summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp2111
1 files changed, 0 insertions, 2111 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
deleted file mode 100644
index dc9abdd7f47a..000000000000
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
+++ /dev/null
@@ -1,2111 +0,0 @@
-//===- InstCombineVectorOps.cpp -------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements instcombine for ExtractElement, InsertElement and
-// ShuffleVector.
-//
-//===----------------------------------------------------------------------===//
-
-#include "InstCombineInternal.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
-#include <cassert>
-#include <cstdint>
-#include <iterator>
-#include <utility>
-
-using namespace llvm;
-using namespace PatternMatch;
-
-#define DEBUG_TYPE "instcombine"
-
-/// Return true if the value is cheaper to scalarize than it is to leave as a
-/// vector operation. IsConstantExtractIndex indicates whether we are extracting
-/// one known element from a vector constant.
-///
-/// FIXME: It's possible to create more instructions than previously existed.
-static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
- // If we can pick a scalar constant value out of a vector, that is free.
- if (auto *C = dyn_cast<Constant>(V))
- return IsConstantExtractIndex || C->getSplatValue();
-
- // An insertelement to the same constant index as our extract will simplify
- // to the scalar inserted element. An insertelement to a different constant
- // index is irrelevant to our extract.
- if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
- return IsConstantExtractIndex;
-
- if (match(V, m_OneUse(m_Load(m_Value()))))
- return true;
-
- Value *V0, *V1;
- if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
- if (cheapToScalarize(V0, IsConstantExtractIndex) ||
- cheapToScalarize(V1, IsConstantExtractIndex))
- return true;
-
- CmpInst::Predicate UnusedPred;
- if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
- if (cheapToScalarize(V0, IsConstantExtractIndex) ||
- cheapToScalarize(V1, IsConstantExtractIndex))
- return true;
-
- return false;
-}
-
-// If we have a PHI node with a vector type that is only used to feed
-// itself and be an operand of extractelement at a constant location,
-// try to replace the PHI of the vector type with a PHI of a scalar type.
-Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
- SmallVector<Instruction *, 2> Extracts;
- // The users we want the PHI to have are:
- // 1) The EI ExtractElement (we already know this)
- // 2) Possibly more ExtractElements with the same index.
- // 3) Another operand, which will feed back into the PHI.
- Instruction *PHIUser = nullptr;
- for (auto U : PN->users()) {
- if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
- if (EI.getIndexOperand() == EU->getIndexOperand())
- Extracts.push_back(EU);
- else
- return nullptr;
- } else if (!PHIUser) {
- PHIUser = cast<Instruction>(U);
- } else {
- return nullptr;
- }
- }
-
- if (!PHIUser)
- return nullptr;
-
- // Verify that this PHI user has one use, which is the PHI itself,
- // and that it is a binary operation which is cheap to scalarize.
- // otherwise return nullptr.
- if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
- !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
- return nullptr;
-
- // Create a scalar PHI node that will replace the vector PHI node
- // just before the current PHI node.
- PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
- PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
- // Scalarize each PHI operand.
- for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
- Value *PHIInVal = PN->getIncomingValue(i);
- BasicBlock *inBB = PN->getIncomingBlock(i);
- Value *Elt = EI.getIndexOperand();
- // If the operand is the PHI induction variable:
- if (PHIInVal == PHIUser) {
- // Scalarize the binary operation. Its first operand is the
- // scalar PHI, and the second operand is extracted from the other
- // vector operand.
- BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
- unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
- Value *Op = InsertNewInstWith(
- ExtractElementInst::Create(B0->getOperand(opId), Elt,
- B0->getOperand(opId)->getName() + ".Elt"),
- *B0);
- Value *newPHIUser = InsertNewInstWith(
- BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
- scalarPHI, Op, B0), *B0);
- scalarPHI->addIncoming(newPHIUser, inBB);
- } else {
- // Scalarize PHI input:
- Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
- // Insert the new instruction into the predecessor basic block.
- Instruction *pos = dyn_cast<Instruction>(PHIInVal);
- BasicBlock::iterator InsertPos;
- if (pos && !isa<PHINode>(pos)) {
- InsertPos = ++pos->getIterator();
- } else {
- InsertPos = inBB->getFirstInsertionPt();
- }
-
- InsertNewInstWith(newEI, *InsertPos);
-
- scalarPHI->addIncoming(newEI, inBB);
- }
- }
-
- for (auto E : Extracts)
- replaceInstUsesWith(*E, scalarPHI);
-
- return &EI;
-}
-
-static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
- InstCombiner::BuilderTy &Builder,
- bool IsBigEndian) {
- Value *X;
- uint64_t ExtIndexC;
- if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
- !X->getType()->isVectorTy() ||
- !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
- return nullptr;
-
- // If this extractelement is using a bitcast from a vector of the same number
- // of elements, see if we can find the source element from the source vector:
- // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
- Type *SrcTy = X->getType();
- Type *DestTy = Ext.getType();
- unsigned NumSrcElts = SrcTy->getVectorNumElements();
- unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
- if (NumSrcElts == NumElts)
- if (Value *Elt = findScalarElement(X, ExtIndexC))
- return new BitCastInst(Elt, DestTy);
-
- // If the source elements are wider than the destination, try to shift and
- // truncate a subset of scalar bits of an insert op.
- if (NumSrcElts < NumElts) {
- Value *Scalar;
- uint64_t InsIndexC;
- if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
- m_ConstantInt(InsIndexC))))
- return nullptr;
-
- // The extract must be from the subset of vector elements that we inserted
- // into. Example: if we inserted element 1 of a <2 x i64> and we are
- // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
- // of elements 4-7 of the bitcasted vector.
- unsigned NarrowingRatio = NumElts / NumSrcElts;
- if (ExtIndexC / NarrowingRatio != InsIndexC)
- return nullptr;
-
- // We are extracting part of the original scalar. How that scalar is
- // inserted into the vector depends on the endian-ness. Example:
- // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
- // +--+--+--+--+--+--+--+--+
- // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
- // extelt <4 x i16> V', 3: | |S2|S3|
- // +--+--+--+--+--+--+--+--+
- // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
- // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
- // In this example, we must right-shift little-endian. Big-endian is just a
- // truncate.
- unsigned Chunk = ExtIndexC % NarrowingRatio;
- if (IsBigEndian)
- Chunk = NarrowingRatio - 1 - Chunk;
-
- // Bail out if this is an FP vector to FP vector sequence. That would take
- // more instructions than we started with unless there is no shift, and it
- // may not be handled as well in the backend.
- bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
- bool NeedDestBitcast = DestTy->isFloatingPointTy();
- if (NeedSrcBitcast && NeedDestBitcast)
- return nullptr;
-
- unsigned SrcWidth = SrcTy->getScalarSizeInBits();
- unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
- unsigned ShAmt = Chunk * DestWidth;
-
- // TODO: This limitation is more strict than necessary. We could sum the
- // number of new instructions and subtract the number eliminated to know if
- // we can proceed.
- if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
- if (NeedSrcBitcast || NeedDestBitcast)
- return nullptr;
-
- if (NeedSrcBitcast) {
- Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
- Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
- }
-
- if (ShAmt) {
- // Bail out if we could end with more instructions than we started with.
- if (!Ext.getVectorOperand()->hasOneUse())
- return nullptr;
- Scalar = Builder.CreateLShr(Scalar, ShAmt);
- }
-
- if (NeedDestBitcast) {
- Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
- return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
- }
- return new TruncInst(Scalar, DestTy);
- }
-
- return nullptr;
-}
-
-Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
- Value *SrcVec = EI.getVectorOperand();
- Value *Index = EI.getIndexOperand();
- if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
- SQ.getWithInstruction(&EI)))
- return replaceInstUsesWith(EI, V);
-
- // If extracting a specified index from the vector, see if we can recursively
- // find a previously computed scalar that was inserted into the vector.
- auto *IndexC = dyn_cast<ConstantInt>(Index);
- if (IndexC) {
- unsigned NumElts = EI.getVectorOperandType()->getNumElements();
-
- // InstSimplify should handle cases where the index is invalid.
- if (!IndexC->getValue().ule(NumElts))
- return nullptr;
-
- // This instruction only demands the single element from the input vector.
- // If the input vector has a single use, simplify it based on this use
- // property.
- if (SrcVec->hasOneUse() && NumElts != 1) {
- APInt UndefElts(NumElts, 0);
- APInt DemandedElts(NumElts, 0);
- DemandedElts.setBit(IndexC->getZExtValue());
- if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
- UndefElts)) {
- EI.setOperand(0, V);
- return &EI;
- }
- }
-
- if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
- return I;
-
- // If there's a vector PHI feeding a scalar use through this extractelement
- // instruction, try to scalarize the PHI.
- if (auto *Phi = dyn_cast<PHINode>(SrcVec))
- if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
- return ScalarPHI;
- }
-
- BinaryOperator *BO;
- if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
- // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
- Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
- Value *E0 = Builder.CreateExtractElement(X, Index);
- Value *E1 = Builder.CreateExtractElement(Y, Index);
- return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
- }
-
- Value *X, *Y;
- CmpInst::Predicate Pred;
- if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
- cheapToScalarize(SrcVec, IndexC)) {
- // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
- Value *E0 = Builder.CreateExtractElement(X, Index);
- Value *E1 = Builder.CreateExtractElement(Y, Index);
- return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
- }
-
- if (auto *I = dyn_cast<Instruction>(SrcVec)) {
- if (auto *IE = dyn_cast<InsertElementInst>(I)) {
- // Extracting the inserted element?
- if (IE->getOperand(2) == Index)
- return replaceInstUsesWith(EI, IE->getOperand(1));
- // If the inserted and extracted elements are constants, they must not
- // be the same value, extract from the pre-inserted value instead.
- if (isa<Constant>(IE->getOperand(2)) && IndexC) {
- Worklist.AddValue(SrcVec);
- EI.setOperand(0, IE->getOperand(0));
- return &EI;
- }
- } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
- // If this is extracting an element from a shufflevector, figure out where
- // it came from and extract from the appropriate input element instead.
- if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
- int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
- Value *Src;
- unsigned LHSWidth =
- SVI->getOperand(0)->getType()->getVectorNumElements();
-
- if (SrcIdx < 0)
- return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
- if (SrcIdx < (int)LHSWidth)
- Src = SVI->getOperand(0);
- else {
- SrcIdx -= LHSWidth;
- Src = SVI->getOperand(1);
- }
- Type *Int32Ty = Type::getInt32Ty(EI.getContext());
- return ExtractElementInst::Create(Src,
- ConstantInt::get(Int32Ty,
- SrcIdx, false));
- }
- } else if (auto *CI = dyn_cast<CastInst>(I)) {
- // Canonicalize extractelement(cast) -> cast(extractelement).
- // Bitcasts can change the number of vector elements, and they cost
- // nothing.
- if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
- Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
- Worklist.AddValue(EE);
- return CastInst::Create(CI->getOpcode(), EE, EI.getType());
- }
- }
- }
- return nullptr;
-}
-
-/// If V is a shuffle of values that ONLY returns elements from either LHS or
-/// RHS, return the shuffle mask and true. Otherwise, return false.
-static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
- SmallVectorImpl<Constant*> &Mask) {
- assert(LHS->getType() == RHS->getType() &&
- "Invalid CollectSingleShuffleElements");
- unsigned NumElts = V->getType()->getVectorNumElements();
-
- if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
- return true;
- }
-
- if (V == LHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
- return true;
- }
-
- if (V == RHS) {
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
- i+NumElts));
- return true;
- }
-
- if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
-
- if (!isa<ConstantInt>(IdxOp))
- return false;
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
-
- if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
- // We can handle this if the vector we are inserting into is
- // transitively ok.
- if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
- // If so, update the mask to reflect the inserted undef.
- Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
- return true;
- }
- } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
- if (isa<ConstantInt>(EI->getOperand(1))) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
-
- // This must be extracting from either LHS or RHS.
- if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
- // We can handle this if the vector we are inserting into is
- // transitively ok.
- if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
- // If so, update the mask to reflect the inserted value.
- if (EI->getOperand(0) == LHS) {
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- ExtractedIdx);
- } else {
- assert(EI->getOperand(0) == RHS);
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- ExtractedIdx + NumLHSElts);
- }
- return true;
- }
- }
- }
- }
- }
-
- return false;
-}
-
-/// If we have insertion into a vector that is wider than the vector that we
-/// are extracting from, try to widen the source vector to allow a single
-/// shufflevector to replace one or more insert/extract pairs.
-static void replaceExtractElements(InsertElementInst *InsElt,
- ExtractElementInst *ExtElt,
- InstCombiner &IC) {
- VectorType *InsVecType = InsElt->getType();
- VectorType *ExtVecType = ExtElt->getVectorOperandType();
- unsigned NumInsElts = InsVecType->getVectorNumElements();
- unsigned NumExtElts = ExtVecType->getVectorNumElements();
-
- // The inserted-to vector must be wider than the extracted-from vector.
- if (InsVecType->getElementType() != ExtVecType->getElementType() ||
- NumExtElts >= NumInsElts)
- return;
-
- // Create a shuffle mask to widen the extended-from vector using undefined
- // values. The mask selects all of the values of the original vector followed
- // by as many undefined values as needed to create a vector of the same length
- // as the inserted-to vector.
- SmallVector<Constant *, 16> ExtendMask;
- IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
- for (unsigned i = 0; i < NumExtElts; ++i)
- ExtendMask.push_back(ConstantInt::get(IntType, i));
- for (unsigned i = NumExtElts; i < NumInsElts; ++i)
- ExtendMask.push_back(UndefValue::get(IntType));
-
- Value *ExtVecOp = ExtElt->getVectorOperand();
- auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
- BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
- ? ExtVecOpInst->getParent()
- : ExtElt->getParent();
-
- // TODO: This restriction matches the basic block check below when creating
- // new extractelement instructions. If that limitation is removed, this one
- // could also be removed. But for now, we just bail out to ensure that we
- // will replace the extractelement instruction that is feeding our
- // insertelement instruction. This allows the insertelement to then be
- // replaced by a shufflevector. If the insertelement is not replaced, we can
- // induce infinite looping because there's an optimization for extractelement
- // that will delete our widening shuffle. This would trigger another attempt
- // here to create that shuffle, and we spin forever.
- if (InsertionBlock != InsElt->getParent())
- return;
-
- // TODO: This restriction matches the check in visitInsertElementInst() and
- // prevents an infinite loop caused by not turning the extract/insert pair
- // into a shuffle. We really should not need either check, but we're lacking
- // folds for shufflevectors because we're afraid to generate shuffle masks
- // that the backend can't handle.
- if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
- return;
-
- auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
- ConstantVector::get(ExtendMask));
-
- // Insert the new shuffle after the vector operand of the extract is defined
- // (as long as it's not a PHI) or at the start of the basic block of the
- // extract, so any subsequent extracts in the same basic block can use it.
- // TODO: Insert before the earliest ExtractElementInst that is replaced.
- if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
- WideVec->insertAfter(ExtVecOpInst);
- else
- IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
-
- // Replace extracts from the original narrow vector with extracts from the new
- // wide vector.
- for (User *U : ExtVecOp->users()) {
- ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
- if (!OldExt || OldExt->getParent() != WideVec->getParent())
- continue;
- auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
- NewExt->insertAfter(OldExt);
- IC.replaceInstUsesWith(*OldExt, NewExt);
- }
-}
-
-/// We are building a shuffle to create V, which is a sequence of insertelement,
-/// extractelement pairs. If PermittedRHS is set, then we must either use it or
-/// not rely on the second vector source. Return a std::pair containing the
-/// left and right vectors of the proposed shuffle (or 0), and set the Mask
-/// parameter as required.
-///
-/// Note: we intentionally don't try to fold earlier shuffles since they have
-/// often been chosen carefully to be efficiently implementable on the target.
-using ShuffleOps = std::pair<Value *, Value *>;
-
-static ShuffleOps collectShuffleElements(Value *V,
- SmallVectorImpl<Constant *> &Mask,
- Value *PermittedRHS,
- InstCombiner &IC) {
- assert(V->getType()->isVectorTy() && "Invalid shuffle!");
- unsigned NumElts = V->getType()->getVectorNumElements();
-
- if (isa<UndefValue>(V)) {
- Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
- return std::make_pair(
- PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
- }
-
- if (isa<ConstantAggregateZero>(V)) {
- Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
- return std::make_pair(V, nullptr);
- }
-
- if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
- // If this is an insert of an extract from some other vector, include it.
- Value *VecOp = IEI->getOperand(0);
- Value *ScalarOp = IEI->getOperand(1);
- Value *IdxOp = IEI->getOperand(2);
-
- if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
- if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
- unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
- unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
-
- // Either the extracted from or inserted into vector must be RHSVec,
- // otherwise we'd end up with a shuffle of three inputs.
- if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
- Value *RHS = EI->getOperand(0);
- ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
- assert(LR.second == nullptr || LR.second == RHS);
-
- if (LR.first->getType() != RHS->getType()) {
- // Although we are giving up for now, see if we can create extracts
- // that match the inserts for another round of combining.
- replaceExtractElements(IEI, EI, IC);
-
- // We tried our best, but we can't find anything compatible with RHS
- // further up the chain. Return a trivial shuffle.
- for (unsigned i = 0; i < NumElts; ++i)
- Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
- return std::make_pair(V, nullptr);
- }
-
- unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- NumLHSElts+ExtractedIdx);
- return std::make_pair(LR.first, RHS);
- }
-
- if (VecOp == PermittedRHS) {
- // We've gone as far as we can: anything on the other side of the
- // extractelement will already have been converted into a shuffle.
- unsigned NumLHSElts =
- EI->getOperand(0)->getType()->getVectorNumElements();
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(
- Type::getInt32Ty(V->getContext()),
- i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
- return std::make_pair(EI->getOperand(0), PermittedRHS);
- }
-
- // If this insertelement is a chain that comes from exactly these two
- // vectors, return the vector and the effective shuffle.
- if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
- collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
- Mask))
- return std::make_pair(EI->getOperand(0), PermittedRHS);
- }
- }
- }
-
- // Otherwise, we can't do anything fancy. Return an identity vector.
- for (unsigned i = 0; i != NumElts; ++i)
- Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
- return std::make_pair(V, nullptr);
-}
-
-/// Try to find redundant insertvalue instructions, like the following ones:
-/// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
-/// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
-/// Here the second instruction inserts values at the same indices, as the
-/// first one, making the first one redundant.
-/// It should be transformed to:
-/// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
-Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
- bool IsRedundant = false;
- ArrayRef<unsigned int> FirstIndices = I.getIndices();
-
- // If there is a chain of insertvalue instructions (each of them except the
- // last one has only one use and it's another insertvalue insn from this
- // chain), check if any of the 'children' uses the same indices as the first
- // instruction. In this case, the first one is redundant.
- Value *V = &I;
- unsigned Depth = 0;
- while (V->hasOneUse() && Depth < 10) {
- User *U = V->user_back();
- auto UserInsInst = dyn_cast<InsertValueInst>(U);
- if (!UserInsInst || U->getOperand(0) != V)
- break;
- if (UserInsInst->getIndices() == FirstIndices) {
- IsRedundant = true;
- break;
- }
- V = UserInsInst;
- Depth++;
- }
-
- if (IsRedundant)
- return replaceInstUsesWith(I, I.getOperand(0));
- return nullptr;
-}
-
-static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
- int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
- int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
-
- // A vector select does not change the size of the operands.
- if (MaskSize != VecSize)
- return false;
-
- // Each mask element must be undefined or choose a vector element from one of
- // the source operands without crossing vector lanes.
- for (int i = 0; i != MaskSize; ++i) {
- int Elt = Shuf.getMaskValue(i);
- if (Elt != -1 && Elt != i && Elt != i + VecSize)
- return false;
- }
-
- return true;
-}
-
-/// Turn a chain of inserts that splats a value into an insert + shuffle:
-/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
-/// shufflevector(insertelt(X, %k, 0), undef, zero)
-static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
- // We are interested in the last insert in a chain. So if this insert has a
- // single user and that user is an insert, bail.
- if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
- return nullptr;
-
- auto *VecTy = cast<VectorType>(InsElt.getType());
- unsigned NumElements = VecTy->getNumElements();
-
- // Do not try to do this for a one-element vector, since that's a nop,
- // and will cause an inf-loop.
- if (NumElements == 1)
- return nullptr;
-
- Value *SplatVal = InsElt.getOperand(1);
- InsertElementInst *CurrIE = &InsElt;
- SmallVector<bool, 16> ElementPresent(NumElements, false);
- InsertElementInst *FirstIE = nullptr;
-
- // Walk the chain backwards, keeping track of which indices we inserted into,
- // until we hit something that isn't an insert of the splatted value.
- while (CurrIE) {
- auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
- if (!Idx || CurrIE->getOperand(1) != SplatVal)
- return nullptr;
-
- auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
- // Check none of the intermediate steps have any additional uses, except
- // for the root insertelement instruction, which can be re-used, if it
- // inserts at position 0.
- if (CurrIE != &InsElt &&
- (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
- return nullptr;
-
- ElementPresent[Idx->getZExtValue()] = true;
- FirstIE = CurrIE;
- CurrIE = NextIE;
- }
-
- // If this is just a single insertelement (not a sequence), we are done.
- if (FirstIE == &InsElt)
- return nullptr;
-
- // If we are not inserting into an undef vector, make sure we've seen an
- // insert into every element.
- // TODO: If the base vector is not undef, it might be better to create a splat
- // and then a select-shuffle (blend) with the base vector.
- if (!isa<UndefValue>(FirstIE->getOperand(0)))
- if (any_of(ElementPresent, [](bool Present) { return !Present; }))
- return nullptr;
-
- // Create the insert + shuffle.
- Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
- UndefValue *UndefVec = UndefValue::get(VecTy);
- Constant *Zero = ConstantInt::get(Int32Ty, 0);
- if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
- FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
-
- // Splat from element 0, but replace absent elements with undef in the mask.
- SmallVector<Constant *, 16> Mask(NumElements, Zero);
- for (unsigned i = 0; i != NumElements; ++i)
- if (!ElementPresent[i])
- Mask[i] = UndefValue::get(Int32Ty);
-
- return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
-}
-
-/// Try to fold an insert element into an existing splat shuffle by changing
-/// the shuffle's mask to include the index of this insert element.
-static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
- // Check if the vector operand of this insert is a canonical splat shuffle.
- auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
- if (!Shuf || !Shuf->isZeroEltSplat())
- return nullptr;
-
- // Check for a constant insertion index.
- uint64_t IdxC;
- if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
- return nullptr;
-
- // Check if the splat shuffle's input is the same as this insert's scalar op.
- Value *X = InsElt.getOperand(1);
- Value *Op0 = Shuf->getOperand(0);
- if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
- return nullptr;
-
- // Replace the shuffle mask element at the index of this insert with a zero.
- // For example:
- // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
- // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
- unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
- SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
- Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
- Constant *Zero = ConstantInt::getNullValue(I32Ty);
- for (unsigned i = 0; i != NumMaskElts; ++i)
- NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
-
- Constant *NewMask = ConstantVector::get(NewMaskVec);
- return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
-}
-
-/// If we have an insertelement instruction feeding into another insertelement
-/// and the 2nd is inserting a constant into the vector, canonicalize that
-/// constant insertion before the insertion of a variable:
-///
-/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
-/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
-///
-/// This has the potential of eliminating the 2nd insertelement instruction
-/// via constant folding of the scalar constant into a vector constant.
-static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
- InstCombiner::BuilderTy &Builder) {
- auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
- if (!InsElt1 || !InsElt1->hasOneUse())
- return nullptr;
-
- Value *X, *Y;
- Constant *ScalarC;
- ConstantInt *IdxC1, *IdxC2;
- if (match(InsElt1->getOperand(0), m_Value(X)) &&
- match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
- match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
- match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
- match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
- Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
- return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
- }
-
- return nullptr;
-}
-
-/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
-/// --> shufflevector X, CVec', Mask'
-static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
- auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
- // Bail out if the parent has more than one use. In that case, we'd be
- // replacing the insertelt with a shuffle, and that's not a clear win.
- if (!Inst || !Inst->hasOneUse())
- return nullptr;
- if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
- // The shuffle must have a constant vector operand. The insertelt must have
- // a constant scalar being inserted at a constant position in the vector.
- Constant *ShufConstVec, *InsEltScalar;
- uint64_t InsEltIndex;
- if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
- !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
- !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
- return nullptr;
-
- // Adding an element to an arbitrary shuffle could be expensive, but a
- // shuffle that selects elements from vectors without crossing lanes is
- // assumed cheap.
- // If we're just adding a constant into that shuffle, it will still be
- // cheap.
- if (!isShuffleEquivalentToSelect(*Shuf))
- return nullptr;
-
- // From the above 'select' check, we know that the mask has the same number
- // of elements as the vector input operands. We also know that each constant
- // input element is used in its lane and can not be used more than once by
- // the shuffle. Therefore, replace the constant in the shuffle's constant
- // vector with the insertelt constant. Replace the constant in the shuffle's
- // mask vector with the insertelt index plus the length of the vector
- // (because the constant vector operand of a shuffle is always the 2nd
- // operand).
- Constant *Mask = Shuf->getMask();
- unsigned NumElts = Mask->getType()->getVectorNumElements();
- SmallVector<Constant *, 16> NewShufElts(NumElts);
- SmallVector<Constant *, 16> NewMaskElts(NumElts);
- for (unsigned I = 0; I != NumElts; ++I) {
- if (I == InsEltIndex) {
- NewShufElts[I] = InsEltScalar;
- Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
- NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
- } else {
- // Copy over the existing values.
- NewShufElts[I] = ShufConstVec->getAggregateElement(I);
- NewMaskElts[I] = Mask->getAggregateElement(I);
- }
- }
-
- // Create new operands for a shuffle that includes the constant of the
- // original insertelt. The old shuffle will be dead now.
- return new ShuffleVectorInst(Shuf->getOperand(0),
- ConstantVector::get(NewShufElts),
- ConstantVector::get(NewMaskElts));
- } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
- // Transform sequences of insertelements ops with constant data/indexes into
- // a single shuffle op.
- unsigned NumElts = InsElt.getType()->getNumElements();
-
- uint64_t InsertIdx[2];
- Constant *Val[2];
- if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
- !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
- !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
- !match(IEI->getOperand(1), m_Constant(Val[1])))
- return nullptr;
- SmallVector<Constant *, 16> Values(NumElts);
- SmallVector<Constant *, 16> Mask(NumElts);
- auto ValI = std::begin(Val);
- // Generate new constant vector and mask.
- // We have 2 values/masks from the insertelements instructions. Insert them
- // into new value/mask vectors.
- for (uint64_t I : InsertIdx) {
- if (!Values[I]) {
- assert(!Mask[I]);
- Values[I] = *ValI;
- Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
- NumElts + I);
- }
- ++ValI;
- }
- // Remaining values are filled with 'undef' values.
- for (unsigned I = 0; I < NumElts; ++I) {
- if (!Values[I]) {
- assert(!Mask[I]);
- Values[I] = UndefValue::get(InsElt.getType()->getElementType());
- Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
- }
- }
- // Create new operands for a shuffle that includes the constant of the
- // original insertelt.
- return new ShuffleVectorInst(IEI->getOperand(0),
- ConstantVector::get(Values),
- ConstantVector::get(Mask));
- }
- return nullptr;
-}
-
-Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
- Value *VecOp = IE.getOperand(0);
- Value *ScalarOp = IE.getOperand(1);
- Value *IdxOp = IE.getOperand(2);
-
- if (auto *V = SimplifyInsertElementInst(
- VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
- return replaceInstUsesWith(IE, V);
-
- // If the vector and scalar are both bitcast from the same element type, do
- // the insert in that source type followed by bitcast.
- Value *VecSrc, *ScalarSrc;
- if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
- match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
- (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
- VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
- VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
- // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
- // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
- Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
- return new BitCastInst(NewInsElt, IE.getType());
- }
-
- // If the inserted element was extracted from some other vector and both
- // indexes are valid constants, try to turn this into a shuffle.
- uint64_t InsertedIdx, ExtractedIdx;
- Value *ExtVecOp;
- if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
- match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
- m_ConstantInt(ExtractedIdx))) &&
- ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
- // TODO: Looking at the user(s) to determine if this insert is a
- // fold-to-shuffle opportunity does not match the usual instcombine
- // constraints. We should decide if the transform is worthy based only
- // on this instruction and its operands, but that may not work currently.
- //
- // Here, we are trying to avoid creating shuffles before reaching
- // the end of a chain of extract-insert pairs. This is complicated because
- // we do not generally form arbitrary shuffle masks in instcombine
- // (because those may codegen poorly), but collectShuffleElements() does
- // exactly that.
- //
- // The rules for determining what is an acceptable target-independent
- // shuffle mask are fuzzy because they evolve based on the backend's
- // capabilities and real-world impact.
- auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
- if (!Insert.hasOneUse())
- return true;
- auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
- if (!InsertUser)
- return true;
- return false;
- };
-
- // Try to form a shuffle from a chain of extract-insert ops.
- if (isShuffleRootCandidate(IE)) {
- SmallVector<Constant*, 16> Mask;
- ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
-
- // The proposed shuffle may be trivial, in which case we shouldn't
- // perform the combine.
- if (LR.first != &IE && LR.second != &IE) {
- // We now have a shuffle of LHS, RHS, Mask.
- if (LR.second == nullptr)
- LR.second = UndefValue::get(LR.first->getType());
- return new ShuffleVectorInst(LR.first, LR.second,
- ConstantVector::get(Mask));
- }
- }
- }
-
- unsigned VWidth = VecOp->getType()->getVectorNumElements();
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
- if (V != &IE)
- return replaceInstUsesWith(IE, V);
- return &IE;
- }
-
- if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
- return Shuf;
-
- if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
- return NewInsElt;
-
- if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
- return Broadcast;
-
- if (Instruction *Splat = foldInsEltIntoSplat(IE))
- return Splat;
-
- return nullptr;
-}
-
-/// Return true if we can evaluate the specified expression tree if the vector
-/// elements were shuffled in a different order.
-static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
- unsigned Depth = 5) {
- // We can always reorder the elements of a constant.
- if (isa<Constant>(V))
- return true;
-
- // We won't reorder vector arguments. No IPO here.
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
-
- // Two users may expect different orders of the elements. Don't try it.
- if (!I->hasOneUse())
- return false;
-
- if (Depth == 0) return false;
-
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::GetElementPtr: {
- // Bail out if we would create longer vector ops. We could allow creating
- // longer vector ops, but that may result in more expensive codegen. We
- // would also need to limit the transform to avoid undefined behavior for
- // integer div/rem.
- Type *ITy = I->getType();
- if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
- return false;
- for (Value *Operand : I->operands()) {
- if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
- return false;
- }
- return true;
- }
- case Instruction::InsertElement: {
- ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
- if (!CI) return false;
- int ElementNumber = CI->getLimitedValue();
-
- // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
- // can't put an element into multiple indices.
- bool SeenOnce = false;
- for (int i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] == ElementNumber) {
- if (SeenOnce)
- return false;
- SeenOnce = true;
- }
- }
- return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
- }
- }
- return false;
-}
-
-/// Rebuild a new instruction just like 'I' but with the new operands given.
-/// In the event of type mismatch, the type of the operands is correct.
-static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
- // We don't want to use the IRBuilder here because we want the replacement
- // instructions to appear next to 'I', not the builder's insertion point.
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- BinaryOperator *BO = cast<BinaryOperator>(I);
- assert(NewOps.size() == 2 && "binary operator with #ops != 2");
- BinaryOperator *New =
- BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
- NewOps[0], NewOps[1], "", BO);
- if (isa<OverflowingBinaryOperator>(BO)) {
- New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
- New->setHasNoSignedWrap(BO->hasNoSignedWrap());
- }
- if (isa<PossiblyExactOperator>(BO)) {
- New->setIsExact(BO->isExact());
- }
- if (isa<FPMathOperator>(BO))
- New->copyFastMathFlags(I);
- return New;
- }
- case Instruction::ICmp:
- assert(NewOps.size() == 2 && "icmp with #ops != 2");
- return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
- NewOps[0], NewOps[1]);
- case Instruction::FCmp:
- assert(NewOps.size() == 2 && "fcmp with #ops != 2");
- return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
- NewOps[0], NewOps[1]);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt: {
- // It's possible that the mask has a different number of elements from
- // the original cast. We recompute the destination type to match the mask.
- Type *DestTy =
- VectorType::get(I->getType()->getScalarType(),
- NewOps[0]->getType()->getVectorNumElements());
- assert(NewOps.size() == 1 && "cast with #ops != 1");
- return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
- "", I);
- }
- case Instruction::GetElementPtr: {
- Value *Ptr = NewOps[0];
- ArrayRef<Value*> Idx = NewOps.slice(1);
- GetElementPtrInst *GEP = GetElementPtrInst::Create(
- cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
- GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
- return GEP;
- }
- }
- llvm_unreachable("failed to rebuild vector instructions");
-}
-
-static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
- // Mask.size() does not need to be equal to the number of vector elements.
-
- assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
- Type *EltTy = V->getType()->getScalarType();
- Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
- if (isa<UndefValue>(V))
- return UndefValue::get(VectorType::get(EltTy, Mask.size()));
-
- if (isa<ConstantAggregateZero>(V))
- return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
-
- if (Constant *C = dyn_cast<Constant>(V)) {
- SmallVector<Constant *, 16> MaskValues;
- for (int i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] == -1)
- MaskValues.push_back(UndefValue::get(I32Ty));
- else
- MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
- }
- return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
- ConstantVector::get(MaskValues));
- }
-
- Instruction *I = cast<Instruction>(V);
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::Select:
- case Instruction::GetElementPtr: {
- SmallVector<Value*, 8> NewOps;
- bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
- for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *V;
- // Recursively call evaluateInDifferentElementOrder on vector arguments
- // as well. E.g. GetElementPtr may have scalar operands even if the
- // return value is a vector, so we need to examine the operand type.
- if (I->getOperand(i)->getType()->isVectorTy())
- V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
- else
- V = I->getOperand(i);
- NewOps.push_back(V);
- NeedsRebuild |= (V != I->getOperand(i));
- }
- if (NeedsRebuild) {
- return buildNew(I, NewOps);
- }
- return I;
- }
- case Instruction::InsertElement: {
- int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
-
- // The insertelement was inserting at Element. Figure out which element
- // that becomes after shuffling. The answer is guaranteed to be unique
- // by CanEvaluateShuffled.
- bool Found = false;
- int Index = 0;
- for (int e = Mask.size(); Index != e; ++Index) {
- if (Mask[Index] == Element) {
- Found = true;
- break;
- }
- }
-
- // If element is not in Mask, no need to handle the operand 1 (element to
- // be inserted). Just evaluate values in operand 0 according to Mask.
- if (!Found)
- return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
-
- Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
- return InsertElementInst::Create(V, I->getOperand(1),
- ConstantInt::get(I32Ty, Index), "", I);
- }
- }
- llvm_unreachable("failed to reorder elements of vector instruction!");
-}
-
-static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
- bool &isLHSID, bool &isRHSID) {
- isLHSID = isRHSID = true;
-
- for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] < 0) continue; // Ignore undef values.
- // Is this an identity shuffle of the LHS value?
- isLHSID &= (Mask[i] == (int)i);
-
- // Is this an identity shuffle of the RHS value?
- isRHSID &= (Mask[i]-e == i);
- }
-}
-
-// Returns true if the shuffle is extracting a contiguous range of values from
-// LHS, for example:
-// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
-// Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
-// Shuffles to: |EE|FF|GG|HH|
-// +--+--+--+--+
-static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
- SmallVector<int, 16> &Mask) {
- unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
- unsigned MaskElems = Mask.size();
- unsigned BegIdx = Mask.front();
- unsigned EndIdx = Mask.back();
- if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
- return false;
- for (unsigned I = 0; I != MaskElems; ++I)
- if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
- return false;
- return true;
-}
-
-/// These are the ingredients in an alternate form binary operator as described
-/// below.
-struct BinopElts {
- BinaryOperator::BinaryOps Opcode;
- Value *Op0;
- Value *Op1;
- BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
- Value *V0 = nullptr, Value *V1 = nullptr) :
- Opcode(Opc), Op0(V0), Op1(V1) {}
- operator bool() const { return Opcode != 0; }
-};
-
-/// Binops may be transformed into binops with different opcodes and operands.
-/// Reverse the usual canonicalization to enable folds with the non-canonical
-/// form of the binop. If a transform is possible, return the elements of the
-/// new binop. If not, return invalid elements.
-static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
- Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
- Type *Ty = BO->getType();
- switch (BO->getOpcode()) {
- case Instruction::Shl: {
- // shl X, C --> mul X, (1 << C)
- Constant *C;
- if (match(BO1, m_Constant(C))) {
- Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
- return { Instruction::Mul, BO0, ShlOne };
- }
- break;
- }
- case Instruction::Or: {
- // or X, C --> add X, C (when X and C have no common bits set)
- const APInt *C;
- if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
- return { Instruction::Add, BO0, BO1 };
- break;
- }
- default:
- break;
- }
- return {};
-}
-
-static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
- assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
-
- // Are we shuffling together some value and that same value after it has been
- // modified by a binop with a constant?
- Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
- Constant *C;
- bool Op0IsBinop;
- if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
- Op0IsBinop = true;
- else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
- Op0IsBinop = false;
- else
- return nullptr;
-
- // The identity constant for a binop leaves a variable operand unchanged. For
- // a vector, this is a splat of something like 0, -1, or 1.
- // If there's no identity constant for this binop, we're done.
- auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
- BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
- Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
- if (!IdC)
- return nullptr;
-
- // Shuffle identity constants into the lanes that return the original value.
- // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
- // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
- // The existing binop constant vector remains in the same operand position.
- Constant *Mask = Shuf.getMask();
- Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
- ConstantExpr::getShuffleVector(IdC, C, Mask);
-
- bool MightCreatePoisonOrUB =
- Mask->containsUndefElement() &&
- (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
- if (MightCreatePoisonOrUB)
- NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
-
- // shuf (bop X, C), X, M --> bop X, C'
- // shuf X, (bop X, C), M --> bop X, C'
- Value *X = Op0IsBinop ? Op1 : Op0;
- Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
- NewBO->copyIRFlags(BO);
-
- // An undef shuffle mask element may propagate as an undef constant element in
- // the new binop. That would produce poison where the original code might not.
- // If we already made a safe constant, then there's no danger.
- if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
- NewBO->dropPoisonGeneratingFlags();
- return NewBO;
-}
-
-/// If we have an insert of a scalar to a non-zero element of an undefined
-/// vector and then shuffle that value, that's the same as inserting to the zero
-/// element and shuffling. Splatting from the zero element is recognized as the
-/// canonical form of splat.
-static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
- InstCombiner::BuilderTy &Builder) {
- Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
- Constant *Mask = Shuf.getMask();
- Value *X;
- uint64_t IndexC;
-
- // Match a shuffle that is a splat to a non-zero element.
- if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
- m_ConstantInt(IndexC)))) ||
- !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
- return nullptr;
-
- // Insert into element 0 of an undef vector.
- UndefValue *UndefVec = UndefValue::get(Shuf.getType());
- Constant *Zero = Builder.getInt32(0);
- Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
-
- // Splat from element 0. Any mask element that is undefined remains undefined.
- // For example:
- // shuf (inselt undef, X, 2), undef, <2,2,undef>
- // --> shuf (inselt undef, X, 0), undef, <0,0,undef>
- unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
- SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
- for (unsigned i = 0; i != NumMaskElts; ++i)
- if (isa<UndefValue>(Mask->getAggregateElement(i)))
- NewMask[i] = Mask->getAggregateElement(i);
-
- return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
-}
-
-/// Try to fold shuffles that are the equivalent of a vector select.
-static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
- InstCombiner::BuilderTy &Builder,
- const DataLayout &DL) {
- if (!Shuf.isSelect())
- return nullptr;
-
- // Canonicalize to choose from operand 0 first.
- unsigned NumElts = Shuf.getType()->getVectorNumElements();
- if (Shuf.getMaskValue(0) >= (int)NumElts) {
- // TODO: Can we assert that both operands of a shuffle-select are not undef
- // (otherwise, it would have been folded by instsimplify?
- Shuf.commute();
- return &Shuf;
- }
-
- if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
- return I;
-
- BinaryOperator *B0, *B1;
- if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
- !match(Shuf.getOperand(1), m_BinOp(B1)))
- return nullptr;
-
- Value *X, *Y;
- Constant *C0, *C1;
- bool ConstantsAreOp1;
- if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
- match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
- ConstantsAreOp1 = true;
- else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
- match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
- ConstantsAreOp1 = false;
- else
- return nullptr;
-
- // We need matching binops to fold the lanes together.
- BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
- BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
- bool DropNSW = false;
- if (ConstantsAreOp1 && Opc0 != Opc1) {
- // TODO: We drop "nsw" if shift is converted into multiply because it may
- // not be correct when the shift amount is BitWidth - 1. We could examine
- // each vector element to determine if it is safe to keep that flag.
- if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
- DropNSW = true;
- if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
- assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
- Opc0 = AltB0.Opcode;
- C0 = cast<Constant>(AltB0.Op1);
- } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
- assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
- Opc1 = AltB1.Opcode;
- C1 = cast<Constant>(AltB1.Op1);
- }
- }
-
- if (Opc0 != Opc1)
- return nullptr;
-
- // The opcodes must be the same. Use a new name to make that clear.
- BinaryOperator::BinaryOps BOpc = Opc0;
-
- // Select the constant elements needed for the single binop.
- Constant *Mask = Shuf.getMask();
- Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
-
- // We are moving a binop after a shuffle. When a shuffle has an undefined
- // mask element, the result is undefined, but it is not poison or undefined
- // behavior. That is not necessarily true for div/rem/shift.
- bool MightCreatePoisonOrUB =
- Mask->containsUndefElement() &&
- (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
- if (MightCreatePoisonOrUB)
- NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
-
- Value *V;
- if (X == Y) {
- // Remove a binop and the shuffle by rearranging the constant:
- // shuffle (op V, C0), (op V, C1), M --> op V, C'
- // shuffle (op C0, V), (op C1, V), M --> op C', V
- V = X;
- } else {
- // If there are 2 different variable operands, we must create a new shuffle
- // (select) first, so check uses to ensure that we don't end up with more
- // instructions than we started with.
- if (!B0->hasOneUse() && !B1->hasOneUse())
- return nullptr;
-
- // If we use the original shuffle mask and op1 is *variable*, we would be
- // putting an undef into operand 1 of div/rem/shift. This is either UB or
- // poison. We do not have to guard against UB when *constants* are op1
- // because safe constants guarantee that we do not overflow sdiv/srem (and
- // there's no danger for other opcodes).
- // TODO: To allow this case, create a new shuffle mask with no undefs.
- if (MightCreatePoisonOrUB && !ConstantsAreOp1)
- return nullptr;
-
- // Note: In general, we do not create new shuffles in InstCombine because we
- // do not know if a target can lower an arbitrary shuffle optimally. In this
- // case, the shuffle uses the existing mask, so there is no additional risk.
-
- // Select the variable vectors first, then perform the binop:
- // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
- // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
- V = Builder.CreateShuffleVector(X, Y, Mask);
- }
-
- Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
- BinaryOperator::Create(BOpc, NewC, V);
-
- // Flags are intersected from the 2 source binops. But there are 2 exceptions:
- // 1. If we changed an opcode, poison conditions might have changed.
- // 2. If the shuffle had undef mask elements, the new binop might have undefs
- // where the original code did not. But if we already made a safe constant,
- // then there's no danger.
- NewBO->copyIRFlags(B0);
- NewBO->andIRFlags(B1);
- if (DropNSW)
- NewBO->setHasNoSignedWrap(false);
- if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
- NewBO->dropPoisonGeneratingFlags();
- return NewBO;
-}
-
-/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
-/// narrowing (concatenating with undef and extracting back to the original
-/// length). This allows replacing the wide select with a narrow select.
-static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
- InstCombiner::BuilderTy &Builder) {
- // This must be a narrowing identity shuffle. It extracts the 1st N elements
- // of the 1st vector operand of a shuffle.
- if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
- return nullptr;
-
- // The vector being shuffled must be a vector select that we can eliminate.
- // TODO: The one-use requirement could be eased if X and/or Y are constants.
- Value *Cond, *X, *Y;
- if (!match(Shuf.getOperand(0),
- m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
- return nullptr;
-
- // We need a narrow condition value. It must be extended with undef elements
- // and have the same number of elements as this shuffle.
- unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
- Value *NarrowCond;
- if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
- m_Constant()))) ||
- NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
- !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
- return nullptr;
-
- // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
- // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
- Value *Undef = UndefValue::get(X->getType());
- Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
- Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
- return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
-}
-
-/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
-static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
- Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
- if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
- return nullptr;
-
- Value *X, *Y;
- Constant *Mask;
- if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
- return nullptr;
-
- // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
- // then combining may result in worse codegen.
- if (!Op0->hasOneUse())
- return nullptr;
-
- // We are extracting a subvector from a shuffle. Remove excess elements from
- // the 1st shuffle mask to eliminate the extract.
- //
- // This transform is conservatively limited to identity extracts because we do
- // not allow arbitrary shuffle mask creation as a target-independent transform
- // (because we can't guarantee that will lower efficiently).
- //
- // If the extracting shuffle has an undef mask element, it transfers to the
- // new shuffle mask. Otherwise, copy the original mask element. Example:
- // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
- // shuf X, Y, <C0, undef, C2, undef>
- unsigned NumElts = Shuf.getType()->getVectorNumElements();
- SmallVector<Constant *, 16> NewMask(NumElts);
- assert(NumElts < Mask->getType()->getVectorNumElements() &&
- "Identity with extract must have less elements than its inputs");
-
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
- Constant *MaskElt = Mask->getAggregateElement(i);
- NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
- }
- return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
-}
-
-/// Try to replace a shuffle with an insertelement.
-static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
- Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
- SmallVector<int, 16> Mask = Shuf.getShuffleMask();
-
- // The shuffle must not change vector sizes.
- // TODO: This restriction could be removed if the insert has only one use
- // (because the transform would require a new length-changing shuffle).
- int NumElts = Mask.size();
- if (NumElts != (int)(V0->getType()->getVectorNumElements()))
- return nullptr;
-
- // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
- auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
- // We need an insertelement with a constant index.
- if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
- m_ConstantInt(IndexC))))
- return false;
-
- // Test the shuffle mask to see if it splices the inserted scalar into the
- // operand 1 vector of the shuffle.
- int NewInsIndex = -1;
- for (int i = 0; i != NumElts; ++i) {
- // Ignore undef mask elements.
- if (Mask[i] == -1)
- continue;
-
- // The shuffle takes elements of operand 1 without lane changes.
- if (Mask[i] == NumElts + i)
- continue;
-
- // The shuffle must choose the inserted scalar exactly once.
- if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
- return false;
-
- // The shuffle is placing the inserted scalar into element i.
- NewInsIndex = i;
- }
-
- assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
-
- // Index is updated to the potentially translated insertion lane.
- IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
- return true;
- };
-
- // If the shuffle is unnecessary, insert the scalar operand directly into
- // operand 1 of the shuffle. Example:
- // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
- Value *Scalar;
- ConstantInt *IndexC;
- if (isShufflingScalarIntoOp1(Scalar, IndexC))
- return InsertElementInst::Create(V1, Scalar, IndexC);
-
- // Try again after commuting shuffle. Example:
- // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
- // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
- std::swap(V0, V1);
- ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
- if (isShufflingScalarIntoOp1(Scalar, IndexC))
- return InsertElementInst::Create(V1, Scalar, IndexC);
-
- return nullptr;
-}
-
-static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
- // Match the operands as identity with padding (also known as concatenation
- // with undef) shuffles of the same source type. The backend is expected to
- // recreate these concatenations from a shuffle of narrow operands.
- auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
- auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
- if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
- !Shuffle1 || !Shuffle1->isIdentityWithPadding())
- return nullptr;
-
- // We limit this transform to power-of-2 types because we expect that the
- // backend can convert the simplified IR patterns to identical nodes as the
- // original IR.
- // TODO: If we can verify the same behavior for arbitrary types, the
- // power-of-2 checks can be removed.
- Value *X = Shuffle0->getOperand(0);
- Value *Y = Shuffle1->getOperand(0);
- if (X->getType() != Y->getType() ||
- !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
- !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
- !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
- isa<UndefValue>(X) || isa<UndefValue>(Y))
- return nullptr;
- assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
- isa<UndefValue>(Shuffle1->getOperand(1)) &&
- "Unexpected operand for identity shuffle");
-
- // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
- // operands directly by adjusting the shuffle mask to account for the narrower
- // types:
- // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
- int NarrowElts = X->getType()->getVectorNumElements();
- int WideElts = Shuffle0->getType()->getVectorNumElements();
- assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
-
- Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
- SmallVector<int, 16> Mask = Shuf.getShuffleMask();
- SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
- for (int i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] == -1)
- continue;
-
- // If this shuffle is choosing an undef element from 1 of the sources, that
- // element is undef.
- if (Mask[i] < WideElts) {
- if (Shuffle0->getMaskValue(Mask[i]) == -1)
- continue;
- } else {
- if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
- continue;
- }
-
- // If this shuffle is choosing from the 1st narrow op, the mask element is
- // the same. If this shuffle is choosing from the 2nd narrow op, the mask
- // element is offset down to adjust for the narrow vector widths.
- if (Mask[i] < WideElts) {
- assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
- NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
- } else {
- assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
- NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
- }
- }
- return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
-}
-
-Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
- Value *LHS = SVI.getOperand(0);
- Value *RHS = SVI.getOperand(1);
- if (auto *V = SimplifyShuffleVectorInst(
- LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
- return replaceInstUsesWith(SVI, V);
-
- // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
- // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
- unsigned VWidth = SVI.getType()->getVectorNumElements();
- unsigned LHSWidth = LHS->getType()->getVectorNumElements();
- SmallVector<int, 16> Mask = SVI.getShuffleMask();
- Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
- if (LHS == RHS || isa<UndefValue>(LHS)) {
- // Remap any references to RHS to use LHS.
- SmallVector<Constant*, 16> Elts;
- for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
- if (Mask[i] < 0) {
- Elts.push_back(UndefValue::get(Int32Ty));
- continue;
- }
-
- if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
- (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
- Mask[i] = -1; // Turn into undef.
- Elts.push_back(UndefValue::get(Int32Ty));
- } else {
- Mask[i] = Mask[i] % e; // Force to LHS.
- Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
- }
- }
- SVI.setOperand(0, SVI.getOperand(1));
- SVI.setOperand(1, UndefValue::get(RHS->getType()));
- SVI.setOperand(2, ConstantVector::get(Elts));
- return &SVI;
- }
-
- if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
- return I;
-
- if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
- return I;
-
- if (Instruction *I = narrowVectorSelect(SVI, Builder))
- return I;
-
- APInt UndefElts(VWidth, 0);
- APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
- if (V != &SVI)
- return replaceInstUsesWith(SVI, V);
- return &SVI;
- }
-
- if (Instruction *I = foldIdentityExtractShuffle(SVI))
- return I;
-
- // These transforms have the potential to lose undef knowledge, so they are
- // intentionally placed after SimplifyDemandedVectorElts().
- if (Instruction *I = foldShuffleWithInsert(SVI))
- return I;
- if (Instruction *I = foldIdentityPaddedShuffles(SVI))
- return I;
-
- if (VWidth == LHSWidth) {
- // Analyze the shuffle, are the LHS or RHS and identity shuffles?
- bool isLHSID, isRHSID;
- recognizeIdentityMask(Mask, isLHSID, isRHSID);
-
- // Eliminate identity shuffles.
- if (isLHSID) return replaceInstUsesWith(SVI, LHS);
- if (isRHSID) return replaceInstUsesWith(SVI, RHS);
- }
-
- if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
- Value *V = evaluateInDifferentElementOrder(LHS, Mask);
- return replaceInstUsesWith(SVI, V);
- }
-
- // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
- // a non-vector type. We can instead bitcast the original vector followed by
- // an extract of the desired element:
- //
- // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
- // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
- // %1 = bitcast <4 x i8> %sroa to i32
- // Becomes:
- // %bc = bitcast <16 x i8> %in to <4 x i32>
- // %ext = extractelement <4 x i32> %bc, i32 0
- //
- // If the shuffle is extracting a contiguous range of values from the input
- // vector then each use which is a bitcast of the extracted size can be
- // replaced. This will work if the vector types are compatible, and the begin
- // index is aligned to a value in the casted vector type. If the begin index
- // isn't aligned then we can shuffle the original vector (keeping the same
- // vector type) before extracting.
- //
- // This code will bail out if the target type is fundamentally incompatible
- // with vectors of the source type.
- //
- // Example of <16 x i8>, target type i32:
- // Index range [4,8): v-----------v Will work.
- // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- // <16 x i8>: | | | | | | | | | | | | | | | | |
- // <4 x i32>: | | | | |
- // +-----------+-----------+-----------+-----------+
- // Index range [6,10): ^-----------^ Needs an extra shuffle.
- // Target type i40: ^--------------^ Won't work, bail.
- bool MadeChange = false;
- if (isShuffleExtractingFromLHS(SVI, Mask)) {
- Value *V = LHS;
- unsigned MaskElems = Mask.size();
- VectorType *SrcTy = cast<VectorType>(V->getType());
- unsigned VecBitWidth = SrcTy->getBitWidth();
- unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
- assert(SrcElemBitWidth && "vector elements must have a bitwidth");
- unsigned SrcNumElems = SrcTy->getNumElements();
- SmallVector<BitCastInst *, 8> BCs;
- DenseMap<Type *, Value *> NewBCs;
- for (User *U : SVI.users())
- if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
- if (!BC->use_empty())
- // Only visit bitcasts that weren't previously handled.
- BCs.push_back(BC);
- for (BitCastInst *BC : BCs) {
- unsigned BegIdx = Mask.front();
- Type *TgtTy = BC->getDestTy();
- unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
- if (!TgtElemBitWidth)
- continue;
- unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
- bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
- bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
- if (!VecBitWidthsEqual)
- continue;
- if (!VectorType::isValidElementType(TgtTy))
- continue;
- VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
- if (!BegIsAligned) {
- // Shuffle the input so [0,NumElements) contains the output, and
- // [NumElems,SrcNumElems) is undef.
- SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
- UndefValue::get(Int32Ty));
- for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
- ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
- V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
- ConstantVector::get(ShuffleMask),
- SVI.getName() + ".extract");
- BegIdx = 0;
- }
- unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
- assert(SrcElemsPerTgtElem);
- BegIdx /= SrcElemsPerTgtElem;
- bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
- auto *NewBC =
- BCAlreadyExists
- ? NewBCs[CastSrcTy]
- : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
- if (!BCAlreadyExists)
- NewBCs[CastSrcTy] = NewBC;
- auto *Ext = Builder.CreateExtractElement(
- NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
- // The shufflevector isn't being replaced: the bitcast that used it
- // is. InstCombine will visit the newly-created instructions.
- replaceInstUsesWith(*BC, Ext);
- MadeChange = true;
- }
- }
-
- // If the LHS is a shufflevector itself, see if we can combine it with this
- // one without producing an unusual shuffle.
- // Cases that might be simplified:
- // 1.
- // x1=shuffle(v1,v2,mask1)
- // x=shuffle(x1,undef,mask)
- // ==>
- // x=shuffle(v1,undef,newMask)
- // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
- // 2.
- // x1=shuffle(v1,undef,mask1)
- // x=shuffle(x1,x2,mask)
- // where v1.size() == mask1.size()
- // ==>
- // x=shuffle(v1,x2,newMask)
- // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
- // 3.
- // x2=shuffle(v2,undef,mask2)
- // x=shuffle(x1,x2,mask)
- // where v2.size() == mask2.size()
- // ==>
- // x=shuffle(x1,v2,newMask)
- // newMask[i] = (mask[i] < x1.size())
- // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
- // 4.
- // x1=shuffle(v1,undef,mask1)
- // x2=shuffle(v2,undef,mask2)
- // x=shuffle(x1,x2,mask)
- // where v1.size() == v2.size()
- // ==>
- // x=shuffle(v1,v2,newMask)
- // newMask[i] = (mask[i] < x1.size())
- // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
- //
- // Here we are really conservative:
- // we are absolutely afraid of producing a shuffle mask not in the input
- // program, because the code gen may not be smart enough to turn a merged
- // shuffle into two specific shuffles: it may produce worse code. As such,
- // we only merge two shuffles if the result is either a splat or one of the
- // input shuffle masks. In this case, merging the shuffles just removes
- // one instruction, which we know is safe. This is good for things like
- // turning: (splat(splat)) -> splat, or
- // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
- ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
- ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
- if (LHSShuffle)
- if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
- LHSShuffle = nullptr;
- if (RHSShuffle)
- if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
- RHSShuffle = nullptr;
- if (!LHSShuffle && !RHSShuffle)
- return MadeChange ? &SVI : nullptr;
-
- Value* LHSOp0 = nullptr;
- Value* LHSOp1 = nullptr;
- Value* RHSOp0 = nullptr;
- unsigned LHSOp0Width = 0;
- unsigned RHSOp0Width = 0;
- if (LHSShuffle) {
- LHSOp0 = LHSShuffle->getOperand(0);
- LHSOp1 = LHSShuffle->getOperand(1);
- LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
- }
- if (RHSShuffle) {
- RHSOp0 = RHSShuffle->getOperand(0);
- RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
- }
- Value* newLHS = LHS;
- Value* newRHS = RHS;
- if (LHSShuffle) {
- // case 1
- if (isa<UndefValue>(RHS)) {
- newLHS = LHSOp0;
- newRHS = LHSOp1;
- }
- // case 2 or 4
- else if (LHSOp0Width == LHSWidth) {
- newLHS = LHSOp0;
- }
- }
- // case 3 or 4
- if (RHSShuffle && RHSOp0Width == LHSWidth) {
- newRHS = RHSOp0;
- }
- // case 4
- if (LHSOp0 == RHSOp0) {
- newLHS = LHSOp0;
- newRHS = nullptr;
- }
-
- if (newLHS == LHS && newRHS == RHS)
- return MadeChange ? &SVI : nullptr;
-
- SmallVector<int, 16> LHSMask;
- SmallVector<int, 16> RHSMask;
- if (newLHS != LHS)
- LHSMask = LHSShuffle->getShuffleMask();
- if (RHSShuffle && newRHS != RHS)
- RHSMask = RHSShuffle->getShuffleMask();
-
- unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
- SmallVector<int, 16> newMask;
- bool isSplat = true;
- int SplatElt = -1;
- // Create a new mask for the new ShuffleVectorInst so that the new
- // ShuffleVectorInst is equivalent to the original one.
- for (unsigned i = 0; i < VWidth; ++i) {
- int eltMask;
- if (Mask[i] < 0) {
- // This element is an undef value.
- eltMask = -1;
- } else if (Mask[i] < (int)LHSWidth) {
- // This element is from left hand side vector operand.
- //
- // If LHS is going to be replaced (case 1, 2, or 4), calculate the
- // new mask value for the element.
- if (newLHS != LHS) {
- eltMask = LHSMask[Mask[i]];
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value.
- if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
- eltMask = -1;
- } else
- eltMask = Mask[i];
- } else {
- // This element is from right hand side vector operand
- //
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value. (case 1)
- if (isa<UndefValue>(RHS))
- eltMask = -1;
- // If RHS is going to be replaced (case 3 or 4), calculate the
- // new mask value for the element.
- else if (newRHS != RHS) {
- eltMask = RHSMask[Mask[i]-LHSWidth];
- // If the value selected is an undef value, explicitly specify it
- // with a -1 mask value.
- if (eltMask >= (int)RHSOp0Width) {
- assert(isa<UndefValue>(RHSShuffle->getOperand(1))
- && "should have been check above");
- eltMask = -1;
- }
- } else
- eltMask = Mask[i]-LHSWidth;
-
- // If LHS's width is changed, shift the mask value accordingly.
- // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
- // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
- // If newRHS == newLHS, we want to remap any references from newRHS to
- // newLHS so that we can properly identify splats that may occur due to
- // obfuscation across the two vectors.
- if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
- eltMask += newLHSWidth;
- }
-
- // Check if this could still be a splat.
- if (eltMask >= 0) {
- if (SplatElt >= 0 && SplatElt != eltMask)
- isSplat = false;
- SplatElt = eltMask;
- }
-
- newMask.push_back(eltMask);
- }
-
- // If the result mask is equal to one of the original shuffle masks,
- // or is a splat, do the replacement.
- if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
- SmallVector<Constant*, 16> Elts;
- for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
- if (newMask[i] < 0) {
- Elts.push_back(UndefValue::get(Int32Ty));
- } else {
- Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
- }
- }
- if (!newRHS)
- newRHS = UndefValue::get(newLHS->getType());
- return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
- }
-
- // If the result mask is an identity, replace uses of this instruction with
- // corresponding argument.
- bool isLHSID, isRHSID;
- recognizeIdentityMask(newMask, isLHSID, isRHSID);
- if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
- if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
-
- return MadeChange ? &SVI : nullptr;
-}