summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp1424
1 files changed, 0 insertions, 1424 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp b/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
deleted file mode 100644
index f1f075257020..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/EarlyCSE.cpp
+++ /dev/null
@@ -1,1424 +0,0 @@
-//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass performs a simple dominator tree walk that eliminates trivially
-// redundant instructions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/EarlyCSE.h"
-#include "llvm/ADT/DenseMapInfo.h"
-#include "llvm/ADT/Hashing.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/ScopedHashTable.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/GuardUtils.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/MemorySSA.h"
-#include "llvm/Analysis/MemorySSAUpdater.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/AtomicOrdering.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/DebugCounter.h"
-#include "llvm/Support/RecyclingAllocator.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/GuardUtils.h"
-#include <cassert>
-#include <deque>
-#include <memory>
-#include <utility>
-
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-#define DEBUG_TYPE "early-cse"
-
-STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
-STATISTIC(NumCSE, "Number of instructions CSE'd");
-STATISTIC(NumCSECVP, "Number of compare instructions CVP'd");
-STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
-STATISTIC(NumCSECall, "Number of call instructions CSE'd");
-STATISTIC(NumDSE, "Number of trivial dead stores removed");
-
-DEBUG_COUNTER(CSECounter, "early-cse",
- "Controls which instructions are removed");
-
-static cl::opt<unsigned> EarlyCSEMssaOptCap(
- "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
- cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
- "for faster compile. Caps the MemorySSA clobbering calls."));
-
-static cl::opt<bool> EarlyCSEDebugHash(
- "earlycse-debug-hash", cl::init(false), cl::Hidden,
- cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
- "function is well-behaved w.r.t. its isEqual predicate"));
-
-//===----------------------------------------------------------------------===//
-// SimpleValue
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-/// Struct representing the available values in the scoped hash table.
-struct SimpleValue {
- Instruction *Inst;
-
- SimpleValue(Instruction *I) : Inst(I) {
- assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
- }
-
- bool isSentinel() const {
- return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
- Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
- }
-
- static bool canHandle(Instruction *Inst) {
- // This can only handle non-void readnone functions.
- if (CallInst *CI = dyn_cast<CallInst>(Inst))
- return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
- return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
- isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
- isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
- isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
- isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
- }
-};
-
-} // end anonymous namespace
-
-namespace llvm {
-
-template <> struct DenseMapInfo<SimpleValue> {
- static inline SimpleValue getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
-
- static inline SimpleValue getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
-
- static unsigned getHashValue(SimpleValue Val);
- static bool isEqual(SimpleValue LHS, SimpleValue RHS);
-};
-
-} // end namespace llvm
-
-/// Match a 'select' including an optional 'not's of the condition.
-static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
- Value *&B,
- SelectPatternFlavor &Flavor) {
- // Return false if V is not even a select.
- if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
- return false;
-
- // Look through a 'not' of the condition operand by swapping A/B.
- Value *CondNot;
- if (match(Cond, m_Not(m_Value(CondNot)))) {
- Cond = CondNot;
- std::swap(A, B);
- }
-
- // Set flavor if we find a match, or set it to unknown otherwise; in
- // either case, return true to indicate that this is a select we can
- // process.
- if (auto *CmpI = dyn_cast<ICmpInst>(Cond))
- Flavor = matchDecomposedSelectPattern(CmpI, A, B, A, B).Flavor;
- else
- Flavor = SPF_UNKNOWN;
-
- return true;
-}
-
-static unsigned getHashValueImpl(SimpleValue Val) {
- Instruction *Inst = Val.Inst;
- // Hash in all of the operands as pointers.
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
- Value *LHS = BinOp->getOperand(0);
- Value *RHS = BinOp->getOperand(1);
- if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
- std::swap(LHS, RHS);
-
- return hash_combine(BinOp->getOpcode(), LHS, RHS);
- }
-
- if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
- // Compares can be commuted by swapping the comparands and
- // updating the predicate. Choose the form that has the
- // comparands in sorted order, or in the case of a tie, the
- // one with the lower predicate.
- Value *LHS = CI->getOperand(0);
- Value *RHS = CI->getOperand(1);
- CmpInst::Predicate Pred = CI->getPredicate();
- CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
- if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
- std::swap(LHS, RHS);
- Pred = SwappedPred;
- }
- return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
- }
-
- // Hash general selects to allow matching commuted true/false operands.
- SelectPatternFlavor SPF;
- Value *Cond, *A, *B;
- if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
- // Hash min/max/abs (cmp + select) to allow for commuted operands.
- // Min/max may also have non-canonical compare predicate (eg, the compare for
- // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
- // compare.
- // TODO: We should also detect FP min/max.
- if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
- SPF == SPF_UMIN || SPF == SPF_UMAX) {
- if (A > B)
- std::swap(A, B);
- return hash_combine(Inst->getOpcode(), SPF, A, B);
- }
- if (SPF == SPF_ABS || SPF == SPF_NABS) {
- // ABS/NABS always puts the input in A and its negation in B.
- return hash_combine(Inst->getOpcode(), SPF, A, B);
- }
-
- // Hash general selects to allow matching commuted true/false operands.
-
- // If we do not have a compare as the condition, just hash in the condition.
- CmpInst::Predicate Pred;
- Value *X, *Y;
- if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
- return hash_combine(Inst->getOpcode(), Cond, A, B);
-
- // Similar to cmp normalization (above) - canonicalize the predicate value:
- // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
- if (CmpInst::getInversePredicate(Pred) < Pred) {
- Pred = CmpInst::getInversePredicate(Pred);
- std::swap(A, B);
- }
- return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
- }
-
- if (CastInst *CI = dyn_cast<CastInst>(Inst))
- return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
-
- if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
- return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
- hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
-
- if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
- return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
- IVI->getOperand(1),
- hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
-
- assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
- isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
- isa<ShuffleVectorInst>(Inst)) &&
- "Invalid/unknown instruction");
-
- // Mix in the opcode.
- return hash_combine(
- Inst->getOpcode(),
- hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
-}
-
-unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
-#ifndef NDEBUG
- // If -earlycse-debug-hash was specified, return a constant -- this
- // will force all hashing to collide, so we'll exhaustively search
- // the table for a match, and the assertion in isEqual will fire if
- // there's a bug causing equal keys to hash differently.
- if (EarlyCSEDebugHash)
- return 0;
-#endif
- return getHashValueImpl(Val);
-}
-
-static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
- Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
-
- if (LHS.isSentinel() || RHS.isSentinel())
- return LHSI == RHSI;
-
- if (LHSI->getOpcode() != RHSI->getOpcode())
- return false;
- if (LHSI->isIdenticalToWhenDefined(RHSI))
- return true;
-
- // If we're not strictly identical, we still might be a commutable instruction
- if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
- if (!LHSBinOp->isCommutative())
- return false;
-
- assert(isa<BinaryOperator>(RHSI) &&
- "same opcode, but different instruction type?");
- BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
-
- // Commuted equality
- return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
- LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
- }
- if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
- assert(isa<CmpInst>(RHSI) &&
- "same opcode, but different instruction type?");
- CmpInst *RHSCmp = cast<CmpInst>(RHSI);
- // Commuted equality
- return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
- LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
- LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
- }
-
- // Min/max/abs can occur with commuted operands, non-canonical predicates,
- // and/or non-canonical operands.
- // Selects can be non-trivially equivalent via inverted conditions and swaps.
- SelectPatternFlavor LSPF, RSPF;
- Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
- if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
- matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
- if (LSPF == RSPF) {
- // TODO: We should also detect FP min/max.
- if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
- LSPF == SPF_UMIN || LSPF == SPF_UMAX)
- return ((LHSA == RHSA && LHSB == RHSB) ||
- (LHSA == RHSB && LHSB == RHSA));
-
- if (LSPF == SPF_ABS || LSPF == SPF_NABS) {
- // Abs results are placed in a defined order by matchSelectPattern.
- return LHSA == RHSA && LHSB == RHSB;
- }
-
- // select Cond, A, B <--> select not(Cond), B, A
- if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
- return true;
- }
-
- // If the true/false operands are swapped and the conditions are compares
- // with inverted predicates, the selects are equal:
- // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
- //
- // This also handles patterns with a double-negation in the sense of not +
- // inverse, because we looked through a 'not' in the matching function and
- // swapped A/B:
- // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
- //
- // This intentionally does NOT handle patterns with a double-negation in
- // the sense of not + not, because doing so could result in values
- // comparing
- // as equal that hash differently in the min/max/abs cases like:
- // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
- // ^ hashes as min ^ would not hash as min
- // In the context of the EarlyCSE pass, however, such cases never reach
- // this code, as we simplify the double-negation before hashing the second
- // select (and so still succeed at CSEing them).
- if (LHSA == RHSB && LHSB == RHSA) {
- CmpInst::Predicate PredL, PredR;
- Value *X, *Y;
- if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
- match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
- CmpInst::getInversePredicate(PredL) == PredR)
- return true;
- }
- }
-
- return false;
-}
-
-bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
- // These comparisons are nontrivial, so assert that equality implies
- // hash equality (DenseMap demands this as an invariant).
- bool Result = isEqualImpl(LHS, RHS);
- assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
- getHashValueImpl(LHS) == getHashValueImpl(RHS));
- return Result;
-}
-
-//===----------------------------------------------------------------------===//
-// CallValue
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-/// Struct representing the available call values in the scoped hash
-/// table.
-struct CallValue {
- Instruction *Inst;
-
- CallValue(Instruction *I) : Inst(I) {
- assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
- }
-
- bool isSentinel() const {
- return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
- Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
- }
-
- static bool canHandle(Instruction *Inst) {
- // Don't value number anything that returns void.
- if (Inst->getType()->isVoidTy())
- return false;
-
- CallInst *CI = dyn_cast<CallInst>(Inst);
- if (!CI || !CI->onlyReadsMemory())
- return false;
- return true;
- }
-};
-
-} // end anonymous namespace
-
-namespace llvm {
-
-template <> struct DenseMapInfo<CallValue> {
- static inline CallValue getEmptyKey() {
- return DenseMapInfo<Instruction *>::getEmptyKey();
- }
-
- static inline CallValue getTombstoneKey() {
- return DenseMapInfo<Instruction *>::getTombstoneKey();
- }
-
- static unsigned getHashValue(CallValue Val);
- static bool isEqual(CallValue LHS, CallValue RHS);
-};
-
-} // end namespace llvm
-
-unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
- Instruction *Inst = Val.Inst;
- // Hash all of the operands as pointers and mix in the opcode.
- return hash_combine(
- Inst->getOpcode(),
- hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
-}
-
-bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
- Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
- if (LHS.isSentinel() || RHS.isSentinel())
- return LHSI == RHSI;
- return LHSI->isIdenticalTo(RHSI);
-}
-
-//===----------------------------------------------------------------------===//
-// EarlyCSE implementation
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-/// A simple and fast domtree-based CSE pass.
-///
-/// This pass does a simple depth-first walk over the dominator tree,
-/// eliminating trivially redundant instructions and using instsimplify to
-/// canonicalize things as it goes. It is intended to be fast and catch obvious
-/// cases so that instcombine and other passes are more effective. It is
-/// expected that a later pass of GVN will catch the interesting/hard cases.
-class EarlyCSE {
-public:
- const TargetLibraryInfo &TLI;
- const TargetTransformInfo &TTI;
- DominatorTree &DT;
- AssumptionCache &AC;
- const SimplifyQuery SQ;
- MemorySSA *MSSA;
- std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
-
- using AllocatorTy =
- RecyclingAllocator<BumpPtrAllocator,
- ScopedHashTableVal<SimpleValue, Value *>>;
- using ScopedHTType =
- ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
- AllocatorTy>;
-
- /// A scoped hash table of the current values of all of our simple
- /// scalar expressions.
- ///
- /// As we walk down the domtree, we look to see if instructions are in this:
- /// if so, we replace them with what we find, otherwise we insert them so
- /// that dominated values can succeed in their lookup.
- ScopedHTType AvailableValues;
-
- /// A scoped hash table of the current values of previously encountered
- /// memory locations.
- ///
- /// This allows us to get efficient access to dominating loads or stores when
- /// we have a fully redundant load. In addition to the most recent load, we
- /// keep track of a generation count of the read, which is compared against
- /// the current generation count. The current generation count is incremented
- /// after every possibly writing memory operation, which ensures that we only
- /// CSE loads with other loads that have no intervening store. Ordering
- /// events (such as fences or atomic instructions) increment the generation
- /// count as well; essentially, we model these as writes to all possible
- /// locations. Note that atomic and/or volatile loads and stores can be
- /// present the table; it is the responsibility of the consumer to inspect
- /// the atomicity/volatility if needed.
- struct LoadValue {
- Instruction *DefInst = nullptr;
- unsigned Generation = 0;
- int MatchingId = -1;
- bool IsAtomic = false;
-
- LoadValue() = default;
- LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
- bool IsAtomic)
- : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
- IsAtomic(IsAtomic) {}
- };
-
- using LoadMapAllocator =
- RecyclingAllocator<BumpPtrAllocator,
- ScopedHashTableVal<Value *, LoadValue>>;
- using LoadHTType =
- ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
- LoadMapAllocator>;
-
- LoadHTType AvailableLoads;
-
- // A scoped hash table mapping memory locations (represented as typed
- // addresses) to generation numbers at which that memory location became
- // (henceforth indefinitely) invariant.
- using InvariantMapAllocator =
- RecyclingAllocator<BumpPtrAllocator,
- ScopedHashTableVal<MemoryLocation, unsigned>>;
- using InvariantHTType =
- ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
- InvariantMapAllocator>;
- InvariantHTType AvailableInvariants;
-
- /// A scoped hash table of the current values of read-only call
- /// values.
- ///
- /// It uses the same generation count as loads.
- using CallHTType =
- ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
- CallHTType AvailableCalls;
-
- /// This is the current generation of the memory value.
- unsigned CurrentGeneration = 0;
-
- /// Set up the EarlyCSE runner for a particular function.
- EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
- const TargetTransformInfo &TTI, DominatorTree &DT,
- AssumptionCache &AC, MemorySSA *MSSA)
- : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
- MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
-
- bool run();
-
-private:
- unsigned ClobberCounter = 0;
- // Almost a POD, but needs to call the constructors for the scoped hash
- // tables so that a new scope gets pushed on. These are RAII so that the
- // scope gets popped when the NodeScope is destroyed.
- class NodeScope {
- public:
- NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
- InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
- : Scope(AvailableValues), LoadScope(AvailableLoads),
- InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
- NodeScope(const NodeScope &) = delete;
- NodeScope &operator=(const NodeScope &) = delete;
-
- private:
- ScopedHTType::ScopeTy Scope;
- LoadHTType::ScopeTy LoadScope;
- InvariantHTType::ScopeTy InvariantScope;
- CallHTType::ScopeTy CallScope;
- };
-
- // Contains all the needed information to create a stack for doing a depth
- // first traversal of the tree. This includes scopes for values, loads, and
- // calls as well as the generation. There is a child iterator so that the
- // children do not need to be store separately.
- class StackNode {
- public:
- StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
- InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
- unsigned cg, DomTreeNode *n, DomTreeNode::iterator child,
- DomTreeNode::iterator end)
- : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
- EndIter(end),
- Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
- AvailableCalls)
- {}
- StackNode(const StackNode &) = delete;
- StackNode &operator=(const StackNode &) = delete;
-
- // Accessors.
- unsigned currentGeneration() { return CurrentGeneration; }
- unsigned childGeneration() { return ChildGeneration; }
- void childGeneration(unsigned generation) { ChildGeneration = generation; }
- DomTreeNode *node() { return Node; }
- DomTreeNode::iterator childIter() { return ChildIter; }
-
- DomTreeNode *nextChild() {
- DomTreeNode *child = *ChildIter;
- ++ChildIter;
- return child;
- }
-
- DomTreeNode::iterator end() { return EndIter; }
- bool isProcessed() { return Processed; }
- void process() { Processed = true; }
-
- private:
- unsigned CurrentGeneration;
- unsigned ChildGeneration;
- DomTreeNode *Node;
- DomTreeNode::iterator ChildIter;
- DomTreeNode::iterator EndIter;
- NodeScope Scopes;
- bool Processed = false;
- };
-
- /// Wrapper class to handle memory instructions, including loads,
- /// stores and intrinsic loads and stores defined by the target.
- class ParseMemoryInst {
- public:
- ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
- : Inst(Inst) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
- if (TTI.getTgtMemIntrinsic(II, Info))
- IsTargetMemInst = true;
- }
-
- bool isLoad() const {
- if (IsTargetMemInst) return Info.ReadMem;
- return isa<LoadInst>(Inst);
- }
-
- bool isStore() const {
- if (IsTargetMemInst) return Info.WriteMem;
- return isa<StoreInst>(Inst);
- }
-
- bool isAtomic() const {
- if (IsTargetMemInst)
- return Info.Ordering != AtomicOrdering::NotAtomic;
- return Inst->isAtomic();
- }
-
- bool isUnordered() const {
- if (IsTargetMemInst)
- return Info.isUnordered();
-
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- return LI->isUnordered();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- return SI->isUnordered();
- }
- // Conservative answer
- return !Inst->isAtomic();
- }
-
- bool isVolatile() const {
- if (IsTargetMemInst)
- return Info.IsVolatile;
-
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- return LI->isVolatile();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- return SI->isVolatile();
- }
- // Conservative answer
- return true;
- }
-
- bool isInvariantLoad() const {
- if (auto *LI = dyn_cast<LoadInst>(Inst))
- return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
- return false;
- }
-
- bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
- return (getPointerOperand() == Inst.getPointerOperand() &&
- getMatchingId() == Inst.getMatchingId());
- }
-
- bool isValid() const { return getPointerOperand() != nullptr; }
-
- // For regular (non-intrinsic) loads/stores, this is set to -1. For
- // intrinsic loads/stores, the id is retrieved from the corresponding
- // field in the MemIntrinsicInfo structure. That field contains
- // non-negative values only.
- int getMatchingId() const {
- if (IsTargetMemInst) return Info.MatchingId;
- return -1;
- }
-
- Value *getPointerOperand() const {
- if (IsTargetMemInst) return Info.PtrVal;
- return getLoadStorePointerOperand(Inst);
- }
-
- bool mayReadFromMemory() const {
- if (IsTargetMemInst) return Info.ReadMem;
- return Inst->mayReadFromMemory();
- }
-
- bool mayWriteToMemory() const {
- if (IsTargetMemInst) return Info.WriteMem;
- return Inst->mayWriteToMemory();
- }
-
- private:
- bool IsTargetMemInst = false;
- MemIntrinsicInfo Info;
- Instruction *Inst;
- };
-
- bool processNode(DomTreeNode *Node);
-
- bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
- const BasicBlock *BB, const BasicBlock *Pred);
-
- Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
- if (auto *LI = dyn_cast<LoadInst>(Inst))
- return LI;
- if (auto *SI = dyn_cast<StoreInst>(Inst))
- return SI->getValueOperand();
- assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
- return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
- ExpectedType);
- }
-
- /// Return true if the instruction is known to only operate on memory
- /// provably invariant in the given "generation".
- bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
-
- bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
- Instruction *EarlierInst, Instruction *LaterInst);
-
- void removeMSSA(Instruction *Inst) {
- if (!MSSA)
- return;
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- // Removing a store here can leave MemorySSA in an unoptimized state by
- // creating MemoryPhis that have identical arguments and by creating
- // MemoryUses whose defining access is not an actual clobber. The phi case
- // is handled by MemorySSA when passing OptimizePhis = true to
- // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated
- // by MemorySSA's getClobberingMemoryAccess.
- MSSAUpdater->removeMemoryAccess(Inst, true);
- }
-};
-
-} // end anonymous namespace
-
-/// Determine if the memory referenced by LaterInst is from the same heap
-/// version as EarlierInst.
-/// This is currently called in two scenarios:
-///
-/// load p
-/// ...
-/// load p
-///
-/// and
-///
-/// x = load p
-/// ...
-/// store x, p
-///
-/// in both cases we want to verify that there are no possible writes to the
-/// memory referenced by p between the earlier and later instruction.
-bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
- unsigned LaterGeneration,
- Instruction *EarlierInst,
- Instruction *LaterInst) {
- // Check the simple memory generation tracking first.
- if (EarlierGeneration == LaterGeneration)
- return true;
-
- if (!MSSA)
- return false;
-
- // If MemorySSA has determined that one of EarlierInst or LaterInst does not
- // read/write memory, then we can safely return true here.
- // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
- // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
- // by also checking the MemorySSA MemoryAccess on the instruction. Initial
- // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
- // with the default optimization pipeline.
- auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
- if (!EarlierMA)
- return true;
- auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
- if (!LaterMA)
- return true;
-
- // Since we know LaterDef dominates LaterInst and EarlierInst dominates
- // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
- // EarlierInst and LaterInst and neither can any other write that potentially
- // clobbers LaterInst.
- MemoryAccess *LaterDef;
- if (ClobberCounter < EarlyCSEMssaOptCap) {
- LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
- ClobberCounter++;
- } else
- LaterDef = LaterMA->getDefiningAccess();
-
- return MSSA->dominates(LaterDef, EarlierMA);
-}
-
-bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
- // A location loaded from with an invariant_load is assumed to *never* change
- // within the visible scope of the compilation.
- if (auto *LI = dyn_cast<LoadInst>(I))
- if (LI->getMetadata(LLVMContext::MD_invariant_load))
- return true;
-
- auto MemLocOpt = MemoryLocation::getOrNone(I);
- if (!MemLocOpt)
- // "target" intrinsic forms of loads aren't currently known to
- // MemoryLocation::get. TODO
- return false;
- MemoryLocation MemLoc = *MemLocOpt;
- if (!AvailableInvariants.count(MemLoc))
- return false;
-
- // Is the generation at which this became invariant older than the
- // current one?
- return AvailableInvariants.lookup(MemLoc) <= GenAt;
-}
-
-bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
- const BranchInst *BI, const BasicBlock *BB,
- const BasicBlock *Pred) {
- assert(BI->isConditional() && "Should be a conditional branch!");
- assert(BI->getCondition() == CondInst && "Wrong condition?");
- assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
- auto *TorF = (BI->getSuccessor(0) == BB)
- ? ConstantInt::getTrue(BB->getContext())
- : ConstantInt::getFalse(BB->getContext());
- auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
- if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
- return BOp->getOpcode() == Opcode;
- return false;
- };
- // If the condition is AND operation, we can propagate its operands into the
- // true branch. If it is OR operation, we can propagate them into the false
- // branch.
- unsigned PropagateOpcode =
- (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
-
- bool MadeChanges = false;
- SmallVector<Instruction *, 4> WorkList;
- SmallPtrSet<Instruction *, 4> Visited;
- WorkList.push_back(CondInst);
- while (!WorkList.empty()) {
- Instruction *Curr = WorkList.pop_back_val();
-
- AvailableValues.insert(Curr, TorF);
- LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
- << Curr->getName() << "' as " << *TorF << " in "
- << BB->getName() << "\n");
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- } else {
- // Replace all dominated uses with the known value.
- if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
- BasicBlockEdge(Pred, BB))) {
- NumCSECVP += Count;
- MadeChanges = true;
- }
- }
-
- if (MatchBinOp(Curr, PropagateOpcode))
- for (auto &Op : cast<BinaryOperator>(Curr)->operands())
- if (Instruction *OPI = dyn_cast<Instruction>(Op))
- if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
- WorkList.push_back(OPI);
- }
-
- return MadeChanges;
-}
-
-bool EarlyCSE::processNode(DomTreeNode *Node) {
- bool Changed = false;
- BasicBlock *BB = Node->getBlock();
-
- // If this block has a single predecessor, then the predecessor is the parent
- // of the domtree node and all of the live out memory values are still current
- // in this block. If this block has multiple predecessors, then they could
- // have invalidated the live-out memory values of our parent value. For now,
- // just be conservative and invalidate memory if this block has multiple
- // predecessors.
- if (!BB->getSinglePredecessor())
- ++CurrentGeneration;
-
- // If this node has a single predecessor which ends in a conditional branch,
- // we can infer the value of the branch condition given that we took this
- // path. We need the single predecessor to ensure there's not another path
- // which reaches this block where the condition might hold a different
- // value. Since we're adding this to the scoped hash table (like any other
- // def), it will have been popped if we encounter a future merge block.
- if (BasicBlock *Pred = BB->getSinglePredecessor()) {
- auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
- if (BI && BI->isConditional()) {
- auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
- if (CondInst && SimpleValue::canHandle(CondInst))
- Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
- }
- }
-
- /// LastStore - Keep track of the last non-volatile store that we saw... for
- /// as long as there in no instruction that reads memory. If we see a store
- /// to the same location, we delete the dead store. This zaps trivial dead
- /// stores which can occur in bitfield code among other things.
- Instruction *LastStore = nullptr;
-
- // See if any instructions in the block can be eliminated. If so, do it. If
- // not, add them to AvailableValues.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *Inst = &*I++;
-
- // Dead instructions should just be removed.
- if (isInstructionTriviallyDead(Inst, &TLI)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- if (!salvageDebugInfo(*Inst))
- replaceDbgUsesWithUndef(Inst);
- removeMSSA(Inst);
- Inst->eraseFromParent();
- Changed = true;
- ++NumSimplify;
- continue;
- }
-
- // Skip assume intrinsics, they don't really have side effects (although
- // they're marked as such to ensure preservation of control dependencies),
- // and this pass will not bother with its removal. However, we should mark
- // its condition as true for all dominated blocks.
- if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
- auto *CondI =
- dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0));
- if (CondI && SimpleValue::canHandle(CondI)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst
- << '\n');
- AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
- } else
- LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
- continue;
- }
-
- // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
- if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
- LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n');
- continue;
- }
-
- // We can skip all invariant.start intrinsics since they only read memory,
- // and we can forward values across it. For invariant starts without
- // invariant ends, we can use the fact that the invariantness never ends to
- // start a scope in the current generaton which is true for all future
- // generations. Also, we dont need to consume the last store since the
- // semantics of invariant.start allow us to perform DSE of the last
- // store, if there was a store following invariant.start. Consider:
- //
- // store 30, i8* p
- // invariant.start(p)
- // store 40, i8* p
- // We can DSE the store to 30, since the store 40 to invariant location p
- // causes undefined behaviour.
- if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
- // If there are any uses, the scope might end.
- if (!Inst->use_empty())
- continue;
- auto *CI = cast<CallInst>(Inst);
- MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI);
- // Don't start a scope if we already have a better one pushed
- if (!AvailableInvariants.count(MemLoc))
- AvailableInvariants.insert(MemLoc, CurrentGeneration);
- continue;
- }
-
- if (isGuard(Inst)) {
- if (auto *CondI =
- dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) {
- if (SimpleValue::canHandle(CondI)) {
- // Do we already know the actual value of this condition?
- if (auto *KnownCond = AvailableValues.lookup(CondI)) {
- // Is the condition known to be true?
- if (isa<ConstantInt>(KnownCond) &&
- cast<ConstantInt>(KnownCond)->isOne()) {
- LLVM_DEBUG(dbgs()
- << "EarlyCSE removing guard: " << *Inst << '\n');
- removeMSSA(Inst);
- Inst->eraseFromParent();
- Changed = true;
- continue;
- } else
- // Use the known value if it wasn't true.
- cast<CallInst>(Inst)->setArgOperand(0, KnownCond);
- }
- // The condition we're on guarding here is true for all dominated
- // locations.
- AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
- }
- }
-
- // Guard intrinsics read all memory, but don't write any memory.
- // Accordingly, don't update the generation but consume the last store (to
- // avoid an incorrect DSE).
- LastStore = nullptr;
- continue;
- }
-
- // If the instruction can be simplified (e.g. X+0 = X) then replace it with
- // its simpler value.
- if (Value *V = SimplifyInstruction(Inst, SQ)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V
- << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- } else {
- bool Killed = false;
- if (!Inst->use_empty()) {
- Inst->replaceAllUsesWith(V);
- Changed = true;
- }
- if (isInstructionTriviallyDead(Inst, &TLI)) {
- removeMSSA(Inst);
- Inst->eraseFromParent();
- Changed = true;
- Killed = true;
- }
- if (Changed)
- ++NumSimplify;
- if (Killed)
- continue;
- }
- }
-
- // If this is a simple instruction that we can value number, process it.
- if (SimpleValue::canHandle(Inst)) {
- // See if the instruction has an available value. If so, use it.
- if (Value *V = AvailableValues.lookup(Inst)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V
- << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- if (auto *I = dyn_cast<Instruction>(V))
- I->andIRFlags(Inst);
- Inst->replaceAllUsesWith(V);
- removeMSSA(Inst);
- Inst->eraseFromParent();
- Changed = true;
- ++NumCSE;
- continue;
- }
-
- // Otherwise, just remember that this value is available.
- AvailableValues.insert(Inst, Inst);
- continue;
- }
-
- ParseMemoryInst MemInst(Inst, TTI);
- // If this is a non-volatile load, process it.
- if (MemInst.isValid() && MemInst.isLoad()) {
- // (conservatively) we can't peak past the ordering implied by this
- // operation, but we can add this load to our set of available values
- if (MemInst.isVolatile() || !MemInst.isUnordered()) {
- LastStore = nullptr;
- ++CurrentGeneration;
- }
-
- if (MemInst.isInvariantLoad()) {
- // If we pass an invariant load, we know that memory location is
- // indefinitely constant from the moment of first dereferenceability.
- // We conservatively treat the invariant_load as that moment. If we
- // pass a invariant load after already establishing a scope, don't
- // restart it since we want to preserve the earliest point seen.
- auto MemLoc = MemoryLocation::get(Inst);
- if (!AvailableInvariants.count(MemLoc))
- AvailableInvariants.insert(MemLoc, CurrentGeneration);
- }
-
- // If we have an available version of this load, and if it is the right
- // generation or the load is known to be from an invariant location,
- // replace this instruction.
- //
- // If either the dominating load or the current load are invariant, then
- // we can assume the current load loads the same value as the dominating
- // load.
- LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
- if (InVal.DefInst != nullptr &&
- InVal.MatchingId == MemInst.getMatchingId() &&
- // We don't yet handle removing loads with ordering of any kind.
- !MemInst.isVolatile() && MemInst.isUnordered() &&
- // We can't replace an atomic load with one which isn't also atomic.
- InVal.IsAtomic >= MemInst.isAtomic() &&
- (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
- isSameMemGeneration(InVal.Generation, CurrentGeneration,
- InVal.DefInst, Inst))) {
- Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType());
- if (Op != nullptr) {
- LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
- << " to: " << *InVal.DefInst << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- if (!Inst->use_empty())
- Inst->replaceAllUsesWith(Op);
- removeMSSA(Inst);
- Inst->eraseFromParent();
- Changed = true;
- ++NumCSELoad;
- continue;
- }
- }
-
- // Otherwise, remember that we have this instruction.
- AvailableLoads.insert(
- MemInst.getPointerOperand(),
- LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
- MemInst.isAtomic()));
- LastStore = nullptr;
- continue;
- }
-
- // If this instruction may read from memory or throw (and potentially read
- // from memory in the exception handler), forget LastStore. Load/store
- // intrinsics will indicate both a read and a write to memory. The target
- // may override this (e.g. so that a store intrinsic does not read from
- // memory, and thus will be treated the same as a regular store for
- // commoning purposes).
- if ((Inst->mayReadFromMemory() || Inst->mayThrow()) &&
- !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
- LastStore = nullptr;
-
- // If this is a read-only call, process it.
- if (CallValue::canHandle(Inst)) {
- // If we have an available version of this call, and if it is the right
- // generation, replace this instruction.
- std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst);
- if (InVal.first != nullptr &&
- isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
- Inst)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
- << " to: " << *InVal.first << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- if (!Inst->use_empty())
- Inst->replaceAllUsesWith(InVal.first);
- removeMSSA(Inst);
- Inst->eraseFromParent();
- Changed = true;
- ++NumCSECall;
- continue;
- }
-
- // Otherwise, remember that we have this instruction.
- AvailableCalls.insert(
- Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration));
- continue;
- }
-
- // A release fence requires that all stores complete before it, but does
- // not prevent the reordering of following loads 'before' the fence. As a
- // result, we don't need to consider it as writing to memory and don't need
- // to advance the generation. We do need to prevent DSE across the fence,
- // but that's handled above.
- if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
- if (FI->getOrdering() == AtomicOrdering::Release) {
- assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
- continue;
- }
-
- // write back DSE - If we write back the same value we just loaded from
- // the same location and haven't passed any intervening writes or ordering
- // operations, we can remove the write. The primary benefit is in allowing
- // the available load table to remain valid and value forward past where
- // the store originally was.
- if (MemInst.isValid() && MemInst.isStore()) {
- LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
- if (InVal.DefInst &&
- InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) &&
- InVal.MatchingId == MemInst.getMatchingId() &&
- // We don't yet handle removing stores with ordering of any kind.
- !MemInst.isVolatile() && MemInst.isUnordered() &&
- (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
- isSameMemGeneration(InVal.Generation, CurrentGeneration,
- InVal.DefInst, Inst))) {
- // It is okay to have a LastStore to a different pointer here if MemorySSA
- // tells us that the load and store are from the same memory generation.
- // In that case, LastStore should keep its present value since we're
- // removing the current store.
- assert((!LastStore ||
- ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
- MemInst.getPointerOperand() ||
- MSSA) &&
- "can't have an intervening store if not using MemorySSA!");
- LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- continue;
- }
- removeMSSA(Inst);
- Inst->eraseFromParent();
- Changed = true;
- ++NumDSE;
- // We can avoid incrementing the generation count since we were able
- // to eliminate this store.
- continue;
- }
- }
-
- // Okay, this isn't something we can CSE at all. Check to see if it is
- // something that could modify memory. If so, our available memory values
- // cannot be used so bump the generation count.
- if (Inst->mayWriteToMemory()) {
- ++CurrentGeneration;
-
- if (MemInst.isValid() && MemInst.isStore()) {
- // We do a trivial form of DSE if there are two stores to the same
- // location with no intervening loads. Delete the earlier store.
- // At the moment, we don't remove ordered stores, but do remove
- // unordered atomic stores. There's no special requirement (for
- // unordered atomics) about removing atomic stores only in favor of
- // other atomic stores since we were going to execute the non-atomic
- // one anyway and the atomic one might never have become visible.
- if (LastStore) {
- ParseMemoryInst LastStoreMemInst(LastStore, TTI);
- assert(LastStoreMemInst.isUnordered() &&
- !LastStoreMemInst.isVolatile() &&
- "Violated invariant");
- if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
- LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
- << " due to: " << *Inst << '\n');
- if (!DebugCounter::shouldExecute(CSECounter)) {
- LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
- } else {
- removeMSSA(LastStore);
- LastStore->eraseFromParent();
- Changed = true;
- ++NumDSE;
- LastStore = nullptr;
- }
- }
- // fallthrough - we can exploit information about this store
- }
-
- // Okay, we just invalidated anything we knew about loaded values. Try
- // to salvage *something* by remembering that the stored value is a live
- // version of the pointer. It is safe to forward from volatile stores
- // to non-volatile loads, so we don't have to check for volatility of
- // the store.
- AvailableLoads.insert(
- MemInst.getPointerOperand(),
- LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
- MemInst.isAtomic()));
-
- // Remember that this was the last unordered store we saw for DSE. We
- // don't yet handle DSE on ordered or volatile stores since we don't
- // have a good way to model the ordering requirement for following
- // passes once the store is removed. We could insert a fence, but
- // since fences are slightly stronger than stores in their ordering,
- // it's not clear this is a profitable transform. Another option would
- // be to merge the ordering with that of the post dominating store.
- if (MemInst.isUnordered() && !MemInst.isVolatile())
- LastStore = Inst;
- else
- LastStore = nullptr;
- }
- }
- }
-
- return Changed;
-}
-
-bool EarlyCSE::run() {
- // Note, deque is being used here because there is significant performance
- // gains over vector when the container becomes very large due to the
- // specific access patterns. For more information see the mailing list
- // discussion on this:
- // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
- std::deque<StackNode *> nodesToProcess;
-
- bool Changed = false;
-
- // Process the root node.
- nodesToProcess.push_back(new StackNode(
- AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
- CurrentGeneration, DT.getRootNode(),
- DT.getRootNode()->begin(), DT.getRootNode()->end()));
-
- assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
-
- // Process the stack.
- while (!nodesToProcess.empty()) {
- // Grab the first item off the stack. Set the current generation, remove
- // the node from the stack, and process it.
- StackNode *NodeToProcess = nodesToProcess.back();
-
- // Initialize class members.
- CurrentGeneration = NodeToProcess->currentGeneration();
-
- // Check if the node needs to be processed.
- if (!NodeToProcess->isProcessed()) {
- // Process the node.
- Changed |= processNode(NodeToProcess->node());
- NodeToProcess->childGeneration(CurrentGeneration);
- NodeToProcess->process();
- } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
- // Push the next child onto the stack.
- DomTreeNode *child = NodeToProcess->nextChild();
- nodesToProcess.push_back(
- new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
- AvailableCalls, NodeToProcess->childGeneration(),
- child, child->begin(), child->end()));
- } else {
- // It has been processed, and there are no more children to process,
- // so delete it and pop it off the stack.
- delete NodeToProcess;
- nodesToProcess.pop_back();
- }
- } // while (!nodes...)
-
- return Changed;
-}
-
-PreservedAnalyses EarlyCSEPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &TTI = AM.getResult<TargetIRAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto *MSSA =
- UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
-
- EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
-
- if (!CSE.run())
- return PreservedAnalyses::all();
-
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<GlobalsAA>();
- if (UseMemorySSA)
- PA.preserve<MemorySSAAnalysis>();
- return PA;
-}
-
-namespace {
-
-/// A simple and fast domtree-based CSE pass.
-///
-/// This pass does a simple depth-first walk over the dominator tree,
-/// eliminating trivially redundant instructions and using instsimplify to
-/// canonicalize things as it goes. It is intended to be fast and catch obvious
-/// cases so that instcombine and other passes are more effective. It is
-/// expected that a later pass of GVN will catch the interesting/hard cases.
-template<bool UseMemorySSA>
-class EarlyCSELegacyCommonPass : public FunctionPass {
-public:
- static char ID;
-
- EarlyCSELegacyCommonPass() : FunctionPass(ID) {
- if (UseMemorySSA)
- initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
- else
- initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
-
- auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *MSSA =
- UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
-
- EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
-
- return CSE.run();
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- if (UseMemorySSA) {
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.setPreservesCFG();
- }
-};
-
-} // end anonymous namespace
-
-using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
-
-template<>
-char EarlyCSELegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
- false)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
-
-using EarlyCSEMemSSALegacyPass =
- EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
-
-template<>
-char EarlyCSEMemSSALegacyPass::ID = 0;
-
-FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
- if (UseMemorySSA)
- return new EarlyCSEMemSSALegacyPass();
- else
- return new EarlyCSELegacyPass();
-}
-
-INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
- "Early CSE w/ MemorySSA", false, false)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
-INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
- "Early CSE w/ MemorySSA", false, false)