summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Instrumentation/PoisonChecking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Instrumentation/PoisonChecking.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/PoisonChecking.cpp357
1 files changed, 0 insertions, 357 deletions
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/PoisonChecking.cpp b/contrib/llvm/lib/Transforms/Instrumentation/PoisonChecking.cpp
deleted file mode 100644
index 81d92e724c7d..000000000000
--- a/contrib/llvm/lib/Transforms/Instrumentation/PoisonChecking.cpp
+++ /dev/null
@@ -1,357 +0,0 @@
-//===- PoisonChecking.cpp - -----------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// Implements a transform pass which instruments IR such that poison semantics
-// are made explicit. That is, it provides a (possibly partial) executable
-// semantics for every instruction w.r.t. poison as specified in the LLVM
-// LangRef. There are obvious parallels to the sanitizer tools, but this pass
-// is focused purely on the semantics of LLVM IR, not any particular source
-// language. If you're looking for something to see if your C/C++ contains
-// UB, this is not it.
-//
-// The rewritten semantics of each instruction will include the following
-// components:
-//
-// 1) The original instruction, unmodified.
-// 2) A propagation rule which translates dynamic information about the poison
-// state of each input to whether the dynamic output of the instruction
-// produces poison.
-// 3) A flag validation rule which validates any poison producing flags on the
-// instruction itself (e.g. checks for overflow on nsw).
-// 4) A check rule which traps (to a handler function) if this instruction must
-// execute undefined behavior given the poison state of it's inputs.
-//
-// At the moment, the UB detection is done in a best effort manner; that is,
-// the resulting code may produce a false negative result (not report UB when
-// it actually exists according to the LangRef spec), but should never produce
-// a false positive (report UB where it doesn't exist). The intention is to
-// eventually support a "strict" mode which never dynamically reports a false
-// negative at the cost of rejecting some valid inputs to translation.
-//
-// Use cases for this pass include:
-// - Understanding (and testing!) the implications of the definition of poison
-// from the LangRef.
-// - Validating the output of a IR fuzzer to ensure that all programs produced
-// are well defined on the specific input used.
-// - Finding/confirming poison specific miscompiles by checking the poison
-// status of an input/IR pair is the same before and after an optimization
-// transform.
-// - Checking that a bugpoint reduction does not introduce UB which didn't
-// exist in the original program being reduced.
-//
-// The major sources of inaccuracy are currently:
-// - Most validation rules not yet implemented for instructions with poison
-// relavant flags. At the moment, only nsw/nuw on add/sub are supported.
-// - UB which is control dependent on a branch on poison is not yet
-// reported. Currently, only data flow dependence is modeled.
-// - Poison which is propagated through memory is not modeled. As such,
-// storing poison to memory and then reloading it will cause a false negative
-// as we consider the reloaded value to not be poisoned.
-// - Poison propagation across function boundaries is not modeled. At the
-// moment, all arguments and return values are assumed not to be poison.
-// - Undef is not modeled. In particular, the optimizer's freedom to pick
-// concrete values for undef bits so as to maximize potential for producing
-// poison is not modeled.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Instrumentation/PoisonChecking.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/InstVisitor.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Support/Debug.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "poison-checking"
-
-static cl::opt<bool>
-LocalCheck("poison-checking-function-local",
- cl::init(false),
- cl::desc("Check that returns are non-poison (for testing)"));
-
-
-static bool isConstantFalse(Value* V) {
- assert(V->getType()->isIntegerTy(1));
- if (auto *CI = dyn_cast<ConstantInt>(V))
- return CI->isZero();
- return false;
-}
-
-static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) {
- if (Ops.size() == 0)
- return B.getFalse();
- unsigned i = 0;
- for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {}
- if (i == Ops.size())
- return B.getFalse();
- Value *Accum = Ops[i++];
- for (; i < Ops.size(); i++)
- if (!isConstantFalse(Ops[i]))
- Accum = B.CreateOr(Accum, Ops[i]);
- return Accum;
-}
-
-static void generatePoisonChecksForBinOp(Instruction &I,
- SmallVector<Value*, 2> &Checks) {
- assert(isa<BinaryOperator>(I));
-
- IRBuilder<> B(&I);
- Value *LHS = I.getOperand(0);
- Value *RHS = I.getOperand(1);
- switch (I.getOpcode()) {
- default:
- return;
- case Instruction::Add: {
- if (I.hasNoSignedWrap()) {
- auto *OverflowOp =
- B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS);
- Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
- }
- if (I.hasNoUnsignedWrap()) {
- auto *OverflowOp =
- B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS);
- Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
- }
- break;
- }
- case Instruction::Sub: {
- if (I.hasNoSignedWrap()) {
- auto *OverflowOp =
- B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS);
- Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
- }
- if (I.hasNoUnsignedWrap()) {
- auto *OverflowOp =
- B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS);
- Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
- }
- break;
- }
- case Instruction::Mul: {
- if (I.hasNoSignedWrap()) {
- auto *OverflowOp =
- B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS);
- Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
- }
- if (I.hasNoUnsignedWrap()) {
- auto *OverflowOp =
- B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS);
- Checks.push_back(B.CreateExtractValue(OverflowOp, 1));
- }
- break;
- }
- case Instruction::UDiv: {
- if (I.isExact()) {
- auto *Check =
- B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS),
- ConstantInt::get(LHS->getType(), 0));
- Checks.push_back(Check);
- }
- break;
- }
- case Instruction::SDiv: {
- if (I.isExact()) {
- auto *Check =
- B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS),
- ConstantInt::get(LHS->getType(), 0));
- Checks.push_back(Check);
- }
- break;
- }
- case Instruction::AShr:
- case Instruction::LShr:
- case Instruction::Shl: {
- Value *ShiftCheck =
- B.CreateICmp(ICmpInst::ICMP_UGE, RHS,
- ConstantInt::get(RHS->getType(),
- LHS->getType()->getScalarSizeInBits()));
- Checks.push_back(ShiftCheck);
- break;
- }
- };
-}
-
-static Value* generatePoisonChecks(Instruction &I) {
- IRBuilder<> B(&I);
- SmallVector<Value*, 2> Checks;
- if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy())
- generatePoisonChecksForBinOp(I, Checks);
-
- // Handle non-binops seperately
- switch (I.getOpcode()) {
- default:
- break;
- case Instruction::ExtractElement: {
- Value *Vec = I.getOperand(0);
- if (Vec->getType()->getVectorIsScalable())
- break;
- Value *Idx = I.getOperand(1);
- unsigned NumElts = Vec->getType()->getVectorNumElements();
- Value *Check =
- B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
- ConstantInt::get(Idx->getType(), NumElts));
- Checks.push_back(Check);
- break;
- }
- case Instruction::InsertElement: {
- Value *Vec = I.getOperand(0);
- if (Vec->getType()->getVectorIsScalable())
- break;
- Value *Idx = I.getOperand(2);
- unsigned NumElts = Vec->getType()->getVectorNumElements();
- Value *Check =
- B.CreateICmp(ICmpInst::ICMP_UGE, Idx,
- ConstantInt::get(Idx->getType(), NumElts));
- Checks.push_back(Check);
- break;
- }
- };
- return buildOrChain(B, Checks);
-}
-
-static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) {
- auto Itr = ValToPoison.find(V);
- if (Itr != ValToPoison.end())
- return Itr->second;
- if (isa<Constant>(V)) {
- return ConstantInt::getFalse(V->getContext());
- }
- // Return false for unknwon values - this implements a non-strict mode where
- // unhandled IR constructs are simply considered to never produce poison. At
- // some point in the future, we probably want a "strict mode" for testing if
- // nothing else.
- return ConstantInt::getFalse(V->getContext());
-}
-
-static void CreateAssert(IRBuilder<> &B, Value *Cond) {
- assert(Cond->getType()->isIntegerTy(1));
- if (auto *CI = dyn_cast<ConstantInt>(Cond))
- if (CI->isAllOnesValue())
- return;
-
- Module *M = B.GetInsertBlock()->getModule();
- M->getOrInsertFunction("__poison_checker_assert",
- Type::getVoidTy(M->getContext()),
- Type::getInt1Ty(M->getContext()));
- Function *TrapFunc = M->getFunction("__poison_checker_assert");
- B.CreateCall(TrapFunc, Cond);
-}
-
-static void CreateAssertNot(IRBuilder<> &B, Value *Cond) {
- assert(Cond->getType()->isIntegerTy(1));
- CreateAssert(B, B.CreateNot(Cond));
-}
-
-static bool rewrite(Function &F) {
- auto * const Int1Ty = Type::getInt1Ty(F.getContext());
-
- DenseMap<Value *, Value *> ValToPoison;
-
- for (BasicBlock &BB : F)
- for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
- auto *OldPHI = cast<PHINode>(&*I);
- auto *NewPHI = PHINode::Create(Int1Ty,
- OldPHI->getNumIncomingValues());
- for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++)
- NewPHI->addIncoming(UndefValue::get(Int1Ty),
- OldPHI->getIncomingBlock(i));
- NewPHI->insertBefore(OldPHI);
- ValToPoison[OldPHI] = NewPHI;
- }
-
- for (BasicBlock &BB : F)
- for (Instruction &I : BB) {
- if (isa<PHINode>(I)) continue;
-
- IRBuilder<> B(cast<Instruction>(&I));
-
- // Note: There are many more sources of documented UB, but this pass only
- // attempts to find UB triggered by propagation of poison.
- if (Value *Op = const_cast<Value*>(getGuaranteedNonFullPoisonOp(&I)))
- CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
-
- if (LocalCheck)
- if (auto *RI = dyn_cast<ReturnInst>(&I))
- if (RI->getNumOperands() != 0) {
- Value *Op = RI->getOperand(0);
- CreateAssertNot(B, getPoisonFor(ValToPoison, Op));
- }
-
- SmallVector<Value*, 4> Checks;
- if (propagatesFullPoison(&I))
- for (Value *V : I.operands())
- Checks.push_back(getPoisonFor(ValToPoison, V));
-
- if (auto *Check = generatePoisonChecks(I))
- Checks.push_back(Check);
- ValToPoison[&I] = buildOrChain(B, Checks);
- }
-
- for (BasicBlock &BB : F)
- for (auto I = BB.begin(); isa<PHINode>(&*I); I++) {
- auto *OldPHI = cast<PHINode>(&*I);
- if (!ValToPoison.count(OldPHI))
- continue; // skip the newly inserted phis
- auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]);
- for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) {
- auto *OldVal = OldPHI->getIncomingValue(i);
- NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal));
- }
- }
- return true;
-}
-
-
-PreservedAnalyses PoisonCheckingPass::run(Module &M,
- ModuleAnalysisManager &AM) {
- bool Changed = false;
- for (auto &F : M)
- Changed |= rewrite(F);
-
- return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
-}
-
-PreservedAnalyses PoisonCheckingPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all();
-}
-
-
-/* Major TODO Items:
- - Control dependent poison UB
- - Strict mode - (i.e. must analyze every operand)
- - Poison through memory
- - Function ABIs
- - Full coverage of intrinsics, etc.. (ouch)
-
- Instructions w/Unclear Semantics:
- - shufflevector - It would seem reasonable for an out of bounds mask element
- to produce poison, but the LangRef does not state.
- - and/or - It would seem reasonable for poison to propagate from both
- arguments, but LangRef doesn't state and propagatesFullPoison doesn't
- include these two.
- - all binary ops w/vector operands - The likely interpretation would be that
- any element overflowing should produce poison for the entire result, but
- the LangRef does not state.
- - Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems
- strange that only certian flags should be documented as producing poison.
-
- Cases of clear poison semantics not yet implemented:
- - Exact flags on ashr/lshr produce poison
- - NSW/NUW flags on shl produce poison
- - Inbounds flag on getelementptr produce poison
- - fptosi/fptoui (out of bounds input) produce poison
- - Scalable vector types for insertelement/extractelement
- - Floating point binary ops w/fmf nnan/noinfs flags produce poison
- */