types. It is possible to handle some of these patterns
- // even with non-power-of-2 sizes, but it is not a likely scenario.
- Type *DestTy = Trunc.getType();
- unsigned NarrowWidth = DestTy->getScalarSizeInBits();
- if (!isPowerOf2_32(NarrowWidth))
- return nullptr;
-
- // First, find an or'd pair of opposite shifts with the same shifted operand:
- // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
- Value *Or0, *Or1;
- if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
- return nullptr;
-
- Value *ShVal, *ShAmt0, *ShAmt1;
- if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
- !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
- return nullptr;
-
- auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
- auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
- if (ShiftOpcode0 == ShiftOpcode1)
- return nullptr;
-
- // Match the shift amount operands for a rotate pattern. This always matches
- // a subtraction on the R operand.
- auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
- // The shift amounts may add up to the narrow bit width:
- // (shl ShVal, L) | (lshr ShVal, Width - L)
- if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
- return L;
-
- // The shift amount may be masked with negation:
- // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
- Value *X;
- unsigned Mask = Width - 1;
- if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
- match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
- return X;
-
- // Same as above, but the shift amount may be extended after masking:
- if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
- match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
- return X;
-
- return nullptr;
- };
-
- Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
- bool SubIsOnLHS = false;
- if (!ShAmt) {
- ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
- SubIsOnLHS = true;
- }
- if (!ShAmt)
- return nullptr;
-
- // The shifted value must have high zeros in the wide type. Typically, this
- // will be a zext, but it could also be the result of an 'and' or 'shift'.
- unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
- APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
- if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
- return nullptr;
-
- // We have an unnecessarily wide rotate!
- // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
- // Narrow the inputs and convert to funnel shift intrinsic:
- // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
- Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
- Value *X = Builder.CreateTrunc(ShVal, DestTy);
- bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
- (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
- Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
- Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
- return IntrinsicInst::Create(F, { X, X, NarrowShAmt });
-}
-
-/// Try to narrow the width of math or bitwise logic instructions by pulling a
-/// truncate ahead of binary operators.
-/// TODO: Transforms for truncated shifts should be moved into here.
-Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
- Type *SrcTy = Trunc.getSrcTy();
- Type *DestTy = Trunc.getType();
- if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
- return nullptr;
-
- BinaryOperator *BinOp;
- if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
- return nullptr;
-
- Value *BinOp0 = BinOp->getOperand(0);
- Value *BinOp1 = BinOp->getOperand(1);
- switch (BinOp->getOpcode()) {
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul: {
- Constant *C;
- if (match(BinOp0, m_Constant(C))) {
- // trunc (binop C, X) --> binop (trunc C', X)
- Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
- Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
- return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
- }
- if (match(BinOp1, m_Constant(C))) {
- // trunc (binop X, C) --> binop (trunc X, C')
- Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
- Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
- return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
- }
- Value *X;
- if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
- // trunc (binop (ext X), Y) --> binop X, (trunc Y)
- Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
- return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
- }
- if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
- // trunc (binop Y, (ext X)) --> binop (trunc Y), X
- Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
- return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
- }
- break;
- }
-
- default: break;
- }
-
- if (Instruction *NarrowOr = narrowRotate(Trunc))
- return NarrowOr;
-
- return nullptr;
-}
-
-/// Try to narrow the width of a splat shuffle. This could be generalized to any
-/// shuffle with a constant operand, but we limit the transform to avoid
-/// creating a shuffle type that targets may not be able to lower effectively.
-static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
- InstCombiner::BuilderTy &Builder) {
- auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
- if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
- Shuf->getMask()->getSplatValue() &&
- Shuf->getType() == Shuf->getOperand(0)->getType()) {
- // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
- Constant *NarrowUndef = UndefValue::get(Trunc.getType());
- Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
- return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
- }
-
- return nullptr;
-}
-
-/// Try to narrow the width of an insert element. This could be generalized for
-/// any vector constant, but we limit the transform to insertion into undef to
-/// avoid potential backend problems from unsupported insertion widths. This
-/// could also be extended to handle the case of inserting a scalar constant
-/// into a vector variable.
-static Instruction *shrinkInsertElt(CastInst &Trunc,
- InstCombiner::BuilderTy &Builder) {
- Instruction::CastOps Opcode = Trunc.getOpcode();
- assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
- "Unexpected instruction for shrinking");
-
- auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
- if (!InsElt || !InsElt->hasOneUse())
- return nullptr;
-
- Type *DestTy = Trunc.getType();
- Type *DestScalarTy = DestTy->getScalarType();
- Value *VecOp = InsElt->getOperand(0);
- Value *ScalarOp = InsElt->getOperand(1);
- Value *Index = InsElt->getOperand(2);
-
- if (isa<UndefValue>(VecOp)) {
- // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
- // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
- UndefValue *NarrowUndef = UndefValue::get(DestTy);
- Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
- return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
- if (Instruction *Result = commonCastTransforms(CI))
- return Result;
-
- Value *Src = CI.getOperand(0);
- Type *DestTy = CI.getType(), *SrcTy = Src->getType();
-
- // Attempt to truncate the entire input expression tree to the destination
- // type. Only do this if the dest type is a simple type, don't convert the
- // expression tree to something weird like i93 unless the source is also
- // strange.
- if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
- canEvaluateTruncated(Src, DestTy, *this, &CI)) {
-
- // If this cast is a truncate, evaluting in a different type always
- // eliminates the cast, so it is always a win.
- LLVM_DEBUG(
- dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid cast: "
- << CI << '\n');
- Value *Res = EvaluateInDifferentType(Src, DestTy, false);
- assert(Res->getType() == DestTy);
- return replaceInstUsesWith(CI, Res);
- }
-
- // Test if the trunc is the user of a select which is part of a
- // minimum or maximum operation. If so, don't do any more simplification.
- // Even simplifying demanded bits can break the canonical form of a
- // min/max.
- Value *LHS, *RHS;
- if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
- if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
- return nullptr;
-
- // See if we can simplify any instructions used by the input whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(CI))
- return &CI;
-
- if (DestTy->getScalarSizeInBits() == 1) {
- Value *Zero = Constant::getNullValue(Src->getType());
- if (DestTy->isIntegerTy()) {
- // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
- // TODO: We canonicalize to more instructions here because we are probably
- // lacking equivalent analysis for trunc relative to icmp. There may also
- // be codegen concerns. If those trunc limitations were removed, we could
- // remove this transform.
- Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
- return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
- }
-
- // For vectors, we do not canonicalize all truncs to icmp, so optimize
- // patterns that would be covered within visitICmpInst.
- Value *X;
- const APInt *C;
- if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
- // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
- APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C);
- Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
- return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
- }
- if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)),
- m_Deferred(X))))) {
- // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
- APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1;
- Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
- return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
- }
- }
-
- // FIXME: Maybe combine the next two transforms to handle the no cast case
- // more efficiently. Support vector types. Cleanup code by using m_OneUse.
-
- // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
- Value *A = nullptr; ConstantInt *Cst = nullptr;
- if (Src->hasOneUse() &&
- match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
- // We have three types to worry about here, the type of A, the source of
- // the truncate (MidSize), and the destination of the truncate. We know that
- // ASize < MidSize and MidSize > ResultSize, but don't know the relation
- // between ASize and ResultSize.
- unsigned ASize = A->getType()->getPrimitiveSizeInBits();
-
- // If the shift amount is larger than the size of A, then the result is
- // known to be zero because all the input bits got shifted out.
- if (Cst->getZExtValue() >= ASize)
- return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
-
- // Since we're doing an lshr and a zero extend, and know that the shift
- // amount is smaller than ASize, it is always safe to do the shift in A's
- // type, then zero extend or truncate to the result.
- Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
- Shift->takeName(Src);
- return CastInst::CreateIntegerCast(Shift, DestTy, false);
- }
-
- // FIXME: We should canonicalize to zext/trunc and remove this transform.
- // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
- // conversion.
- // It works because bits coming from sign extension have the same value as
- // the sign bit of the original value; performing ashr instead of lshr
- // generates bits of the same value as the sign bit.
- if (Src->hasOneUse() &&
- match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
- Value *SExt = cast<Instruction>(Src)->getOperand(0);
- const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
- const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
- const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
- const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
- unsigned ShiftAmt = Cst->getZExtValue();
-
- // This optimization can be only performed when zero bits generated by
- // the original lshr aren't pulled into the value after truncation, so we
- // can only shift by values no larger than the number of extension bits.
- // FIXME: Instead of bailing when the shift is too large, use and to clear
- // the extra bits.
- if (ShiftAmt <= MaxAmt) {
- if (CISize == ASize)
- return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
- std::min(ShiftAmt, ASize - 1)));
- if (SExt->hasOneUse()) {
- Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
- Shift->takeName(Src);
- return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
- }
- }
- }
-
- if (Instruction *I = narrowBinOp(CI))
- return I;
-
- if (Instruction *I = shrinkSplatShuffle(CI, Builder))
- return I;
-
- if (Instruction *I = shrinkInsertElt(CI, Builder))
- return I;
-
- if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
- shouldChangeType(SrcTy, DestTy)) {
- // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
- // dest type is native and cst < dest size.
- if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
- !match(A, m_Shr(m_Value(), m_Constant()))) {
- // Skip shifts of shift by constants. It undoes a combine in
- // FoldShiftByConstant and is the extend in reg pattern.
- const unsigned DestSize = DestTy->getScalarSizeInBits();
- if (Cst->getValue().ult(DestSize)) {
- Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
-
- return BinaryOperator::Create(
- Instruction::Shl, NewTrunc,
- ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
- }
- }
- }
-
- if (Instruction *I = foldVecTruncToExtElt(CI, *this))
- return I;
-
- return nullptr;
-}
-
-Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
- bool DoTransform) {
- // If we are just checking for a icmp eq of a single bit and zext'ing it
- // to an integer, then shift the bit to the appropriate place and then
- // cast to integer to avoid the comparison.
- const APInt *Op1CV;
- if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
-
- // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
- // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
- if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
- (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
- if (!DoTransform) return ICI;
-
- Value *In = ICI->getOperand(0);
- Value *Sh = ConstantInt::get(In->getType(),
- In->getType()->getScalarSizeInBits() - 1);
- In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
- if (In->getType() != CI.getType())
- In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
-
- if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
- Constant *One = ConstantInt::get(In->getType(), 1);
- In = Builder.CreateXor(In, One, In->getName() + ".not");
- }
-
- return replaceInstUsesWith(CI, In);
- }
-
- // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
- // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- // zext (X == 1) to i32 --> X iff X has only the low bit set.
- // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
- // zext (X != 0) to i32 --> X iff X has only the low bit set.
- // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
- // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
- // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
- if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
- // This only works for EQ and NE
- ICI->isEquality()) {
- // If Op1C some other power of two, convert:
- KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
-
- APInt KnownZeroMask(~Known.Zero);
- if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
- if (!DoTransform) return ICI;
-
- bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
- if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
- // (X&4) == 2 --> false
- // (X&4) != 2 --> true
- Constant *Res = ConstantInt::get(CI.getType(), isNE);
- return replaceInstUsesWith(CI, Res);
- }
-
- uint32_t ShAmt = KnownZeroMask.logBase2();
- Value *In = ICI->getOperand(0);
- if (ShAmt) {
- // Perform a logical shr by shiftamt.
- // Insert the shift to put the result in the low bit.
- In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
- In->getName() + ".lobit");
- }
-
- if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
- Constant *One = ConstantInt::get(In->getType(), 1);
- In = Builder.CreateXor(In, One);
- }
-
- if (CI.getType() == In->getType())
- return replaceInstUsesWith(CI, In);
-
- Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
- return replaceInstUsesWith(CI, IntCast);
- }
- }
- }
-
- // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
- // It is also profitable to transform icmp eq into not(xor(A, B)) because that
- // may lead to additional simplifications.
- if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
- if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
-
- KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
- KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
-
- if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
- APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
- APInt UnknownBit = ~KnownBits;
- if (UnknownBit.countPopulation() == 1) {
- if (!DoTransform) return ICI;
-
- Value *Result = Builder.CreateXor(LHS, RHS);
-
- // Mask off any bits that are set and won't be shifted away.
- if (KnownLHS.One.uge(UnknownBit))
- Result = Builder.CreateAnd(Result,
- ConstantInt::get(ITy, UnknownBit));
-
- // Shift the bit we're testing down to the lsb.
- Result = Builder.CreateLShr(
- Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
-
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
- Result->takeName(ICI);
- return replaceInstUsesWith(CI, Result);
- }
- }
- }
- }
-
- return nullptr;
-}
-
-/// Determine if the specified value can be computed in the specified wider type
-/// and produce the same low bits. If not, return false.
-///
-/// If this function returns true, it can also return a non-zero number of bits
-/// (in BitsToClear) which indicates that the value it computes is correct for
-/// the zero extend, but that the additional BitsToClear bits need to be zero'd
-/// out. For example, to promote something like:
-///
-/// %B = trunc i64 %A to i32
-/// %C = lshr i32 %B, 8
-/// %E = zext i32 %C to i64
-///
-/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
-/// set to 8 to indicate that the promoted value needs to have bits 24-31
-/// cleared in addition to bits 32-63. Since an 'and' will be generated to
-/// clear the top bits anyway, doing this has no extra cost.
-///
-/// This function works on both vectors and scalars.
-static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
- InstCombiner &IC, Instruction *CxtI) {
- BitsToClear = 0;
- if (canAlwaysEvaluateInType(V, Ty))
- return true;
- if (canNotEvaluateInType(V, Ty))
- return false;
-
- auto *I = cast<Instruction>(V);
- unsigned Tmp;
- switch (I->getOpcode()) {
- case Instruction::ZExt: // zext(zext(x)) -> zext(x).
- case Instruction::SExt: // zext(sext(x)) -> sext(x).
- case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
- return true;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
- !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
- return false;
- // These can all be promoted if neither operand has 'bits to clear'.
- if (BitsToClear == 0 && Tmp == 0)
- return true;
-
- // If the operation is an AND/OR/XOR and the bits to clear are zero in the
- // other side, BitsToClear is ok.
- if (Tmp == 0 && I->isBitwiseLogicOp()) {
- // We use MaskedValueIsZero here for generality, but the case we care
- // about the most is constant RHS.
- unsigned VSize = V->getType()->getScalarSizeInBits();
- if (IC.MaskedValueIsZero(I->getOperand(1),
- APInt::getHighBitsSet(VSize, BitsToClear),
- 0, CxtI)) {
- // If this is an And instruction and all of the BitsToClear are
- // known to be zero we can reset BitsToClear.
- if (I->getOpcode() == Instruction::And)
- BitsToClear = 0;
- return true;
- }
- }
-
- // Otherwise, we don't know how to analyze this BitsToClear case yet.
- return false;
-
- case Instruction::Shl: {
- // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
- // upper bits we can reduce BitsToClear by the shift amount.
- const APInt *Amt;
- if (match(I->getOperand(1), m_APInt(Amt))) {
- if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
- return false;
- uint64_t ShiftAmt = Amt->getZExtValue();
- BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
- return true;
- }
- return false;
- }
- case Instruction::LShr: {
- // We can promote lshr(x, cst) if we can promote x. This requires the
- // ultimate 'and' to clear out the high zero bits we're clearing out though.
- const APInt *Amt;
- if (match(I->getOperand(1), m_APInt(Amt))) {
- if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
- return false;
- BitsToClear += Amt->getZExtValue();
- if (BitsToClear > V->getType()->getScalarSizeInBits())
- BitsToClear = V->getType()->getScalarSizeInBits();
- return true;
- }
- // Cannot promote variable LSHR.
- return false;
- }
- case Instruction::Select:
- if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
- !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
- // TODO: If important, we could handle the case when the BitsToClear are
- // known zero in the disagreeing side.
- Tmp != BitsToClear)
- return false;
- return true;
-
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
- return false;
- for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
- if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
- // TODO: If important, we could handle the case when the BitsToClear
- // are known zero in the disagreeing input.
- Tmp != BitsToClear)
- return false;
- return true;
- }
- default:
- // TODO: Can handle more cases here.
- return false;
- }
-}
-
-Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
- // If this zero extend is only used by a truncate, let the truncate be
- // eliminated before we try to optimize this zext.
- if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
- return nullptr;
-
- // If one of the common conversion will work, do it.
- if (Instruction *Result = commonCastTransforms(CI))
- return Result;
-
- Value *Src = CI.getOperand(0);
- Type *SrcTy = Src->getType(), *DestTy = CI.getType();
-
- // Try to extend the entire expression tree to the wide destination type.
- unsigned BitsToClear;
- if (shouldChangeType(SrcTy, DestTy) &&
- canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
- assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
- "Can't clear more bits than in SrcTy");
-
- // Okay, we can transform this! Insert the new expression now.
- LLVM_DEBUG(
- dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid zero extend: "
- << CI << '\n');
- Value *Res = EvaluateInDifferentType(Src, DestTy, false);
- assert(Res->getType() == DestTy);
-
- // Preserve debug values referring to Src if the zext is its last use.
- if (auto *SrcOp = dyn_cast<Instruction>(Src))
- if (SrcOp->hasOneUse())
- replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
-
- uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
- uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
- // If the high bits are already filled with zeros, just replace this
- // cast with the result.
- if (MaskedValueIsZero(Res,
- APInt::getHighBitsSet(DestBitSize,
- DestBitSize-SrcBitsKept),
- 0, &CI))
- return replaceInstUsesWith(CI, Res);
-
- // We need to emit an AND to clear the high bits.
- Constant *C = ConstantInt::get(Res->getType(),
- APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
- return BinaryOperator::CreateAnd(Res, C);
- }
-
- // If this is a TRUNC followed by a ZEXT then we are dealing with integral
- // types and if the sizes are just right we can convert this into a logical
- // 'and' which will be much cheaper than the pair of casts.
- if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
- // TODO: Subsume this into EvaluateInDifferentType.
-
- // Get the sizes of the types involved. We know that the intermediate type
- // will be smaller than A or C, but don't know the relation between A and C.
- Value *A = CSrc->getOperand(0);
- unsigned SrcSize = A->getType()->getScalarSizeInBits();
- unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
- unsigned DstSize = CI.getType()->getScalarSizeInBits();
- // If we're actually extending zero bits, then if
- // SrcSize < DstSize: zext(a & mask)
- // SrcSize == DstSize: a & mask
- // SrcSize > DstSize: trunc(a) & mask
- if (SrcSize < DstSize) {
- APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
- Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
- return new ZExtInst(And, CI.getType());
- }
-
- if (SrcSize == DstSize) {
- APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
- return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
- AndValue));
- }
- if (SrcSize > DstSize) {
- Value *Trunc = Builder.CreateTrunc(A, CI.getType());
- APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
- return BinaryOperator::CreateAnd(Trunc,
- ConstantInt::get(Trunc->getType(),
- AndValue));
- }
- }
-
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
- return transformZExtICmp(ICI, CI);
-
- BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
- if (SrcI && SrcI->getOpcode() == Instruction::Or) {
- // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
- // of the (zext icmp) can be eliminated. If so, immediately perform the
- // according elimination.
- ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
- ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
- if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
- (transformZExtICmp(LHS, CI, false) ||
- transformZExtICmp(RHS, CI, false))) {
- // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
- Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
- Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
- BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
-
- // Perform the elimination.
- if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
- transformZExtICmp(LHS, *LZExt);
- if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
- transformZExtICmp(RHS, *RZExt);
-
- return Or;
- }
- }
-
- // zext(trunc(X) & C) -> (X & zext(C)).
- Constant *C;
- Value *X;
- if (SrcI &&
- match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
- X->getType() == CI.getType())
- return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
-
- // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
- Value *And;
- if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
- match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
- X->getType() == CI.getType()) {
- Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
- return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
- }
-
- return nullptr;
-}
-
-/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
-Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
- Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
- ICmpInst::Predicate Pred = ICI->getPredicate();
-
- // Don't bother if Op1 isn't of vector or integer type.
- if (!Op1->getType()->isIntOrIntVectorTy())
- return nullptr;
-
- if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
- (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
- // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
- // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
- Value *Sh = ConstantInt::get(Op0->getType(),
- Op0->getType()->getScalarSizeInBits() - 1);
- Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
- if (In->getType() != CI.getType())
- In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
-
- if (Pred == ICmpInst::ICMP_SGT)
- In = Builder.CreateNot(In, In->getName() + ".not");
- return replaceInstUsesWith(CI, In);
- }
-
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- // If we know that only one bit of the LHS of the icmp can be set and we
- // have an equality comparison with zero or a power of 2, we can transform
- // the icmp and sext into bitwise/integer operations.
- if (ICI->hasOneUse() &&
- ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
- KnownBits Known = computeKnownBits(Op0, 0, &CI);
-
- APInt KnownZeroMask(~Known.Zero);
- if (KnownZeroMask.isPowerOf2()) {
- Value *In = ICI->getOperand(0);
-
- // If the icmp tests for a known zero bit we can constant fold it.
- if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
- Value *V = Pred == ICmpInst::ICMP_NE ?
- ConstantInt::getAllOnesValue(CI.getType()) :
- ConstantInt::getNullValue(CI.getType());
- return replaceInstUsesWith(CI, V);
- }
-
- if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
- // sext ((x & 2^n) == 0) -> (x >> n) - 1
- // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
- unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
- // Perform a right shift to place the desired bit in the LSB.
- if (ShiftAmt)
- In = Builder.CreateLShr(In,
- ConstantInt::get(In->getType(), ShiftAmt));
-
- // At this point "In" is either 1 or 0. Subtract 1 to turn
- // {1, 0} -> {0, -1}.
- In = Builder.CreateAdd(In,
- ConstantInt::getAllOnesValue(In->getType()),
- "sext");
- } else {
- // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
- // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
- unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
- // Perform a left shift to place the desired bit in the MSB.
- if (ShiftAmt)
- In = Builder.CreateShl(In,
- ConstantInt::get(In->getType(), ShiftAmt));
-
- // Distribute the bit over the whole bit width.
- In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
- KnownZeroMask.getBitWidth() - 1), "sext");
- }
-
- if (CI.getType() == In->getType())
- return replaceInstUsesWith(CI, In);
- return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
- }
- }
- }
-
- return nullptr;
-}
-
-/// Return true if we can take the specified value and return it as type Ty
-/// without inserting any new casts and without changing the value of the common
-/// low bits. This is used by code that tries to promote integer operations to
-/// a wider types will allow us to eliminate the extension.
-///
-/// This function works on both vectors and scalars.
-///
-static bool canEvaluateSExtd(Value *V, Type *Ty) {
- assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
- "Can't sign extend type to a smaller type");
- if (canAlwaysEvaluateInType(V, Ty))
- return true;
- if (canNotEvaluateInType(V, Ty))
- return false;
-
- auto *I = cast<Instruction>(V);
- switch (I->getOpcode()) {
- case Instruction::SExt: // sext(sext(x)) -> sext(x)
- case Instruction::ZExt: // sext(zext(x)) -> zext(x)
- case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
- return true;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- // These operators can all arbitrarily be extended if their inputs can.
- return canEvaluateSExtd(I->getOperand(0), Ty) &&
- canEvaluateSExtd(I->getOperand(1), Ty);
-
- //case Instruction::Shl: TODO
- //case Instruction::LShr: TODO
-
- case Instruction::Select:
- return canEvaluateSExtd(I->getOperand(1), Ty) &&
- canEvaluateSExtd(I->getOperand(2), Ty);
-
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!canEvaluateSExtd(IncValue, Ty)) return false;
- return true;
- }
- default:
- // TODO: Can handle more cases here.
- break;
- }
-
- return false;
-}
-
-Instruction *InstCombiner::visitSExt(SExtInst &CI) {
- // If this sign extend is only used by a truncate, let the truncate be
- // eliminated before we try to optimize this sext.
- if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
- return nullptr;
-
- if (Instruction *I = commonCastTransforms(CI))
- return I;
-
- Value *Src = CI.getOperand(0);
- Type *SrcTy = Src->getType(), *DestTy = CI.getType();
-
- // If we know that the value being extended is positive, we can use a zext
- // instead.
- KnownBits Known = computeKnownBits(Src, 0, &CI);
- if (Known.isNonNegative())
- return CastInst::Create(Instruction::ZExt, Src, DestTy);
-
- // Try to extend the entire expression tree to the wide destination type.
- if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
- // Okay, we can transform this! Insert the new expression now.
- LLVM_DEBUG(
- dbgs() << "ICE: EvaluateInDifferentType converting expression type"
- " to avoid sign extend: "
- << CI << '\n');
- Value *Res = EvaluateInDifferentType(Src, DestTy, true);
- assert(Res->getType() == DestTy);
-
- uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
- uint32_t DestBitSize = DestTy->getScalarSizeInBits();
-
- // If the high bits are already filled with sign bit, just replace this
- // cast with the result.
- if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
- return replaceInstUsesWith(CI, Res);
-
- // We need to emit a shl + ashr to do the sign extend.
- Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
- return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
- ShAmt);
- }
-
- // If the input is a trunc from the destination type, then turn sext(trunc(x))
- // into shifts.
- Value *X;
- if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
- // sext(trunc(X)) --> ashr(shl(X, C), C)
- unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
- unsigned DestBitSize = DestTy->getScalarSizeInBits();
- Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
- return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
- }
-
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
- return transformSExtICmp(ICI, CI);
-
- // If the input is a shl/ashr pair of a same constant, then this is a sign
- // extension from a smaller value. If we could trust arbitrary bitwidth
- // integers, we could turn this into a truncate to the smaller bit and then
- // use a sext for the whole extension. Since we don't, look deeper and check
- // for a truncate. If the source and dest are the same type, eliminate the
- // trunc and extend and just do shifts. For example, turn:
- // %a = trunc i32 %i to i8
- // %b = shl i8 %a, 6
- // %c = ashr i8 %b, 6
- // %d = sext i8 %c to i32
- // into:
- // %a = shl i32 %i, 30
- // %d = ashr i32 %a, 30
- Value *A = nullptr;
- // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
- ConstantInt *BA = nullptr, *CA = nullptr;
- if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
- m_ConstantInt(CA))) &&
- BA == CA && A->getType() == CI.getType()) {
- unsigned MidSize = Src->getType()->getScalarSizeInBits();
- unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
- unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
- Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
- A = Builder.CreateShl(A, ShAmtV, CI.getName());
- return BinaryOperator::CreateAShr(A, ShAmtV);
- }
-
- return nullptr;
-}
-
-
-/// Return a Constant* for the specified floating-point constant if it fits
-/// in the specified FP type without changing its value.
-static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
- bool losesInfo;
- APFloat F = CFP->getValueAPF();
- (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
- return !losesInfo;
-}
-
-static Type *shrinkFPConstant(ConstantFP *CFP) {
- if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
- return nullptr; // No constant folding of this.
- // See if the value can be truncated to half and then reextended.
- if (fitsInFPType(CFP, APFloat::IEEEhalf()))
- return Type::getHalfTy(CFP->getContext());
- // See if the value can be truncated to float and then reextended.
- if (fitsInFPType(CFP, APFloat::IEEEsingle()))
- return Type::getFloatTy(CFP->getContext());
- if (CFP->getType()->isDoubleTy())
- return nullptr; // Won't shrink.
- if (fitsInFPType(CFP, APFloat::IEEEdouble()))
- return Type::getDoubleTy(CFP->getContext());
- // Don't try to shrink to various long double types.
- return nullptr;
-}
-
-// Determine if this is a vector of ConstantFPs and if so, return the minimal
-// type we can safely truncate all elements to.
-// TODO: Make these support undef elements.
-static Type *shrinkFPConstantVector(Value *V) {
- auto *CV = dyn_cast<Constant>(V);
- if (!CV || !CV->getType()->isVectorTy())
- return nullptr;
-
- Type *MinType = nullptr;
-
- unsigned NumElts = CV->getType()->getVectorNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
- if (!CFP)
- return nullptr;
-
- Type *T = shrinkFPConstant(CFP);
- if (!T)
- return nullptr;
-
- // If we haven't found a type yet or this type has a larger mantissa than
- // our previous type, this is our new minimal type.
- if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
- MinType = T;
- }
-
- // Make a vector type from the minimal type.
- return VectorType::get(MinType, NumElts);
-}
-
-/// Find the minimum FP type we can safely truncate to.
-static Type *getMinimumFPType(Value *V) {
- if (auto *FPExt = dyn_cast<FPExtInst>(V))
- return FPExt->getOperand(0)->getType();
-
- // If this value is a constant, return the constant in the smallest FP type
- // that can accurately represent it. This allows us to turn
- // (float)((double)X+2.0) into x+2.0f.
- if (auto *CFP = dyn_cast<ConstantFP>(V))
- if (Type *T = shrinkFPConstant(CFP))
- return T;
-
- // Try to shrink a vector of FP constants.
- if (Type *T = shrinkFPConstantVector(V))
- return T;
-
- return V->getType();
-}
-
-Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
- if (Instruction *I = commonCastTransforms(FPT))
- return I;
-
- // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
- // simplify this expression to avoid one or more of the trunc/extend
- // operations if we can do so without changing the numerical results.
- //
- // The exact manner in which the widths of the operands interact to limit
- // what we can and cannot do safely varies from operation to operation, and
- // is explained below in the various case statements.
- Type *Ty = FPT.getType();
- BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0));
- if (OpI && OpI->hasOneUse()) {
- Type *LHSMinType = getMinimumFPType(OpI->getOperand(0));
- Type *RHSMinType = getMinimumFPType(OpI->getOperand(1));
- unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
- unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
- unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
- unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
- unsigned DstWidth = Ty->getFPMantissaWidth();
- switch (OpI->getOpcode()) {
- default: break;
- case Instruction::FAdd:
- case Instruction::FSub:
- // For addition and subtraction, the infinitely precise result can
- // essentially be arbitrarily wide; proving that double rounding
- // will not occur because the result of OpI is exact (as we will for
- // FMul, for example) is hopeless. However, we *can* nonetheless
- // frequently know that double rounding cannot occur (or that it is
- // innocuous) by taking advantage of the specific structure of
- // infinitely-precise results that admit double rounding.
- //
- // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
- // to represent both sources, we can guarantee that the double
- // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
- // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
- // for proof of this fact).
- //
- // Note: Figueroa does not consider the case where DstFormat !=
- // SrcFormat. It's possible (likely even!) that this analysis
- // could be tightened for those cases, but they are rare (the main
- // case of interest here is (float)((double)float + float)).
- if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
- Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
- Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
- Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS);
- RI->copyFastMathFlags(OpI);
- return RI;
- }
- break;
- case Instruction::FMul:
- // For multiplication, the infinitely precise result has at most
- // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
- // that such a value can be exactly represented, then no double
- // rounding can possibly occur; we can safely perform the operation
- // in the destination format if it can represent both sources.
- if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
- Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
- Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
- return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI);
- }
- break;
- case Instruction::FDiv:
- // For division, we use again use the bound from Figueroa's
- // dissertation. I am entirely certain that this bound can be
- // tightened in the unbalanced operand case by an analysis based on
- // the diophantine rational approximation bound, but the well-known
- // condition used here is a good conservative first pass.
- // TODO: Tighten bound via rigorous analysis of the unbalanced case.
- if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
- Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
- Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
- return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI);
- }
- break;
- case Instruction::FRem: {
- // Remainder is straightforward. Remainder is always exact, so the
- // type of OpI doesn't enter into things at all. We simply evaluate
- // in whichever source type is larger, then convert to the
- // destination type.
- if (SrcWidth == OpWidth)
- break;
- Value *LHS, *RHS;
- if (LHSWidth == SrcWidth) {
- LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType);
- RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType);
- } else {
- LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType);
- RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType);
- }
-
- Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI);
- return CastInst::CreateFPCast(ExactResult, Ty);
- }
- }
- }
-
- // (fptrunc (fneg x)) -> (fneg (fptrunc x))
- Value *X;
- Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
- if (Op && Op->hasOneUse()) {
- if (match(Op, m_FNeg(m_Value(X)))) {
- Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
-
- // FIXME: Once we're sure that unary FNeg optimizations are on par with
- // binary FNeg, this should always return a unary operator.
- if (isa<BinaryOperator>(Op))
- return BinaryOperator::CreateFNegFMF(InnerTrunc, Op);
- return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
- }
- }
-
- if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::ceil:
- case Intrinsic::fabs:
- case Intrinsic::floor:
- case Intrinsic::nearbyint:
- case Intrinsic::rint:
- case Intrinsic::round:
- case Intrinsic::trunc: {
- Value *Src = II->getArgOperand(0);
- if (!Src->hasOneUse())
- break;
-
- // Except for fabs, this transformation requires the input of the unary FP
- // operation to be itself an fpext from the type to which we're
- // truncating.
- if (II->getIntrinsicID() != Intrinsic::fabs) {
- FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
- if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
- break;
- }
-
- // Do unary FP operation on smaller type.
- // (fptrunc (fabs x)) -> (fabs (fptrunc x))
- Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
- Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
- II->getIntrinsicID(), Ty);
- SmallVector<OperandBundleDef, 1> OpBundles;
- II->getOperandBundlesAsDefs(OpBundles);
- CallInst *NewCI =
- CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
- NewCI->copyFastMathFlags(II);
- return NewCI;
- }
- }
- }
-
- if (Instruction *I = shrinkInsertElt(FPT, Builder))
- return I;
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitFPExt(CastInst &CI) {
- return commonCastTransforms(CI);
-}
-
-// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
-// This is safe if the intermediate type has enough bits in its mantissa to
-// accurately represent all values of X. For example, this won't work with
-// i64 -> float -> i64.
-Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
- if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
- return nullptr;
- Instruction *OpI = cast<Instruction>(FI.getOperand(0));
-
- Value *SrcI = OpI->getOperand(0);
- Type *FITy = FI.getType();
- Type *OpITy = OpI->getType();
- Type *SrcTy = SrcI->getType();
- bool IsInputSigned = isa<SIToFPInst>(OpI);
- bool IsOutputSigned = isa<FPToSIInst>(FI);
-
- // We can safely assume the conversion won't overflow the output range,
- // because (for example) (uint8_t)18293.f is undefined behavior.
-
- // Since we can assume the conversion won't overflow, our decision as to
- // whether the input will fit in the float should depend on the minimum
- // of the input range and output range.
-
- // This means this is also safe for a signed input and unsigned output, since
- // a negative input would lead to undefined behavior.
- int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
- int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
- int ActualSize = std::min(InputSize, OutputSize);
-
- if (ActualSize <= OpITy->getFPMantissaWidth()) {
- if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
- if (IsInputSigned && IsOutputSigned)
- return new SExtInst(SrcI, FITy);
- return new ZExtInst(SrcI, FITy);
- }
- if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
- return new TruncInst(SrcI, FITy);
- if (SrcTy == FITy)
- return replaceInstUsesWith(FI, SrcI);
- return new BitCastInst(SrcI, FITy);
- }
- return nullptr;
-}
-
-Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
- Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
- if (!OpI)
- return commonCastTransforms(FI);
-
- if (Instruction *I = FoldItoFPtoI(FI))
- return I;
-
- return commonCastTransforms(FI);
-}
-
-Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
- Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
- if (!OpI)
- return commonCastTransforms(FI);
-
- if (Instruction *I = FoldItoFPtoI(FI))
- return I;
-
- return commonCastTransforms(FI);
-}
-
-Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
- return commonCastTransforms(CI);
-}
-
-Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
- return commonCastTransforms(CI);
-}
-
-Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
- // If the source integer type is not the intptr_t type for this target, do a
- // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
- // cast to be exposed to other transforms.
- unsigned AS = CI.getAddressSpace();
- if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
- DL.getPointerSizeInBits(AS)) {
- Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
- if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
- Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
-
- Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
- return new IntToPtrInst(P, CI.getType());
- }
-
- if (Instruction *I = commonCastTransforms(CI))
- return I;
-
- return nullptr;
-}
-
-/// Implement the transforms for cast of pointer (bitcast/ptrtoint)
-Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
- Value *Src = CI.getOperand(0);
-
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
- // If casting the result of a getelementptr instruction with no offset, turn
- // this into a cast of the original pointer!
- if (GEP->hasAllZeroIndices() &&
- // If CI is an addrspacecast and GEP changes the poiner type, merging
- // GEP into CI would undo canonicalizing addrspacecast with different
- // pointer types, causing infinite loops.
- (!isa<AddrSpaceCastInst>(CI) ||
- GEP->getType() == GEP->getPointerOperandType())) {
- // Changing the cast operand is usually not a good idea but it is safe
- // here because the pointer operand is being replaced with another
- // pointer operand so the opcode doesn't need to change.
- Worklist.Add(GEP);
- CI.setOperand(0, GEP->getOperand(0));
- return &CI;
- }
- }
-
- return commonCastTransforms(CI);
-}
-
-Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
- // If the destination integer type is not the intptr_t type for this target,
- // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
- // to be exposed to other transforms.
-
- Type *Ty = CI.getType();
- unsigned AS = CI.getPointerAddressSpace();
-
- if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
- return commonPointerCastTransforms(CI);
-
- Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
- if (Ty->isVectorTy()) // Handle vectors of pointers.
- PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
-
- Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
- return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
-}
-
-/// This input value (which is known to have vector type) is being zero extended
-/// or truncated to the specified vector type.
-/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
-///
-/// The source and destination vector types may have different element types.
-static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
- InstCombiner &IC) {
- // We can only do this optimization if the output is a multiple of the input
- // element size, or the input is a multiple of the output element size.
- // Convert the input type to have the same element type as the output.
- VectorType *SrcTy = cast<VectorType>(InVal->getType());
-
- if (SrcTy->getElementType() != DestTy->getElementType()) {
- // The input types don't need to be identical, but for now they must be the
- // same size. There is no specific reason we couldn't handle things like
- // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
- // there yet.
- if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
- DestTy->getElementType()->getPrimitiveSizeInBits())
- return nullptr;
-
- SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
- InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
- }
-
- // Now that the element types match, get the shuffle mask and RHS of the
- // shuffle to use, which depends on whether we're increasing or decreasing the
- // size of the input.
- SmallVector<uint32_t, 16> ShuffleMask;
- Value *V2;
-
- if (SrcTy->getNumElements() > DestTy->getNumElements()) {
- // If we're shrinking the number of elements, just shuffle in the low
- // elements from the input and use undef as the second shuffle input.
- V2 = UndefValue::get(SrcTy);
- for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
- ShuffleMask.push_back(i);
-
- } else {
- // If we're increasing the number of elements, shuffle in all of the
- // elements from InVal and fill the rest of the result elements with zeros
- // from a constant zero.
- V2 = Constant::getNullValue(SrcTy);
- unsigned SrcElts = SrcTy->getNumElements();
- for (unsigned i = 0, e = SrcElts; i != e; ++i)
- ShuffleMask.push_back(i);
-
- // The excess elements reference the first element of the zero input.
- for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
- ShuffleMask.push_back(SrcElts);
- }
-
- return new ShuffleVectorInst(InVal, V2,
- ConstantDataVector::get(V2->getContext(),
- ShuffleMask));
-}
-
-static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
- return Value % Ty->getPrimitiveSizeInBits() == 0;
-}
-
-static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
- return Value / Ty->getPrimitiveSizeInBits();
-}
-
-/// V is a value which is inserted into a vector of VecEltTy.
-/// Look through the value to see if we can decompose it into
-/// insertions into the vector. See the example in the comment for
-/// OptimizeIntegerToVectorInsertions for the pattern this handles.
-/// The type of V is always a non-zero multiple of VecEltTy's size.
-/// Shift is the number of bits between the lsb of V and the lsb of
-/// the vector.
-///
-/// This returns false if the pattern can't be matched or true if it can,
-/// filling in Elements with the elements found here.
-static bool collectInsertionElements(Value *V, unsigned Shift,
- SmallVectorImpl<Value *> &Elements,
- Type *VecEltTy, bool isBigEndian) {
- assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
- "Shift should be a multiple of the element type size");
-
- // Undef values never contribute useful bits to the result.
- if (isa<UndefValue>(V)) return true;
-
- // If we got down to a value of the right type, we win, try inserting into the
- // right element.
- if (V->getType() == VecEltTy) {
- // Inserting null doesn't actually insert any elements.
- if (Constant *C = dyn_cast<Constant>(V))
- if (C->isNullValue())
- return true;
-
- unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
- if (isBigEndian)
- ElementIndex = Elements.size() - ElementIndex - 1;
-
- // Fail if multiple elements are inserted into this slot.
- if (Elements[ElementIndex])
- return false;
-
- Elements[ElementIndex] = V;
- return true;
- }
-
- if (Constant *C = dyn_cast<Constant>(V)) {
- // Figure out the # elements this provides, and bitcast it or slice it up
- // as required.
- unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
- VecEltTy);
- // If the constant is the size of a vector element, we just need to bitcast
- // it to the right type so it gets properly inserted.
- if (NumElts == 1)
- return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
- Shift, Elements, VecEltTy, isBigEndian);
-
- // Okay, this is a constant that covers multiple elements. Slice it up into
- // pieces and insert each element-sized piece into the vector.
- if (!isa<IntegerType>(C->getType()))
- C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
- C->getType()->getPrimitiveSizeInBits()));
- unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
- Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
-
- for (unsigned i = 0; i != NumElts; ++i) {
- unsigned ShiftI = Shift+i*ElementSize;
- Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
- ShiftI));
- Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
- if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
- isBigEndian))
- return false;
- }
- return true;
- }
-
- if (!V->hasOneUse()) return false;
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- switch (I->getOpcode()) {
- default: return false; // Unhandled case.
- case Instruction::BitCast:
- return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian);
- case Instruction::ZExt:
- if (!isMultipleOfTypeSize(
- I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
- VecEltTy))
- return false;
- return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian);
- case Instruction::Or:
- return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian) &&
- collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
- isBigEndian);
- case Instruction::Shl: {
- // Must be shifting by a constant that is a multiple of the element size.
- ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
- if (!CI) return false;
- Shift += CI->getZExtValue();
- if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
- return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
- isBigEndian);
- }
-
- }
-}
-
-
-/// If the input is an 'or' instruction, we may be doing shifts and ors to
-/// assemble the elements of the vector manually.
-/// Try to rip the code out and replace it with insertelements. This is to
-/// optimize code like this:
-///
-/// %tmp37 = bitcast float %inc to i32
-/// %tmp38 = zext i32 %tmp37 to i64
-/// %tmp31 = bitcast float %inc5 to i32
-/// %tmp32 = zext i32 %tmp31 to i64
-/// %tmp33 = shl i64 %tmp32, 32
-/// %ins35 = or i64 %tmp33, %tmp38
-/// %tmp43 = bitcast i64 %ins35 to <2 x float>
-///
-/// Into two insertelements that do "buildvector{%inc, %inc5}".
-static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
- InstCombiner &IC) {
- VectorType *DestVecTy = cast<VectorType>(CI.getType());
- Value *IntInput = CI.getOperand(0);
-
- SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
- if (!collectInsertionElements(IntInput, 0, Elements,
- DestVecTy->getElementType(),
- IC.getDataLayout().isBigEndian()))
- return nullptr;
-
- // If we succeeded, we know that all of the element are specified by Elements
- // or are zero if Elements has a null entry. Recast this as a set of
- // insertions.
- Value *Result = Constant::getNullValue(CI.getType());
- for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
- if (!Elements[i]) continue; // Unset element.
-
- Result = IC.Builder.CreateInsertElement(Result, Elements[i],
- IC.Builder.getInt32(i));
- }
-
- return Result;
-}
-
-/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
-/// vector followed by extract element. The backend tends to handle bitcasts of
-/// vectors better than bitcasts of scalars because vector registers are
-/// usually not type-specific like scalar integer or scalar floating-point.
-static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
- InstCombiner &IC) {
- // TODO: Create and use a pattern matcher for ExtractElementInst.
- auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
- if (!ExtElt || !ExtElt->hasOneUse())
- return nullptr;
-
- // The bitcast must be to a vectorizable type, otherwise we can't make a new
- // type to extract from.
- Type *DestType = BitCast.getType();
- if (!VectorType::isValidElementType(DestType))
- return nullptr;
-
- unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
- auto *NewVecType = VectorType::get(DestType, NumElts);
- auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
- NewVecType, "bc");
- return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
-}
-
-/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
-static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
- InstCombiner::BuilderTy &Builder) {
- Type *DestTy = BitCast.getType();
- BinaryOperator *BO;
- if (!DestTy->isIntOrIntVectorTy() ||
- !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
- !BO->isBitwiseLogicOp())
- return nullptr;
-
- // FIXME: This transform is restricted to vector types to avoid backend
- // problems caused by creating potentially illegal operations. If a fix-up is
- // added to handle that situation, we can remove this check.
- if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
- return nullptr;
-
- Value *X;
- if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
- X->getType() == DestTy && !isa<Constant>(X)) {
- // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
- Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
- return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
- }
-
- if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
- X->getType() == DestTy && !isa<Constant>(X)) {
- // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
- Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
- return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
- }
-
- // Canonicalize vector bitcasts to come before vector bitwise logic with a
- // constant. This eases recognition of special constants for later ops.
- // Example:
- // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
- Constant *C;
- if (match(BO->getOperand(1), m_Constant(C))) {
- // bitcast (logic X, C) --> logic (bitcast X, C')
- Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
- Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
- return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
- }
-
- return nullptr;
-}
-
-/// Change the type of a select if we can eliminate a bitcast.
-static Instruction *foldBitCastSelect(BitCastInst &BitCast,
- InstCombiner::BuilderTy &Builder) {
- Value *Cond, *TVal, *FVal;
- if (!match(BitCast.getOperand(0),
- m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
- return nullptr;
-
- // A vector select must maintain the same number of elements in its operands.
- Type *CondTy = Cond->getType();
- Type *DestTy = BitCast.getType();
- if (CondTy->isVectorTy()) {
- if (!DestTy->isVectorTy())
- return nullptr;
- if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
- return nullptr;
- }
-
- // FIXME: This transform is restricted from changing the select between
- // scalars and vectors to avoid backend problems caused by creating
- // potentially illegal operations. If a fix-up is added to handle that
- // situation, we can remove this check.
- if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
- return nullptr;
-
- auto *Sel = cast<Instruction>(BitCast.getOperand(0));
- Value *X;
- if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
- !isa<Constant>(X)) {
- // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
- Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
- return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
- }
-
- if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
- !isa<Constant>(X)) {
- // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
- Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
- return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
- }
-
- return nullptr;
-}
-
-/// Check if all users of CI are StoreInsts.
-static bool hasStoreUsersOnly(CastInst &CI) {
- for (User *U : CI.users()) {
- if (!isa<StoreInst>(U))
- return false;
- }
- return true;
-}
-
-/// This function handles following case
-///
-/// A -> B cast
-/// PHI
-/// B -> A cast
-///
-/// All the related PHI nodes can be replaced by new PHI nodes with type A.
-/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
-Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
- // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
- if (hasStoreUsersOnly(CI))
- return nullptr;
-
- Value *Src = CI.getOperand(0);
- Type *SrcTy = Src->getType(); // Type B
- Type *DestTy = CI.getType(); // Type A
-
- SmallVector<PHINode *, 4> PhiWorklist;
- SmallSetVector<PHINode *, 4> OldPhiNodes;
-
- // Find all of the A->B casts and PHI nodes.
- // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
- // OldPhiNodes is used to track all known PHI nodes, before adding a new
- // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
- PhiWorklist.push_back(PN);
- OldPhiNodes.insert(PN);
- while (!PhiWorklist.empty()) {
- auto *OldPN = PhiWorklist.pop_back_val();
- for (Value *IncValue : OldPN->incoming_values()) {
- if (isa<Constant>(IncValue))
- continue;
-
- if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
- // If there is a sequence of one or more load instructions, each loaded
- // value is used as address of later load instruction, bitcast is
- // necessary to change the value type, don't optimize it. For
- // simplicity we give up if the load address comes from another load.
- Value *Addr = LI->getOperand(0);
- if (Addr == &CI || isa<LoadInst>(Addr))
- return nullptr;
- if (LI->hasOneUse() && LI->isSimple())
- continue;
- // If a LoadInst has more than one use, changing the type of loaded
- // value may create another bitcast.
- return nullptr;
- }
-
- if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
- if (OldPhiNodes.insert(PNode))
- PhiWorklist.push_back(PNode);
- continue;
- }
-
- auto *BCI = dyn_cast<BitCastInst>(IncValue);
- // We can't handle other instructions.
- if (!BCI)
- return nullptr;
-
- // Verify it's a A->B cast.
- Type *TyA = BCI->getOperand(0)->getType();
- Type *TyB = BCI->getType();
- if (TyA != DestTy || TyB != SrcTy)
- return nullptr;
- }
- }
-
- // For each old PHI node, create a corresponding new PHI node with a type A.
- SmallDenseMap<PHINode *, PHINode *> NewPNodes;
- for (auto *OldPN : OldPhiNodes) {
- Builder.SetInsertPoint(OldPN);
- PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
- NewPNodes[OldPN] = NewPN;
- }
-
- // Fill in the operands of new PHI nodes.
- for (auto *OldPN : OldPhiNodes) {
- PHINode *NewPN = NewPNodes[OldPN];
- for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
- Value *V = OldPN->getOperand(j);
- Value *NewV = nullptr;
- if (auto *C = dyn_cast<Constant>(V)) {
- NewV = ConstantExpr::getBitCast(C, DestTy);
- } else if (auto *LI = dyn_cast<LoadInst>(V)) {
- Builder.SetInsertPoint(LI->getNextNode());
- NewV = Builder.CreateBitCast(LI, DestTy);
- Worklist.Add(LI);
- } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
- NewV = BCI->getOperand(0);
- } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
- NewV = NewPNodes[PrevPN];
- }
- assert(NewV);
- NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
- }
- }
-
- // Traverse all accumulated PHI nodes and process its users,
- // which are Stores and BitcCasts. Without this processing
- // NewPHI nodes could be replicated and could lead to extra
- // moves generated after DeSSA.
- // If there is a store with type B, change it to type A.
-
-
- // Replace users of BitCast B->A with NewPHI. These will help
- // later to get rid off a closure formed by OldPHI nodes.
- Instruction *RetVal = nullptr;
- for (auto *OldPN : OldPhiNodes) {
- PHINode *NewPN = NewPNodes[OldPN];
- for (User *V : OldPN->users()) {
- if (auto *SI = dyn_cast<StoreInst>(V)) {
- if (SI->isSimple() && SI->getOperand(0) == OldPN) {
- Builder.SetInsertPoint(SI);
- auto *NewBC =
- cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
- SI->setOperand(0, NewBC);
- Worklist.Add(SI);
- assert(hasStoreUsersOnly(*NewBC));
- }
- }
- else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
- // Verify it's a B->A cast.
- Type *TyB = BCI->getOperand(0)->getType();
- Type *TyA = BCI->getType();
- if (TyA == DestTy && TyB == SrcTy) {
- Instruction *I = replaceInstUsesWith(*BCI, NewPN);
- if (BCI == &CI)
- RetVal = I;
- }
- }
- }
- }
-
- return RetVal;
-}
-
-Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
- // If the operands are integer typed then apply the integer transforms,
- // otherwise just apply the common ones.
- Value *Src = CI.getOperand(0);
- Type *SrcTy = Src->getType();
- Type *DestTy = CI.getType();
-
- // Get rid of casts from one type to the same type. These are useless and can
- // be replaced by the operand.
- if (DestTy == Src->getType())
- return replaceInstUsesWith(CI, Src);
-
- if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
- PointerType *SrcPTy = cast<PointerType>(SrcTy);
- Type *DstElTy = DstPTy->getElementType();
- Type *SrcElTy = SrcPTy->getElementType();
-
- // Casting pointers between the same type, but with different address spaces
- // is an addrspace cast rather than a bitcast.
- if ((DstElTy == SrcElTy) &&
- (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
- return new AddrSpaceCastInst(Src, DestTy);
-
- // If we are casting a alloca to a pointer to a type of the same
- // size, rewrite the allocation instruction to allocate the "right" type.
- // There is no need to modify malloc calls because it is their bitcast that
- // needs to be cleaned up.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
- if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
- return V;
-
- // When the type pointed to is not sized the cast cannot be
- // turned into a gep.
- Type *PointeeType =
- cast<PointerType>(Src->getType()->getScalarType())->getElementType();
- if (!PointeeType->isSized())
- return nullptr;
-
- // If the source and destination are pointers, and this cast is equivalent
- // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
- // This can enhance SROA and other transforms that want type-safe pointers.
- unsigned NumZeros = 0;
- while (SrcElTy != DstElTy &&
- isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
- SrcElTy->getNumContainedTypes() /* not "{}" */) {
- SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
- ++NumZeros;
- }
-
- // If we found a path from the src to dest, create the getelementptr now.
- if (SrcElTy == DstElTy) {
- SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
- return GetElementPtrInst::CreateInBounds(SrcPTy->getElementType(), Src,
- Idxs);
- }
- }
-
- if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
- if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
- Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
- return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
- Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
- // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
- }
-
- if (isa<IntegerType>(SrcTy)) {
- // If this is a cast from an integer to vector, check to see if the input
- // is a trunc or zext of a bitcast from vector. If so, we can replace all
- // the casts with a shuffle and (potentially) a bitcast.
- if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
- CastInst *SrcCast = cast<CastInst>(Src);
- if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
- if (isa<VectorType>(BCIn->getOperand(0)->getType()))
- if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
- cast<VectorType>(DestTy), *this))
- return I;
- }
-
- // If the input is an 'or' instruction, we may be doing shifts and ors to
- // assemble the elements of the vector manually. Try to rip the code out
- // and replace it with insertelements.
- if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
- return replaceInstUsesWith(CI, V);
- }
- }
-
- if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
- if (SrcVTy->getNumElements() == 1) {
- // If our destination is not a vector, then make this a straight
- // scalar-scalar cast.
- if (!DestTy->isVectorTy()) {
- Value *Elem =
- Builder.CreateExtractElement(Src,
- Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
- return CastInst::Create(Instruction::BitCast, Elem, DestTy);
- }
-
- // Otherwise, see if our source is an insert. If so, then use the scalar
- // component directly:
- // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
- if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
- return new BitCastInst(InsElt->getOperand(1), DestTy);
- }
- }
-
- if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
- // Okay, we have (bitcast (shuffle ..)). Check to see if this is
- // a bitcast to a vector with the same # elts.
- if (SVI->hasOneUse() && DestTy->isVectorTy() &&
- DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
- SVI->getType()->getNumElements() ==
- SVI->getOperand(0)->getType()->getVectorNumElements()) {
- BitCastInst *Tmp;
- // If either of the operands is a cast from CI.getType(), then
- // evaluating the shuffle in the casted destination's type will allow
- // us to eliminate at least one cast.
- if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
- Tmp->getOperand(0)->getType() == DestTy) ||
- ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
- Tmp->getOperand(0)->getType() == DestTy)) {
- Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
- Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
- // Return a new shuffle vector. Use the same element ID's, as we
- // know the vector types match #elts.
- return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
- }
- }
- }
-
- // Handle the A->B->A cast, and there is an intervening PHI node.
- if (PHINode *PN = dyn_cast<PHINode>(Src))
- if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
- return I;
-
- if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
- return I;
-
- if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
- return I;
-
- if (Instruction *I = foldBitCastSelect(CI, Builder))
- return I;
-
- if (SrcTy->isPointerTy())
- return commonPointerCastTransforms(CI);
- return commonCastTransforms(CI);
-}
-
-Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
- // If the destination pointer element type is not the same as the source's
- // first do a bitcast to the destination type, and then the addrspacecast.
- // This allows the cast to be exposed to other transforms.
- Value *Src = CI.getOperand(0);
- PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
- PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
-
- Type *DestElemTy = DestTy->getElementType();
- if (SrcTy->getElementType() != DestElemTy) {
- Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
- if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
- // Handle vectors of pointers.
- MidTy = VectorType::get(MidTy, VT->getNumElements());
- }
-
- Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
- return new AddrSpaceCastInst(NewBitCast, CI.getType());
- }
-
- return commonPointerCastTransforms(CI);
-}