diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp | 1424 |
1 files changed, 0 insertions, 1424 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp deleted file mode 100644 index f1f075257020..000000000000 --- a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp +++ /dev/null @@ -1,1424 +0,0 @@ -//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass performs a simple dominator tree walk that eliminates trivially -// redundant instructions. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/EarlyCSE.h" -#include "llvm/ADT/DenseMapInfo.h" -#include "llvm/ADT/Hashing.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/ScopedHashTable.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/GuardUtils.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/MemorySSA.h" -#include "llvm/Analysis/MemorySSAUpdater.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Allocator.h" -#include "llvm/Support/AtomicOrdering.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/DebugCounter.h" -#include "llvm/Support/RecyclingAllocator.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/GuardUtils.h" -#include <cassert> -#include <deque> -#include <memory> -#include <utility> - -using namespace llvm; -using namespace llvm::PatternMatch; - -#define DEBUG_TYPE "early-cse" - -STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); -STATISTIC(NumCSE, "Number of instructions CSE'd"); -STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); -STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); -STATISTIC(NumCSECall, "Number of call instructions CSE'd"); -STATISTIC(NumDSE, "Number of trivial dead stores removed"); - -DEBUG_COUNTER(CSECounter, "early-cse", - "Controls which instructions are removed"); - -static cl::opt<unsigned> EarlyCSEMssaOptCap( - "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, - cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " - "for faster compile. Caps the MemorySSA clobbering calls.")); - -static cl::opt<bool> EarlyCSEDebugHash( - "earlycse-debug-hash", cl::init(false), cl::Hidden, - cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " - "function is well-behaved w.r.t. its isEqual predicate")); - -//===----------------------------------------------------------------------===// -// SimpleValue -//===----------------------------------------------------------------------===// - -namespace { - -/// Struct representing the available values in the scoped hash table. -struct SimpleValue { - Instruction *Inst; - - SimpleValue(Instruction *I) : Inst(I) { - assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); - } - - bool isSentinel() const { - return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || - Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); - } - - static bool canHandle(Instruction *Inst) { - // This can only handle non-void readnone functions. - if (CallInst *CI = dyn_cast<CallInst>(Inst)) - return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); - return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || - isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || - isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || - isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || - isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); - } -}; - -} // end anonymous namespace - -namespace llvm { - -template <> struct DenseMapInfo<SimpleValue> { - static inline SimpleValue getEmptyKey() { - return DenseMapInfo<Instruction *>::getEmptyKey(); - } - - static inline SimpleValue getTombstoneKey() { - return DenseMapInfo<Instruction *>::getTombstoneKey(); - } - - static unsigned getHashValue(SimpleValue Val); - static bool isEqual(SimpleValue LHS, SimpleValue RHS); -}; - -} // end namespace llvm - -/// Match a 'select' including an optional 'not's of the condition. -static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, - Value *&B, - SelectPatternFlavor &Flavor) { - // Return false if V is not even a select. - if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) - return false; - - // Look through a 'not' of the condition operand by swapping A/B. - Value *CondNot; - if (match(Cond, m_Not(m_Value(CondNot)))) { - Cond = CondNot; - std::swap(A, B); - } - - // Set flavor if we find a match, or set it to unknown otherwise; in - // either case, return true to indicate that this is a select we can - // process. - if (auto *CmpI = dyn_cast<ICmpInst>(Cond)) - Flavor = matchDecomposedSelectPattern(CmpI, A, B, A, B).Flavor; - else - Flavor = SPF_UNKNOWN; - - return true; -} - -static unsigned getHashValueImpl(SimpleValue Val) { - Instruction *Inst = Val.Inst; - // Hash in all of the operands as pointers. - if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { - Value *LHS = BinOp->getOperand(0); - Value *RHS = BinOp->getOperand(1); - if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) - std::swap(LHS, RHS); - - return hash_combine(BinOp->getOpcode(), LHS, RHS); - } - - if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { - // Compares can be commuted by swapping the comparands and - // updating the predicate. Choose the form that has the - // comparands in sorted order, or in the case of a tie, the - // one with the lower predicate. - Value *LHS = CI->getOperand(0); - Value *RHS = CI->getOperand(1); - CmpInst::Predicate Pred = CI->getPredicate(); - CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); - if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { - std::swap(LHS, RHS); - Pred = SwappedPred; - } - return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); - } - - // Hash general selects to allow matching commuted true/false operands. - SelectPatternFlavor SPF; - Value *Cond, *A, *B; - if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { - // Hash min/max/abs (cmp + select) to allow for commuted operands. - // Min/max may also have non-canonical compare predicate (eg, the compare for - // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the - // compare. - // TODO: We should also detect FP min/max. - if (SPF == SPF_SMIN || SPF == SPF_SMAX || - SPF == SPF_UMIN || SPF == SPF_UMAX) { - if (A > B) - std::swap(A, B); - return hash_combine(Inst->getOpcode(), SPF, A, B); - } - if (SPF == SPF_ABS || SPF == SPF_NABS) { - // ABS/NABS always puts the input in A and its negation in B. - return hash_combine(Inst->getOpcode(), SPF, A, B); - } - - // Hash general selects to allow matching commuted true/false operands. - - // If we do not have a compare as the condition, just hash in the condition. - CmpInst::Predicate Pred; - Value *X, *Y; - if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) - return hash_combine(Inst->getOpcode(), Cond, A, B); - - // Similar to cmp normalization (above) - canonicalize the predicate value: - // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A - if (CmpInst::getInversePredicate(Pred) < Pred) { - Pred = CmpInst::getInversePredicate(Pred); - std::swap(A, B); - } - return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); - } - - if (CastInst *CI = dyn_cast<CastInst>(Inst)) - return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); - - if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) - return hash_combine(EVI->getOpcode(), EVI->getOperand(0), - hash_combine_range(EVI->idx_begin(), EVI->idx_end())); - - if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) - return hash_combine(IVI->getOpcode(), IVI->getOperand(0), - IVI->getOperand(1), - hash_combine_range(IVI->idx_begin(), IVI->idx_end())); - - assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || - isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || - isa<ShuffleVectorInst>(Inst)) && - "Invalid/unknown instruction"); - - // Mix in the opcode. - return hash_combine( - Inst->getOpcode(), - hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); -} - -unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { -#ifndef NDEBUG - // If -earlycse-debug-hash was specified, return a constant -- this - // will force all hashing to collide, so we'll exhaustively search - // the table for a match, and the assertion in isEqual will fire if - // there's a bug causing equal keys to hash differently. - if (EarlyCSEDebugHash) - return 0; -#endif - return getHashValueImpl(Val); -} - -static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { - Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; - - if (LHS.isSentinel() || RHS.isSentinel()) - return LHSI == RHSI; - - if (LHSI->getOpcode() != RHSI->getOpcode()) - return false; - if (LHSI->isIdenticalToWhenDefined(RHSI)) - return true; - - // If we're not strictly identical, we still might be a commutable instruction - if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { - if (!LHSBinOp->isCommutative()) - return false; - - assert(isa<BinaryOperator>(RHSI) && - "same opcode, but different instruction type?"); - BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); - - // Commuted equality - return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && - LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); - } - if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { - assert(isa<CmpInst>(RHSI) && - "same opcode, but different instruction type?"); - CmpInst *RHSCmp = cast<CmpInst>(RHSI); - // Commuted equality - return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && - LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && - LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); - } - - // Min/max/abs can occur with commuted operands, non-canonical predicates, - // and/or non-canonical operands. - // Selects can be non-trivially equivalent via inverted conditions and swaps. - SelectPatternFlavor LSPF, RSPF; - Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; - if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && - matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { - if (LSPF == RSPF) { - // TODO: We should also detect FP min/max. - if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || - LSPF == SPF_UMIN || LSPF == SPF_UMAX) - return ((LHSA == RHSA && LHSB == RHSB) || - (LHSA == RHSB && LHSB == RHSA)); - - if (LSPF == SPF_ABS || LSPF == SPF_NABS) { - // Abs results are placed in a defined order by matchSelectPattern. - return LHSA == RHSA && LHSB == RHSB; - } - - // select Cond, A, B <--> select not(Cond), B, A - if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) - return true; - } - - // If the true/false operands are swapped and the conditions are compares - // with inverted predicates, the selects are equal: - // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A - // - // This also handles patterns with a double-negation in the sense of not + - // inverse, because we looked through a 'not' in the matching function and - // swapped A/B: - // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A - // - // This intentionally does NOT handle patterns with a double-negation in - // the sense of not + not, because doing so could result in values - // comparing - // as equal that hash differently in the min/max/abs cases like: - // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y - // ^ hashes as min ^ would not hash as min - // In the context of the EarlyCSE pass, however, such cases never reach - // this code, as we simplify the double-negation before hashing the second - // select (and so still succeed at CSEing them). - if (LHSA == RHSB && LHSB == RHSA) { - CmpInst::Predicate PredL, PredR; - Value *X, *Y; - if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && - match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && - CmpInst::getInversePredicate(PredL) == PredR) - return true; - } - } - - return false; -} - -bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { - // These comparisons are nontrivial, so assert that equality implies - // hash equality (DenseMap demands this as an invariant). - bool Result = isEqualImpl(LHS, RHS); - assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || - getHashValueImpl(LHS) == getHashValueImpl(RHS)); - return Result; -} - -//===----------------------------------------------------------------------===// -// CallValue -//===----------------------------------------------------------------------===// - -namespace { - -/// Struct representing the available call values in the scoped hash -/// table. -struct CallValue { - Instruction *Inst; - - CallValue(Instruction *I) : Inst(I) { - assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); - } - - bool isSentinel() const { - return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || - Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); - } - - static bool canHandle(Instruction *Inst) { - // Don't value number anything that returns void. - if (Inst->getType()->isVoidTy()) - return false; - - CallInst *CI = dyn_cast<CallInst>(Inst); - if (!CI || !CI->onlyReadsMemory()) - return false; - return true; - } -}; - -} // end anonymous namespace - -namespace llvm { - -template <> struct DenseMapInfo<CallValue> { - static inline CallValue getEmptyKey() { - return DenseMapInfo<Instruction *>::getEmptyKey(); - } - - static inline CallValue getTombstoneKey() { - return DenseMapInfo<Instruction *>::getTombstoneKey(); - } - - static unsigned getHashValue(CallValue Val); - static bool isEqual(CallValue LHS, CallValue RHS); -}; - -} // end namespace llvm - -unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { - Instruction *Inst = Val.Inst; - // Hash all of the operands as pointers and mix in the opcode. - return hash_combine( - Inst->getOpcode(), - hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); -} - -bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { - Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; - if (LHS.isSentinel() || RHS.isSentinel()) - return LHSI == RHSI; - return LHSI->isIdenticalTo(RHSI); -} - -//===----------------------------------------------------------------------===// -// EarlyCSE implementation -//===----------------------------------------------------------------------===// - -namespace { - -/// A simple and fast domtree-based CSE pass. -/// -/// This pass does a simple depth-first walk over the dominator tree, -/// eliminating trivially redundant instructions and using instsimplify to -/// canonicalize things as it goes. It is intended to be fast and catch obvious -/// cases so that instcombine and other passes are more effective. It is -/// expected that a later pass of GVN will catch the interesting/hard cases. -class EarlyCSE { -public: - const TargetLibraryInfo &TLI; - const TargetTransformInfo &TTI; - DominatorTree &DT; - AssumptionCache &AC; - const SimplifyQuery SQ; - MemorySSA *MSSA; - std::unique_ptr<MemorySSAUpdater> MSSAUpdater; - - using AllocatorTy = - RecyclingAllocator<BumpPtrAllocator, - ScopedHashTableVal<SimpleValue, Value *>>; - using ScopedHTType = - ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, - AllocatorTy>; - - /// A scoped hash table of the current values of all of our simple - /// scalar expressions. - /// - /// As we walk down the domtree, we look to see if instructions are in this: - /// if so, we replace them with what we find, otherwise we insert them so - /// that dominated values can succeed in their lookup. - ScopedHTType AvailableValues; - - /// A scoped hash table of the current values of previously encountered - /// memory locations. - /// - /// This allows us to get efficient access to dominating loads or stores when - /// we have a fully redundant load. In addition to the most recent load, we - /// keep track of a generation count of the read, which is compared against - /// the current generation count. The current generation count is incremented - /// after every possibly writing memory operation, which ensures that we only - /// CSE loads with other loads that have no intervening store. Ordering - /// events (such as fences or atomic instructions) increment the generation - /// count as well; essentially, we model these as writes to all possible - /// locations. Note that atomic and/or volatile loads and stores can be - /// present the table; it is the responsibility of the consumer to inspect - /// the atomicity/volatility if needed. - struct LoadValue { - Instruction *DefInst = nullptr; - unsigned Generation = 0; - int MatchingId = -1; - bool IsAtomic = false; - - LoadValue() = default; - LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, - bool IsAtomic) - : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), - IsAtomic(IsAtomic) {} - }; - - using LoadMapAllocator = - RecyclingAllocator<BumpPtrAllocator, - ScopedHashTableVal<Value *, LoadValue>>; - using LoadHTType = - ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, - LoadMapAllocator>; - - LoadHTType AvailableLoads; - - // A scoped hash table mapping memory locations (represented as typed - // addresses) to generation numbers at which that memory location became - // (henceforth indefinitely) invariant. - using InvariantMapAllocator = - RecyclingAllocator<BumpPtrAllocator, - ScopedHashTableVal<MemoryLocation, unsigned>>; - using InvariantHTType = - ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, - InvariantMapAllocator>; - InvariantHTType AvailableInvariants; - - /// A scoped hash table of the current values of read-only call - /// values. - /// - /// It uses the same generation count as loads. - using CallHTType = - ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; - CallHTType AvailableCalls; - - /// This is the current generation of the memory value. - unsigned CurrentGeneration = 0; - - /// Set up the EarlyCSE runner for a particular function. - EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, - const TargetTransformInfo &TTI, DominatorTree &DT, - AssumptionCache &AC, MemorySSA *MSSA) - : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), - MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} - - bool run(); - -private: - unsigned ClobberCounter = 0; - // Almost a POD, but needs to call the constructors for the scoped hash - // tables so that a new scope gets pushed on. These are RAII so that the - // scope gets popped when the NodeScope is destroyed. - class NodeScope { - public: - NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, - InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) - : Scope(AvailableValues), LoadScope(AvailableLoads), - InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} - NodeScope(const NodeScope &) = delete; - NodeScope &operator=(const NodeScope &) = delete; - - private: - ScopedHTType::ScopeTy Scope; - LoadHTType::ScopeTy LoadScope; - InvariantHTType::ScopeTy InvariantScope; - CallHTType::ScopeTy CallScope; - }; - - // Contains all the needed information to create a stack for doing a depth - // first traversal of the tree. This includes scopes for values, loads, and - // calls as well as the generation. There is a child iterator so that the - // children do not need to be store separately. - class StackNode { - public: - StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, - InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, - unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, - DomTreeNode::iterator end) - : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), - EndIter(end), - Scopes(AvailableValues, AvailableLoads, AvailableInvariants, - AvailableCalls) - {} - StackNode(const StackNode &) = delete; - StackNode &operator=(const StackNode &) = delete; - - // Accessors. - unsigned currentGeneration() { return CurrentGeneration; } - unsigned childGeneration() { return ChildGeneration; } - void childGeneration(unsigned generation) { ChildGeneration = generation; } - DomTreeNode *node() { return Node; } - DomTreeNode::iterator childIter() { return ChildIter; } - - DomTreeNode *nextChild() { - DomTreeNode *child = *ChildIter; - ++ChildIter; - return child; - } - - DomTreeNode::iterator end() { return EndIter; } - bool isProcessed() { return Processed; } - void process() { Processed = true; } - - private: - unsigned CurrentGeneration; - unsigned ChildGeneration; - DomTreeNode *Node; - DomTreeNode::iterator ChildIter; - DomTreeNode::iterator EndIter; - NodeScope Scopes; - bool Processed = false; - }; - - /// Wrapper class to handle memory instructions, including loads, - /// stores and intrinsic loads and stores defined by the target. - class ParseMemoryInst { - public: - ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) - : Inst(Inst) { - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) - if (TTI.getTgtMemIntrinsic(II, Info)) - IsTargetMemInst = true; - } - - bool isLoad() const { - if (IsTargetMemInst) return Info.ReadMem; - return isa<LoadInst>(Inst); - } - - bool isStore() const { - if (IsTargetMemInst) return Info.WriteMem; - return isa<StoreInst>(Inst); - } - - bool isAtomic() const { - if (IsTargetMemInst) - return Info.Ordering != AtomicOrdering::NotAtomic; - return Inst->isAtomic(); - } - - bool isUnordered() const { - if (IsTargetMemInst) - return Info.isUnordered(); - - if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { - return LI->isUnordered(); - } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { - return SI->isUnordered(); - } - // Conservative answer - return !Inst->isAtomic(); - } - - bool isVolatile() const { - if (IsTargetMemInst) - return Info.IsVolatile; - - if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { - return LI->isVolatile(); - } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { - return SI->isVolatile(); - } - // Conservative answer - return true; - } - - bool isInvariantLoad() const { - if (auto *LI = dyn_cast<LoadInst>(Inst)) - return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; - return false; - } - - bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { - return (getPointerOperand() == Inst.getPointerOperand() && - getMatchingId() == Inst.getMatchingId()); - } - - bool isValid() const { return getPointerOperand() != nullptr; } - - // For regular (non-intrinsic) loads/stores, this is set to -1. For - // intrinsic loads/stores, the id is retrieved from the corresponding - // field in the MemIntrinsicInfo structure. That field contains - // non-negative values only. - int getMatchingId() const { - if (IsTargetMemInst) return Info.MatchingId; - return -1; - } - - Value *getPointerOperand() const { - if (IsTargetMemInst) return Info.PtrVal; - return getLoadStorePointerOperand(Inst); - } - - bool mayReadFromMemory() const { - if (IsTargetMemInst) return Info.ReadMem; - return Inst->mayReadFromMemory(); - } - - bool mayWriteToMemory() const { - if (IsTargetMemInst) return Info.WriteMem; - return Inst->mayWriteToMemory(); - } - - private: - bool IsTargetMemInst = false; - MemIntrinsicInfo Info; - Instruction *Inst; - }; - - bool processNode(DomTreeNode *Node); - - bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, - const BasicBlock *BB, const BasicBlock *Pred); - - Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { - if (auto *LI = dyn_cast<LoadInst>(Inst)) - return LI; - if (auto *SI = dyn_cast<StoreInst>(Inst)) - return SI->getValueOperand(); - assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); - return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), - ExpectedType); - } - - /// Return true if the instruction is known to only operate on memory - /// provably invariant in the given "generation". - bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); - - bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, - Instruction *EarlierInst, Instruction *LaterInst); - - void removeMSSA(Instruction *Inst) { - if (!MSSA) - return; - if (VerifyMemorySSA) - MSSA->verifyMemorySSA(); - // Removing a store here can leave MemorySSA in an unoptimized state by - // creating MemoryPhis that have identical arguments and by creating - // MemoryUses whose defining access is not an actual clobber. The phi case - // is handled by MemorySSA when passing OptimizePhis = true to - // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated - // by MemorySSA's getClobberingMemoryAccess. - MSSAUpdater->removeMemoryAccess(Inst, true); - } -}; - -} // end anonymous namespace - -/// Determine if the memory referenced by LaterInst is from the same heap -/// version as EarlierInst. -/// This is currently called in two scenarios: -/// -/// load p -/// ... -/// load p -/// -/// and -/// -/// x = load p -/// ... -/// store x, p -/// -/// in both cases we want to verify that there are no possible writes to the -/// memory referenced by p between the earlier and later instruction. -bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, - unsigned LaterGeneration, - Instruction *EarlierInst, - Instruction *LaterInst) { - // Check the simple memory generation tracking first. - if (EarlierGeneration == LaterGeneration) - return true; - - if (!MSSA) - return false; - - // If MemorySSA has determined that one of EarlierInst or LaterInst does not - // read/write memory, then we can safely return true here. - // FIXME: We could be more aggressive when checking doesNotAccessMemory(), - // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass - // by also checking the MemorySSA MemoryAccess on the instruction. Initial - // experiments suggest this isn't worthwhile, at least for C/C++ code compiled - // with the default optimization pipeline. - auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); - if (!EarlierMA) - return true; - auto *LaterMA = MSSA->getMemoryAccess(LaterInst); - if (!LaterMA) - return true; - - // Since we know LaterDef dominates LaterInst and EarlierInst dominates - // LaterInst, if LaterDef dominates EarlierInst then it can't occur between - // EarlierInst and LaterInst and neither can any other write that potentially - // clobbers LaterInst. - MemoryAccess *LaterDef; - if (ClobberCounter < EarlyCSEMssaOptCap) { - LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); - ClobberCounter++; - } else - LaterDef = LaterMA->getDefiningAccess(); - - return MSSA->dominates(LaterDef, EarlierMA); -} - -bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { - // A location loaded from with an invariant_load is assumed to *never* change - // within the visible scope of the compilation. - if (auto *LI = dyn_cast<LoadInst>(I)) - if (LI->getMetadata(LLVMContext::MD_invariant_load)) - return true; - - auto MemLocOpt = MemoryLocation::getOrNone(I); - if (!MemLocOpt) - // "target" intrinsic forms of loads aren't currently known to - // MemoryLocation::get. TODO - return false; - MemoryLocation MemLoc = *MemLocOpt; - if (!AvailableInvariants.count(MemLoc)) - return false; - - // Is the generation at which this became invariant older than the - // current one? - return AvailableInvariants.lookup(MemLoc) <= GenAt; -} - -bool EarlyCSE::handleBranchCondition(Instruction *CondInst, - const BranchInst *BI, const BasicBlock *BB, - const BasicBlock *Pred) { - assert(BI->isConditional() && "Should be a conditional branch!"); - assert(BI->getCondition() == CondInst && "Wrong condition?"); - assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); - auto *TorF = (BI->getSuccessor(0) == BB) - ? ConstantInt::getTrue(BB->getContext()) - : ConstantInt::getFalse(BB->getContext()); - auto MatchBinOp = [](Instruction *I, unsigned Opcode) { - if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I)) - return BOp->getOpcode() == Opcode; - return false; - }; - // If the condition is AND operation, we can propagate its operands into the - // true branch. If it is OR operation, we can propagate them into the false - // branch. - unsigned PropagateOpcode = - (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; - - bool MadeChanges = false; - SmallVector<Instruction *, 4> WorkList; - SmallPtrSet<Instruction *, 4> Visited; - WorkList.push_back(CondInst); - while (!WorkList.empty()) { - Instruction *Curr = WorkList.pop_back_val(); - - AvailableValues.insert(Curr, TorF); - LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" - << Curr->getName() << "' as " << *TorF << " in " - << BB->getName() << "\n"); - if (!DebugCounter::shouldExecute(CSECounter)) { - LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); - } else { - // Replace all dominated uses with the known value. - if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, - BasicBlockEdge(Pred, BB))) { - NumCSECVP += Count; - MadeChanges = true; - } - } - - if (MatchBinOp(Curr, PropagateOpcode)) - for (auto &Op : cast<BinaryOperator>(Curr)->operands()) - if (Instruction *OPI = dyn_cast<Instruction>(Op)) - if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) - WorkList.push_back(OPI); - } - - return MadeChanges; -} - -bool EarlyCSE::processNode(DomTreeNode *Node) { - bool Changed = false; - BasicBlock *BB = Node->getBlock(); - - // If this block has a single predecessor, then the predecessor is the parent - // of the domtree node and all of the live out memory values are still current - // in this block. If this block has multiple predecessors, then they could - // have invalidated the live-out memory values of our parent value. For now, - // just be conservative and invalidate memory if this block has multiple - // predecessors. - if (!BB->getSinglePredecessor()) - ++CurrentGeneration; - - // If this node has a single predecessor which ends in a conditional branch, - // we can infer the value of the branch condition given that we took this - // path. We need the single predecessor to ensure there's not another path - // which reaches this block where the condition might hold a different - // value. Since we're adding this to the scoped hash table (like any other - // def), it will have been popped if we encounter a future merge block. - if (BasicBlock *Pred = BB->getSinglePredecessor()) { - auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); - if (BI && BI->isConditional()) { - auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); - if (CondInst && SimpleValue::canHandle(CondInst)) - Changed |= handleBranchCondition(CondInst, BI, BB, Pred); - } - } - - /// LastStore - Keep track of the last non-volatile store that we saw... for - /// as long as there in no instruction that reads memory. If we see a store - /// to the same location, we delete the dead store. This zaps trivial dead - /// stores which can occur in bitfield code among other things. - Instruction *LastStore = nullptr; - - // See if any instructions in the block can be eliminated. If so, do it. If - // not, add them to AvailableValues. - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { - Instruction *Inst = &*I++; - - // Dead instructions should just be removed. - if (isInstructionTriviallyDead(Inst, &TLI)) { - LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); - if (!DebugCounter::shouldExecute(CSECounter)) { - LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); - continue; - } - if (!salvageDebugInfo(*Inst)) - replaceDbgUsesWithUndef(Inst); - removeMSSA(Inst); - Inst->eraseFromParent(); - Changed = true; - ++NumSimplify; - continue; - } - - // Skip assume intrinsics, they don't really have side effects (although - // they're marked as such to ensure preservation of control dependencies), - // and this pass will not bother with its removal. However, we should mark - // its condition as true for all dominated blocks. - if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { - auto *CondI = - dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0)); - if (CondI && SimpleValue::canHandle(CondI)) { - LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst - << '\n'); - AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); - } else - LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); - continue; - } - - // Skip sideeffect intrinsics, for the same reason as assume intrinsics. - if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) { - LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n'); - continue; - } - - // We can skip all invariant.start intrinsics since they only read memory, - // and we can forward values across it. For invariant starts without - // invariant ends, we can use the fact that the invariantness never ends to - // start a scope in the current generaton which is true for all future - // generations. Also, we dont need to consume the last store since the - // semantics of invariant.start allow us to perform DSE of the last - // store, if there was a store following invariant.start. Consider: - // - // store 30, i8* p - // invariant.start(p) - // store 40, i8* p - // We can DSE the store to 30, since the store 40 to invariant location p - // causes undefined behaviour. - if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) { - // If there are any uses, the scope might end. - if (!Inst->use_empty()) - continue; - auto *CI = cast<CallInst>(Inst); - MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI); - // Don't start a scope if we already have a better one pushed - if (!AvailableInvariants.count(MemLoc)) - AvailableInvariants.insert(MemLoc, CurrentGeneration); - continue; - } - - if (isGuard(Inst)) { - if (auto *CondI = - dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { - if (SimpleValue::canHandle(CondI)) { - // Do we already know the actual value of this condition? - if (auto *KnownCond = AvailableValues.lookup(CondI)) { - // Is the condition known to be true? - if (isa<ConstantInt>(KnownCond) && - cast<ConstantInt>(KnownCond)->isOne()) { - LLVM_DEBUG(dbgs() - << "EarlyCSE removing guard: " << *Inst << '\n'); - removeMSSA(Inst); - Inst->eraseFromParent(); - Changed = true; - continue; - } else - // Use the known value if it wasn't true. - cast<CallInst>(Inst)->setArgOperand(0, KnownCond); - } - // The condition we're on guarding here is true for all dominated - // locations. - AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); - } - } - - // Guard intrinsics read all memory, but don't write any memory. - // Accordingly, don't update the generation but consume the last store (to - // avoid an incorrect DSE). - LastStore = nullptr; - continue; - } - - // If the instruction can be simplified (e.g. X+0 = X) then replace it with - // its simpler value. - if (Value *V = SimplifyInstruction(Inst, SQ)) { - LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V - << '\n'); - if (!DebugCounter::shouldExecute(CSECounter)) { - LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); - } else { - bool Killed = false; - if (!Inst->use_empty()) { - Inst->replaceAllUsesWith(V); - Changed = true; - } - if (isInstructionTriviallyDead(Inst, &TLI)) { - removeMSSA(Inst); - Inst->eraseFromParent(); - Changed = true; - Killed = true; - } - if (Changed) - ++NumSimplify; - if (Killed) - continue; - } - } - - // If this is a simple instruction that we can value number, process it. - if (SimpleValue::canHandle(Inst)) { - // See if the instruction has an available value. If so, use it. - if (Value *V = AvailableValues.lookup(Inst)) { - LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V - << '\n'); - if (!DebugCounter::shouldExecute(CSECounter)) { - LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); - continue; - } - if (auto *I = dyn_cast<Instruction>(V)) - I->andIRFlags(Inst); - Inst->replaceAllUsesWith(V); - removeMSSA(Inst); - Inst->eraseFromParent(); - Changed = true; - ++NumCSE; - continue; - } - - // Otherwise, just remember that this value is available. - AvailableValues.insert(Inst, Inst); - continue; - } - - ParseMemoryInst MemInst(Inst, TTI); - // If this is a non-volatile load, process it. - if (MemInst.isValid() && MemInst.isLoad()) { - // (conservatively) we can't peak past the ordering implied by this - // operation, but we can add this load to our set of available values - if (MemInst.isVolatile() || !MemInst.isUnordered()) { - LastStore = nullptr; - ++CurrentGeneration; - } - - if (MemInst.isInvariantLoad()) { - // If we pass an invariant load, we know that memory location is - // indefinitely constant from the moment of first dereferenceability. - // We conservatively treat the invariant_load as that moment. If we - // pass a invariant load after already establishing a scope, don't - // restart it since we want to preserve the earliest point seen. - auto MemLoc = MemoryLocation::get(Inst); - if (!AvailableInvariants.count(MemLoc)) - AvailableInvariants.insert(MemLoc, CurrentGeneration); - } - - // If we have an available version of this load, and if it is the right - // generation or the load is known to be from an invariant location, - // replace this instruction. - // - // If either the dominating load or the current load are invariant, then - // we can assume the current load loads the same value as the dominating - // load. - LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); - if (InVal.DefInst != nullptr && - InVal.MatchingId == MemInst.getMatchingId() && - // We don't yet handle removing loads with ordering of any kind. - !MemInst.isVolatile() && MemInst.isUnordered() && - // We can't replace an atomic load with one which isn't also atomic. - InVal.IsAtomic >= MemInst.isAtomic() && - (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || - isSameMemGeneration(InVal.Generation, CurrentGeneration, - InVal.DefInst, Inst))) { - Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); - if (Op != nullptr) { - LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst - << " to: " << *InVal.DefInst << '\n'); - if (!DebugCounter::shouldExecute(CSECounter)) { - LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); - continue; - } - if (!Inst->use_empty()) - Inst->replaceAllUsesWith(Op); - removeMSSA(Inst); - Inst->eraseFromParent(); - Changed = true; - ++NumCSELoad; - continue; - } - } - - // Otherwise, remember that we have this instruction. - AvailableLoads.insert( - MemInst.getPointerOperand(), - LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), - MemInst.isAtomic())); - LastStore = nullptr; - continue; - } - - // If this instruction may read from memory or throw (and potentially read - // from memory in the exception handler), forget LastStore. Load/store - // intrinsics will indicate both a read and a write to memory. The target - // may override this (e.g. so that a store intrinsic does not read from - // memory, and thus will be treated the same as a regular store for - // commoning purposes). - if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && - !(MemInst.isValid() && !MemInst.mayReadFromMemory())) - LastStore = nullptr; - - // If this is a read-only call, process it. - if (CallValue::canHandle(Inst)) { - // If we have an available version of this call, and if it is the right - // generation, replace this instruction. - std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); - if (InVal.first != nullptr && - isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, - Inst)) { - LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst - << " to: " << *InVal.first << '\n'); - if (!DebugCounter::shouldExecute(CSECounter)) { - LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); - continue; - } - if (!Inst->use_empty()) - Inst->replaceAllUsesWith(InVal.first); - removeMSSA(Inst); - Inst->eraseFromParent(); - Changed = true; - ++NumCSECall; - continue; - } - - // Otherwise, remember that we have this instruction. - AvailableCalls.insert( - Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); - continue; - } - - // A release fence requires that all stores complete before it, but does - // not prevent the reordering of following loads 'before' the fence. As a - // result, we don't need to consider it as writing to memory and don't need - // to advance the generation. We do need to prevent DSE across the fence, - // but that's handled above. - if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) - if (FI->getOrdering() == AtomicOrdering::Release) { - assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); - continue; - } - - // write back DSE - If we write back the same value we just loaded from - // the same location and haven't passed any intervening writes or ordering - // operations, we can remove the write. The primary benefit is in allowing - // the available load table to remain valid and value forward past where - // the store originally was. - if (MemInst.isValid() && MemInst.isStore()) { - LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); - if (InVal.DefInst && - InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && - InVal.MatchingId == MemInst.getMatchingId() && - // We don't yet handle removing stores with ordering of any kind. - !MemInst.isVolatile() && MemInst.isUnordered() && - (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || - isSameMemGeneration(InVal.Generation, CurrentGeneration, - InVal.DefInst, Inst))) { - // It is okay to have a LastStore to a different pointer here if MemorySSA - // tells us that the load and store are from the same memory generation. - // In that case, LastStore should keep its present value since we're - // removing the current store. - assert((!LastStore || - ParseMemoryInst(LastStore, TTI).getPointerOperand() == - MemInst.getPointerOperand() || - MSSA) && - "can't have an intervening store if not using MemorySSA!"); - LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); - if (!DebugCounter::shouldExecute(CSECounter)) { - LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); - continue; - } - removeMSSA(Inst); - Inst->eraseFromParent(); - Changed = true; - ++NumDSE; - // We can avoid incrementing the generation count since we were able - // to eliminate this store. - continue; - } - } - - // Okay, this isn't something we can CSE at all. Check to see if it is - // something that could modify memory. If so, our available memory values - // cannot be used so bump the generation count. - if (Inst->mayWriteToMemory()) { - ++CurrentGeneration; - - if (MemInst.isValid() && MemInst.isStore()) { - // We do a trivial form of DSE if there are two stores to the same - // location with no intervening loads. Delete the earlier store. - // At the moment, we don't remove ordered stores, but do remove - // unordered atomic stores. There's no special requirement (for - // unordered atomics) about removing atomic stores only in favor of - // other atomic stores since we were going to execute the non-atomic - // one anyway and the atomic one might never have become visible. - if (LastStore) { - ParseMemoryInst LastStoreMemInst(LastStore, TTI); - assert(LastStoreMemInst.isUnordered() && - !LastStoreMemInst.isVolatile() && - "Violated invariant"); - if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { - LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore - << " due to: " << *Inst << '\n'); - if (!DebugCounter::shouldExecute(CSECounter)) { - LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); - } else { - removeMSSA(LastStore); - LastStore->eraseFromParent(); - Changed = true; - ++NumDSE; - LastStore = nullptr; - } - } - // fallthrough - we can exploit information about this store - } - - // Okay, we just invalidated anything we knew about loaded values. Try - // to salvage *something* by remembering that the stored value is a live - // version of the pointer. It is safe to forward from volatile stores - // to non-volatile loads, so we don't have to check for volatility of - // the store. - AvailableLoads.insert( - MemInst.getPointerOperand(), - LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), - MemInst.isAtomic())); - - // Remember that this was the last unordered store we saw for DSE. We - // don't yet handle DSE on ordered or volatile stores since we don't - // have a good way to model the ordering requirement for following - // passes once the store is removed. We could insert a fence, but - // since fences are slightly stronger than stores in their ordering, - // it's not clear this is a profitable transform. Another option would - // be to merge the ordering with that of the post dominating store. - if (MemInst.isUnordered() && !MemInst.isVolatile()) - LastStore = Inst; - else - LastStore = nullptr; - } - } - } - - return Changed; -} - -bool EarlyCSE::run() { - // Note, deque is being used here because there is significant performance - // gains over vector when the container becomes very large due to the - // specific access patterns. For more information see the mailing list - // discussion on this: - // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html - std::deque<StackNode *> nodesToProcess; - - bool Changed = false; - - // Process the root node. - nodesToProcess.push_back(new StackNode( - AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, - CurrentGeneration, DT.getRootNode(), - DT.getRootNode()->begin(), DT.getRootNode()->end())); - - assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); - - // Process the stack. - while (!nodesToProcess.empty()) { - // Grab the first item off the stack. Set the current generation, remove - // the node from the stack, and process it. - StackNode *NodeToProcess = nodesToProcess.back(); - - // Initialize class members. - CurrentGeneration = NodeToProcess->currentGeneration(); - - // Check if the node needs to be processed. - if (!NodeToProcess->isProcessed()) { - // Process the node. - Changed |= processNode(NodeToProcess->node()); - NodeToProcess->childGeneration(CurrentGeneration); - NodeToProcess->process(); - } else if (NodeToProcess->childIter() != NodeToProcess->end()) { - // Push the next child onto the stack. - DomTreeNode *child = NodeToProcess->nextChild(); - nodesToProcess.push_back( - new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, - AvailableCalls, NodeToProcess->childGeneration(), - child, child->begin(), child->end())); - } else { - // It has been processed, and there are no more children to process, - // so delete it and pop it off the stack. - delete NodeToProcess; - nodesToProcess.pop_back(); - } - } // while (!nodes...) - - return Changed; -} - -PreservedAnalyses EarlyCSEPass::run(Function &F, - FunctionAnalysisManager &AM) { - auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); - auto &TTI = AM.getResult<TargetIRAnalysis>(F); - auto &DT = AM.getResult<DominatorTreeAnalysis>(F); - auto &AC = AM.getResult<AssumptionAnalysis>(F); - auto *MSSA = - UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; - - EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); - - if (!CSE.run()) - return PreservedAnalyses::all(); - - PreservedAnalyses PA; - PA.preserveSet<CFGAnalyses>(); - PA.preserve<GlobalsAA>(); - if (UseMemorySSA) - PA.preserve<MemorySSAAnalysis>(); - return PA; -} - -namespace { - -/// A simple and fast domtree-based CSE pass. -/// -/// This pass does a simple depth-first walk over the dominator tree, -/// eliminating trivially redundant instructions and using instsimplify to -/// canonicalize things as it goes. It is intended to be fast and catch obvious -/// cases so that instcombine and other passes are more effective. It is -/// expected that a later pass of GVN will catch the interesting/hard cases. -template<bool UseMemorySSA> -class EarlyCSELegacyCommonPass : public FunctionPass { -public: - static char ID; - - EarlyCSELegacyCommonPass() : FunctionPass(ID) { - if (UseMemorySSA) - initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); - else - initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override { - if (skipFunction(F)) - return false; - - auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - auto *MSSA = - UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; - - EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); - - return CSE.run(); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - if (UseMemorySSA) { - AU.addRequired<MemorySSAWrapperPass>(); - AU.addPreserved<MemorySSAWrapperPass>(); - } - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.setPreservesCFG(); - } -}; - -} // end anonymous namespace - -using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; - -template<> -char EarlyCSELegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, - false) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) - -using EarlyCSEMemSSALegacyPass = - EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; - -template<> -char EarlyCSEMemSSALegacyPass::ID = 0; - -FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { - if (UseMemorySSA) - return new EarlyCSEMemSSALegacyPass(); - else - return new EarlyCSELegacyPass(); -} - -INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", - "Early CSE w/ MemorySSA", false, false) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) -INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", - "Early CSE w/ MemorySSA", false, false) |
