summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp1039
1 files changed, 0 insertions, 1039 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp b/contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
deleted file mode 100644
index 5f0e2001c73d..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
+++ /dev/null
@@ -1,1039 +0,0 @@
-//===- InferAddressSpace.cpp - --------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// CUDA C/C++ includes memory space designation as variable type qualifers (such
-// as __global__ and __shared__). Knowing the space of a memory access allows
-// CUDA compilers to emit faster PTX loads and stores. For example, a load from
-// shared memory can be translated to `ld.shared` which is roughly 10% faster
-// than a generic `ld` on an NVIDIA Tesla K40c.
-//
-// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
-// compilers must infer the memory space of an address expression from
-// type-qualified variables.
-//
-// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
-// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
-// places only type-qualified variables in specific address spaces, and then
-// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
-// (so-called the generic address space) for other instructions to use.
-//
-// For example, the Clang translates the following CUDA code
-// __shared__ float a[10];
-// float v = a[i];
-// to
-// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
-// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
-// %v = load float, float* %1 ; emits ld.f32
-// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
-// redirected to %0 (the generic version of @a).
-//
-// The optimization implemented in this file propagates specific address spaces
-// from type-qualified variable declarations to its users. For example, it
-// optimizes the above IR to
-// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
-// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
-// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
-// codegen is able to emit ld.shared.f32 for %v.
-//
-// Address space inference works in two steps. First, it uses a data-flow
-// analysis to infer as many generic pointers as possible to point to only one
-// specific address space. In the above example, it can prove that %1 only
-// points to addrspace(3). This algorithm was published in
-// CUDA: Compiling and optimizing for a GPU platform
-// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
-// ICCS 2012
-//
-// Then, address space inference replaces all refinable generic pointers with
-// equivalent specific pointers.
-//
-// The major challenge of implementing this optimization is handling PHINodes,
-// which may create loops in the data flow graph. This brings two complications.
-//
-// First, the data flow analysis in Step 1 needs to be circular. For example,
-// %generic.input = addrspacecast float addrspace(3)* %input to float*
-// loop:
-// %y = phi [ %generic.input, %y2 ]
-// %y2 = getelementptr %y, 1
-// %v = load %y2
-// br ..., label %loop, ...
-// proving %y specific requires proving both %generic.input and %y2 specific,
-// but proving %y2 specific circles back to %y. To address this complication,
-// the data flow analysis operates on a lattice:
-// uninitialized > specific address spaces > generic.
-// All address expressions (our implementation only considers phi, bitcast,
-// addrspacecast, and getelementptr) start with the uninitialized address space.
-// The monotone transfer function moves the address space of a pointer down a
-// lattice path from uninitialized to specific and then to generic. A join
-// operation of two different specific address spaces pushes the expression down
-// to the generic address space. The analysis completes once it reaches a fixed
-// point.
-//
-// Second, IR rewriting in Step 2 also needs to be circular. For example,
-// converting %y to addrspace(3) requires the compiler to know the converted
-// %y2, but converting %y2 needs the converted %y. To address this complication,
-// we break these cycles using "undef" placeholders. When converting an
-// instruction `I` to a new address space, if its operand `Op` is not converted
-// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
-// For instance, our algorithm first converts %y to
-// %y' = phi float addrspace(3)* [ %input, undef ]
-// Then, it converts %y2 to
-// %y2' = getelementptr %y', 1
-// Finally, it fixes the undef in %y' so that
-// %y' = phi float addrspace(3)* [ %input, %y2' ]
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/ValueMapper.h"
-#include <cassert>
-#include <iterator>
-#include <limits>
-#include <utility>
-#include <vector>
-
-#define DEBUG_TYPE "infer-address-spaces"
-
-using namespace llvm;
-
-static const unsigned UninitializedAddressSpace =
- std::numeric_limits<unsigned>::max();
-
-namespace {
-
-using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
-
-/// InferAddressSpaces
-class InferAddressSpaces : public FunctionPass {
- /// Target specific address space which uses of should be replaced if
- /// possible.
- unsigned FlatAddrSpace;
-
-public:
- static char ID;
-
- InferAddressSpaces() :
- FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
- InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
-
- bool runOnFunction(Function &F) override;
-
-private:
- // Returns the new address space of V if updated; otherwise, returns None.
- Optional<unsigned>
- updateAddressSpace(const Value &V,
- const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
-
- // Tries to infer the specific address space of each address expression in
- // Postorder.
- void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
- ValueToAddrSpaceMapTy *InferredAddrSpace) const;
-
- bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
-
- // Changes the flat address expressions in function F to point to specific
- // address spaces if InferredAddrSpace says so. Postorder is the postorder of
- // all flat expressions in the use-def graph of function F.
- bool rewriteWithNewAddressSpaces(
- const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
- const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
-
- void appendsFlatAddressExpressionToPostorderStack(
- Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
- DenseSet<Value *> &Visited) const;
-
- bool rewriteIntrinsicOperands(IntrinsicInst *II,
- Value *OldV, Value *NewV) const;
- void collectRewritableIntrinsicOperands(
- IntrinsicInst *II,
- std::vector<std::pair<Value *, bool>> &PostorderStack,
- DenseSet<Value *> &Visited) const;
-
- std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
-
- Value *cloneValueWithNewAddressSpace(
- Value *V, unsigned NewAddrSpace,
- const ValueToValueMapTy &ValueWithNewAddrSpace,
- SmallVectorImpl<const Use *> *UndefUsesToFix) const;
- unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
-};
-
-} // end anonymous namespace
-
-char InferAddressSpaces::ID = 0;
-
-namespace llvm {
-
-void initializeInferAddressSpacesPass(PassRegistry &);
-
-} // end namespace llvm
-
-INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
- false, false)
-
-// Returns true if V is an address expression.
-// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
-// getelementptr operators.
-static bool isAddressExpression(const Value &V) {
- if (!isa<Operator>(V))
- return false;
-
- const Operator &Op = cast<Operator>(V);
- switch (Op.getOpcode()) {
- case Instruction::PHI:
- assert(Op.getType()->isPointerTy());
- return true;
- case Instruction::BitCast:
- case Instruction::AddrSpaceCast:
- case Instruction::GetElementPtr:
- return true;
- case Instruction::Select:
- return Op.getType()->isPointerTy();
- default:
- return false;
- }
-}
-
-// Returns the pointer operands of V.
-//
-// Precondition: V is an address expression.
-static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
- const Operator &Op = cast<Operator>(V);
- switch (Op.getOpcode()) {
- case Instruction::PHI: {
- auto IncomingValues = cast<PHINode>(Op).incoming_values();
- return SmallVector<Value *, 2>(IncomingValues.begin(),
- IncomingValues.end());
- }
- case Instruction::BitCast:
- case Instruction::AddrSpaceCast:
- case Instruction::GetElementPtr:
- return {Op.getOperand(0)};
- case Instruction::Select:
- return {Op.getOperand(1), Op.getOperand(2)};
- default:
- llvm_unreachable("Unexpected instruction type.");
- }
-}
-
-// TODO: Move logic to TTI?
-bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
- Value *OldV,
- Value *NewV) const {
- Module *M = II->getParent()->getParent()->getParent();
-
- switch (II->getIntrinsicID()) {
- case Intrinsic::amdgcn_atomic_inc:
- case Intrinsic::amdgcn_atomic_dec:
- case Intrinsic::amdgcn_ds_fadd:
- case Intrinsic::amdgcn_ds_fmin:
- case Intrinsic::amdgcn_ds_fmax: {
- const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
- if (!IsVolatile || !IsVolatile->isZero())
- return false;
-
- LLVM_FALLTHROUGH;
- }
- case Intrinsic::objectsize: {
- Type *DestTy = II->getType();
- Type *SrcTy = NewV->getType();
- Function *NewDecl =
- Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
- II->setArgOperand(0, NewV);
- II->setCalledFunction(NewDecl);
- return true;
- }
- default:
- return false;
- }
-}
-
-// TODO: Move logic to TTI?
-void InferAddressSpaces::collectRewritableIntrinsicOperands(
- IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
- DenseSet<Value *> &Visited) const {
- switch (II->getIntrinsicID()) {
- case Intrinsic::objectsize:
- case Intrinsic::amdgcn_atomic_inc:
- case Intrinsic::amdgcn_atomic_dec:
- case Intrinsic::amdgcn_ds_fadd:
- case Intrinsic::amdgcn_ds_fmin:
- case Intrinsic::amdgcn_ds_fmax:
- appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
- PostorderStack, Visited);
- break;
- default:
- break;
- }
-}
-
-// Returns all flat address expressions in function F. The elements are
-// If V is an unvisited flat address expression, appends V to PostorderStack
-// and marks it as visited.
-void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
- Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
- DenseSet<Value *> &Visited) const {
- assert(V->getType()->isPointerTy());
-
- // Generic addressing expressions may be hidden in nested constant
- // expressions.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- // TODO: Look in non-address parts, like icmp operands.
- if (isAddressExpression(*CE) && Visited.insert(CE).second)
- PostorderStack.push_back(std::make_pair(CE, false));
-
- return;
- }
-
- if (isAddressExpression(*V) &&
- V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
- if (Visited.insert(V).second) {
- PostorderStack.push_back(std::make_pair(V, false));
-
- Operator *Op = cast<Operator>(V);
- for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
- if (isAddressExpression(*CE) && Visited.insert(CE).second)
- PostorderStack.emplace_back(CE, false);
- }
- }
- }
- }
-}
-
-// Returns all flat address expressions in function F. The elements are ordered
-// ordered in postorder.
-std::vector<WeakTrackingVH>
-InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
- // This function implements a non-recursive postorder traversal of a partial
- // use-def graph of function F.
- std::vector<std::pair<Value *, bool>> PostorderStack;
- // The set of visited expressions.
- DenseSet<Value *> Visited;
-
- auto PushPtrOperand = [&](Value *Ptr) {
- appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
- Visited);
- };
-
- // Look at operations that may be interesting accelerate by moving to a known
- // address space. We aim at generating after loads and stores, but pure
- // addressing calculations may also be faster.
- for (Instruction &I : instructions(F)) {
- if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- if (!GEP->getType()->isVectorTy())
- PushPtrOperand(GEP->getPointerOperand());
- } else if (auto *LI = dyn_cast<LoadInst>(&I))
- PushPtrOperand(LI->getPointerOperand());
- else if (auto *SI = dyn_cast<StoreInst>(&I))
- PushPtrOperand(SI->getPointerOperand());
- else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
- PushPtrOperand(RMW->getPointerOperand());
- else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
- PushPtrOperand(CmpX->getPointerOperand());
- else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
- // For memset/memcpy/memmove, any pointer operand can be replaced.
- PushPtrOperand(MI->getRawDest());
-
- // Handle 2nd operand for memcpy/memmove.
- if (auto *MTI = dyn_cast<MemTransferInst>(MI))
- PushPtrOperand(MTI->getRawSource());
- } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
- collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
- else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
- // FIXME: Handle vectors of pointers
- if (Cmp->getOperand(0)->getType()->isPointerTy()) {
- PushPtrOperand(Cmp->getOperand(0));
- PushPtrOperand(Cmp->getOperand(1));
- }
- } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
- if (!ASC->getType()->isVectorTy())
- PushPtrOperand(ASC->getPointerOperand());
- }
- }
-
- std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
- while (!PostorderStack.empty()) {
- Value *TopVal = PostorderStack.back().first;
- // If the operands of the expression on the top are already explored,
- // adds that expression to the resultant postorder.
- if (PostorderStack.back().second) {
- if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
- Postorder.push_back(TopVal);
- PostorderStack.pop_back();
- continue;
- }
- // Otherwise, adds its operands to the stack and explores them.
- PostorderStack.back().second = true;
- for (Value *PtrOperand : getPointerOperands(*TopVal)) {
- appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
- Visited);
- }
- }
- return Postorder;
-}
-
-// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
-// of OperandUse.get() in the new address space. If the clone is not ready yet,
-// returns an undef in the new address space as a placeholder.
-static Value *operandWithNewAddressSpaceOrCreateUndef(
- const Use &OperandUse, unsigned NewAddrSpace,
- const ValueToValueMapTy &ValueWithNewAddrSpace,
- SmallVectorImpl<const Use *> *UndefUsesToFix) {
- Value *Operand = OperandUse.get();
-
- Type *NewPtrTy =
- Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
-
- if (Constant *C = dyn_cast<Constant>(Operand))
- return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
-
- if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
- return NewOperand;
-
- UndefUsesToFix->push_back(&OperandUse);
- return UndefValue::get(NewPtrTy);
-}
-
-// Returns a clone of `I` with its operands converted to those specified in
-// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
-// operand whose address space needs to be modified might not exist in
-// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
-// adds that operand use to UndefUsesToFix so that caller can fix them later.
-//
-// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
-// from a pointer whose type already matches. Therefore, this function returns a
-// Value* instead of an Instruction*.
-static Value *cloneInstructionWithNewAddressSpace(
- Instruction *I, unsigned NewAddrSpace,
- const ValueToValueMapTy &ValueWithNewAddrSpace,
- SmallVectorImpl<const Use *> *UndefUsesToFix) {
- Type *NewPtrType =
- I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
-
- if (I->getOpcode() == Instruction::AddrSpaceCast) {
- Value *Src = I->getOperand(0);
- // Because `I` is flat, the source address space must be specific.
- // Therefore, the inferred address space must be the source space, according
- // to our algorithm.
- assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
- if (Src->getType() != NewPtrType)
- return new BitCastInst(Src, NewPtrType);
- return Src;
- }
-
- // Computes the converted pointer operands.
- SmallVector<Value *, 4> NewPointerOperands;
- for (const Use &OperandUse : I->operands()) {
- if (!OperandUse.get()->getType()->isPointerTy())
- NewPointerOperands.push_back(nullptr);
- else
- NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
- OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
- }
-
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- return new BitCastInst(NewPointerOperands[0], NewPtrType);
- case Instruction::PHI: {
- assert(I->getType()->isPointerTy());
- PHINode *PHI = cast<PHINode>(I);
- PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
- for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
- unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
- NewPHI->addIncoming(NewPointerOperands[OperandNo],
- PHI->getIncomingBlock(Index));
- }
- return NewPHI;
- }
- case Instruction::GetElementPtr: {
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
- GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
- GEP->getSourceElementType(), NewPointerOperands[0],
- SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
- NewGEP->setIsInBounds(GEP->isInBounds());
- return NewGEP;
- }
- case Instruction::Select:
- assert(I->getType()->isPointerTy());
- return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
- NewPointerOperands[2], "", nullptr, I);
- default:
- llvm_unreachable("Unexpected opcode");
- }
-}
-
-// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
-// constant expression `CE` with its operands replaced as specified in
-// ValueWithNewAddrSpace.
-static Value *cloneConstantExprWithNewAddressSpace(
- ConstantExpr *CE, unsigned NewAddrSpace,
- const ValueToValueMapTy &ValueWithNewAddrSpace) {
- Type *TargetType =
- CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
-
- if (CE->getOpcode() == Instruction::AddrSpaceCast) {
- // Because CE is flat, the source address space must be specific.
- // Therefore, the inferred address space must be the source space according
- // to our algorithm.
- assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
- NewAddrSpace);
- return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
- }
-
- if (CE->getOpcode() == Instruction::BitCast) {
- if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
- return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
- return ConstantExpr::getAddrSpaceCast(CE, TargetType);
- }
-
- if (CE->getOpcode() == Instruction::Select) {
- Constant *Src0 = CE->getOperand(1);
- Constant *Src1 = CE->getOperand(2);
- if (Src0->getType()->getPointerAddressSpace() ==
- Src1->getType()->getPointerAddressSpace()) {
-
- return ConstantExpr::getSelect(
- CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
- ConstantExpr::getAddrSpaceCast(Src1, TargetType));
- }
- }
-
- // Computes the operands of the new constant expression.
- bool IsNew = false;
- SmallVector<Constant *, 4> NewOperands;
- for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
- Constant *Operand = CE->getOperand(Index);
- // If the address space of `Operand` needs to be modified, the new operand
- // with the new address space should already be in ValueWithNewAddrSpace
- // because (1) the constant expressions we consider (i.e. addrspacecast,
- // bitcast, and getelementptr) do not incur cycles in the data flow graph
- // and (2) this function is called on constant expressions in postorder.
- if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
- IsNew = true;
- NewOperands.push_back(cast<Constant>(NewOperand));
- continue;
- }
- if (auto CExpr = dyn_cast<ConstantExpr>(Operand))
- if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
- CExpr, NewAddrSpace, ValueWithNewAddrSpace)) {
- IsNew = true;
- NewOperands.push_back(cast<Constant>(NewOperand));
- continue;
- }
- // Otherwise, reuses the old operand.
- NewOperands.push_back(Operand);
- }
-
- // If !IsNew, we will replace the Value with itself. However, replaced values
- // are assumed to wrapped in a addrspace cast later so drop it now.
- if (!IsNew)
- return nullptr;
-
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- // Needs to specify the source type while constructing a getelementptr
- // constant expression.
- return CE->getWithOperands(
- NewOperands, TargetType, /*OnlyIfReduced=*/false,
- NewOperands[0]->getType()->getPointerElementType());
- }
-
- return CE->getWithOperands(NewOperands, TargetType);
-}
-
-// Returns a clone of the value `V`, with its operands replaced as specified in
-// ValueWithNewAddrSpace. This function is called on every flat address
-// expression whose address space needs to be modified, in postorder.
-//
-// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
-Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
- Value *V, unsigned NewAddrSpace,
- const ValueToValueMapTy &ValueWithNewAddrSpace,
- SmallVectorImpl<const Use *> *UndefUsesToFix) const {
- // All values in Postorder are flat address expressions.
- assert(isAddressExpression(*V) &&
- V->getType()->getPointerAddressSpace() == FlatAddrSpace);
-
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- Value *NewV = cloneInstructionWithNewAddressSpace(
- I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
- if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
- if (NewI->getParent() == nullptr) {
- NewI->insertBefore(I);
- NewI->takeName(I);
- }
- }
- return NewV;
- }
-
- return cloneConstantExprWithNewAddressSpace(
- cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
-}
-
-// Defines the join operation on the address space lattice (see the file header
-// comments).
-unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
- unsigned AS2) const {
- if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
- return FlatAddrSpace;
-
- if (AS1 == UninitializedAddressSpace)
- return AS2;
- if (AS2 == UninitializedAddressSpace)
- return AS1;
-
- // The join of two different specific address spaces is flat.
- return (AS1 == AS2) ? AS1 : FlatAddrSpace;
-}
-
-bool InferAddressSpaces::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
-
- const TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
-
- if (FlatAddrSpace == UninitializedAddressSpace) {
- FlatAddrSpace = TTI.getFlatAddressSpace();
- if (FlatAddrSpace == UninitializedAddressSpace)
- return false;
- }
-
- // Collects all flat address expressions in postorder.
- std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
-
- // Runs a data-flow analysis to refine the address spaces of every expression
- // in Postorder.
- ValueToAddrSpaceMapTy InferredAddrSpace;
- inferAddressSpaces(Postorder, &InferredAddrSpace);
-
- // Changes the address spaces of the flat address expressions who are inferred
- // to point to a specific address space.
- return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F);
-}
-
-// Constants need to be tracked through RAUW to handle cases with nested
-// constant expressions, so wrap values in WeakTrackingVH.
-void InferAddressSpaces::inferAddressSpaces(
- ArrayRef<WeakTrackingVH> Postorder,
- ValueToAddrSpaceMapTy *InferredAddrSpace) const {
- SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
- // Initially, all expressions are in the uninitialized address space.
- for (Value *V : Postorder)
- (*InferredAddrSpace)[V] = UninitializedAddressSpace;
-
- while (!Worklist.empty()) {
- Value *V = Worklist.pop_back_val();
-
- // Tries to update the address space of the stack top according to the
- // address spaces of its operands.
- LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
- Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
- if (!NewAS.hasValue())
- continue;
- // If any updates are made, grabs its users to the worklist because
- // their address spaces can also be possibly updated.
- LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
- (*InferredAddrSpace)[V] = NewAS.getValue();
-
- for (Value *User : V->users()) {
- // Skip if User is already in the worklist.
- if (Worklist.count(User))
- continue;
-
- auto Pos = InferredAddrSpace->find(User);
- // Our algorithm only updates the address spaces of flat address
- // expressions, which are those in InferredAddrSpace.
- if (Pos == InferredAddrSpace->end())
- continue;
-
- // Function updateAddressSpace moves the address space down a lattice
- // path. Therefore, nothing to do if User is already inferred as flat (the
- // bottom element in the lattice).
- if (Pos->second == FlatAddrSpace)
- continue;
-
- Worklist.insert(User);
- }
- }
-}
-
-Optional<unsigned> InferAddressSpaces::updateAddressSpace(
- const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
- assert(InferredAddrSpace.count(&V));
-
- // The new inferred address space equals the join of the address spaces
- // of all its pointer operands.
- unsigned NewAS = UninitializedAddressSpace;
-
- const Operator &Op = cast<Operator>(V);
- if (Op.getOpcode() == Instruction::Select) {
- Value *Src0 = Op.getOperand(1);
- Value *Src1 = Op.getOperand(2);
-
- auto I = InferredAddrSpace.find(Src0);
- unsigned Src0AS = (I != InferredAddrSpace.end()) ?
- I->second : Src0->getType()->getPointerAddressSpace();
-
- auto J = InferredAddrSpace.find(Src1);
- unsigned Src1AS = (J != InferredAddrSpace.end()) ?
- J->second : Src1->getType()->getPointerAddressSpace();
-
- auto *C0 = dyn_cast<Constant>(Src0);
- auto *C1 = dyn_cast<Constant>(Src1);
-
- // If one of the inputs is a constant, we may be able to do a constant
- // addrspacecast of it. Defer inferring the address space until the input
- // address space is known.
- if ((C1 && Src0AS == UninitializedAddressSpace) ||
- (C0 && Src1AS == UninitializedAddressSpace))
- return None;
-
- if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
- NewAS = Src1AS;
- else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
- NewAS = Src0AS;
- else
- NewAS = joinAddressSpaces(Src0AS, Src1AS);
- } else {
- for (Value *PtrOperand : getPointerOperands(V)) {
- auto I = InferredAddrSpace.find(PtrOperand);
- unsigned OperandAS = I != InferredAddrSpace.end() ?
- I->second : PtrOperand->getType()->getPointerAddressSpace();
-
- // join(flat, *) = flat. So we can break if NewAS is already flat.
- NewAS = joinAddressSpaces(NewAS, OperandAS);
- if (NewAS == FlatAddrSpace)
- break;
- }
- }
-
- unsigned OldAS = InferredAddrSpace.lookup(&V);
- assert(OldAS != FlatAddrSpace);
- if (OldAS == NewAS)
- return None;
- return NewAS;
-}
-
-/// \p returns true if \p U is the pointer operand of a memory instruction with
-/// a single pointer operand that can have its address space changed by simply
-/// mutating the use to a new value. If the memory instruction is volatile,
-/// return true only if the target allows the memory instruction to be volatile
-/// in the new address space.
-static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
- Use &U, unsigned AddrSpace) {
- User *Inst = U.getUser();
- unsigned OpNo = U.getOperandNo();
- bool VolatileIsAllowed = false;
- if (auto *I = dyn_cast<Instruction>(Inst))
- VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
-
- if (auto *LI = dyn_cast<LoadInst>(Inst))
- return OpNo == LoadInst::getPointerOperandIndex() &&
- (VolatileIsAllowed || !LI->isVolatile());
-
- if (auto *SI = dyn_cast<StoreInst>(Inst))
- return OpNo == StoreInst::getPointerOperandIndex() &&
- (VolatileIsAllowed || !SI->isVolatile());
-
- if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
- return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
- (VolatileIsAllowed || !RMW->isVolatile());
-
- if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
- return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
- (VolatileIsAllowed || !CmpX->isVolatile());
-
- return false;
-}
-
-/// Update memory intrinsic uses that require more complex processing than
-/// simple memory instructions. Thse require re-mangling and may have multiple
-/// pointer operands.
-static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
- Value *NewV) {
- IRBuilder<> B(MI);
- MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
- MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
- MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
-
- if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
- B.CreateMemSet(NewV, MSI->getValue(),
- MSI->getLength(), MSI->getDestAlignment(),
- false, // isVolatile
- TBAA, ScopeMD, NoAliasMD);
- } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
- Value *Src = MTI->getRawSource();
- Value *Dest = MTI->getRawDest();
-
- // Be careful in case this is a self-to-self copy.
- if (Src == OldV)
- Src = NewV;
-
- if (Dest == OldV)
- Dest = NewV;
-
- if (isa<MemCpyInst>(MTI)) {
- MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
- B.CreateMemCpy(Dest, MTI->getDestAlignment(),
- Src, MTI->getSourceAlignment(),
- MTI->getLength(),
- false, // isVolatile
- TBAA, TBAAStruct, ScopeMD, NoAliasMD);
- } else {
- assert(isa<MemMoveInst>(MTI));
- B.CreateMemMove(Dest, MTI->getDestAlignment(),
- Src, MTI->getSourceAlignment(),
- MTI->getLength(),
- false, // isVolatile
- TBAA, ScopeMD, NoAliasMD);
- }
- } else
- llvm_unreachable("unhandled MemIntrinsic");
-
- MI->eraseFromParent();
- return true;
-}
-
-// \p returns true if it is OK to change the address space of constant \p C with
-// a ConstantExpr addrspacecast.
-bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
- assert(NewAS != UninitializedAddressSpace);
-
- unsigned SrcAS = C->getType()->getPointerAddressSpace();
- if (SrcAS == NewAS || isa<UndefValue>(C))
- return true;
-
- // Prevent illegal casts between different non-flat address spaces.
- if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
- return false;
-
- if (isa<ConstantPointerNull>(C))
- return true;
-
- if (auto *Op = dyn_cast<Operator>(C)) {
- // If we already have a constant addrspacecast, it should be safe to cast it
- // off.
- if (Op->getOpcode() == Instruction::AddrSpaceCast)
- return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
-
- if (Op->getOpcode() == Instruction::IntToPtr &&
- Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
- return true;
- }
-
- return false;
-}
-
-static Value::use_iterator skipToNextUser(Value::use_iterator I,
- Value::use_iterator End) {
- User *CurUser = I->getUser();
- ++I;
-
- while (I != End && I->getUser() == CurUser)
- ++I;
-
- return I;
-}
-
-bool InferAddressSpaces::rewriteWithNewAddressSpaces(
- const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
- const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
- // For each address expression to be modified, creates a clone of it with its
- // pointer operands converted to the new address space. Since the pointer
- // operands are converted, the clone is naturally in the new address space by
- // construction.
- ValueToValueMapTy ValueWithNewAddrSpace;
- SmallVector<const Use *, 32> UndefUsesToFix;
- for (Value* V : Postorder) {
- unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
- if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
- ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
- V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
- }
- }
-
- if (ValueWithNewAddrSpace.empty())
- return false;
-
- // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
- for (const Use *UndefUse : UndefUsesToFix) {
- User *V = UndefUse->getUser();
- User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
- unsigned OperandNo = UndefUse->getOperandNo();
- assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
- NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
- }
-
- SmallVector<Instruction *, 16> DeadInstructions;
-
- // Replaces the uses of the old address expressions with the new ones.
- for (const WeakTrackingVH &WVH : Postorder) {
- assert(WVH && "value was unexpectedly deleted");
- Value *V = WVH;
- Value *NewV = ValueWithNewAddrSpace.lookup(V);
- if (NewV == nullptr)
- continue;
-
- LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
- << *NewV << '\n');
-
- if (Constant *C = dyn_cast<Constant>(V)) {
- Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
- C->getType());
- if (C != Replace) {
- LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
- << ": " << *Replace << '\n');
- C->replaceAllUsesWith(Replace);
- V = Replace;
- }
- }
-
- Value::use_iterator I, E, Next;
- for (I = V->use_begin(), E = V->use_end(); I != E; ) {
- Use &U = *I;
-
- // Some users may see the same pointer operand in multiple operands. Skip
- // to the next instruction.
- I = skipToNextUser(I, E);
-
- if (isSimplePointerUseValidToReplace(
- TTI, U, V->getType()->getPointerAddressSpace())) {
- // If V is used as the pointer operand of a compatible memory operation,
- // sets the pointer operand to NewV. This replacement does not change
- // the element type, so the resultant load/store is still valid.
- U.set(NewV);
- continue;
- }
-
- User *CurUser = U.getUser();
- // Handle more complex cases like intrinsic that need to be remangled.
- if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
- if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
- continue;
- }
-
- if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
- if (rewriteIntrinsicOperands(II, V, NewV))
- continue;
- }
-
- if (isa<Instruction>(CurUser)) {
- if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
- // If we can infer that both pointers are in the same addrspace,
- // transform e.g.
- // %cmp = icmp eq float* %p, %q
- // into
- // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
-
- unsigned NewAS = NewV->getType()->getPointerAddressSpace();
- int SrcIdx = U.getOperandNo();
- int OtherIdx = (SrcIdx == 0) ? 1 : 0;
- Value *OtherSrc = Cmp->getOperand(OtherIdx);
-
- if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
- if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
- Cmp->setOperand(OtherIdx, OtherNewV);
- Cmp->setOperand(SrcIdx, NewV);
- continue;
- }
- }
-
- // Even if the type mismatches, we can cast the constant.
- if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
- if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
- Cmp->setOperand(SrcIdx, NewV);
- Cmp->setOperand(OtherIdx,
- ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
- continue;
- }
- }
- }
-
- if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
- unsigned NewAS = NewV->getType()->getPointerAddressSpace();
- if (ASC->getDestAddressSpace() == NewAS) {
- if (ASC->getType()->getPointerElementType() !=
- NewV->getType()->getPointerElementType()) {
- NewV = CastInst::Create(Instruction::BitCast, NewV,
- ASC->getType(), "", ASC);
- }
- ASC->replaceAllUsesWith(NewV);
- DeadInstructions.push_back(ASC);
- continue;
- }
- }
-
- // Otherwise, replaces the use with flat(NewV).
- if (Instruction *Inst = dyn_cast<Instruction>(V)) {
- // Don't create a copy of the original addrspacecast.
- if (U == V && isa<AddrSpaceCastInst>(V))
- continue;
-
- BasicBlock::iterator InsertPos = std::next(Inst->getIterator());
- while (isa<PHINode>(InsertPos))
- ++InsertPos;
- U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
- } else {
- U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
- V->getType()));
- }
- }
- }
-
- if (V->use_empty()) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- DeadInstructions.push_back(I);
- }
- }
-
- for (Instruction *I : DeadInstructions)
- RecursivelyDeleteTriviallyDeadInstructions(I);
-
- return true;
-}
-
-FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
- return new InferAddressSpaces(AddressSpace);
-}