summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopInterchange.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopInterchange.cpp1561
1 files changed, 0 insertions, 1561 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopInterchange.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
deleted file mode 100644
index 9a42365adc1b..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
+++ /dev/null
@@ -1,1561 +0,0 @@
-//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This Pass handles loop interchange transform.
-// This pass interchanges loops to provide a more cache-friendly memory access
-// patterns.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/Analysis/DependenceAnalysis.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DiagnosticInfo.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include <cassert>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "loop-interchange"
-
-STATISTIC(LoopsInterchanged, "Number of loops interchanged");
-
-static cl::opt<int> LoopInterchangeCostThreshold(
- "loop-interchange-threshold", cl::init(0), cl::Hidden,
- cl::desc("Interchange if you gain more than this number"));
-
-namespace {
-
-using LoopVector = SmallVector<Loop *, 8>;
-
-// TODO: Check if we can use a sparse matrix here.
-using CharMatrix = std::vector<std::vector<char>>;
-
-} // end anonymous namespace
-
-// Maximum number of dependencies that can be handled in the dependency matrix.
-static const unsigned MaxMemInstrCount = 100;
-
-// Maximum loop depth supported.
-static const unsigned MaxLoopNestDepth = 10;
-
-#ifdef DUMP_DEP_MATRICIES
-static void printDepMatrix(CharMatrix &DepMatrix) {
- for (auto &Row : DepMatrix) {
- for (auto D : Row)
- LLVM_DEBUG(dbgs() << D << " ");
- LLVM_DEBUG(dbgs() << "\n");
- }
-}
-#endif
-
-static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
- Loop *L, DependenceInfo *DI) {
- using ValueVector = SmallVector<Value *, 16>;
-
- ValueVector MemInstr;
-
- // For each block.
- for (BasicBlock *BB : L->blocks()) {
- // Scan the BB and collect legal loads and stores.
- for (Instruction &I : *BB) {
- if (!isa<Instruction>(I))
- return false;
- if (auto *Ld = dyn_cast<LoadInst>(&I)) {
- if (!Ld->isSimple())
- return false;
- MemInstr.push_back(&I);
- } else if (auto *St = dyn_cast<StoreInst>(&I)) {
- if (!St->isSimple())
- return false;
- MemInstr.push_back(&I);
- }
- }
- }
-
- LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
- << " Loads and Stores to analyze\n");
-
- ValueVector::iterator I, IE, J, JE;
-
- for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
- for (J = I, JE = MemInstr.end(); J != JE; ++J) {
- std::vector<char> Dep;
- Instruction *Src = cast<Instruction>(*I);
- Instruction *Dst = cast<Instruction>(*J);
- if (Src == Dst)
- continue;
- // Ignore Input dependencies.
- if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
- continue;
- // Track Output, Flow, and Anti dependencies.
- if (auto D = DI->depends(Src, Dst, true)) {
- assert(D->isOrdered() && "Expected an output, flow or anti dep.");
- LLVM_DEBUG(StringRef DepType =
- D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
- dbgs() << "Found " << DepType
- << " dependency between Src and Dst\n"
- << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
- unsigned Levels = D->getLevels();
- char Direction;
- for (unsigned II = 1; II <= Levels; ++II) {
- const SCEV *Distance = D->getDistance(II);
- const SCEVConstant *SCEVConst =
- dyn_cast_or_null<SCEVConstant>(Distance);
- if (SCEVConst) {
- const ConstantInt *CI = SCEVConst->getValue();
- if (CI->isNegative())
- Direction = '<';
- else if (CI->isZero())
- Direction = '=';
- else
- Direction = '>';
- Dep.push_back(Direction);
- } else if (D->isScalar(II)) {
- Direction = 'S';
- Dep.push_back(Direction);
- } else {
- unsigned Dir = D->getDirection(II);
- if (Dir == Dependence::DVEntry::LT ||
- Dir == Dependence::DVEntry::LE)
- Direction = '<';
- else if (Dir == Dependence::DVEntry::GT ||
- Dir == Dependence::DVEntry::GE)
- Direction = '>';
- else if (Dir == Dependence::DVEntry::EQ)
- Direction = '=';
- else
- Direction = '*';
- Dep.push_back(Direction);
- }
- }
- while (Dep.size() != Level) {
- Dep.push_back('I');
- }
-
- DepMatrix.push_back(Dep);
- if (DepMatrix.size() > MaxMemInstrCount) {
- LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
- << " dependencies inside loop\n");
- return false;
- }
- }
- }
- }
-
- return true;
-}
-
-// A loop is moved from index 'from' to an index 'to'. Update the Dependence
-// matrix by exchanging the two columns.
-static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
- unsigned ToIndx) {
- unsigned numRows = DepMatrix.size();
- for (unsigned i = 0; i < numRows; ++i) {
- char TmpVal = DepMatrix[i][ToIndx];
- DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
- DepMatrix[i][FromIndx] = TmpVal;
- }
-}
-
-// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
-// '>'
-static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
- unsigned Column) {
- for (unsigned i = 0; i <= Column; ++i) {
- if (DepMatrix[Row][i] == '<')
- return false;
- if (DepMatrix[Row][i] == '>')
- return true;
- }
- // All dependencies were '=','S' or 'I'
- return false;
-}
-
-// Checks if no dependence exist in the dependency matrix in Row before Column.
-static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
- unsigned Column) {
- for (unsigned i = 0; i < Column; ++i) {
- if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
- DepMatrix[Row][i] != 'I')
- return false;
- }
- return true;
-}
-
-static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
- unsigned OuterLoopId, char InnerDep,
- char OuterDep) {
- if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
- return false;
-
- if (InnerDep == OuterDep)
- return true;
-
- // It is legal to interchange if and only if after interchange no row has a
- // '>' direction as the leftmost non-'='.
-
- if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
- return true;
-
- if (InnerDep == '<')
- return true;
-
- if (InnerDep == '>') {
- // If OuterLoopId represents outermost loop then interchanging will make the
- // 1st dependency as '>'
- if (OuterLoopId == 0)
- return false;
-
- // If all dependencies before OuterloopId are '=','S'or 'I'. Then
- // interchanging will result in this row having an outermost non '='
- // dependency of '>'
- if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
- return true;
- }
-
- return false;
-}
-
-// Checks if it is legal to interchange 2 loops.
-// [Theorem] A permutation of the loops in a perfect nest is legal if and only
-// if the direction matrix, after the same permutation is applied to its
-// columns, has no ">" direction as the leftmost non-"=" direction in any row.
-static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
- unsigned InnerLoopId,
- unsigned OuterLoopId) {
- unsigned NumRows = DepMatrix.size();
- // For each row check if it is valid to interchange.
- for (unsigned Row = 0; Row < NumRows; ++Row) {
- char InnerDep = DepMatrix[Row][InnerLoopId];
- char OuterDep = DepMatrix[Row][OuterLoopId];
- if (InnerDep == '*' || OuterDep == '*')
- return false;
- if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
- return false;
- }
- return true;
-}
-
-static LoopVector populateWorklist(Loop &L) {
- LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
- << L.getHeader()->getParent()->getName() << " Loop: %"
- << L.getHeader()->getName() << '\n');
- LoopVector LoopList;
- Loop *CurrentLoop = &L;
- const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
- while (!Vec->empty()) {
- // The current loop has multiple subloops in it hence it is not tightly
- // nested.
- // Discard all loops above it added into Worklist.
- if (Vec->size() != 1)
- return {};
-
- LoopList.push_back(CurrentLoop);
- CurrentLoop = Vec->front();
- Vec = &CurrentLoop->getSubLoops();
- }
- LoopList.push_back(CurrentLoop);
- return LoopList;
-}
-
-static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
- PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
- if (InnerIndexVar)
- return InnerIndexVar;
- if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
- return nullptr;
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
- PHINode *PhiVar = cast<PHINode>(I);
- Type *PhiTy = PhiVar->getType();
- if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
- !PhiTy->isPointerTy())
- return nullptr;
- const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
- if (!AddRec || !AddRec->isAffine())
- continue;
- const SCEV *Step = AddRec->getStepRecurrence(*SE);
- if (!isa<SCEVConstant>(Step))
- continue;
- // Found the induction variable.
- // FIXME: Handle loops with more than one induction variable. Note that,
- // currently, legality makes sure we have only one induction variable.
- return PhiVar;
- }
- return nullptr;
-}
-
-namespace {
-
-/// LoopInterchangeLegality checks if it is legal to interchange the loop.
-class LoopInterchangeLegality {
-public:
- LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE)
- : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
-
- /// Check if the loops can be interchanged.
- bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
- CharMatrix &DepMatrix);
-
- /// Check if the loop structure is understood. We do not handle triangular
- /// loops for now.
- bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
-
- bool currentLimitations();
-
- const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
- return OuterInnerReductions;
- }
-
-private:
- bool tightlyNested(Loop *Outer, Loop *Inner);
- bool containsUnsafeInstructions(BasicBlock *BB);
-
- /// Discover induction and reduction PHIs in the header of \p L. Induction
- /// PHIs are added to \p Inductions, reductions are added to
- /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
- /// to be passed as \p InnerLoop.
- bool findInductionAndReductions(Loop *L,
- SmallVector<PHINode *, 8> &Inductions,
- Loop *InnerLoop);
-
- Loop *OuterLoop;
- Loop *InnerLoop;
-
- ScalarEvolution *SE;
-
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
-
- /// Set of reduction PHIs taking part of a reduction across the inner and
- /// outer loop.
- SmallPtrSet<PHINode *, 4> OuterInnerReductions;
-};
-
-/// LoopInterchangeProfitability checks if it is profitable to interchange the
-/// loop.
-class LoopInterchangeProfitability {
-public:
- LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE)
- : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
-
- /// Check if the loop interchange is profitable.
- bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
- CharMatrix &DepMatrix);
-
-private:
- int getInstrOrderCost();
-
- Loop *OuterLoop;
- Loop *InnerLoop;
-
- /// Scev analysis.
- ScalarEvolution *SE;
-
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
-};
-
-/// LoopInterchangeTransform interchanges the loop.
-class LoopInterchangeTransform {
-public:
- LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
- LoopInfo *LI, DominatorTree *DT,
- BasicBlock *LoopNestExit,
- const LoopInterchangeLegality &LIL)
- : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
- LoopExit(LoopNestExit), LIL(LIL) {}
-
- /// Interchange OuterLoop and InnerLoop.
- bool transform();
- void restructureLoops(Loop *NewInner, Loop *NewOuter,
- BasicBlock *OrigInnerPreHeader,
- BasicBlock *OrigOuterPreHeader);
- void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
-
-private:
- void splitInnerLoopLatch(Instruction *);
- void splitInnerLoopHeader();
- bool adjustLoopLinks();
- void adjustLoopPreheaders();
- bool adjustLoopBranches();
-
- Loop *OuterLoop;
- Loop *InnerLoop;
-
- /// Scev analysis.
- ScalarEvolution *SE;
-
- LoopInfo *LI;
- DominatorTree *DT;
- BasicBlock *LoopExit;
-
- const LoopInterchangeLegality &LIL;
-};
-
-// Main LoopInterchange Pass.
-struct LoopInterchange : public LoopPass {
- static char ID;
- ScalarEvolution *SE = nullptr;
- LoopInfo *LI = nullptr;
- DependenceInfo *DI = nullptr;
- DominatorTree *DT = nullptr;
-
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
-
- LoopInterchange() : LoopPass(ID) {
- initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<DependenceAnalysisWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
-
- getLoopAnalysisUsage(AU);
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L) || L->getParentLoop())
- return false;
-
- SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
-
- return processLoopList(populateWorklist(*L));
- }
-
- bool isComputableLoopNest(LoopVector LoopList) {
- for (Loop *L : LoopList) {
- const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
- if (ExitCountOuter == SE->getCouldNotCompute()) {
- LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
- return false;
- }
- if (L->getNumBackEdges() != 1) {
- LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
- return false;
- }
- if (!L->getExitingBlock()) {
- LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
- return false;
- }
- }
- return true;
- }
-
- unsigned selectLoopForInterchange(const LoopVector &LoopList) {
- // TODO: Add a better heuristic to select the loop to be interchanged based
- // on the dependence matrix. Currently we select the innermost loop.
- return LoopList.size() - 1;
- }
-
- bool processLoopList(LoopVector LoopList) {
- bool Changed = false;
- unsigned LoopNestDepth = LoopList.size();
- if (LoopNestDepth < 2) {
- LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
- return false;
- }
- if (LoopNestDepth > MaxLoopNestDepth) {
- LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
- << MaxLoopNestDepth << "\n");
- return false;
- }
- if (!isComputableLoopNest(LoopList)) {
- LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
- return false;
- }
-
- LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
- << "\n");
-
- CharMatrix DependencyMatrix;
- Loop *OuterMostLoop = *(LoopList.begin());
- if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
- OuterMostLoop, DI)) {
- LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
- return false;
- }
-#ifdef DUMP_DEP_MATRICIES
- LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
- printDepMatrix(DependencyMatrix);
-#endif
-
- // Get the Outermost loop exit.
- BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
- if (!LoopNestExit) {
- LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
- return false;
- }
-
- unsigned SelecLoopId = selectLoopForInterchange(LoopList);
- // Move the selected loop outwards to the best possible position.
- for (unsigned i = SelecLoopId; i > 0; i--) {
- bool Interchanged =
- processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
- if (!Interchanged)
- return Changed;
- // Loops interchanged reflect the same in LoopList
- std::swap(LoopList[i - 1], LoopList[i]);
-
- // Update the DependencyMatrix
- interChangeDependencies(DependencyMatrix, i, i - 1);
-#ifdef DUMP_DEP_MATRICIES
- LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
- printDepMatrix(DependencyMatrix);
-#endif
- Changed |= Interchanged;
- }
- return Changed;
- }
-
- bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
- unsigned OuterLoopId, BasicBlock *LoopNestExit,
- std::vector<std::vector<char>> &DependencyMatrix) {
- LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
- << " and OuterLoopId = " << OuterLoopId << "\n");
- Loop *InnerLoop = LoopList[InnerLoopId];
- Loop *OuterLoop = LoopList[OuterLoopId];
-
- LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
- if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
- LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
- LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
- if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
- LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
- return false;
- }
-
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "Interchanged",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Loop interchanged with enclosing loop.";
- });
-
- LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
- LIL);
- LIT.transform();
- LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
- LoopsInterchanged++;
- return true;
- }
-};
-
-} // end anonymous namespace
-
-bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
- return any_of(*BB, [](const Instruction &I) {
- return I.mayHaveSideEffects() || I.mayReadFromMemory();
- });
-}
-
-bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
- BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
- BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
-
- LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
-
- // A perfectly nested loop will not have any branch in between the outer and
- // inner block i.e. outer header will branch to either inner preheader and
- // outerloop latch.
- BranchInst *OuterLoopHeaderBI =
- dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
- if (!OuterLoopHeaderBI)
- return false;
-
- for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
- if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
- Succ != OuterLoopLatch)
- return false;
-
- LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
- // We do not have any basic block in between now make sure the outer header
- // and outer loop latch doesn't contain any unsafe instructions.
- if (containsUnsafeInstructions(OuterLoopHeader) ||
- containsUnsafeInstructions(OuterLoopLatch))
- return false;
-
- LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
- // We have a perfect loop nest.
- return true;
-}
-
-bool LoopInterchangeLegality::isLoopStructureUnderstood(
- PHINode *InnerInduction) {
- unsigned Num = InnerInduction->getNumOperands();
- BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
- for (unsigned i = 0; i < Num; ++i) {
- Value *Val = InnerInduction->getOperand(i);
- if (isa<Constant>(Val))
- continue;
- Instruction *I = dyn_cast<Instruction>(Val);
- if (!I)
- return false;
- // TODO: Handle triangular loops.
- // e.g. for(int i=0;i<N;i++)
- // for(int j=i;j<N;j++)
- unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
- if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
- InnerLoopPreheader &&
- !OuterLoop->isLoopInvariant(I)) {
- return false;
- }
- }
- return true;
-}
-
-// If SV is a LCSSA PHI node with a single incoming value, return the incoming
-// value.
-static Value *followLCSSA(Value *SV) {
- PHINode *PHI = dyn_cast<PHINode>(SV);
- if (!PHI)
- return SV;
-
- if (PHI->getNumIncomingValues() != 1)
- return SV;
- return followLCSSA(PHI->getIncomingValue(0));
-}
-
-// Check V's users to see if it is involved in a reduction in L.
-static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
- for (Value *User : V->users()) {
- if (PHINode *PHI = dyn_cast<PHINode>(User)) {
- if (PHI->getNumIncomingValues() == 1)
- continue;
- RecurrenceDescriptor RD;
- if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
- return PHI;
- return nullptr;
- }
- }
-
- return nullptr;
-}
-
-bool LoopInterchangeLegality::findInductionAndReductions(
- Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
- if (!L->getLoopLatch() || !L->getLoopPredecessor())
- return false;
- for (PHINode &PHI : L->getHeader()->phis()) {
- RecurrenceDescriptor RD;
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
- Inductions.push_back(&PHI);
- else {
- // PHIs in inner loops need to be part of a reduction in the outer loop,
- // discovered when checking the PHIs of the outer loop earlier.
- if (!InnerLoop) {
- if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end()) {
- LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
- "across the outer loop.\n");
- return false;
- }
- } else {
- assert(PHI.getNumIncomingValues() == 2 &&
- "Phis in loop header should have exactly 2 incoming values");
- // Check if we have a PHI node in the outer loop that has a reduction
- // result from the inner loop as an incoming value.
- Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
- PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
- if (!InnerRedPhi ||
- !llvm::any_of(InnerRedPhi->incoming_values(),
- [&PHI](Value *V) { return V == &PHI; })) {
- LLVM_DEBUG(
- dbgs()
- << "Failed to recognize PHI as an induction or reduction.\n");
- return false;
- }
- OuterInnerReductions.insert(&PHI);
- OuterInnerReductions.insert(InnerRedPhi);
- }
- }
- }
- return true;
-}
-
-static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
- for (PHINode &PHI : Block->phis()) {
- // Reduction lcssa phi will have only 1 incoming block that from loop latch.
- if (PHI.getNumIncomingValues() > 1)
- return false;
- Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0));
- if (!Ins)
- return false;
- // Incoming value for lcssa phi's in outer loop exit can only be inner loop
- // exits lcssa phi else it would not be tightly nested.
- if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
- return false;
- }
- return true;
-}
-
-// This function indicates the current limitations in the transform as a result
-// of which we do not proceed.
-bool LoopInterchangeLegality::currentLimitations() {
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
- BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
-
- // transform currently expects the loop latches to also be the exiting
- // blocks.
- if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
- OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
- !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
- !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
- LLVM_DEBUG(
- dbgs() << "Loops where the latch is not the exiting block are not"
- << " supported currently.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
- OuterLoop->getStartLoc(),
- OuterLoop->getHeader())
- << "Loops where the latch is not the exiting block cannot be"
- " interchange currently.";
- });
- return true;
- }
-
- PHINode *InnerInductionVar;
- SmallVector<PHINode *, 8> Inductions;
- if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
- LLVM_DEBUG(
- dbgs() << "Only outer loops with induction or reduction PHI nodes "
- << "are supported currently.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
- OuterLoop->getStartLoc(),
- OuterLoop->getHeader())
- << "Only outer loops with induction or reduction PHI nodes can be"
- " interchanged currently.";
- });
- return true;
- }
-
- // TODO: Currently we handle only loops with 1 induction variable.
- if (Inductions.size() != 1) {
- LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
- << "supported currently.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
- OuterLoop->getStartLoc(),
- OuterLoop->getHeader())
- << "Only outer loops with 1 induction variable can be "
- "interchanged currently.";
- });
- return true;
- }
-
- Inductions.clear();
- if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
- LLVM_DEBUG(
- dbgs() << "Only inner loops with induction or reduction PHI nodes "
- << "are supported currently.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Only inner loops with induction or reduction PHI nodes can be"
- " interchange currently.";
- });
- return true;
- }
-
- // TODO: Currently we handle only loops with 1 induction variable.
- if (Inductions.size() != 1) {
- LLVM_DEBUG(
- dbgs() << "We currently only support loops with 1 induction variable."
- << "Failed to interchange due to current limitation\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Only inner loops with 1 induction variable can be "
- "interchanged currently.";
- });
- return true;
- }
- InnerInductionVar = Inductions.pop_back_val();
-
- // TODO: Triangular loops are not handled for now.
- if (!isLoopStructureUnderstood(InnerInductionVar)) {
- LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Inner loop structure not understood currently.";
- });
- return true;
- }
-
- // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
- BasicBlock *InnerExit = InnerLoop->getExitBlock();
- if (!containsSafePHI(InnerExit, false)) {
- LLVM_DEBUG(
- dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Only inner loops with LCSSA PHIs can be interchange "
- "currently.";
- });
- return true;
- }
-
- // TODO: Current limitation: Since we split the inner loop latch at the point
- // were induction variable is incremented (induction.next); We cannot have
- // more than 1 user of induction.next since it would result in broken code
- // after split.
- // e.g.
- // for(i=0;i<N;i++) {
- // for(j = 0;j<M;j++) {
- // A[j+1][i+2] = A[j][i]+k;
- // }
- // }
- Instruction *InnerIndexVarInc = nullptr;
- if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
- InnerIndexVarInc =
- dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
- else
- InnerIndexVarInc =
- dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
-
- if (!InnerIndexVarInc) {
- LLVM_DEBUG(
- dbgs() << "Did not find an instruction to increment the induction "
- << "variable.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "The inner loop does not increment the induction variable.";
- });
- return true;
- }
-
- // Since we split the inner loop latch on this induction variable. Make sure
- // we do not have any instruction between the induction variable and branch
- // instruction.
-
- bool FoundInduction = false;
- for (const Instruction &I :
- llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
- if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
- isa<ZExtInst>(I))
- continue;
-
- // We found an instruction. If this is not induction variable then it is not
- // safe to split this loop latch.
- if (!I.isIdenticalTo(InnerIndexVarInc)) {
- LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
- << "variable increment and branch.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(
- DEBUG_TYPE, "UnsupportedInsBetweenInduction",
- InnerLoop->getStartLoc(), InnerLoop->getHeader())
- << "Found unsupported instruction between induction variable "
- "increment and branch.";
- });
- return true;
- }
-
- FoundInduction = true;
- break;
- }
- // The loop latch ended and we didn't find the induction variable return as
- // current limitation.
- if (!FoundInduction) {
- LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Did not find the induction variable.";
- });
- return true;
- }
- return false;
-}
-
-// We currently support LCSSA PHI nodes in the outer loop exit, if their
-// incoming values do not come from the outer loop latch or if the
-// outer loop latch has a single predecessor. In that case, the value will
-// be available if both the inner and outer loop conditions are true, which
-// will still be true after interchanging. If we have multiple predecessor,
-// that may not be the case, e.g. because the outer loop latch may be executed
-// if the inner loop is not executed.
-static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
- BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
- for (PHINode &PHI : LoopNestExit->phis()) {
- // FIXME: We currently are not able to detect floating point reductions
- // and have to use floating point PHIs as a proxy to prevent
- // interchanging in the presence of floating point reductions.
- if (PHI.getType()->isFloatingPointTy())
- return false;
- for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
- Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
- if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
- continue;
-
- // The incoming value is defined in the outer loop latch. Currently we
- // only support that in case the outer loop latch has a single predecessor.
- // This guarantees that the outer loop latch is executed if and only if
- // the inner loop is executed (because tightlyNested() guarantees that the
- // outer loop header only branches to the inner loop or the outer loop
- // latch).
- // FIXME: We could weaken this logic and allow multiple predecessors,
- // if the values are produced outside the loop latch. We would need
- // additional logic to update the PHI nodes in the exit block as
- // well.
- if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
- return false;
- }
- }
- return true;
-}
-
-bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
- unsigned OuterLoopId,
- CharMatrix &DepMatrix) {
- if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
- LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
- << " and OuterLoopId = " << OuterLoopId
- << " due to dependence\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Cannot interchange loops due to dependences.";
- });
- return false;
- }
- // Check if outer and inner loop contain legal instructions only.
- for (auto *BB : OuterLoop->blocks())
- for (Instruction &I : BB->instructionsWithoutDebug())
- if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- // readnone functions do not prevent interchanging.
- if (CI->doesNotReadMemory())
- continue;
- LLVM_DEBUG(
- dbgs() << "Loops with call instructions cannot be interchanged "
- << "safely.");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
- CI->getDebugLoc(),
- CI->getParent())
- << "Cannot interchange loops due to call instruction.";
- });
-
- return false;
- }
-
- // TODO: The loops could not be interchanged due to current limitations in the
- // transform module.
- if (currentLimitations()) {
- LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
- return false;
- }
-
- // Check if the loops are tightly nested.
- if (!tightlyNested(OuterLoop, InnerLoop)) {
- LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Cannot interchange loops because they are not tightly "
- "nested.";
- });
- return false;
- }
-
- if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
- LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
- OuterLoop->getStartLoc(),
- OuterLoop->getHeader())
- << "Found unsupported PHI node in loop exit.";
- });
- return false;
- }
-
- return true;
-}
-
-int LoopInterchangeProfitability::getInstrOrderCost() {
- unsigned GoodOrder, BadOrder;
- BadOrder = GoodOrder = 0;
- for (BasicBlock *BB : InnerLoop->blocks()) {
- for (Instruction &Ins : *BB) {
- if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
- unsigned NumOp = GEP->getNumOperands();
- bool FoundInnerInduction = false;
- bool FoundOuterInduction = false;
- for (unsigned i = 0; i < NumOp; ++i) {
- const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
- if (!AR)
- continue;
-
- // If we find the inner induction after an outer induction e.g.
- // for(int i=0;i<N;i++)
- // for(int j=0;j<N;j++)
- // A[i][j] = A[i-1][j-1]+k;
- // then it is a good order.
- if (AR->getLoop() == InnerLoop) {
- // We found an InnerLoop induction after OuterLoop induction. It is
- // a good order.
- FoundInnerInduction = true;
- if (FoundOuterInduction) {
- GoodOrder++;
- break;
- }
- }
- // If we find the outer induction after an inner induction e.g.
- // for(int i=0;i<N;i++)
- // for(int j=0;j<N;j++)
- // A[j][i] = A[j-1][i-1]+k;
- // then it is a bad order.
- if (AR->getLoop() == OuterLoop) {
- // We found an OuterLoop induction after InnerLoop induction. It is
- // a bad order.
- FoundOuterInduction = true;
- if (FoundInnerInduction) {
- BadOrder++;
- break;
- }
- }
- }
- }
- }
- }
- return GoodOrder - BadOrder;
-}
-
-static bool isProfitableForVectorization(unsigned InnerLoopId,
- unsigned OuterLoopId,
- CharMatrix &DepMatrix) {
- // TODO: Improve this heuristic to catch more cases.
- // If the inner loop is loop independent or doesn't carry any dependency it is
- // profitable to move this to outer position.
- for (auto &Row : DepMatrix) {
- if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
- return false;
- // TODO: We need to improve this heuristic.
- if (Row[OuterLoopId] != '=')
- return false;
- }
- // If outer loop has dependence and inner loop is loop independent then it is
- // profitable to interchange to enable parallelism.
- // If there are no dependences, interchanging will not improve anything.
- return !DepMatrix.empty();
-}
-
-bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
- unsigned OuterLoopId,
- CharMatrix &DepMatrix) {
- // TODO: Add better profitability checks.
- // e.g
- // 1) Construct dependency matrix and move the one with no loop carried dep
- // inside to enable vectorization.
-
- // This is rough cost estimation algorithm. It counts the good and bad order
- // of induction variables in the instruction and allows reordering if number
- // of bad orders is more than good.
- int Cost = getInstrOrderCost();
- LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
- if (Cost < -LoopInterchangeCostThreshold)
- return true;
-
- // It is not profitable as per current cache profitability model. But check if
- // we can move this loop outside to improve parallelism.
- if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
- return true;
-
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Interchanging loops is too costly (cost="
- << ore::NV("Cost", Cost) << ", threshold="
- << ore::NV("Threshold", LoopInterchangeCostThreshold)
- << ") and it does not improve parallelism.";
- });
- return false;
-}
-
-void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
- Loop *InnerLoop) {
- for (Loop *L : *OuterLoop)
- if (L == InnerLoop) {
- OuterLoop->removeChildLoop(L);
- return;
- }
- llvm_unreachable("Couldn't find loop");
-}
-
-/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
-/// new inner and outer loop after interchanging: NewInner is the original
-/// outer loop and NewOuter is the original inner loop.
-///
-/// Before interchanging, we have the following structure
-/// Outer preheader
-// Outer header
-// Inner preheader
-// Inner header
-// Inner body
-// Inner latch
-// outer bbs
-// Outer latch
-//
-// After interchanging:
-// Inner preheader
-// Inner header
-// Outer preheader
-// Outer header
-// Inner body
-// outer bbs
-// Outer latch
-// Inner latch
-void LoopInterchangeTransform::restructureLoops(
- Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
- BasicBlock *OrigOuterPreHeader) {
- Loop *OuterLoopParent = OuterLoop->getParentLoop();
- // The original inner loop preheader moves from the new inner loop to
- // the parent loop, if there is one.
- NewInner->removeBlockFromLoop(OrigInnerPreHeader);
- LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
-
- // Switch the loop levels.
- if (OuterLoopParent) {
- // Remove the loop from its parent loop.
- removeChildLoop(OuterLoopParent, NewInner);
- removeChildLoop(NewInner, NewOuter);
- OuterLoopParent->addChildLoop(NewOuter);
- } else {
- removeChildLoop(NewInner, NewOuter);
- LI->changeTopLevelLoop(NewInner, NewOuter);
- }
- while (!NewOuter->empty())
- NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
- NewOuter->addChildLoop(NewInner);
-
- // BBs from the original inner loop.
- SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
-
- // Add BBs from the original outer loop to the original inner loop (excluding
- // BBs already in inner loop)
- for (BasicBlock *BB : NewInner->blocks())
- if (LI->getLoopFor(BB) == NewInner)
- NewOuter->addBlockEntry(BB);
-
- // Now remove inner loop header and latch from the new inner loop and move
- // other BBs (the loop body) to the new inner loop.
- BasicBlock *OuterHeader = NewOuter->getHeader();
- BasicBlock *OuterLatch = NewOuter->getLoopLatch();
- for (BasicBlock *BB : OrigInnerBBs) {
- // Nothing will change for BBs in child loops.
- if (LI->getLoopFor(BB) != NewOuter)
- continue;
- // Remove the new outer loop header and latch from the new inner loop.
- if (BB == OuterHeader || BB == OuterLatch)
- NewInner->removeBlockFromLoop(BB);
- else
- LI->changeLoopFor(BB, NewInner);
- }
-
- // The preheader of the original outer loop becomes part of the new
- // outer loop.
- NewOuter->addBlockEntry(OrigOuterPreHeader);
- LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
-
- // Tell SE that we move the loops around.
- SE->forgetLoop(NewOuter);
- SE->forgetLoop(NewInner);
-}
-
-bool LoopInterchangeTransform::transform() {
- bool Transformed = false;
- Instruction *InnerIndexVar;
-
- if (InnerLoop->getSubLoops().empty()) {
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
- LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n");
- PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
- if (!InductionPHI) {
- LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
- return false;
- }
-
- if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
- InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
- else
- InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
-
- // Ensure that InductionPHI is the first Phi node.
- if (&InductionPHI->getParent()->front() != InductionPHI)
- InductionPHI->moveBefore(&InductionPHI->getParent()->front());
-
- // Split at the place were the induction variable is
- // incremented/decremented.
- // TODO: This splitting logic may not work always. Fix this.
- splitInnerLoopLatch(InnerIndexVar);
- LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n");
-
- // Splits the inner loops phi nodes out into a separate basic block.
- BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
- SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
- LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
- }
-
- Transformed |= adjustLoopLinks();
- if (!Transformed) {
- LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
- return false;
- }
-
- return true;
-}
-
-void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
- SplitBlock(InnerLoop->getLoopLatch(), Inc, DT, LI);
-}
-
-/// \brief Move all instructions except the terminator from FromBB right before
-/// InsertBefore
-static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
- auto &ToList = InsertBefore->getParent()->getInstList();
- auto &FromList = FromBB->getInstList();
-
- ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
- FromBB->getTerminator()->getIterator());
-}
-
-/// Update BI to jump to NewBB instead of OldBB. Records updates to
-/// the dominator tree in DTUpdates, if DT should be preserved.
-static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
- BasicBlock *NewBB,
- std::vector<DominatorTree::UpdateType> &DTUpdates) {
- assert(llvm::count_if(successors(BI),
- [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
- "BI must jump to OldBB at most once.");
- for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
- if (BI->getSuccessor(i) == OldBB) {
- BI->setSuccessor(i, NewBB);
-
- DTUpdates.push_back(
- {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
- DTUpdates.push_back(
- {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
- break;
- }
- }
-}
-
-// Move Lcssa PHIs to the right place.
-static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
- BasicBlock *InnerLatch, BasicBlock *OuterHeader,
- BasicBlock *OuterLatch, BasicBlock *OuterExit) {
-
- // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
- // defined either in the header or latch. Those blocks will become header and
- // latch of the new outer loop, and the only possible users can PHI nodes
- // in the exit block of the loop nest or the outer loop header (reduction
- // PHIs, in that case, the incoming value must be defined in the inner loop
- // header). We can just substitute the user with the incoming value and remove
- // the PHI.
- for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
- assert(P.getNumIncomingValues() == 1 &&
- "Only loops with a single exit are supported!");
-
- // Incoming values are guaranteed be instructions currently.
- auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
- // Skip phis with incoming values from the inner loop body, excluding the
- // header and latch.
- if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
- continue;
-
- assert(all_of(P.users(),
- [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
- return (cast<PHINode>(U)->getParent() == OuterHeader &&
- IncI->getParent() == InnerHeader) ||
- cast<PHINode>(U)->getParent() == OuterExit;
- }) &&
- "Can only replace phis iff the uses are in the loop nest exit or "
- "the incoming value is defined in the inner header (it will "
- "dominate all loop blocks after interchanging)");
- P.replaceAllUsesWith(IncI);
- P.eraseFromParent();
- }
-
- SmallVector<PHINode *, 8> LcssaInnerExit;
- for (PHINode &P : InnerExit->phis())
- LcssaInnerExit.push_back(&P);
-
- SmallVector<PHINode *, 8> LcssaInnerLatch;
- for (PHINode &P : InnerLatch->phis())
- LcssaInnerLatch.push_back(&P);
-
- // Lcssa PHIs for values used outside the inner loop are in InnerExit.
- // If a PHI node has users outside of InnerExit, it has a use outside the
- // interchanged loop and we have to preserve it. We move these to
- // InnerLatch, which will become the new exit block for the innermost
- // loop after interchanging.
- for (PHINode *P : LcssaInnerExit)
- P->moveBefore(InnerLatch->getFirstNonPHI());
-
- // If the inner loop latch contains LCSSA PHIs, those come from a child loop
- // and we have to move them to the new inner latch.
- for (PHINode *P : LcssaInnerLatch)
- P->moveBefore(InnerExit->getFirstNonPHI());
-
- // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
- // incoming values from the outer latch or header, we have to add a new PHI
- // in the inner loop latch, which became the exit block of the outer loop,
- // after interchanging.
- if (OuterExit) {
- for (PHINode &P : OuterExit->phis()) {
- if (P.getNumIncomingValues() != 1)
- continue;
- // Skip Phis with incoming values not defined in the outer loop's header
- // and latch. Also skip incoming phis defined in the latch. Those should
- // already have been updated.
- auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
- if (!I || ((I->getParent() != OuterLatch || isa<PHINode>(I)) &&
- I->getParent() != OuterHeader))
- continue;
-
- PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
- NewPhi->setIncomingValue(0, P.getIncomingValue(0));
- NewPhi->setIncomingBlock(0, OuterLatch);
- NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
- P.setIncomingValue(0, NewPhi);
- }
- }
-
- // Now adjust the incoming blocks for the LCSSA PHIs.
- // For PHIs moved from Inner's exit block, we need to replace Inner's latch
- // with the new latch.
- InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
-}
-
-bool LoopInterchangeTransform::adjustLoopBranches() {
- LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
- std::vector<DominatorTree::UpdateType> DTUpdates;
-
- BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
-
- assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
- InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
- InnerLoopPreHeader && "Guaranteed by loop-simplify form");
- // Ensure that both preheaders do not contain PHI nodes and have single
- // predecessors. This allows us to move them easily. We use
- // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
- // preheaders do not satisfy those conditions.
- if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
- !OuterLoopPreHeader->getUniquePredecessor())
- OuterLoopPreHeader =
- InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
- if (InnerLoopPreHeader == OuterLoop->getHeader())
- InnerLoopPreHeader =
- InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
-
- // Adjust the loop preheader
- BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
- BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
- BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
- BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
- BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
- BasicBlock *InnerLoopLatchPredecessor =
- InnerLoopLatch->getUniquePredecessor();
- BasicBlock *InnerLoopLatchSuccessor;
- BasicBlock *OuterLoopLatchSuccessor;
-
- BranchInst *OuterLoopLatchBI =
- dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
- BranchInst *InnerLoopLatchBI =
- dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
- BranchInst *OuterLoopHeaderBI =
- dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
- BranchInst *InnerLoopHeaderBI =
- dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
-
- if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
- !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
- !InnerLoopHeaderBI)
- return false;
-
- BranchInst *InnerLoopLatchPredecessorBI =
- dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
- BranchInst *OuterLoopPredecessorBI =
- dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
-
- if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
- return false;
- BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
- if (!InnerLoopHeaderSuccessor)
- return false;
-
- // Adjust Loop Preheader and headers
- updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
- InnerLoopPreHeader, DTUpdates);
- updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
- updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
- InnerLoopHeaderSuccessor, DTUpdates);
-
- // Adjust reduction PHI's now that the incoming block has changed.
- InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
- OuterLoopHeader);
-
- updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
- OuterLoopPreHeader, DTUpdates);
-
- // -------------Adjust loop latches-----------
- if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
- InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
- else
- InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
-
- updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
- InnerLoopLatchSuccessor, DTUpdates);
-
-
- if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
- OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
- else
- OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
-
- updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
- OuterLoopLatchSuccessor, DTUpdates);
- updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
- DTUpdates);
-
- DT->applyUpdates(DTUpdates);
- restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
- OuterLoopPreHeader);
-
- moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
- OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock());
- // For PHIs in the exit block of the outer loop, outer's latch has been
- // replaced by Inners'.
- OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
-
- // Now update the reduction PHIs in the inner and outer loop headers.
- SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
- for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
- InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
- for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
- OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
-
- auto &OuterInnerReductions = LIL.getOuterInnerReductions();
- (void)OuterInnerReductions;
-
- // Now move the remaining reduction PHIs from outer to inner loop header and
- // vice versa. The PHI nodes must be part of a reduction across the inner and
- // outer loop and all the remains to do is and updating the incoming blocks.
- for (PHINode *PHI : OuterLoopPHIs) {
- PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
- assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
- "Expected a reduction PHI node");
- }
- for (PHINode *PHI : InnerLoopPHIs) {
- PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
- assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
- "Expected a reduction PHI node");
- }
-
- // Update the incoming blocks for moved PHI nodes.
- OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
- OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
- InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
- InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
-
- return true;
-}
-
-void LoopInterchangeTransform::adjustLoopPreheaders() {
- // We have interchanged the preheaders so we need to interchange the data in
- // the preheader as well.
- // This is because the content of inner preheader was previously executed
- // inside the outer loop.
- BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
- BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
- BranchInst *InnerTermBI =
- cast<BranchInst>(InnerLoopPreHeader->getTerminator());
-
- // These instructions should now be executed inside the loop.
- // Move instruction into a new block after outer header.
- moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
- // These instructions were not executed previously in the loop so move them to
- // the older inner loop preheader.
- moveBBContents(OuterLoopPreHeader, InnerTermBI);
-}
-
-bool LoopInterchangeTransform::adjustLoopLinks() {
- // Adjust all branches in the inner and outer loop.
- bool Changed = adjustLoopBranches();
- if (Changed)
- adjustLoopPreheaders();
- return Changed;
-}
-
-char LoopInterchange::ID = 0;
-
-INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
- "Interchanges loops for cache reuse", false, false)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
-
-INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
- "Interchanges loops for cache reuse", false, false)
-
-Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }