diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp | 2111 |
1 files changed, 0 insertions, 2111 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp deleted file mode 100644 index dc9abdd7f47a..000000000000 --- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp +++ /dev/null @@ -1,2111 +0,0 @@ -//===- InstCombineVectorOps.cpp -------------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements instcombine for ExtractElement, InsertElement and -// ShuffleVector. -// -//===----------------------------------------------------------------------===// - -#include "InstCombineInternal.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Transforms/InstCombine/InstCombineWorklist.h" -#include <cassert> -#include <cstdint> -#include <iterator> -#include <utility> - -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "instcombine" - -/// Return true if the value is cheaper to scalarize than it is to leave as a -/// vector operation. IsConstantExtractIndex indicates whether we are extracting -/// one known element from a vector constant. -/// -/// FIXME: It's possible to create more instructions than previously existed. -static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { - // If we can pick a scalar constant value out of a vector, that is free. - if (auto *C = dyn_cast<Constant>(V)) - return IsConstantExtractIndex || C->getSplatValue(); - - // An insertelement to the same constant index as our extract will simplify - // to the scalar inserted element. An insertelement to a different constant - // index is irrelevant to our extract. - if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) - return IsConstantExtractIndex; - - if (match(V, m_OneUse(m_Load(m_Value())))) - return true; - - Value *V0, *V1; - if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) - if (cheapToScalarize(V0, IsConstantExtractIndex) || - cheapToScalarize(V1, IsConstantExtractIndex)) - return true; - - CmpInst::Predicate UnusedPred; - if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) - if (cheapToScalarize(V0, IsConstantExtractIndex) || - cheapToScalarize(V1, IsConstantExtractIndex)) - return true; - - return false; -} - -// If we have a PHI node with a vector type that is only used to feed -// itself and be an operand of extractelement at a constant location, -// try to replace the PHI of the vector type with a PHI of a scalar type. -Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { - SmallVector<Instruction *, 2> Extracts; - // The users we want the PHI to have are: - // 1) The EI ExtractElement (we already know this) - // 2) Possibly more ExtractElements with the same index. - // 3) Another operand, which will feed back into the PHI. - Instruction *PHIUser = nullptr; - for (auto U : PN->users()) { - if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { - if (EI.getIndexOperand() == EU->getIndexOperand()) - Extracts.push_back(EU); - else - return nullptr; - } else if (!PHIUser) { - PHIUser = cast<Instruction>(U); - } else { - return nullptr; - } - } - - if (!PHIUser) - return nullptr; - - // Verify that this PHI user has one use, which is the PHI itself, - // and that it is a binary operation which is cheap to scalarize. - // otherwise return nullptr. - if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || - !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) - return nullptr; - - // Create a scalar PHI node that will replace the vector PHI node - // just before the current PHI node. - PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( - PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); - // Scalarize each PHI operand. - for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { - Value *PHIInVal = PN->getIncomingValue(i); - BasicBlock *inBB = PN->getIncomingBlock(i); - Value *Elt = EI.getIndexOperand(); - // If the operand is the PHI induction variable: - if (PHIInVal == PHIUser) { - // Scalarize the binary operation. Its first operand is the - // scalar PHI, and the second operand is extracted from the other - // vector operand. - BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); - unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; - Value *Op = InsertNewInstWith( - ExtractElementInst::Create(B0->getOperand(opId), Elt, - B0->getOperand(opId)->getName() + ".Elt"), - *B0); - Value *newPHIUser = InsertNewInstWith( - BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), - scalarPHI, Op, B0), *B0); - scalarPHI->addIncoming(newPHIUser, inBB); - } else { - // Scalarize PHI input: - Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); - // Insert the new instruction into the predecessor basic block. - Instruction *pos = dyn_cast<Instruction>(PHIInVal); - BasicBlock::iterator InsertPos; - if (pos && !isa<PHINode>(pos)) { - InsertPos = ++pos->getIterator(); - } else { - InsertPos = inBB->getFirstInsertionPt(); - } - - InsertNewInstWith(newEI, *InsertPos); - - scalarPHI->addIncoming(newEI, inBB); - } - } - - for (auto E : Extracts) - replaceInstUsesWith(*E, scalarPHI); - - return &EI; -} - -static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, - InstCombiner::BuilderTy &Builder, - bool IsBigEndian) { - Value *X; - uint64_t ExtIndexC; - if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || - !X->getType()->isVectorTy() || - !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) - return nullptr; - - // If this extractelement is using a bitcast from a vector of the same number - // of elements, see if we can find the source element from the source vector: - // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] - Type *SrcTy = X->getType(); - Type *DestTy = Ext.getType(); - unsigned NumSrcElts = SrcTy->getVectorNumElements(); - unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); - if (NumSrcElts == NumElts) - if (Value *Elt = findScalarElement(X, ExtIndexC)) - return new BitCastInst(Elt, DestTy); - - // If the source elements are wider than the destination, try to shift and - // truncate a subset of scalar bits of an insert op. - if (NumSrcElts < NumElts) { - Value *Scalar; - uint64_t InsIndexC; - if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), - m_ConstantInt(InsIndexC)))) - return nullptr; - - // The extract must be from the subset of vector elements that we inserted - // into. Example: if we inserted element 1 of a <2 x i64> and we are - // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 - // of elements 4-7 of the bitcasted vector. - unsigned NarrowingRatio = NumElts / NumSrcElts; - if (ExtIndexC / NarrowingRatio != InsIndexC) - return nullptr; - - // We are extracting part of the original scalar. How that scalar is - // inserted into the vector depends on the endian-ness. Example: - // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 - // +--+--+--+--+--+--+--+--+ - // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| - // extelt <4 x i16> V', 3: | |S2|S3| - // +--+--+--+--+--+--+--+--+ - // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. - // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. - // In this example, we must right-shift little-endian. Big-endian is just a - // truncate. - unsigned Chunk = ExtIndexC % NarrowingRatio; - if (IsBigEndian) - Chunk = NarrowingRatio - 1 - Chunk; - - // Bail out if this is an FP vector to FP vector sequence. That would take - // more instructions than we started with unless there is no shift, and it - // may not be handled as well in the backend. - bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); - bool NeedDestBitcast = DestTy->isFloatingPointTy(); - if (NeedSrcBitcast && NeedDestBitcast) - return nullptr; - - unsigned SrcWidth = SrcTy->getScalarSizeInBits(); - unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); - unsigned ShAmt = Chunk * DestWidth; - - // TODO: This limitation is more strict than necessary. We could sum the - // number of new instructions and subtract the number eliminated to know if - // we can proceed. - if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) - if (NeedSrcBitcast || NeedDestBitcast) - return nullptr; - - if (NeedSrcBitcast) { - Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); - Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); - } - - if (ShAmt) { - // Bail out if we could end with more instructions than we started with. - if (!Ext.getVectorOperand()->hasOneUse()) - return nullptr; - Scalar = Builder.CreateLShr(Scalar, ShAmt); - } - - if (NeedDestBitcast) { - Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); - return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); - } - return new TruncInst(Scalar, DestTy); - } - - return nullptr; -} - -Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { - Value *SrcVec = EI.getVectorOperand(); - Value *Index = EI.getIndexOperand(); - if (Value *V = SimplifyExtractElementInst(SrcVec, Index, - SQ.getWithInstruction(&EI))) - return replaceInstUsesWith(EI, V); - - // If extracting a specified index from the vector, see if we can recursively - // find a previously computed scalar that was inserted into the vector. - auto *IndexC = dyn_cast<ConstantInt>(Index); - if (IndexC) { - unsigned NumElts = EI.getVectorOperandType()->getNumElements(); - - // InstSimplify should handle cases where the index is invalid. - if (!IndexC->getValue().ule(NumElts)) - return nullptr; - - // This instruction only demands the single element from the input vector. - // If the input vector has a single use, simplify it based on this use - // property. - if (SrcVec->hasOneUse() && NumElts != 1) { - APInt UndefElts(NumElts, 0); - APInt DemandedElts(NumElts, 0); - DemandedElts.setBit(IndexC->getZExtValue()); - if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts, - UndefElts)) { - EI.setOperand(0, V); - return &EI; - } - } - - if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) - return I; - - // If there's a vector PHI feeding a scalar use through this extractelement - // instruction, try to scalarize the PHI. - if (auto *Phi = dyn_cast<PHINode>(SrcVec)) - if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) - return ScalarPHI; - } - - BinaryOperator *BO; - if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { - // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) - Value *X = BO->getOperand(0), *Y = BO->getOperand(1); - Value *E0 = Builder.CreateExtractElement(X, Index); - Value *E1 = Builder.CreateExtractElement(Y, Index); - return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); - } - - Value *X, *Y; - CmpInst::Predicate Pred; - if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && - cheapToScalarize(SrcVec, IndexC)) { - // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) - Value *E0 = Builder.CreateExtractElement(X, Index); - Value *E1 = Builder.CreateExtractElement(Y, Index); - return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); - } - - if (auto *I = dyn_cast<Instruction>(SrcVec)) { - if (auto *IE = dyn_cast<InsertElementInst>(I)) { - // Extracting the inserted element? - if (IE->getOperand(2) == Index) - return replaceInstUsesWith(EI, IE->getOperand(1)); - // If the inserted and extracted elements are constants, they must not - // be the same value, extract from the pre-inserted value instead. - if (isa<Constant>(IE->getOperand(2)) && IndexC) { - Worklist.AddValue(SrcVec); - EI.setOperand(0, IE->getOperand(0)); - return &EI; - } - } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { - // If this is extracting an element from a shufflevector, figure out where - // it came from and extract from the appropriate input element instead. - if (auto *Elt = dyn_cast<ConstantInt>(Index)) { - int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); - Value *Src; - unsigned LHSWidth = - SVI->getOperand(0)->getType()->getVectorNumElements(); - - if (SrcIdx < 0) - return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); - if (SrcIdx < (int)LHSWidth) - Src = SVI->getOperand(0); - else { - SrcIdx -= LHSWidth; - Src = SVI->getOperand(1); - } - Type *Int32Ty = Type::getInt32Ty(EI.getContext()); - return ExtractElementInst::Create(Src, - ConstantInt::get(Int32Ty, - SrcIdx, false)); - } - } else if (auto *CI = dyn_cast<CastInst>(I)) { - // Canonicalize extractelement(cast) -> cast(extractelement). - // Bitcasts can change the number of vector elements, and they cost - // nothing. - if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { - Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); - Worklist.AddValue(EE); - return CastInst::Create(CI->getOpcode(), EE, EI.getType()); - } - } - } - return nullptr; -} - -/// If V is a shuffle of values that ONLY returns elements from either LHS or -/// RHS, return the shuffle mask and true. Otherwise, return false. -static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, - SmallVectorImpl<Constant*> &Mask) { - assert(LHS->getType() == RHS->getType() && - "Invalid CollectSingleShuffleElements"); - unsigned NumElts = V->getType()->getVectorNumElements(); - - if (isa<UndefValue>(V)) { - Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); - return true; - } - - if (V == LHS) { - for (unsigned i = 0; i != NumElts; ++i) - Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); - return true; - } - - if (V == RHS) { - for (unsigned i = 0; i != NumElts; ++i) - Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), - i+NumElts)); - return true; - } - - if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { - // If this is an insert of an extract from some other vector, include it. - Value *VecOp = IEI->getOperand(0); - Value *ScalarOp = IEI->getOperand(1); - Value *IdxOp = IEI->getOperand(2); - - if (!isa<ConstantInt>(IdxOp)) - return false; - unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); - - if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. - // We can handle this if the vector we are inserting into is - // transitively ok. - if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { - // If so, update the mask to reflect the inserted undef. - Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); - return true; - } - } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ - if (isa<ConstantInt>(EI->getOperand(1))) { - unsigned ExtractedIdx = - cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); - unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); - - // This must be extracting from either LHS or RHS. - if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { - // We can handle this if the vector we are inserting into is - // transitively ok. - if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { - // If so, update the mask to reflect the inserted value. - if (EI->getOperand(0) == LHS) { - Mask[InsertedIdx % NumElts] = - ConstantInt::get(Type::getInt32Ty(V->getContext()), - ExtractedIdx); - } else { - assert(EI->getOperand(0) == RHS); - Mask[InsertedIdx % NumElts] = - ConstantInt::get(Type::getInt32Ty(V->getContext()), - ExtractedIdx + NumLHSElts); - } - return true; - } - } - } - } - } - - return false; -} - -/// If we have insertion into a vector that is wider than the vector that we -/// are extracting from, try to widen the source vector to allow a single -/// shufflevector to replace one or more insert/extract pairs. -static void replaceExtractElements(InsertElementInst *InsElt, - ExtractElementInst *ExtElt, - InstCombiner &IC) { - VectorType *InsVecType = InsElt->getType(); - VectorType *ExtVecType = ExtElt->getVectorOperandType(); - unsigned NumInsElts = InsVecType->getVectorNumElements(); - unsigned NumExtElts = ExtVecType->getVectorNumElements(); - - // The inserted-to vector must be wider than the extracted-from vector. - if (InsVecType->getElementType() != ExtVecType->getElementType() || - NumExtElts >= NumInsElts) - return; - - // Create a shuffle mask to widen the extended-from vector using undefined - // values. The mask selects all of the values of the original vector followed - // by as many undefined values as needed to create a vector of the same length - // as the inserted-to vector. - SmallVector<Constant *, 16> ExtendMask; - IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); - for (unsigned i = 0; i < NumExtElts; ++i) - ExtendMask.push_back(ConstantInt::get(IntType, i)); - for (unsigned i = NumExtElts; i < NumInsElts; ++i) - ExtendMask.push_back(UndefValue::get(IntType)); - - Value *ExtVecOp = ExtElt->getVectorOperand(); - auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); - BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) - ? ExtVecOpInst->getParent() - : ExtElt->getParent(); - - // TODO: This restriction matches the basic block check below when creating - // new extractelement instructions. If that limitation is removed, this one - // could also be removed. But for now, we just bail out to ensure that we - // will replace the extractelement instruction that is feeding our - // insertelement instruction. This allows the insertelement to then be - // replaced by a shufflevector. If the insertelement is not replaced, we can - // induce infinite looping because there's an optimization for extractelement - // that will delete our widening shuffle. This would trigger another attempt - // here to create that shuffle, and we spin forever. - if (InsertionBlock != InsElt->getParent()) - return; - - // TODO: This restriction matches the check in visitInsertElementInst() and - // prevents an infinite loop caused by not turning the extract/insert pair - // into a shuffle. We really should not need either check, but we're lacking - // folds for shufflevectors because we're afraid to generate shuffle masks - // that the backend can't handle. - if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) - return; - - auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), - ConstantVector::get(ExtendMask)); - - // Insert the new shuffle after the vector operand of the extract is defined - // (as long as it's not a PHI) or at the start of the basic block of the - // extract, so any subsequent extracts in the same basic block can use it. - // TODO: Insert before the earliest ExtractElementInst that is replaced. - if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) - WideVec->insertAfter(ExtVecOpInst); - else - IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); - - // Replace extracts from the original narrow vector with extracts from the new - // wide vector. - for (User *U : ExtVecOp->users()) { - ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); - if (!OldExt || OldExt->getParent() != WideVec->getParent()) - continue; - auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); - NewExt->insertAfter(OldExt); - IC.replaceInstUsesWith(*OldExt, NewExt); - } -} - -/// We are building a shuffle to create V, which is a sequence of insertelement, -/// extractelement pairs. If PermittedRHS is set, then we must either use it or -/// not rely on the second vector source. Return a std::pair containing the -/// left and right vectors of the proposed shuffle (or 0), and set the Mask -/// parameter as required. -/// -/// Note: we intentionally don't try to fold earlier shuffles since they have -/// often been chosen carefully to be efficiently implementable on the target. -using ShuffleOps = std::pair<Value *, Value *>; - -static ShuffleOps collectShuffleElements(Value *V, - SmallVectorImpl<Constant *> &Mask, - Value *PermittedRHS, - InstCombiner &IC) { - assert(V->getType()->isVectorTy() && "Invalid shuffle!"); - unsigned NumElts = V->getType()->getVectorNumElements(); - - if (isa<UndefValue>(V)) { - Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); - return std::make_pair( - PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); - } - - if (isa<ConstantAggregateZero>(V)) { - Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); - return std::make_pair(V, nullptr); - } - - if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { - // If this is an insert of an extract from some other vector, include it. - Value *VecOp = IEI->getOperand(0); - Value *ScalarOp = IEI->getOperand(1); - Value *IdxOp = IEI->getOperand(2); - - if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { - if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { - unsigned ExtractedIdx = - cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); - unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); - - // Either the extracted from or inserted into vector must be RHSVec, - // otherwise we'd end up with a shuffle of three inputs. - if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { - Value *RHS = EI->getOperand(0); - ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); - assert(LR.second == nullptr || LR.second == RHS); - - if (LR.first->getType() != RHS->getType()) { - // Although we are giving up for now, see if we can create extracts - // that match the inserts for another round of combining. - replaceExtractElements(IEI, EI, IC); - - // We tried our best, but we can't find anything compatible with RHS - // further up the chain. Return a trivial shuffle. - for (unsigned i = 0; i < NumElts; ++i) - Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); - return std::make_pair(V, nullptr); - } - - unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); - Mask[InsertedIdx % NumElts] = - ConstantInt::get(Type::getInt32Ty(V->getContext()), - NumLHSElts+ExtractedIdx); - return std::make_pair(LR.first, RHS); - } - - if (VecOp == PermittedRHS) { - // We've gone as far as we can: anything on the other side of the - // extractelement will already have been converted into a shuffle. - unsigned NumLHSElts = - EI->getOperand(0)->getType()->getVectorNumElements(); - for (unsigned i = 0; i != NumElts; ++i) - Mask.push_back(ConstantInt::get( - Type::getInt32Ty(V->getContext()), - i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); - return std::make_pair(EI->getOperand(0), PermittedRHS); - } - - // If this insertelement is a chain that comes from exactly these two - // vectors, return the vector and the effective shuffle. - if (EI->getOperand(0)->getType() == PermittedRHS->getType() && - collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, - Mask)) - return std::make_pair(EI->getOperand(0), PermittedRHS); - } - } - } - - // Otherwise, we can't do anything fancy. Return an identity vector. - for (unsigned i = 0; i != NumElts; ++i) - Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); - return std::make_pair(V, nullptr); -} - -/// Try to find redundant insertvalue instructions, like the following ones: -/// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 -/// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 -/// Here the second instruction inserts values at the same indices, as the -/// first one, making the first one redundant. -/// It should be transformed to: -/// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 -Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { - bool IsRedundant = false; - ArrayRef<unsigned int> FirstIndices = I.getIndices(); - - // If there is a chain of insertvalue instructions (each of them except the - // last one has only one use and it's another insertvalue insn from this - // chain), check if any of the 'children' uses the same indices as the first - // instruction. In this case, the first one is redundant. - Value *V = &I; - unsigned Depth = 0; - while (V->hasOneUse() && Depth < 10) { - User *U = V->user_back(); - auto UserInsInst = dyn_cast<InsertValueInst>(U); - if (!UserInsInst || U->getOperand(0) != V) - break; - if (UserInsInst->getIndices() == FirstIndices) { - IsRedundant = true; - break; - } - V = UserInsInst; - Depth++; - } - - if (IsRedundant) - return replaceInstUsesWith(I, I.getOperand(0)); - return nullptr; -} - -static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { - int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); - int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); - - // A vector select does not change the size of the operands. - if (MaskSize != VecSize) - return false; - - // Each mask element must be undefined or choose a vector element from one of - // the source operands without crossing vector lanes. - for (int i = 0; i != MaskSize; ++i) { - int Elt = Shuf.getMaskValue(i); - if (Elt != -1 && Elt != i && Elt != i + VecSize) - return false; - } - - return true; -} - -/// Turn a chain of inserts that splats a value into an insert + shuffle: -/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> -/// shufflevector(insertelt(X, %k, 0), undef, zero) -static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { - // We are interested in the last insert in a chain. So if this insert has a - // single user and that user is an insert, bail. - if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) - return nullptr; - - auto *VecTy = cast<VectorType>(InsElt.getType()); - unsigned NumElements = VecTy->getNumElements(); - - // Do not try to do this for a one-element vector, since that's a nop, - // and will cause an inf-loop. - if (NumElements == 1) - return nullptr; - - Value *SplatVal = InsElt.getOperand(1); - InsertElementInst *CurrIE = &InsElt; - SmallVector<bool, 16> ElementPresent(NumElements, false); - InsertElementInst *FirstIE = nullptr; - - // Walk the chain backwards, keeping track of which indices we inserted into, - // until we hit something that isn't an insert of the splatted value. - while (CurrIE) { - auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); - if (!Idx || CurrIE->getOperand(1) != SplatVal) - return nullptr; - - auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); - // Check none of the intermediate steps have any additional uses, except - // for the root insertelement instruction, which can be re-used, if it - // inserts at position 0. - if (CurrIE != &InsElt && - (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) - return nullptr; - - ElementPresent[Idx->getZExtValue()] = true; - FirstIE = CurrIE; - CurrIE = NextIE; - } - - // If this is just a single insertelement (not a sequence), we are done. - if (FirstIE == &InsElt) - return nullptr; - - // If we are not inserting into an undef vector, make sure we've seen an - // insert into every element. - // TODO: If the base vector is not undef, it might be better to create a splat - // and then a select-shuffle (blend) with the base vector. - if (!isa<UndefValue>(FirstIE->getOperand(0))) - if (any_of(ElementPresent, [](bool Present) { return !Present; })) - return nullptr; - - // Create the insert + shuffle. - Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); - UndefValue *UndefVec = UndefValue::get(VecTy); - Constant *Zero = ConstantInt::get(Int32Ty, 0); - if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) - FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); - - // Splat from element 0, but replace absent elements with undef in the mask. - SmallVector<Constant *, 16> Mask(NumElements, Zero); - for (unsigned i = 0; i != NumElements; ++i) - if (!ElementPresent[i]) - Mask[i] = UndefValue::get(Int32Ty); - - return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask)); -} - -/// Try to fold an insert element into an existing splat shuffle by changing -/// the shuffle's mask to include the index of this insert element. -static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { - // Check if the vector operand of this insert is a canonical splat shuffle. - auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); - if (!Shuf || !Shuf->isZeroEltSplat()) - return nullptr; - - // Check for a constant insertion index. - uint64_t IdxC; - if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) - return nullptr; - - // Check if the splat shuffle's input is the same as this insert's scalar op. - Value *X = InsElt.getOperand(1); - Value *Op0 = Shuf->getOperand(0); - if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt()))) - return nullptr; - - // Replace the shuffle mask element at the index of this insert with a zero. - // For example: - // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 - // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> - unsigned NumMaskElts = Shuf->getType()->getVectorNumElements(); - SmallVector<Constant *, 16> NewMaskVec(NumMaskElts); - Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext()); - Constant *Zero = ConstantInt::getNullValue(I32Ty); - for (unsigned i = 0; i != NumMaskElts; ++i) - NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i); - - Constant *NewMask = ConstantVector::get(NewMaskVec); - return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); -} - -/// If we have an insertelement instruction feeding into another insertelement -/// and the 2nd is inserting a constant into the vector, canonicalize that -/// constant insertion before the insertion of a variable: -/// -/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> -/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 -/// -/// This has the potential of eliminating the 2nd insertelement instruction -/// via constant folding of the scalar constant into a vector constant. -static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, - InstCombiner::BuilderTy &Builder) { - auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); - if (!InsElt1 || !InsElt1->hasOneUse()) - return nullptr; - - Value *X, *Y; - Constant *ScalarC; - ConstantInt *IdxC1, *IdxC2; - if (match(InsElt1->getOperand(0), m_Value(X)) && - match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && - match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && - match(InsElt2.getOperand(1), m_Constant(ScalarC)) && - match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { - Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); - return InsertElementInst::Create(NewInsElt1, Y, IdxC1); - } - - return nullptr; -} - -/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex -/// --> shufflevector X, CVec', Mask' -static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { - auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); - // Bail out if the parent has more than one use. In that case, we'd be - // replacing the insertelt with a shuffle, and that's not a clear win. - if (!Inst || !Inst->hasOneUse()) - return nullptr; - if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { - // The shuffle must have a constant vector operand. The insertelt must have - // a constant scalar being inserted at a constant position in the vector. - Constant *ShufConstVec, *InsEltScalar; - uint64_t InsEltIndex; - if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || - !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || - !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) - return nullptr; - - // Adding an element to an arbitrary shuffle could be expensive, but a - // shuffle that selects elements from vectors without crossing lanes is - // assumed cheap. - // If we're just adding a constant into that shuffle, it will still be - // cheap. - if (!isShuffleEquivalentToSelect(*Shuf)) - return nullptr; - - // From the above 'select' check, we know that the mask has the same number - // of elements as the vector input operands. We also know that each constant - // input element is used in its lane and can not be used more than once by - // the shuffle. Therefore, replace the constant in the shuffle's constant - // vector with the insertelt constant. Replace the constant in the shuffle's - // mask vector with the insertelt index plus the length of the vector - // (because the constant vector operand of a shuffle is always the 2nd - // operand). - Constant *Mask = Shuf->getMask(); - unsigned NumElts = Mask->getType()->getVectorNumElements(); - SmallVector<Constant *, 16> NewShufElts(NumElts); - SmallVector<Constant *, 16> NewMaskElts(NumElts); - for (unsigned I = 0; I != NumElts; ++I) { - if (I == InsEltIndex) { - NewShufElts[I] = InsEltScalar; - Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); - NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); - } else { - // Copy over the existing values. - NewShufElts[I] = ShufConstVec->getAggregateElement(I); - NewMaskElts[I] = Mask->getAggregateElement(I); - } - } - - // Create new operands for a shuffle that includes the constant of the - // original insertelt. The old shuffle will be dead now. - return new ShuffleVectorInst(Shuf->getOperand(0), - ConstantVector::get(NewShufElts), - ConstantVector::get(NewMaskElts)); - } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { - // Transform sequences of insertelements ops with constant data/indexes into - // a single shuffle op. - unsigned NumElts = InsElt.getType()->getNumElements(); - - uint64_t InsertIdx[2]; - Constant *Val[2]; - if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || - !match(InsElt.getOperand(1), m_Constant(Val[0])) || - !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || - !match(IEI->getOperand(1), m_Constant(Val[1]))) - return nullptr; - SmallVector<Constant *, 16> Values(NumElts); - SmallVector<Constant *, 16> Mask(NumElts); - auto ValI = std::begin(Val); - // Generate new constant vector and mask. - // We have 2 values/masks from the insertelements instructions. Insert them - // into new value/mask vectors. - for (uint64_t I : InsertIdx) { - if (!Values[I]) { - assert(!Mask[I]); - Values[I] = *ValI; - Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), - NumElts + I); - } - ++ValI; - } - // Remaining values are filled with 'undef' values. - for (unsigned I = 0; I < NumElts; ++I) { - if (!Values[I]) { - assert(!Mask[I]); - Values[I] = UndefValue::get(InsElt.getType()->getElementType()); - Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); - } - } - // Create new operands for a shuffle that includes the constant of the - // original insertelt. - return new ShuffleVectorInst(IEI->getOperand(0), - ConstantVector::get(Values), - ConstantVector::get(Mask)); - } - return nullptr; -} - -Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { - Value *VecOp = IE.getOperand(0); - Value *ScalarOp = IE.getOperand(1); - Value *IdxOp = IE.getOperand(2); - - if (auto *V = SimplifyInsertElementInst( - VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) - return replaceInstUsesWith(IE, V); - - // If the vector and scalar are both bitcast from the same element type, do - // the insert in that source type followed by bitcast. - Value *VecSrc, *ScalarSrc; - if (match(VecOp, m_BitCast(m_Value(VecSrc))) && - match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && - (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && - VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && - VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) { - // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> - // bitcast (inselt VecSrc, ScalarSrc, IdxOp) - Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); - return new BitCastInst(NewInsElt, IE.getType()); - } - - // If the inserted element was extracted from some other vector and both - // indexes are valid constants, try to turn this into a shuffle. - uint64_t InsertedIdx, ExtractedIdx; - Value *ExtVecOp; - if (match(IdxOp, m_ConstantInt(InsertedIdx)) && - match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp), - m_ConstantInt(ExtractedIdx))) && - ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) { - // TODO: Looking at the user(s) to determine if this insert is a - // fold-to-shuffle opportunity does not match the usual instcombine - // constraints. We should decide if the transform is worthy based only - // on this instruction and its operands, but that may not work currently. - // - // Here, we are trying to avoid creating shuffles before reaching - // the end of a chain of extract-insert pairs. This is complicated because - // we do not generally form arbitrary shuffle masks in instcombine - // (because those may codegen poorly), but collectShuffleElements() does - // exactly that. - // - // The rules for determining what is an acceptable target-independent - // shuffle mask are fuzzy because they evolve based on the backend's - // capabilities and real-world impact. - auto isShuffleRootCandidate = [](InsertElementInst &Insert) { - if (!Insert.hasOneUse()) - return true; - auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); - if (!InsertUser) - return true; - return false; - }; - - // Try to form a shuffle from a chain of extract-insert ops. - if (isShuffleRootCandidate(IE)) { - SmallVector<Constant*, 16> Mask; - ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); - - // The proposed shuffle may be trivial, in which case we shouldn't - // perform the combine. - if (LR.first != &IE && LR.second != &IE) { - // We now have a shuffle of LHS, RHS, Mask. - if (LR.second == nullptr) - LR.second = UndefValue::get(LR.first->getType()); - return new ShuffleVectorInst(LR.first, LR.second, - ConstantVector::get(Mask)); - } - } - } - - unsigned VWidth = VecOp->getType()->getVectorNumElements(); - APInt UndefElts(VWidth, 0); - APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); - if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { - if (V != &IE) - return replaceInstUsesWith(IE, V); - return &IE; - } - - if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) - return Shuf; - - if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) - return NewInsElt; - - if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) - return Broadcast; - - if (Instruction *Splat = foldInsEltIntoSplat(IE)) - return Splat; - - return nullptr; -} - -/// Return true if we can evaluate the specified expression tree if the vector -/// elements were shuffled in a different order. -static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, - unsigned Depth = 5) { - // We can always reorder the elements of a constant. - if (isa<Constant>(V)) - return true; - - // We won't reorder vector arguments. No IPO here. - Instruction *I = dyn_cast<Instruction>(V); - if (!I) return false; - - // Two users may expect different orders of the elements. Don't try it. - if (!I->hasOneUse()) - return false; - - if (Depth == 0) return false; - - switch (I->getOpcode()) { - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - case Instruction::ICmp: - case Instruction::FCmp: - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::GetElementPtr: { - // Bail out if we would create longer vector ops. We could allow creating - // longer vector ops, but that may result in more expensive codegen. We - // would also need to limit the transform to avoid undefined behavior for - // integer div/rem. - Type *ITy = I->getType(); - if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements()) - return false; - for (Value *Operand : I->operands()) { - if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) - return false; - } - return true; - } - case Instruction::InsertElement: { - ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); - if (!CI) return false; - int ElementNumber = CI->getLimitedValue(); - - // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' - // can't put an element into multiple indices. - bool SeenOnce = false; - for (int i = 0, e = Mask.size(); i != e; ++i) { - if (Mask[i] == ElementNumber) { - if (SeenOnce) - return false; - SeenOnce = true; - } - } - return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); - } - } - return false; -} - -/// Rebuild a new instruction just like 'I' but with the new operands given. -/// In the event of type mismatch, the type of the operands is correct. -static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { - // We don't want to use the IRBuilder here because we want the replacement - // instructions to appear next to 'I', not the builder's insertion point. - switch (I->getOpcode()) { - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: { - BinaryOperator *BO = cast<BinaryOperator>(I); - assert(NewOps.size() == 2 && "binary operator with #ops != 2"); - BinaryOperator *New = - BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), - NewOps[0], NewOps[1], "", BO); - if (isa<OverflowingBinaryOperator>(BO)) { - New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); - New->setHasNoSignedWrap(BO->hasNoSignedWrap()); - } - if (isa<PossiblyExactOperator>(BO)) { - New->setIsExact(BO->isExact()); - } - if (isa<FPMathOperator>(BO)) - New->copyFastMathFlags(I); - return New; - } - case Instruction::ICmp: - assert(NewOps.size() == 2 && "icmp with #ops != 2"); - return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), - NewOps[0], NewOps[1]); - case Instruction::FCmp: - assert(NewOps.size() == 2 && "fcmp with #ops != 2"); - return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), - NewOps[0], NewOps[1]); - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPTrunc: - case Instruction::FPExt: { - // It's possible that the mask has a different number of elements from - // the original cast. We recompute the destination type to match the mask. - Type *DestTy = - VectorType::get(I->getType()->getScalarType(), - NewOps[0]->getType()->getVectorNumElements()); - assert(NewOps.size() == 1 && "cast with #ops != 1"); - return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, - "", I); - } - case Instruction::GetElementPtr: { - Value *Ptr = NewOps[0]; - ArrayRef<Value*> Idx = NewOps.slice(1); - GetElementPtrInst *GEP = GetElementPtrInst::Create( - cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); - GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); - return GEP; - } - } - llvm_unreachable("failed to rebuild vector instructions"); -} - -static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { - // Mask.size() does not need to be equal to the number of vector elements. - - assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); - Type *EltTy = V->getType()->getScalarType(); - Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); - if (isa<UndefValue>(V)) - return UndefValue::get(VectorType::get(EltTy, Mask.size())); - - if (isa<ConstantAggregateZero>(V)) - return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); - - if (Constant *C = dyn_cast<Constant>(V)) { - SmallVector<Constant *, 16> MaskValues; - for (int i = 0, e = Mask.size(); i != e; ++i) { - if (Mask[i] == -1) - MaskValues.push_back(UndefValue::get(I32Ty)); - else - MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i])); - } - return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), - ConstantVector::get(MaskValues)); - } - - Instruction *I = cast<Instruction>(V); - switch (I->getOpcode()) { - case Instruction::Add: - case Instruction::FAdd: - case Instruction::Sub: - case Instruction::FSub: - case Instruction::Mul: - case Instruction::FMul: - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - case Instruction::ICmp: - case Instruction::FCmp: - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::Select: - case Instruction::GetElementPtr: { - SmallVector<Value*, 8> NewOps; - bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); - for (int i = 0, e = I->getNumOperands(); i != e; ++i) { - Value *V; - // Recursively call evaluateInDifferentElementOrder on vector arguments - // as well. E.g. GetElementPtr may have scalar operands even if the - // return value is a vector, so we need to examine the operand type. - if (I->getOperand(i)->getType()->isVectorTy()) - V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); - else - V = I->getOperand(i); - NewOps.push_back(V); - NeedsRebuild |= (V != I->getOperand(i)); - } - if (NeedsRebuild) { - return buildNew(I, NewOps); - } - return I; - } - case Instruction::InsertElement: { - int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); - - // The insertelement was inserting at Element. Figure out which element - // that becomes after shuffling. The answer is guaranteed to be unique - // by CanEvaluateShuffled. - bool Found = false; - int Index = 0; - for (int e = Mask.size(); Index != e; ++Index) { - if (Mask[Index] == Element) { - Found = true; - break; - } - } - - // If element is not in Mask, no need to handle the operand 1 (element to - // be inserted). Just evaluate values in operand 0 according to Mask. - if (!Found) - return evaluateInDifferentElementOrder(I->getOperand(0), Mask); - - Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); - return InsertElementInst::Create(V, I->getOperand(1), - ConstantInt::get(I32Ty, Index), "", I); - } - } - llvm_unreachable("failed to reorder elements of vector instruction!"); -} - -static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, - bool &isLHSID, bool &isRHSID) { - isLHSID = isRHSID = true; - - for (unsigned i = 0, e = Mask.size(); i != e; ++i) { - if (Mask[i] < 0) continue; // Ignore undef values. - // Is this an identity shuffle of the LHS value? - isLHSID &= (Mask[i] == (int)i); - - // Is this an identity shuffle of the RHS value? - isRHSID &= (Mask[i]-e == i); - } -} - -// Returns true if the shuffle is extracting a contiguous range of values from -// LHS, for example: -// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ -// Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| -// Shuffles to: |EE|FF|GG|HH| -// +--+--+--+--+ -static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, - SmallVector<int, 16> &Mask) { - unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); - unsigned MaskElems = Mask.size(); - unsigned BegIdx = Mask.front(); - unsigned EndIdx = Mask.back(); - if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) - return false; - for (unsigned I = 0; I != MaskElems; ++I) - if (static_cast<unsigned>(Mask[I]) != BegIdx + I) - return false; - return true; -} - -/// These are the ingredients in an alternate form binary operator as described -/// below. -struct BinopElts { - BinaryOperator::BinaryOps Opcode; - Value *Op0; - Value *Op1; - BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, - Value *V0 = nullptr, Value *V1 = nullptr) : - Opcode(Opc), Op0(V0), Op1(V1) {} - operator bool() const { return Opcode != 0; } -}; - -/// Binops may be transformed into binops with different opcodes and operands. -/// Reverse the usual canonicalization to enable folds with the non-canonical -/// form of the binop. If a transform is possible, return the elements of the -/// new binop. If not, return invalid elements. -static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { - Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); - Type *Ty = BO->getType(); - switch (BO->getOpcode()) { - case Instruction::Shl: { - // shl X, C --> mul X, (1 << C) - Constant *C; - if (match(BO1, m_Constant(C))) { - Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); - return { Instruction::Mul, BO0, ShlOne }; - } - break; - } - case Instruction::Or: { - // or X, C --> add X, C (when X and C have no common bits set) - const APInt *C; - if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) - return { Instruction::Add, BO0, BO1 }; - break; - } - default: - break; - } - return {}; -} - -static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { - assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); - - // Are we shuffling together some value and that same value after it has been - // modified by a binop with a constant? - Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); - Constant *C; - bool Op0IsBinop; - if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) - Op0IsBinop = true; - else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) - Op0IsBinop = false; - else - return nullptr; - - // The identity constant for a binop leaves a variable operand unchanged. For - // a vector, this is a splat of something like 0, -1, or 1. - // If there's no identity constant for this binop, we're done. - auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); - BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); - Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); - if (!IdC) - return nullptr; - - // Shuffle identity constants into the lanes that return the original value. - // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} - // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} - // The existing binop constant vector remains in the same operand position. - Constant *Mask = Shuf.getMask(); - Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : - ConstantExpr::getShuffleVector(IdC, C, Mask); - - bool MightCreatePoisonOrUB = - Mask->containsUndefElement() && - (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); - if (MightCreatePoisonOrUB) - NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); - - // shuf (bop X, C), X, M --> bop X, C' - // shuf X, (bop X, C), M --> bop X, C' - Value *X = Op0IsBinop ? Op1 : Op0; - Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); - NewBO->copyIRFlags(BO); - - // An undef shuffle mask element may propagate as an undef constant element in - // the new binop. That would produce poison where the original code might not. - // If we already made a safe constant, then there's no danger. - if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) - NewBO->dropPoisonGeneratingFlags(); - return NewBO; -} - -/// If we have an insert of a scalar to a non-zero element of an undefined -/// vector and then shuffle that value, that's the same as inserting to the zero -/// element and shuffling. Splatting from the zero element is recognized as the -/// canonical form of splat. -static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, - InstCombiner::BuilderTy &Builder) { - Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); - Constant *Mask = Shuf.getMask(); - Value *X; - uint64_t IndexC; - - // Match a shuffle that is a splat to a non-zero element. - if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X), - m_ConstantInt(IndexC)))) || - !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0) - return nullptr; - - // Insert into element 0 of an undef vector. - UndefValue *UndefVec = UndefValue::get(Shuf.getType()); - Constant *Zero = Builder.getInt32(0); - Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); - - // Splat from element 0. Any mask element that is undefined remains undefined. - // For example: - // shuf (inselt undef, X, 2), undef, <2,2,undef> - // --> shuf (inselt undef, X, 0), undef, <0,0,undef> - unsigned NumMaskElts = Shuf.getType()->getVectorNumElements(); - SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero); - for (unsigned i = 0; i != NumMaskElts; ++i) - if (isa<UndefValue>(Mask->getAggregateElement(i))) - NewMask[i] = Mask->getAggregateElement(i); - - return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask)); -} - -/// Try to fold shuffles that are the equivalent of a vector select. -static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, - InstCombiner::BuilderTy &Builder, - const DataLayout &DL) { - if (!Shuf.isSelect()) - return nullptr; - - // Canonicalize to choose from operand 0 first. - unsigned NumElts = Shuf.getType()->getVectorNumElements(); - if (Shuf.getMaskValue(0) >= (int)NumElts) { - // TODO: Can we assert that both operands of a shuffle-select are not undef - // (otherwise, it would have been folded by instsimplify? - Shuf.commute(); - return &Shuf; - } - - if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) - return I; - - BinaryOperator *B0, *B1; - if (!match(Shuf.getOperand(0), m_BinOp(B0)) || - !match(Shuf.getOperand(1), m_BinOp(B1))) - return nullptr; - - Value *X, *Y; - Constant *C0, *C1; - bool ConstantsAreOp1; - if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && - match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) - ConstantsAreOp1 = true; - else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && - match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) - ConstantsAreOp1 = false; - else - return nullptr; - - // We need matching binops to fold the lanes together. - BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); - BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); - bool DropNSW = false; - if (ConstantsAreOp1 && Opc0 != Opc1) { - // TODO: We drop "nsw" if shift is converted into multiply because it may - // not be correct when the shift amount is BitWidth - 1. We could examine - // each vector element to determine if it is safe to keep that flag. - if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) - DropNSW = true; - if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { - assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); - Opc0 = AltB0.Opcode; - C0 = cast<Constant>(AltB0.Op1); - } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { - assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); - Opc1 = AltB1.Opcode; - C1 = cast<Constant>(AltB1.Op1); - } - } - - if (Opc0 != Opc1) - return nullptr; - - // The opcodes must be the same. Use a new name to make that clear. - BinaryOperator::BinaryOps BOpc = Opc0; - - // Select the constant elements needed for the single binop. - Constant *Mask = Shuf.getMask(); - Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); - - // We are moving a binop after a shuffle. When a shuffle has an undefined - // mask element, the result is undefined, but it is not poison or undefined - // behavior. That is not necessarily true for div/rem/shift. - bool MightCreatePoisonOrUB = - Mask->containsUndefElement() && - (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); - if (MightCreatePoisonOrUB) - NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); - - Value *V; - if (X == Y) { - // Remove a binop and the shuffle by rearranging the constant: - // shuffle (op V, C0), (op V, C1), M --> op V, C' - // shuffle (op C0, V), (op C1, V), M --> op C', V - V = X; - } else { - // If there are 2 different variable operands, we must create a new shuffle - // (select) first, so check uses to ensure that we don't end up with more - // instructions than we started with. - if (!B0->hasOneUse() && !B1->hasOneUse()) - return nullptr; - - // If we use the original shuffle mask and op1 is *variable*, we would be - // putting an undef into operand 1 of div/rem/shift. This is either UB or - // poison. We do not have to guard against UB when *constants* are op1 - // because safe constants guarantee that we do not overflow sdiv/srem (and - // there's no danger for other opcodes). - // TODO: To allow this case, create a new shuffle mask with no undefs. - if (MightCreatePoisonOrUB && !ConstantsAreOp1) - return nullptr; - - // Note: In general, we do not create new shuffles in InstCombine because we - // do not know if a target can lower an arbitrary shuffle optimally. In this - // case, the shuffle uses the existing mask, so there is no additional risk. - - // Select the variable vectors first, then perform the binop: - // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' - // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) - V = Builder.CreateShuffleVector(X, Y, Mask); - } - - Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : - BinaryOperator::Create(BOpc, NewC, V); - - // Flags are intersected from the 2 source binops. But there are 2 exceptions: - // 1. If we changed an opcode, poison conditions might have changed. - // 2. If the shuffle had undef mask elements, the new binop might have undefs - // where the original code did not. But if we already made a safe constant, - // then there's no danger. - NewBO->copyIRFlags(B0); - NewBO->andIRFlags(B1); - if (DropNSW) - NewBO->setHasNoSignedWrap(false); - if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) - NewBO->dropPoisonGeneratingFlags(); - return NewBO; -} - -/// Match a shuffle-select-shuffle pattern where the shuffles are widening and -/// narrowing (concatenating with undef and extracting back to the original -/// length). This allows replacing the wide select with a narrow select. -static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, - InstCombiner::BuilderTy &Builder) { - // This must be a narrowing identity shuffle. It extracts the 1st N elements - // of the 1st vector operand of a shuffle. - if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) - return nullptr; - - // The vector being shuffled must be a vector select that we can eliminate. - // TODO: The one-use requirement could be eased if X and/or Y are constants. - Value *Cond, *X, *Y; - if (!match(Shuf.getOperand(0), - m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) - return nullptr; - - // We need a narrow condition value. It must be extended with undef elements - // and have the same number of elements as this shuffle. - unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements(); - Value *NarrowCond; - if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(), - m_Constant()))) || - NarrowCond->getType()->getVectorNumElements() != NarrowNumElts || - !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) - return nullptr; - - // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> - // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) - Value *Undef = UndefValue::get(X->getType()); - Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask()); - Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask()); - return SelectInst::Create(NarrowCond, NarrowX, NarrowY); -} - -/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. -static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { - Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); - if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) - return nullptr; - - Value *X, *Y; - Constant *Mask; - if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask)))) - return nullptr; - - // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, - // then combining may result in worse codegen. - if (!Op0->hasOneUse()) - return nullptr; - - // We are extracting a subvector from a shuffle. Remove excess elements from - // the 1st shuffle mask to eliminate the extract. - // - // This transform is conservatively limited to identity extracts because we do - // not allow arbitrary shuffle mask creation as a target-independent transform - // (because we can't guarantee that will lower efficiently). - // - // If the extracting shuffle has an undef mask element, it transfers to the - // new shuffle mask. Otherwise, copy the original mask element. Example: - // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> - // shuf X, Y, <C0, undef, C2, undef> - unsigned NumElts = Shuf.getType()->getVectorNumElements(); - SmallVector<Constant *, 16> NewMask(NumElts); - assert(NumElts < Mask->getType()->getVectorNumElements() && - "Identity with extract must have less elements than its inputs"); - - for (unsigned i = 0; i != NumElts; ++i) { - Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i); - Constant *MaskElt = Mask->getAggregateElement(i); - NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt; - } - return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); -} - -/// Try to replace a shuffle with an insertelement. -static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) { - Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); - SmallVector<int, 16> Mask = Shuf.getShuffleMask(); - - // The shuffle must not change vector sizes. - // TODO: This restriction could be removed if the insert has only one use - // (because the transform would require a new length-changing shuffle). - int NumElts = Mask.size(); - if (NumElts != (int)(V0->getType()->getVectorNumElements())) - return nullptr; - - // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' - auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { - // We need an insertelement with a constant index. - if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), - m_ConstantInt(IndexC)))) - return false; - - // Test the shuffle mask to see if it splices the inserted scalar into the - // operand 1 vector of the shuffle. - int NewInsIndex = -1; - for (int i = 0; i != NumElts; ++i) { - // Ignore undef mask elements. - if (Mask[i] == -1) - continue; - - // The shuffle takes elements of operand 1 without lane changes. - if (Mask[i] == NumElts + i) - continue; - - // The shuffle must choose the inserted scalar exactly once. - if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) - return false; - - // The shuffle is placing the inserted scalar into element i. - NewInsIndex = i; - } - - assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); - - // Index is updated to the potentially translated insertion lane. - IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); - return true; - }; - - // If the shuffle is unnecessary, insert the scalar operand directly into - // operand 1 of the shuffle. Example: - // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 - Value *Scalar; - ConstantInt *IndexC; - if (isShufflingScalarIntoOp1(Scalar, IndexC)) - return InsertElementInst::Create(V1, Scalar, IndexC); - - // Try again after commuting shuffle. Example: - // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> - // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 - std::swap(V0, V1); - ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); - if (isShufflingScalarIntoOp1(Scalar, IndexC)) - return InsertElementInst::Create(V1, Scalar, IndexC); - - return nullptr; -} - -static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { - // Match the operands as identity with padding (also known as concatenation - // with undef) shuffles of the same source type. The backend is expected to - // recreate these concatenations from a shuffle of narrow operands. - auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); - auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); - if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || - !Shuffle1 || !Shuffle1->isIdentityWithPadding()) - return nullptr; - - // We limit this transform to power-of-2 types because we expect that the - // backend can convert the simplified IR patterns to identical nodes as the - // original IR. - // TODO: If we can verify the same behavior for arbitrary types, the - // power-of-2 checks can be removed. - Value *X = Shuffle0->getOperand(0); - Value *Y = Shuffle1->getOperand(0); - if (X->getType() != Y->getType() || - !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) || - !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) || - !isPowerOf2_32(X->getType()->getVectorNumElements()) || - isa<UndefValue>(X) || isa<UndefValue>(Y)) - return nullptr; - assert(isa<UndefValue>(Shuffle0->getOperand(1)) && - isa<UndefValue>(Shuffle1->getOperand(1)) && - "Unexpected operand for identity shuffle"); - - // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source - // operands directly by adjusting the shuffle mask to account for the narrower - // types: - // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' - int NarrowElts = X->getType()->getVectorNumElements(); - int WideElts = Shuffle0->getType()->getVectorNumElements(); - assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); - - Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext()); - SmallVector<int, 16> Mask = Shuf.getShuffleMask(); - SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty)); - for (int i = 0, e = Mask.size(); i != e; ++i) { - if (Mask[i] == -1) - continue; - - // If this shuffle is choosing an undef element from 1 of the sources, that - // element is undef. - if (Mask[i] < WideElts) { - if (Shuffle0->getMaskValue(Mask[i]) == -1) - continue; - } else { - if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) - continue; - } - - // If this shuffle is choosing from the 1st narrow op, the mask element is - // the same. If this shuffle is choosing from the 2nd narrow op, the mask - // element is offset down to adjust for the narrow vector widths. - if (Mask[i] < WideElts) { - assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); - NewMask[i] = ConstantInt::get(I32Ty, Mask[i]); - } else { - assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); - NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts)); - } - } - return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); -} - -Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { - Value *LHS = SVI.getOperand(0); - Value *RHS = SVI.getOperand(1); - if (auto *V = SimplifyShuffleVectorInst( - LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI))) - return replaceInstUsesWith(SVI, V); - - // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') - // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). - unsigned VWidth = SVI.getType()->getVectorNumElements(); - unsigned LHSWidth = LHS->getType()->getVectorNumElements(); - SmallVector<int, 16> Mask = SVI.getShuffleMask(); - Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); - if (LHS == RHS || isa<UndefValue>(LHS)) { - // Remap any references to RHS to use LHS. - SmallVector<Constant*, 16> Elts; - for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { - if (Mask[i] < 0) { - Elts.push_back(UndefValue::get(Int32Ty)); - continue; - } - - if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || - (Mask[i] < (int)e && isa<UndefValue>(LHS))) { - Mask[i] = -1; // Turn into undef. - Elts.push_back(UndefValue::get(Int32Ty)); - } else { - Mask[i] = Mask[i] % e; // Force to LHS. - Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); - } - } - SVI.setOperand(0, SVI.getOperand(1)); - SVI.setOperand(1, UndefValue::get(RHS->getType())); - SVI.setOperand(2, ConstantVector::get(Elts)); - return &SVI; - } - - if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) - return I; - - if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) - return I; - - if (Instruction *I = narrowVectorSelect(SVI, Builder)) - return I; - - APInt UndefElts(VWidth, 0); - APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); - if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { - if (V != &SVI) - return replaceInstUsesWith(SVI, V); - return &SVI; - } - - if (Instruction *I = foldIdentityExtractShuffle(SVI)) - return I; - - // These transforms have the potential to lose undef knowledge, so they are - // intentionally placed after SimplifyDemandedVectorElts(). - if (Instruction *I = foldShuffleWithInsert(SVI)) - return I; - if (Instruction *I = foldIdentityPaddedShuffles(SVI)) - return I; - - if (VWidth == LHSWidth) { - // Analyze the shuffle, are the LHS or RHS and identity shuffles? - bool isLHSID, isRHSID; - recognizeIdentityMask(Mask, isLHSID, isRHSID); - - // Eliminate identity shuffles. - if (isLHSID) return replaceInstUsesWith(SVI, LHS); - if (isRHSID) return replaceInstUsesWith(SVI, RHS); - } - - if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { - Value *V = evaluateInDifferentElementOrder(LHS, Mask); - return replaceInstUsesWith(SVI, V); - } - - // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to - // a non-vector type. We can instead bitcast the original vector followed by - // an extract of the desired element: - // - // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, - // <4 x i32> <i32 0, i32 1, i32 2, i32 3> - // %1 = bitcast <4 x i8> %sroa to i32 - // Becomes: - // %bc = bitcast <16 x i8> %in to <4 x i32> - // %ext = extractelement <4 x i32> %bc, i32 0 - // - // If the shuffle is extracting a contiguous range of values from the input - // vector then each use which is a bitcast of the extracted size can be - // replaced. This will work if the vector types are compatible, and the begin - // index is aligned to a value in the casted vector type. If the begin index - // isn't aligned then we can shuffle the original vector (keeping the same - // vector type) before extracting. - // - // This code will bail out if the target type is fundamentally incompatible - // with vectors of the source type. - // - // Example of <16 x i8>, target type i32: - // Index range [4,8): v-----------v Will work. - // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ - // <16 x i8>: | | | | | | | | | | | | | | | | | - // <4 x i32>: | | | | | - // +-----------+-----------+-----------+-----------+ - // Index range [6,10): ^-----------^ Needs an extra shuffle. - // Target type i40: ^--------------^ Won't work, bail. - bool MadeChange = false; - if (isShuffleExtractingFromLHS(SVI, Mask)) { - Value *V = LHS; - unsigned MaskElems = Mask.size(); - VectorType *SrcTy = cast<VectorType>(V->getType()); - unsigned VecBitWidth = SrcTy->getBitWidth(); - unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); - assert(SrcElemBitWidth && "vector elements must have a bitwidth"); - unsigned SrcNumElems = SrcTy->getNumElements(); - SmallVector<BitCastInst *, 8> BCs; - DenseMap<Type *, Value *> NewBCs; - for (User *U : SVI.users()) - if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) - if (!BC->use_empty()) - // Only visit bitcasts that weren't previously handled. - BCs.push_back(BC); - for (BitCastInst *BC : BCs) { - unsigned BegIdx = Mask.front(); - Type *TgtTy = BC->getDestTy(); - unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); - if (!TgtElemBitWidth) - continue; - unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; - bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; - bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); - if (!VecBitWidthsEqual) - continue; - if (!VectorType::isValidElementType(TgtTy)) - continue; - VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); - if (!BegIsAligned) { - // Shuffle the input so [0,NumElements) contains the output, and - // [NumElems,SrcNumElems) is undef. - SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, - UndefValue::get(Int32Ty)); - for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) - ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); - V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), - ConstantVector::get(ShuffleMask), - SVI.getName() + ".extract"); - BegIdx = 0; - } - unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; - assert(SrcElemsPerTgtElem); - BegIdx /= SrcElemsPerTgtElem; - bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); - auto *NewBC = - BCAlreadyExists - ? NewBCs[CastSrcTy] - : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); - if (!BCAlreadyExists) - NewBCs[CastSrcTy] = NewBC; - auto *Ext = Builder.CreateExtractElement( - NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); - // The shufflevector isn't being replaced: the bitcast that used it - // is. InstCombine will visit the newly-created instructions. - replaceInstUsesWith(*BC, Ext); - MadeChange = true; - } - } - - // If the LHS is a shufflevector itself, see if we can combine it with this - // one without producing an unusual shuffle. - // Cases that might be simplified: - // 1. - // x1=shuffle(v1,v2,mask1) - // x=shuffle(x1,undef,mask) - // ==> - // x=shuffle(v1,undef,newMask) - // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 - // 2. - // x1=shuffle(v1,undef,mask1) - // x=shuffle(x1,x2,mask) - // where v1.size() == mask1.size() - // ==> - // x=shuffle(v1,x2,newMask) - // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] - // 3. - // x2=shuffle(v2,undef,mask2) - // x=shuffle(x1,x2,mask) - // where v2.size() == mask2.size() - // ==> - // x=shuffle(x1,v2,newMask) - // newMask[i] = (mask[i] < x1.size()) - // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() - // 4. - // x1=shuffle(v1,undef,mask1) - // x2=shuffle(v2,undef,mask2) - // x=shuffle(x1,x2,mask) - // where v1.size() == v2.size() - // ==> - // x=shuffle(v1,v2,newMask) - // newMask[i] = (mask[i] < x1.size()) - // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() - // - // Here we are really conservative: - // we are absolutely afraid of producing a shuffle mask not in the input - // program, because the code gen may not be smart enough to turn a merged - // shuffle into two specific shuffles: it may produce worse code. As such, - // we only merge two shuffles if the result is either a splat or one of the - // input shuffle masks. In this case, merging the shuffles just removes - // one instruction, which we know is safe. This is good for things like - // turning: (splat(splat)) -> splat, or - // merge(V[0..n], V[n+1..2n]) -> V[0..2n] - ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); - ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); - if (LHSShuffle) - if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) - LHSShuffle = nullptr; - if (RHSShuffle) - if (!isa<UndefValue>(RHSShuffle->getOperand(1))) - RHSShuffle = nullptr; - if (!LHSShuffle && !RHSShuffle) - return MadeChange ? &SVI : nullptr; - - Value* LHSOp0 = nullptr; - Value* LHSOp1 = nullptr; - Value* RHSOp0 = nullptr; - unsigned LHSOp0Width = 0; - unsigned RHSOp0Width = 0; - if (LHSShuffle) { - LHSOp0 = LHSShuffle->getOperand(0); - LHSOp1 = LHSShuffle->getOperand(1); - LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); - } - if (RHSShuffle) { - RHSOp0 = RHSShuffle->getOperand(0); - RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); - } - Value* newLHS = LHS; - Value* newRHS = RHS; - if (LHSShuffle) { - // case 1 - if (isa<UndefValue>(RHS)) { - newLHS = LHSOp0; - newRHS = LHSOp1; - } - // case 2 or 4 - else if (LHSOp0Width == LHSWidth) { - newLHS = LHSOp0; - } - } - // case 3 or 4 - if (RHSShuffle && RHSOp0Width == LHSWidth) { - newRHS = RHSOp0; - } - // case 4 - if (LHSOp0 == RHSOp0) { - newLHS = LHSOp0; - newRHS = nullptr; - } - - if (newLHS == LHS && newRHS == RHS) - return MadeChange ? &SVI : nullptr; - - SmallVector<int, 16> LHSMask; - SmallVector<int, 16> RHSMask; - if (newLHS != LHS) - LHSMask = LHSShuffle->getShuffleMask(); - if (RHSShuffle && newRHS != RHS) - RHSMask = RHSShuffle->getShuffleMask(); - - unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; - SmallVector<int, 16> newMask; - bool isSplat = true; - int SplatElt = -1; - // Create a new mask for the new ShuffleVectorInst so that the new - // ShuffleVectorInst is equivalent to the original one. - for (unsigned i = 0; i < VWidth; ++i) { - int eltMask; - if (Mask[i] < 0) { - // This element is an undef value. - eltMask = -1; - } else if (Mask[i] < (int)LHSWidth) { - // This element is from left hand side vector operand. - // - // If LHS is going to be replaced (case 1, 2, or 4), calculate the - // new mask value for the element. - if (newLHS != LHS) { - eltMask = LHSMask[Mask[i]]; - // If the value selected is an undef value, explicitly specify it - // with a -1 mask value. - if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) - eltMask = -1; - } else - eltMask = Mask[i]; - } else { - // This element is from right hand side vector operand - // - // If the value selected is an undef value, explicitly specify it - // with a -1 mask value. (case 1) - if (isa<UndefValue>(RHS)) - eltMask = -1; - // If RHS is going to be replaced (case 3 or 4), calculate the - // new mask value for the element. - else if (newRHS != RHS) { - eltMask = RHSMask[Mask[i]-LHSWidth]; - // If the value selected is an undef value, explicitly specify it - // with a -1 mask value. - if (eltMask >= (int)RHSOp0Width) { - assert(isa<UndefValue>(RHSShuffle->getOperand(1)) - && "should have been check above"); - eltMask = -1; - } - } else - eltMask = Mask[i]-LHSWidth; - - // If LHS's width is changed, shift the mask value accordingly. - // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any - // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. - // If newRHS == newLHS, we want to remap any references from newRHS to - // newLHS so that we can properly identify splats that may occur due to - // obfuscation across the two vectors. - if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) - eltMask += newLHSWidth; - } - - // Check if this could still be a splat. - if (eltMask >= 0) { - if (SplatElt >= 0 && SplatElt != eltMask) - isSplat = false; - SplatElt = eltMask; - } - - newMask.push_back(eltMask); - } - - // If the result mask is equal to one of the original shuffle masks, - // or is a splat, do the replacement. - if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { - SmallVector<Constant*, 16> Elts; - for (unsigned i = 0, e = newMask.size(); i != e; ++i) { - if (newMask[i] < 0) { - Elts.push_back(UndefValue::get(Int32Ty)); - } else { - Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); - } - } - if (!newRHS) - newRHS = UndefValue::get(newLHS->getType()); - return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); - } - - // If the result mask is an identity, replace uses of this instruction with - // corresponding argument. - bool isLHSID, isRHSID; - recognizeIdentityMask(newMask, isLHSID, isRHSID); - if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS); - if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS); - - return MadeChange ? &SVI : nullptr; -} |
