summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp2954
1 files changed, 0 insertions, 2954 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
deleted file mode 100644
index f9fc698a4a9b..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
+++ /dev/null
@@ -1,2954 +0,0 @@
-//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This transformation analyzes and transforms the induction variables (and
-// computations derived from them) into simpler forms suitable for subsequent
-// analysis and transformation.
-//
-// If the trip count of a loop is computable, this pass also makes the following
-// changes:
-// 1. The exit condition for the loop is canonicalized to compare the
-// induction value against the exit value. This turns loops like:
-// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
-// 2. Any use outside of the loop of an expression derived from the indvar
-// is changed to compute the derived value outside of the loop, eliminating
-// the dependence on the exit value of the induction variable. If the only
-// purpose of the loop is to compute the exit value of some derived
-// expression, this transformation will make the loop dead.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/IndVarSimplify.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/ConstantRange.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Scalar/LoopPassManager.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include <cassert>
-#include <cstdint>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "indvars"
-
-STATISTIC(NumWidened , "Number of indvars widened");
-STATISTIC(NumReplaced , "Number of exit values replaced");
-STATISTIC(NumLFTR , "Number of loop exit tests replaced");
-STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
-STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
-
-// Trip count verification can be enabled by default under NDEBUG if we
-// implement a strong expression equivalence checker in SCEV. Until then, we
-// use the verify-indvars flag, which may assert in some cases.
-static cl::opt<bool> VerifyIndvars(
- "verify-indvars", cl::Hidden,
- cl::desc("Verify the ScalarEvolution result after running indvars"));
-
-enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, NoHardUse, AlwaysRepl };
-
-static cl::opt<ReplaceExitVal> ReplaceExitValue(
- "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
- cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
- cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
- clEnumValN(OnlyCheapRepl, "cheap",
- "only replace exit value when the cost is cheap"),
- clEnumValN(NoHardUse, "noharduse",
- "only replace exit values when loop def likely dead"),
- clEnumValN(AlwaysRepl, "always",
- "always replace exit value whenever possible")));
-
-static cl::opt<bool> UsePostIncrementRanges(
- "indvars-post-increment-ranges", cl::Hidden,
- cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
- cl::init(true));
-
-static cl::opt<bool>
-DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
- cl::desc("Disable Linear Function Test Replace optimization"));
-
-namespace {
-
-struct RewritePhi;
-
-class IndVarSimplify {
- LoopInfo *LI;
- ScalarEvolution *SE;
- DominatorTree *DT;
- const DataLayout &DL;
- TargetLibraryInfo *TLI;
- const TargetTransformInfo *TTI;
-
- SmallVector<WeakTrackingVH, 16> DeadInsts;
-
- bool isValidRewrite(Value *FromVal, Value *ToVal);
-
- bool handleFloatingPointIV(Loop *L, PHINode *PH);
- bool rewriteNonIntegerIVs(Loop *L);
-
- bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
- bool optimizeLoopExits(Loop *L);
-
- bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
- bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
- bool rewriteFirstIterationLoopExitValues(Loop *L);
- bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
-
- bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
- const SCEV *ExitCount,
- PHINode *IndVar, SCEVExpander &Rewriter);
-
- bool sinkUnusedInvariants(Loop *L);
-
-public:
- IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
- const DataLayout &DL, TargetLibraryInfo *TLI,
- TargetTransformInfo *TTI)
- : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
-
- bool run(Loop *L);
-};
-
-} // end anonymous namespace
-
-/// Return true if the SCEV expansion generated by the rewriter can replace the
-/// original value. SCEV guarantees that it produces the same value, but the way
-/// it is produced may be illegal IR. Ideally, this function will only be
-/// called for verification.
-bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
- // If an SCEV expression subsumed multiple pointers, its expansion could
- // reassociate the GEP changing the base pointer. This is illegal because the
- // final address produced by a GEP chain must be inbounds relative to its
- // underlying object. Otherwise basic alias analysis, among other things,
- // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
- // producing an expression involving multiple pointers. Until then, we must
- // bail out here.
- //
- // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
- // because it understands lcssa phis while SCEV does not.
- Value *FromPtr = FromVal;
- Value *ToPtr = ToVal;
- if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
- FromPtr = GEP->getPointerOperand();
- }
- if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
- ToPtr = GEP->getPointerOperand();
- }
- if (FromPtr != FromVal || ToPtr != ToVal) {
- // Quickly check the common case
- if (FromPtr == ToPtr)
- return true;
-
- // SCEV may have rewritten an expression that produces the GEP's pointer
- // operand. That's ok as long as the pointer operand has the same base
- // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
- // base of a recurrence. This handles the case in which SCEV expansion
- // converts a pointer type recurrence into a nonrecurrent pointer base
- // indexed by an integer recurrence.
-
- // If the GEP base pointer is a vector of pointers, abort.
- if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
- return false;
-
- const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
- const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
- if (FromBase == ToBase)
- return true;
-
- LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
- << " != " << *ToBase << "\n");
-
- return false;
- }
- return true;
-}
-
-/// Determine the insertion point for this user. By default, insert immediately
-/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
-/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
-/// common dominator for the incoming blocks. A nullptr can be returned if no
-/// viable location is found: it may happen if User is a PHI and Def only comes
-/// to this PHI from unreachable blocks.
-static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
- DominatorTree *DT, LoopInfo *LI) {
- PHINode *PHI = dyn_cast<PHINode>(User);
- if (!PHI)
- return User;
-
- Instruction *InsertPt = nullptr;
- for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
- if (PHI->getIncomingValue(i) != Def)
- continue;
-
- BasicBlock *InsertBB = PHI->getIncomingBlock(i);
-
- if (!DT->isReachableFromEntry(InsertBB))
- continue;
-
- if (!InsertPt) {
- InsertPt = InsertBB->getTerminator();
- continue;
- }
- InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
- InsertPt = InsertBB->getTerminator();
- }
-
- // If we have skipped all inputs, it means that Def only comes to Phi from
- // unreachable blocks.
- if (!InsertPt)
- return nullptr;
-
- auto *DefI = dyn_cast<Instruction>(Def);
- if (!DefI)
- return InsertPt;
-
- assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
-
- auto *L = LI->getLoopFor(DefI->getParent());
- assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
-
- for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
- if (LI->getLoopFor(DTN->getBlock()) == L)
- return DTN->getBlock()->getTerminator();
-
- llvm_unreachable("DefI dominates InsertPt!");
-}
-
-//===----------------------------------------------------------------------===//
-// rewriteNonIntegerIVs and helpers. Prefer integer IVs.
-//===----------------------------------------------------------------------===//
-
-/// Convert APF to an integer, if possible.
-static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
- bool isExact = false;
- // See if we can convert this to an int64_t
- uint64_t UIntVal;
- if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
- APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
- !isExact)
- return false;
- IntVal = UIntVal;
- return true;
-}
-
-/// If the loop has floating induction variable then insert corresponding
-/// integer induction variable if possible.
-/// For example,
-/// for(double i = 0; i < 10000; ++i)
-/// bar(i)
-/// is converted into
-/// for(int i = 0; i < 10000; ++i)
-/// bar((double)i);
-bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
- unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
- unsigned BackEdge = IncomingEdge^1;
-
- // Check incoming value.
- auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
-
- int64_t InitValue;
- if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
- return false;
-
- // Check IV increment. Reject this PN if increment operation is not
- // an add or increment value can not be represented by an integer.
- auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
- if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
-
- // If this is not an add of the PHI with a constantfp, or if the constant fp
- // is not an integer, bail out.
- ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
- int64_t IncValue;
- if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
- !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
- return false;
-
- // Check Incr uses. One user is PN and the other user is an exit condition
- // used by the conditional terminator.
- Value::user_iterator IncrUse = Incr->user_begin();
- Instruction *U1 = cast<Instruction>(*IncrUse++);
- if (IncrUse == Incr->user_end()) return false;
- Instruction *U2 = cast<Instruction>(*IncrUse++);
- if (IncrUse != Incr->user_end()) return false;
-
- // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
- // only used by a branch, we can't transform it.
- FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
- if (!Compare)
- Compare = dyn_cast<FCmpInst>(U2);
- if (!Compare || !Compare->hasOneUse() ||
- !isa<BranchInst>(Compare->user_back()))
- return false;
-
- BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
-
- // We need to verify that the branch actually controls the iteration count
- // of the loop. If not, the new IV can overflow and no one will notice.
- // The branch block must be in the loop and one of the successors must be out
- // of the loop.
- assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
- if (!L->contains(TheBr->getParent()) ||
- (L->contains(TheBr->getSuccessor(0)) &&
- L->contains(TheBr->getSuccessor(1))))
- return false;
-
- // If it isn't a comparison with an integer-as-fp (the exit value), we can't
- // transform it.
- ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
- int64_t ExitValue;
- if (ExitValueVal == nullptr ||
- !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
- return false;
-
- // Find new predicate for integer comparison.
- CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
- switch (Compare->getPredicate()) {
- default: return false; // Unknown comparison.
- case CmpInst::FCMP_OEQ:
- case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
- case CmpInst::FCMP_ONE:
- case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
- case CmpInst::FCMP_OGT:
- case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
- case CmpInst::FCMP_OGE:
- case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
- case CmpInst::FCMP_OLT:
- case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
- case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
- }
-
- // We convert the floating point induction variable to a signed i32 value if
- // we can. This is only safe if the comparison will not overflow in a way
- // that won't be trapped by the integer equivalent operations. Check for this
- // now.
- // TODO: We could use i64 if it is native and the range requires it.
-
- // The start/stride/exit values must all fit in signed i32.
- if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
- return false;
-
- // If not actually striding (add x, 0.0), avoid touching the code.
- if (IncValue == 0)
- return false;
-
- // Positive and negative strides have different safety conditions.
- if (IncValue > 0) {
- // If we have a positive stride, we require the init to be less than the
- // exit value.
- if (InitValue >= ExitValue)
- return false;
-
- uint32_t Range = uint32_t(ExitValue-InitValue);
- // Check for infinite loop, either:
- // while (i <= Exit) or until (i > Exit)
- if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
- if (++Range == 0) return false; // Range overflows.
- }
-
- unsigned Leftover = Range % uint32_t(IncValue);
-
- // If this is an equality comparison, we require that the strided value
- // exactly land on the exit value, otherwise the IV condition will wrap
- // around and do things the fp IV wouldn't.
- if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
- Leftover != 0)
- return false;
-
- // If the stride would wrap around the i32 before exiting, we can't
- // transform the IV.
- if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
- return false;
- } else {
- // If we have a negative stride, we require the init to be greater than the
- // exit value.
- if (InitValue <= ExitValue)
- return false;
-
- uint32_t Range = uint32_t(InitValue-ExitValue);
- // Check for infinite loop, either:
- // while (i >= Exit) or until (i < Exit)
- if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
- if (++Range == 0) return false; // Range overflows.
- }
-
- unsigned Leftover = Range % uint32_t(-IncValue);
-
- // If this is an equality comparison, we require that the strided value
- // exactly land on the exit value, otherwise the IV condition will wrap
- // around and do things the fp IV wouldn't.
- if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
- Leftover != 0)
- return false;
-
- // If the stride would wrap around the i32 before exiting, we can't
- // transform the IV.
- if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
- return false;
- }
-
- IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
-
- // Insert new integer induction variable.
- PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
- NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
- PN->getIncomingBlock(IncomingEdge));
-
- Value *NewAdd =
- BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
- Incr->getName()+".int", Incr);
- NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
-
- ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
- ConstantInt::get(Int32Ty, ExitValue),
- Compare->getName());
-
- // In the following deletions, PN may become dead and may be deleted.
- // Use a WeakTrackingVH to observe whether this happens.
- WeakTrackingVH WeakPH = PN;
-
- // Delete the old floating point exit comparison. The branch starts using the
- // new comparison.
- NewCompare->takeName(Compare);
- Compare->replaceAllUsesWith(NewCompare);
- RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
-
- // Delete the old floating point increment.
- Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
- RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
-
- // If the FP induction variable still has uses, this is because something else
- // in the loop uses its value. In order to canonicalize the induction
- // variable, we chose to eliminate the IV and rewrite it in terms of an
- // int->fp cast.
- //
- // We give preference to sitofp over uitofp because it is faster on most
- // platforms.
- if (WeakPH) {
- Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
- &*PN->getParent()->getFirstInsertionPt());
- PN->replaceAllUsesWith(Conv);
- RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
- }
- return true;
-}
-
-bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
- // First step. Check to see if there are any floating-point recurrences.
- // If there are, change them into integer recurrences, permitting analysis by
- // the SCEV routines.
- BasicBlock *Header = L->getHeader();
-
- SmallVector<WeakTrackingVH, 8> PHIs;
- for (PHINode &PN : Header->phis())
- PHIs.push_back(&PN);
-
- bool Changed = false;
- for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
- if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
- Changed |= handleFloatingPointIV(L, PN);
-
- // If the loop previously had floating-point IV, ScalarEvolution
- // may not have been able to compute a trip count. Now that we've done some
- // re-writing, the trip count may be computable.
- if (Changed)
- SE->forgetLoop(L);
- return Changed;
-}
-
-namespace {
-
-// Collect information about PHI nodes which can be transformed in
-// rewriteLoopExitValues.
-struct RewritePhi {
- PHINode *PN;
-
- // Ith incoming value.
- unsigned Ith;
-
- // Exit value after expansion.
- Value *Val;
-
- // High Cost when expansion.
- bool HighCost;
-
- RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
- : PN(P), Ith(I), Val(V), HighCost(H) {}
-};
-
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// rewriteLoopExitValues - Optimize IV users outside the loop.
-// As a side effect, reduces the amount of IV processing within the loop.
-//===----------------------------------------------------------------------===//
-
-bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
- SmallPtrSet<const Instruction *, 8> Visited;
- SmallVector<const Instruction *, 8> WorkList;
- Visited.insert(I);
- WorkList.push_back(I);
- while (!WorkList.empty()) {
- const Instruction *Curr = WorkList.pop_back_val();
- // This use is outside the loop, nothing to do.
- if (!L->contains(Curr))
- continue;
- // Do we assume it is a "hard" use which will not be eliminated easily?
- if (Curr->mayHaveSideEffects())
- return true;
- // Otherwise, add all its users to worklist.
- for (auto U : Curr->users()) {
- auto *UI = cast<Instruction>(U);
- if (Visited.insert(UI).second)
- WorkList.push_back(UI);
- }
- }
- return false;
-}
-
-/// Check to see if this loop has a computable loop-invariant execution count.
-/// If so, this means that we can compute the final value of any expressions
-/// that are recurrent in the loop, and substitute the exit values from the loop
-/// into any instructions outside of the loop that use the final values of the
-/// current expressions.
-///
-/// This is mostly redundant with the regular IndVarSimplify activities that
-/// happen later, except that it's more powerful in some cases, because it's
-/// able to brute-force evaluate arbitrary instructions as long as they have
-/// constant operands at the beginning of the loop.
-bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
- // Check a pre-condition.
- assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
- "Indvars did not preserve LCSSA!");
-
- SmallVector<BasicBlock*, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
-
- SmallVector<RewritePhi, 8> RewritePhiSet;
- // Find all values that are computed inside the loop, but used outside of it.
- // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
- // the exit blocks of the loop to find them.
- for (BasicBlock *ExitBB : ExitBlocks) {
- // If there are no PHI nodes in this exit block, then no values defined
- // inside the loop are used on this path, skip it.
- PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
- if (!PN) continue;
-
- unsigned NumPreds = PN->getNumIncomingValues();
-
- // Iterate over all of the PHI nodes.
- BasicBlock::iterator BBI = ExitBB->begin();
- while ((PN = dyn_cast<PHINode>(BBI++))) {
- if (PN->use_empty())
- continue; // dead use, don't replace it
-
- if (!SE->isSCEVable(PN->getType()))
- continue;
-
- // It's necessary to tell ScalarEvolution about this explicitly so that
- // it can walk the def-use list and forget all SCEVs, as it may not be
- // watching the PHI itself. Once the new exit value is in place, there
- // may not be a def-use connection between the loop and every instruction
- // which got a SCEVAddRecExpr for that loop.
- SE->forgetValue(PN);
-
- // Iterate over all of the values in all the PHI nodes.
- for (unsigned i = 0; i != NumPreds; ++i) {
- // If the value being merged in is not integer or is not defined
- // in the loop, skip it.
- Value *InVal = PN->getIncomingValue(i);
- if (!isa<Instruction>(InVal))
- continue;
-
- // If this pred is for a subloop, not L itself, skip it.
- if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
- continue; // The Block is in a subloop, skip it.
-
- // Check that InVal is defined in the loop.
- Instruction *Inst = cast<Instruction>(InVal);
- if (!L->contains(Inst))
- continue;
-
- // Okay, this instruction has a user outside of the current loop
- // and varies predictably *inside* the loop. Evaluate the value it
- // contains when the loop exits, if possible.
- const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
- if (!SE->isLoopInvariant(ExitValue, L) ||
- !isSafeToExpand(ExitValue, *SE))
- continue;
-
- // Computing the value outside of the loop brings no benefit if it is
- // definitely used inside the loop in a way which can not be optimized
- // away. Avoid doing so unless we know we have a value which computes
- // the ExitValue already. TODO: This should be merged into SCEV
- // expander to leverage its knowledge of existing expressions.
- if (ReplaceExitValue != AlwaysRepl &&
- !isa<SCEVConstant>(ExitValue) && !isa<SCEVUnknown>(ExitValue) &&
- hasHardUserWithinLoop(L, Inst))
- continue;
-
- bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
- Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
-
- LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
- << '\n'
- << " LoopVal = " << *Inst << "\n");
-
- if (!isValidRewrite(Inst, ExitVal)) {
- DeadInsts.push_back(ExitVal);
- continue;
- }
-
-#ifndef NDEBUG
- // If we reuse an instruction from a loop which is neither L nor one of
- // its containing loops, we end up breaking LCSSA form for this loop by
- // creating a new use of its instruction.
- if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
- if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
- if (EVL != L)
- assert(EVL->contains(L) && "LCSSA breach detected!");
-#endif
-
- // Collect all the candidate PHINodes to be rewritten.
- RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
- }
- }
- }
-
- bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
-
- bool Changed = false;
- // Transformation.
- for (const RewritePhi &Phi : RewritePhiSet) {
- PHINode *PN = Phi.PN;
- Value *ExitVal = Phi.Val;
-
- // Only do the rewrite when the ExitValue can be expanded cheaply.
- // If LoopCanBeDel is true, rewrite exit value aggressively.
- if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
- DeadInsts.push_back(ExitVal);
- continue;
- }
-
- Changed = true;
- ++NumReplaced;
- Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
- PN->setIncomingValue(Phi.Ith, ExitVal);
-
- // If this instruction is dead now, delete it. Don't do it now to avoid
- // invalidating iterators.
- if (isInstructionTriviallyDead(Inst, TLI))
- DeadInsts.push_back(Inst);
-
- // Replace PN with ExitVal if that is legal and does not break LCSSA.
- if (PN->getNumIncomingValues() == 1 &&
- LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
- PN->replaceAllUsesWith(ExitVal);
- PN->eraseFromParent();
- }
- }
-
- // The insertion point instruction may have been deleted; clear it out
- // so that the rewriter doesn't trip over it later.
- Rewriter.clearInsertPoint();
- return Changed;
-}
-
-//===---------------------------------------------------------------------===//
-// rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
-// they will exit at the first iteration.
-//===---------------------------------------------------------------------===//
-
-/// Check to see if this loop has loop invariant conditions which lead to loop
-/// exits. If so, we know that if the exit path is taken, it is at the first
-/// loop iteration. This lets us predict exit values of PHI nodes that live in
-/// loop header.
-bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
- // Verify the input to the pass is already in LCSSA form.
- assert(L->isLCSSAForm(*DT));
-
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
-
- bool MadeAnyChanges = false;
- for (auto *ExitBB : ExitBlocks) {
- // If there are no more PHI nodes in this exit block, then no more
- // values defined inside the loop are used on this path.
- for (PHINode &PN : ExitBB->phis()) {
- for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
- IncomingValIdx != E; ++IncomingValIdx) {
- auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
-
- // Can we prove that the exit must run on the first iteration if it
- // runs at all? (i.e. early exits are fine for our purposes, but
- // traces which lead to this exit being taken on the 2nd iteration
- // aren't.) Note that this is about whether the exit branch is
- // executed, not about whether it is taken.
- if (!L->getLoopLatch() ||
- !DT->dominates(IncomingBB, L->getLoopLatch()))
- continue;
-
- // Get condition that leads to the exit path.
- auto *TermInst = IncomingBB->getTerminator();
-
- Value *Cond = nullptr;
- if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
- // Must be a conditional branch, otherwise the block
- // should not be in the loop.
- Cond = BI->getCondition();
- } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
- Cond = SI->getCondition();
- else
- continue;
-
- if (!L->isLoopInvariant(Cond))
- continue;
-
- auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
-
- // Only deal with PHIs in the loop header.
- if (!ExitVal || ExitVal->getParent() != L->getHeader())
- continue;
-
- // If ExitVal is a PHI on the loop header, then we know its
- // value along this exit because the exit can only be taken
- // on the first iteration.
- auto *LoopPreheader = L->getLoopPreheader();
- assert(LoopPreheader && "Invalid loop");
- int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
- if (PreheaderIdx != -1) {
- assert(ExitVal->getParent() == L->getHeader() &&
- "ExitVal must be in loop header");
- MadeAnyChanges = true;
- PN.setIncomingValue(IncomingValIdx,
- ExitVal->getIncomingValue(PreheaderIdx));
- }
- }
- }
- }
- return MadeAnyChanges;
-}
-
-/// Check whether it is possible to delete the loop after rewriting exit
-/// value. If it is possible, ignore ReplaceExitValue and do rewriting
-/// aggressively.
-bool IndVarSimplify::canLoopBeDeleted(
- Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
- BasicBlock *Preheader = L->getLoopPreheader();
- // If there is no preheader, the loop will not be deleted.
- if (!Preheader)
- return false;
-
- // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
- // We obviate multiple ExitingBlocks case for simplicity.
- // TODO: If we see testcase with multiple ExitingBlocks can be deleted
- // after exit value rewriting, we can enhance the logic here.
- SmallVector<BasicBlock *, 4> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
- if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
- return false;
-
- BasicBlock *ExitBlock = ExitBlocks[0];
- BasicBlock::iterator BI = ExitBlock->begin();
- while (PHINode *P = dyn_cast<PHINode>(BI)) {
- Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
-
- // If the Incoming value of P is found in RewritePhiSet, we know it
- // could be rewritten to use a loop invariant value in transformation
- // phase later. Skip it in the loop invariant check below.
- bool found = false;
- for (const RewritePhi &Phi : RewritePhiSet) {
- unsigned i = Phi.Ith;
- if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
- found = true;
- break;
- }
- }
-
- Instruction *I;
- if (!found && (I = dyn_cast<Instruction>(Incoming)))
- if (!L->hasLoopInvariantOperands(I))
- return false;
-
- ++BI;
- }
-
- for (auto *BB : L->blocks())
- if (llvm::any_of(*BB, [](Instruction &I) {
- return I.mayHaveSideEffects();
- }))
- return false;
-
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// IV Widening - Extend the width of an IV to cover its widest uses.
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-// Collect information about induction variables that are used by sign/zero
-// extend operations. This information is recorded by CollectExtend and provides
-// the input to WidenIV.
-struct WideIVInfo {
- PHINode *NarrowIV = nullptr;
-
- // Widest integer type created [sz]ext
- Type *WidestNativeType = nullptr;
-
- // Was a sext user seen before a zext?
- bool IsSigned = false;
-};
-
-} // end anonymous namespace
-
-/// Update information about the induction variable that is extended by this
-/// sign or zero extend operation. This is used to determine the final width of
-/// the IV before actually widening it.
-static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
- const TargetTransformInfo *TTI) {
- bool IsSigned = Cast->getOpcode() == Instruction::SExt;
- if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
- return;
-
- Type *Ty = Cast->getType();
- uint64_t Width = SE->getTypeSizeInBits(Ty);
- if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
- return;
-
- // Check that `Cast` actually extends the induction variable (we rely on this
- // later). This takes care of cases where `Cast` is extending a truncation of
- // the narrow induction variable, and thus can end up being narrower than the
- // "narrow" induction variable.
- uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
- if (NarrowIVWidth >= Width)
- return;
-
- // Cast is either an sext or zext up to this point.
- // We should not widen an indvar if arithmetics on the wider indvar are more
- // expensive than those on the narrower indvar. We check only the cost of ADD
- // because at least an ADD is required to increment the induction variable. We
- // could compute more comprehensively the cost of all instructions on the
- // induction variable when necessary.
- if (TTI &&
- TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
- TTI->getArithmeticInstrCost(Instruction::Add,
- Cast->getOperand(0)->getType())) {
- return;
- }
-
- if (!WI.WidestNativeType) {
- WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
- WI.IsSigned = IsSigned;
- return;
- }
-
- // We extend the IV to satisfy the sign of its first user, arbitrarily.
- if (WI.IsSigned != IsSigned)
- return;
-
- if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
- WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
-}
-
-namespace {
-
-/// Record a link in the Narrow IV def-use chain along with the WideIV that
-/// computes the same value as the Narrow IV def. This avoids caching Use*
-/// pointers.
-struct NarrowIVDefUse {
- Instruction *NarrowDef = nullptr;
- Instruction *NarrowUse = nullptr;
- Instruction *WideDef = nullptr;
-
- // True if the narrow def is never negative. Tracking this information lets
- // us use a sign extension instead of a zero extension or vice versa, when
- // profitable and legal.
- bool NeverNegative = false;
-
- NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
- bool NeverNegative)
- : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
- NeverNegative(NeverNegative) {}
-};
-
-/// The goal of this transform is to remove sign and zero extends without
-/// creating any new induction variables. To do this, it creates a new phi of
-/// the wider type and redirects all users, either removing extends or inserting
-/// truncs whenever we stop propagating the type.
-class WidenIV {
- // Parameters
- PHINode *OrigPhi;
- Type *WideType;
-
- // Context
- LoopInfo *LI;
- Loop *L;
- ScalarEvolution *SE;
- DominatorTree *DT;
-
- // Does the module have any calls to the llvm.experimental.guard intrinsic
- // at all? If not we can avoid scanning instructions looking for guards.
- bool HasGuards;
-
- // Result
- PHINode *WidePhi = nullptr;
- Instruction *WideInc = nullptr;
- const SCEV *WideIncExpr = nullptr;
- SmallVectorImpl<WeakTrackingVH> &DeadInsts;
-
- SmallPtrSet<Instruction *,16> Widened;
- SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
-
- enum ExtendKind { ZeroExtended, SignExtended, Unknown };
-
- // A map tracking the kind of extension used to widen each narrow IV
- // and narrow IV user.
- // Key: pointer to a narrow IV or IV user.
- // Value: the kind of extension used to widen this Instruction.
- DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
-
- using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
-
- // A map with control-dependent ranges for post increment IV uses. The key is
- // a pair of IV def and a use of this def denoting the context. The value is
- // a ConstantRange representing possible values of the def at the given
- // context.
- DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
-
- Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
- Instruction *UseI) {
- DefUserPair Key(Def, UseI);
- auto It = PostIncRangeInfos.find(Key);
- return It == PostIncRangeInfos.end()
- ? Optional<ConstantRange>(None)
- : Optional<ConstantRange>(It->second);
- }
-
- void calculatePostIncRanges(PHINode *OrigPhi);
- void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
-
- void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
- DefUserPair Key(Def, UseI);
- auto It = PostIncRangeInfos.find(Key);
- if (It == PostIncRangeInfos.end())
- PostIncRangeInfos.insert({Key, R});
- else
- It->second = R.intersectWith(It->second);
- }
-
-public:
- WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
- DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
- bool HasGuards)
- : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
- L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
- HasGuards(HasGuards), DeadInsts(DI) {
- assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
- ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
- }
-
- PHINode *createWideIV(SCEVExpander &Rewriter);
-
-protected:
- Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
- Instruction *Use);
-
- Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
- Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
- const SCEVAddRecExpr *WideAR);
- Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
-
- ExtendKind getExtendKind(Instruction *I);
-
- using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
-
- WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
-
- WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
-
- const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
- unsigned OpCode) const;
-
- Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
-
- bool widenLoopCompare(NarrowIVDefUse DU);
- bool widenWithVariantLoadUse(NarrowIVDefUse DU);
- void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
-
- void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
-};
-
-} // end anonymous namespace
-
-Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
- bool IsSigned, Instruction *Use) {
- // Set the debug location and conservative insertion point.
- IRBuilder<> Builder(Use);
- // Hoist the insertion point into loop preheaders as far as possible.
- for (const Loop *L = LI->getLoopFor(Use->getParent());
- L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
- L = L->getParentLoop())
- Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
-
- return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
- Builder.CreateZExt(NarrowOper, WideType);
-}
-
-/// Instantiate a wide operation to replace a narrow operation. This only needs
-/// to handle operations that can evaluation to SCEVAddRec. It can safely return
-/// 0 for any operation we decide not to clone.
-Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
- const SCEVAddRecExpr *WideAR) {
- unsigned Opcode = DU.NarrowUse->getOpcode();
- switch (Opcode) {
- default:
- return nullptr;
- case Instruction::Add:
- case Instruction::Mul:
- case Instruction::UDiv:
- case Instruction::Sub:
- return cloneArithmeticIVUser(DU, WideAR);
-
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- return cloneBitwiseIVUser(DU);
- }
-}
-
-Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
- Instruction *NarrowUse = DU.NarrowUse;
- Instruction *NarrowDef = DU.NarrowDef;
- Instruction *WideDef = DU.WideDef;
-
- LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
-
- // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
- // about the narrow operand yet so must insert a [sz]ext. It is probably loop
- // invariant and will be folded or hoisted. If it actually comes from a
- // widened IV, it should be removed during a future call to widenIVUse.
- bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
- Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(0), WideType,
- IsSigned, NarrowUse);
- Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(1), WideType,
- IsSigned, NarrowUse);
-
- auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
- auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
- NarrowBO->getName());
- IRBuilder<> Builder(NarrowUse);
- Builder.Insert(WideBO);
- WideBO->copyIRFlags(NarrowBO);
- return WideBO;
-}
-
-Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
- const SCEVAddRecExpr *WideAR) {
- Instruction *NarrowUse = DU.NarrowUse;
- Instruction *NarrowDef = DU.NarrowDef;
- Instruction *WideDef = DU.WideDef;
-
- LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
-
- unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
-
- // We're trying to find X such that
- //
- // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
- //
- // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
- // and check using SCEV if any of them are correct.
-
- // Returns true if extending NonIVNarrowDef according to `SignExt` is a
- // correct solution to X.
- auto GuessNonIVOperand = [&](bool SignExt) {
- const SCEV *WideLHS;
- const SCEV *WideRHS;
-
- auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
- if (SignExt)
- return SE->getSignExtendExpr(S, Ty);
- return SE->getZeroExtendExpr(S, Ty);
- };
-
- if (IVOpIdx == 0) {
- WideLHS = SE->getSCEV(WideDef);
- const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
- WideRHS = GetExtend(NarrowRHS, WideType);
- } else {
- const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
- WideLHS = GetExtend(NarrowLHS, WideType);
- WideRHS = SE->getSCEV(WideDef);
- }
-
- // WideUse is "WideDef `op.wide` X" as described in the comment.
- const SCEV *WideUse = nullptr;
-
- switch (NarrowUse->getOpcode()) {
- default:
- llvm_unreachable("No other possibility!");
-
- case Instruction::Add:
- WideUse = SE->getAddExpr(WideLHS, WideRHS);
- break;
-
- case Instruction::Mul:
- WideUse = SE->getMulExpr(WideLHS, WideRHS);
- break;
-
- case Instruction::UDiv:
- WideUse = SE->getUDivExpr(WideLHS, WideRHS);
- break;
-
- case Instruction::Sub:
- WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
- break;
- }
-
- return WideUse == WideAR;
- };
-
- bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
- if (!GuessNonIVOperand(SignExtend)) {
- SignExtend = !SignExtend;
- if (!GuessNonIVOperand(SignExtend))
- return nullptr;
- }
-
- Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(0), WideType,
- SignExtend, NarrowUse);
- Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(1), WideType,
- SignExtend, NarrowUse);
-
- auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
- auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
- NarrowBO->getName());
-
- IRBuilder<> Builder(NarrowUse);
- Builder.Insert(WideBO);
- WideBO->copyIRFlags(NarrowBO);
- return WideBO;
-}
-
-WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
- auto It = ExtendKindMap.find(I);
- assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
- return It->second;
-}
-
-const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
- unsigned OpCode) const {
- if (OpCode == Instruction::Add)
- return SE->getAddExpr(LHS, RHS);
- if (OpCode == Instruction::Sub)
- return SE->getMinusSCEV(LHS, RHS);
- if (OpCode == Instruction::Mul)
- return SE->getMulExpr(LHS, RHS);
-
- llvm_unreachable("Unsupported opcode.");
-}
-
-/// No-wrap operations can transfer sign extension of their result to their
-/// operands. Generate the SCEV value for the widened operation without
-/// actually modifying the IR yet. If the expression after extending the
-/// operands is an AddRec for this loop, return the AddRec and the kind of
-/// extension used.
-WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
- // Handle the common case of add<nsw/nuw>
- const unsigned OpCode = DU.NarrowUse->getOpcode();
- // Only Add/Sub/Mul instructions supported yet.
- if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
- OpCode != Instruction::Mul)
- return {nullptr, Unknown};
-
- // One operand (NarrowDef) has already been extended to WideDef. Now determine
- // if extending the other will lead to a recurrence.
- const unsigned ExtendOperIdx =
- DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
- assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
-
- const SCEV *ExtendOperExpr = nullptr;
- const OverflowingBinaryOperator *OBO =
- cast<OverflowingBinaryOperator>(DU.NarrowUse);
- ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
- if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
- ExtendOperExpr = SE->getSignExtendExpr(
- SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
- else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
- ExtendOperExpr = SE->getZeroExtendExpr(
- SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
- else
- return {nullptr, Unknown};
-
- // When creating this SCEV expr, don't apply the current operations NSW or NUW
- // flags. This instruction may be guarded by control flow that the no-wrap
- // behavior depends on. Non-control-equivalent instructions can be mapped to
- // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
- // semantics to those operations.
- const SCEV *lhs = SE->getSCEV(DU.WideDef);
- const SCEV *rhs = ExtendOperExpr;
-
- // Let's swap operands to the initial order for the case of non-commutative
- // operations, like SUB. See PR21014.
- if (ExtendOperIdx == 0)
- std::swap(lhs, rhs);
- const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
-
- if (!AddRec || AddRec->getLoop() != L)
- return {nullptr, Unknown};
-
- return {AddRec, ExtKind};
-}
-
-/// Is this instruction potentially interesting for further simplification after
-/// widening it's type? In other words, can the extend be safely hoisted out of
-/// the loop with SCEV reducing the value to a recurrence on the same loop. If
-/// so, return the extended recurrence and the kind of extension used. Otherwise
-/// return {nullptr, Unknown}.
-WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
- if (!SE->isSCEVable(DU.NarrowUse->getType()))
- return {nullptr, Unknown};
-
- const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
- if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
- SE->getTypeSizeInBits(WideType)) {
- // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
- // index. So don't follow this use.
- return {nullptr, Unknown};
- }
-
- const SCEV *WideExpr;
- ExtendKind ExtKind;
- if (DU.NeverNegative) {
- WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
- if (isa<SCEVAddRecExpr>(WideExpr))
- ExtKind = SignExtended;
- else {
- WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
- ExtKind = ZeroExtended;
- }
- } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
- WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
- ExtKind = SignExtended;
- } else {
- WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
- ExtKind = ZeroExtended;
- }
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
- if (!AddRec || AddRec->getLoop() != L)
- return {nullptr, Unknown};
- return {AddRec, ExtKind};
-}
-
-/// This IV user cannot be widened. Replace this use of the original narrow IV
-/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
-static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
- auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
- if (!InsertPt)
- return;
- LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
- << *DU.NarrowUse << "\n");
- IRBuilder<> Builder(InsertPt);
- Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
- DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
-}
-
-/// If the narrow use is a compare instruction, then widen the compare
-// (and possibly the other operand). The extend operation is hoisted into the
-// loop preheader as far as possible.
-bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
- ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
- if (!Cmp)
- return false;
-
- // We can legally widen the comparison in the following two cases:
- //
- // - The signedness of the IV extension and comparison match
- //
- // - The narrow IV is always positive (and thus its sign extension is equal
- // to its zero extension). For instance, let's say we're zero extending
- // %narrow for the following use
- //
- // icmp slt i32 %narrow, %val ... (A)
- //
- // and %narrow is always positive. Then
- //
- // (A) == icmp slt i32 sext(%narrow), sext(%val)
- // == icmp slt i32 zext(%narrow), sext(%val)
- bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
- if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
- return false;
-
- Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
- unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
- unsigned IVWidth = SE->getTypeSizeInBits(WideType);
- assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
-
- // Widen the compare instruction.
- auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
- if (!InsertPt)
- return false;
- IRBuilder<> Builder(InsertPt);
- DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
-
- // Widen the other operand of the compare, if necessary.
- if (CastWidth < IVWidth) {
- Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
- DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
- }
- return true;
-}
-
-/// If the narrow use is an instruction whose two operands are the defining
-/// instruction of DU and a load instruction, then we have the following:
-/// if the load is hoisted outside the loop, then we do not reach this function
-/// as scalar evolution analysis works fine in widenIVUse with variables
-/// hoisted outside the loop and efficient code is subsequently generated by
-/// not emitting truncate instructions. But when the load is not hoisted
-/// (whether due to limitation in alias analysis or due to a true legality),
-/// then scalar evolution can not proceed with loop variant values and
-/// inefficient code is generated. This function handles the non-hoisted load
-/// special case by making the optimization generate the same type of code for
-/// hoisted and non-hoisted load (widen use and eliminate sign extend
-/// instruction). This special case is important especially when the induction
-/// variables are affecting addressing mode in code generation.
-bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
- Instruction *NarrowUse = DU.NarrowUse;
- Instruction *NarrowDef = DU.NarrowDef;
- Instruction *WideDef = DU.WideDef;
-
- // Handle the common case of add<nsw/nuw>
- const unsigned OpCode = NarrowUse->getOpcode();
- // Only Add/Sub/Mul instructions are supported.
- if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
- OpCode != Instruction::Mul)
- return false;
-
- // The operand that is not defined by NarrowDef of DU. Let's call it the
- // other operand.
- unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
- assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
- "bad DU");
-
- const SCEV *ExtendOperExpr = nullptr;
- const OverflowingBinaryOperator *OBO =
- cast<OverflowingBinaryOperator>(NarrowUse);
- ExtendKind ExtKind = getExtendKind(NarrowDef);
- if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
- ExtendOperExpr = SE->getSignExtendExpr(
- SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
- else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
- ExtendOperExpr = SE->getZeroExtendExpr(
- SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
- else
- return false;
-
- // We are interested in the other operand being a load instruction.
- // But, we should look into relaxing this restriction later on.
- auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
- if (I && I->getOpcode() != Instruction::Load)
- return false;
-
- // Verifying that Defining operand is an AddRec
- const SCEV *Op1 = SE->getSCEV(WideDef);
- const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
- if (!AddRecOp1 || AddRecOp1->getLoop() != L)
- return false;
- // Verifying that other operand is an Extend.
- if (ExtKind == SignExtended) {
- if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
- return false;
- } else {
- if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
- return false;
- }
-
- if (ExtKind == SignExtended) {
- for (Use &U : NarrowUse->uses()) {
- SExtInst *User = dyn_cast<SExtInst>(U.getUser());
- if (!User || User->getType() != WideType)
- return false;
- }
- } else { // ExtKind == ZeroExtended
- for (Use &U : NarrowUse->uses()) {
- ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
- if (!User || User->getType() != WideType)
- return false;
- }
- }
-
- return true;
-}
-
-/// Special Case for widening with variant Loads (see
-/// WidenIV::widenWithVariantLoadUse). This is the code generation part.
-void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
- Instruction *NarrowUse = DU.NarrowUse;
- Instruction *NarrowDef = DU.NarrowDef;
- Instruction *WideDef = DU.WideDef;
-
- ExtendKind ExtKind = getExtendKind(NarrowDef);
-
- LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
-
- // Generating a widening use instruction.
- Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(0), WideType,
- ExtKind, NarrowUse);
- Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(1), WideType,
- ExtKind, NarrowUse);
-
- auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
- auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
- NarrowBO->getName());
- IRBuilder<> Builder(NarrowUse);
- Builder.Insert(WideBO);
- WideBO->copyIRFlags(NarrowBO);
-
- if (ExtKind == SignExtended)
- ExtendKindMap[NarrowUse] = SignExtended;
- else
- ExtendKindMap[NarrowUse] = ZeroExtended;
-
- // Update the Use.
- if (ExtKind == SignExtended) {
- for (Use &U : NarrowUse->uses()) {
- SExtInst *User = dyn_cast<SExtInst>(U.getUser());
- if (User && User->getType() == WideType) {
- LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
- << *WideBO << "\n");
- ++NumElimExt;
- User->replaceAllUsesWith(WideBO);
- DeadInsts.emplace_back(User);
- }
- }
- } else { // ExtKind == ZeroExtended
- for (Use &U : NarrowUse->uses()) {
- ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
- if (User && User->getType() == WideType) {
- LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
- << *WideBO << "\n");
- ++NumElimExt;
- User->replaceAllUsesWith(WideBO);
- DeadInsts.emplace_back(User);
- }
- }
- }
-}
-
-/// Determine whether an individual user of the narrow IV can be widened. If so,
-/// return the wide clone of the user.
-Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
- assert(ExtendKindMap.count(DU.NarrowDef) &&
- "Should already know the kind of extension used to widen NarrowDef");
-
- // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
- if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
- if (LI->getLoopFor(UsePhi->getParent()) != L) {
- // For LCSSA phis, sink the truncate outside the loop.
- // After SimplifyCFG most loop exit targets have a single predecessor.
- // Otherwise fall back to a truncate within the loop.
- if (UsePhi->getNumOperands() != 1)
- truncateIVUse(DU, DT, LI);
- else {
- // Widening the PHI requires us to insert a trunc. The logical place
- // for this trunc is in the same BB as the PHI. This is not possible if
- // the BB is terminated by a catchswitch.
- if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
- return nullptr;
-
- PHINode *WidePhi =
- PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
- UsePhi);
- WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
- IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
- Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
- UsePhi->replaceAllUsesWith(Trunc);
- DeadInsts.emplace_back(UsePhi);
- LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
- << *WidePhi << "\n");
- }
- return nullptr;
- }
- }
-
- // This narrow use can be widened by a sext if it's non-negative or its narrow
- // def was widended by a sext. Same for zext.
- auto canWidenBySExt = [&]() {
- return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
- };
- auto canWidenByZExt = [&]() {
- return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
- };
-
- // Our raison d'etre! Eliminate sign and zero extension.
- if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
- (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
- Value *NewDef = DU.WideDef;
- if (DU.NarrowUse->getType() != WideType) {
- unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
- unsigned IVWidth = SE->getTypeSizeInBits(WideType);
- if (CastWidth < IVWidth) {
- // The cast isn't as wide as the IV, so insert a Trunc.
- IRBuilder<> Builder(DU.NarrowUse);
- NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
- }
- else {
- // A wider extend was hidden behind a narrower one. This may induce
- // another round of IV widening in which the intermediate IV becomes
- // dead. It should be very rare.
- LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
- << " not wide enough to subsume " << *DU.NarrowUse
- << "\n");
- DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
- NewDef = DU.NarrowUse;
- }
- }
- if (NewDef != DU.NarrowUse) {
- LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
- << " replaced by " << *DU.WideDef << "\n");
- ++NumElimExt;
- DU.NarrowUse->replaceAllUsesWith(NewDef);
- DeadInsts.emplace_back(DU.NarrowUse);
- }
- // Now that the extend is gone, we want to expose it's uses for potential
- // further simplification. We don't need to directly inform SimplifyIVUsers
- // of the new users, because their parent IV will be processed later as a
- // new loop phi. If we preserved IVUsers analysis, we would also want to
- // push the uses of WideDef here.
-
- // No further widening is needed. The deceased [sz]ext had done it for us.
- return nullptr;
- }
-
- // Does this user itself evaluate to a recurrence after widening?
- WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
- if (!WideAddRec.first)
- WideAddRec = getWideRecurrence(DU);
-
- assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
- if (!WideAddRec.first) {
- // If use is a loop condition, try to promote the condition instead of
- // truncating the IV first.
- if (widenLoopCompare(DU))
- return nullptr;
-
- // We are here about to generate a truncate instruction that may hurt
- // performance because the scalar evolution expression computed earlier
- // in WideAddRec.first does not indicate a polynomial induction expression.
- // In that case, look at the operands of the use instruction to determine
- // if we can still widen the use instead of truncating its operand.
- if (widenWithVariantLoadUse(DU)) {
- widenWithVariantLoadUseCodegen(DU);
- return nullptr;
- }
-
- // This user does not evaluate to a recurrence after widening, so don't
- // follow it. Instead insert a Trunc to kill off the original use,
- // eventually isolating the original narrow IV so it can be removed.
- truncateIVUse(DU, DT, LI);
- return nullptr;
- }
- // Assume block terminators cannot evaluate to a recurrence. We can't to
- // insert a Trunc after a terminator if there happens to be a critical edge.
- assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
- "SCEV is not expected to evaluate a block terminator");
-
- // Reuse the IV increment that SCEVExpander created as long as it dominates
- // NarrowUse.
- Instruction *WideUse = nullptr;
- if (WideAddRec.first == WideIncExpr &&
- Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
- WideUse = WideInc;
- else {
- WideUse = cloneIVUser(DU, WideAddRec.first);
- if (!WideUse)
- return nullptr;
- }
- // Evaluation of WideAddRec ensured that the narrow expression could be
- // extended outside the loop without overflow. This suggests that the wide use
- // evaluates to the same expression as the extended narrow use, but doesn't
- // absolutely guarantee it. Hence the following failsafe check. In rare cases
- // where it fails, we simply throw away the newly created wide use.
- if (WideAddRec.first != SE->getSCEV(WideUse)) {
- LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
- << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
- << "\n");
- DeadInsts.emplace_back(WideUse);
- return nullptr;
- }
-
- ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
- // Returning WideUse pushes it on the worklist.
- return WideUse;
-}
-
-/// Add eligible users of NarrowDef to NarrowIVUsers.
-void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
- const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
- bool NonNegativeDef =
- SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
- SE->getConstant(NarrowSCEV->getType(), 0));
- for (User *U : NarrowDef->users()) {
- Instruction *NarrowUser = cast<Instruction>(U);
-
- // Handle data flow merges and bizarre phi cycles.
- if (!Widened.insert(NarrowUser).second)
- continue;
-
- bool NonNegativeUse = false;
- if (!NonNegativeDef) {
- // We might have a control-dependent range information for this context.
- if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
- NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
- }
-
- NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
- NonNegativeDef || NonNegativeUse);
- }
-}
-
-/// Process a single induction variable. First use the SCEVExpander to create a
-/// wide induction variable that evaluates to the same recurrence as the
-/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
-/// def-use chain. After widenIVUse has processed all interesting IV users, the
-/// narrow IV will be isolated for removal by DeleteDeadPHIs.
-///
-/// It would be simpler to delete uses as they are processed, but we must avoid
-/// invalidating SCEV expressions.
-PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
- // Is this phi an induction variable?
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
- if (!AddRec)
- return nullptr;
-
- // Widen the induction variable expression.
- const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
- ? SE->getSignExtendExpr(AddRec, WideType)
- : SE->getZeroExtendExpr(AddRec, WideType);
-
- assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
- "Expect the new IV expression to preserve its type");
-
- // Can the IV be extended outside the loop without overflow?
- AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
- if (!AddRec || AddRec->getLoop() != L)
- return nullptr;
-
- // An AddRec must have loop-invariant operands. Since this AddRec is
- // materialized by a loop header phi, the expression cannot have any post-loop
- // operands, so they must dominate the loop header.
- assert(
- SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
- SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
- "Loop header phi recurrence inputs do not dominate the loop");
-
- // Iterate over IV uses (including transitive ones) looking for IV increments
- // of the form 'add nsw %iv, <const>'. For each increment and each use of
- // the increment calculate control-dependent range information basing on
- // dominating conditions inside of the loop (e.g. a range check inside of the
- // loop). Calculated ranges are stored in PostIncRangeInfos map.
- //
- // Control-dependent range information is later used to prove that a narrow
- // definition is not negative (see pushNarrowIVUsers). It's difficult to do
- // this on demand because when pushNarrowIVUsers needs this information some
- // of the dominating conditions might be already widened.
- if (UsePostIncrementRanges)
- calculatePostIncRanges(OrigPhi);
-
- // The rewriter provides a value for the desired IV expression. This may
- // either find an existing phi or materialize a new one. Either way, we
- // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
- // of the phi-SCC dominates the loop entry.
- Instruction *InsertPt = &L->getHeader()->front();
- WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
-
- // Remembering the WideIV increment generated by SCEVExpander allows
- // widenIVUse to reuse it when widening the narrow IV's increment. We don't
- // employ a general reuse mechanism because the call above is the only call to
- // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
- if (BasicBlock *LatchBlock = L->getLoopLatch()) {
- WideInc =
- cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
- WideIncExpr = SE->getSCEV(WideInc);
- // Propagate the debug location associated with the original loop increment
- // to the new (widened) increment.
- auto *OrigInc =
- cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
- WideInc->setDebugLoc(OrigInc->getDebugLoc());
- }
-
- LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
- ++NumWidened;
-
- // Traverse the def-use chain using a worklist starting at the original IV.
- assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
-
- Widened.insert(OrigPhi);
- pushNarrowIVUsers(OrigPhi, WidePhi);
-
- while (!NarrowIVUsers.empty()) {
- NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
-
- // Process a def-use edge. This may replace the use, so don't hold a
- // use_iterator across it.
- Instruction *WideUse = widenIVUse(DU, Rewriter);
-
- // Follow all def-use edges from the previous narrow use.
- if (WideUse)
- pushNarrowIVUsers(DU.NarrowUse, WideUse);
-
- // widenIVUse may have removed the def-use edge.
- if (DU.NarrowDef->use_empty())
- DeadInsts.emplace_back(DU.NarrowDef);
- }
-
- // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
- // evaluate the same recurrence, we can just copy the debug info over.
- SmallVector<DbgValueInst *, 1> DbgValues;
- llvm::findDbgValues(DbgValues, OrigPhi);
- auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
- ValueAsMetadata::get(WidePhi));
- for (auto &DbgValue : DbgValues)
- DbgValue->setOperand(0, MDPhi);
- return WidePhi;
-}
-
-/// Calculates control-dependent range for the given def at the given context
-/// by looking at dominating conditions inside of the loop
-void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
- Instruction *NarrowUser) {
- using namespace llvm::PatternMatch;
-
- Value *NarrowDefLHS;
- const APInt *NarrowDefRHS;
- if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
- m_APInt(NarrowDefRHS))) ||
- !NarrowDefRHS->isNonNegative())
- return;
-
- auto UpdateRangeFromCondition = [&] (Value *Condition,
- bool TrueDest) {
- CmpInst::Predicate Pred;
- Value *CmpRHS;
- if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
- m_Value(CmpRHS))))
- return;
-
- CmpInst::Predicate P =
- TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
-
- auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
- auto CmpConstrainedLHSRange =
- ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
- auto NarrowDefRange =
- CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
-
- updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
- };
-
- auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
- if (!HasGuards)
- return;
-
- for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
- Ctx->getParent()->rend())) {
- Value *C = nullptr;
- if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
- UpdateRangeFromCondition(C, /*TrueDest=*/true);
- }
- };
-
- UpdateRangeFromGuards(NarrowUser);
-
- BasicBlock *NarrowUserBB = NarrowUser->getParent();
- // If NarrowUserBB is statically unreachable asking dominator queries may
- // yield surprising results. (e.g. the block may not have a dom tree node)
- if (!DT->isReachableFromEntry(NarrowUserBB))
- return;
-
- for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
- L->contains(DTB->getBlock());
- DTB = DTB->getIDom()) {
- auto *BB = DTB->getBlock();
- auto *TI = BB->getTerminator();
- UpdateRangeFromGuards(TI);
-
- auto *BI = dyn_cast<BranchInst>(TI);
- if (!BI || !BI->isConditional())
- continue;
-
- auto *TrueSuccessor = BI->getSuccessor(0);
- auto *FalseSuccessor = BI->getSuccessor(1);
-
- auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
- return BBE.isSingleEdge() &&
- DT->dominates(BBE, NarrowUser->getParent());
- };
-
- if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
- UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
-
- if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
- UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
- }
-}
-
-/// Calculates PostIncRangeInfos map for the given IV
-void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
- SmallPtrSet<Instruction *, 16> Visited;
- SmallVector<Instruction *, 6> Worklist;
- Worklist.push_back(OrigPhi);
- Visited.insert(OrigPhi);
-
- while (!Worklist.empty()) {
- Instruction *NarrowDef = Worklist.pop_back_val();
-
- for (Use &U : NarrowDef->uses()) {
- auto *NarrowUser = cast<Instruction>(U.getUser());
-
- // Don't go looking outside the current loop.
- auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
- if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
- continue;
-
- if (!Visited.insert(NarrowUser).second)
- continue;
-
- Worklist.push_back(NarrowUser);
-
- calculatePostIncRange(NarrowDef, NarrowUser);
- }
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Live IV Reduction - Minimize IVs live across the loop.
-//===----------------------------------------------------------------------===//
-
-//===----------------------------------------------------------------------===//
-// Simplification of IV users based on SCEV evaluation.
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-class IndVarSimplifyVisitor : public IVVisitor {
- ScalarEvolution *SE;
- const TargetTransformInfo *TTI;
- PHINode *IVPhi;
-
-public:
- WideIVInfo WI;
-
- IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
- const TargetTransformInfo *TTI,
- const DominatorTree *DTree)
- : SE(SCEV), TTI(TTI), IVPhi(IV) {
- DT = DTree;
- WI.NarrowIV = IVPhi;
- }
-
- // Implement the interface used by simplifyUsersOfIV.
- void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
-};
-
-} // end anonymous namespace
-
-/// Iteratively perform simplification on a worklist of IV users. Each
-/// successive simplification may push more users which may themselves be
-/// candidates for simplification.
-///
-/// Sign/Zero extend elimination is interleaved with IV simplification.
-bool IndVarSimplify::simplifyAndExtend(Loop *L,
- SCEVExpander &Rewriter,
- LoopInfo *LI) {
- SmallVector<WideIVInfo, 8> WideIVs;
-
- auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
- Intrinsic::getName(Intrinsic::experimental_guard));
- bool HasGuards = GuardDecl && !GuardDecl->use_empty();
-
- SmallVector<PHINode*, 8> LoopPhis;
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
- LoopPhis.push_back(cast<PHINode>(I));
- }
- // Each round of simplification iterates through the SimplifyIVUsers worklist
- // for all current phis, then determines whether any IVs can be
- // widened. Widening adds new phis to LoopPhis, inducing another round of
- // simplification on the wide IVs.
- bool Changed = false;
- while (!LoopPhis.empty()) {
- // Evaluate as many IV expressions as possible before widening any IVs. This
- // forces SCEV to set no-wrap flags before evaluating sign/zero
- // extension. The first time SCEV attempts to normalize sign/zero extension,
- // the result becomes final. So for the most predictable results, we delay
- // evaluation of sign/zero extend evaluation until needed, and avoid running
- // other SCEV based analysis prior to simplifyAndExtend.
- do {
- PHINode *CurrIV = LoopPhis.pop_back_val();
-
- // Information about sign/zero extensions of CurrIV.
- IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
-
- Changed |=
- simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
-
- if (Visitor.WI.WidestNativeType) {
- WideIVs.push_back(Visitor.WI);
- }
- } while(!LoopPhis.empty());
-
- for (; !WideIVs.empty(); WideIVs.pop_back()) {
- WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
- if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
- Changed = true;
- LoopPhis.push_back(WidePhi);
- }
- }
- }
- return Changed;
-}
-
-//===----------------------------------------------------------------------===//
-// linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
-//===----------------------------------------------------------------------===//
-
-/// Given an Value which is hoped to be part of an add recurance in the given
-/// loop, return the associated Phi node if so. Otherwise, return null. Note
-/// that this is less general than SCEVs AddRec checking.
-static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
- Instruction *IncI = dyn_cast<Instruction>(IncV);
- if (!IncI)
- return nullptr;
-
- switch (IncI->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- break;
- case Instruction::GetElementPtr:
- // An IV counter must preserve its type.
- if (IncI->getNumOperands() == 2)
- break;
- LLVM_FALLTHROUGH;
- default:
- return nullptr;
- }
-
- PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
- if (Phi && Phi->getParent() == L->getHeader()) {
- if (L->isLoopInvariant(IncI->getOperand(1)))
- return Phi;
- return nullptr;
- }
- if (IncI->getOpcode() == Instruction::GetElementPtr)
- return nullptr;
-
- // Allow add/sub to be commuted.
- Phi = dyn_cast<PHINode>(IncI->getOperand(1));
- if (Phi && Phi->getParent() == L->getHeader()) {
- if (L->isLoopInvariant(IncI->getOperand(0)))
- return Phi;
- }
- return nullptr;
-}
-
-/// Whether the current loop exit test is based on this value. Currently this
-/// is limited to a direct use in the loop condition.
-static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
- BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
- ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
- // TODO: Allow non-icmp loop test.
- if (!ICmp)
- return false;
-
- // TODO: Allow indirect use.
- return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
-}
-
-/// linearFunctionTestReplace policy. Return true unless we can show that the
-/// current exit test is already sufficiently canonical.
-static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
- assert(L->getLoopLatch() && "Must be in simplified form");
-
- // Avoid converting a constant or loop invariant test back to a runtime
- // test. This is critical for when SCEV's cached ExitCount is less precise
- // than the current IR (such as after we've proven a particular exit is
- // actually dead and thus the BE count never reaches our ExitCount.)
- BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
- if (L->isLoopInvariant(BI->getCondition()))
- return false;
-
- // Do LFTR to simplify the exit condition to an ICMP.
- ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
- if (!Cond)
- return true;
-
- // Do LFTR to simplify the exit ICMP to EQ/NE
- ICmpInst::Predicate Pred = Cond->getPredicate();
- if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
- return true;
-
- // Look for a loop invariant RHS
- Value *LHS = Cond->getOperand(0);
- Value *RHS = Cond->getOperand(1);
- if (!L->isLoopInvariant(RHS)) {
- if (!L->isLoopInvariant(LHS))
- return true;
- std::swap(LHS, RHS);
- }
- // Look for a simple IV counter LHS
- PHINode *Phi = dyn_cast<PHINode>(LHS);
- if (!Phi)
- Phi = getLoopPhiForCounter(LHS, L);
-
- if (!Phi)
- return true;
-
- // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
- int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
- if (Idx < 0)
- return true;
-
- // Do LFTR if the exit condition's IV is *not* a simple counter.
- Value *IncV = Phi->getIncomingValue(Idx);
- return Phi != getLoopPhiForCounter(IncV, L);
-}
-
-/// Return true if undefined behavior would provable be executed on the path to
-/// OnPathTo if Root produced a posion result. Note that this doesn't say
-/// anything about whether OnPathTo is actually executed or whether Root is
-/// actually poison. This can be used to assess whether a new use of Root can
-/// be added at a location which is control equivalent with OnPathTo (such as
-/// immediately before it) without introducing UB which didn't previously
-/// exist. Note that a false result conveys no information.
-static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
- Instruction *OnPathTo,
- DominatorTree *DT) {
- // Basic approach is to assume Root is poison, propagate poison forward
- // through all users we can easily track, and then check whether any of those
- // users are provable UB and must execute before out exiting block might
- // exit.
-
- // The set of all recursive users we've visited (which are assumed to all be
- // poison because of said visit)
- SmallSet<const Value *, 16> KnownPoison;
- SmallVector<const Instruction*, 16> Worklist;
- Worklist.push_back(Root);
- while (!Worklist.empty()) {
- const Instruction *I = Worklist.pop_back_val();
-
- // If we know this must trigger UB on a path leading our target.
- if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
- return true;
-
- // If we can't analyze propagation through this instruction, just skip it
- // and transitive users. Safe as false is a conservative result.
- if (!propagatesFullPoison(I) && I != Root)
- continue;
-
- if (KnownPoison.insert(I).second)
- for (const User *User : I->users())
- Worklist.push_back(cast<Instruction>(User));
- }
-
- // Might be non-UB, or might have a path we couldn't prove must execute on
- // way to exiting bb.
- return false;
-}
-
-/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
-/// down to checking that all operands are constant and listing instructions
-/// that may hide undef.
-static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
- unsigned Depth) {
- if (isa<Constant>(V))
- return !isa<UndefValue>(V);
-
- if (Depth >= 6)
- return false;
-
- // Conservatively handle non-constant non-instructions. For example, Arguments
- // may be undef.
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I)
- return false;
-
- // Load and return values may be undef.
- if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
- return false;
-
- // Optimistically handle other instructions.
- for (Value *Op : I->operands()) {
- if (!Visited.insert(Op).second)
- continue;
- if (!hasConcreteDefImpl(Op, Visited, Depth+1))
- return false;
- }
- return true;
-}
-
-/// Return true if the given value is concrete. We must prove that undef can
-/// never reach it.
-///
-/// TODO: If we decide that this is a good approach to checking for undef, we
-/// may factor it into a common location.
-static bool hasConcreteDef(Value *V) {
- SmallPtrSet<Value*, 8> Visited;
- Visited.insert(V);
- return hasConcreteDefImpl(V, Visited, 0);
-}
-
-/// Return true if this IV has any uses other than the (soon to be rewritten)
-/// loop exit test.
-static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
- int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
- Value *IncV = Phi->getIncomingValue(LatchIdx);
-
- for (User *U : Phi->users())
- if (U != Cond && U != IncV) return false;
-
- for (User *U : IncV->users())
- if (U != Cond && U != Phi) return false;
- return true;
-}
-
-/// Return true if the given phi is a "counter" in L. A counter is an
-/// add recurance (of integer or pointer type) with an arbitrary start, and a
-/// step of 1. Note that L must have exactly one latch.
-static bool isLoopCounter(PHINode* Phi, Loop *L,
- ScalarEvolution *SE) {
- assert(Phi->getParent() == L->getHeader());
- assert(L->getLoopLatch());
-
- if (!SE->isSCEVable(Phi->getType()))
- return false;
-
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
- if (!AR || AR->getLoop() != L || !AR->isAffine())
- return false;
-
- const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
- if (!Step || !Step->isOne())
- return false;
-
- int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
- Value *IncV = Phi->getIncomingValue(LatchIdx);
- return (getLoopPhiForCounter(IncV, L) == Phi);
-}
-
-/// Search the loop header for a loop counter (anadd rec w/step of one)
-/// suitable for use by LFTR. If multiple counters are available, select the
-/// "best" one based profitable heuristics.
-///
-/// BECount may be an i8* pointer type. The pointer difference is already
-/// valid count without scaling the address stride, so it remains a pointer
-/// expression as far as SCEV is concerned.
-static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
- const SCEV *BECount,
- ScalarEvolution *SE, DominatorTree *DT) {
- uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
-
- Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
-
- // Loop over all of the PHI nodes, looking for a simple counter.
- PHINode *BestPhi = nullptr;
- const SCEV *BestInit = nullptr;
- BasicBlock *LatchBlock = L->getLoopLatch();
- assert(LatchBlock && "Must be in simplified form");
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
-
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
- PHINode *Phi = cast<PHINode>(I);
- if (!isLoopCounter(Phi, L, SE))
- continue;
-
- // Avoid comparing an integer IV against a pointer Limit.
- if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
- continue;
-
- const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
-
- // AR may be a pointer type, while BECount is an integer type.
- // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
- // AR may not be a narrower type, or we may never exit.
- uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
- if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
- continue;
-
- // Avoid reusing a potentially undef value to compute other values that may
- // have originally had a concrete definition.
- if (!hasConcreteDef(Phi)) {
- // We explicitly allow unknown phis as long as they are already used by
- // the loop exit test. This is legal since performing LFTR could not
- // increase the number of undef users.
- Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
- if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
- !isLoopExitTestBasedOn(IncPhi, ExitingBB))
- continue;
- }
-
- // Avoid introducing undefined behavior due to poison which didn't exist in
- // the original program. (Annoyingly, the rules for poison and undef
- // propagation are distinct, so this does NOT cover the undef case above.)
- // We have to ensure that we don't introduce UB by introducing a use on an
- // iteration where said IV produces poison. Our strategy here differs for
- // pointers and integer IVs. For integers, we strip and reinfer as needed,
- // see code in linearFunctionTestReplace. For pointers, we restrict
- // transforms as there is no good way to reinfer inbounds once lost.
- if (!Phi->getType()->isIntegerTy() &&
- !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
- continue;
-
- const SCEV *Init = AR->getStart();
-
- if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
- // Don't force a live loop counter if another IV can be used.
- if (AlmostDeadIV(Phi, LatchBlock, Cond))
- continue;
-
- // Prefer to count-from-zero. This is a more "canonical" counter form. It
- // also prefers integer to pointer IVs.
- if (BestInit->isZero() != Init->isZero()) {
- if (BestInit->isZero())
- continue;
- }
- // If two IVs both count from zero or both count from nonzero then the
- // narrower is likely a dead phi that has been widened. Use the wider phi
- // to allow the other to be eliminated.
- else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
- continue;
- }
- BestPhi = Phi;
- BestInit = Init;
- }
- return BestPhi;
-}
-
-/// Insert an IR expression which computes the value held by the IV IndVar
-/// (which must be an loop counter w/unit stride) after the backedge of loop L
-/// is taken ExitCount times.
-static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
- const SCEV *ExitCount, bool UsePostInc, Loop *L,
- SCEVExpander &Rewriter, ScalarEvolution *SE) {
- assert(isLoopCounter(IndVar, L, SE));
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
- const SCEV *IVInit = AR->getStart();
-
- // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
- // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
- // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
- // the existing GEPs whenever possible.
- if (IndVar->getType()->isPointerTy() &&
- !ExitCount->getType()->isPointerTy()) {
- // IVOffset will be the new GEP offset that is interpreted by GEP as a
- // signed value. ExitCount on the other hand represents the loop trip count,
- // which is an unsigned value. FindLoopCounter only allows induction
- // variables that have a positive unit stride of one. This means we don't
- // have to handle the case of negative offsets (yet) and just need to zero
- // extend ExitCount.
- Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
- const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
- if (UsePostInc)
- IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
-
- // Expand the code for the iteration count.
- assert(SE->isLoopInvariant(IVOffset, L) &&
- "Computed iteration count is not loop invariant!");
-
- // We could handle pointer IVs other than i8*, but we need to compensate for
- // gep index scaling.
- assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
- cast<PointerType>(IndVar->getType())
- ->getElementType())->isOne() &&
- "unit stride pointer IV must be i8*");
-
- const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
- BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
- return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
- } else {
- // In any other case, convert both IVInit and ExitCount to integers before
- // comparing. This may result in SCEV expansion of pointers, but in practice
- // SCEV will fold the pointer arithmetic away as such:
- // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
- //
- // Valid Cases: (1) both integers is most common; (2) both may be pointers
- // for simple memset-style loops.
- //
- // IVInit integer and ExitCount pointer would only occur if a canonical IV
- // were generated on top of case #2, which is not expected.
-
- assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
- // For unit stride, IVCount = Start + ExitCount with 2's complement
- // overflow.
-
- // For integer IVs, truncate the IV before computing IVInit + BECount,
- // unless we know apriori that the limit must be a constant when evaluated
- // in the bitwidth of the IV. We prefer (potentially) keeping a truncate
- // of the IV in the loop over a (potentially) expensive expansion of the
- // widened exit count add(zext(add)) expression.
- if (SE->getTypeSizeInBits(IVInit->getType())
- > SE->getTypeSizeInBits(ExitCount->getType())) {
- if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
- ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
- else
- IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
- }
-
- const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
-
- if (UsePostInc)
- IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
-
- // Expand the code for the iteration count.
- assert(SE->isLoopInvariant(IVLimit, L) &&
- "Computed iteration count is not loop invariant!");
- // Ensure that we generate the same type as IndVar, or a smaller integer
- // type. In the presence of null pointer values, we have an integer type
- // SCEV expression (IVInit) for a pointer type IV value (IndVar).
- Type *LimitTy = ExitCount->getType()->isPointerTy() ?
- IndVar->getType() : ExitCount->getType();
- BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
- return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
- }
-}
-
-/// This method rewrites the exit condition of the loop to be a canonical !=
-/// comparison against the incremented loop induction variable. This pass is
-/// able to rewrite the exit tests of any loop where the SCEV analysis can
-/// determine a loop-invariant trip count of the loop, which is actually a much
-/// broader range than just linear tests.
-bool IndVarSimplify::
-linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
- const SCEV *ExitCount,
- PHINode *IndVar, SCEVExpander &Rewriter) {
- assert(L->getLoopLatch() && "Loop no longer in simplified form?");
- assert(isLoopCounter(IndVar, L, SE));
- Instruction * const IncVar =
- cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
-
- // Initialize CmpIndVar to the preincremented IV.
- Value *CmpIndVar = IndVar;
- bool UsePostInc = false;
-
- // If the exiting block is the same as the backedge block, we prefer to
- // compare against the post-incremented value, otherwise we must compare
- // against the preincremented value.
- if (ExitingBB == L->getLoopLatch()) {
- // For pointer IVs, we chose to not strip inbounds which requires us not
- // to add a potentially UB introducing use. We need to either a) show
- // the loop test we're modifying is already in post-inc form, or b) show
- // that adding a use must not introduce UB.
- bool SafeToPostInc =
- IndVar->getType()->isIntegerTy() ||
- isLoopExitTestBasedOn(IncVar, ExitingBB) ||
- mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
- if (SafeToPostInc) {
- UsePostInc = true;
- CmpIndVar = IncVar;
- }
- }
-
- // It may be necessary to drop nowrap flags on the incrementing instruction
- // if either LFTR moves from a pre-inc check to a post-inc check (in which
- // case the increment might have previously been poison on the last iteration
- // only) or if LFTR switches to a different IV that was previously dynamically
- // dead (and as such may be arbitrarily poison). We remove any nowrap flags
- // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
- // check), because the pre-inc addrec flags may be adopted from the original
- // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
- // TODO: This handling is inaccurate for one case: If we switch to a
- // dynamically dead IV that wraps on the first loop iteration only, which is
- // not covered by the post-inc addrec. (If the new IV was not dynamically
- // dead, it could not be poison on the first iteration in the first place.)
- if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
- if (BO->hasNoUnsignedWrap())
- BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
- if (BO->hasNoSignedWrap())
- BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
- }
-
- Value *ExitCnt = genLoopLimit(
- IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
- assert(ExitCnt->getType()->isPointerTy() ==
- IndVar->getType()->isPointerTy() &&
- "genLoopLimit missed a cast");
-
- // Insert a new icmp_ne or icmp_eq instruction before the branch.
- BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
- ICmpInst::Predicate P;
- if (L->contains(BI->getSuccessor(0)))
- P = ICmpInst::ICMP_NE;
- else
- P = ICmpInst::ICMP_EQ;
-
- IRBuilder<> Builder(BI);
-
- // The new loop exit condition should reuse the debug location of the
- // original loop exit condition.
- if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
- Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
-
- // For integer IVs, if we evaluated the limit in the narrower bitwidth to
- // avoid the expensive expansion of the limit expression in the wider type,
- // emit a truncate to narrow the IV to the ExitCount type. This is safe
- // since we know (from the exit count bitwidth), that we can't self-wrap in
- // the narrower type.
- unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
- unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
- if (CmpIndVarSize > ExitCntSize) {
- assert(!CmpIndVar->getType()->isPointerTy() &&
- !ExitCnt->getType()->isPointerTy());
-
- // Before resorting to actually inserting the truncate, use the same
- // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
- // the other side of the comparison instead. We still evaluate the limit
- // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
- // a truncate within in.
- bool Extended = false;
- const SCEV *IV = SE->getSCEV(CmpIndVar);
- const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
- ExitCnt->getType());
- const SCEV *ZExtTrunc =
- SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
-
- if (ZExtTrunc == IV) {
- Extended = true;
- ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
- "wide.trip.count");
- } else {
- const SCEV *SExtTrunc =
- SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
- if (SExtTrunc == IV) {
- Extended = true;
- ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
- "wide.trip.count");
- }
- }
-
- if (Extended) {
- bool Discard;
- L->makeLoopInvariant(ExitCnt, Discard);
- } else
- CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
- "lftr.wideiv");
- }
- LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
- << " LHS:" << *CmpIndVar << '\n'
- << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
- << "\n"
- << " RHS:\t" << *ExitCnt << "\n"
- << "ExitCount:\t" << *ExitCount << "\n"
- << " was: " << *BI->getCondition() << "\n");
-
- Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
- Value *OrigCond = BI->getCondition();
- // It's tempting to use replaceAllUsesWith here to fully replace the old
- // comparison, but that's not immediately safe, since users of the old
- // comparison may not be dominated by the new comparison. Instead, just
- // update the branch to use the new comparison; in the common case this
- // will make old comparison dead.
- BI->setCondition(Cond);
- DeadInsts.push_back(OrigCond);
-
- ++NumLFTR;
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
-//===----------------------------------------------------------------------===//
-
-/// If there's a single exit block, sink any loop-invariant values that
-/// were defined in the preheader but not used inside the loop into the
-/// exit block to reduce register pressure in the loop.
-bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
- BasicBlock *ExitBlock = L->getExitBlock();
- if (!ExitBlock) return false;
-
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) return false;
-
- bool MadeAnyChanges = false;
- BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
- BasicBlock::iterator I(Preheader->getTerminator());
- while (I != Preheader->begin()) {
- --I;
- // New instructions were inserted at the end of the preheader.
- if (isa<PHINode>(I))
- break;
-
- // Don't move instructions which might have side effects, since the side
- // effects need to complete before instructions inside the loop. Also don't
- // move instructions which might read memory, since the loop may modify
- // memory. Note that it's okay if the instruction might have undefined
- // behavior: LoopSimplify guarantees that the preheader dominates the exit
- // block.
- if (I->mayHaveSideEffects() || I->mayReadFromMemory())
- continue;
-
- // Skip debug info intrinsics.
- if (isa<DbgInfoIntrinsic>(I))
- continue;
-
- // Skip eh pad instructions.
- if (I->isEHPad())
- continue;
-
- // Don't sink alloca: we never want to sink static alloca's out of the
- // entry block, and correctly sinking dynamic alloca's requires
- // checks for stacksave/stackrestore intrinsics.
- // FIXME: Refactor this check somehow?
- if (isa<AllocaInst>(I))
- continue;
-
- // Determine if there is a use in or before the loop (direct or
- // otherwise).
- bool UsedInLoop = false;
- for (Use &U : I->uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- BasicBlock *UseBB = User->getParent();
- if (PHINode *P = dyn_cast<PHINode>(User)) {
- unsigned i =
- PHINode::getIncomingValueNumForOperand(U.getOperandNo());
- UseBB = P->getIncomingBlock(i);
- }
- if (UseBB == Preheader || L->contains(UseBB)) {
- UsedInLoop = true;
- break;
- }
- }
-
- // If there is, the def must remain in the preheader.
- if (UsedInLoop)
- continue;
-
- // Otherwise, sink it to the exit block.
- Instruction *ToMove = &*I;
- bool Done = false;
-
- if (I != Preheader->begin()) {
- // Skip debug info intrinsics.
- do {
- --I;
- } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
-
- if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
- Done = true;
- } else {
- Done = true;
- }
-
- MadeAnyChanges = true;
- ToMove->moveBefore(*ExitBlock, InsertPt);
- if (Done) break;
- InsertPt = ToMove->getIterator();
- }
-
- return MadeAnyChanges;
-}
-
-bool IndVarSimplify::optimizeLoopExits(Loop *L) {
- SmallVector<BasicBlock*, 16> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
-
- // Form an expression for the maximum exit count possible for this loop. We
- // merge the max and exact information to approximate a version of
- // getMaxBackedgeTakenInfo which isn't restricted to just constants.
- // TODO: factor this out as a version of getMaxBackedgeTakenCount which
- // isn't guaranteed to return a constant.
- SmallVector<const SCEV*, 4> ExitCounts;
- const SCEV *MaxConstEC = SE->getMaxBackedgeTakenCount(L);
- if (!isa<SCEVCouldNotCompute>(MaxConstEC))
- ExitCounts.push_back(MaxConstEC);
- for (BasicBlock *ExitingBB : ExitingBlocks) {
- const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
- if (!isa<SCEVCouldNotCompute>(ExitCount)) {
- assert(DT->dominates(ExitingBB, L->getLoopLatch()) &&
- "We should only have known counts for exiting blocks that "
- "dominate latch!");
- ExitCounts.push_back(ExitCount);
- }
- }
- if (ExitCounts.empty())
- return false;
- const SCEV *MaxExitCount = SE->getUMinFromMismatchedTypes(ExitCounts);
-
- bool Changed = false;
- for (BasicBlock *ExitingBB : ExitingBlocks) {
- // If our exitting block exits multiple loops, we can only rewrite the
- // innermost one. Otherwise, we're changing how many times the innermost
- // loop runs before it exits.
- if (LI->getLoopFor(ExitingBB) != L)
- continue;
-
- // Can't rewrite non-branch yet.
- BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
- if (!BI)
- continue;
-
- // If already constant, nothing to do.
- if (isa<Constant>(BI->getCondition()))
- continue;
-
- const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
- if (isa<SCEVCouldNotCompute>(ExitCount))
- continue;
-
- // If we know we'd exit on the first iteration, rewrite the exit to
- // reflect this. This does not imply the loop must exit through this
- // exit; there may be an earlier one taken on the first iteration.
- // TODO: Given we know the backedge can't be taken, we should go ahead
- // and break it. Or at least, kill all the header phis and simplify.
- if (ExitCount->isZero()) {
- bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
- auto *OldCond = BI->getCondition();
- auto *NewCond = ExitIfTrue ? ConstantInt::getTrue(OldCond->getType()) :
- ConstantInt::getFalse(OldCond->getType());
- BI->setCondition(NewCond);
- if (OldCond->use_empty())
- DeadInsts.push_back(OldCond);
- Changed = true;
- continue;
- }
-
- // If we end up with a pointer exit count, bail.
- if (!ExitCount->getType()->isIntegerTy() ||
- !MaxExitCount->getType()->isIntegerTy())
- return false;
-
- Type *WiderType =
- SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
- ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
- MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
- assert(MaxExitCount->getType() == ExitCount->getType());
-
- // Can we prove that some other exit must be taken strictly before this
- // one? TODO: handle cases where ule is known, and equality is covered
- // by a dominating exit
- if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
- MaxExitCount, ExitCount)) {
- bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
- auto *OldCond = BI->getCondition();
- auto *NewCond = ExitIfTrue ? ConstantInt::getFalse(OldCond->getType()) :
- ConstantInt::getTrue(OldCond->getType());
- BI->setCondition(NewCond);
- if (OldCond->use_empty())
- DeadInsts.push_back(OldCond);
- Changed = true;
- continue;
- }
-
- // TODO: If we can prove that the exiting iteration is equal to the exit
- // count for this exit and that no previous exit oppurtunities exist within
- // the loop, then we can discharge all other exits. (May fall out of
- // previous TODO.)
-
- // TODO: If we can't prove any relation between our exit count and the
- // loops exit count, but taking this exit doesn't require actually running
- // the loop (i.e. no side effects, no computed values used in exit), then
- // we can replace the exit test with a loop invariant test which exits on
- // the first iteration.
- }
- return Changed;
-}
-
-//===----------------------------------------------------------------------===//
-// IndVarSimplify driver. Manage several subpasses of IV simplification.
-//===----------------------------------------------------------------------===//
-
-bool IndVarSimplify::run(Loop *L) {
- // We need (and expect!) the incoming loop to be in LCSSA.
- assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
- "LCSSA required to run indvars!");
- bool Changed = false;
-
- // If LoopSimplify form is not available, stay out of trouble. Some notes:
- // - LSR currently only supports LoopSimplify-form loops. Indvars'
- // canonicalization can be a pessimization without LSR to "clean up"
- // afterwards.
- // - We depend on having a preheader; in particular,
- // Loop::getCanonicalInductionVariable only supports loops with preheaders,
- // and we're in trouble if we can't find the induction variable even when
- // we've manually inserted one.
- // - LFTR relies on having a single backedge.
- if (!L->isLoopSimplifyForm())
- return false;
-
- // If there are any floating-point recurrences, attempt to
- // transform them to use integer recurrences.
- Changed |= rewriteNonIntegerIVs(L);
-
- const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
-
- // Create a rewriter object which we'll use to transform the code with.
- SCEVExpander Rewriter(*SE, DL, "indvars");
-#ifndef NDEBUG
- Rewriter.setDebugType(DEBUG_TYPE);
-#endif
-
- // Eliminate redundant IV users.
- //
- // Simplification works best when run before other consumers of SCEV. We
- // attempt to avoid evaluating SCEVs for sign/zero extend operations until
- // other expressions involving loop IVs have been evaluated. This helps SCEV
- // set no-wrap flags before normalizing sign/zero extension.
- Rewriter.disableCanonicalMode();
- Changed |= simplifyAndExtend(L, Rewriter, LI);
-
- // Check to see if this loop has a computable loop-invariant execution count.
- // If so, this means that we can compute the final value of any expressions
- // that are recurrent in the loop, and substitute the exit values from the
- // loop into any instructions outside of the loop that use the final values of
- // the current expressions.
- //
- if (ReplaceExitValue != NeverRepl &&
- !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
- Changed |= rewriteLoopExitValues(L, Rewriter);
-
- // Eliminate redundant IV cycles.
- NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
-
- Changed |= optimizeLoopExits(L);
-
- // If we have a trip count expression, rewrite the loop's exit condition
- // using it.
- if (!DisableLFTR) {
- SmallVector<BasicBlock*, 16> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- for (BasicBlock *ExitingBB : ExitingBlocks) {
- // Can't rewrite non-branch yet.
- if (!isa<BranchInst>(ExitingBB->getTerminator()))
- continue;
-
- // If our exitting block exits multiple loops, we can only rewrite the
- // innermost one. Otherwise, we're changing how many times the innermost
- // loop runs before it exits.
- if (LI->getLoopFor(ExitingBB) != L)
- continue;
-
- if (!needsLFTR(L, ExitingBB))
- continue;
-
- const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
- if (isa<SCEVCouldNotCompute>(ExitCount))
- continue;
-
- // This was handled above, but as we form SCEVs, we can sometimes refine
- // existing ones; this allows exit counts to be folded to zero which
- // weren't when optimizeLoopExits saw them. Arguably, we should iterate
- // until stable to handle cases like this better.
- if (ExitCount->isZero())
- continue;
-
- PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
- if (!IndVar)
- continue;
-
- // Avoid high cost expansions. Note: This heuristic is questionable in
- // that our definition of "high cost" is not exactly principled.
- if (Rewriter.isHighCostExpansion(ExitCount, L))
- continue;
-
- // Check preconditions for proper SCEVExpander operation. SCEV does not
- // express SCEVExpander's dependencies, such as LoopSimplify. Instead
- // any pass that uses the SCEVExpander must do it. This does not work
- // well for loop passes because SCEVExpander makes assumptions about
- // all loops, while LoopPassManager only forces the current loop to be
- // simplified.
- //
- // FIXME: SCEV expansion has no way to bail out, so the caller must
- // explicitly check any assumptions made by SCEV. Brittle.
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
- if (!AR || AR->getLoop()->getLoopPreheader())
- Changed |= linearFunctionTestReplace(L, ExitingBB,
- ExitCount, IndVar,
- Rewriter);
- }
- }
- // Clear the rewriter cache, because values that are in the rewriter's cache
- // can be deleted in the loop below, causing the AssertingVH in the cache to
- // trigger.
- Rewriter.clear();
-
- // Now that we're done iterating through lists, clean up any instructions
- // which are now dead.
- while (!DeadInsts.empty())
- if (Instruction *Inst =
- dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
- Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
-
- // The Rewriter may not be used from this point on.
-
- // Loop-invariant instructions in the preheader that aren't used in the
- // loop may be sunk below the loop to reduce register pressure.
- Changed |= sinkUnusedInvariants(L);
-
- // rewriteFirstIterationLoopExitValues does not rely on the computation of
- // trip count and therefore can further simplify exit values in addition to
- // rewriteLoopExitValues.
- Changed |= rewriteFirstIterationLoopExitValues(L);
-
- // Clean up dead instructions.
- Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
-
- // Check a post-condition.
- assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
- "Indvars did not preserve LCSSA!");
-
- // Verify that LFTR, and any other change have not interfered with SCEV's
- // ability to compute trip count.
-#ifndef NDEBUG
- if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
- SE->forgetLoop(L);
- const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
- if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
- SE->getTypeSizeInBits(NewBECount->getType()))
- NewBECount = SE->getTruncateOrNoop(NewBECount,
- BackedgeTakenCount->getType());
- else
- BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
- NewBECount->getType());
- assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
- }
-#endif
-
- return Changed;
-}
-
-PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &) {
- Function *F = L.getHeader()->getParent();
- const DataLayout &DL = F->getParent()->getDataLayout();
-
- IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
- if (!IVS.run(&L))
- return PreservedAnalyses::all();
-
- auto PA = getLoopPassPreservedAnalyses();
- PA.preserveSet<CFGAnalyses>();
- return PA;
-}
-
-namespace {
-
-struct IndVarSimplifyLegacyPass : public LoopPass {
- static char ID; // Pass identification, replacement for typeid
-
- IndVarSimplifyLegacyPass() : LoopPass(ID) {
- initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L))
- return false;
-
- auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
- auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
- auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
-
- IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
- return IVS.run(L);
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- getLoopAnalysisUsage(AU);
- }
-};
-
-} // end anonymous namespace
-
-char IndVarSimplifyLegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
- "Induction Variable Simplification", false, false)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
- "Induction Variable Simplification", false, false)
-
-Pass *llvm::createIndVarSimplifyPass() {
- return new IndVarSimplifyLegacyPass();
-}