summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp387
1 files changed, 0 insertions, 387 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp
deleted file mode 100644
index 975452e13f09..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/LoopSink.cpp
+++ /dev/null
@@ -1,387 +0,0 @@
-//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass does the inverse transformation of what LICM does.
-// It traverses all of the instructions in the loop's preheader and sinks
-// them to the loop body where frequency is lower than the loop's preheader.
-// This pass is a reverse-transformation of LICM. It differs from the Sink
-// pass in the following ways:
-//
-// * It only handles sinking of instructions from the loop's preheader to the
-// loop's body
-// * It uses alias set tracker to get more accurate alias info
-// * It uses block frequency info to find the optimal sinking locations
-//
-// Overall algorithm:
-//
-// For I in Preheader:
-// InsertBBs = BBs that uses I
-// For BB in sorted(LoopBBs):
-// DomBBs = BBs in InsertBBs that are dominated by BB
-// if freq(DomBBs) > freq(BB)
-// InsertBBs = UseBBs - DomBBs + BB
-// For BB in InsertBBs:
-// Insert I at BB's beginning
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/LoopSink.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AliasSetTracker.h"
-#include "llvm/Analysis/BasicAliasAnalysis.h"
-#include "llvm/Analysis/BlockFrequencyInfo.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Scalar/LoopPassManager.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "loopsink"
-
-STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
-STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
-
-static cl::opt<unsigned> SinkFrequencyPercentThreshold(
- "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
- cl::desc("Do not sink instructions that require cloning unless they "
- "execute less than this percent of the time."));
-
-static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
- "max-uses-for-sinking", cl::Hidden, cl::init(30),
- cl::desc("Do not sink instructions that have too many uses."));
-
-/// Return adjusted total frequency of \p BBs.
-///
-/// * If there is only one BB, sinking instruction will not introduce code
-/// size increase. Thus there is no need to adjust the frequency.
-/// * If there are more than one BB, sinking would lead to code size increase.
-/// In this case, we add some "tax" to the total frequency to make it harder
-/// to sink. E.g.
-/// Freq(Preheader) = 100
-/// Freq(BBs) = sum(50, 49) = 99
-/// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
-/// BBs as the difference is too small to justify the code size increase.
-/// To model this, The adjusted Freq(BBs) will be:
-/// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
-static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
- BlockFrequencyInfo &BFI) {
- BlockFrequency T = 0;
- for (BasicBlock *B : BBs)
- T += BFI.getBlockFreq(B);
- if (BBs.size() > 1)
- T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
- return T;
-}
-
-/// Return a set of basic blocks to insert sinked instructions.
-///
-/// The returned set of basic blocks (BBsToSinkInto) should satisfy:
-///
-/// * Inside the loop \p L
-/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
-/// that domintates the UseBB
-/// * Has minimum total frequency that is no greater than preheader frequency
-///
-/// The purpose of the function is to find the optimal sinking points to
-/// minimize execution cost, which is defined as "sum of frequency of
-/// BBsToSinkInto".
-/// As a result, the returned BBsToSinkInto needs to have minimum total
-/// frequency.
-/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
-/// frequency, the optimal solution is not sinking (return empty set).
-///
-/// \p ColdLoopBBs is used to help find the optimal sinking locations.
-/// It stores a list of BBs that is:
-///
-/// * Inside the loop \p L
-/// * Has a frequency no larger than the loop's preheader
-/// * Sorted by BB frequency
-///
-/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
-/// To avoid expensive computation, we cap the maximum UseBBs.size() in its
-/// caller.
-static SmallPtrSet<BasicBlock *, 2>
-findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
- const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
- DominatorTree &DT, BlockFrequencyInfo &BFI) {
- SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
- if (UseBBs.size() == 0)
- return BBsToSinkInto;
-
- BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
- SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
-
- // For every iteration:
- // * Pick the ColdestBB from ColdLoopBBs
- // * Find the set BBsDominatedByColdestBB that satisfy:
- // - BBsDominatedByColdestBB is a subset of BBsToSinkInto
- // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
- // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
- // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
- // BBsToSinkInto
- for (BasicBlock *ColdestBB : ColdLoopBBs) {
- BBsDominatedByColdestBB.clear();
- for (BasicBlock *SinkedBB : BBsToSinkInto)
- if (DT.dominates(ColdestBB, SinkedBB))
- BBsDominatedByColdestBB.insert(SinkedBB);
- if (BBsDominatedByColdestBB.size() == 0)
- continue;
- if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
- BFI.getBlockFreq(ColdestBB)) {
- for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
- BBsToSinkInto.erase(DominatedBB);
- }
- BBsToSinkInto.insert(ColdestBB);
- }
- }
-
- // Can't sink into blocks that have no valid insertion point.
- for (BasicBlock *BB : BBsToSinkInto) {
- if (BB->getFirstInsertionPt() == BB->end()) {
- BBsToSinkInto.clear();
- break;
- }
- }
-
- // If the total frequency of BBsToSinkInto is larger than preheader frequency,
- // do not sink.
- if (adjustedSumFreq(BBsToSinkInto, BFI) >
- BFI.getBlockFreq(L.getLoopPreheader()))
- BBsToSinkInto.clear();
- return BBsToSinkInto;
-}
-
-// Sinks \p I from the loop \p L's preheader to its uses. Returns true if
-// sinking is successful.
-// \p LoopBlockNumber is used to sort the insertion blocks to ensure
-// determinism.
-static bool sinkInstruction(Loop &L, Instruction &I,
- const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
- const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber,
- LoopInfo &LI, DominatorTree &DT,
- BlockFrequencyInfo &BFI) {
- // Compute the set of blocks in loop L which contain a use of I.
- SmallPtrSet<BasicBlock *, 2> BBs;
- for (auto &U : I.uses()) {
- Instruction *UI = cast<Instruction>(U.getUser());
- // We cannot sink I to PHI-uses.
- if (dyn_cast<PHINode>(UI))
- return false;
- // We cannot sink I if it has uses outside of the loop.
- if (!L.contains(LI.getLoopFor(UI->getParent())))
- return false;
- BBs.insert(UI->getParent());
- }
-
- // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
- // BBs.size() to avoid expensive computation.
- // FIXME: Handle code size growth for min_size and opt_size.
- if (BBs.size() > MaxNumberOfUseBBsForSinking)
- return false;
-
- // Find the set of BBs that we should insert a copy of I.
- SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
- findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
- if (BBsToSinkInto.empty())
- return false;
-
- // Return if any of the candidate blocks to sink into is non-cold.
- if (BBsToSinkInto.size() > 1) {
- for (auto *BB : BBsToSinkInto)
- if (!LoopBlockNumber.count(BB))
- return false;
- }
-
- // Copy the final BBs into a vector and sort them using the total ordering
- // of the loop block numbers as iterating the set doesn't give a useful
- // order. No need to stable sort as the block numbers are a total ordering.
- SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
- SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(),
- BBsToSinkInto.end());
- llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
- return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
- });
-
- BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
- // FIXME: Optimize the efficiency for cloned value replacement. The current
- // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
- for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) {
- assert(LoopBlockNumber.find(N)->second >
- LoopBlockNumber.find(MoveBB)->second &&
- "BBs not sorted!");
- // Clone I and replace its uses.
- Instruction *IC = I.clone();
- IC->setName(I.getName());
- IC->insertBefore(&*N->getFirstInsertionPt());
- // Replaces uses of I with IC in N
- for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
- Use &U = *UI++;
- auto *I = cast<Instruction>(U.getUser());
- if (I->getParent() == N)
- U.set(IC);
- }
- // Replaces uses of I with IC in blocks dominated by N
- replaceDominatedUsesWith(&I, IC, DT, N);
- LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
- << '\n');
- NumLoopSunkCloned++;
- }
- LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
- NumLoopSunk++;
- I.moveBefore(&*MoveBB->getFirstInsertionPt());
-
- return true;
-}
-
-/// Sinks instructions from loop's preheader to the loop body if the
-/// sum frequency of inserted copy is smaller than preheader's frequency.
-static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
- DominatorTree &DT,
- BlockFrequencyInfo &BFI,
- ScalarEvolution *SE) {
- BasicBlock *Preheader = L.getLoopPreheader();
- if (!Preheader)
- return false;
-
- // Enable LoopSink only when runtime profile is available.
- // With static profile, the sinking decision may be sub-optimal.
- if (!Preheader->getParent()->hasProfileData())
- return false;
-
- const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
- // If there are no basic blocks with lower frequency than the preheader then
- // we can avoid the detailed analysis as we will never find profitable sinking
- // opportunities.
- if (all_of(L.blocks(), [&](const BasicBlock *BB) {
- return BFI.getBlockFreq(BB) > PreheaderFreq;
- }))
- return false;
-
- bool Changed = false;
- AliasSetTracker CurAST(AA);
-
- // Compute alias set.
- for (BasicBlock *BB : L.blocks())
- CurAST.add(*BB);
- CurAST.add(*Preheader);
-
- // Sort loop's basic blocks by frequency
- SmallVector<BasicBlock *, 10> ColdLoopBBs;
- SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
- int i = 0;
- for (BasicBlock *B : L.blocks())
- if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
- ColdLoopBBs.push_back(B);
- LoopBlockNumber[B] = ++i;
- }
- llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
- return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
- });
-
- // Traverse preheader's instructions in reverse order becaue if A depends
- // on B (A appears after B), A needs to be sinked first before B can be
- // sinked.
- for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
- Instruction *I = &*II++;
- // No need to check for instruction's operands are loop invariant.
- assert(L.hasLoopInvariantOperands(I) &&
- "Insts in a loop's preheader should have loop invariant operands!");
- if (!canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr, false))
- continue;
- if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI))
- Changed = true;
- }
-
- if (Changed && SE)
- SE->forgetLoopDispositions(&L);
- return Changed;
-}
-
-PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
- LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
- // Nothing to do if there are no loops.
- if (LI.empty())
- return PreservedAnalyses::all();
-
- AAResults &AA = FAM.getResult<AAManager>(F);
- DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
- BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
-
- // We want to do a postorder walk over the loops. Since loops are a tree this
- // is equivalent to a reversed preorder walk and preorder is easy to compute
- // without recursion. Since we reverse the preorder, we will visit siblings
- // in reverse program order. This isn't expected to matter at all but is more
- // consistent with sinking algorithms which generally work bottom-up.
- SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
-
- bool Changed = false;
- do {
- Loop &L = *PreorderLoops.pop_back_val();
-
- // Note that we don't pass SCEV here because it is only used to invalidate
- // loops in SCEV and we don't preserve (or request) SCEV at all making that
- // unnecessary.
- Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
- /*ScalarEvolution*/ nullptr);
- } while (!PreorderLoops.empty());
-
- if (!Changed)
- return PreservedAnalyses::all();
-
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- return PA;
-}
-
-namespace {
-struct LegacyLoopSinkPass : public LoopPass {
- static char ID;
- LegacyLoopSinkPass() : LoopPass(ID) {
- initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L))
- return false;
-
- auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
- return sinkLoopInvariantInstructions(
- *L, getAnalysis<AAResultsWrapperPass>().getAAResults(),
- getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
- getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
- SE ? &SE->getSE() : nullptr);
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<BlockFrequencyInfoWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
-};
-}
-
-char LegacyLoopSinkPass::ID = 0;
-INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
- false)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
-INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
-
-Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }