diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp | 4581 |
1 files changed, 0 insertions, 4581 deletions
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp deleted file mode 100644 index b25cbed1bb02..000000000000 --- a/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp +++ /dev/null @@ -1,4581 +0,0 @@ -//===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -/// \file -/// This file is a part of MemorySanitizer, a detector of uninitialized -/// reads. -/// -/// The algorithm of the tool is similar to Memcheck -/// (http://goo.gl/QKbem). We associate a few shadow bits with every -/// byte of the application memory, poison the shadow of the malloc-ed -/// or alloca-ed memory, load the shadow bits on every memory read, -/// propagate the shadow bits through some of the arithmetic -/// instruction (including MOV), store the shadow bits on every memory -/// write, report a bug on some other instructions (e.g. JMP) if the -/// associated shadow is poisoned. -/// -/// But there are differences too. The first and the major one: -/// compiler instrumentation instead of binary instrumentation. This -/// gives us much better register allocation, possible compiler -/// optimizations and a fast start-up. But this brings the major issue -/// as well: msan needs to see all program events, including system -/// calls and reads/writes in system libraries, so we either need to -/// compile *everything* with msan or use a binary translation -/// component (e.g. DynamoRIO) to instrument pre-built libraries. -/// Another difference from Memcheck is that we use 8 shadow bits per -/// byte of application memory and use a direct shadow mapping. This -/// greatly simplifies the instrumentation code and avoids races on -/// shadow updates (Memcheck is single-threaded so races are not a -/// concern there. Memcheck uses 2 shadow bits per byte with a slow -/// path storage that uses 8 bits per byte). -/// -/// The default value of shadow is 0, which means "clean" (not poisoned). -/// -/// Every module initializer should call __msan_init to ensure that the -/// shadow memory is ready. On error, __msan_warning is called. Since -/// parameters and return values may be passed via registers, we have a -/// specialized thread-local shadow for return values -/// (__msan_retval_tls) and parameters (__msan_param_tls). -/// -/// Origin tracking. -/// -/// MemorySanitizer can track origins (allocation points) of all uninitialized -/// values. This behavior is controlled with a flag (msan-track-origins) and is -/// disabled by default. -/// -/// Origins are 4-byte values created and interpreted by the runtime library. -/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes -/// of application memory. Propagation of origins is basically a bunch of -/// "select" instructions that pick the origin of a dirty argument, if an -/// instruction has one. -/// -/// Every 4 aligned, consecutive bytes of application memory have one origin -/// value associated with them. If these bytes contain uninitialized data -/// coming from 2 different allocations, the last store wins. Because of this, -/// MemorySanitizer reports can show unrelated origins, but this is unlikely in -/// practice. -/// -/// Origins are meaningless for fully initialized values, so MemorySanitizer -/// avoids storing origin to memory when a fully initialized value is stored. -/// This way it avoids needless overwritting origin of the 4-byte region on -/// a short (i.e. 1 byte) clean store, and it is also good for performance. -/// -/// Atomic handling. -/// -/// Ideally, every atomic store of application value should update the -/// corresponding shadow location in an atomic way. Unfortunately, atomic store -/// of two disjoint locations can not be done without severe slowdown. -/// -/// Therefore, we implement an approximation that may err on the safe side. -/// In this implementation, every atomically accessed location in the program -/// may only change from (partially) uninitialized to fully initialized, but -/// not the other way around. We load the shadow _after_ the application load, -/// and we store the shadow _before_ the app store. Also, we always store clean -/// shadow (if the application store is atomic). This way, if the store-load -/// pair constitutes a happens-before arc, shadow store and load are correctly -/// ordered such that the load will get either the value that was stored, or -/// some later value (which is always clean). -/// -/// This does not work very well with Compare-And-Swap (CAS) and -/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW -/// must store the new shadow before the app operation, and load the shadow -/// after the app operation. Computers don't work this way. Current -/// implementation ignores the load aspect of CAS/RMW, always returning a clean -/// value. It implements the store part as a simple atomic store by storing a -/// clean shadow. -/// -/// Instrumenting inline assembly. -/// -/// For inline assembly code LLVM has little idea about which memory locations -/// become initialized depending on the arguments. It can be possible to figure -/// out which arguments are meant to point to inputs and outputs, but the -/// actual semantics can be only visible at runtime. In the Linux kernel it's -/// also possible that the arguments only indicate the offset for a base taken -/// from a segment register, so it's dangerous to treat any asm() arguments as -/// pointers. We take a conservative approach generating calls to -/// __msan_instrument_asm_store(ptr, size) -/// , which defer the memory unpoisoning to the runtime library. -/// The latter can perform more complex address checks to figure out whether -/// it's safe to touch the shadow memory. -/// Like with atomic operations, we call __msan_instrument_asm_store() before -/// the assembly call, so that changes to the shadow memory will be seen by -/// other threads together with main memory initialization. -/// -/// KernelMemorySanitizer (KMSAN) implementation. -/// -/// The major differences between KMSAN and MSan instrumentation are: -/// - KMSAN always tracks the origins and implies msan-keep-going=true; -/// - KMSAN allocates shadow and origin memory for each page separately, so -/// there are no explicit accesses to shadow and origin in the -/// instrumentation. -/// Shadow and origin values for a particular X-byte memory location -/// (X=1,2,4,8) are accessed through pointers obtained via the -/// __msan_metadata_ptr_for_load_X(ptr) -/// __msan_metadata_ptr_for_store_X(ptr) -/// functions. The corresponding functions check that the X-byte accesses -/// are possible and returns the pointers to shadow and origin memory. -/// Arbitrary sized accesses are handled with: -/// __msan_metadata_ptr_for_load_n(ptr, size) -/// __msan_metadata_ptr_for_store_n(ptr, size); -/// - TLS variables are stored in a single per-task struct. A call to a -/// function __msan_get_context_state() returning a pointer to that struct -/// is inserted into every instrumented function before the entry block; -/// - __msan_warning() takes a 32-bit origin parameter; -/// - local variables are poisoned with __msan_poison_alloca() upon function -/// entry and unpoisoned with __msan_unpoison_alloca() before leaving the -/// function; -/// - the pass doesn't declare any global variables or add global constructors -/// to the translation unit. -/// -/// Also, KMSAN currently ignores uninitialized memory passed into inline asm -/// calls, making sure we're on the safe side wrt. possible false positives. -/// -/// KernelMemorySanitizer only supports X86_64 at the moment. -/// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/MemorySanitizer.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallString.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueMap.h" -#include "llvm/Pass.h" -#include "llvm/Support/AtomicOrdering.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <memory> -#include <string> -#include <tuple> - -using namespace llvm; - -#define DEBUG_TYPE "msan" - -static const unsigned kOriginSize = 4; -static const unsigned kMinOriginAlignment = 4; -static const unsigned kShadowTLSAlignment = 8; - -// These constants must be kept in sync with the ones in msan.h. -static const unsigned kParamTLSSize = 800; -static const unsigned kRetvalTLSSize = 800; - -// Accesses sizes are powers of two: 1, 2, 4, 8. -static const size_t kNumberOfAccessSizes = 4; - -/// Track origins of uninitialized values. -/// -/// Adds a section to MemorySanitizer report that points to the allocation -/// (stack or heap) the uninitialized bits came from originally. -static cl::opt<int> ClTrackOrigins("msan-track-origins", - cl::desc("Track origins (allocation sites) of poisoned memory"), - cl::Hidden, cl::init(0)); - -static cl::opt<bool> ClKeepGoing("msan-keep-going", - cl::desc("keep going after reporting a UMR"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClPoisonStack("msan-poison-stack", - cl::desc("poison uninitialized stack variables"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", - cl::desc("poison uninitialized stack variables with a call"), - cl::Hidden, cl::init(false)); - -static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", - cl::desc("poison uninitialized stack variables with the given pattern"), - cl::Hidden, cl::init(0xff)); - -static cl::opt<bool> ClPoisonUndef("msan-poison-undef", - cl::desc("poison undef temps"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClHandleICmp("msan-handle-icmp", - cl::desc("propagate shadow through ICmpEQ and ICmpNE"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", - cl::desc("exact handling of relational integer ICmp"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClHandleLifetimeIntrinsics( - "msan-handle-lifetime-intrinsics", - cl::desc( - "when possible, poison scoped variables at the beginning of the scope " - "(slower, but more precise)"), - cl::Hidden, cl::init(true)); - -// When compiling the Linux kernel, we sometimes see false positives related to -// MSan being unable to understand that inline assembly calls may initialize -// local variables. -// This flag makes the compiler conservatively unpoison every memory location -// passed into an assembly call. Note that this may cause false positives. -// Because it's impossible to figure out the array sizes, we can only unpoison -// the first sizeof(type) bytes for each type* pointer. -// The instrumentation is only enabled in KMSAN builds, and only if -// -msan-handle-asm-conservative is on. This is done because we may want to -// quickly disable assembly instrumentation when it breaks. -static cl::opt<bool> ClHandleAsmConservative( - "msan-handle-asm-conservative", - cl::desc("conservative handling of inline assembly"), cl::Hidden, - cl::init(true)); - -// This flag controls whether we check the shadow of the address -// operand of load or store. Such bugs are very rare, since load from -// a garbage address typically results in SEGV, but still happen -// (e.g. only lower bits of address are garbage, or the access happens -// early at program startup where malloc-ed memory is more likely to -// be zeroed. As of 2012-08-28 this flag adds 20% slowdown. -static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", - cl::desc("report accesses through a pointer which has poisoned shadow"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", - cl::desc("print out instructions with default strict semantics"), - cl::Hidden, cl::init(false)); - -static cl::opt<int> ClInstrumentationWithCallThreshold( - "msan-instrumentation-with-call-threshold", - cl::desc( - "If the function being instrumented requires more than " - "this number of checks and origin stores, use callbacks instead of " - "inline checks (-1 means never use callbacks)."), - cl::Hidden, cl::init(3500)); - -static cl::opt<bool> - ClEnableKmsan("msan-kernel", - cl::desc("Enable KernelMemorySanitizer instrumentation"), - cl::Hidden, cl::init(false)); - -// This is an experiment to enable handling of cases where shadow is a non-zero -// compile-time constant. For some unexplainable reason they were silently -// ignored in the instrumentation. -static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", - cl::desc("Insert checks for constant shadow values"), - cl::Hidden, cl::init(false)); - -// This is off by default because of a bug in gold: -// https://sourceware.org/bugzilla/show_bug.cgi?id=19002 -static cl::opt<bool> ClWithComdat("msan-with-comdat", - cl::desc("Place MSan constructors in comdat sections"), - cl::Hidden, cl::init(false)); - -// These options allow to specify custom memory map parameters -// See MemoryMapParams for details. -static cl::opt<uint64_t> ClAndMask("msan-and-mask", - cl::desc("Define custom MSan AndMask"), - cl::Hidden, cl::init(0)); - -static cl::opt<uint64_t> ClXorMask("msan-xor-mask", - cl::desc("Define custom MSan XorMask"), - cl::Hidden, cl::init(0)); - -static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", - cl::desc("Define custom MSan ShadowBase"), - cl::Hidden, cl::init(0)); - -static cl::opt<uint64_t> ClOriginBase("msan-origin-base", - cl::desc("Define custom MSan OriginBase"), - cl::Hidden, cl::init(0)); - -static const char *const kMsanModuleCtorName = "msan.module_ctor"; -static const char *const kMsanInitName = "__msan_init"; - -namespace { - -// Memory map parameters used in application-to-shadow address calculation. -// Offset = (Addr & ~AndMask) ^ XorMask -// Shadow = ShadowBase + Offset -// Origin = OriginBase + Offset -struct MemoryMapParams { - uint64_t AndMask; - uint64_t XorMask; - uint64_t ShadowBase; - uint64_t OriginBase; -}; - -struct PlatformMemoryMapParams { - const MemoryMapParams *bits32; - const MemoryMapParams *bits64; -}; - -} // end anonymous namespace - -// i386 Linux -static const MemoryMapParams Linux_I386_MemoryMapParams = { - 0x000080000000, // AndMask - 0, // XorMask (not used) - 0, // ShadowBase (not used) - 0x000040000000, // OriginBase -}; - -// x86_64 Linux -static const MemoryMapParams Linux_X86_64_MemoryMapParams = { -#ifdef MSAN_LINUX_X86_64_OLD_MAPPING - 0x400000000000, // AndMask - 0, // XorMask (not used) - 0, // ShadowBase (not used) - 0x200000000000, // OriginBase -#else - 0, // AndMask (not used) - 0x500000000000, // XorMask - 0, // ShadowBase (not used) - 0x100000000000, // OriginBase -#endif -}; - -// mips64 Linux -static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { - 0, // AndMask (not used) - 0x008000000000, // XorMask - 0, // ShadowBase (not used) - 0x002000000000, // OriginBase -}; - -// ppc64 Linux -static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { - 0xE00000000000, // AndMask - 0x100000000000, // XorMask - 0x080000000000, // ShadowBase - 0x1C0000000000, // OriginBase -}; - -// aarch64 Linux -static const MemoryMapParams Linux_AArch64_MemoryMapParams = { - 0, // AndMask (not used) - 0x06000000000, // XorMask - 0, // ShadowBase (not used) - 0x01000000000, // OriginBase -}; - -// i386 FreeBSD -static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { - 0x000180000000, // AndMask - 0x000040000000, // XorMask - 0x000020000000, // ShadowBase - 0x000700000000, // OriginBase -}; - -// x86_64 FreeBSD -static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { - 0xc00000000000, // AndMask - 0x200000000000, // XorMask - 0x100000000000, // ShadowBase - 0x380000000000, // OriginBase -}; - -// x86_64 NetBSD -static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { - 0, // AndMask - 0x500000000000, // XorMask - 0, // ShadowBase - 0x100000000000, // OriginBase -}; - -static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { - &Linux_I386_MemoryMapParams, - &Linux_X86_64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { - nullptr, - &Linux_MIPS64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { - nullptr, - &Linux_PowerPC64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { - nullptr, - &Linux_AArch64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { - &FreeBSD_I386_MemoryMapParams, - &FreeBSD_X86_64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { - nullptr, - &NetBSD_X86_64_MemoryMapParams, -}; - -namespace { - -/// Instrument functions of a module to detect uninitialized reads. -/// -/// Instantiating MemorySanitizer inserts the msan runtime library API function -/// declarations into the module if they don't exist already. Instantiating -/// ensures the __msan_init function is in the list of global constructors for -/// the module. -class MemorySanitizer { -public: - MemorySanitizer(Module &M, MemorySanitizerOptions Options) { - this->CompileKernel = - ClEnableKmsan.getNumOccurrences() > 0 ? ClEnableKmsan : Options.Kernel; - if (ClTrackOrigins.getNumOccurrences() > 0) - this->TrackOrigins = ClTrackOrigins; - else - this->TrackOrigins = this->CompileKernel ? 2 : Options.TrackOrigins; - this->Recover = ClKeepGoing.getNumOccurrences() > 0 - ? ClKeepGoing - : (this->CompileKernel | Options.Recover); - initializeModule(M); - } - - // MSan cannot be moved or copied because of MapParams. - MemorySanitizer(MemorySanitizer &&) = delete; - MemorySanitizer &operator=(MemorySanitizer &&) = delete; - MemorySanitizer(const MemorySanitizer &) = delete; - MemorySanitizer &operator=(const MemorySanitizer &) = delete; - - bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); - -private: - friend struct MemorySanitizerVisitor; - friend struct VarArgAMD64Helper; - friend struct VarArgMIPS64Helper; - friend struct VarArgAArch64Helper; - friend struct VarArgPowerPC64Helper; - - void initializeModule(Module &M); - void initializeCallbacks(Module &M); - void createKernelApi(Module &M); - void createUserspaceApi(Module &M); - - /// True if we're compiling the Linux kernel. - bool CompileKernel; - /// Track origins (allocation points) of uninitialized values. - int TrackOrigins; - bool Recover; - - LLVMContext *C; - Type *IntptrTy; - Type *OriginTy; - - // XxxTLS variables represent the per-thread state in MSan and per-task state - // in KMSAN. - // For the userspace these point to thread-local globals. In the kernel land - // they point to the members of a per-task struct obtained via a call to - // __msan_get_context_state(). - - /// Thread-local shadow storage for function parameters. - Value *ParamTLS; - - /// Thread-local origin storage for function parameters. - Value *ParamOriginTLS; - - /// Thread-local shadow storage for function return value. - Value *RetvalTLS; - - /// Thread-local origin storage for function return value. - Value *RetvalOriginTLS; - - /// Thread-local shadow storage for in-register va_arg function - /// parameters (x86_64-specific). - Value *VAArgTLS; - - /// Thread-local shadow storage for in-register va_arg function - /// parameters (x86_64-specific). - Value *VAArgOriginTLS; - - /// Thread-local shadow storage for va_arg overflow area - /// (x86_64-specific). - Value *VAArgOverflowSizeTLS; - - /// Thread-local space used to pass origin value to the UMR reporting - /// function. - Value *OriginTLS; - - /// Are the instrumentation callbacks set up? - bool CallbacksInitialized = false; - - /// The run-time callback to print a warning. - FunctionCallee WarningFn; - - // These arrays are indexed by log2(AccessSize). - FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; - FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; - - /// Run-time helper that generates a new origin value for a stack - /// allocation. - FunctionCallee MsanSetAllocaOrigin4Fn; - - /// Run-time helper that poisons stack on function entry. - FunctionCallee MsanPoisonStackFn; - - /// Run-time helper that records a store (or any event) of an - /// uninitialized value and returns an updated origin id encoding this info. - FunctionCallee MsanChainOriginFn; - - /// MSan runtime replacements for memmove, memcpy and memset. - FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; - - /// KMSAN callback for task-local function argument shadow. - StructType *MsanContextStateTy; - FunctionCallee MsanGetContextStateFn; - - /// Functions for poisoning/unpoisoning local variables - FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; - - /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin - /// pointers. - FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; - FunctionCallee MsanMetadataPtrForLoad_1_8[4]; - FunctionCallee MsanMetadataPtrForStore_1_8[4]; - FunctionCallee MsanInstrumentAsmStoreFn; - - /// Helper to choose between different MsanMetadataPtrXxx(). - FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); - - /// Memory map parameters used in application-to-shadow calculation. - const MemoryMapParams *MapParams; - - /// Custom memory map parameters used when -msan-shadow-base or - // -msan-origin-base is provided. - MemoryMapParams CustomMapParams; - - MDNode *ColdCallWeights; - - /// Branch weights for origin store. - MDNode *OriginStoreWeights; - - /// An empty volatile inline asm that prevents callback merge. - InlineAsm *EmptyAsm; - - Function *MsanCtorFunction; -}; - -/// A legacy function pass for msan instrumentation. -/// -/// Instruments functions to detect unitialized reads. -struct MemorySanitizerLegacyPass : public FunctionPass { - // Pass identification, replacement for typeid. - static char ID; - - MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) - : FunctionPass(ID), Options(Options) {} - StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<TargetLibraryInfoWrapperPass>(); - } - - bool runOnFunction(Function &F) override { - return MSan->sanitizeFunction( - F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()); - } - bool doInitialization(Module &M) override; - - Optional<MemorySanitizer> MSan; - MemorySanitizerOptions Options; -}; - -} // end anonymous namespace - -PreservedAnalyses MemorySanitizerPass::run(Function &F, - FunctionAnalysisManager &FAM) { - MemorySanitizer Msan(*F.getParent(), Options); - if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) - return PreservedAnalyses::none(); - return PreservedAnalyses::all(); -} - -char MemorySanitizerLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", - "MemorySanitizer: detects uninitialized reads.", false, - false) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", - "MemorySanitizer: detects uninitialized reads.", false, - false) - -FunctionPass * -llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { - return new MemorySanitizerLegacyPass(Options); -} - -/// Create a non-const global initialized with the given string. -/// -/// Creates a writable global for Str so that we can pass it to the -/// run-time lib. Runtime uses first 4 bytes of the string to store the -/// frame ID, so the string needs to be mutable. -static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, - StringRef Str) { - Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); - return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, - GlobalValue::PrivateLinkage, StrConst, ""); -} - -/// Create KMSAN API callbacks. -void MemorySanitizer::createKernelApi(Module &M) { - IRBuilder<> IRB(*C); - - // These will be initialized in insertKmsanPrologue(). - RetvalTLS = nullptr; - RetvalOriginTLS = nullptr; - ParamTLS = nullptr; - ParamOriginTLS = nullptr; - VAArgTLS = nullptr; - VAArgOriginTLS = nullptr; - VAArgOverflowSizeTLS = nullptr; - // OriginTLS is unused in the kernel. - OriginTLS = nullptr; - - // __msan_warning() in the kernel takes an origin. - WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), - IRB.getInt32Ty()); - // Requests the per-task context state (kmsan_context_state*) from the - // runtime library. - MsanContextStateTy = StructType::get( - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), - ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ - IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, - OriginTy); - MsanGetContextStateFn = M.getOrInsertFunction( - "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); - - Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), - PointerType::get(IRB.getInt32Ty(), 0)); - - for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { - std::string name_load = - "__msan_metadata_ptr_for_load_" + std::to_string(size); - std::string name_store = - "__msan_metadata_ptr_for_store_" + std::to_string(size); - MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( - name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); - MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( - name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); - } - - MsanMetadataPtrForLoadN = M.getOrInsertFunction( - "__msan_metadata_ptr_for_load_n", RetTy, - PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); - MsanMetadataPtrForStoreN = M.getOrInsertFunction( - "__msan_metadata_ptr_for_store_n", RetTy, - PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); - - // Functions for poisoning and unpoisoning memory. - MsanPoisonAllocaFn = - M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), - IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); - MsanUnpoisonAllocaFn = M.getOrInsertFunction( - "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); -} - -static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { - return M.getOrInsertGlobal(Name, Ty, [&] { - return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, - nullptr, Name, nullptr, - GlobalVariable::InitialExecTLSModel); - }); -} - -/// Insert declarations for userspace-specific functions and globals. -void MemorySanitizer::createUserspaceApi(Module &M) { - IRBuilder<> IRB(*C); - // Create the callback. - // FIXME: this function should have "Cold" calling conv, - // which is not yet implemented. - StringRef WarningFnName = Recover ? "__msan_warning" - : "__msan_warning_noreturn"; - WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy()); - - // Create the global TLS variables. - RetvalTLS = - getOrInsertGlobal(M, "__msan_retval_tls", - ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); - - RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); - - ParamTLS = - getOrInsertGlobal(M, "__msan_param_tls", - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); - - ParamOriginTLS = - getOrInsertGlobal(M, "__msan_param_origin_tls", - ArrayType::get(OriginTy, kParamTLSSize / 4)); - - VAArgTLS = - getOrInsertGlobal(M, "__msan_va_arg_tls", - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); - - VAArgOriginTLS = - getOrInsertGlobal(M, "__msan_va_arg_origin_tls", - ArrayType::get(OriginTy, kParamTLSSize / 4)); - - VAArgOverflowSizeTLS = - getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); - OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty()); - - for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; - AccessSizeIndex++) { - unsigned AccessSize = 1 << AccessSizeIndex; - std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); - MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( - FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), - IRB.getInt32Ty()); - - FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); - MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( - FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), - IRB.getInt8PtrTy(), IRB.getInt32Ty()); - } - - MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( - "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, - IRB.getInt8PtrTy(), IntptrTy); - MsanPoisonStackFn = - M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), - IRB.getInt8PtrTy(), IntptrTy); -} - -/// Insert extern declaration of runtime-provided functions and globals. -void MemorySanitizer::initializeCallbacks(Module &M) { - // Only do this once. - if (CallbacksInitialized) - return; - - IRBuilder<> IRB(*C); - // Initialize callbacks that are common for kernel and userspace - // instrumentation. - MsanChainOriginFn = M.getOrInsertFunction( - "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); - MemmoveFn = M.getOrInsertFunction( - "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IntptrTy); - MemcpyFn = M.getOrInsertFunction( - "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IntptrTy); - MemsetFn = M.getOrInsertFunction( - "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), - IntptrTy); - // We insert an empty inline asm after __msan_report* to avoid callback merge. - EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), - StringRef(""), StringRef(""), - /*hasSideEffects=*/true); - - MsanInstrumentAsmStoreFn = - M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), - PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); - - if (CompileKernel) { - createKernelApi(M); - } else { - createUserspaceApi(M); - } - CallbacksInitialized = true; -} - -FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, - int size) { - FunctionCallee *Fns = - isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; - switch (size) { - case 1: - return Fns[0]; - case 2: - return Fns[1]; - case 4: - return Fns[2]; - case 8: - return Fns[3]; - default: - return nullptr; - } -} - -/// Module-level initialization. -/// -/// inserts a call to __msan_init to the module's constructor list. -void MemorySanitizer::initializeModule(Module &M) { - auto &DL = M.getDataLayout(); - - bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; - bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; - // Check the overrides first - if (ShadowPassed || OriginPassed) { - CustomMapParams.AndMask = ClAndMask; - CustomMapParams.XorMask = ClXorMask; - CustomMapParams.ShadowBase = ClShadowBase; - CustomMapParams.OriginBase = ClOriginBase; - MapParams = &CustomMapParams; - } else { - Triple TargetTriple(M.getTargetTriple()); - switch (TargetTriple.getOS()) { - case Triple::FreeBSD: - switch (TargetTriple.getArch()) { - case Triple::x86_64: - MapParams = FreeBSD_X86_MemoryMapParams.bits64; - break; - case Triple::x86: - MapParams = FreeBSD_X86_MemoryMapParams.bits32; - break; - default: - report_fatal_error("unsupported architecture"); - } - break; - case Triple::NetBSD: - switch (TargetTriple.getArch()) { - case Triple::x86_64: - MapParams = NetBSD_X86_MemoryMapParams.bits64; - break; - default: - report_fatal_error("unsupported architecture"); - } - break; - case Triple::Linux: - switch (TargetTriple.getArch()) { - case Triple::x86_64: - MapParams = Linux_X86_MemoryMapParams.bits64; - break; - case Triple::x86: - MapParams = Linux_X86_MemoryMapParams.bits32; - break; - case Triple::mips64: - case Triple::mips64el: - MapParams = Linux_MIPS_MemoryMapParams.bits64; - break; - case Triple::ppc64: - case Triple::ppc64le: - MapParams = Linux_PowerPC_MemoryMapParams.bits64; - break; - case Triple::aarch64: - case Triple::aarch64_be: - MapParams = Linux_ARM_MemoryMapParams.bits64; - break; - default: - report_fatal_error("unsupported architecture"); - } - break; - default: - report_fatal_error("unsupported operating system"); - } - } - - C = &(M.getContext()); - IRBuilder<> IRB(*C); - IntptrTy = IRB.getIntPtrTy(DL); - OriginTy = IRB.getInt32Ty(); - - ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); - OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); - - if (!CompileKernel) { - std::tie(MsanCtorFunction, std::ignore) = - getOrCreateSanitizerCtorAndInitFunctions( - M, kMsanModuleCtorName, kMsanInitName, - /*InitArgTypes=*/{}, - /*InitArgs=*/{}, - // This callback is invoked when the functions are created the first - // time. Hook them into the global ctors list in that case: - [&](Function *Ctor, FunctionCallee) { - if (!ClWithComdat) { - appendToGlobalCtors(M, Ctor, 0); - return; - } - Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); - Ctor->setComdat(MsanCtorComdat); - appendToGlobalCtors(M, Ctor, 0, Ctor); - }); - - if (TrackOrigins) - M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { - return new GlobalVariable( - M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, - IRB.getInt32(TrackOrigins), "__msan_track_origins"); - }); - - if (Recover) - M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { - return new GlobalVariable(M, IRB.getInt32Ty(), true, - GlobalValue::WeakODRLinkage, - IRB.getInt32(Recover), "__msan_keep_going"); - }); -} -} - -bool MemorySanitizerLegacyPass::doInitialization(Module &M) { - MSan.emplace(M, Options); - return true; -} - -namespace { - -/// A helper class that handles instrumentation of VarArg -/// functions on a particular platform. -/// -/// Implementations are expected to insert the instrumentation -/// necessary to propagate argument shadow through VarArg function -/// calls. Visit* methods are called during an InstVisitor pass over -/// the function, and should avoid creating new basic blocks. A new -/// instance of this class is created for each instrumented function. -struct VarArgHelper { - virtual ~VarArgHelper() = default; - - /// Visit a CallSite. - virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0; - - /// Visit a va_start call. - virtual void visitVAStartInst(VAStartInst &I) = 0; - - /// Visit a va_copy call. - virtual void visitVACopyInst(VACopyInst &I) = 0; - - /// Finalize function instrumentation. - /// - /// This method is called after visiting all interesting (see above) - /// instructions in a function. - virtual void finalizeInstrumentation() = 0; -}; - -struct MemorySanitizerVisitor; - -} // end anonymous namespace - -static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, - MemorySanitizerVisitor &Visitor); - -static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { - if (TypeSize <= 8) return 0; - return Log2_32_Ceil((TypeSize + 7) / 8); -} - -namespace { - -/// This class does all the work for a given function. Store and Load -/// instructions store and load corresponding shadow and origin -/// values. Most instructions propagate shadow from arguments to their -/// return values. Certain instructions (most importantly, BranchInst) -/// test their argument shadow and print reports (with a runtime call) if it's -/// non-zero. -struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { - Function &F; - MemorySanitizer &MS; - SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; - ValueMap<Value*, Value*> ShadowMap, OriginMap; - std::unique_ptr<VarArgHelper> VAHelper; - const TargetLibraryInfo *TLI; - BasicBlock *ActualFnStart; - - // The following flags disable parts of MSan instrumentation based on - // blacklist contents and command-line options. - bool InsertChecks; - bool PropagateShadow; - bool PoisonStack; - bool PoisonUndef; - bool CheckReturnValue; - - struct ShadowOriginAndInsertPoint { - Value *Shadow; - Value *Origin; - Instruction *OrigIns; - - ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) - : Shadow(S), Origin(O), OrigIns(I) {} - }; - SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; - bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; - SmallSet<AllocaInst *, 16> AllocaSet; - SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; - SmallVector<StoreInst *, 16> StoreList; - - MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, - const TargetLibraryInfo &TLI) - : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { - bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); - InsertChecks = SanitizeFunction; - PropagateShadow = SanitizeFunction; - PoisonStack = SanitizeFunction && ClPoisonStack; - PoisonUndef = SanitizeFunction && ClPoisonUndef; - // FIXME: Consider using SpecialCaseList to specify a list of functions that - // must always return fully initialized values. For now, we hardcode "main". - CheckReturnValue = SanitizeFunction && (F.getName() == "main"); - - MS.initializeCallbacks(*F.getParent()); - if (MS.CompileKernel) - ActualFnStart = insertKmsanPrologue(F); - else - ActualFnStart = &F.getEntryBlock(); - - LLVM_DEBUG(if (!InsertChecks) dbgs() - << "MemorySanitizer is not inserting checks into '" - << F.getName() << "'\n"); - } - - Value *updateOrigin(Value *V, IRBuilder<> &IRB) { - if (MS.TrackOrigins <= 1) return V; - return IRB.CreateCall(MS.MsanChainOriginFn, V); - } - - Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { - const DataLayout &DL = F.getParent()->getDataLayout(); - unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); - if (IntptrSize == kOriginSize) return Origin; - assert(IntptrSize == kOriginSize * 2); - Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); - return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); - } - - /// Fill memory range with the given origin value. - void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, - unsigned Size, unsigned Alignment) { - const DataLayout &DL = F.getParent()->getDataLayout(); - unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy); - unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); - assert(IntptrAlignment >= kMinOriginAlignment); - assert(IntptrSize >= kOriginSize); - - unsigned Ofs = 0; - unsigned CurrentAlignment = Alignment; - if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { - Value *IntptrOrigin = originToIntptr(IRB, Origin); - Value *IntptrOriginPtr = - IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); - for (unsigned i = 0; i < Size / IntptrSize; ++i) { - Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) - : IntptrOriginPtr; - IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); - Ofs += IntptrSize / kOriginSize; - CurrentAlignment = IntptrAlignment; - } - } - - for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { - Value *GEP = - i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; - IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); - CurrentAlignment = kMinOriginAlignment; - } - } - - void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, - Value *OriginPtr, unsigned Alignment, bool AsCall) { - const DataLayout &DL = F.getParent()->getDataLayout(); - unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); - unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); - if (Shadow->getType()->isAggregateType()) { - paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, - OriginAlignment); - } else { - Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); - Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); - if (ConstantShadow) { - if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) - paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, - OriginAlignment); - return; - } - - unsigned TypeSizeInBits = - DL.getTypeSizeInBits(ConvertedShadow->getType()); - unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); - if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { - FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; - Value *ConvertedShadow2 = IRB.CreateZExt( - ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); - IRB.CreateCall(Fn, {ConvertedShadow2, - IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), - Origin}); - } else { - Value *Cmp = IRB.CreateICmpNE( - ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp"); - Instruction *CheckTerm = SplitBlockAndInsertIfThen( - Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); - IRBuilder<> IRBNew(CheckTerm); - paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, - OriginAlignment); - } - } - } - - void materializeStores(bool InstrumentWithCalls) { - for (StoreInst *SI : StoreList) { - IRBuilder<> IRB(SI); - Value *Val = SI->getValueOperand(); - Value *Addr = SI->getPointerOperand(); - Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); - Value *ShadowPtr, *OriginPtr; - Type *ShadowTy = Shadow->getType(); - unsigned Alignment = SI->getAlignment(); - unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); - - StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); - LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); - (void)NewSI; - - if (SI->isAtomic()) - SI->setOrdering(addReleaseOrdering(SI->getOrdering())); - - if (MS.TrackOrigins && !SI->isAtomic()) - storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, - OriginAlignment, InstrumentWithCalls); - } - } - - /// Helper function to insert a warning at IRB's current insert point. - void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { - if (!Origin) - Origin = (Value *)IRB.getInt32(0); - if (MS.CompileKernel) { - IRB.CreateCall(MS.WarningFn, Origin); - } else { - if (MS.TrackOrigins) { - IRB.CreateStore(Origin, MS.OriginTLS); - } - IRB.CreateCall(MS.WarningFn, {}); - } - IRB.CreateCall(MS.EmptyAsm, {}); - // FIXME: Insert UnreachableInst if !MS.Recover? - // This may invalidate some of the following checks and needs to be done - // at the very end. - } - - void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, - bool AsCall) { - IRBuilder<> IRB(OrigIns); - LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); - Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB); - LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); - - Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow); - if (ConstantShadow) { - if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { - insertWarningFn(IRB, Origin); - } - return; - } - - const DataLayout &DL = OrigIns->getModule()->getDataLayout(); - - unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); - unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); - if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { - FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; - Value *ConvertedShadow2 = - IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); - IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin - ? Origin - : (Value *)IRB.getInt32(0)}); - } else { - Value *Cmp = IRB.CreateICmpNE(ConvertedShadow, - getCleanShadow(ConvertedShadow), "_mscmp"); - Instruction *CheckTerm = SplitBlockAndInsertIfThen( - Cmp, OrigIns, - /* Unreachable */ !MS.Recover, MS.ColdCallWeights); - - IRB.SetInsertPoint(CheckTerm); - insertWarningFn(IRB, Origin); - LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); - } - } - - void materializeChecks(bool InstrumentWithCalls) { - for (const auto &ShadowData : InstrumentationList) { - Instruction *OrigIns = ShadowData.OrigIns; - Value *Shadow = ShadowData.Shadow; - Value *Origin = ShadowData.Origin; - materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); - } - LLVM_DEBUG(dbgs() << "DONE:\n" << F); - } - - BasicBlock *insertKmsanPrologue(Function &F) { - BasicBlock *ret = - SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI()); - IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); - Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); - Constant *Zero = IRB.getInt32(0); - MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(0)}, "param_shadow"); - MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(1)}, "retval_shadow"); - MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(2)}, "va_arg_shadow"); - MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(3)}, "va_arg_origin"); - MS.VAArgOverflowSizeTLS = - IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); - MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(5)}, "param_origin"); - MS.RetvalOriginTLS = - IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(6)}, "retval_origin"); - return ret; - } - - /// Add MemorySanitizer instrumentation to a function. - bool runOnFunction() { - // In the presence of unreachable blocks, we may see Phi nodes with - // incoming nodes from such blocks. Since InstVisitor skips unreachable - // blocks, such nodes will not have any shadow value associated with them. - // It's easier to remove unreachable blocks than deal with missing shadow. - removeUnreachableBlocks(F); - - // Iterate all BBs in depth-first order and create shadow instructions - // for all instructions (where applicable). - // For PHI nodes we create dummy shadow PHIs which will be finalized later. - for (BasicBlock *BB : depth_first(ActualFnStart)) - visit(*BB); - - // Finalize PHI nodes. - for (PHINode *PN : ShadowPHINodes) { - PHINode *PNS = cast<PHINode>(getShadow(PN)); - PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; - size_t NumValues = PN->getNumIncomingValues(); - for (size_t v = 0; v < NumValues; v++) { - PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); - if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); - } - } - - VAHelper->finalizeInstrumentation(); - - // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to - // instrumenting only allocas. - if (InstrumentLifetimeStart) { - for (auto Item : LifetimeStartList) { - instrumentAlloca(*Item.second, Item.first); - AllocaSet.erase(Item.second); - } - } - // Poison the allocas for which we didn't instrument the corresponding - // lifetime intrinsics. - for (AllocaInst *AI : AllocaSet) - instrumentAlloca(*AI); - - bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && - InstrumentationList.size() + StoreList.size() > - (unsigned)ClInstrumentationWithCallThreshold; - - // Insert shadow value checks. - materializeChecks(InstrumentWithCalls); - - // Delayed instrumentation of StoreInst. - // This may not add new address checks. - materializeStores(InstrumentWithCalls); - - return true; - } - - /// Compute the shadow type that corresponds to a given Value. - Type *getShadowTy(Value *V) { - return getShadowTy(V->getType()); - } - - /// Compute the shadow type that corresponds to a given Type. - Type *getShadowTy(Type *OrigTy) { - if (!OrigTy->isSized()) { - return nullptr; - } - // For integer type, shadow is the same as the original type. - // This may return weird-sized types like i1. - if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) - return IT; - const DataLayout &DL = F.getParent()->getDataLayout(); - if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { - uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); - return VectorType::get(IntegerType::get(*MS.C, EltSize), - VT->getNumElements()); - } - if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { - return ArrayType::get(getShadowTy(AT->getElementType()), - AT->getNumElements()); - } - if (StructType *ST = dyn_cast<StructType>(OrigTy)) { - SmallVector<Type*, 4> Elements; - for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) - Elements.push_back(getShadowTy(ST->getElementType(i))); - StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); - LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); - return Res; - } - uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); - return IntegerType::get(*MS.C, TypeSize); - } - - /// Flatten a vector type. - Type *getShadowTyNoVec(Type *ty) { - if (VectorType *vt = dyn_cast<VectorType>(ty)) - return IntegerType::get(*MS.C, vt->getBitWidth()); - return ty; - } - - /// Convert a shadow value to it's flattened variant. - Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) { - Type *Ty = V->getType(); - Type *NoVecTy = getShadowTyNoVec(Ty); - if (Ty == NoVecTy) return V; - return IRB.CreateBitCast(V, NoVecTy); - } - - /// Compute the integer shadow offset that corresponds to a given - /// application address. - /// - /// Offset = (Addr & ~AndMask) ^ XorMask - Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { - Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); - - uint64_t AndMask = MS.MapParams->AndMask; - if (AndMask) - OffsetLong = - IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); - - uint64_t XorMask = MS.MapParams->XorMask; - if (XorMask) - OffsetLong = - IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); - return OffsetLong; - } - - /// Compute the shadow and origin addresses corresponding to a given - /// application address. - /// - /// Shadow = ShadowBase + Offset - /// Origin = (OriginBase + Offset) & ~3ULL - std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr, - IRBuilder<> &IRB, - Type *ShadowTy, - unsigned Alignment) { - Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); - Value *ShadowLong = ShadowOffset; - uint64_t ShadowBase = MS.MapParams->ShadowBase; - if (ShadowBase != 0) { - ShadowLong = - IRB.CreateAdd(ShadowLong, - ConstantInt::get(MS.IntptrTy, ShadowBase)); - } - Value *ShadowPtr = - IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); - Value *OriginPtr = nullptr; - if (MS.TrackOrigins) { - Value *OriginLong = ShadowOffset; - uint64_t OriginBase = MS.MapParams->OriginBase; - if (OriginBase != 0) - OriginLong = IRB.CreateAdd(OriginLong, - ConstantInt::get(MS.IntptrTy, OriginBase)); - if (Alignment < kMinOriginAlignment) { - uint64_t Mask = kMinOriginAlignment - 1; - OriginLong = - IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); - } - OriginPtr = - IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); - } - return std::make_pair(ShadowPtr, OriginPtr); - } - - std::pair<Value *, Value *> - getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, - unsigned Alignment, bool isStore) { - Value *ShadowOriginPtrs; - const DataLayout &DL = F.getParent()->getDataLayout(); - int Size = DL.getTypeStoreSize(ShadowTy); - - FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); - Value *AddrCast = - IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); - if (Getter) { - ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); - } else { - Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); - ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN - : MS.MsanMetadataPtrForLoadN, - {AddrCast, SizeVal}); - } - Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); - ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); - Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); - - return std::make_pair(ShadowPtr, OriginPtr); - } - - std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, - Type *ShadowTy, - unsigned Alignment, - bool isStore) { - std::pair<Value *, Value *> ret; - if (MS.CompileKernel) - ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore); - else - ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); - return ret; - } - - /// Compute the shadow address for a given function argument. - /// - /// Shadow = ParamTLS+ArgOffset. - Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, - int ArgOffset) { - Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); - if (ArgOffset) - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), - "_msarg"); - } - - /// Compute the origin address for a given function argument. - Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, - int ArgOffset) { - if (!MS.TrackOrigins) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); - if (ArgOffset) - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), - "_msarg_o"); - } - - /// Compute the shadow address for a retval. - Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { - return IRB.CreatePointerCast(MS.RetvalTLS, - PointerType::get(getShadowTy(A), 0), - "_msret"); - } - - /// Compute the origin address for a retval. - Value *getOriginPtrForRetval(IRBuilder<> &IRB) { - // We keep a single origin for the entire retval. Might be too optimistic. - return MS.RetvalOriginTLS; - } - - /// Set SV to be the shadow value for V. - void setShadow(Value *V, Value *SV) { - assert(!ShadowMap.count(V) && "Values may only have one shadow"); - ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); - } - - /// Set Origin to be the origin value for V. - void setOrigin(Value *V, Value *Origin) { - if (!MS.TrackOrigins) return; - assert(!OriginMap.count(V) && "Values may only have one origin"); - LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); - OriginMap[V] = Origin; - } - - Constant *getCleanShadow(Type *OrigTy) { - Type *ShadowTy = getShadowTy(OrigTy); - if (!ShadowTy) - return nullptr; - return Constant::getNullValue(ShadowTy); - } - - /// Create a clean shadow value for a given value. - /// - /// Clean shadow (all zeroes) means all bits of the value are defined - /// (initialized). - Constant *getCleanShadow(Value *V) { - return getCleanShadow(V->getType()); - } - - /// Create a dirty shadow of a given shadow type. - Constant *getPoisonedShadow(Type *ShadowTy) { - assert(ShadowTy); - if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) - return Constant::getAllOnesValue(ShadowTy); - if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { - SmallVector<Constant *, 4> Vals(AT->getNumElements(), - getPoisonedShadow(AT->getElementType())); - return ConstantArray::get(AT, Vals); - } - if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { - SmallVector<Constant *, 4> Vals; - for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) - Vals.push_back(getPoisonedShadow(ST->getElementType(i))); - return ConstantStruct::get(ST, Vals); - } - llvm_unreachable("Unexpected shadow type"); - } - - /// Create a dirty shadow for a given value. - Constant *getPoisonedShadow(Value *V) { - Type *ShadowTy = getShadowTy(V); - if (!ShadowTy) - return nullptr; - return getPoisonedShadow(ShadowTy); - } - - /// Create a clean (zero) origin. - Value *getCleanOrigin() { - return Constant::getNullValue(MS.OriginTy); - } - - /// Get the shadow value for a given Value. - /// - /// This function either returns the value set earlier with setShadow, - /// or extracts if from ParamTLS (for function arguments). - Value *getShadow(Value *V) { - if (!PropagateShadow) return getCleanShadow(V); - if (Instruction *I = dyn_cast<Instruction>(V)) { - if (I->getMetadata("nosanitize")) - return getCleanShadow(V); - // For instructions the shadow is already stored in the map. - Value *Shadow = ShadowMap[V]; - if (!Shadow) { - LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); - (void)I; - assert(Shadow && "No shadow for a value"); - } - return Shadow; - } - if (UndefValue *U = dyn_cast<UndefValue>(V)) { - Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); - LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); - (void)U; - return AllOnes; - } - if (Argument *A = dyn_cast<Argument>(V)) { - // For arguments we compute the shadow on demand and store it in the map. - Value **ShadowPtr = &ShadowMap[V]; - if (*ShadowPtr) - return *ShadowPtr; - Function *F = A->getParent(); - IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI()); - unsigned ArgOffset = 0; - const DataLayout &DL = F->getParent()->getDataLayout(); - for (auto &FArg : F->args()) { - if (!FArg.getType()->isSized()) { - LLVM_DEBUG(dbgs() << "Arg is not sized\n"); - continue; - } - unsigned Size = - FArg.hasByValAttr() - ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType()) - : DL.getTypeAllocSize(FArg.getType()); - if (A == &FArg) { - bool Overflow = ArgOffset + Size > kParamTLSSize; - Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); - if (FArg.hasByValAttr()) { - // ByVal pointer itself has clean shadow. We copy the actual - // argument shadow to the underlying memory. - // Figure out maximal valid memcpy alignment. - unsigned ArgAlign = FArg.getParamAlignment(); - if (ArgAlign == 0) { - Type *EltType = A->getType()->getPointerElementType(); - ArgAlign = DL.getABITypeAlignment(EltType); - } - Value *CpShadowPtr = - getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, - /*isStore*/ true) - .first; - // TODO(glider): need to copy origins. - if (Overflow) { - // ParamTLS overflow. - EntryIRB.CreateMemSet( - CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), - Size, ArgAlign); - } else { - unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); - Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, - CopyAlign, Size); - LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); - (void)Cpy; - } - *ShadowPtr = getCleanShadow(V); - } else { - if (Overflow) { - // ParamTLS overflow. - *ShadowPtr = getCleanShadow(V); - } else { - *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, - kShadowTLSAlignment); - } - } - LLVM_DEBUG(dbgs() - << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); - if (MS.TrackOrigins && !Overflow) { - Value *OriginPtr = - getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); - setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); - } else { - setOrigin(A, getCleanOrigin()); - } - } - ArgOffset += alignTo(Size, kShadowTLSAlignment); - } - assert(*ShadowPtr && "Could not find shadow for an argument"); - return *ShadowPtr; - } - // For everything else the shadow is zero. - return getCleanShadow(V); - } - - /// Get the shadow for i-th argument of the instruction I. - Value *getShadow(Instruction *I, int i) { - return getShadow(I->getOperand(i)); - } - - /// Get the origin for a value. - Value *getOrigin(Value *V) { - if (!MS.TrackOrigins) return nullptr; - if (!PropagateShadow) return getCleanOrigin(); - if (isa<Constant>(V)) return getCleanOrigin(); - assert((isa<Instruction>(V) || isa<Argument>(V)) && - "Unexpected value type in getOrigin()"); - if (Instruction *I = dyn_cast<Instruction>(V)) { - if (I->getMetadata("nosanitize")) - return getCleanOrigin(); - } - Value *Origin = OriginMap[V]; - assert(Origin && "Missing origin"); - return Origin; - } - - /// Get the origin for i-th argument of the instruction I. - Value *getOrigin(Instruction *I, int i) { - return getOrigin(I->getOperand(i)); - } - - /// Remember the place where a shadow check should be inserted. - /// - /// This location will be later instrumented with a check that will print a - /// UMR warning in runtime if the shadow value is not 0. - void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { - assert(Shadow); - if (!InsertChecks) return; -#ifndef NDEBUG - Type *ShadowTy = Shadow->getType(); - assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) && - "Can only insert checks for integer and vector shadow types"); -#endif - InstrumentationList.push_back( - ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); - } - - /// Remember the place where a shadow check should be inserted. - /// - /// This location will be later instrumented with a check that will print a - /// UMR warning in runtime if the value is not fully defined. - void insertShadowCheck(Value *Val, Instruction *OrigIns) { - assert(Val); - Value *Shadow, *Origin; - if (ClCheckConstantShadow) { - Shadow = getShadow(Val); - if (!Shadow) return; - Origin = getOrigin(Val); - } else { - Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); - if (!Shadow) return; - Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); - } - insertShadowCheck(Shadow, Origin, OrigIns); - } - - AtomicOrdering addReleaseOrdering(AtomicOrdering a) { - switch (a) { - case AtomicOrdering::NotAtomic: - return AtomicOrdering::NotAtomic; - case AtomicOrdering::Unordered: - case AtomicOrdering::Monotonic: - case AtomicOrdering::Release: - return AtomicOrdering::Release; - case AtomicOrdering::Acquire: - case AtomicOrdering::AcquireRelease: - return AtomicOrdering::AcquireRelease; - case AtomicOrdering::SequentiallyConsistent: - return AtomicOrdering::SequentiallyConsistent; - } - llvm_unreachable("Unknown ordering"); - } - - AtomicOrdering addAcquireOrdering(AtomicOrdering a) { - switch (a) { - case AtomicOrdering::NotAtomic: - return AtomicOrdering::NotAtomic; - case AtomicOrdering::Unordered: - case AtomicOrdering::Monotonic: - case AtomicOrdering::Acquire: - return AtomicOrdering::Acquire; - case AtomicOrdering::Release: - case AtomicOrdering::AcquireRelease: - return AtomicOrdering::AcquireRelease; - case AtomicOrdering::SequentiallyConsistent: - return AtomicOrdering::SequentiallyConsistent; - } - llvm_unreachable("Unknown ordering"); - } - - // ------------------- Visitors. - using InstVisitor<MemorySanitizerVisitor>::visit; - void visit(Instruction &I) { - if (!I.getMetadata("nosanitize")) - InstVisitor<MemorySanitizerVisitor>::visit(I); - } - - /// Instrument LoadInst - /// - /// Loads the corresponding shadow and (optionally) origin. - /// Optionally, checks that the load address is fully defined. - void visitLoadInst(LoadInst &I) { - assert(I.getType()->isSized() && "Load type must have size"); - assert(!I.getMetadata("nosanitize")); - IRBuilder<> IRB(I.getNextNode()); - Type *ShadowTy = getShadowTy(&I); - Value *Addr = I.getPointerOperand(); - Value *ShadowPtr, *OriginPtr; - unsigned Alignment = I.getAlignment(); - if (PropagateShadow) { - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); - setShadow(&I, - IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); - } else { - setShadow(&I, getCleanShadow(&I)); - } - - if (ClCheckAccessAddress) - insertShadowCheck(I.getPointerOperand(), &I); - - if (I.isAtomic()) - I.setOrdering(addAcquireOrdering(I.getOrdering())); - - if (MS.TrackOrigins) { - if (PropagateShadow) { - unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment); - setOrigin( - &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); - } else { - setOrigin(&I, getCleanOrigin()); - } - } - } - - /// Instrument StoreInst - /// - /// Stores the corresponding shadow and (optionally) origin. - /// Optionally, checks that the store address is fully defined. - void visitStoreInst(StoreInst &I) { - StoreList.push_back(&I); - if (ClCheckAccessAddress) - insertShadowCheck(I.getPointerOperand(), &I); - } - - void handleCASOrRMW(Instruction &I) { - assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); - - IRBuilder<> IRB(&I); - Value *Addr = I.getOperand(0); - Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), - /*Alignment*/ 1, /*isStore*/ true) - .first; - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - - // Only test the conditional argument of cmpxchg instruction. - // The other argument can potentially be uninitialized, but we can not - // detect this situation reliably without possible false positives. - if (isa<AtomicCmpXchgInst>(I)) - insertShadowCheck(I.getOperand(1), &I); - - IRB.CreateStore(getCleanShadow(&I), ShadowPtr); - - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - - void visitAtomicRMWInst(AtomicRMWInst &I) { - handleCASOrRMW(I); - I.setOrdering(addReleaseOrdering(I.getOrdering())); - } - - void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { - handleCASOrRMW(I); - I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); - } - - // Vector manipulation. - void visitExtractElementInst(ExtractElementInst &I) { - insertShadowCheck(I.getOperand(1), &I); - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), - "_msprop")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitInsertElementInst(InsertElementInst &I) { - insertShadowCheck(I.getOperand(2), &I); - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), - I.getOperand(2), "_msprop")); - setOriginForNaryOp(I); - } - - void visitShuffleVectorInst(ShuffleVectorInst &I) { - insertShadowCheck(I.getOperand(2), &I); - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), - I.getOperand(2), "_msprop")); - setOriginForNaryOp(I); - } - - // Casts. - void visitSExtInst(SExtInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitZExtInst(ZExtInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitTruncInst(TruncInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitBitCastInst(BitCastInst &I) { - // Special case: if this is the bitcast (there is exactly 1 allowed) between - // a musttail call and a ret, don't instrument. New instructions are not - // allowed after a musttail call. - if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) - if (CI->isMustTailCall()) - return; - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitPtrToIntInst(PtrToIntInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, - "_msprop_ptrtoint")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitIntToPtrInst(IntToPtrInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, - "_msprop_inttoptr")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } - void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } - void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } - void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } - void visitFPExtInst(CastInst& I) { handleShadowOr(I); } - void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } - - /// Propagate shadow for bitwise AND. - /// - /// This code is exact, i.e. if, for example, a bit in the left argument - /// is defined and 0, then neither the value not definedness of the - /// corresponding bit in B don't affect the resulting shadow. - void visitAnd(BinaryOperator &I) { - IRBuilder<> IRB(&I); - // "And" of 0 and a poisoned value results in unpoisoned value. - // 1&1 => 1; 0&1 => 0; p&1 => p; - // 1&0 => 0; 0&0 => 0; p&0 => 0; - // 1&p => p; 0&p => 0; p&p => p; - // S = (S1 & S2) | (V1 & S2) | (S1 & V2) - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - Value *V1 = I.getOperand(0); - Value *V2 = I.getOperand(1); - if (V1->getType() != S1->getType()) { - V1 = IRB.CreateIntCast(V1, S1->getType(), false); - V2 = IRB.CreateIntCast(V2, S2->getType(), false); - } - Value *S1S2 = IRB.CreateAnd(S1, S2); - Value *V1S2 = IRB.CreateAnd(V1, S2); - Value *S1V2 = IRB.CreateAnd(S1, V2); - setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); - setOriginForNaryOp(I); - } - - void visitOr(BinaryOperator &I) { - IRBuilder<> IRB(&I); - // "Or" of 1 and a poisoned value results in unpoisoned value. - // 1|1 => 1; 0|1 => 1; p|1 => 1; - // 1|0 => 1; 0|0 => 0; p|0 => p; - // 1|p => 1; 0|p => p; p|p => p; - // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - Value *V1 = IRB.CreateNot(I.getOperand(0)); - Value *V2 = IRB.CreateNot(I.getOperand(1)); - if (V1->getType() != S1->getType()) { - V1 = IRB.CreateIntCast(V1, S1->getType(), false); - V2 = IRB.CreateIntCast(V2, S2->getType(), false); - } - Value *S1S2 = IRB.CreateAnd(S1, S2); - Value *V1S2 = IRB.CreateAnd(V1, S2); - Value *S1V2 = IRB.CreateAnd(S1, V2); - setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); - setOriginForNaryOp(I); - } - - /// Default propagation of shadow and/or origin. - /// - /// This class implements the general case of shadow propagation, used in all - /// cases where we don't know and/or don't care about what the operation - /// actually does. It converts all input shadow values to a common type - /// (extending or truncating as necessary), and bitwise OR's them. - /// - /// This is much cheaper than inserting checks (i.e. requiring inputs to be - /// fully initialized), and less prone to false positives. - /// - /// This class also implements the general case of origin propagation. For a - /// Nary operation, result origin is set to the origin of an argument that is - /// not entirely initialized. If there is more than one such arguments, the - /// rightmost of them is picked. It does not matter which one is picked if all - /// arguments are initialized. - template <bool CombineShadow> - class Combiner { - Value *Shadow = nullptr; - Value *Origin = nullptr; - IRBuilder<> &IRB; - MemorySanitizerVisitor *MSV; - - public: - Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) - : IRB(IRB), MSV(MSV) {} - - /// Add a pair of shadow and origin values to the mix. - Combiner &Add(Value *OpShadow, Value *OpOrigin) { - if (CombineShadow) { - assert(OpShadow); - if (!Shadow) - Shadow = OpShadow; - else { - OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); - Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); - } - } - - if (MSV->MS.TrackOrigins) { - assert(OpOrigin); - if (!Origin) { - Origin = OpOrigin; - } else { - Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); - // No point in adding something that might result in 0 origin value. - if (!ConstOrigin || !ConstOrigin->isNullValue()) { - Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB); - Value *Cond = - IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); - Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); - } - } - } - return *this; - } - - /// Add an application value to the mix. - Combiner &Add(Value *V) { - Value *OpShadow = MSV->getShadow(V); - Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; - return Add(OpShadow, OpOrigin); - } - - /// Set the current combined values as the given instruction's shadow - /// and origin. - void Done(Instruction *I) { - if (CombineShadow) { - assert(Shadow); - Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); - MSV->setShadow(I, Shadow); - } - if (MSV->MS.TrackOrigins) { - assert(Origin); - MSV->setOrigin(I, Origin); - } - } - }; - - using ShadowAndOriginCombiner = Combiner<true>; - using OriginCombiner = Combiner<false>; - - /// Propagate origin for arbitrary operation. - void setOriginForNaryOp(Instruction &I) { - if (!MS.TrackOrigins) return; - IRBuilder<> IRB(&I); - OriginCombiner OC(this, IRB); - for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) - OC.Add(OI->get()); - OC.Done(&I); - } - - size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { - assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && - "Vector of pointers is not a valid shadow type"); - return Ty->isVectorTy() ? - Ty->getVectorNumElements() * Ty->getScalarSizeInBits() : - Ty->getPrimitiveSizeInBits(); - } - - /// Cast between two shadow types, extending or truncating as - /// necessary. - Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, - bool Signed = false) { - Type *srcTy = V->getType(); - size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); - size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); - if (srcSizeInBits > 1 && dstSizeInBits == 1) - return IRB.CreateICmpNE(V, getCleanShadow(V)); - - if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) - return IRB.CreateIntCast(V, dstTy, Signed); - if (dstTy->isVectorTy() && srcTy->isVectorTy() && - dstTy->getVectorNumElements() == srcTy->getVectorNumElements()) - return IRB.CreateIntCast(V, dstTy, Signed); - Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); - Value *V2 = - IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); - return IRB.CreateBitCast(V2, dstTy); - // TODO: handle struct types. - } - - /// Cast an application value to the type of its own shadow. - Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { - Type *ShadowTy = getShadowTy(V); - if (V->getType() == ShadowTy) - return V; - if (V->getType()->isPtrOrPtrVectorTy()) - return IRB.CreatePtrToInt(V, ShadowTy); - else - return IRB.CreateBitCast(V, ShadowTy); - } - - /// Propagate shadow for arbitrary operation. - void handleShadowOr(Instruction &I) { - IRBuilder<> IRB(&I); - ShadowAndOriginCombiner SC(this, IRB); - for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) - SC.Add(OI->get()); - SC.Done(&I); - } - - void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } - - // Handle multiplication by constant. - // - // Handle a special case of multiplication by constant that may have one or - // more zeros in the lower bits. This makes corresponding number of lower bits - // of the result zero as well. We model it by shifting the other operand - // shadow left by the required number of bits. Effectively, we transform - // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). - // We use multiplication by 2**N instead of shift to cover the case of - // multiplication by 0, which may occur in some elements of a vector operand. - void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, - Value *OtherArg) { - Constant *ShadowMul; - Type *Ty = ConstArg->getType(); - if (Ty->isVectorTy()) { - unsigned NumElements = Ty->getVectorNumElements(); - Type *EltTy = Ty->getSequentialElementType(); - SmallVector<Constant *, 16> Elements; - for (unsigned Idx = 0; Idx < NumElements; ++Idx) { - if (ConstantInt *Elt = - dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { - const APInt &V = Elt->getValue(); - APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); - Elements.push_back(ConstantInt::get(EltTy, V2)); - } else { - Elements.push_back(ConstantInt::get(EltTy, 1)); - } - } - ShadowMul = ConstantVector::get(Elements); - } else { - if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { - const APInt &V = Elt->getValue(); - APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); - ShadowMul = ConstantInt::get(Ty, V2); - } else { - ShadowMul = ConstantInt::get(Ty, 1); - } - } - - IRBuilder<> IRB(&I); - setShadow(&I, - IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); - setOrigin(&I, getOrigin(OtherArg)); - } - - void visitMul(BinaryOperator &I) { - Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); - Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); - if (constOp0 && !constOp1) - handleMulByConstant(I, constOp0, I.getOperand(1)); - else if (constOp1 && !constOp0) - handleMulByConstant(I, constOp1, I.getOperand(0)); - else - handleShadowOr(I); - } - - void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } - void visitFSub(BinaryOperator &I) { handleShadowOr(I); } - void visitFMul(BinaryOperator &I) { handleShadowOr(I); } - void visitAdd(BinaryOperator &I) { handleShadowOr(I); } - void visitSub(BinaryOperator &I) { handleShadowOr(I); } - void visitXor(BinaryOperator &I) { handleShadowOr(I); } - - void handleIntegerDiv(Instruction &I) { - IRBuilder<> IRB(&I); - // Strict on the second argument. - insertShadowCheck(I.getOperand(1), &I); - setShadow(&I, getShadow(&I, 0)); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } - void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } - void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } - void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } - - // Floating point division is side-effect free. We can not require that the - // divisor is fully initialized and must propagate shadow. See PR37523. - void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } - void visitFRem(BinaryOperator &I) { handleShadowOr(I); } - - /// Instrument == and != comparisons. - /// - /// Sometimes the comparison result is known even if some of the bits of the - /// arguments are not. - void handleEqualityComparison(ICmpInst &I) { - IRBuilder<> IRB(&I); - Value *A = I.getOperand(0); - Value *B = I.getOperand(1); - Value *Sa = getShadow(A); - Value *Sb = getShadow(B); - - // Get rid of pointers and vectors of pointers. - // For ints (and vectors of ints), types of A and Sa match, - // and this is a no-op. - A = IRB.CreatePointerCast(A, Sa->getType()); - B = IRB.CreatePointerCast(B, Sb->getType()); - - // A == B <==> (C = A^B) == 0 - // A != B <==> (C = A^B) != 0 - // Sc = Sa | Sb - Value *C = IRB.CreateXor(A, B); - Value *Sc = IRB.CreateOr(Sa, Sb); - // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) - // Result is defined if one of the following is true - // * there is a defined 1 bit in C - // * C is fully defined - // Si = !(C & ~Sc) && Sc - Value *Zero = Constant::getNullValue(Sc->getType()); - Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); - Value *Si = - IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), - IRB.CreateICmpEQ( - IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); - Si->setName("_msprop_icmp"); - setShadow(&I, Si); - setOriginForNaryOp(I); - } - - /// Build the lowest possible value of V, taking into account V's - /// uninitialized bits. - Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, - bool isSigned) { - if (isSigned) { - // Split shadow into sign bit and other bits. - Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); - Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); - // Maximise the undefined shadow bit, minimize other undefined bits. - return - IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); - } else { - // Minimize undefined bits. - return IRB.CreateAnd(A, IRB.CreateNot(Sa)); - } - } - - /// Build the highest possible value of V, taking into account V's - /// uninitialized bits. - Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, - bool isSigned) { - if (isSigned) { - // Split shadow into sign bit and other bits. - Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); - Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); - // Minimise the undefined shadow bit, maximise other undefined bits. - return - IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); - } else { - // Maximize undefined bits. - return IRB.CreateOr(A, Sa); - } - } - - /// Instrument relational comparisons. - /// - /// This function does exact shadow propagation for all relational - /// comparisons of integers, pointers and vectors of those. - /// FIXME: output seems suboptimal when one of the operands is a constant - void handleRelationalComparisonExact(ICmpInst &I) { - IRBuilder<> IRB(&I); - Value *A = I.getOperand(0); - Value *B = I.getOperand(1); - Value *Sa = getShadow(A); - Value *Sb = getShadow(B); - - // Get rid of pointers and vectors of pointers. - // For ints (and vectors of ints), types of A and Sa match, - // and this is a no-op. - A = IRB.CreatePointerCast(A, Sa->getType()); - B = IRB.CreatePointerCast(B, Sb->getType()); - - // Let [a0, a1] be the interval of possible values of A, taking into account - // its undefined bits. Let [b0, b1] be the interval of possible values of B. - // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). - bool IsSigned = I.isSigned(); - Value *S1 = IRB.CreateICmp(I.getPredicate(), - getLowestPossibleValue(IRB, A, Sa, IsSigned), - getHighestPossibleValue(IRB, B, Sb, IsSigned)); - Value *S2 = IRB.CreateICmp(I.getPredicate(), - getHighestPossibleValue(IRB, A, Sa, IsSigned), - getLowestPossibleValue(IRB, B, Sb, IsSigned)); - Value *Si = IRB.CreateXor(S1, S2); - setShadow(&I, Si); - setOriginForNaryOp(I); - } - - /// Instrument signed relational comparisons. - /// - /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest - /// bit of the shadow. Everything else is delegated to handleShadowOr(). - void handleSignedRelationalComparison(ICmpInst &I) { - Constant *constOp; - Value *op = nullptr; - CmpInst::Predicate pre; - if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { - op = I.getOperand(0); - pre = I.getPredicate(); - } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { - op = I.getOperand(1); - pre = I.getSwappedPredicate(); - } else { - handleShadowOr(I); - return; - } - - if ((constOp->isNullValue() && - (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || - (constOp->isAllOnesValue() && - (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { - IRBuilder<> IRB(&I); - Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), - "_msprop_icmp_s"); - setShadow(&I, Shadow); - setOrigin(&I, getOrigin(op)); - } else { - handleShadowOr(I); - } - } - - void visitICmpInst(ICmpInst &I) { - if (!ClHandleICmp) { - handleShadowOr(I); - return; - } - if (I.isEquality()) { - handleEqualityComparison(I); - return; - } - - assert(I.isRelational()); - if (ClHandleICmpExact) { - handleRelationalComparisonExact(I); - return; - } - if (I.isSigned()) { - handleSignedRelationalComparison(I); - return; - } - - assert(I.isUnsigned()); - if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { - handleRelationalComparisonExact(I); - return; - } - - handleShadowOr(I); - } - - void visitFCmpInst(FCmpInst &I) { - handleShadowOr(I); - } - - void handleShift(BinaryOperator &I) { - IRBuilder<> IRB(&I); - // If any of the S2 bits are poisoned, the whole thing is poisoned. - // Otherwise perform the same shift on S1. - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), - S2->getType()); - Value *V2 = I.getOperand(1); - Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); - setShadow(&I, IRB.CreateOr(Shift, S2Conv)); - setOriginForNaryOp(I); - } - - void visitShl(BinaryOperator &I) { handleShift(I); } - void visitAShr(BinaryOperator &I) { handleShift(I); } - void visitLShr(BinaryOperator &I) { handleShift(I); } - - /// Instrument llvm.memmove - /// - /// At this point we don't know if llvm.memmove will be inlined or not. - /// If we don't instrument it and it gets inlined, - /// our interceptor will not kick in and we will lose the memmove. - /// If we instrument the call here, but it does not get inlined, - /// we will memove the shadow twice: which is bad in case - /// of overlapping regions. So, we simply lower the intrinsic to a call. - /// - /// Similar situation exists for memcpy and memset. - void visitMemMoveInst(MemMoveInst &I) { - IRBuilder<> IRB(&I); - IRB.CreateCall( - MS.MemmoveFn, - {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), - IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); - I.eraseFromParent(); - } - - // Similar to memmove: avoid copying shadow twice. - // This is somewhat unfortunate as it may slowdown small constant memcpys. - // FIXME: consider doing manual inline for small constant sizes and proper - // alignment. - void visitMemCpyInst(MemCpyInst &I) { - IRBuilder<> IRB(&I); - IRB.CreateCall( - MS.MemcpyFn, - {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), - IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); - I.eraseFromParent(); - } - - // Same as memcpy. - void visitMemSetInst(MemSetInst &I) { - IRBuilder<> IRB(&I); - IRB.CreateCall( - MS.MemsetFn, - {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), - IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); - I.eraseFromParent(); - } - - void visitVAStartInst(VAStartInst &I) { - VAHelper->visitVAStartInst(I); - } - - void visitVACopyInst(VACopyInst &I) { - VAHelper->visitVACopyInst(I); - } - - /// Handle vector store-like intrinsics. - /// - /// Instrument intrinsics that look like a simple SIMD store: writes memory, - /// has 1 pointer argument and 1 vector argument, returns void. - bool handleVectorStoreIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value* Addr = I.getArgOperand(0); - Value *Shadow = getShadow(&I, 1); - Value *ShadowPtr, *OriginPtr; - - // We don't know the pointer alignment (could be unaligned SSE store!). - // Have to assume to worst case. - std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( - Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true); - IRB.CreateAlignedStore(Shadow, ShadowPtr, 1); - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - - // FIXME: factor out common code from materializeStores - if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); - return true; - } - - /// Handle vector load-like intrinsics. - /// - /// Instrument intrinsics that look like a simple SIMD load: reads memory, - /// has 1 pointer argument, returns a vector. - bool handleVectorLoadIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *Addr = I.getArgOperand(0); - - Type *ShadowTy = getShadowTy(&I); - Value *ShadowPtr, *OriginPtr; - if (PropagateShadow) { - // We don't know the pointer alignment (could be unaligned SSE load!). - // Have to assume to worst case. - unsigned Alignment = 1; - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); - setShadow(&I, - IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); - } else { - setShadow(&I, getCleanShadow(&I)); - } - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - - if (MS.TrackOrigins) { - if (PropagateShadow) - setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); - else - setOrigin(&I, getCleanOrigin()); - } - return true; - } - - /// Handle (SIMD arithmetic)-like intrinsics. - /// - /// Instrument intrinsics with any number of arguments of the same type, - /// equal to the return type. The type should be simple (no aggregates or - /// pointers; vectors are fine). - /// Caller guarantees that this intrinsic does not access memory. - bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { - Type *RetTy = I.getType(); - if (!(RetTy->isIntOrIntVectorTy() || - RetTy->isFPOrFPVectorTy() || - RetTy->isX86_MMXTy())) - return false; - - unsigned NumArgOperands = I.getNumArgOperands(); - - for (unsigned i = 0; i < NumArgOperands; ++i) { - Type *Ty = I.getArgOperand(i)->getType(); - if (Ty != RetTy) - return false; - } - - IRBuilder<> IRB(&I); - ShadowAndOriginCombiner SC(this, IRB); - for (unsigned i = 0; i < NumArgOperands; ++i) - SC.Add(I.getArgOperand(i)); - SC.Done(&I); - - return true; - } - - /// Heuristically instrument unknown intrinsics. - /// - /// The main purpose of this code is to do something reasonable with all - /// random intrinsics we might encounter, most importantly - SIMD intrinsics. - /// We recognize several classes of intrinsics by their argument types and - /// ModRefBehaviour and apply special intrumentation when we are reasonably - /// sure that we know what the intrinsic does. - /// - /// We special-case intrinsics where this approach fails. See llvm.bswap - /// handling as an example of that. - bool handleUnknownIntrinsic(IntrinsicInst &I) { - unsigned NumArgOperands = I.getNumArgOperands(); - if (NumArgOperands == 0) - return false; - - if (NumArgOperands == 2 && - I.getArgOperand(0)->getType()->isPointerTy() && - I.getArgOperand(1)->getType()->isVectorTy() && - I.getType()->isVoidTy() && - !I.onlyReadsMemory()) { - // This looks like a vector store. - return handleVectorStoreIntrinsic(I); - } - - if (NumArgOperands == 1 && - I.getArgOperand(0)->getType()->isPointerTy() && - I.getType()->isVectorTy() && - I.onlyReadsMemory()) { - // This looks like a vector load. - return handleVectorLoadIntrinsic(I); - } - - if (I.doesNotAccessMemory()) - if (maybeHandleSimpleNomemIntrinsic(I)) - return true; - - // FIXME: detect and handle SSE maskstore/maskload - return false; - } - - void handleLifetimeStart(IntrinsicInst &I) { - if (!PoisonStack) - return; - DenseMap<Value *, AllocaInst *> AllocaForValue; - AllocaInst *AI = - llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue); - if (!AI) - InstrumentLifetimeStart = false; - LifetimeStartList.push_back(std::make_pair(&I, AI)); - } - - void handleBswap(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *Op = I.getArgOperand(0); - Type *OpType = Op->getType(); - Function *BswapFunc = Intrinsic::getDeclaration( - F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); - setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); - setOrigin(&I, getOrigin(Op)); - } - - // Instrument vector convert instrinsic. - // - // This function instruments intrinsics like cvtsi2ss: - // %Out = int_xxx_cvtyyy(%ConvertOp) - // or - // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) - // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same - // number \p Out elements, and (if has 2 arguments) copies the rest of the - // elements from \p CopyOp. - // In most cases conversion involves floating-point value which may trigger a - // hardware exception when not fully initialized. For this reason we require - // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. - // We copy the shadow of \p CopyOp[NumUsedElements:] to \p - // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always - // return a fully initialized value. - void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) { - IRBuilder<> IRB(&I); - Value *CopyOp, *ConvertOp; - - switch (I.getNumArgOperands()) { - case 3: - assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode"); - LLVM_FALLTHROUGH; - case 2: - CopyOp = I.getArgOperand(0); - ConvertOp = I.getArgOperand(1); - break; - case 1: - ConvertOp = I.getArgOperand(0); - CopyOp = nullptr; - break; - default: - llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); - } - - // The first *NumUsedElements* elements of ConvertOp are converted to the - // same number of output elements. The rest of the output is copied from - // CopyOp, or (if not available) filled with zeroes. - // Combine shadow for elements of ConvertOp that are used in this operation, - // and insert a check. - // FIXME: consider propagating shadow of ConvertOp, at least in the case of - // int->any conversion. - Value *ConvertShadow = getShadow(ConvertOp); - Value *AggShadow = nullptr; - if (ConvertOp->getType()->isVectorTy()) { - AggShadow = IRB.CreateExtractElement( - ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); - for (int i = 1; i < NumUsedElements; ++i) { - Value *MoreShadow = IRB.CreateExtractElement( - ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); - AggShadow = IRB.CreateOr(AggShadow, MoreShadow); - } - } else { - AggShadow = ConvertShadow; - } - assert(AggShadow->getType()->isIntegerTy()); - insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); - - // Build result shadow by zero-filling parts of CopyOp shadow that come from - // ConvertOp. - if (CopyOp) { - assert(CopyOp->getType() == I.getType()); - assert(CopyOp->getType()->isVectorTy()); - Value *ResultShadow = getShadow(CopyOp); - Type *EltTy = ResultShadow->getType()->getVectorElementType(); - for (int i = 0; i < NumUsedElements; ++i) { - ResultShadow = IRB.CreateInsertElement( - ResultShadow, ConstantInt::getNullValue(EltTy), - ConstantInt::get(IRB.getInt32Ty(), i)); - } - setShadow(&I, ResultShadow); - setOrigin(&I, getOrigin(CopyOp)); - } else { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - } - - // Given a scalar or vector, extract lower 64 bits (or less), and return all - // zeroes if it is zero, and all ones otherwise. - Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { - if (S->getType()->isVectorTy()) - S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); - assert(S->getType()->getPrimitiveSizeInBits() <= 64); - Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); - return CreateShadowCast(IRB, S2, T, /* Signed */ true); - } - - // Given a vector, extract its first element, and return all - // zeroes if it is zero, and all ones otherwise. - Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { - Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); - Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); - return CreateShadowCast(IRB, S2, T, /* Signed */ true); - } - - Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { - Type *T = S->getType(); - assert(T->isVectorTy()); - Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); - return IRB.CreateSExt(S2, T); - } - - // Instrument vector shift instrinsic. - // - // This function instruments intrinsics like int_x86_avx2_psll_w. - // Intrinsic shifts %In by %ShiftSize bits. - // %ShiftSize may be a vector. In that case the lower 64 bits determine shift - // size, and the rest is ignored. Behavior is defined even if shift size is - // greater than register (or field) width. - void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { - assert(I.getNumArgOperands() == 2); - IRBuilder<> IRB(&I); - // If any of the S2 bits are poisoned, the whole thing is poisoned. - // Otherwise perform the same shift on S1. - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) - : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); - Value *V1 = I.getOperand(0); - Value *V2 = I.getOperand(1); - Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), - {IRB.CreateBitCast(S1, V1->getType()), V2}); - Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); - setShadow(&I, IRB.CreateOr(Shift, S2Conv)); - setOriginForNaryOp(I); - } - - // Get an X86_MMX-sized vector type. - Type *getMMXVectorTy(unsigned EltSizeInBits) { - const unsigned X86_MMXSizeInBits = 64; - assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && - "Illegal MMX vector element size"); - return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits), - X86_MMXSizeInBits / EltSizeInBits); - } - - // Returns a signed counterpart for an (un)signed-saturate-and-pack - // intrinsic. - Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { - switch (id) { - case Intrinsic::x86_sse2_packsswb_128: - case Intrinsic::x86_sse2_packuswb_128: - return Intrinsic::x86_sse2_packsswb_128; - - case Intrinsic::x86_sse2_packssdw_128: - case Intrinsic::x86_sse41_packusdw: - return Intrinsic::x86_sse2_packssdw_128; - - case Intrinsic::x86_avx2_packsswb: - case Intrinsic::x86_avx2_packuswb: - return Intrinsic::x86_avx2_packsswb; - - case Intrinsic::x86_avx2_packssdw: - case Intrinsic::x86_avx2_packusdw: - return Intrinsic::x86_avx2_packssdw; - - case Intrinsic::x86_mmx_packsswb: - case Intrinsic::x86_mmx_packuswb: - return Intrinsic::x86_mmx_packsswb; - - case Intrinsic::x86_mmx_packssdw: - return Intrinsic::x86_mmx_packssdw; - default: - llvm_unreachable("unexpected intrinsic id"); - } - } - - // Instrument vector pack instrinsic. - // - // This function instruments intrinsics like x86_mmx_packsswb, that - // packs elements of 2 input vectors into half as many bits with saturation. - // Shadow is propagated with the signed variant of the same intrinsic applied - // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). - // EltSizeInBits is used only for x86mmx arguments. - void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { - assert(I.getNumArgOperands() == 2); - bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); - IRBuilder<> IRB(&I); - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - assert(isX86_MMX || S1->getType()->isVectorTy()); - - // SExt and ICmpNE below must apply to individual elements of input vectors. - // In case of x86mmx arguments, cast them to appropriate vector types and - // back. - Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); - if (isX86_MMX) { - S1 = IRB.CreateBitCast(S1, T); - S2 = IRB.CreateBitCast(S2, T); - } - Value *S1_ext = IRB.CreateSExt( - IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); - Value *S2_ext = IRB.CreateSExt( - IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); - if (isX86_MMX) { - Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); - S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); - S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); - } - - Function *ShadowFn = Intrinsic::getDeclaration( - F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); - - Value *S = - IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); - if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - // Instrument sum-of-absolute-differencies intrinsic. - void handleVectorSadIntrinsic(IntrinsicInst &I) { - const unsigned SignificantBitsPerResultElement = 16; - bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); - Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); - unsigned ZeroBitsPerResultElement = - ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; - - IRBuilder<> IRB(&I); - Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); - S = IRB.CreateBitCast(S, ResTy); - S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), - ResTy); - S = IRB.CreateLShr(S, ZeroBitsPerResultElement); - S = IRB.CreateBitCast(S, getShadowTy(&I)); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - // Instrument multiply-add intrinsic. - void handleVectorPmaddIntrinsic(IntrinsicInst &I, - unsigned EltSizeInBits = 0) { - bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); - Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); - IRBuilder<> IRB(&I); - Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); - S = IRB.CreateBitCast(S, ResTy); - S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), - ResTy); - S = IRB.CreateBitCast(S, getShadowTy(&I)); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - // Instrument compare-packed intrinsic. - // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or - // all-ones shadow. - void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Type *ResTy = getShadowTy(&I); - Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); - Value *S = IRB.CreateSExt( - IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - // Instrument compare-scalar intrinsic. - // This handles both cmp* intrinsics which return the result in the first - // element of a vector, and comi* which return the result as i32. - void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); - Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - void handleStmxcsr(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value* Addr = I.getArgOperand(0); - Type *Ty = IRB.getInt32Ty(); - Value *ShadowPtr = - getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true) - .first; - - IRB.CreateStore(getCleanShadow(Ty), - IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - } - - void handleLdmxcsr(IntrinsicInst &I) { - if (!InsertChecks) return; - - IRBuilder<> IRB(&I); - Value *Addr = I.getArgOperand(0); - Type *Ty = IRB.getInt32Ty(); - unsigned Alignment = 1; - Value *ShadowPtr, *OriginPtr; - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - - Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); - Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) - : getCleanOrigin(); - insertShadowCheck(Shadow, Origin, &I); - } - - void handleMaskedStore(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *V = I.getArgOperand(0); - Value *Addr = I.getArgOperand(1); - unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); - Value *Mask = I.getArgOperand(3); - Value *Shadow = getShadow(V); - - Value *ShadowPtr; - Value *OriginPtr; - std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( - Addr, IRB, Shadow->getType(), Align, /*isStore*/ true); - - if (ClCheckAccessAddress) { - insertShadowCheck(Addr, &I); - // Uninitialized mask is kind of like uninitialized address, but not as - // scary. - insertShadowCheck(Mask, &I); - } - - IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask); - - if (MS.TrackOrigins) { - auto &DL = F.getParent()->getDataLayout(); - paintOrigin(IRB, getOrigin(V), OriginPtr, - DL.getTypeStoreSize(Shadow->getType()), - std::max(Align, kMinOriginAlignment)); - } - } - - bool handleMaskedLoad(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *Addr = I.getArgOperand(0); - unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); - Value *Mask = I.getArgOperand(2); - Value *PassThru = I.getArgOperand(3); - - Type *ShadowTy = getShadowTy(&I); - Value *ShadowPtr, *OriginPtr; - if (PropagateShadow) { - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false); - setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask, - getShadow(PassThru), "_msmaskedld")); - } else { - setShadow(&I, getCleanShadow(&I)); - } - - if (ClCheckAccessAddress) { - insertShadowCheck(Addr, &I); - insertShadowCheck(Mask, &I); - } - - if (MS.TrackOrigins) { - if (PropagateShadow) { - // Choose between PassThru's and the loaded value's origins. - Value *MaskedPassThruShadow = IRB.CreateAnd( - getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); - - Value *Acc = IRB.CreateExtractElement( - MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); - for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N; - ++i) { - Value *More = IRB.CreateExtractElement( - MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); - Acc = IRB.CreateOr(Acc, More); - } - - Value *Origin = IRB.CreateSelect( - IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), - getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); - - setOrigin(&I, Origin); - } else { - setOrigin(&I, getCleanOrigin()); - } - } - return true; - } - - // Instrument BMI / BMI2 intrinsics. - // All of these intrinsics are Z = I(X, Y) - // where the types of all operands and the result match, and are either i32 or i64. - // The following instrumentation happens to work for all of them: - // Sz = I(Sx, Y) | (sext (Sy != 0)) - void handleBmiIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Type *ShadowTy = getShadowTy(&I); - - // If any bit of the mask operand is poisoned, then the whole thing is. - Value *SMask = getShadow(&I, 1); - SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), - ShadowTy); - // Apply the same intrinsic to the shadow of the first operand. - Value *S = IRB.CreateCall(I.getCalledFunction(), - {getShadow(&I, 0), I.getOperand(1)}); - S = IRB.CreateOr(SMask, S); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - void visitIntrinsicInst(IntrinsicInst &I) { - switch (I.getIntrinsicID()) { - case Intrinsic::lifetime_start: - handleLifetimeStart(I); - break; - case Intrinsic::bswap: - handleBswap(I); - break; - case Intrinsic::masked_store: - handleMaskedStore(I); - break; - case Intrinsic::masked_load: - handleMaskedLoad(I); - break; - case Intrinsic::x86_sse_stmxcsr: - handleStmxcsr(I); - break; - case Intrinsic::x86_sse_ldmxcsr: - handleLdmxcsr(I); - break; - case Intrinsic::x86_avx512_vcvtsd2usi64: - case Intrinsic::x86_avx512_vcvtsd2usi32: - case Intrinsic::x86_avx512_vcvtss2usi64: - case Intrinsic::x86_avx512_vcvtss2usi32: - case Intrinsic::x86_avx512_cvttss2usi64: - case Intrinsic::x86_avx512_cvttss2usi: - case Intrinsic::x86_avx512_cvttsd2usi64: - case Intrinsic::x86_avx512_cvttsd2usi: - case Intrinsic::x86_avx512_cvtusi2ss: - case Intrinsic::x86_avx512_cvtusi642sd: - case Intrinsic::x86_avx512_cvtusi642ss: - case Intrinsic::x86_sse2_cvtsd2si64: - case Intrinsic::x86_sse2_cvtsd2si: - case Intrinsic::x86_sse2_cvtsd2ss: - case Intrinsic::x86_sse2_cvttsd2si64: - case Intrinsic::x86_sse2_cvttsd2si: - case Intrinsic::x86_sse_cvtss2si64: - case Intrinsic::x86_sse_cvtss2si: - case Intrinsic::x86_sse_cvttss2si64: - case Intrinsic::x86_sse_cvttss2si: - handleVectorConvertIntrinsic(I, 1); - break; - case Intrinsic::x86_sse_cvtps2pi: - case Intrinsic::x86_sse_cvttps2pi: - handleVectorConvertIntrinsic(I, 2); - break; - - case Intrinsic::x86_avx512_psll_w_512: - case Intrinsic::x86_avx512_psll_d_512: - case Intrinsic::x86_avx512_psll_q_512: - case Intrinsic::x86_avx512_pslli_w_512: - case Intrinsic::x86_avx512_pslli_d_512: - case Intrinsic::x86_avx512_pslli_q_512: - case Intrinsic::x86_avx512_psrl_w_512: - case Intrinsic::x86_avx512_psrl_d_512: - case Intrinsic::x86_avx512_psrl_q_512: - case Intrinsic::x86_avx512_psra_w_512: - case Intrinsic::x86_avx512_psra_d_512: - case Intrinsic::x86_avx512_psra_q_512: - case Intrinsic::x86_avx512_psrli_w_512: - case Intrinsic::x86_avx512_psrli_d_512: - case Intrinsic::x86_avx512_psrli_q_512: - case Intrinsic::x86_avx512_psrai_w_512: - case Intrinsic::x86_avx512_psrai_d_512: - case Intrinsic::x86_avx512_psrai_q_512: - case Intrinsic::x86_avx512_psra_q_256: - case Intrinsic::x86_avx512_psra_q_128: - case Intrinsic::x86_avx512_psrai_q_256: - case Intrinsic::x86_avx512_psrai_q_128: - case Intrinsic::x86_avx2_psll_w: - case Intrinsic::x86_avx2_psll_d: - case Intrinsic::x86_avx2_psll_q: - case Intrinsic::x86_avx2_pslli_w: - case Intrinsic::x86_avx2_pslli_d: - case Intrinsic::x86_avx2_pslli_q: - case Intrinsic::x86_avx2_psrl_w: - case Intrinsic::x86_avx2_psrl_d: - case Intrinsic::x86_avx2_psrl_q: - case Intrinsic::x86_avx2_psra_w: - case Intrinsic::x86_avx2_psra_d: - case Intrinsic::x86_avx2_psrli_w: - case Intrinsic::x86_avx2_psrli_d: - case Intrinsic::x86_avx2_psrli_q: - case Intrinsic::x86_avx2_psrai_w: - case Intrinsic::x86_avx2_psrai_d: - case Intrinsic::x86_sse2_psll_w: - case Intrinsic::x86_sse2_psll_d: - case Intrinsic::x86_sse2_psll_q: - case Intrinsic::x86_sse2_pslli_w: - case Intrinsic::x86_sse2_pslli_d: - case Intrinsic::x86_sse2_pslli_q: - case Intrinsic::x86_sse2_psrl_w: - case Intrinsic::x86_sse2_psrl_d: - case Intrinsic::x86_sse2_psrl_q: - case Intrinsic::x86_sse2_psra_w: - case Intrinsic::x86_sse2_psra_d: - case Intrinsic::x86_sse2_psrli_w: - case Intrinsic::x86_sse2_psrli_d: - case Intrinsic::x86_sse2_psrli_q: - case Intrinsic::x86_sse2_psrai_w: - case Intrinsic::x86_sse2_psrai_d: - case Intrinsic::x86_mmx_psll_w: - case Intrinsic::x86_mmx_psll_d: - case Intrinsic::x86_mmx_psll_q: - case Intrinsic::x86_mmx_pslli_w: - case Intrinsic::x86_mmx_pslli_d: - case Intrinsic::x86_mmx_pslli_q: - case Intrinsic::x86_mmx_psrl_w: - case Intrinsic::x86_mmx_psrl_d: - case Intrinsic::x86_mmx_psrl_q: - case Intrinsic::x86_mmx_psra_w: - case Intrinsic::x86_mmx_psra_d: - case Intrinsic::x86_mmx_psrli_w: - case Intrinsic::x86_mmx_psrli_d: - case Intrinsic::x86_mmx_psrli_q: - case Intrinsic::x86_mmx_psrai_w: - case Intrinsic::x86_mmx_psrai_d: - handleVectorShiftIntrinsic(I, /* Variable */ false); - break; - case Intrinsic::x86_avx2_psllv_d: - case Intrinsic::x86_avx2_psllv_d_256: - case Intrinsic::x86_avx512_psllv_d_512: - case Intrinsic::x86_avx2_psllv_q: - case Intrinsic::x86_avx2_psllv_q_256: - case Intrinsic::x86_avx512_psllv_q_512: - case Intrinsic::x86_avx2_psrlv_d: - case Intrinsic::x86_avx2_psrlv_d_256: - case Intrinsic::x86_avx512_psrlv_d_512: - case Intrinsic::x86_avx2_psrlv_q: - case Intrinsic::x86_avx2_psrlv_q_256: - case Intrinsic::x86_avx512_psrlv_q_512: - case Intrinsic::x86_avx2_psrav_d: - case Intrinsic::x86_avx2_psrav_d_256: - case Intrinsic::x86_avx512_psrav_d_512: - case Intrinsic::x86_avx512_psrav_q_128: - case Intrinsic::x86_avx512_psrav_q_256: - case Intrinsic::x86_avx512_psrav_q_512: - handleVectorShiftIntrinsic(I, /* Variable */ true); - break; - - case Intrinsic::x86_sse2_packsswb_128: - case Intrinsic::x86_sse2_packssdw_128: - case Intrinsic::x86_sse2_packuswb_128: - case Intrinsic::x86_sse41_packusdw: - case Intrinsic::x86_avx2_packsswb: - case Intrinsic::x86_avx2_packssdw: - case Intrinsic::x86_avx2_packuswb: - case Intrinsic::x86_avx2_packusdw: - handleVectorPackIntrinsic(I); - break; - - case Intrinsic::x86_mmx_packsswb: - case Intrinsic::x86_mmx_packuswb: - handleVectorPackIntrinsic(I, 16); - break; - - case Intrinsic::x86_mmx_packssdw: - handleVectorPackIntrinsic(I, 32); - break; - - case Intrinsic::x86_mmx_psad_bw: - case Intrinsic::x86_sse2_psad_bw: - case Intrinsic::x86_avx2_psad_bw: - handleVectorSadIntrinsic(I); - break; - - case Intrinsic::x86_sse2_pmadd_wd: - case Intrinsic::x86_avx2_pmadd_wd: - case Intrinsic::x86_ssse3_pmadd_ub_sw_128: - case Intrinsic::x86_avx2_pmadd_ub_sw: - handleVectorPmaddIntrinsic(I); - break; - - case Intrinsic::x86_ssse3_pmadd_ub_sw: - handleVectorPmaddIntrinsic(I, 8); - break; - - case Intrinsic::x86_mmx_pmadd_wd: - handleVectorPmaddIntrinsic(I, 16); - break; - - case Intrinsic::x86_sse_cmp_ss: - case Intrinsic::x86_sse2_cmp_sd: - case Intrinsic::x86_sse_comieq_ss: - case Intrinsic::x86_sse_comilt_ss: - case Intrinsic::x86_sse_comile_ss: - case Intrinsic::x86_sse_comigt_ss: - case Intrinsic::x86_sse_comige_ss: - case Intrinsic::x86_sse_comineq_ss: - case Intrinsic::x86_sse_ucomieq_ss: - case Intrinsic::x86_sse_ucomilt_ss: - case Intrinsic::x86_sse_ucomile_ss: - case Intrinsic::x86_sse_ucomigt_ss: - case Intrinsic::x86_sse_ucomige_ss: - case Intrinsic::x86_sse_ucomineq_ss: - case Intrinsic::x86_sse2_comieq_sd: - case Intrinsic::x86_sse2_comilt_sd: - case Intrinsic::x86_sse2_comile_sd: - case Intrinsic::x86_sse2_comigt_sd: - case Intrinsic::x86_sse2_comige_sd: - case Intrinsic::x86_sse2_comineq_sd: - case Intrinsic::x86_sse2_ucomieq_sd: - case Intrinsic::x86_sse2_ucomilt_sd: - case Intrinsic::x86_sse2_ucomile_sd: - case Intrinsic::x86_sse2_ucomigt_sd: - case Intrinsic::x86_sse2_ucomige_sd: - case Intrinsic::x86_sse2_ucomineq_sd: - handleVectorCompareScalarIntrinsic(I); - break; - - case Intrinsic::x86_sse_cmp_ps: - case Intrinsic::x86_sse2_cmp_pd: - // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function - // generates reasonably looking IR that fails in the backend with "Do not - // know how to split the result of this operator!". - handleVectorComparePackedIntrinsic(I); - break; - - case Intrinsic::x86_bmi_bextr_32: - case Intrinsic::x86_bmi_bextr_64: - case Intrinsic::x86_bmi_bzhi_32: - case Intrinsic::x86_bmi_bzhi_64: - case Intrinsic::x86_bmi_pdep_32: - case Intrinsic::x86_bmi_pdep_64: - case Intrinsic::x86_bmi_pext_32: - case Intrinsic::x86_bmi_pext_64: - handleBmiIntrinsic(I); - break; - - case Intrinsic::is_constant: - // The result of llvm.is.constant() is always defined. - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - break; - - default: - if (!handleUnknownIntrinsic(I)) - visitInstruction(I); - break; - } - } - - void visitCallSite(CallSite CS) { - Instruction &I = *CS.getInstruction(); - assert(!I.getMetadata("nosanitize")); - assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) && - "Unknown type of CallSite"); - if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) { - // For inline asm (either a call to asm function, or callbr instruction), - // do the usual thing: check argument shadow and mark all outputs as - // clean. Note that any side effects of the inline asm that are not - // immediately visible in its constraints are not handled. - if (ClHandleAsmConservative && MS.CompileKernel) - visitAsmInstruction(I); - else - visitInstruction(I); - return; - } - if (CS.isCall()) { - CallInst *Call = cast<CallInst>(&I); - assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere"); - - // We are going to insert code that relies on the fact that the callee - // will become a non-readonly function after it is instrumented by us. To - // prevent this code from being optimized out, mark that function - // non-readonly in advance. - if (Function *Func = Call->getCalledFunction()) { - // Clear out readonly/readnone attributes. - AttrBuilder B; - B.addAttribute(Attribute::ReadOnly) - .addAttribute(Attribute::ReadNone); - Func->removeAttributes(AttributeList::FunctionIndex, B); - } - - maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); - } - IRBuilder<> IRB(&I); - - unsigned ArgOffset = 0; - LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n"); - for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); - ArgIt != End; ++ArgIt) { - Value *A = *ArgIt; - unsigned i = ArgIt - CS.arg_begin(); - if (!A->getType()->isSized()) { - LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n"); - continue; - } - unsigned Size = 0; - Value *Store = nullptr; - // Compute the Shadow for arg even if it is ByVal, because - // in that case getShadow() will copy the actual arg shadow to - // __msan_param_tls. - Value *ArgShadow = getShadow(A); - Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); - LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A - << " Shadow: " << *ArgShadow << "\n"); - bool ArgIsInitialized = false; - const DataLayout &DL = F.getParent()->getDataLayout(); - if (CS.paramHasAttr(i, Attribute::ByVal)) { - assert(A->getType()->isPointerTy() && - "ByVal argument is not a pointer!"); - Size = DL.getTypeAllocSize(A->getType()->getPointerElementType()); - if (ArgOffset + Size > kParamTLSSize) break; - unsigned ParamAlignment = CS.getParamAlignment(i); - unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment); - Value *AShadowPtr = - getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, - /*isStore*/ false) - .first; - - Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, - Alignment, Size); - // TODO(glider): need to copy origins. - } else { - Size = DL.getTypeAllocSize(A->getType()); - if (ArgOffset + Size > kParamTLSSize) break; - Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, - kShadowTLSAlignment); - Constant *Cst = dyn_cast<Constant>(ArgShadow); - if (Cst && Cst->isNullValue()) ArgIsInitialized = true; - } - if (MS.TrackOrigins && !ArgIsInitialized) - IRB.CreateStore(getOrigin(A), - getOriginPtrForArgument(A, IRB, ArgOffset)); - (void)Store; - assert(Size != 0 && Store != nullptr); - LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); - ArgOffset += alignTo(Size, 8); - } - LLVM_DEBUG(dbgs() << " done with call args\n"); - - FunctionType *FT = CS.getFunctionType(); - if (FT->isVarArg()) { - VAHelper->visitCallSite(CS, IRB); - } - - // Now, get the shadow for the RetVal. - if (!I.getType()->isSized()) return; - // Don't emit the epilogue for musttail call returns. - if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return; - IRBuilder<> IRBBefore(&I); - // Until we have full dynamic coverage, make sure the retval shadow is 0. - Value *Base = getShadowPtrForRetval(&I, IRBBefore); - IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment); - BasicBlock::iterator NextInsn; - if (CS.isCall()) { - NextInsn = ++I.getIterator(); - assert(NextInsn != I.getParent()->end()); - } else { - BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest(); - if (!NormalDest->getSinglePredecessor()) { - // FIXME: this case is tricky, so we are just conservative here. - // Perhaps we need to split the edge between this BB and NormalDest, - // but a naive attempt to use SplitEdge leads to a crash. - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - return; - } - // FIXME: NextInsn is likely in a basic block that has not been visited yet. - // Anything inserted there will be instrumented by MSan later! - NextInsn = NormalDest->getFirstInsertionPt(); - assert(NextInsn != NormalDest->end() && - "Could not find insertion point for retval shadow load"); - } - IRBuilder<> IRBAfter(&*NextInsn); - Value *RetvalShadow = IRBAfter.CreateAlignedLoad( - getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter), - kShadowTLSAlignment, "_msret"); - setShadow(&I, RetvalShadow); - if (MS.TrackOrigins) - setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy, - getOriginPtrForRetval(IRBAfter))); - } - - bool isAMustTailRetVal(Value *RetVal) { - if (auto *I = dyn_cast<BitCastInst>(RetVal)) { - RetVal = I->getOperand(0); - } - if (auto *I = dyn_cast<CallInst>(RetVal)) { - return I->isMustTailCall(); - } - return false; - } - - void visitReturnInst(ReturnInst &I) { - IRBuilder<> IRB(&I); - Value *RetVal = I.getReturnValue(); - if (!RetVal) return; - // Don't emit the epilogue for musttail call returns. - if (isAMustTailRetVal(RetVal)) return; - Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); - if (CheckReturnValue) { - insertShadowCheck(RetVal, &I); - Value *Shadow = getCleanShadow(RetVal); - IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); - } else { - Value *Shadow = getShadow(RetVal); - IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); - if (MS.TrackOrigins) - IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); - } - } - - void visitPHINode(PHINode &I) { - IRBuilder<> IRB(&I); - if (!PropagateShadow) { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - return; - } - - ShadowPHINodes.push_back(&I); - setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), - "_msphi_s")); - if (MS.TrackOrigins) - setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), - "_msphi_o")); - } - - Value *getLocalVarDescription(AllocaInst &I) { - SmallString<2048> StackDescriptionStorage; - raw_svector_ostream StackDescription(StackDescriptionStorage); - // We create a string with a description of the stack allocation and - // pass it into __msan_set_alloca_origin. - // It will be printed by the run-time if stack-originated UMR is found. - // The first 4 bytes of the string are set to '----' and will be replaced - // by __msan_va_arg_overflow_size_tls at the first call. - StackDescription << "----" << I.getName() << "@" << F.getName(); - return createPrivateNonConstGlobalForString(*F.getParent(), - StackDescription.str()); - } - - void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { - if (PoisonStack && ClPoisonStackWithCall) { - IRB.CreateCall(MS.MsanPoisonStackFn, - {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); - } else { - Value *ShadowBase, *OriginBase; - std::tie(ShadowBase, OriginBase) = - getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true); - - Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); - IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment()); - } - - if (PoisonStack && MS.TrackOrigins) { - Value *Descr = getLocalVarDescription(I); - IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, - {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, - IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), - IRB.CreatePointerCast(&F, MS.IntptrTy)}); - } - } - - void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { - Value *Descr = getLocalVarDescription(I); - if (PoisonStack) { - IRB.CreateCall(MS.MsanPoisonAllocaFn, - {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, - IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); - } else { - IRB.CreateCall(MS.MsanUnpoisonAllocaFn, - {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); - } - } - - void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { - if (!InsPoint) - InsPoint = &I; - IRBuilder<> IRB(InsPoint->getNextNode()); - const DataLayout &DL = F.getParent()->getDataLayout(); - uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); - Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); - if (I.isArrayAllocation()) - Len = IRB.CreateMul(Len, I.getArraySize()); - - if (MS.CompileKernel) - poisonAllocaKmsan(I, IRB, Len); - else - poisonAllocaUserspace(I, IRB, Len); - } - - void visitAllocaInst(AllocaInst &I) { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - // We'll get to this alloca later unless it's poisoned at the corresponding - // llvm.lifetime.start. - AllocaSet.insert(&I); - } - - void visitSelectInst(SelectInst& I) { - IRBuilder<> IRB(&I); - // a = select b, c, d - Value *B = I.getCondition(); - Value *C = I.getTrueValue(); - Value *D = I.getFalseValue(); - Value *Sb = getShadow(B); - Value *Sc = getShadow(C); - Value *Sd = getShadow(D); - - // Result shadow if condition shadow is 0. - Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); - Value *Sa1; - if (I.getType()->isAggregateType()) { - // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do - // an extra "select". This results in much more compact IR. - // Sa = select Sb, poisoned, (select b, Sc, Sd) - Sa1 = getPoisonedShadow(getShadowTy(I.getType())); - } else { - // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] - // If Sb (condition is poisoned), look for bits in c and d that are equal - // and both unpoisoned. - // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. - - // Cast arguments to shadow-compatible type. - C = CreateAppToShadowCast(IRB, C); - D = CreateAppToShadowCast(IRB, D); - - // Result shadow if condition shadow is 1. - Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); - } - Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); - setShadow(&I, Sa); - if (MS.TrackOrigins) { - // Origins are always i32, so any vector conditions must be flattened. - // FIXME: consider tracking vector origins for app vectors? - if (B->getType()->isVectorTy()) { - Type *FlatTy = getShadowTyNoVec(B->getType()); - B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), - ConstantInt::getNullValue(FlatTy)); - Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), - ConstantInt::getNullValue(FlatTy)); - } - // a = select b, c, d - // Oa = Sb ? Ob : (b ? Oc : Od) - setOrigin( - &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), - IRB.CreateSelect(B, getOrigin(I.getTrueValue()), - getOrigin(I.getFalseValue())))); - } - } - - void visitLandingPadInst(LandingPadInst &I) { - // Do nothing. - // See https://github.com/google/sanitizers/issues/504 - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - - void visitCatchSwitchInst(CatchSwitchInst &I) { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - - void visitFuncletPadInst(FuncletPadInst &I) { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - - void visitGetElementPtrInst(GetElementPtrInst &I) { - handleShadowOr(I); - } - - void visitExtractValueInst(ExtractValueInst &I) { - IRBuilder<> IRB(&I); - Value *Agg = I.getAggregateOperand(); - LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); - Value *AggShadow = getShadow(Agg); - LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); - Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); - LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); - setShadow(&I, ResShadow); - setOriginForNaryOp(I); - } - - void visitInsertValueInst(InsertValueInst &I) { - IRBuilder<> IRB(&I); - LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); - Value *AggShadow = getShadow(I.getAggregateOperand()); - Value *InsShadow = getShadow(I.getInsertedValueOperand()); - LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); - LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); - Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); - LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); - setShadow(&I, Res); - setOriginForNaryOp(I); - } - - void dumpInst(Instruction &I) { - if (CallInst *CI = dyn_cast<CallInst>(&I)) { - errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; - } else { - errs() << "ZZZ " << I.getOpcodeName() << "\n"; - } - errs() << "QQQ " << I << "\n"; - } - - void visitResumeInst(ResumeInst &I) { - LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); - // Nothing to do here. - } - - void visitCleanupReturnInst(CleanupReturnInst &CRI) { - LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); - // Nothing to do here. - } - - void visitCatchReturnInst(CatchReturnInst &CRI) { - LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); - // Nothing to do here. - } - - void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, - const DataLayout &DL, bool isOutput) { - // For each assembly argument, we check its value for being initialized. - // If the argument is a pointer, we assume it points to a single element - // of the corresponding type (or to a 8-byte word, if the type is unsized). - // Each such pointer is instrumented with a call to the runtime library. - Type *OpType = Operand->getType(); - // Check the operand value itself. - insertShadowCheck(Operand, &I); - if (!OpType->isPointerTy() || !isOutput) { - assert(!isOutput); - return; - } - Type *ElType = OpType->getPointerElementType(); - if (!ElType->isSized()) - return; - int Size = DL.getTypeStoreSize(ElType); - Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); - Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); - IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); - } - - /// Get the number of output arguments returned by pointers. - int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { - int NumRetOutputs = 0; - int NumOutputs = 0; - Type *RetTy = dyn_cast<Value>(CB)->getType(); - if (!RetTy->isVoidTy()) { - // Register outputs are returned via the CallInst return value. - StructType *ST = dyn_cast_or_null<StructType>(RetTy); - if (ST) - NumRetOutputs = ST->getNumElements(); - else - NumRetOutputs = 1; - } - InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); - for (size_t i = 0, n = Constraints.size(); i < n; i++) { - InlineAsm::ConstraintInfo Info = Constraints[i]; - switch (Info.Type) { - case InlineAsm::isOutput: - NumOutputs++; - break; - default: - break; - } - } - return NumOutputs - NumRetOutputs; - } - - void visitAsmInstruction(Instruction &I) { - // Conservative inline assembly handling: check for poisoned shadow of - // asm() arguments, then unpoison the result and all the memory locations - // pointed to by those arguments. - // An inline asm() statement in C++ contains lists of input and output - // arguments used by the assembly code. These are mapped to operands of the - // CallInst as follows: - // - nR register outputs ("=r) are returned by value in a single structure - // (SSA value of the CallInst); - // - nO other outputs ("=m" and others) are returned by pointer as first - // nO operands of the CallInst; - // - nI inputs ("r", "m" and others) are passed to CallInst as the - // remaining nI operands. - // The total number of asm() arguments in the source is nR+nO+nI, and the - // corresponding CallInst has nO+nI+1 operands (the last operand is the - // function to be called). - const DataLayout &DL = F.getParent()->getDataLayout(); - CallBase *CB = dyn_cast<CallBase>(&I); - IRBuilder<> IRB(&I); - InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue()); - int OutputArgs = getNumOutputArgs(IA, CB); - // The last operand of a CallInst is the function itself. - int NumOperands = CB->getNumOperands() - 1; - - // Check input arguments. Doing so before unpoisoning output arguments, so - // that we won't overwrite uninit values before checking them. - for (int i = OutputArgs; i < NumOperands; i++) { - Value *Operand = CB->getOperand(i); - instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); - } - // Unpoison output arguments. This must happen before the actual InlineAsm - // call, so that the shadow for memory published in the asm() statement - // remains valid. - for (int i = 0; i < OutputArgs; i++) { - Value *Operand = CB->getOperand(i); - instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); - } - - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - - void visitInstruction(Instruction &I) { - // Everything else: stop propagating and check for poisoned shadow. - if (ClDumpStrictInstructions) - dumpInst(I); - LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); - for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { - Value *Operand = I.getOperand(i); - if (Operand->getType()->isSized()) - insertShadowCheck(Operand, &I); - } - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } -}; - -/// AMD64-specific implementation of VarArgHelper. -struct VarArgAMD64Helper : public VarArgHelper { - // An unfortunate workaround for asymmetric lowering of va_arg stuff. - // See a comment in visitCallSite for more details. - static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 - static const unsigned AMD64FpEndOffsetSSE = 176; - // If SSE is disabled, fp_offset in va_list is zero. - static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; - - unsigned AMD64FpEndOffset; - Function &F; - MemorySanitizer &MS; - MemorySanitizerVisitor &MSV; - Value *VAArgTLSCopy = nullptr; - Value *VAArgTLSOriginCopy = nullptr; - Value *VAArgOverflowSize = nullptr; - - SmallVector<CallInst*, 16> VAStartInstrumentationList; - - enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; - - VarArgAMD64Helper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) - : F(F), MS(MS), MSV(MSV) { - AMD64FpEndOffset = AMD64FpEndOffsetSSE; - for (const auto &Attr : F.getAttributes().getFnAttributes()) { - if (Attr.isStringAttribute() && - (Attr.getKindAsString() == "target-features")) { - if (Attr.getValueAsString().contains("-sse")) - AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; - break; - } - } - } - - ArgKind classifyArgument(Value* arg) { - // A very rough approximation of X86_64 argument classification rules. - Type *T = arg->getType(); - if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) - return AK_FloatingPoint; - if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) - return AK_GeneralPurpose; - if (T->isPointerTy()) - return AK_GeneralPurpose; - return AK_Memory; - } - - // For VarArg functions, store the argument shadow in an ABI-specific format - // that corresponds to va_list layout. - // We do this because Clang lowers va_arg in the frontend, and this pass - // only sees the low level code that deals with va_list internals. - // A much easier alternative (provided that Clang emits va_arg instructions) - // would have been to associate each live instance of va_list with a copy of - // MSanParamTLS, and extract shadow on va_arg() call in the argument list - // order. - void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { - unsigned GpOffset = 0; - unsigned FpOffset = AMD64GpEndOffset; - unsigned OverflowOffset = AMD64FpEndOffset; - const DataLayout &DL = F.getParent()->getDataLayout(); - for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); - ArgIt != End; ++ArgIt) { - Value *A = *ArgIt; - unsigned ArgNo = CS.getArgumentNo(ArgIt); - bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); - bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); - if (IsByVal) { - // ByVal arguments always go to the overflow area. - // Fixed arguments passed through the overflow area will be stepped - // over by va_start, so don't count them towards the offset. - if (IsFixed) - continue; - assert(A->getType()->isPointerTy()); - Type *RealTy = A->getType()->getPointerElementType(); - uint64_t ArgSize = DL.getTypeAllocSize(RealTy); - Value *ShadowBase = getShadowPtrForVAArgument( - RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); - Value *OriginBase = nullptr; - if (MS.TrackOrigins) - OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); - OverflowOffset += alignTo(ArgSize, 8); - if (!ShadowBase) - continue; - Value *ShadowPtr, *OriginPtr; - std::tie(ShadowPtr, OriginPtr) = - MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, - /*isStore*/ false); - - IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, - kShadowTLSAlignment, ArgSize); - if (MS.TrackOrigins) - IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, - kShadowTLSAlignment, ArgSize); - } else { - ArgKind AK = classifyArgument(A); - if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) - AK = AK_Memory; - if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) - AK = AK_Memory; - Value *ShadowBase, *OriginBase = nullptr; - switch (AK) { - case AK_GeneralPurpose: - ShadowBase = - getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); - if (MS.TrackOrigins) - OriginBase = - getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); - GpOffset += 8; - break; - case AK_FloatingPoint: - ShadowBase = - getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); - if (MS.TrackOrigins) - OriginBase = - getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); - FpOffset += 16; - break; - case AK_Memory: - if (IsFixed) - continue; - uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); - ShadowBase = - getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); - if (MS.TrackOrigins) - OriginBase = - getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); - OverflowOffset += alignTo(ArgSize, 8); - } - // Take fixed arguments into account for GpOffset and FpOffset, - // but don't actually store shadows for them. - // TODO(glider): don't call get*PtrForVAArgument() for them. - if (IsFixed) - continue; - if (!ShadowBase) - continue; - Value *Shadow = MSV.getShadow(A); - IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); - if (MS.TrackOrigins) { - Value *Origin = MSV.getOrigin(A); - unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); - MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, - std::max(kShadowTLSAlignment, kMinOriginAlignment)); - } - } - } - Constant *OverflowSize = - ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); - IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); - } - - /// Compute the shadow address for a given va_arg. - Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, - unsigned ArgOffset, unsigned ArgSize) { - // Make sure we don't overflow __msan_va_arg_tls. - if (ArgOffset + ArgSize > kParamTLSSize) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), - "_msarg_va_s"); - } - - /// Compute the origin address for a given va_arg. - Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { - Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); - // getOriginPtrForVAArgument() is always called after - // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never - // overflow. - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), - "_msarg_va_o"); - } - - void unpoisonVAListTagForInst(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - unsigned Alignment = 8; - std::tie(ShadowPtr, OriginPtr) = - MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, - /*isStore*/ true); - - // Unpoison the whole __va_list_tag. - // FIXME: magic ABI constants. - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 24, Alignment, false); - // We shouldn't need to zero out the origins, as they're only checked for - // nonzero shadow. - } - - void visitVAStartInst(VAStartInst &I) override { - if (F.getCallingConv() == CallingConv::Win64) - return; - VAStartInstrumentationList.push_back(&I); - unpoisonVAListTagForInst(I); - } - - void visitVACopyInst(VACopyInst &I) override { - if (F.getCallingConv() == CallingConv::Win64) return; - unpoisonVAListTagForInst(I); - } - - void finalizeInstrumentation() override { - assert(!VAArgOverflowSize && !VAArgTLSCopy && - "finalizeInstrumentation called twice"); - if (!VAStartInstrumentationList.empty()) { - // If there is a va_start in this function, make a backup copy of - // va_arg_tls somewhere in the function entry block. - IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); - VAArgOverflowSize = - IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); - Value *CopySize = - IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), - VAArgOverflowSize); - VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); - if (MS.TrackOrigins) { - VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize); - } - } - - // Instrument va_start. - // Copy va_list shadow from the backup copy of the TLS contents. - for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { - CallInst *OrigInst = VAStartInstrumentationList[i]; - IRBuilder<> IRB(OrigInst->getNextNode()); - Value *VAListTag = OrigInst->getArgOperand(0); - - Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( - IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, 16)), - PointerType::get(RegSaveAreaPtrTy, 0)); - Value *RegSaveAreaPtr = - IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); - Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; - unsigned Alignment = 16; - std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = - MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), - Alignment, /*isStore*/ true); - IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, - AMD64FpEndOffset); - if (MS.TrackOrigins) - IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, - Alignment, AMD64FpEndOffset); - Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( - IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, 8)), - PointerType::get(OverflowArgAreaPtrTy, 0)); - Value *OverflowArgAreaPtr = - IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); - Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; - std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = - MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), - Alignment, /*isStore*/ true); - Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, - AMD64FpEndOffset); - IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, - VAArgOverflowSize); - if (MS.TrackOrigins) { - SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, - AMD64FpEndOffset); - IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, - VAArgOverflowSize); - } - } - } -}; - -/// MIPS64-specific implementation of VarArgHelper. -struct VarArgMIPS64Helper : public VarArgHelper { - Function &F; - MemorySanitizer &MS; - MemorySanitizerVisitor &MSV; - Value *VAArgTLSCopy = nullptr; - Value *VAArgSize = nullptr; - - SmallVector<CallInst*, 16> VAStartInstrumentationList; - - VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} - - void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { - unsigned VAArgOffset = 0; - const DataLayout &DL = F.getParent()->getDataLayout(); - for (CallSite::arg_iterator ArgIt = CS.arg_begin() + - CS.getFunctionType()->getNumParams(), End = CS.arg_end(); - ArgIt != End; ++ArgIt) { - Triple TargetTriple(F.getParent()->getTargetTriple()); - Value *A = *ArgIt; - Value *Base; - uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); - if (TargetTriple.getArch() == Triple::mips64) { - // Adjusting the shadow for argument with size < 8 to match the placement - // of bits in big endian system - if (ArgSize < 8) - VAArgOffset += (8 - ArgSize); - } - Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); - VAArgOffset += ArgSize; - VAArgOffset = alignTo(VAArgOffset, 8); - if (!Base) - continue; - IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); - } - - Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); - // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of - // a new class member i.e. it is the total size of all VarArgs. - IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); - } - - /// Compute the shadow address for a given va_arg. - Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, - unsigned ArgOffset, unsigned ArgSize) { - // Make sure we don't overflow __msan_va_arg_tls. - if (ArgOffset + ArgSize > kParamTLSSize) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), - "_msarg"); - } - - void visitVAStartInst(VAStartInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - unsigned Alignment = 8; - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 8, Alignment, false); - } - - void visitVACopyInst(VACopyInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - unsigned Alignment = 8; - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 8, Alignment, false); - } - - void finalizeInstrumentation() override { - assert(!VAArgSize && !VAArgTLSCopy && - "finalizeInstrumentation called twice"); - IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); - VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); - Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), - VAArgSize); - - if (!VAStartInstrumentationList.empty()) { - // If there is a va_start in this function, make a backup copy of - // va_arg_tls somewhere in the function entry block. - VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); - } - - // Instrument va_start. - // Copy va_list shadow from the backup copy of the TLS contents. - for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { - CallInst *OrigInst = VAStartInstrumentationList[i]; - IRBuilder<> IRB(OrigInst->getNextNode()); - Value *VAListTag = OrigInst->getArgOperand(0); - Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *RegSaveAreaPtrPtr = - IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - PointerType::get(RegSaveAreaPtrTy, 0)); - Value *RegSaveAreaPtr = - IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); - Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; - unsigned Alignment = 8; - std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = - MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), - Alignment, /*isStore*/ true); - IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, - CopySize); - } - } -}; - -/// AArch64-specific implementation of VarArgHelper. -struct VarArgAArch64Helper : public VarArgHelper { - static const unsigned kAArch64GrArgSize = 64; - static const unsigned kAArch64VrArgSize = 128; - - static const unsigned AArch64GrBegOffset = 0; - static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; - // Make VR space aligned to 16 bytes. - static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; - static const unsigned AArch64VrEndOffset = AArch64VrBegOffset - + kAArch64VrArgSize; - static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; - - Function &F; - MemorySanitizer &MS; - MemorySanitizerVisitor &MSV; - Value *VAArgTLSCopy = nullptr; - Value *VAArgOverflowSize = nullptr; - - SmallVector<CallInst*, 16> VAStartInstrumentationList; - - enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; - - VarArgAArch64Helper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} - - ArgKind classifyArgument(Value* arg) { - Type *T = arg->getType(); - if (T->isFPOrFPVectorTy()) - return AK_FloatingPoint; - if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) - || (T->isPointerTy())) - return AK_GeneralPurpose; - return AK_Memory; - } - - // The instrumentation stores the argument shadow in a non ABI-specific - // format because it does not know which argument is named (since Clang, - // like x86_64 case, lowers the va_args in the frontend and this pass only - // sees the low level code that deals with va_list internals). - // The first seven GR registers are saved in the first 56 bytes of the - // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then - // the remaining arguments. - // Using constant offset within the va_arg TLS array allows fast copy - // in the finalize instrumentation. - void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { - unsigned GrOffset = AArch64GrBegOffset; - unsigned VrOffset = AArch64VrBegOffset; - unsigned OverflowOffset = AArch64VAEndOffset; - - const DataLayout &DL = F.getParent()->getDataLayout(); - for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); - ArgIt != End; ++ArgIt) { - Value *A = *ArgIt; - unsigned ArgNo = CS.getArgumentNo(ArgIt); - bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); - ArgKind AK = classifyArgument(A); - if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) - AK = AK_Memory; - if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) - AK = AK_Memory; - Value *Base; - switch (AK) { - case AK_GeneralPurpose: - Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); - GrOffset += 8; - break; - case AK_FloatingPoint: - Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); - VrOffset += 16; - break; - case AK_Memory: - // Don't count fixed arguments in the overflow area - va_start will - // skip right over them. - if (IsFixed) - continue; - uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); - Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, - alignTo(ArgSize, 8)); - OverflowOffset += alignTo(ArgSize, 8); - break; - } - // Count Gp/Vr fixed arguments to their respective offsets, but don't - // bother to actually store a shadow. - if (IsFixed) - continue; - if (!Base) - continue; - IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); - } - Constant *OverflowSize = - ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); - IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); - } - - /// Compute the shadow address for a given va_arg. - Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, - unsigned ArgOffset, unsigned ArgSize) { - // Make sure we don't overflow __msan_va_arg_tls. - if (ArgOffset + ArgSize > kParamTLSSize) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), - "_msarg"); - } - - void visitVAStartInst(VAStartInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - unsigned Alignment = 8; - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 32, Alignment, false); - } - - void visitVACopyInst(VACopyInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - unsigned Alignment = 8; - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 32, Alignment, false); - } - - // Retrieve a va_list field of 'void*' size. - Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { - Value *SaveAreaPtrPtr = - IRB.CreateIntToPtr( - IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, offset)), - Type::getInt64PtrTy(*MS.C)); - return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); - } - - // Retrieve a va_list field of 'int' size. - Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { - Value *SaveAreaPtr = - IRB.CreateIntToPtr( - IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, offset)), - Type::getInt32PtrTy(*MS.C)); - Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); - return IRB.CreateSExt(SaveArea32, MS.IntptrTy); - } - - void finalizeInstrumentation() override { - assert(!VAArgOverflowSize && !VAArgTLSCopy && - "finalizeInstrumentation called twice"); - if (!VAStartInstrumentationList.empty()) { - // If there is a va_start in this function, make a backup copy of - // va_arg_tls somewhere in the function entry block. - IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); - VAArgOverflowSize = - IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); - Value *CopySize = - IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), - VAArgOverflowSize); - VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); - } - - Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); - Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); - - // Instrument va_start, copy va_list shadow from the backup copy of - // the TLS contents. - for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { - CallInst *OrigInst = VAStartInstrumentationList[i]; - IRBuilder<> IRB(OrigInst->getNextNode()); - - Value *VAListTag = OrigInst->getArgOperand(0); - - // The variadic ABI for AArch64 creates two areas to save the incoming - // argument registers (one for 64-bit general register xn-x7 and another - // for 128-bit FP/SIMD vn-v7). - // We need then to propagate the shadow arguments on both regions - // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. - // The remaning arguments are saved on shadow for 'va::stack'. - // One caveat is it requires only to propagate the non-named arguments, - // however on the call site instrumentation 'all' the arguments are - // saved. So to copy the shadow values from the va_arg TLS array - // we need to adjust the offset for both GR and VR fields based on - // the __{gr,vr}_offs value (since they are stores based on incoming - // named arguments). - - // Read the stack pointer from the va_list. - Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); - - // Read both the __gr_top and __gr_off and add them up. - Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); - Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); - - Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); - - // Read both the __vr_top and __vr_off and add them up. - Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); - Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); - - Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); - - // It does not know how many named arguments is being used and, on the - // callsite all the arguments were saved. Since __gr_off is defined as - // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic - // argument by ignoring the bytes of shadow from named arguments. - Value *GrRegSaveAreaShadowPtrOff = - IRB.CreateAdd(GrArgSize, GrOffSaveArea); - - Value *GrRegSaveAreaShadowPtr = - MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), - /*Alignment*/ 8, /*isStore*/ true) - .first; - - Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, - GrRegSaveAreaShadowPtrOff); - Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); - - IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize); - - // Again, but for FP/SIMD values. - Value *VrRegSaveAreaShadowPtrOff = - IRB.CreateAdd(VrArgSize, VrOffSaveArea); - - Value *VrRegSaveAreaShadowPtr = - MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), - /*Alignment*/ 8, /*isStore*/ true) - .first; - - Value *VrSrcPtr = IRB.CreateInBoundsGEP( - IRB.getInt8Ty(), - IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, - IRB.getInt32(AArch64VrBegOffset)), - VrRegSaveAreaShadowPtrOff); - Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); - - IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize); - - // And finally for remaining arguments. - Value *StackSaveAreaShadowPtr = - MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), - /*Alignment*/ 16, /*isStore*/ true) - .first; - - Value *StackSrcPtr = - IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, - IRB.getInt32(AArch64VAEndOffset)); - - IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16, - VAArgOverflowSize); - } - } -}; - -/// PowerPC64-specific implementation of VarArgHelper. -struct VarArgPowerPC64Helper : public VarArgHelper { - Function &F; - MemorySanitizer &MS; - MemorySanitizerVisitor &MSV; - Value *VAArgTLSCopy = nullptr; - Value *VAArgSize = nullptr; - - SmallVector<CallInst*, 16> VAStartInstrumentationList; - - VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} - - void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override { - // For PowerPC, we need to deal with alignment of stack arguments - - // they are mostly aligned to 8 bytes, but vectors and i128 arrays - // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, - // and QPX vectors are aligned to 32 bytes. For that reason, we - // compute current offset from stack pointer (which is always properly - // aligned), and offset for the first vararg, then subtract them. - unsigned VAArgBase; - Triple TargetTriple(F.getParent()->getTargetTriple()); - // Parameter save area starts at 48 bytes from frame pointer for ABIv1, - // and 32 bytes for ABIv2. This is usually determined by target - // endianness, but in theory could be overriden by function attribute. - // For simplicity, we ignore it here (it'd only matter for QPX vectors). - if (TargetTriple.getArch() == Triple::ppc64) - VAArgBase = 48; - else - VAArgBase = 32; - unsigned VAArgOffset = VAArgBase; - const DataLayout &DL = F.getParent()->getDataLayout(); - for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end(); - ArgIt != End; ++ArgIt) { - Value *A = *ArgIt; - unsigned ArgNo = CS.getArgumentNo(ArgIt); - bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams(); - bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal); - if (IsByVal) { - assert(A->getType()->isPointerTy()); - Type *RealTy = A->getType()->getPointerElementType(); - uint64_t ArgSize = DL.getTypeAllocSize(RealTy); - uint64_t ArgAlign = CS.getParamAlignment(ArgNo); - if (ArgAlign < 8) - ArgAlign = 8; - VAArgOffset = alignTo(VAArgOffset, ArgAlign); - if (!IsFixed) { - Value *Base = getShadowPtrForVAArgument( - RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); - if (Base) { - Value *AShadowPtr, *AOriginPtr; - std::tie(AShadowPtr, AOriginPtr) = - MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), - kShadowTLSAlignment, /*isStore*/ false); - - IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, - kShadowTLSAlignment, ArgSize); - } - } - VAArgOffset += alignTo(ArgSize, 8); - } else { - Value *Base; - uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); - uint64_t ArgAlign = 8; - if (A->getType()->isArrayTy()) { - // Arrays are aligned to element size, except for long double - // arrays, which are aligned to 8 bytes. - Type *ElementTy = A->getType()->getArrayElementType(); - if (!ElementTy->isPPC_FP128Ty()) - ArgAlign = DL.getTypeAllocSize(ElementTy); - } else if (A->getType()->isVectorTy()) { - // Vectors are naturally aligned. - ArgAlign = DL.getTypeAllocSize(A->getType()); - } - if (ArgAlign < 8) - ArgAlign = 8; - VAArgOffset = alignTo(VAArgOffset, ArgAlign); - if (DL.isBigEndian()) { - // Adjusting the shadow for argument with size < 8 to match the placement - // of bits in big endian system - if (ArgSize < 8) - VAArgOffset += (8 - ArgSize); - } - if (!IsFixed) { - Base = getShadowPtrForVAArgument(A->getType(), IRB, - VAArgOffset - VAArgBase, ArgSize); - if (Base) - IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); - } - VAArgOffset += ArgSize; - VAArgOffset = alignTo(VAArgOffset, 8); - } - if (IsFixed) - VAArgBase = VAArgOffset; - } - - Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), - VAArgOffset - VAArgBase); - // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of - // a new class member i.e. it is the total size of all VarArgs. - IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); - } - - /// Compute the shadow address for a given va_arg. - Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, - unsigned ArgOffset, unsigned ArgSize) { - // Make sure we don't overflow __msan_va_arg_tls. - if (ArgOffset + ArgSize > kParamTLSSize) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), - "_msarg"); - } - - void visitVAStartInst(VAStartInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - unsigned Alignment = 8; - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 8, Alignment, false); - } - - void visitVACopyInst(VACopyInst &I) override { - IRBuilder<> IRB(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - unsigned Alignment = 8; - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - // Unpoison the whole __va_list_tag. - // FIXME: magic ABI constants. - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 8, Alignment, false); - } - - void finalizeInstrumentation() override { - assert(!VAArgSize && !VAArgTLSCopy && - "finalizeInstrumentation called twice"); - IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI()); - VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); - Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), - VAArgSize); - - if (!VAStartInstrumentationList.empty()) { - // If there is a va_start in this function, make a backup copy of - // va_arg_tls somewhere in the function entry block. - VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize); - } - - // Instrument va_start. - // Copy va_list shadow from the backup copy of the TLS contents. - for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { - CallInst *OrigInst = VAStartInstrumentationList[i]; - IRBuilder<> IRB(OrigInst->getNextNode()); - Value *VAListTag = OrigInst->getArgOperand(0); - Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *RegSaveAreaPtrPtr = - IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - PointerType::get(RegSaveAreaPtrTy, 0)); - Value *RegSaveAreaPtr = - IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); - Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; - unsigned Alignment = 8; - std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = - MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), - Alignment, /*isStore*/ true); - IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, - CopySize); - } - } -}; - -/// A no-op implementation of VarArgHelper. -struct VarArgNoOpHelper : public VarArgHelper { - VarArgNoOpHelper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) {} - - void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {} - - void visitVAStartInst(VAStartInst &I) override {} - - void visitVACopyInst(VACopyInst &I) override {} - - void finalizeInstrumentation() override {} -}; - -} // end anonymous namespace - -static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, - MemorySanitizerVisitor &Visitor) { - // VarArg handling is only implemented on AMD64. False positives are possible - // on other platforms. - Triple TargetTriple(Func.getParent()->getTargetTriple()); - if (TargetTriple.getArch() == Triple::x86_64) - return new VarArgAMD64Helper(Func, Msan, Visitor); - else if (TargetTriple.isMIPS64()) - return new VarArgMIPS64Helper(Func, Msan, Visitor); - else if (TargetTriple.getArch() == Triple::aarch64) - return new VarArgAArch64Helper(Func, Msan, Visitor); - else if (TargetTriple.getArch() == Triple::ppc64 || - TargetTriple.getArch() == Triple::ppc64le) - return new VarArgPowerPC64Helper(Func, Msan, Visitor); - else - return new VarArgNoOpHelper(Func, Msan, Visitor); -} - -bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { - if (!CompileKernel && (&F == MsanCtorFunction)) - return false; - MemorySanitizerVisitor Visitor(F, *this, TLI); - - // Clear out readonly/readnone attributes. - AttrBuilder B; - B.addAttribute(Attribute::ReadOnly) - .addAttribute(Attribute::ReadNone); - F.removeAttributes(AttributeList::FunctionIndex, B); - - return Visitor.runOnFunction(); -} |
