summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp4581
1 files changed, 0 insertions, 4581 deletions
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
deleted file mode 100644
index b25cbed1bb02..000000000000
--- a/contrib/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
+++ /dev/null
@@ -1,4581 +0,0 @@
-//===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-/// \file
-/// This file is a part of MemorySanitizer, a detector of uninitialized
-/// reads.
-///
-/// The algorithm of the tool is similar to Memcheck
-/// (http://goo.gl/QKbem). We associate a few shadow bits with every
-/// byte of the application memory, poison the shadow of the malloc-ed
-/// or alloca-ed memory, load the shadow bits on every memory read,
-/// propagate the shadow bits through some of the arithmetic
-/// instruction (including MOV), store the shadow bits on every memory
-/// write, report a bug on some other instructions (e.g. JMP) if the
-/// associated shadow is poisoned.
-///
-/// But there are differences too. The first and the major one:
-/// compiler instrumentation instead of binary instrumentation. This
-/// gives us much better register allocation, possible compiler
-/// optimizations and a fast start-up. But this brings the major issue
-/// as well: msan needs to see all program events, including system
-/// calls and reads/writes in system libraries, so we either need to
-/// compile *everything* with msan or use a binary translation
-/// component (e.g. DynamoRIO) to instrument pre-built libraries.
-/// Another difference from Memcheck is that we use 8 shadow bits per
-/// byte of application memory and use a direct shadow mapping. This
-/// greatly simplifies the instrumentation code and avoids races on
-/// shadow updates (Memcheck is single-threaded so races are not a
-/// concern there. Memcheck uses 2 shadow bits per byte with a slow
-/// path storage that uses 8 bits per byte).
-///
-/// The default value of shadow is 0, which means "clean" (not poisoned).
-///
-/// Every module initializer should call __msan_init to ensure that the
-/// shadow memory is ready. On error, __msan_warning is called. Since
-/// parameters and return values may be passed via registers, we have a
-/// specialized thread-local shadow for return values
-/// (__msan_retval_tls) and parameters (__msan_param_tls).
-///
-/// Origin tracking.
-///
-/// MemorySanitizer can track origins (allocation points) of all uninitialized
-/// values. This behavior is controlled with a flag (msan-track-origins) and is
-/// disabled by default.
-///
-/// Origins are 4-byte values created and interpreted by the runtime library.
-/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
-/// of application memory. Propagation of origins is basically a bunch of
-/// "select" instructions that pick the origin of a dirty argument, if an
-/// instruction has one.
-///
-/// Every 4 aligned, consecutive bytes of application memory have one origin
-/// value associated with them. If these bytes contain uninitialized data
-/// coming from 2 different allocations, the last store wins. Because of this,
-/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
-/// practice.
-///
-/// Origins are meaningless for fully initialized values, so MemorySanitizer
-/// avoids storing origin to memory when a fully initialized value is stored.
-/// This way it avoids needless overwritting origin of the 4-byte region on
-/// a short (i.e. 1 byte) clean store, and it is also good for performance.
-///
-/// Atomic handling.
-///
-/// Ideally, every atomic store of application value should update the
-/// corresponding shadow location in an atomic way. Unfortunately, atomic store
-/// of two disjoint locations can not be done without severe slowdown.
-///
-/// Therefore, we implement an approximation that may err on the safe side.
-/// In this implementation, every atomically accessed location in the program
-/// may only change from (partially) uninitialized to fully initialized, but
-/// not the other way around. We load the shadow _after_ the application load,
-/// and we store the shadow _before_ the app store. Also, we always store clean
-/// shadow (if the application store is atomic). This way, if the store-load
-/// pair constitutes a happens-before arc, shadow store and load are correctly
-/// ordered such that the load will get either the value that was stored, or
-/// some later value (which is always clean).
-///
-/// This does not work very well with Compare-And-Swap (CAS) and
-/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
-/// must store the new shadow before the app operation, and load the shadow
-/// after the app operation. Computers don't work this way. Current
-/// implementation ignores the load aspect of CAS/RMW, always returning a clean
-/// value. It implements the store part as a simple atomic store by storing a
-/// clean shadow.
-///
-/// Instrumenting inline assembly.
-///
-/// For inline assembly code LLVM has little idea about which memory locations
-/// become initialized depending on the arguments. It can be possible to figure
-/// out which arguments are meant to point to inputs and outputs, but the
-/// actual semantics can be only visible at runtime. In the Linux kernel it's
-/// also possible that the arguments only indicate the offset for a base taken
-/// from a segment register, so it's dangerous to treat any asm() arguments as
-/// pointers. We take a conservative approach generating calls to
-/// __msan_instrument_asm_store(ptr, size)
-/// , which defer the memory unpoisoning to the runtime library.
-/// The latter can perform more complex address checks to figure out whether
-/// it's safe to touch the shadow memory.
-/// Like with atomic operations, we call __msan_instrument_asm_store() before
-/// the assembly call, so that changes to the shadow memory will be seen by
-/// other threads together with main memory initialization.
-///
-/// KernelMemorySanitizer (KMSAN) implementation.
-///
-/// The major differences between KMSAN and MSan instrumentation are:
-/// - KMSAN always tracks the origins and implies msan-keep-going=true;
-/// - KMSAN allocates shadow and origin memory for each page separately, so
-/// there are no explicit accesses to shadow and origin in the
-/// instrumentation.
-/// Shadow and origin values for a particular X-byte memory location
-/// (X=1,2,4,8) are accessed through pointers obtained via the
-/// __msan_metadata_ptr_for_load_X(ptr)
-/// __msan_metadata_ptr_for_store_X(ptr)
-/// functions. The corresponding functions check that the X-byte accesses
-/// are possible and returns the pointers to shadow and origin memory.
-/// Arbitrary sized accesses are handled with:
-/// __msan_metadata_ptr_for_load_n(ptr, size)
-/// __msan_metadata_ptr_for_store_n(ptr, size);
-/// - TLS variables are stored in a single per-task struct. A call to a
-/// function __msan_get_context_state() returning a pointer to that struct
-/// is inserted into every instrumented function before the entry block;
-/// - __msan_warning() takes a 32-bit origin parameter;
-/// - local variables are poisoned with __msan_poison_alloca() upon function
-/// entry and unpoisoned with __msan_unpoison_alloca() before leaving the
-/// function;
-/// - the pass doesn't declare any global variables or add global constructors
-/// to the translation unit.
-///
-/// Also, KMSAN currently ignores uninitialized memory passed into inline asm
-/// calls, making sure we're on the safe side wrt. possible false positives.
-///
-/// KernelMemorySanitizer only supports X86_64 at the moment.
-///
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/CallingConv.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InlineAsm.h"
-#include "llvm/IR/InstVisitor.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/MDBuilder.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueMap.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/AtomicOrdering.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/ModuleUtils.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <memory>
-#include <string>
-#include <tuple>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "msan"
-
-static const unsigned kOriginSize = 4;
-static const unsigned kMinOriginAlignment = 4;
-static const unsigned kShadowTLSAlignment = 8;
-
-// These constants must be kept in sync with the ones in msan.h.
-static const unsigned kParamTLSSize = 800;
-static const unsigned kRetvalTLSSize = 800;
-
-// Accesses sizes are powers of two: 1, 2, 4, 8.
-static const size_t kNumberOfAccessSizes = 4;
-
-/// Track origins of uninitialized values.
-///
-/// Adds a section to MemorySanitizer report that points to the allocation
-/// (stack or heap) the uninitialized bits came from originally.
-static cl::opt<int> ClTrackOrigins("msan-track-origins",
- cl::desc("Track origins (allocation sites) of poisoned memory"),
- cl::Hidden, cl::init(0));
-
-static cl::opt<bool> ClKeepGoing("msan-keep-going",
- cl::desc("keep going after reporting a UMR"),
- cl::Hidden, cl::init(false));
-
-static cl::opt<bool> ClPoisonStack("msan-poison-stack",
- cl::desc("poison uninitialized stack variables"),
- cl::Hidden, cl::init(true));
-
-static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
- cl::desc("poison uninitialized stack variables with a call"),
- cl::Hidden, cl::init(false));
-
-static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
- cl::desc("poison uninitialized stack variables with the given pattern"),
- cl::Hidden, cl::init(0xff));
-
-static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
- cl::desc("poison undef temps"),
- cl::Hidden, cl::init(true));
-
-static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
- cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
- cl::Hidden, cl::init(true));
-
-static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
- cl::desc("exact handling of relational integer ICmp"),
- cl::Hidden, cl::init(false));
-
-static cl::opt<bool> ClHandleLifetimeIntrinsics(
- "msan-handle-lifetime-intrinsics",
- cl::desc(
- "when possible, poison scoped variables at the beginning of the scope "
- "(slower, but more precise)"),
- cl::Hidden, cl::init(true));
-
-// When compiling the Linux kernel, we sometimes see false positives related to
-// MSan being unable to understand that inline assembly calls may initialize
-// local variables.
-// This flag makes the compiler conservatively unpoison every memory location
-// passed into an assembly call. Note that this may cause false positives.
-// Because it's impossible to figure out the array sizes, we can only unpoison
-// the first sizeof(type) bytes for each type* pointer.
-// The instrumentation is only enabled in KMSAN builds, and only if
-// -msan-handle-asm-conservative is on. This is done because we may want to
-// quickly disable assembly instrumentation when it breaks.
-static cl::opt<bool> ClHandleAsmConservative(
- "msan-handle-asm-conservative",
- cl::desc("conservative handling of inline assembly"), cl::Hidden,
- cl::init(true));
-
-// This flag controls whether we check the shadow of the address
-// operand of load or store. Such bugs are very rare, since load from
-// a garbage address typically results in SEGV, but still happen
-// (e.g. only lower bits of address are garbage, or the access happens
-// early at program startup where malloc-ed memory is more likely to
-// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
-static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
- cl::desc("report accesses through a pointer which has poisoned shadow"),
- cl::Hidden, cl::init(true));
-
-static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
- cl::desc("print out instructions with default strict semantics"),
- cl::Hidden, cl::init(false));
-
-static cl::opt<int> ClInstrumentationWithCallThreshold(
- "msan-instrumentation-with-call-threshold",
- cl::desc(
- "If the function being instrumented requires more than "
- "this number of checks and origin stores, use callbacks instead of "
- "inline checks (-1 means never use callbacks)."),
- cl::Hidden, cl::init(3500));
-
-static cl::opt<bool>
- ClEnableKmsan("msan-kernel",
- cl::desc("Enable KernelMemorySanitizer instrumentation"),
- cl::Hidden, cl::init(false));
-
-// This is an experiment to enable handling of cases where shadow is a non-zero
-// compile-time constant. For some unexplainable reason they were silently
-// ignored in the instrumentation.
-static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
- cl::desc("Insert checks for constant shadow values"),
- cl::Hidden, cl::init(false));
-
-// This is off by default because of a bug in gold:
-// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
-static cl::opt<bool> ClWithComdat("msan-with-comdat",
- cl::desc("Place MSan constructors in comdat sections"),
- cl::Hidden, cl::init(false));
-
-// These options allow to specify custom memory map parameters
-// See MemoryMapParams for details.
-static cl::opt<uint64_t> ClAndMask("msan-and-mask",
- cl::desc("Define custom MSan AndMask"),
- cl::Hidden, cl::init(0));
-
-static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
- cl::desc("Define custom MSan XorMask"),
- cl::Hidden, cl::init(0));
-
-static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
- cl::desc("Define custom MSan ShadowBase"),
- cl::Hidden, cl::init(0));
-
-static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
- cl::desc("Define custom MSan OriginBase"),
- cl::Hidden, cl::init(0));
-
-static const char *const kMsanModuleCtorName = "msan.module_ctor";
-static const char *const kMsanInitName = "__msan_init";
-
-namespace {
-
-// Memory map parameters used in application-to-shadow address calculation.
-// Offset = (Addr & ~AndMask) ^ XorMask
-// Shadow = ShadowBase + Offset
-// Origin = OriginBase + Offset
-struct MemoryMapParams {
- uint64_t AndMask;
- uint64_t XorMask;
- uint64_t ShadowBase;
- uint64_t OriginBase;
-};
-
-struct PlatformMemoryMapParams {
- const MemoryMapParams *bits32;
- const MemoryMapParams *bits64;
-};
-
-} // end anonymous namespace
-
-// i386 Linux
-static const MemoryMapParams Linux_I386_MemoryMapParams = {
- 0x000080000000, // AndMask
- 0, // XorMask (not used)
- 0, // ShadowBase (not used)
- 0x000040000000, // OriginBase
-};
-
-// x86_64 Linux
-static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
-#ifdef MSAN_LINUX_X86_64_OLD_MAPPING
- 0x400000000000, // AndMask
- 0, // XorMask (not used)
- 0, // ShadowBase (not used)
- 0x200000000000, // OriginBase
-#else
- 0, // AndMask (not used)
- 0x500000000000, // XorMask
- 0, // ShadowBase (not used)
- 0x100000000000, // OriginBase
-#endif
-};
-
-// mips64 Linux
-static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
- 0, // AndMask (not used)
- 0x008000000000, // XorMask
- 0, // ShadowBase (not used)
- 0x002000000000, // OriginBase
-};
-
-// ppc64 Linux
-static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
- 0xE00000000000, // AndMask
- 0x100000000000, // XorMask
- 0x080000000000, // ShadowBase
- 0x1C0000000000, // OriginBase
-};
-
-// aarch64 Linux
-static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
- 0, // AndMask (not used)
- 0x06000000000, // XorMask
- 0, // ShadowBase (not used)
- 0x01000000000, // OriginBase
-};
-
-// i386 FreeBSD
-static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
- 0x000180000000, // AndMask
- 0x000040000000, // XorMask
- 0x000020000000, // ShadowBase
- 0x000700000000, // OriginBase
-};
-
-// x86_64 FreeBSD
-static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
- 0xc00000000000, // AndMask
- 0x200000000000, // XorMask
- 0x100000000000, // ShadowBase
- 0x380000000000, // OriginBase
-};
-
-// x86_64 NetBSD
-static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
- 0, // AndMask
- 0x500000000000, // XorMask
- 0, // ShadowBase
- 0x100000000000, // OriginBase
-};
-
-static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
- &Linux_I386_MemoryMapParams,
- &Linux_X86_64_MemoryMapParams,
-};
-
-static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
- nullptr,
- &Linux_MIPS64_MemoryMapParams,
-};
-
-static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
- nullptr,
- &Linux_PowerPC64_MemoryMapParams,
-};
-
-static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
- nullptr,
- &Linux_AArch64_MemoryMapParams,
-};
-
-static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
- &FreeBSD_I386_MemoryMapParams,
- &FreeBSD_X86_64_MemoryMapParams,
-};
-
-static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
- nullptr,
- &NetBSD_X86_64_MemoryMapParams,
-};
-
-namespace {
-
-/// Instrument functions of a module to detect uninitialized reads.
-///
-/// Instantiating MemorySanitizer inserts the msan runtime library API function
-/// declarations into the module if they don't exist already. Instantiating
-/// ensures the __msan_init function is in the list of global constructors for
-/// the module.
-class MemorySanitizer {
-public:
- MemorySanitizer(Module &M, MemorySanitizerOptions Options) {
- this->CompileKernel =
- ClEnableKmsan.getNumOccurrences() > 0 ? ClEnableKmsan : Options.Kernel;
- if (ClTrackOrigins.getNumOccurrences() > 0)
- this->TrackOrigins = ClTrackOrigins;
- else
- this->TrackOrigins = this->CompileKernel ? 2 : Options.TrackOrigins;
- this->Recover = ClKeepGoing.getNumOccurrences() > 0
- ? ClKeepGoing
- : (this->CompileKernel | Options.Recover);
- initializeModule(M);
- }
-
- // MSan cannot be moved or copied because of MapParams.
- MemorySanitizer(MemorySanitizer &&) = delete;
- MemorySanitizer &operator=(MemorySanitizer &&) = delete;
- MemorySanitizer(const MemorySanitizer &) = delete;
- MemorySanitizer &operator=(const MemorySanitizer &) = delete;
-
- bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
-
-private:
- friend struct MemorySanitizerVisitor;
- friend struct VarArgAMD64Helper;
- friend struct VarArgMIPS64Helper;
- friend struct VarArgAArch64Helper;
- friend struct VarArgPowerPC64Helper;
-
- void initializeModule(Module &M);
- void initializeCallbacks(Module &M);
- void createKernelApi(Module &M);
- void createUserspaceApi(Module &M);
-
- /// True if we're compiling the Linux kernel.
- bool CompileKernel;
- /// Track origins (allocation points) of uninitialized values.
- int TrackOrigins;
- bool Recover;
-
- LLVMContext *C;
- Type *IntptrTy;
- Type *OriginTy;
-
- // XxxTLS variables represent the per-thread state in MSan and per-task state
- // in KMSAN.
- // For the userspace these point to thread-local globals. In the kernel land
- // they point to the members of a per-task struct obtained via a call to
- // __msan_get_context_state().
-
- /// Thread-local shadow storage for function parameters.
- Value *ParamTLS;
-
- /// Thread-local origin storage for function parameters.
- Value *ParamOriginTLS;
-
- /// Thread-local shadow storage for function return value.
- Value *RetvalTLS;
-
- /// Thread-local origin storage for function return value.
- Value *RetvalOriginTLS;
-
- /// Thread-local shadow storage for in-register va_arg function
- /// parameters (x86_64-specific).
- Value *VAArgTLS;
-
- /// Thread-local shadow storage for in-register va_arg function
- /// parameters (x86_64-specific).
- Value *VAArgOriginTLS;
-
- /// Thread-local shadow storage for va_arg overflow area
- /// (x86_64-specific).
- Value *VAArgOverflowSizeTLS;
-
- /// Thread-local space used to pass origin value to the UMR reporting
- /// function.
- Value *OriginTLS;
-
- /// Are the instrumentation callbacks set up?
- bool CallbacksInitialized = false;
-
- /// The run-time callback to print a warning.
- FunctionCallee WarningFn;
-
- // These arrays are indexed by log2(AccessSize).
- FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
- FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
-
- /// Run-time helper that generates a new origin value for a stack
- /// allocation.
- FunctionCallee MsanSetAllocaOrigin4Fn;
-
- /// Run-time helper that poisons stack on function entry.
- FunctionCallee MsanPoisonStackFn;
-
- /// Run-time helper that records a store (or any event) of an
- /// uninitialized value and returns an updated origin id encoding this info.
- FunctionCallee MsanChainOriginFn;
-
- /// MSan runtime replacements for memmove, memcpy and memset.
- FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
-
- /// KMSAN callback for task-local function argument shadow.
- StructType *MsanContextStateTy;
- FunctionCallee MsanGetContextStateFn;
-
- /// Functions for poisoning/unpoisoning local variables
- FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
-
- /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
- /// pointers.
- FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
- FunctionCallee MsanMetadataPtrForLoad_1_8[4];
- FunctionCallee MsanMetadataPtrForStore_1_8[4];
- FunctionCallee MsanInstrumentAsmStoreFn;
-
- /// Helper to choose between different MsanMetadataPtrXxx().
- FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
-
- /// Memory map parameters used in application-to-shadow calculation.
- const MemoryMapParams *MapParams;
-
- /// Custom memory map parameters used when -msan-shadow-base or
- // -msan-origin-base is provided.
- MemoryMapParams CustomMapParams;
-
- MDNode *ColdCallWeights;
-
- /// Branch weights for origin store.
- MDNode *OriginStoreWeights;
-
- /// An empty volatile inline asm that prevents callback merge.
- InlineAsm *EmptyAsm;
-
- Function *MsanCtorFunction;
-};
-
-/// A legacy function pass for msan instrumentation.
-///
-/// Instruments functions to detect unitialized reads.
-struct MemorySanitizerLegacyPass : public FunctionPass {
- // Pass identification, replacement for typeid.
- static char ID;
-
- MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
- : FunctionPass(ID), Options(Options) {}
- StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
-
- bool runOnFunction(Function &F) override {
- return MSan->sanitizeFunction(
- F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
- }
- bool doInitialization(Module &M) override;
-
- Optional<MemorySanitizer> MSan;
- MemorySanitizerOptions Options;
-};
-
-} // end anonymous namespace
-
-PreservedAnalyses MemorySanitizerPass::run(Function &F,
- FunctionAnalysisManager &FAM) {
- MemorySanitizer Msan(*F.getParent(), Options);
- if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
- return PreservedAnalyses::none();
- return PreservedAnalyses::all();
-}
-
-char MemorySanitizerLegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
- "MemorySanitizer: detects uninitialized reads.", false,
- false)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
- "MemorySanitizer: detects uninitialized reads.", false,
- false)
-
-FunctionPass *
-llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
- return new MemorySanitizerLegacyPass(Options);
-}
-
-/// Create a non-const global initialized with the given string.
-///
-/// Creates a writable global for Str so that we can pass it to the
-/// run-time lib. Runtime uses first 4 bytes of the string to store the
-/// frame ID, so the string needs to be mutable.
-static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
- StringRef Str) {
- Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
- return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
- GlobalValue::PrivateLinkage, StrConst, "");
-}
-
-/// Create KMSAN API callbacks.
-void MemorySanitizer::createKernelApi(Module &M) {
- IRBuilder<> IRB(*C);
-
- // These will be initialized in insertKmsanPrologue().
- RetvalTLS = nullptr;
- RetvalOriginTLS = nullptr;
- ParamTLS = nullptr;
- ParamOriginTLS = nullptr;
- VAArgTLS = nullptr;
- VAArgOriginTLS = nullptr;
- VAArgOverflowSizeTLS = nullptr;
- // OriginTLS is unused in the kernel.
- OriginTLS = nullptr;
-
- // __msan_warning() in the kernel takes an origin.
- WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
- IRB.getInt32Ty());
- // Requests the per-task context state (kmsan_context_state*) from the
- // runtime library.
- MsanContextStateTy = StructType::get(
- ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
- ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
- ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
- ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
- IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
- OriginTy);
- MsanGetContextStateFn = M.getOrInsertFunction(
- "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
-
- Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
- PointerType::get(IRB.getInt32Ty(), 0));
-
- for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
- std::string name_load =
- "__msan_metadata_ptr_for_load_" + std::to_string(size);
- std::string name_store =
- "__msan_metadata_ptr_for_store_" + std::to_string(size);
- MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
- name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
- MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
- name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
- }
-
- MsanMetadataPtrForLoadN = M.getOrInsertFunction(
- "__msan_metadata_ptr_for_load_n", RetTy,
- PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
- MsanMetadataPtrForStoreN = M.getOrInsertFunction(
- "__msan_metadata_ptr_for_store_n", RetTy,
- PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
-
- // Functions for poisoning and unpoisoning memory.
- MsanPoisonAllocaFn =
- M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
- IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
- MsanUnpoisonAllocaFn = M.getOrInsertFunction(
- "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
-}
-
-static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
- return M.getOrInsertGlobal(Name, Ty, [&] {
- return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
- nullptr, Name, nullptr,
- GlobalVariable::InitialExecTLSModel);
- });
-}
-
-/// Insert declarations for userspace-specific functions and globals.
-void MemorySanitizer::createUserspaceApi(Module &M) {
- IRBuilder<> IRB(*C);
- // Create the callback.
- // FIXME: this function should have "Cold" calling conv,
- // which is not yet implemented.
- StringRef WarningFnName = Recover ? "__msan_warning"
- : "__msan_warning_noreturn";
- WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
-
- // Create the global TLS variables.
- RetvalTLS =
- getOrInsertGlobal(M, "__msan_retval_tls",
- ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
-
- RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
-
- ParamTLS =
- getOrInsertGlobal(M, "__msan_param_tls",
- ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
-
- ParamOriginTLS =
- getOrInsertGlobal(M, "__msan_param_origin_tls",
- ArrayType::get(OriginTy, kParamTLSSize / 4));
-
- VAArgTLS =
- getOrInsertGlobal(M, "__msan_va_arg_tls",
- ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
-
- VAArgOriginTLS =
- getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
- ArrayType::get(OriginTy, kParamTLSSize / 4));
-
- VAArgOverflowSizeTLS =
- getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
- OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty());
-
- for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
- AccessSizeIndex++) {
- unsigned AccessSize = 1 << AccessSizeIndex;
- std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
- MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
- FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
- IRB.getInt32Ty());
-
- FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
- MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
- FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
- IRB.getInt8PtrTy(), IRB.getInt32Ty());
- }
-
- MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
- "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
- IRB.getInt8PtrTy(), IntptrTy);
- MsanPoisonStackFn =
- M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
- IRB.getInt8PtrTy(), IntptrTy);
-}
-
-/// Insert extern declaration of runtime-provided functions and globals.
-void MemorySanitizer::initializeCallbacks(Module &M) {
- // Only do this once.
- if (CallbacksInitialized)
- return;
-
- IRBuilder<> IRB(*C);
- // Initialize callbacks that are common for kernel and userspace
- // instrumentation.
- MsanChainOriginFn = M.getOrInsertFunction(
- "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
- MemmoveFn = M.getOrInsertFunction(
- "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IntptrTy);
- MemcpyFn = M.getOrInsertFunction(
- "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
- IntptrTy);
- MemsetFn = M.getOrInsertFunction(
- "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
- IntptrTy);
- // We insert an empty inline asm after __msan_report* to avoid callback merge.
- EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
- StringRef(""), StringRef(""),
- /*hasSideEffects=*/true);
-
- MsanInstrumentAsmStoreFn =
- M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
- PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
-
- if (CompileKernel) {
- createKernelApi(M);
- } else {
- createUserspaceApi(M);
- }
- CallbacksInitialized = true;
-}
-
-FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
- int size) {
- FunctionCallee *Fns =
- isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
- switch (size) {
- case 1:
- return Fns[0];
- case 2:
- return Fns[1];
- case 4:
- return Fns[2];
- case 8:
- return Fns[3];
- default:
- return nullptr;
- }
-}
-
-/// Module-level initialization.
-///
-/// inserts a call to __msan_init to the module's constructor list.
-void MemorySanitizer::initializeModule(Module &M) {
- auto &DL = M.getDataLayout();
-
- bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
- bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
- // Check the overrides first
- if (ShadowPassed || OriginPassed) {
- CustomMapParams.AndMask = ClAndMask;
- CustomMapParams.XorMask = ClXorMask;
- CustomMapParams.ShadowBase = ClShadowBase;
- CustomMapParams.OriginBase = ClOriginBase;
- MapParams = &CustomMapParams;
- } else {
- Triple TargetTriple(M.getTargetTriple());
- switch (TargetTriple.getOS()) {
- case Triple::FreeBSD:
- switch (TargetTriple.getArch()) {
- case Triple::x86_64:
- MapParams = FreeBSD_X86_MemoryMapParams.bits64;
- break;
- case Triple::x86:
- MapParams = FreeBSD_X86_MemoryMapParams.bits32;
- break;
- default:
- report_fatal_error("unsupported architecture");
- }
- break;
- case Triple::NetBSD:
- switch (TargetTriple.getArch()) {
- case Triple::x86_64:
- MapParams = NetBSD_X86_MemoryMapParams.bits64;
- break;
- default:
- report_fatal_error("unsupported architecture");
- }
- break;
- case Triple::Linux:
- switch (TargetTriple.getArch()) {
- case Triple::x86_64:
- MapParams = Linux_X86_MemoryMapParams.bits64;
- break;
- case Triple::x86:
- MapParams = Linux_X86_MemoryMapParams.bits32;
- break;
- case Triple::mips64:
- case Triple::mips64el:
- MapParams = Linux_MIPS_MemoryMapParams.bits64;
- break;
- case Triple::ppc64:
- case Triple::ppc64le:
- MapParams = Linux_PowerPC_MemoryMapParams.bits64;
- break;
- case Triple::aarch64:
- case Triple::aarch64_be:
- MapParams = Linux_ARM_MemoryMapParams.bits64;
- break;
- default:
- report_fatal_error("unsupported architecture");
- }
- break;
- default:
- report_fatal_error("unsupported operating system");
- }
- }
-
- C = &(M.getContext());
- IRBuilder<> IRB(*C);
- IntptrTy = IRB.getIntPtrTy(DL);
- OriginTy = IRB.getInt32Ty();
-
- ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
- OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
-
- if (!CompileKernel) {
- std::tie(MsanCtorFunction, std::ignore) =
- getOrCreateSanitizerCtorAndInitFunctions(
- M, kMsanModuleCtorName, kMsanInitName,
- /*InitArgTypes=*/{},
- /*InitArgs=*/{},
- // This callback is invoked when the functions are created the first
- // time. Hook them into the global ctors list in that case:
- [&](Function *Ctor, FunctionCallee) {
- if (!ClWithComdat) {
- appendToGlobalCtors(M, Ctor, 0);
- return;
- }
- Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
- Ctor->setComdat(MsanCtorComdat);
- appendToGlobalCtors(M, Ctor, 0, Ctor);
- });
-
- if (TrackOrigins)
- M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
- return new GlobalVariable(
- M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
- IRB.getInt32(TrackOrigins), "__msan_track_origins");
- });
-
- if (Recover)
- M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
- return new GlobalVariable(M, IRB.getInt32Ty(), true,
- GlobalValue::WeakODRLinkage,
- IRB.getInt32(Recover), "__msan_keep_going");
- });
-}
-}
-
-bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
- MSan.emplace(M, Options);
- return true;
-}
-
-namespace {
-
-/// A helper class that handles instrumentation of VarArg
-/// functions on a particular platform.
-///
-/// Implementations are expected to insert the instrumentation
-/// necessary to propagate argument shadow through VarArg function
-/// calls. Visit* methods are called during an InstVisitor pass over
-/// the function, and should avoid creating new basic blocks. A new
-/// instance of this class is created for each instrumented function.
-struct VarArgHelper {
- virtual ~VarArgHelper() = default;
-
- /// Visit a CallSite.
- virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
-
- /// Visit a va_start call.
- virtual void visitVAStartInst(VAStartInst &I) = 0;
-
- /// Visit a va_copy call.
- virtual void visitVACopyInst(VACopyInst &I) = 0;
-
- /// Finalize function instrumentation.
- ///
- /// This method is called after visiting all interesting (see above)
- /// instructions in a function.
- virtual void finalizeInstrumentation() = 0;
-};
-
-struct MemorySanitizerVisitor;
-
-} // end anonymous namespace
-
-static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
- MemorySanitizerVisitor &Visitor);
-
-static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
- if (TypeSize <= 8) return 0;
- return Log2_32_Ceil((TypeSize + 7) / 8);
-}
-
-namespace {
-
-/// This class does all the work for a given function. Store and Load
-/// instructions store and load corresponding shadow and origin
-/// values. Most instructions propagate shadow from arguments to their
-/// return values. Certain instructions (most importantly, BranchInst)
-/// test their argument shadow and print reports (with a runtime call) if it's
-/// non-zero.
-struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
- Function &F;
- MemorySanitizer &MS;
- SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
- ValueMap<Value*, Value*> ShadowMap, OriginMap;
- std::unique_ptr<VarArgHelper> VAHelper;
- const TargetLibraryInfo *TLI;
- BasicBlock *ActualFnStart;
-
- // The following flags disable parts of MSan instrumentation based on
- // blacklist contents and command-line options.
- bool InsertChecks;
- bool PropagateShadow;
- bool PoisonStack;
- bool PoisonUndef;
- bool CheckReturnValue;
-
- struct ShadowOriginAndInsertPoint {
- Value *Shadow;
- Value *Origin;
- Instruction *OrigIns;
-
- ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
- : Shadow(S), Origin(O), OrigIns(I) {}
- };
- SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
- bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
- SmallSet<AllocaInst *, 16> AllocaSet;
- SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
- SmallVector<StoreInst *, 16> StoreList;
-
- MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
- const TargetLibraryInfo &TLI)
- : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
- bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
- InsertChecks = SanitizeFunction;
- PropagateShadow = SanitizeFunction;
- PoisonStack = SanitizeFunction && ClPoisonStack;
- PoisonUndef = SanitizeFunction && ClPoisonUndef;
- // FIXME: Consider using SpecialCaseList to specify a list of functions that
- // must always return fully initialized values. For now, we hardcode "main".
- CheckReturnValue = SanitizeFunction && (F.getName() == "main");
-
- MS.initializeCallbacks(*F.getParent());
- if (MS.CompileKernel)
- ActualFnStart = insertKmsanPrologue(F);
- else
- ActualFnStart = &F.getEntryBlock();
-
- LLVM_DEBUG(if (!InsertChecks) dbgs()
- << "MemorySanitizer is not inserting checks into '"
- << F.getName() << "'\n");
- }
-
- Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
- if (MS.TrackOrigins <= 1) return V;
- return IRB.CreateCall(MS.MsanChainOriginFn, V);
- }
-
- Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
- const DataLayout &DL = F.getParent()->getDataLayout();
- unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
- if (IntptrSize == kOriginSize) return Origin;
- assert(IntptrSize == kOriginSize * 2);
- Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
- return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
- }
-
- /// Fill memory range with the given origin value.
- void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
- unsigned Size, unsigned Alignment) {
- const DataLayout &DL = F.getParent()->getDataLayout();
- unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
- unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
- assert(IntptrAlignment >= kMinOriginAlignment);
- assert(IntptrSize >= kOriginSize);
-
- unsigned Ofs = 0;
- unsigned CurrentAlignment = Alignment;
- if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
- Value *IntptrOrigin = originToIntptr(IRB, Origin);
- Value *IntptrOriginPtr =
- IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
- for (unsigned i = 0; i < Size / IntptrSize; ++i) {
- Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
- : IntptrOriginPtr;
- IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
- Ofs += IntptrSize / kOriginSize;
- CurrentAlignment = IntptrAlignment;
- }
- }
-
- for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
- Value *GEP =
- i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
- IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
- CurrentAlignment = kMinOriginAlignment;
- }
- }
-
- void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
- Value *OriginPtr, unsigned Alignment, bool AsCall) {
- const DataLayout &DL = F.getParent()->getDataLayout();
- unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
- unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
- if (Shadow->getType()->isAggregateType()) {
- paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
- OriginAlignment);
- } else {
- Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
- Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
- if (ConstantShadow) {
- if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
- paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
- OriginAlignment);
- return;
- }
-
- unsigned TypeSizeInBits =
- DL.getTypeSizeInBits(ConvertedShadow->getType());
- unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
- if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
- FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
- Value *ConvertedShadow2 = IRB.CreateZExt(
- ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
- IRB.CreateCall(Fn, {ConvertedShadow2,
- IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
- Origin});
- } else {
- Value *Cmp = IRB.CreateICmpNE(
- ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
- Instruction *CheckTerm = SplitBlockAndInsertIfThen(
- Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
- IRBuilder<> IRBNew(CheckTerm);
- paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
- OriginAlignment);
- }
- }
- }
-
- void materializeStores(bool InstrumentWithCalls) {
- for (StoreInst *SI : StoreList) {
- IRBuilder<> IRB(SI);
- Value *Val = SI->getValueOperand();
- Value *Addr = SI->getPointerOperand();
- Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
- Value *ShadowPtr, *OriginPtr;
- Type *ShadowTy = Shadow->getType();
- unsigned Alignment = SI->getAlignment();
- unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
- std::tie(ShadowPtr, OriginPtr) =
- getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
-
- StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
- LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
- (void)NewSI;
-
- if (SI->isAtomic())
- SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
-
- if (MS.TrackOrigins && !SI->isAtomic())
- storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
- OriginAlignment, InstrumentWithCalls);
- }
- }
-
- /// Helper function to insert a warning at IRB's current insert point.
- void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
- if (!Origin)
- Origin = (Value *)IRB.getInt32(0);
- if (MS.CompileKernel) {
- IRB.CreateCall(MS.WarningFn, Origin);
- } else {
- if (MS.TrackOrigins) {
- IRB.CreateStore(Origin, MS.OriginTLS);
- }
- IRB.CreateCall(MS.WarningFn, {});
- }
- IRB.CreateCall(MS.EmptyAsm, {});
- // FIXME: Insert UnreachableInst if !MS.Recover?
- // This may invalidate some of the following checks and needs to be done
- // at the very end.
- }
-
- void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
- bool AsCall) {
- IRBuilder<> IRB(OrigIns);
- LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
- Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
- LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
-
- Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
- if (ConstantShadow) {
- if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
- insertWarningFn(IRB, Origin);
- }
- return;
- }
-
- const DataLayout &DL = OrigIns->getModule()->getDataLayout();
-
- unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
- unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
- if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
- FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
- Value *ConvertedShadow2 =
- IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
- IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
- ? Origin
- : (Value *)IRB.getInt32(0)});
- } else {
- Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
- getCleanShadow(ConvertedShadow), "_mscmp");
- Instruction *CheckTerm = SplitBlockAndInsertIfThen(
- Cmp, OrigIns,
- /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
-
- IRB.SetInsertPoint(CheckTerm);
- insertWarningFn(IRB, Origin);
- LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
- }
- }
-
- void materializeChecks(bool InstrumentWithCalls) {
- for (const auto &ShadowData : InstrumentationList) {
- Instruction *OrigIns = ShadowData.OrigIns;
- Value *Shadow = ShadowData.Shadow;
- Value *Origin = ShadowData.Origin;
- materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
- }
- LLVM_DEBUG(dbgs() << "DONE:\n" << F);
- }
-
- BasicBlock *insertKmsanPrologue(Function &F) {
- BasicBlock *ret =
- SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI());
- IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
- Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
- Constant *Zero = IRB.getInt32(0);
- MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
- {Zero, IRB.getInt32(0)}, "param_shadow");
- MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
- {Zero, IRB.getInt32(1)}, "retval_shadow");
- MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
- {Zero, IRB.getInt32(2)}, "va_arg_shadow");
- MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
- {Zero, IRB.getInt32(3)}, "va_arg_origin");
- MS.VAArgOverflowSizeTLS =
- IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
- {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
- MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
- {Zero, IRB.getInt32(5)}, "param_origin");
- MS.RetvalOriginTLS =
- IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
- {Zero, IRB.getInt32(6)}, "retval_origin");
- return ret;
- }
-
- /// Add MemorySanitizer instrumentation to a function.
- bool runOnFunction() {
- // In the presence of unreachable blocks, we may see Phi nodes with
- // incoming nodes from such blocks. Since InstVisitor skips unreachable
- // blocks, such nodes will not have any shadow value associated with them.
- // It's easier to remove unreachable blocks than deal with missing shadow.
- removeUnreachableBlocks(F);
-
- // Iterate all BBs in depth-first order and create shadow instructions
- // for all instructions (where applicable).
- // For PHI nodes we create dummy shadow PHIs which will be finalized later.
- for (BasicBlock *BB : depth_first(ActualFnStart))
- visit(*BB);
-
- // Finalize PHI nodes.
- for (PHINode *PN : ShadowPHINodes) {
- PHINode *PNS = cast<PHINode>(getShadow(PN));
- PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
- size_t NumValues = PN->getNumIncomingValues();
- for (size_t v = 0; v < NumValues; v++) {
- PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
- if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
- }
- }
-
- VAHelper->finalizeInstrumentation();
-
- // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
- // instrumenting only allocas.
- if (InstrumentLifetimeStart) {
- for (auto Item : LifetimeStartList) {
- instrumentAlloca(*Item.second, Item.first);
- AllocaSet.erase(Item.second);
- }
- }
- // Poison the allocas for which we didn't instrument the corresponding
- // lifetime intrinsics.
- for (AllocaInst *AI : AllocaSet)
- instrumentAlloca(*AI);
-
- bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
- InstrumentationList.size() + StoreList.size() >
- (unsigned)ClInstrumentationWithCallThreshold;
-
- // Insert shadow value checks.
- materializeChecks(InstrumentWithCalls);
-
- // Delayed instrumentation of StoreInst.
- // This may not add new address checks.
- materializeStores(InstrumentWithCalls);
-
- return true;
- }
-
- /// Compute the shadow type that corresponds to a given Value.
- Type *getShadowTy(Value *V) {
- return getShadowTy(V->getType());
- }
-
- /// Compute the shadow type that corresponds to a given Type.
- Type *getShadowTy(Type *OrigTy) {
- if (!OrigTy->isSized()) {
- return nullptr;
- }
- // For integer type, shadow is the same as the original type.
- // This may return weird-sized types like i1.
- if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
- return IT;
- const DataLayout &DL = F.getParent()->getDataLayout();
- if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
- uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
- return VectorType::get(IntegerType::get(*MS.C, EltSize),
- VT->getNumElements());
- }
- if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
- return ArrayType::get(getShadowTy(AT->getElementType()),
- AT->getNumElements());
- }
- if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
- SmallVector<Type*, 4> Elements;
- for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
- Elements.push_back(getShadowTy(ST->getElementType(i)));
- StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
- LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
- return Res;
- }
- uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
- return IntegerType::get(*MS.C, TypeSize);
- }
-
- /// Flatten a vector type.
- Type *getShadowTyNoVec(Type *ty) {
- if (VectorType *vt = dyn_cast<VectorType>(ty))
- return IntegerType::get(*MS.C, vt->getBitWidth());
- return ty;
- }
-
- /// Convert a shadow value to it's flattened variant.
- Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
- Type *Ty = V->getType();
- Type *NoVecTy = getShadowTyNoVec(Ty);
- if (Ty == NoVecTy) return V;
- return IRB.CreateBitCast(V, NoVecTy);
- }
-
- /// Compute the integer shadow offset that corresponds to a given
- /// application address.
- ///
- /// Offset = (Addr & ~AndMask) ^ XorMask
- Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
- Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
-
- uint64_t AndMask = MS.MapParams->AndMask;
- if (AndMask)
- OffsetLong =
- IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
-
- uint64_t XorMask = MS.MapParams->XorMask;
- if (XorMask)
- OffsetLong =
- IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
- return OffsetLong;
- }
-
- /// Compute the shadow and origin addresses corresponding to a given
- /// application address.
- ///
- /// Shadow = ShadowBase + Offset
- /// Origin = (OriginBase + Offset) & ~3ULL
- std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr,
- IRBuilder<> &IRB,
- Type *ShadowTy,
- unsigned Alignment) {
- Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
- Value *ShadowLong = ShadowOffset;
- uint64_t ShadowBase = MS.MapParams->ShadowBase;
- if (ShadowBase != 0) {
- ShadowLong =
- IRB.CreateAdd(ShadowLong,
- ConstantInt::get(MS.IntptrTy, ShadowBase));
- }
- Value *ShadowPtr =
- IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
- Value *OriginPtr = nullptr;
- if (MS.TrackOrigins) {
- Value *OriginLong = ShadowOffset;
- uint64_t OriginBase = MS.MapParams->OriginBase;
- if (OriginBase != 0)
- OriginLong = IRB.CreateAdd(OriginLong,
- ConstantInt::get(MS.IntptrTy, OriginBase));
- if (Alignment < kMinOriginAlignment) {
- uint64_t Mask = kMinOriginAlignment - 1;
- OriginLong =
- IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
- }
- OriginPtr =
- IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
- }
- return std::make_pair(ShadowPtr, OriginPtr);
- }
-
- std::pair<Value *, Value *>
- getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
- unsigned Alignment, bool isStore) {
- Value *ShadowOriginPtrs;
- const DataLayout &DL = F.getParent()->getDataLayout();
- int Size = DL.getTypeStoreSize(ShadowTy);
-
- FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
- Value *AddrCast =
- IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
- if (Getter) {
- ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
- } else {
- Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
- ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
- : MS.MsanMetadataPtrForLoadN,
- {AddrCast, SizeVal});
- }
- Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
- ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
- Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
-
- return std::make_pair(ShadowPtr, OriginPtr);
- }
-
- std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
- Type *ShadowTy,
- unsigned Alignment,
- bool isStore) {
- std::pair<Value *, Value *> ret;
- if (MS.CompileKernel)
- ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore);
- else
- ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
- return ret;
- }
-
- /// Compute the shadow address for a given function argument.
- ///
- /// Shadow = ParamTLS+ArgOffset.
- Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
- int ArgOffset) {
- Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
- if (ArgOffset)
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
- "_msarg");
- }
-
- /// Compute the origin address for a given function argument.
- Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
- int ArgOffset) {
- if (!MS.TrackOrigins)
- return nullptr;
- Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
- if (ArgOffset)
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
- "_msarg_o");
- }
-
- /// Compute the shadow address for a retval.
- Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
- return IRB.CreatePointerCast(MS.RetvalTLS,
- PointerType::get(getShadowTy(A), 0),
- "_msret");
- }
-
- /// Compute the origin address for a retval.
- Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
- // We keep a single origin for the entire retval. Might be too optimistic.
- return MS.RetvalOriginTLS;
- }
-
- /// Set SV to be the shadow value for V.
- void setShadow(Value *V, Value *SV) {
- assert(!ShadowMap.count(V) && "Values may only have one shadow");
- ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
- }
-
- /// Set Origin to be the origin value for V.
- void setOrigin(Value *V, Value *Origin) {
- if (!MS.TrackOrigins) return;
- assert(!OriginMap.count(V) && "Values may only have one origin");
- LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
- OriginMap[V] = Origin;
- }
-
- Constant *getCleanShadow(Type *OrigTy) {
- Type *ShadowTy = getShadowTy(OrigTy);
- if (!ShadowTy)
- return nullptr;
- return Constant::getNullValue(ShadowTy);
- }
-
- /// Create a clean shadow value for a given value.
- ///
- /// Clean shadow (all zeroes) means all bits of the value are defined
- /// (initialized).
- Constant *getCleanShadow(Value *V) {
- return getCleanShadow(V->getType());
- }
-
- /// Create a dirty shadow of a given shadow type.
- Constant *getPoisonedShadow(Type *ShadowTy) {
- assert(ShadowTy);
- if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
- return Constant::getAllOnesValue(ShadowTy);
- if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
- SmallVector<Constant *, 4> Vals(AT->getNumElements(),
- getPoisonedShadow(AT->getElementType()));
- return ConstantArray::get(AT, Vals);
- }
- if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
- SmallVector<Constant *, 4> Vals;
- for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
- Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
- return ConstantStruct::get(ST, Vals);
- }
- llvm_unreachable("Unexpected shadow type");
- }
-
- /// Create a dirty shadow for a given value.
- Constant *getPoisonedShadow(Value *V) {
- Type *ShadowTy = getShadowTy(V);
- if (!ShadowTy)
- return nullptr;
- return getPoisonedShadow(ShadowTy);
- }
-
- /// Create a clean (zero) origin.
- Value *getCleanOrigin() {
- return Constant::getNullValue(MS.OriginTy);
- }
-
- /// Get the shadow value for a given Value.
- ///
- /// This function either returns the value set earlier with setShadow,
- /// or extracts if from ParamTLS (for function arguments).
- Value *getShadow(Value *V) {
- if (!PropagateShadow) return getCleanShadow(V);
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (I->getMetadata("nosanitize"))
- return getCleanShadow(V);
- // For instructions the shadow is already stored in the map.
- Value *Shadow = ShadowMap[V];
- if (!Shadow) {
- LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
- (void)I;
- assert(Shadow && "No shadow for a value");
- }
- return Shadow;
- }
- if (UndefValue *U = dyn_cast<UndefValue>(V)) {
- Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
- LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
- (void)U;
- return AllOnes;
- }
- if (Argument *A = dyn_cast<Argument>(V)) {
- // For arguments we compute the shadow on demand and store it in the map.
- Value **ShadowPtr = &ShadowMap[V];
- if (*ShadowPtr)
- return *ShadowPtr;
- Function *F = A->getParent();
- IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI());
- unsigned ArgOffset = 0;
- const DataLayout &DL = F->getParent()->getDataLayout();
- for (auto &FArg : F->args()) {
- if (!FArg.getType()->isSized()) {
- LLVM_DEBUG(dbgs() << "Arg is not sized\n");
- continue;
- }
- unsigned Size =
- FArg.hasByValAttr()
- ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
- : DL.getTypeAllocSize(FArg.getType());
- if (A == &FArg) {
- bool Overflow = ArgOffset + Size > kParamTLSSize;
- Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
- if (FArg.hasByValAttr()) {
- // ByVal pointer itself has clean shadow. We copy the actual
- // argument shadow to the underlying memory.
- // Figure out maximal valid memcpy alignment.
- unsigned ArgAlign = FArg.getParamAlignment();
- if (ArgAlign == 0) {
- Type *EltType = A->getType()->getPointerElementType();
- ArgAlign = DL.getABITypeAlignment(EltType);
- }
- Value *CpShadowPtr =
- getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
- /*isStore*/ true)
- .first;
- // TODO(glider): need to copy origins.
- if (Overflow) {
- // ParamTLS overflow.
- EntryIRB.CreateMemSet(
- CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
- Size, ArgAlign);
- } else {
- unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
- Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
- CopyAlign, Size);
- LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
- (void)Cpy;
- }
- *ShadowPtr = getCleanShadow(V);
- } else {
- if (Overflow) {
- // ParamTLS overflow.
- *ShadowPtr = getCleanShadow(V);
- } else {
- *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
- kShadowTLSAlignment);
- }
- }
- LLVM_DEBUG(dbgs()
- << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n");
- if (MS.TrackOrigins && !Overflow) {
- Value *OriginPtr =
- getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
- setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
- } else {
- setOrigin(A, getCleanOrigin());
- }
- }
- ArgOffset += alignTo(Size, kShadowTLSAlignment);
- }
- assert(*ShadowPtr && "Could not find shadow for an argument");
- return *ShadowPtr;
- }
- // For everything else the shadow is zero.
- return getCleanShadow(V);
- }
-
- /// Get the shadow for i-th argument of the instruction I.
- Value *getShadow(Instruction *I, int i) {
- return getShadow(I->getOperand(i));
- }
-
- /// Get the origin for a value.
- Value *getOrigin(Value *V) {
- if (!MS.TrackOrigins) return nullptr;
- if (!PropagateShadow) return getCleanOrigin();
- if (isa<Constant>(V)) return getCleanOrigin();
- assert((isa<Instruction>(V) || isa<Argument>(V)) &&
- "Unexpected value type in getOrigin()");
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- if (I->getMetadata("nosanitize"))
- return getCleanOrigin();
- }
- Value *Origin = OriginMap[V];
- assert(Origin && "Missing origin");
- return Origin;
- }
-
- /// Get the origin for i-th argument of the instruction I.
- Value *getOrigin(Instruction *I, int i) {
- return getOrigin(I->getOperand(i));
- }
-
- /// Remember the place where a shadow check should be inserted.
- ///
- /// This location will be later instrumented with a check that will print a
- /// UMR warning in runtime if the shadow value is not 0.
- void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
- assert(Shadow);
- if (!InsertChecks) return;
-#ifndef NDEBUG
- Type *ShadowTy = Shadow->getType();
- assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
- "Can only insert checks for integer and vector shadow types");
-#endif
- InstrumentationList.push_back(
- ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
- }
-
- /// Remember the place where a shadow check should be inserted.
- ///
- /// This location will be later instrumented with a check that will print a
- /// UMR warning in runtime if the value is not fully defined.
- void insertShadowCheck(Value *Val, Instruction *OrigIns) {
- assert(Val);
- Value *Shadow, *Origin;
- if (ClCheckConstantShadow) {
- Shadow = getShadow(Val);
- if (!Shadow) return;
- Origin = getOrigin(Val);
- } else {
- Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
- if (!Shadow) return;
- Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
- }
- insertShadowCheck(Shadow, Origin, OrigIns);
- }
-
- AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
- switch (a) {
- case AtomicOrdering::NotAtomic:
- return AtomicOrdering::NotAtomic;
- case AtomicOrdering::Unordered:
- case AtomicOrdering::Monotonic:
- case AtomicOrdering::Release:
- return AtomicOrdering::Release;
- case AtomicOrdering::Acquire:
- case AtomicOrdering::AcquireRelease:
- return AtomicOrdering::AcquireRelease;
- case AtomicOrdering::SequentiallyConsistent:
- return AtomicOrdering::SequentiallyConsistent;
- }
- llvm_unreachable("Unknown ordering");
- }
-
- AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
- switch (a) {
- case AtomicOrdering::NotAtomic:
- return AtomicOrdering::NotAtomic;
- case AtomicOrdering::Unordered:
- case AtomicOrdering::Monotonic:
- case AtomicOrdering::Acquire:
- return AtomicOrdering::Acquire;
- case AtomicOrdering::Release:
- case AtomicOrdering::AcquireRelease:
- return AtomicOrdering::AcquireRelease;
- case AtomicOrdering::SequentiallyConsistent:
- return AtomicOrdering::SequentiallyConsistent;
- }
- llvm_unreachable("Unknown ordering");
- }
-
- // ------------------- Visitors.
- using InstVisitor<MemorySanitizerVisitor>::visit;
- void visit(Instruction &I) {
- if (!I.getMetadata("nosanitize"))
- InstVisitor<MemorySanitizerVisitor>::visit(I);
- }
-
- /// Instrument LoadInst
- ///
- /// Loads the corresponding shadow and (optionally) origin.
- /// Optionally, checks that the load address is fully defined.
- void visitLoadInst(LoadInst &I) {
- assert(I.getType()->isSized() && "Load type must have size");
- assert(!I.getMetadata("nosanitize"));
- IRBuilder<> IRB(I.getNextNode());
- Type *ShadowTy = getShadowTy(&I);
- Value *Addr = I.getPointerOperand();
- Value *ShadowPtr, *OriginPtr;
- unsigned Alignment = I.getAlignment();
- if (PropagateShadow) {
- std::tie(ShadowPtr, OriginPtr) =
- getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
- setShadow(&I,
- IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
- } else {
- setShadow(&I, getCleanShadow(&I));
- }
-
- if (ClCheckAccessAddress)
- insertShadowCheck(I.getPointerOperand(), &I);
-
- if (I.isAtomic())
- I.setOrdering(addAcquireOrdering(I.getOrdering()));
-
- if (MS.TrackOrigins) {
- if (PropagateShadow) {
- unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
- setOrigin(
- &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
- } else {
- setOrigin(&I, getCleanOrigin());
- }
- }
- }
-
- /// Instrument StoreInst
- ///
- /// Stores the corresponding shadow and (optionally) origin.
- /// Optionally, checks that the store address is fully defined.
- void visitStoreInst(StoreInst &I) {
- StoreList.push_back(&I);
- if (ClCheckAccessAddress)
- insertShadowCheck(I.getPointerOperand(), &I);
- }
-
- void handleCASOrRMW(Instruction &I) {
- assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
-
- IRBuilder<> IRB(&I);
- Value *Addr = I.getOperand(0);
- Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(),
- /*Alignment*/ 1, /*isStore*/ true)
- .first;
-
- if (ClCheckAccessAddress)
- insertShadowCheck(Addr, &I);
-
- // Only test the conditional argument of cmpxchg instruction.
- // The other argument can potentially be uninitialized, but we can not
- // detect this situation reliably without possible false positives.
- if (isa<AtomicCmpXchgInst>(I))
- insertShadowCheck(I.getOperand(1), &I);
-
- IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
-
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
-
- void visitAtomicRMWInst(AtomicRMWInst &I) {
- handleCASOrRMW(I);
- I.setOrdering(addReleaseOrdering(I.getOrdering()));
- }
-
- void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
- handleCASOrRMW(I);
- I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
- }
-
- // Vector manipulation.
- void visitExtractElementInst(ExtractElementInst &I) {
- insertShadowCheck(I.getOperand(1), &I);
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
- "_msprop"));
- setOrigin(&I, getOrigin(&I, 0));
- }
-
- void visitInsertElementInst(InsertElementInst &I) {
- insertShadowCheck(I.getOperand(2), &I);
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
- I.getOperand(2), "_msprop"));
- setOriginForNaryOp(I);
- }
-
- void visitShuffleVectorInst(ShuffleVectorInst &I) {
- insertShadowCheck(I.getOperand(2), &I);
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
- I.getOperand(2), "_msprop"));
- setOriginForNaryOp(I);
- }
-
- // Casts.
- void visitSExtInst(SExtInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
- setOrigin(&I, getOrigin(&I, 0));
- }
-
- void visitZExtInst(ZExtInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
- setOrigin(&I, getOrigin(&I, 0));
- }
-
- void visitTruncInst(TruncInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
- setOrigin(&I, getOrigin(&I, 0));
- }
-
- void visitBitCastInst(BitCastInst &I) {
- // Special case: if this is the bitcast (there is exactly 1 allowed) between
- // a musttail call and a ret, don't instrument. New instructions are not
- // allowed after a musttail call.
- if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
- if (CI->isMustTailCall())
- return;
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
- setOrigin(&I, getOrigin(&I, 0));
- }
-
- void visitPtrToIntInst(PtrToIntInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
- "_msprop_ptrtoint"));
- setOrigin(&I, getOrigin(&I, 0));
- }
-
- void visitIntToPtrInst(IntToPtrInst &I) {
- IRBuilder<> IRB(&I);
- setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
- "_msprop_inttoptr"));
- setOrigin(&I, getOrigin(&I, 0));
- }
-
- void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
- void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
- void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
- void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
- void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
- void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
-
- /// Propagate shadow for bitwise AND.
- ///
- /// This code is exact, i.e. if, for example, a bit in the left argument
- /// is defined and 0, then neither the value not definedness of the
- /// corresponding bit in B don't affect the resulting shadow.
- void visitAnd(BinaryOperator &I) {
- IRBuilder<> IRB(&I);
- // "And" of 0 and a poisoned value results in unpoisoned value.
- // 1&1 => 1; 0&1 => 0; p&1 => p;
- // 1&0 => 0; 0&0 => 0; p&0 => 0;
- // 1&p => p; 0&p => 0; p&p => p;
- // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- Value *V1 = I.getOperand(0);
- Value *V2 = I.getOperand(1);
- if (V1->getType() != S1->getType()) {
- V1 = IRB.CreateIntCast(V1, S1->getType(), false);
- V2 = IRB.CreateIntCast(V2, S2->getType(), false);
- }
- Value *S1S2 = IRB.CreateAnd(S1, S2);
- Value *V1S2 = IRB.CreateAnd(V1, S2);
- Value *S1V2 = IRB.CreateAnd(S1, V2);
- setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
- setOriginForNaryOp(I);
- }
-
- void visitOr(BinaryOperator &I) {
- IRBuilder<> IRB(&I);
- // "Or" of 1 and a poisoned value results in unpoisoned value.
- // 1|1 => 1; 0|1 => 1; p|1 => 1;
- // 1|0 => 1; 0|0 => 0; p|0 => p;
- // 1|p => 1; 0|p => p; p|p => p;
- // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- Value *V1 = IRB.CreateNot(I.getOperand(0));
- Value *V2 = IRB.CreateNot(I.getOperand(1));
- if (V1->getType() != S1->getType()) {
- V1 = IRB.CreateIntCast(V1, S1->getType(), false);
- V2 = IRB.CreateIntCast(V2, S2->getType(), false);
- }
- Value *S1S2 = IRB.CreateAnd(S1, S2);
- Value *V1S2 = IRB.CreateAnd(V1, S2);
- Value *S1V2 = IRB.CreateAnd(S1, V2);
- setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
- setOriginForNaryOp(I);
- }
-
- /// Default propagation of shadow and/or origin.
- ///
- /// This class implements the general case of shadow propagation, used in all
- /// cases where we don't know and/or don't care about what the operation
- /// actually does. It converts all input shadow values to a common type
- /// (extending or truncating as necessary), and bitwise OR's them.
- ///
- /// This is much cheaper than inserting checks (i.e. requiring inputs to be
- /// fully initialized), and less prone to false positives.
- ///
- /// This class also implements the general case of origin propagation. For a
- /// Nary operation, result origin is set to the origin of an argument that is
- /// not entirely initialized. If there is more than one such arguments, the
- /// rightmost of them is picked. It does not matter which one is picked if all
- /// arguments are initialized.
- template <bool CombineShadow>
- class Combiner {
- Value *Shadow = nullptr;
- Value *Origin = nullptr;
- IRBuilder<> &IRB;
- MemorySanitizerVisitor *MSV;
-
- public:
- Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
- : IRB(IRB), MSV(MSV) {}
-
- /// Add a pair of shadow and origin values to the mix.
- Combiner &Add(Value *OpShadow, Value *OpOrigin) {
- if (CombineShadow) {
- assert(OpShadow);
- if (!Shadow)
- Shadow = OpShadow;
- else {
- OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
- Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
- }
- }
-
- if (MSV->MS.TrackOrigins) {
- assert(OpOrigin);
- if (!Origin) {
- Origin = OpOrigin;
- } else {
- Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
- // No point in adding something that might result in 0 origin value.
- if (!ConstOrigin || !ConstOrigin->isNullValue()) {
- Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
- Value *Cond =
- IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
- Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
- }
- }
- }
- return *this;
- }
-
- /// Add an application value to the mix.
- Combiner &Add(Value *V) {
- Value *OpShadow = MSV->getShadow(V);
- Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
- return Add(OpShadow, OpOrigin);
- }
-
- /// Set the current combined values as the given instruction's shadow
- /// and origin.
- void Done(Instruction *I) {
- if (CombineShadow) {
- assert(Shadow);
- Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
- MSV->setShadow(I, Shadow);
- }
- if (MSV->MS.TrackOrigins) {
- assert(Origin);
- MSV->setOrigin(I, Origin);
- }
- }
- };
-
- using ShadowAndOriginCombiner = Combiner<true>;
- using OriginCombiner = Combiner<false>;
-
- /// Propagate origin for arbitrary operation.
- void setOriginForNaryOp(Instruction &I) {
- if (!MS.TrackOrigins) return;
- IRBuilder<> IRB(&I);
- OriginCombiner OC(this, IRB);
- for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
- OC.Add(OI->get());
- OC.Done(&I);
- }
-
- size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
- assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
- "Vector of pointers is not a valid shadow type");
- return Ty->isVectorTy() ?
- Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
- Ty->getPrimitiveSizeInBits();
- }
-
- /// Cast between two shadow types, extending or truncating as
- /// necessary.
- Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
- bool Signed = false) {
- Type *srcTy = V->getType();
- size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
- size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
- if (srcSizeInBits > 1 && dstSizeInBits == 1)
- return IRB.CreateICmpNE(V, getCleanShadow(V));
-
- if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
- return IRB.CreateIntCast(V, dstTy, Signed);
- if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
- dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
- return IRB.CreateIntCast(V, dstTy, Signed);
- Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
- Value *V2 =
- IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
- return IRB.CreateBitCast(V2, dstTy);
- // TODO: handle struct types.
- }
-
- /// Cast an application value to the type of its own shadow.
- Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
- Type *ShadowTy = getShadowTy(V);
- if (V->getType() == ShadowTy)
- return V;
- if (V->getType()->isPtrOrPtrVectorTy())
- return IRB.CreatePtrToInt(V, ShadowTy);
- else
- return IRB.CreateBitCast(V, ShadowTy);
- }
-
- /// Propagate shadow for arbitrary operation.
- void handleShadowOr(Instruction &I) {
- IRBuilder<> IRB(&I);
- ShadowAndOriginCombiner SC(this, IRB);
- for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
- SC.Add(OI->get());
- SC.Done(&I);
- }
-
- void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
-
- // Handle multiplication by constant.
- //
- // Handle a special case of multiplication by constant that may have one or
- // more zeros in the lower bits. This makes corresponding number of lower bits
- // of the result zero as well. We model it by shifting the other operand
- // shadow left by the required number of bits. Effectively, we transform
- // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
- // We use multiplication by 2**N instead of shift to cover the case of
- // multiplication by 0, which may occur in some elements of a vector operand.
- void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
- Value *OtherArg) {
- Constant *ShadowMul;
- Type *Ty = ConstArg->getType();
- if (Ty->isVectorTy()) {
- unsigned NumElements = Ty->getVectorNumElements();
- Type *EltTy = Ty->getSequentialElementType();
- SmallVector<Constant *, 16> Elements;
- for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
- if (ConstantInt *Elt =
- dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
- const APInt &V = Elt->getValue();
- APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
- Elements.push_back(ConstantInt::get(EltTy, V2));
- } else {
- Elements.push_back(ConstantInt::get(EltTy, 1));
- }
- }
- ShadowMul = ConstantVector::get(Elements);
- } else {
- if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
- const APInt &V = Elt->getValue();
- APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
- ShadowMul = ConstantInt::get(Ty, V2);
- } else {
- ShadowMul = ConstantInt::get(Ty, 1);
- }
- }
-
- IRBuilder<> IRB(&I);
- setShadow(&I,
- IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
- setOrigin(&I, getOrigin(OtherArg));
- }
-
- void visitMul(BinaryOperator &I) {
- Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
- Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
- if (constOp0 && !constOp1)
- handleMulByConstant(I, constOp0, I.getOperand(1));
- else if (constOp1 && !constOp0)
- handleMulByConstant(I, constOp1, I.getOperand(0));
- else
- handleShadowOr(I);
- }
-
- void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
- void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
- void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
- void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
- void visitSub(BinaryOperator &I) { handleShadowOr(I); }
- void visitXor(BinaryOperator &I) { handleShadowOr(I); }
-
- void handleIntegerDiv(Instruction &I) {
- IRBuilder<> IRB(&I);
- // Strict on the second argument.
- insertShadowCheck(I.getOperand(1), &I);
- setShadow(&I, getShadow(&I, 0));
- setOrigin(&I, getOrigin(&I, 0));
- }
-
- void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
- void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
- void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
- void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
-
- // Floating point division is side-effect free. We can not require that the
- // divisor is fully initialized and must propagate shadow. See PR37523.
- void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
- void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
-
- /// Instrument == and != comparisons.
- ///
- /// Sometimes the comparison result is known even if some of the bits of the
- /// arguments are not.
- void handleEqualityComparison(ICmpInst &I) {
- IRBuilder<> IRB(&I);
- Value *A = I.getOperand(0);
- Value *B = I.getOperand(1);
- Value *Sa = getShadow(A);
- Value *Sb = getShadow(B);
-
- // Get rid of pointers and vectors of pointers.
- // For ints (and vectors of ints), types of A and Sa match,
- // and this is a no-op.
- A = IRB.CreatePointerCast(A, Sa->getType());
- B = IRB.CreatePointerCast(B, Sb->getType());
-
- // A == B <==> (C = A^B) == 0
- // A != B <==> (C = A^B) != 0
- // Sc = Sa | Sb
- Value *C = IRB.CreateXor(A, B);
- Value *Sc = IRB.CreateOr(Sa, Sb);
- // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
- // Result is defined if one of the following is true
- // * there is a defined 1 bit in C
- // * C is fully defined
- // Si = !(C & ~Sc) && Sc
- Value *Zero = Constant::getNullValue(Sc->getType());
- Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
- Value *Si =
- IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
- IRB.CreateICmpEQ(
- IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
- Si->setName("_msprop_icmp");
- setShadow(&I, Si);
- setOriginForNaryOp(I);
- }
-
- /// Build the lowest possible value of V, taking into account V's
- /// uninitialized bits.
- Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
- bool isSigned) {
- if (isSigned) {
- // Split shadow into sign bit and other bits.
- Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
- Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
- // Maximise the undefined shadow bit, minimize other undefined bits.
- return
- IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
- } else {
- // Minimize undefined bits.
- return IRB.CreateAnd(A, IRB.CreateNot(Sa));
- }
- }
-
- /// Build the highest possible value of V, taking into account V's
- /// uninitialized bits.
- Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
- bool isSigned) {
- if (isSigned) {
- // Split shadow into sign bit and other bits.
- Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
- Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
- // Minimise the undefined shadow bit, maximise other undefined bits.
- return
- IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
- } else {
- // Maximize undefined bits.
- return IRB.CreateOr(A, Sa);
- }
- }
-
- /// Instrument relational comparisons.
- ///
- /// This function does exact shadow propagation for all relational
- /// comparisons of integers, pointers and vectors of those.
- /// FIXME: output seems suboptimal when one of the operands is a constant
- void handleRelationalComparisonExact(ICmpInst &I) {
- IRBuilder<> IRB(&I);
- Value *A = I.getOperand(0);
- Value *B = I.getOperand(1);
- Value *Sa = getShadow(A);
- Value *Sb = getShadow(B);
-
- // Get rid of pointers and vectors of pointers.
- // For ints (and vectors of ints), types of A and Sa match,
- // and this is a no-op.
- A = IRB.CreatePointerCast(A, Sa->getType());
- B = IRB.CreatePointerCast(B, Sb->getType());
-
- // Let [a0, a1] be the interval of possible values of A, taking into account
- // its undefined bits. Let [b0, b1] be the interval of possible values of B.
- // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
- bool IsSigned = I.isSigned();
- Value *S1 = IRB.CreateICmp(I.getPredicate(),
- getLowestPossibleValue(IRB, A, Sa, IsSigned),
- getHighestPossibleValue(IRB, B, Sb, IsSigned));
- Value *S2 = IRB.CreateICmp(I.getPredicate(),
- getHighestPossibleValue(IRB, A, Sa, IsSigned),
- getLowestPossibleValue(IRB, B, Sb, IsSigned));
- Value *Si = IRB.CreateXor(S1, S2);
- setShadow(&I, Si);
- setOriginForNaryOp(I);
- }
-
- /// Instrument signed relational comparisons.
- ///
- /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
- /// bit of the shadow. Everything else is delegated to handleShadowOr().
- void handleSignedRelationalComparison(ICmpInst &I) {
- Constant *constOp;
- Value *op = nullptr;
- CmpInst::Predicate pre;
- if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
- op = I.getOperand(0);
- pre = I.getPredicate();
- } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
- op = I.getOperand(1);
- pre = I.getSwappedPredicate();
- } else {
- handleShadowOr(I);
- return;
- }
-
- if ((constOp->isNullValue() &&
- (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
- (constOp->isAllOnesValue() &&
- (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
- IRBuilder<> IRB(&I);
- Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
- "_msprop_icmp_s");
- setShadow(&I, Shadow);
- setOrigin(&I, getOrigin(op));
- } else {
- handleShadowOr(I);
- }
- }
-
- void visitICmpInst(ICmpInst &I) {
- if (!ClHandleICmp) {
- handleShadowOr(I);
- return;
- }
- if (I.isEquality()) {
- handleEqualityComparison(I);
- return;
- }
-
- assert(I.isRelational());
- if (ClHandleICmpExact) {
- handleRelationalComparisonExact(I);
- return;
- }
- if (I.isSigned()) {
- handleSignedRelationalComparison(I);
- return;
- }
-
- assert(I.isUnsigned());
- if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
- handleRelationalComparisonExact(I);
- return;
- }
-
- handleShadowOr(I);
- }
-
- void visitFCmpInst(FCmpInst &I) {
- handleShadowOr(I);
- }
-
- void handleShift(BinaryOperator &I) {
- IRBuilder<> IRB(&I);
- // If any of the S2 bits are poisoned, the whole thing is poisoned.
- // Otherwise perform the same shift on S1.
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
- S2->getType());
- Value *V2 = I.getOperand(1);
- Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
- setShadow(&I, IRB.CreateOr(Shift, S2Conv));
- setOriginForNaryOp(I);
- }
-
- void visitShl(BinaryOperator &I) { handleShift(I); }
- void visitAShr(BinaryOperator &I) { handleShift(I); }
- void visitLShr(BinaryOperator &I) { handleShift(I); }
-
- /// Instrument llvm.memmove
- ///
- /// At this point we don't know if llvm.memmove will be inlined or not.
- /// If we don't instrument it and it gets inlined,
- /// our interceptor will not kick in and we will lose the memmove.
- /// If we instrument the call here, but it does not get inlined,
- /// we will memove the shadow twice: which is bad in case
- /// of overlapping regions. So, we simply lower the intrinsic to a call.
- ///
- /// Similar situation exists for memcpy and memset.
- void visitMemMoveInst(MemMoveInst &I) {
- IRBuilder<> IRB(&I);
- IRB.CreateCall(
- MS.MemmoveFn,
- {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
- I.eraseFromParent();
- }
-
- // Similar to memmove: avoid copying shadow twice.
- // This is somewhat unfortunate as it may slowdown small constant memcpys.
- // FIXME: consider doing manual inline for small constant sizes and proper
- // alignment.
- void visitMemCpyInst(MemCpyInst &I) {
- IRBuilder<> IRB(&I);
- IRB.CreateCall(
- MS.MemcpyFn,
- {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
- I.eraseFromParent();
- }
-
- // Same as memcpy.
- void visitMemSetInst(MemSetInst &I) {
- IRBuilder<> IRB(&I);
- IRB.CreateCall(
- MS.MemsetFn,
- {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
- IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
- I.eraseFromParent();
- }
-
- void visitVAStartInst(VAStartInst &I) {
- VAHelper->visitVAStartInst(I);
- }
-
- void visitVACopyInst(VACopyInst &I) {
- VAHelper->visitVACopyInst(I);
- }
-
- /// Handle vector store-like intrinsics.
- ///
- /// Instrument intrinsics that look like a simple SIMD store: writes memory,
- /// has 1 pointer argument and 1 vector argument, returns void.
- bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value* Addr = I.getArgOperand(0);
- Value *Shadow = getShadow(&I, 1);
- Value *ShadowPtr, *OriginPtr;
-
- // We don't know the pointer alignment (could be unaligned SSE store!).
- // Have to assume to worst case.
- std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
- Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true);
- IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
-
- if (ClCheckAccessAddress)
- insertShadowCheck(Addr, &I);
-
- // FIXME: factor out common code from materializeStores
- if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
- return true;
- }
-
- /// Handle vector load-like intrinsics.
- ///
- /// Instrument intrinsics that look like a simple SIMD load: reads memory,
- /// has 1 pointer argument, returns a vector.
- bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value *Addr = I.getArgOperand(0);
-
- Type *ShadowTy = getShadowTy(&I);
- Value *ShadowPtr, *OriginPtr;
- if (PropagateShadow) {
- // We don't know the pointer alignment (could be unaligned SSE load!).
- // Have to assume to worst case.
- unsigned Alignment = 1;
- std::tie(ShadowPtr, OriginPtr) =
- getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
- setShadow(&I,
- IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
- } else {
- setShadow(&I, getCleanShadow(&I));
- }
-
- if (ClCheckAccessAddress)
- insertShadowCheck(Addr, &I);
-
- if (MS.TrackOrigins) {
- if (PropagateShadow)
- setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
- else
- setOrigin(&I, getCleanOrigin());
- }
- return true;
- }
-
- /// Handle (SIMD arithmetic)-like intrinsics.
- ///
- /// Instrument intrinsics with any number of arguments of the same type,
- /// equal to the return type. The type should be simple (no aggregates or
- /// pointers; vectors are fine).
- /// Caller guarantees that this intrinsic does not access memory.
- bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
- Type *RetTy = I.getType();
- if (!(RetTy->isIntOrIntVectorTy() ||
- RetTy->isFPOrFPVectorTy() ||
- RetTy->isX86_MMXTy()))
- return false;
-
- unsigned NumArgOperands = I.getNumArgOperands();
-
- for (unsigned i = 0; i < NumArgOperands; ++i) {
- Type *Ty = I.getArgOperand(i)->getType();
- if (Ty != RetTy)
- return false;
- }
-
- IRBuilder<> IRB(&I);
- ShadowAndOriginCombiner SC(this, IRB);
- for (unsigned i = 0; i < NumArgOperands; ++i)
- SC.Add(I.getArgOperand(i));
- SC.Done(&I);
-
- return true;
- }
-
- /// Heuristically instrument unknown intrinsics.
- ///
- /// The main purpose of this code is to do something reasonable with all
- /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
- /// We recognize several classes of intrinsics by their argument types and
- /// ModRefBehaviour and apply special intrumentation when we are reasonably
- /// sure that we know what the intrinsic does.
- ///
- /// We special-case intrinsics where this approach fails. See llvm.bswap
- /// handling as an example of that.
- bool handleUnknownIntrinsic(IntrinsicInst &I) {
- unsigned NumArgOperands = I.getNumArgOperands();
- if (NumArgOperands == 0)
- return false;
-
- if (NumArgOperands == 2 &&
- I.getArgOperand(0)->getType()->isPointerTy() &&
- I.getArgOperand(1)->getType()->isVectorTy() &&
- I.getType()->isVoidTy() &&
- !I.onlyReadsMemory()) {
- // This looks like a vector store.
- return handleVectorStoreIntrinsic(I);
- }
-
- if (NumArgOperands == 1 &&
- I.getArgOperand(0)->getType()->isPointerTy() &&
- I.getType()->isVectorTy() &&
- I.onlyReadsMemory()) {
- // This looks like a vector load.
- return handleVectorLoadIntrinsic(I);
- }
-
- if (I.doesNotAccessMemory())
- if (maybeHandleSimpleNomemIntrinsic(I))
- return true;
-
- // FIXME: detect and handle SSE maskstore/maskload
- return false;
- }
-
- void handleLifetimeStart(IntrinsicInst &I) {
- if (!PoisonStack)
- return;
- DenseMap<Value *, AllocaInst *> AllocaForValue;
- AllocaInst *AI =
- llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue);
- if (!AI)
- InstrumentLifetimeStart = false;
- LifetimeStartList.push_back(std::make_pair(&I, AI));
- }
-
- void handleBswap(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value *Op = I.getArgOperand(0);
- Type *OpType = Op->getType();
- Function *BswapFunc = Intrinsic::getDeclaration(
- F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
- setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
- setOrigin(&I, getOrigin(Op));
- }
-
- // Instrument vector convert instrinsic.
- //
- // This function instruments intrinsics like cvtsi2ss:
- // %Out = int_xxx_cvtyyy(%ConvertOp)
- // or
- // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
- // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
- // number \p Out elements, and (if has 2 arguments) copies the rest of the
- // elements from \p CopyOp.
- // In most cases conversion involves floating-point value which may trigger a
- // hardware exception when not fully initialized. For this reason we require
- // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
- // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
- // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
- // return a fully initialized value.
- void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
- IRBuilder<> IRB(&I);
- Value *CopyOp, *ConvertOp;
-
- switch (I.getNumArgOperands()) {
- case 3:
- assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
- LLVM_FALLTHROUGH;
- case 2:
- CopyOp = I.getArgOperand(0);
- ConvertOp = I.getArgOperand(1);
- break;
- case 1:
- ConvertOp = I.getArgOperand(0);
- CopyOp = nullptr;
- break;
- default:
- llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
- }
-
- // The first *NumUsedElements* elements of ConvertOp are converted to the
- // same number of output elements. The rest of the output is copied from
- // CopyOp, or (if not available) filled with zeroes.
- // Combine shadow for elements of ConvertOp that are used in this operation,
- // and insert a check.
- // FIXME: consider propagating shadow of ConvertOp, at least in the case of
- // int->any conversion.
- Value *ConvertShadow = getShadow(ConvertOp);
- Value *AggShadow = nullptr;
- if (ConvertOp->getType()->isVectorTy()) {
- AggShadow = IRB.CreateExtractElement(
- ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
- for (int i = 1; i < NumUsedElements; ++i) {
- Value *MoreShadow = IRB.CreateExtractElement(
- ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
- AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
- }
- } else {
- AggShadow = ConvertShadow;
- }
- assert(AggShadow->getType()->isIntegerTy());
- insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
-
- // Build result shadow by zero-filling parts of CopyOp shadow that come from
- // ConvertOp.
- if (CopyOp) {
- assert(CopyOp->getType() == I.getType());
- assert(CopyOp->getType()->isVectorTy());
- Value *ResultShadow = getShadow(CopyOp);
- Type *EltTy = ResultShadow->getType()->getVectorElementType();
- for (int i = 0; i < NumUsedElements; ++i) {
- ResultShadow = IRB.CreateInsertElement(
- ResultShadow, ConstantInt::getNullValue(EltTy),
- ConstantInt::get(IRB.getInt32Ty(), i));
- }
- setShadow(&I, ResultShadow);
- setOrigin(&I, getOrigin(CopyOp));
- } else {
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
- }
-
- // Given a scalar or vector, extract lower 64 bits (or less), and return all
- // zeroes if it is zero, and all ones otherwise.
- Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
- if (S->getType()->isVectorTy())
- S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
- assert(S->getType()->getPrimitiveSizeInBits() <= 64);
- Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
- return CreateShadowCast(IRB, S2, T, /* Signed */ true);
- }
-
- // Given a vector, extract its first element, and return all
- // zeroes if it is zero, and all ones otherwise.
- Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
- Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
- Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
- return CreateShadowCast(IRB, S2, T, /* Signed */ true);
- }
-
- Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
- Type *T = S->getType();
- assert(T->isVectorTy());
- Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
- return IRB.CreateSExt(S2, T);
- }
-
- // Instrument vector shift instrinsic.
- //
- // This function instruments intrinsics like int_x86_avx2_psll_w.
- // Intrinsic shifts %In by %ShiftSize bits.
- // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
- // size, and the rest is ignored. Behavior is defined even if shift size is
- // greater than register (or field) width.
- void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
- assert(I.getNumArgOperands() == 2);
- IRBuilder<> IRB(&I);
- // If any of the S2 bits are poisoned, the whole thing is poisoned.
- // Otherwise perform the same shift on S1.
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
- : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
- Value *V1 = I.getOperand(0);
- Value *V2 = I.getOperand(1);
- Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(),
- {IRB.CreateBitCast(S1, V1->getType()), V2});
- Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
- setShadow(&I, IRB.CreateOr(Shift, S2Conv));
- setOriginForNaryOp(I);
- }
-
- // Get an X86_MMX-sized vector type.
- Type *getMMXVectorTy(unsigned EltSizeInBits) {
- const unsigned X86_MMXSizeInBits = 64;
- assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
- "Illegal MMX vector element size");
- return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
- X86_MMXSizeInBits / EltSizeInBits);
- }
-
- // Returns a signed counterpart for an (un)signed-saturate-and-pack
- // intrinsic.
- Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
- switch (id) {
- case Intrinsic::x86_sse2_packsswb_128:
- case Intrinsic::x86_sse2_packuswb_128:
- return Intrinsic::x86_sse2_packsswb_128;
-
- case Intrinsic::x86_sse2_packssdw_128:
- case Intrinsic::x86_sse41_packusdw:
- return Intrinsic::x86_sse2_packssdw_128;
-
- case Intrinsic::x86_avx2_packsswb:
- case Intrinsic::x86_avx2_packuswb:
- return Intrinsic::x86_avx2_packsswb;
-
- case Intrinsic::x86_avx2_packssdw:
- case Intrinsic::x86_avx2_packusdw:
- return Intrinsic::x86_avx2_packssdw;
-
- case Intrinsic::x86_mmx_packsswb:
- case Intrinsic::x86_mmx_packuswb:
- return Intrinsic::x86_mmx_packsswb;
-
- case Intrinsic::x86_mmx_packssdw:
- return Intrinsic::x86_mmx_packssdw;
- default:
- llvm_unreachable("unexpected intrinsic id");
- }
- }
-
- // Instrument vector pack instrinsic.
- //
- // This function instruments intrinsics like x86_mmx_packsswb, that
- // packs elements of 2 input vectors into half as many bits with saturation.
- // Shadow is propagated with the signed variant of the same intrinsic applied
- // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
- // EltSizeInBits is used only for x86mmx arguments.
- void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
- assert(I.getNumArgOperands() == 2);
- bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
- IRBuilder<> IRB(&I);
- Value *S1 = getShadow(&I, 0);
- Value *S2 = getShadow(&I, 1);
- assert(isX86_MMX || S1->getType()->isVectorTy());
-
- // SExt and ICmpNE below must apply to individual elements of input vectors.
- // In case of x86mmx arguments, cast them to appropriate vector types and
- // back.
- Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
- if (isX86_MMX) {
- S1 = IRB.CreateBitCast(S1, T);
- S2 = IRB.CreateBitCast(S2, T);
- }
- Value *S1_ext = IRB.CreateSExt(
- IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
- Value *S2_ext = IRB.CreateSExt(
- IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
- if (isX86_MMX) {
- Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
- S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
- S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
- }
-
- Function *ShadowFn = Intrinsic::getDeclaration(
- F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
-
- Value *S =
- IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
- if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
- setShadow(&I, S);
- setOriginForNaryOp(I);
- }
-
- // Instrument sum-of-absolute-differencies intrinsic.
- void handleVectorSadIntrinsic(IntrinsicInst &I) {
- const unsigned SignificantBitsPerResultElement = 16;
- bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
- Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
- unsigned ZeroBitsPerResultElement =
- ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
-
- IRBuilder<> IRB(&I);
- Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
- S = IRB.CreateBitCast(S, ResTy);
- S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
- ResTy);
- S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
- S = IRB.CreateBitCast(S, getShadowTy(&I));
- setShadow(&I, S);
- setOriginForNaryOp(I);
- }
-
- // Instrument multiply-add intrinsic.
- void handleVectorPmaddIntrinsic(IntrinsicInst &I,
- unsigned EltSizeInBits = 0) {
- bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
- Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
- IRBuilder<> IRB(&I);
- Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
- S = IRB.CreateBitCast(S, ResTy);
- S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
- ResTy);
- S = IRB.CreateBitCast(S, getShadowTy(&I));
- setShadow(&I, S);
- setOriginForNaryOp(I);
- }
-
- // Instrument compare-packed intrinsic.
- // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
- // all-ones shadow.
- void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Type *ResTy = getShadowTy(&I);
- Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
- Value *S = IRB.CreateSExt(
- IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
- setShadow(&I, S);
- setOriginForNaryOp(I);
- }
-
- // Instrument compare-scalar intrinsic.
- // This handles both cmp* intrinsics which return the result in the first
- // element of a vector, and comi* which return the result as i32.
- void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
- Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
- setShadow(&I, S);
- setOriginForNaryOp(I);
- }
-
- void handleStmxcsr(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value* Addr = I.getArgOperand(0);
- Type *Ty = IRB.getInt32Ty();
- Value *ShadowPtr =
- getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true)
- .first;
-
- IRB.CreateStore(getCleanShadow(Ty),
- IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
-
- if (ClCheckAccessAddress)
- insertShadowCheck(Addr, &I);
- }
-
- void handleLdmxcsr(IntrinsicInst &I) {
- if (!InsertChecks) return;
-
- IRBuilder<> IRB(&I);
- Value *Addr = I.getArgOperand(0);
- Type *Ty = IRB.getInt32Ty();
- unsigned Alignment = 1;
- Value *ShadowPtr, *OriginPtr;
- std::tie(ShadowPtr, OriginPtr) =
- getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
-
- if (ClCheckAccessAddress)
- insertShadowCheck(Addr, &I);
-
- Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
- Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
- : getCleanOrigin();
- insertShadowCheck(Shadow, Origin, &I);
- }
-
- void handleMaskedStore(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value *V = I.getArgOperand(0);
- Value *Addr = I.getArgOperand(1);
- unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
- Value *Mask = I.getArgOperand(3);
- Value *Shadow = getShadow(V);
-
- Value *ShadowPtr;
- Value *OriginPtr;
- std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
- Addr, IRB, Shadow->getType(), Align, /*isStore*/ true);
-
- if (ClCheckAccessAddress) {
- insertShadowCheck(Addr, &I);
- // Uninitialized mask is kind of like uninitialized address, but not as
- // scary.
- insertShadowCheck(Mask, &I);
- }
-
- IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask);
-
- if (MS.TrackOrigins) {
- auto &DL = F.getParent()->getDataLayout();
- paintOrigin(IRB, getOrigin(V), OriginPtr,
- DL.getTypeStoreSize(Shadow->getType()),
- std::max(Align, kMinOriginAlignment));
- }
- }
-
- bool handleMaskedLoad(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value *Addr = I.getArgOperand(0);
- unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
- Value *Mask = I.getArgOperand(2);
- Value *PassThru = I.getArgOperand(3);
-
- Type *ShadowTy = getShadowTy(&I);
- Value *ShadowPtr, *OriginPtr;
- if (PropagateShadow) {
- std::tie(ShadowPtr, OriginPtr) =
- getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false);
- setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask,
- getShadow(PassThru), "_msmaskedld"));
- } else {
- setShadow(&I, getCleanShadow(&I));
- }
-
- if (ClCheckAccessAddress) {
- insertShadowCheck(Addr, &I);
- insertShadowCheck(Mask, &I);
- }
-
- if (MS.TrackOrigins) {
- if (PropagateShadow) {
- // Choose between PassThru's and the loaded value's origins.
- Value *MaskedPassThruShadow = IRB.CreateAnd(
- getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
-
- Value *Acc = IRB.CreateExtractElement(
- MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
- for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N;
- ++i) {
- Value *More = IRB.CreateExtractElement(
- MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
- Acc = IRB.CreateOr(Acc, More);
- }
-
- Value *Origin = IRB.CreateSelect(
- IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
- getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
-
- setOrigin(&I, Origin);
- } else {
- setOrigin(&I, getCleanOrigin());
- }
- }
- return true;
- }
-
- // Instrument BMI / BMI2 intrinsics.
- // All of these intrinsics are Z = I(X, Y)
- // where the types of all operands and the result match, and are either i32 or i64.
- // The following instrumentation happens to work for all of them:
- // Sz = I(Sx, Y) | (sext (Sy != 0))
- void handleBmiIntrinsic(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Type *ShadowTy = getShadowTy(&I);
-
- // If any bit of the mask operand is poisoned, then the whole thing is.
- Value *SMask = getShadow(&I, 1);
- SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
- ShadowTy);
- // Apply the same intrinsic to the shadow of the first operand.
- Value *S = IRB.CreateCall(I.getCalledFunction(),
- {getShadow(&I, 0), I.getOperand(1)});
- S = IRB.CreateOr(SMask, S);
- setShadow(&I, S);
- setOriginForNaryOp(I);
- }
-
- void visitIntrinsicInst(IntrinsicInst &I) {
- switch (I.getIntrinsicID()) {
- case Intrinsic::lifetime_start:
- handleLifetimeStart(I);
- break;
- case Intrinsic::bswap:
- handleBswap(I);
- break;
- case Intrinsic::masked_store:
- handleMaskedStore(I);
- break;
- case Intrinsic::masked_load:
- handleMaskedLoad(I);
- break;
- case Intrinsic::x86_sse_stmxcsr:
- handleStmxcsr(I);
- break;
- case Intrinsic::x86_sse_ldmxcsr:
- handleLdmxcsr(I);
- break;
- case Intrinsic::x86_avx512_vcvtsd2usi64:
- case Intrinsic::x86_avx512_vcvtsd2usi32:
- case Intrinsic::x86_avx512_vcvtss2usi64:
- case Intrinsic::x86_avx512_vcvtss2usi32:
- case Intrinsic::x86_avx512_cvttss2usi64:
- case Intrinsic::x86_avx512_cvttss2usi:
- case Intrinsic::x86_avx512_cvttsd2usi64:
- case Intrinsic::x86_avx512_cvttsd2usi:
- case Intrinsic::x86_avx512_cvtusi2ss:
- case Intrinsic::x86_avx512_cvtusi642sd:
- case Intrinsic::x86_avx512_cvtusi642ss:
- case Intrinsic::x86_sse2_cvtsd2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2ss:
- case Intrinsic::x86_sse2_cvttsd2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse_cvttss2si:
- handleVectorConvertIntrinsic(I, 1);
- break;
- case Intrinsic::x86_sse_cvtps2pi:
- case Intrinsic::x86_sse_cvttps2pi:
- handleVectorConvertIntrinsic(I, 2);
- break;
-
- case Intrinsic::x86_avx512_psll_w_512:
- case Intrinsic::x86_avx512_psll_d_512:
- case Intrinsic::x86_avx512_psll_q_512:
- case Intrinsic::x86_avx512_pslli_w_512:
- case Intrinsic::x86_avx512_pslli_d_512:
- case Intrinsic::x86_avx512_pslli_q_512:
- case Intrinsic::x86_avx512_psrl_w_512:
- case Intrinsic::x86_avx512_psrl_d_512:
- case Intrinsic::x86_avx512_psrl_q_512:
- case Intrinsic::x86_avx512_psra_w_512:
- case Intrinsic::x86_avx512_psra_d_512:
- case Intrinsic::x86_avx512_psra_q_512:
- case Intrinsic::x86_avx512_psrli_w_512:
- case Intrinsic::x86_avx512_psrli_d_512:
- case Intrinsic::x86_avx512_psrli_q_512:
- case Intrinsic::x86_avx512_psrai_w_512:
- case Intrinsic::x86_avx512_psrai_d_512:
- case Intrinsic::x86_avx512_psrai_q_512:
- case Intrinsic::x86_avx512_psra_q_256:
- case Intrinsic::x86_avx512_psra_q_128:
- case Intrinsic::x86_avx512_psrai_q_256:
- case Intrinsic::x86_avx512_psrai_q_128:
- case Intrinsic::x86_avx2_psll_w:
- case Intrinsic::x86_avx2_psll_d:
- case Intrinsic::x86_avx2_psll_q:
- case Intrinsic::x86_avx2_pslli_w:
- case Intrinsic::x86_avx2_pslli_d:
- case Intrinsic::x86_avx2_pslli_q:
- case Intrinsic::x86_avx2_psrl_w:
- case Intrinsic::x86_avx2_psrl_d:
- case Intrinsic::x86_avx2_psrl_q:
- case Intrinsic::x86_avx2_psra_w:
- case Intrinsic::x86_avx2_psra_d:
- case Intrinsic::x86_avx2_psrli_w:
- case Intrinsic::x86_avx2_psrli_d:
- case Intrinsic::x86_avx2_psrli_q:
- case Intrinsic::x86_avx2_psrai_w:
- case Intrinsic::x86_avx2_psrai_d:
- case Intrinsic::x86_sse2_psll_w:
- case Intrinsic::x86_sse2_psll_d:
- case Intrinsic::x86_sse2_psll_q:
- case Intrinsic::x86_sse2_pslli_w:
- case Intrinsic::x86_sse2_pslli_d:
- case Intrinsic::x86_sse2_pslli_q:
- case Intrinsic::x86_sse2_psrl_w:
- case Intrinsic::x86_sse2_psrl_d:
- case Intrinsic::x86_sse2_psrl_q:
- case Intrinsic::x86_sse2_psra_w:
- case Intrinsic::x86_sse2_psra_d:
- case Intrinsic::x86_sse2_psrli_w:
- case Intrinsic::x86_sse2_psrli_d:
- case Intrinsic::x86_sse2_psrli_q:
- case Intrinsic::x86_sse2_psrai_w:
- case Intrinsic::x86_sse2_psrai_d:
- case Intrinsic::x86_mmx_psll_w:
- case Intrinsic::x86_mmx_psll_d:
- case Intrinsic::x86_mmx_psll_q:
- case Intrinsic::x86_mmx_pslli_w:
- case Intrinsic::x86_mmx_pslli_d:
- case Intrinsic::x86_mmx_pslli_q:
- case Intrinsic::x86_mmx_psrl_w:
- case Intrinsic::x86_mmx_psrl_d:
- case Intrinsic::x86_mmx_psrl_q:
- case Intrinsic::x86_mmx_psra_w:
- case Intrinsic::x86_mmx_psra_d:
- case Intrinsic::x86_mmx_psrli_w:
- case Intrinsic::x86_mmx_psrli_d:
- case Intrinsic::x86_mmx_psrli_q:
- case Intrinsic::x86_mmx_psrai_w:
- case Intrinsic::x86_mmx_psrai_d:
- handleVectorShiftIntrinsic(I, /* Variable */ false);
- break;
- case Intrinsic::x86_avx2_psllv_d:
- case Intrinsic::x86_avx2_psllv_d_256:
- case Intrinsic::x86_avx512_psllv_d_512:
- case Intrinsic::x86_avx2_psllv_q:
- case Intrinsic::x86_avx2_psllv_q_256:
- case Intrinsic::x86_avx512_psllv_q_512:
- case Intrinsic::x86_avx2_psrlv_d:
- case Intrinsic::x86_avx2_psrlv_d_256:
- case Intrinsic::x86_avx512_psrlv_d_512:
- case Intrinsic::x86_avx2_psrlv_q:
- case Intrinsic::x86_avx2_psrlv_q_256:
- case Intrinsic::x86_avx512_psrlv_q_512:
- case Intrinsic::x86_avx2_psrav_d:
- case Intrinsic::x86_avx2_psrav_d_256:
- case Intrinsic::x86_avx512_psrav_d_512:
- case Intrinsic::x86_avx512_psrav_q_128:
- case Intrinsic::x86_avx512_psrav_q_256:
- case Intrinsic::x86_avx512_psrav_q_512:
- handleVectorShiftIntrinsic(I, /* Variable */ true);
- break;
-
- case Intrinsic::x86_sse2_packsswb_128:
- case Intrinsic::x86_sse2_packssdw_128:
- case Intrinsic::x86_sse2_packuswb_128:
- case Intrinsic::x86_sse41_packusdw:
- case Intrinsic::x86_avx2_packsswb:
- case Intrinsic::x86_avx2_packssdw:
- case Intrinsic::x86_avx2_packuswb:
- case Intrinsic::x86_avx2_packusdw:
- handleVectorPackIntrinsic(I);
- break;
-
- case Intrinsic::x86_mmx_packsswb:
- case Intrinsic::x86_mmx_packuswb:
- handleVectorPackIntrinsic(I, 16);
- break;
-
- case Intrinsic::x86_mmx_packssdw:
- handleVectorPackIntrinsic(I, 32);
- break;
-
- case Intrinsic::x86_mmx_psad_bw:
- case Intrinsic::x86_sse2_psad_bw:
- case Intrinsic::x86_avx2_psad_bw:
- handleVectorSadIntrinsic(I);
- break;
-
- case Intrinsic::x86_sse2_pmadd_wd:
- case Intrinsic::x86_avx2_pmadd_wd:
- case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
- case Intrinsic::x86_avx2_pmadd_ub_sw:
- handleVectorPmaddIntrinsic(I);
- break;
-
- case Intrinsic::x86_ssse3_pmadd_ub_sw:
- handleVectorPmaddIntrinsic(I, 8);
- break;
-
- case Intrinsic::x86_mmx_pmadd_wd:
- handleVectorPmaddIntrinsic(I, 16);
- break;
-
- case Intrinsic::x86_sse_cmp_ss:
- case Intrinsic::x86_sse2_cmp_sd:
- case Intrinsic::x86_sse_comieq_ss:
- case Intrinsic::x86_sse_comilt_ss:
- case Intrinsic::x86_sse_comile_ss:
- case Intrinsic::x86_sse_comigt_ss:
- case Intrinsic::x86_sse_comige_ss:
- case Intrinsic::x86_sse_comineq_ss:
- case Intrinsic::x86_sse_ucomieq_ss:
- case Intrinsic::x86_sse_ucomilt_ss:
- case Intrinsic::x86_sse_ucomile_ss:
- case Intrinsic::x86_sse_ucomigt_ss:
- case Intrinsic::x86_sse_ucomige_ss:
- case Intrinsic::x86_sse_ucomineq_ss:
- case Intrinsic::x86_sse2_comieq_sd:
- case Intrinsic::x86_sse2_comilt_sd:
- case Intrinsic::x86_sse2_comile_sd:
- case Intrinsic::x86_sse2_comigt_sd:
- case Intrinsic::x86_sse2_comige_sd:
- case Intrinsic::x86_sse2_comineq_sd:
- case Intrinsic::x86_sse2_ucomieq_sd:
- case Intrinsic::x86_sse2_ucomilt_sd:
- case Intrinsic::x86_sse2_ucomile_sd:
- case Intrinsic::x86_sse2_ucomigt_sd:
- case Intrinsic::x86_sse2_ucomige_sd:
- case Intrinsic::x86_sse2_ucomineq_sd:
- handleVectorCompareScalarIntrinsic(I);
- break;
-
- case Intrinsic::x86_sse_cmp_ps:
- case Intrinsic::x86_sse2_cmp_pd:
- // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
- // generates reasonably looking IR that fails in the backend with "Do not
- // know how to split the result of this operator!".
- handleVectorComparePackedIntrinsic(I);
- break;
-
- case Intrinsic::x86_bmi_bextr_32:
- case Intrinsic::x86_bmi_bextr_64:
- case Intrinsic::x86_bmi_bzhi_32:
- case Intrinsic::x86_bmi_bzhi_64:
- case Intrinsic::x86_bmi_pdep_32:
- case Intrinsic::x86_bmi_pdep_64:
- case Intrinsic::x86_bmi_pext_32:
- case Intrinsic::x86_bmi_pext_64:
- handleBmiIntrinsic(I);
- break;
-
- case Intrinsic::is_constant:
- // The result of llvm.is.constant() is always defined.
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- break;
-
- default:
- if (!handleUnknownIntrinsic(I))
- visitInstruction(I);
- break;
- }
- }
-
- void visitCallSite(CallSite CS) {
- Instruction &I = *CS.getInstruction();
- assert(!I.getMetadata("nosanitize"));
- assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) &&
- "Unknown type of CallSite");
- if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) {
- // For inline asm (either a call to asm function, or callbr instruction),
- // do the usual thing: check argument shadow and mark all outputs as
- // clean. Note that any side effects of the inline asm that are not
- // immediately visible in its constraints are not handled.
- if (ClHandleAsmConservative && MS.CompileKernel)
- visitAsmInstruction(I);
- else
- visitInstruction(I);
- return;
- }
- if (CS.isCall()) {
- CallInst *Call = cast<CallInst>(&I);
- assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
-
- // We are going to insert code that relies on the fact that the callee
- // will become a non-readonly function after it is instrumented by us. To
- // prevent this code from being optimized out, mark that function
- // non-readonly in advance.
- if (Function *Func = Call->getCalledFunction()) {
- // Clear out readonly/readnone attributes.
- AttrBuilder B;
- B.addAttribute(Attribute::ReadOnly)
- .addAttribute(Attribute::ReadNone);
- Func->removeAttributes(AttributeList::FunctionIndex, B);
- }
-
- maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
- }
- IRBuilder<> IRB(&I);
-
- unsigned ArgOffset = 0;
- LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n");
- for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
- ArgIt != End; ++ArgIt) {
- Value *A = *ArgIt;
- unsigned i = ArgIt - CS.arg_begin();
- if (!A->getType()->isSized()) {
- LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
- continue;
- }
- unsigned Size = 0;
- Value *Store = nullptr;
- // Compute the Shadow for arg even if it is ByVal, because
- // in that case getShadow() will copy the actual arg shadow to
- // __msan_param_tls.
- Value *ArgShadow = getShadow(A);
- Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
- LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A
- << " Shadow: " << *ArgShadow << "\n");
- bool ArgIsInitialized = false;
- const DataLayout &DL = F.getParent()->getDataLayout();
- if (CS.paramHasAttr(i, Attribute::ByVal)) {
- assert(A->getType()->isPointerTy() &&
- "ByVal argument is not a pointer!");
- Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
- if (ArgOffset + Size > kParamTLSSize) break;
- unsigned ParamAlignment = CS.getParamAlignment(i);
- unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
- Value *AShadowPtr =
- getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
- /*isStore*/ false)
- .first;
-
- Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
- Alignment, Size);
- // TODO(glider): need to copy origins.
- } else {
- Size = DL.getTypeAllocSize(A->getType());
- if (ArgOffset + Size > kParamTLSSize) break;
- Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
- kShadowTLSAlignment);
- Constant *Cst = dyn_cast<Constant>(ArgShadow);
- if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
- }
- if (MS.TrackOrigins && !ArgIsInitialized)
- IRB.CreateStore(getOrigin(A),
- getOriginPtrForArgument(A, IRB, ArgOffset));
- (void)Store;
- assert(Size != 0 && Store != nullptr);
- LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n");
- ArgOffset += alignTo(Size, 8);
- }
- LLVM_DEBUG(dbgs() << " done with call args\n");
-
- FunctionType *FT = CS.getFunctionType();
- if (FT->isVarArg()) {
- VAHelper->visitCallSite(CS, IRB);
- }
-
- // Now, get the shadow for the RetVal.
- if (!I.getType()->isSized()) return;
- // Don't emit the epilogue for musttail call returns.
- if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
- IRBuilder<> IRBBefore(&I);
- // Until we have full dynamic coverage, make sure the retval shadow is 0.
- Value *Base = getShadowPtrForRetval(&I, IRBBefore);
- IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
- BasicBlock::iterator NextInsn;
- if (CS.isCall()) {
- NextInsn = ++I.getIterator();
- assert(NextInsn != I.getParent()->end());
- } else {
- BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
- if (!NormalDest->getSinglePredecessor()) {
- // FIXME: this case is tricky, so we are just conservative here.
- // Perhaps we need to split the edge between this BB and NormalDest,
- // but a naive attempt to use SplitEdge leads to a crash.
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- return;
- }
- // FIXME: NextInsn is likely in a basic block that has not been visited yet.
- // Anything inserted there will be instrumented by MSan later!
- NextInsn = NormalDest->getFirstInsertionPt();
- assert(NextInsn != NormalDest->end() &&
- "Could not find insertion point for retval shadow load");
- }
- IRBuilder<> IRBAfter(&*NextInsn);
- Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
- getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter),
- kShadowTLSAlignment, "_msret");
- setShadow(&I, RetvalShadow);
- if (MS.TrackOrigins)
- setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy,
- getOriginPtrForRetval(IRBAfter)));
- }
-
- bool isAMustTailRetVal(Value *RetVal) {
- if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
- RetVal = I->getOperand(0);
- }
- if (auto *I = dyn_cast<CallInst>(RetVal)) {
- return I->isMustTailCall();
- }
- return false;
- }
-
- void visitReturnInst(ReturnInst &I) {
- IRBuilder<> IRB(&I);
- Value *RetVal = I.getReturnValue();
- if (!RetVal) return;
- // Don't emit the epilogue for musttail call returns.
- if (isAMustTailRetVal(RetVal)) return;
- Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
- if (CheckReturnValue) {
- insertShadowCheck(RetVal, &I);
- Value *Shadow = getCleanShadow(RetVal);
- IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
- } else {
- Value *Shadow = getShadow(RetVal);
- IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
- if (MS.TrackOrigins)
- IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
- }
- }
-
- void visitPHINode(PHINode &I) {
- IRBuilder<> IRB(&I);
- if (!PropagateShadow) {
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- return;
- }
-
- ShadowPHINodes.push_back(&I);
- setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
- "_msphi_s"));
- if (MS.TrackOrigins)
- setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
- "_msphi_o"));
- }
-
- Value *getLocalVarDescription(AllocaInst &I) {
- SmallString<2048> StackDescriptionStorage;
- raw_svector_ostream StackDescription(StackDescriptionStorage);
- // We create a string with a description of the stack allocation and
- // pass it into __msan_set_alloca_origin.
- // It will be printed by the run-time if stack-originated UMR is found.
- // The first 4 bytes of the string are set to '----' and will be replaced
- // by __msan_va_arg_overflow_size_tls at the first call.
- StackDescription << "----" << I.getName() << "@" << F.getName();
- return createPrivateNonConstGlobalForString(*F.getParent(),
- StackDescription.str());
- }
-
- void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
- if (PoisonStack && ClPoisonStackWithCall) {
- IRB.CreateCall(MS.MsanPoisonStackFn,
- {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
- } else {
- Value *ShadowBase, *OriginBase;
- std::tie(ShadowBase, OriginBase) =
- getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true);
-
- Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
- IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment());
- }
-
- if (PoisonStack && MS.TrackOrigins) {
- Value *Descr = getLocalVarDescription(I);
- IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
- {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
- IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(&F, MS.IntptrTy)});
- }
- }
-
- void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
- Value *Descr = getLocalVarDescription(I);
- if (PoisonStack) {
- IRB.CreateCall(MS.MsanPoisonAllocaFn,
- {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
- IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
- } else {
- IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
- {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
- }
- }
-
- void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
- if (!InsPoint)
- InsPoint = &I;
- IRBuilder<> IRB(InsPoint->getNextNode());
- const DataLayout &DL = F.getParent()->getDataLayout();
- uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
- Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
- if (I.isArrayAllocation())
- Len = IRB.CreateMul(Len, I.getArraySize());
-
- if (MS.CompileKernel)
- poisonAllocaKmsan(I, IRB, Len);
- else
- poisonAllocaUserspace(I, IRB, Len);
- }
-
- void visitAllocaInst(AllocaInst &I) {
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- // We'll get to this alloca later unless it's poisoned at the corresponding
- // llvm.lifetime.start.
- AllocaSet.insert(&I);
- }
-
- void visitSelectInst(SelectInst& I) {
- IRBuilder<> IRB(&I);
- // a = select b, c, d
- Value *B = I.getCondition();
- Value *C = I.getTrueValue();
- Value *D = I.getFalseValue();
- Value *Sb = getShadow(B);
- Value *Sc = getShadow(C);
- Value *Sd = getShadow(D);
-
- // Result shadow if condition shadow is 0.
- Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
- Value *Sa1;
- if (I.getType()->isAggregateType()) {
- // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
- // an extra "select". This results in much more compact IR.
- // Sa = select Sb, poisoned, (select b, Sc, Sd)
- Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
- } else {
- // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
- // If Sb (condition is poisoned), look for bits in c and d that are equal
- // and both unpoisoned.
- // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
-
- // Cast arguments to shadow-compatible type.
- C = CreateAppToShadowCast(IRB, C);
- D = CreateAppToShadowCast(IRB, D);
-
- // Result shadow if condition shadow is 1.
- Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
- }
- Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
- setShadow(&I, Sa);
- if (MS.TrackOrigins) {
- // Origins are always i32, so any vector conditions must be flattened.
- // FIXME: consider tracking vector origins for app vectors?
- if (B->getType()->isVectorTy()) {
- Type *FlatTy = getShadowTyNoVec(B->getType());
- B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
- ConstantInt::getNullValue(FlatTy));
- Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
- ConstantInt::getNullValue(FlatTy));
- }
- // a = select b, c, d
- // Oa = Sb ? Ob : (b ? Oc : Od)
- setOrigin(
- &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
- IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
- getOrigin(I.getFalseValue()))));
- }
- }
-
- void visitLandingPadInst(LandingPadInst &I) {
- // Do nothing.
- // See https://github.com/google/sanitizers/issues/504
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
-
- void visitCatchSwitchInst(CatchSwitchInst &I) {
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
-
- void visitFuncletPadInst(FuncletPadInst &I) {
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
-
- void visitGetElementPtrInst(GetElementPtrInst &I) {
- handleShadowOr(I);
- }
-
- void visitExtractValueInst(ExtractValueInst &I) {
- IRBuilder<> IRB(&I);
- Value *Agg = I.getAggregateOperand();
- LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n");
- Value *AggShadow = getShadow(Agg);
- LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
- Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
- LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
- setShadow(&I, ResShadow);
- setOriginForNaryOp(I);
- }
-
- void visitInsertValueInst(InsertValueInst &I) {
- IRBuilder<> IRB(&I);
- LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n");
- Value *AggShadow = getShadow(I.getAggregateOperand());
- Value *InsShadow = getShadow(I.getInsertedValueOperand());
- LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
- LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
- Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
- LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n");
- setShadow(&I, Res);
- setOriginForNaryOp(I);
- }
-
- void dumpInst(Instruction &I) {
- if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
- } else {
- errs() << "ZZZ " << I.getOpcodeName() << "\n";
- }
- errs() << "QQQ " << I << "\n";
- }
-
- void visitResumeInst(ResumeInst &I) {
- LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
- // Nothing to do here.
- }
-
- void visitCleanupReturnInst(CleanupReturnInst &CRI) {
- LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
- // Nothing to do here.
- }
-
- void visitCatchReturnInst(CatchReturnInst &CRI) {
- LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
- // Nothing to do here.
- }
-
- void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
- const DataLayout &DL, bool isOutput) {
- // For each assembly argument, we check its value for being initialized.
- // If the argument is a pointer, we assume it points to a single element
- // of the corresponding type (or to a 8-byte word, if the type is unsized).
- // Each such pointer is instrumented with a call to the runtime library.
- Type *OpType = Operand->getType();
- // Check the operand value itself.
- insertShadowCheck(Operand, &I);
- if (!OpType->isPointerTy() || !isOutput) {
- assert(!isOutput);
- return;
- }
- Type *ElType = OpType->getPointerElementType();
- if (!ElType->isSized())
- return;
- int Size = DL.getTypeStoreSize(ElType);
- Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
- Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
- IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
- }
-
- /// Get the number of output arguments returned by pointers.
- int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
- int NumRetOutputs = 0;
- int NumOutputs = 0;
- Type *RetTy = dyn_cast<Value>(CB)->getType();
- if (!RetTy->isVoidTy()) {
- // Register outputs are returned via the CallInst return value.
- StructType *ST = dyn_cast_or_null<StructType>(RetTy);
- if (ST)
- NumRetOutputs = ST->getNumElements();
- else
- NumRetOutputs = 1;
- }
- InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
- for (size_t i = 0, n = Constraints.size(); i < n; i++) {
- InlineAsm::ConstraintInfo Info = Constraints[i];
- switch (Info.Type) {
- case InlineAsm::isOutput:
- NumOutputs++;
- break;
- default:
- break;
- }
- }
- return NumOutputs - NumRetOutputs;
- }
-
- void visitAsmInstruction(Instruction &I) {
- // Conservative inline assembly handling: check for poisoned shadow of
- // asm() arguments, then unpoison the result and all the memory locations
- // pointed to by those arguments.
- // An inline asm() statement in C++ contains lists of input and output
- // arguments used by the assembly code. These are mapped to operands of the
- // CallInst as follows:
- // - nR register outputs ("=r) are returned by value in a single structure
- // (SSA value of the CallInst);
- // - nO other outputs ("=m" and others) are returned by pointer as first
- // nO operands of the CallInst;
- // - nI inputs ("r", "m" and others) are passed to CallInst as the
- // remaining nI operands.
- // The total number of asm() arguments in the source is nR+nO+nI, and the
- // corresponding CallInst has nO+nI+1 operands (the last operand is the
- // function to be called).
- const DataLayout &DL = F.getParent()->getDataLayout();
- CallBase *CB = dyn_cast<CallBase>(&I);
- IRBuilder<> IRB(&I);
- InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue());
- int OutputArgs = getNumOutputArgs(IA, CB);
- // The last operand of a CallInst is the function itself.
- int NumOperands = CB->getNumOperands() - 1;
-
- // Check input arguments. Doing so before unpoisoning output arguments, so
- // that we won't overwrite uninit values before checking them.
- for (int i = OutputArgs; i < NumOperands; i++) {
- Value *Operand = CB->getOperand(i);
- instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
- }
- // Unpoison output arguments. This must happen before the actual InlineAsm
- // call, so that the shadow for memory published in the asm() statement
- // remains valid.
- for (int i = 0; i < OutputArgs; i++) {
- Value *Operand = CB->getOperand(i);
- instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
- }
-
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
-
- void visitInstruction(Instruction &I) {
- // Everything else: stop propagating and check for poisoned shadow.
- if (ClDumpStrictInstructions)
- dumpInst(I);
- LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
- for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
- Value *Operand = I.getOperand(i);
- if (Operand->getType()->isSized())
- insertShadowCheck(Operand, &I);
- }
- setShadow(&I, getCleanShadow(&I));
- setOrigin(&I, getCleanOrigin());
- }
-};
-
-/// AMD64-specific implementation of VarArgHelper.
-struct VarArgAMD64Helper : public VarArgHelper {
- // An unfortunate workaround for asymmetric lowering of va_arg stuff.
- // See a comment in visitCallSite for more details.
- static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
- static const unsigned AMD64FpEndOffsetSSE = 176;
- // If SSE is disabled, fp_offset in va_list is zero.
- static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
-
- unsigned AMD64FpEndOffset;
- Function &F;
- MemorySanitizer &MS;
- MemorySanitizerVisitor &MSV;
- Value *VAArgTLSCopy = nullptr;
- Value *VAArgTLSOriginCopy = nullptr;
- Value *VAArgOverflowSize = nullptr;
-
- SmallVector<CallInst*, 16> VAStartInstrumentationList;
-
- enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
-
- VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
- MemorySanitizerVisitor &MSV)
- : F(F), MS(MS), MSV(MSV) {
- AMD64FpEndOffset = AMD64FpEndOffsetSSE;
- for (const auto &Attr : F.getAttributes().getFnAttributes()) {
- if (Attr.isStringAttribute() &&
- (Attr.getKindAsString() == "target-features")) {
- if (Attr.getValueAsString().contains("-sse"))
- AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
- break;
- }
- }
- }
-
- ArgKind classifyArgument(Value* arg) {
- // A very rough approximation of X86_64 argument classification rules.
- Type *T = arg->getType();
- if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
- return AK_FloatingPoint;
- if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
- return AK_GeneralPurpose;
- if (T->isPointerTy())
- return AK_GeneralPurpose;
- return AK_Memory;
- }
-
- // For VarArg functions, store the argument shadow in an ABI-specific format
- // that corresponds to va_list layout.
- // We do this because Clang lowers va_arg in the frontend, and this pass
- // only sees the low level code that deals with va_list internals.
- // A much easier alternative (provided that Clang emits va_arg instructions)
- // would have been to associate each live instance of va_list with a copy of
- // MSanParamTLS, and extract shadow on va_arg() call in the argument list
- // order.
- void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
- unsigned GpOffset = 0;
- unsigned FpOffset = AMD64GpEndOffset;
- unsigned OverflowOffset = AMD64FpEndOffset;
- const DataLayout &DL = F.getParent()->getDataLayout();
- for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
- ArgIt != End; ++ArgIt) {
- Value *A = *ArgIt;
- unsigned ArgNo = CS.getArgumentNo(ArgIt);
- bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
- bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
- if (IsByVal) {
- // ByVal arguments always go to the overflow area.
- // Fixed arguments passed through the overflow area will be stepped
- // over by va_start, so don't count them towards the offset.
- if (IsFixed)
- continue;
- assert(A->getType()->isPointerTy());
- Type *RealTy = A->getType()->getPointerElementType();
- uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
- Value *ShadowBase = getShadowPtrForVAArgument(
- RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
- Value *OriginBase = nullptr;
- if (MS.TrackOrigins)
- OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
- OverflowOffset += alignTo(ArgSize, 8);
- if (!ShadowBase)
- continue;
- Value *ShadowPtr, *OriginPtr;
- std::tie(ShadowPtr, OriginPtr) =
- MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
- /*isStore*/ false);
-
- IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
- kShadowTLSAlignment, ArgSize);
- if (MS.TrackOrigins)
- IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
- kShadowTLSAlignment, ArgSize);
- } else {
- ArgKind AK = classifyArgument(A);
- if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
- AK = AK_Memory;
- if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
- AK = AK_Memory;
- Value *ShadowBase, *OriginBase = nullptr;
- switch (AK) {
- case AK_GeneralPurpose:
- ShadowBase =
- getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
- if (MS.TrackOrigins)
- OriginBase =
- getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
- GpOffset += 8;
- break;
- case AK_FloatingPoint:
- ShadowBase =
- getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
- if (MS.TrackOrigins)
- OriginBase =
- getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
- FpOffset += 16;
- break;
- case AK_Memory:
- if (IsFixed)
- continue;
- uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
- ShadowBase =
- getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
- if (MS.TrackOrigins)
- OriginBase =
- getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
- OverflowOffset += alignTo(ArgSize, 8);
- }
- // Take fixed arguments into account for GpOffset and FpOffset,
- // but don't actually store shadows for them.
- // TODO(glider): don't call get*PtrForVAArgument() for them.
- if (IsFixed)
- continue;
- if (!ShadowBase)
- continue;
- Value *Shadow = MSV.getShadow(A);
- IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
- if (MS.TrackOrigins) {
- Value *Origin = MSV.getOrigin(A);
- unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
- MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
- std::max(kShadowTLSAlignment, kMinOriginAlignment));
- }
- }
- }
- Constant *OverflowSize =
- ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
- IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
- }
-
- /// Compute the shadow address for a given va_arg.
- Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
- unsigned ArgOffset, unsigned ArgSize) {
- // Make sure we don't overflow __msan_va_arg_tls.
- if (ArgOffset + ArgSize > kParamTLSSize)
- return nullptr;
- Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
- "_msarg_va_s");
- }
-
- /// Compute the origin address for a given va_arg.
- Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
- Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
- // getOriginPtrForVAArgument() is always called after
- // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
- // overflow.
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
- "_msarg_va_o");
- }
-
- void unpoisonVAListTagForInst(IntrinsicInst &I) {
- IRBuilder<> IRB(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr, *OriginPtr;
- unsigned Alignment = 8;
- std::tie(ShadowPtr, OriginPtr) =
- MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
- /*isStore*/ true);
-
- // Unpoison the whole __va_list_tag.
- // FIXME: magic ABI constants.
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */ 24, Alignment, false);
- // We shouldn't need to zero out the origins, as they're only checked for
- // nonzero shadow.
- }
-
- void visitVAStartInst(VAStartInst &I) override {
- if (F.getCallingConv() == CallingConv::Win64)
- return;
- VAStartInstrumentationList.push_back(&I);
- unpoisonVAListTagForInst(I);
- }
-
- void visitVACopyInst(VACopyInst &I) override {
- if (F.getCallingConv() == CallingConv::Win64) return;
- unpoisonVAListTagForInst(I);
- }
-
- void finalizeInstrumentation() override {
- assert(!VAArgOverflowSize && !VAArgTLSCopy &&
- "finalizeInstrumentation called twice");
- if (!VAStartInstrumentationList.empty()) {
- // If there is a va_start in this function, make a backup copy of
- // va_arg_tls somewhere in the function entry block.
- IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
- VAArgOverflowSize =
- IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
- Value *CopySize =
- IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
- VAArgOverflowSize);
- VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
- IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
- if (MS.TrackOrigins) {
- VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
- IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize);
- }
- }
-
- // Instrument va_start.
- // Copy va_list shadow from the backup copy of the TLS contents.
- for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
- CallInst *OrigInst = VAStartInstrumentationList[i];
- IRBuilder<> IRB(OrigInst->getNextNode());
- Value *VAListTag = OrigInst->getArgOperand(0);
-
- Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
- Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
- IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
- ConstantInt::get(MS.IntptrTy, 16)),
- PointerType::get(RegSaveAreaPtrTy, 0));
- Value *RegSaveAreaPtr =
- IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
- Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
- unsigned Alignment = 16;
- std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
- MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
- Alignment, /*isStore*/ true);
- IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
- AMD64FpEndOffset);
- if (MS.TrackOrigins)
- IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
- Alignment, AMD64FpEndOffset);
- Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
- Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
- IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
- ConstantInt::get(MS.IntptrTy, 8)),
- PointerType::get(OverflowArgAreaPtrTy, 0));
- Value *OverflowArgAreaPtr =
- IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
- Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
- std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
- MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
- Alignment, /*isStore*/ true);
- Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
- AMD64FpEndOffset);
- IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
- VAArgOverflowSize);
- if (MS.TrackOrigins) {
- SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
- AMD64FpEndOffset);
- IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
- VAArgOverflowSize);
- }
- }
- }
-};
-
-/// MIPS64-specific implementation of VarArgHelper.
-struct VarArgMIPS64Helper : public VarArgHelper {
- Function &F;
- MemorySanitizer &MS;
- MemorySanitizerVisitor &MSV;
- Value *VAArgTLSCopy = nullptr;
- Value *VAArgSize = nullptr;
-
- SmallVector<CallInst*, 16> VAStartInstrumentationList;
-
- VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
- MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
-
- void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
- unsigned VAArgOffset = 0;
- const DataLayout &DL = F.getParent()->getDataLayout();
- for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
- CS.getFunctionType()->getNumParams(), End = CS.arg_end();
- ArgIt != End; ++ArgIt) {
- Triple TargetTriple(F.getParent()->getTargetTriple());
- Value *A = *ArgIt;
- Value *Base;
- uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
- if (TargetTriple.getArch() == Triple::mips64) {
- // Adjusting the shadow for argument with size < 8 to match the placement
- // of bits in big endian system
- if (ArgSize < 8)
- VAArgOffset += (8 - ArgSize);
- }
- Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
- VAArgOffset += ArgSize;
- VAArgOffset = alignTo(VAArgOffset, 8);
- if (!Base)
- continue;
- IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
- }
-
- Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
- // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
- // a new class member i.e. it is the total size of all VarArgs.
- IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
- }
-
- /// Compute the shadow address for a given va_arg.
- Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
- unsigned ArgOffset, unsigned ArgSize) {
- // Make sure we don't overflow __msan_va_arg_tls.
- if (ArgOffset + ArgSize > kParamTLSSize)
- return nullptr;
- Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
- "_msarg");
- }
-
- void visitVAStartInst(VAStartInst &I) override {
- IRBuilder<> IRB(&I);
- VAStartInstrumentationList.push_back(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr, *OriginPtr;
- unsigned Alignment = 8;
- std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
- VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */ 8, Alignment, false);
- }
-
- void visitVACopyInst(VACopyInst &I) override {
- IRBuilder<> IRB(&I);
- VAStartInstrumentationList.push_back(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr, *OriginPtr;
- unsigned Alignment = 8;
- std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
- VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */ 8, Alignment, false);
- }
-
- void finalizeInstrumentation() override {
- assert(!VAArgSize && !VAArgTLSCopy &&
- "finalizeInstrumentation called twice");
- IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
- VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
- Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
- VAArgSize);
-
- if (!VAStartInstrumentationList.empty()) {
- // If there is a va_start in this function, make a backup copy of
- // va_arg_tls somewhere in the function entry block.
- VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
- IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
- }
-
- // Instrument va_start.
- // Copy va_list shadow from the backup copy of the TLS contents.
- for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
- CallInst *OrigInst = VAStartInstrumentationList[i];
- IRBuilder<> IRB(OrigInst->getNextNode());
- Value *VAListTag = OrigInst->getArgOperand(0);
- Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
- Value *RegSaveAreaPtrPtr =
- IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
- PointerType::get(RegSaveAreaPtrTy, 0));
- Value *RegSaveAreaPtr =
- IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
- Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
- unsigned Alignment = 8;
- std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
- MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
- Alignment, /*isStore*/ true);
- IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
- CopySize);
- }
- }
-};
-
-/// AArch64-specific implementation of VarArgHelper.
-struct VarArgAArch64Helper : public VarArgHelper {
- static const unsigned kAArch64GrArgSize = 64;
- static const unsigned kAArch64VrArgSize = 128;
-
- static const unsigned AArch64GrBegOffset = 0;
- static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
- // Make VR space aligned to 16 bytes.
- static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
- static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
- + kAArch64VrArgSize;
- static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
-
- Function &F;
- MemorySanitizer &MS;
- MemorySanitizerVisitor &MSV;
- Value *VAArgTLSCopy = nullptr;
- Value *VAArgOverflowSize = nullptr;
-
- SmallVector<CallInst*, 16> VAStartInstrumentationList;
-
- enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
-
- VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
- MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
-
- ArgKind classifyArgument(Value* arg) {
- Type *T = arg->getType();
- if (T->isFPOrFPVectorTy())
- return AK_FloatingPoint;
- if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
- || (T->isPointerTy()))
- return AK_GeneralPurpose;
- return AK_Memory;
- }
-
- // The instrumentation stores the argument shadow in a non ABI-specific
- // format because it does not know which argument is named (since Clang,
- // like x86_64 case, lowers the va_args in the frontend and this pass only
- // sees the low level code that deals with va_list internals).
- // The first seven GR registers are saved in the first 56 bytes of the
- // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
- // the remaining arguments.
- // Using constant offset within the va_arg TLS array allows fast copy
- // in the finalize instrumentation.
- void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
- unsigned GrOffset = AArch64GrBegOffset;
- unsigned VrOffset = AArch64VrBegOffset;
- unsigned OverflowOffset = AArch64VAEndOffset;
-
- const DataLayout &DL = F.getParent()->getDataLayout();
- for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
- ArgIt != End; ++ArgIt) {
- Value *A = *ArgIt;
- unsigned ArgNo = CS.getArgumentNo(ArgIt);
- bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
- ArgKind AK = classifyArgument(A);
- if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
- AK = AK_Memory;
- if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
- AK = AK_Memory;
- Value *Base;
- switch (AK) {
- case AK_GeneralPurpose:
- Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
- GrOffset += 8;
- break;
- case AK_FloatingPoint:
- Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
- VrOffset += 16;
- break;
- case AK_Memory:
- // Don't count fixed arguments in the overflow area - va_start will
- // skip right over them.
- if (IsFixed)
- continue;
- uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
- Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
- alignTo(ArgSize, 8));
- OverflowOffset += alignTo(ArgSize, 8);
- break;
- }
- // Count Gp/Vr fixed arguments to their respective offsets, but don't
- // bother to actually store a shadow.
- if (IsFixed)
- continue;
- if (!Base)
- continue;
- IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
- }
- Constant *OverflowSize =
- ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
- IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
- }
-
- /// Compute the shadow address for a given va_arg.
- Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
- unsigned ArgOffset, unsigned ArgSize) {
- // Make sure we don't overflow __msan_va_arg_tls.
- if (ArgOffset + ArgSize > kParamTLSSize)
- return nullptr;
- Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
- "_msarg");
- }
-
- void visitVAStartInst(VAStartInst &I) override {
- IRBuilder<> IRB(&I);
- VAStartInstrumentationList.push_back(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr, *OriginPtr;
- unsigned Alignment = 8;
- std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
- VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */ 32, Alignment, false);
- }
-
- void visitVACopyInst(VACopyInst &I) override {
- IRBuilder<> IRB(&I);
- VAStartInstrumentationList.push_back(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr, *OriginPtr;
- unsigned Alignment = 8;
- std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
- VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */ 32, Alignment, false);
- }
-
- // Retrieve a va_list field of 'void*' size.
- Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
- Value *SaveAreaPtrPtr =
- IRB.CreateIntToPtr(
- IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
- ConstantInt::get(MS.IntptrTy, offset)),
- Type::getInt64PtrTy(*MS.C));
- return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
- }
-
- // Retrieve a va_list field of 'int' size.
- Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
- Value *SaveAreaPtr =
- IRB.CreateIntToPtr(
- IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
- ConstantInt::get(MS.IntptrTy, offset)),
- Type::getInt32PtrTy(*MS.C));
- Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
- return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
- }
-
- void finalizeInstrumentation() override {
- assert(!VAArgOverflowSize && !VAArgTLSCopy &&
- "finalizeInstrumentation called twice");
- if (!VAStartInstrumentationList.empty()) {
- // If there is a va_start in this function, make a backup copy of
- // va_arg_tls somewhere in the function entry block.
- IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
- VAArgOverflowSize =
- IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
- Value *CopySize =
- IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
- VAArgOverflowSize);
- VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
- IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
- }
-
- Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
- Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
-
- // Instrument va_start, copy va_list shadow from the backup copy of
- // the TLS contents.
- for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
- CallInst *OrigInst = VAStartInstrumentationList[i];
- IRBuilder<> IRB(OrigInst->getNextNode());
-
- Value *VAListTag = OrigInst->getArgOperand(0);
-
- // The variadic ABI for AArch64 creates two areas to save the incoming
- // argument registers (one for 64-bit general register xn-x7 and another
- // for 128-bit FP/SIMD vn-v7).
- // We need then to propagate the shadow arguments on both regions
- // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
- // The remaning arguments are saved on shadow for 'va::stack'.
- // One caveat is it requires only to propagate the non-named arguments,
- // however on the call site instrumentation 'all' the arguments are
- // saved. So to copy the shadow values from the va_arg TLS array
- // we need to adjust the offset for both GR and VR fields based on
- // the __{gr,vr}_offs value (since they are stores based on incoming
- // named arguments).
-
- // Read the stack pointer from the va_list.
- Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
-
- // Read both the __gr_top and __gr_off and add them up.
- Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
- Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
-
- Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
-
- // Read both the __vr_top and __vr_off and add them up.
- Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
- Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
-
- Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
-
- // It does not know how many named arguments is being used and, on the
- // callsite all the arguments were saved. Since __gr_off is defined as
- // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
- // argument by ignoring the bytes of shadow from named arguments.
- Value *GrRegSaveAreaShadowPtrOff =
- IRB.CreateAdd(GrArgSize, GrOffSaveArea);
-
- Value *GrRegSaveAreaShadowPtr =
- MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
- /*Alignment*/ 8, /*isStore*/ true)
- .first;
-
- Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
- GrRegSaveAreaShadowPtrOff);
- Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
-
- IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize);
-
- // Again, but for FP/SIMD values.
- Value *VrRegSaveAreaShadowPtrOff =
- IRB.CreateAdd(VrArgSize, VrOffSaveArea);
-
- Value *VrRegSaveAreaShadowPtr =
- MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
- /*Alignment*/ 8, /*isStore*/ true)
- .first;
-
- Value *VrSrcPtr = IRB.CreateInBoundsGEP(
- IRB.getInt8Ty(),
- IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
- IRB.getInt32(AArch64VrBegOffset)),
- VrRegSaveAreaShadowPtrOff);
- Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
-
- IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize);
-
- // And finally for remaining arguments.
- Value *StackSaveAreaShadowPtr =
- MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
- /*Alignment*/ 16, /*isStore*/ true)
- .first;
-
- Value *StackSrcPtr =
- IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
- IRB.getInt32(AArch64VAEndOffset));
-
- IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16,
- VAArgOverflowSize);
- }
- }
-};
-
-/// PowerPC64-specific implementation of VarArgHelper.
-struct VarArgPowerPC64Helper : public VarArgHelper {
- Function &F;
- MemorySanitizer &MS;
- MemorySanitizerVisitor &MSV;
- Value *VAArgTLSCopy = nullptr;
- Value *VAArgSize = nullptr;
-
- SmallVector<CallInst*, 16> VAStartInstrumentationList;
-
- VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
- MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
-
- void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
- // For PowerPC, we need to deal with alignment of stack arguments -
- // they are mostly aligned to 8 bytes, but vectors and i128 arrays
- // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
- // and QPX vectors are aligned to 32 bytes. For that reason, we
- // compute current offset from stack pointer (which is always properly
- // aligned), and offset for the first vararg, then subtract them.
- unsigned VAArgBase;
- Triple TargetTriple(F.getParent()->getTargetTriple());
- // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
- // and 32 bytes for ABIv2. This is usually determined by target
- // endianness, but in theory could be overriden by function attribute.
- // For simplicity, we ignore it here (it'd only matter for QPX vectors).
- if (TargetTriple.getArch() == Triple::ppc64)
- VAArgBase = 48;
- else
- VAArgBase = 32;
- unsigned VAArgOffset = VAArgBase;
- const DataLayout &DL = F.getParent()->getDataLayout();
- for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
- ArgIt != End; ++ArgIt) {
- Value *A = *ArgIt;
- unsigned ArgNo = CS.getArgumentNo(ArgIt);
- bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
- bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
- if (IsByVal) {
- assert(A->getType()->isPointerTy());
- Type *RealTy = A->getType()->getPointerElementType();
- uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
- uint64_t ArgAlign = CS.getParamAlignment(ArgNo);
- if (ArgAlign < 8)
- ArgAlign = 8;
- VAArgOffset = alignTo(VAArgOffset, ArgAlign);
- if (!IsFixed) {
- Value *Base = getShadowPtrForVAArgument(
- RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
- if (Base) {
- Value *AShadowPtr, *AOriginPtr;
- std::tie(AShadowPtr, AOriginPtr) =
- MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
- kShadowTLSAlignment, /*isStore*/ false);
-
- IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
- kShadowTLSAlignment, ArgSize);
- }
- }
- VAArgOffset += alignTo(ArgSize, 8);
- } else {
- Value *Base;
- uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
- uint64_t ArgAlign = 8;
- if (A->getType()->isArrayTy()) {
- // Arrays are aligned to element size, except for long double
- // arrays, which are aligned to 8 bytes.
- Type *ElementTy = A->getType()->getArrayElementType();
- if (!ElementTy->isPPC_FP128Ty())
- ArgAlign = DL.getTypeAllocSize(ElementTy);
- } else if (A->getType()->isVectorTy()) {
- // Vectors are naturally aligned.
- ArgAlign = DL.getTypeAllocSize(A->getType());
- }
- if (ArgAlign < 8)
- ArgAlign = 8;
- VAArgOffset = alignTo(VAArgOffset, ArgAlign);
- if (DL.isBigEndian()) {
- // Adjusting the shadow for argument with size < 8 to match the placement
- // of bits in big endian system
- if (ArgSize < 8)
- VAArgOffset += (8 - ArgSize);
- }
- if (!IsFixed) {
- Base = getShadowPtrForVAArgument(A->getType(), IRB,
- VAArgOffset - VAArgBase, ArgSize);
- if (Base)
- IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
- }
- VAArgOffset += ArgSize;
- VAArgOffset = alignTo(VAArgOffset, 8);
- }
- if (IsFixed)
- VAArgBase = VAArgOffset;
- }
-
- Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
- VAArgOffset - VAArgBase);
- // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
- // a new class member i.e. it is the total size of all VarArgs.
- IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
- }
-
- /// Compute the shadow address for a given va_arg.
- Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
- unsigned ArgOffset, unsigned ArgSize) {
- // Make sure we don't overflow __msan_va_arg_tls.
- if (ArgOffset + ArgSize > kParamTLSSize)
- return nullptr;
- Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
- Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
- return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
- "_msarg");
- }
-
- void visitVAStartInst(VAStartInst &I) override {
- IRBuilder<> IRB(&I);
- VAStartInstrumentationList.push_back(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr, *OriginPtr;
- unsigned Alignment = 8;
- std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
- VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */ 8, Alignment, false);
- }
-
- void visitVACopyInst(VACopyInst &I) override {
- IRBuilder<> IRB(&I);
- Value *VAListTag = I.getArgOperand(0);
- Value *ShadowPtr, *OriginPtr;
- unsigned Alignment = 8;
- std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
- VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
- // Unpoison the whole __va_list_tag.
- // FIXME: magic ABI constants.
- IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
- /* size */ 8, Alignment, false);
- }
-
- void finalizeInstrumentation() override {
- assert(!VAArgSize && !VAArgTLSCopy &&
- "finalizeInstrumentation called twice");
- IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
- VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
- Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
- VAArgSize);
-
- if (!VAStartInstrumentationList.empty()) {
- // If there is a va_start in this function, make a backup copy of
- // va_arg_tls somewhere in the function entry block.
- VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
- IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
- }
-
- // Instrument va_start.
- // Copy va_list shadow from the backup copy of the TLS contents.
- for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
- CallInst *OrigInst = VAStartInstrumentationList[i];
- IRBuilder<> IRB(OrigInst->getNextNode());
- Value *VAListTag = OrigInst->getArgOperand(0);
- Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
- Value *RegSaveAreaPtrPtr =
- IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
- PointerType::get(RegSaveAreaPtrTy, 0));
- Value *RegSaveAreaPtr =
- IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
- Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
- unsigned Alignment = 8;
- std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
- MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
- Alignment, /*isStore*/ true);
- IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
- CopySize);
- }
- }
-};
-
-/// A no-op implementation of VarArgHelper.
-struct VarArgNoOpHelper : public VarArgHelper {
- VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
- MemorySanitizerVisitor &MSV) {}
-
- void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
-
- void visitVAStartInst(VAStartInst &I) override {}
-
- void visitVACopyInst(VACopyInst &I) override {}
-
- void finalizeInstrumentation() override {}
-};
-
-} // end anonymous namespace
-
-static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
- MemorySanitizerVisitor &Visitor) {
- // VarArg handling is only implemented on AMD64. False positives are possible
- // on other platforms.
- Triple TargetTriple(Func.getParent()->getTargetTriple());
- if (TargetTriple.getArch() == Triple::x86_64)
- return new VarArgAMD64Helper(Func, Msan, Visitor);
- else if (TargetTriple.isMIPS64())
- return new VarArgMIPS64Helper(Func, Msan, Visitor);
- else if (TargetTriple.getArch() == Triple::aarch64)
- return new VarArgAArch64Helper(Func, Msan, Visitor);
- else if (TargetTriple.getArch() == Triple::ppc64 ||
- TargetTriple.getArch() == Triple::ppc64le)
- return new VarArgPowerPC64Helper(Func, Msan, Visitor);
- else
- return new VarArgNoOpHelper(Func, Msan, Visitor);
-}
-
-bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
- if (!CompileKernel && (&F == MsanCtorFunction))
- return false;
- MemorySanitizerVisitor Visitor(F, *this, TLI);
-
- // Clear out readonly/readnone attributes.
- AttrBuilder B;
- B.addAttribute(Attribute::ReadOnly)
- .addAttribute(Attribute::ReadNone);
- F.removeAttributes(AttributeList::FunctionIndex, B);
-
- return Visitor.runOnFunction();
-}