summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp5770
1 files changed, 0 insertions, 5770 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
deleted file mode 100644
index 59a387a186b8..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
+++ /dev/null
@@ -1,5770 +0,0 @@
-//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This transformation analyzes and transforms the induction variables (and
-// computations derived from them) into forms suitable for efficient execution
-// on the target.
-//
-// This pass performs a strength reduction on array references inside loops that
-// have as one or more of their components the loop induction variable, it
-// rewrites expressions to take advantage of scaled-index addressing modes
-// available on the target, and it performs a variety of other optimizations
-// related to loop induction variables.
-//
-// Terminology note: this code has a lot of handling for "post-increment" or
-// "post-inc" users. This is not talking about post-increment addressing modes;
-// it is instead talking about code like this:
-//
-// %i = phi [ 0, %entry ], [ %i.next, %latch ]
-// ...
-// %i.next = add %i, 1
-// %c = icmp eq %i.next, %n
-//
-// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
-// it's useful to think about these as the same register, with some uses using
-// the value of the register before the add and some using it after. In this
-// example, the icmp is a post-increment user, since it uses %i.next, which is
-// the value of the induction variable after the increment. The other common
-// case of post-increment users is users outside the loop.
-//
-// TODO: More sophistication in the way Formulae are generated and filtered.
-//
-// TODO: Handle multiple loops at a time.
-//
-// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
-// of a GlobalValue?
-//
-// TODO: When truncation is free, truncate ICmp users' operands to make it a
-// smaller encoding (on x86 at least).
-//
-// TODO: When a negated register is used by an add (such as in a list of
-// multiple base registers, or as the increment expression in an addrec),
-// we may not actually need both reg and (-1 * reg) in registers; the
-// negation can be implemented by using a sub instead of an add. The
-// lack of support for taking this into consideration when making
-// register pressure decisions is partly worked around by the "Special"
-// use kind.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Hashing.h"
-#include "llvm/ADT/PointerIntPair.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallBitVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/IVUsers.h"
-#include "llvm/Analysis/LoopAnalysisManager.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/ScalarEvolutionNormalization.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/OperandTraits.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <cstdlib>
-#include <iterator>
-#include <limits>
-#include <numeric>
-#include <map>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "loop-reduce"
-
-/// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
-/// bail out. This threshold is far beyond the number of users that LSR can
-/// conceivably solve, so it should not affect generated code, but catches the
-/// worst cases before LSR burns too much compile time and stack space.
-static const unsigned MaxIVUsers = 200;
-
-// Temporary flag to cleanup congruent phis after LSR phi expansion.
-// It's currently disabled until we can determine whether it's truly useful or
-// not. The flag should be removed after the v3.0 release.
-// This is now needed for ivchains.
-static cl::opt<bool> EnablePhiElim(
- "enable-lsr-phielim", cl::Hidden, cl::init(true),
- cl::desc("Enable LSR phi elimination"));
-
-// The flag adds instruction count to solutions cost comparision.
-static cl::opt<bool> InsnsCost(
- "lsr-insns-cost", cl::Hidden, cl::init(true),
- cl::desc("Add instruction count to a LSR cost model"));
-
-// Flag to choose how to narrow complex lsr solution
-static cl::opt<bool> LSRExpNarrow(
- "lsr-exp-narrow", cl::Hidden, cl::init(false),
- cl::desc("Narrow LSR complex solution using"
- " expectation of registers number"));
-
-// Flag to narrow search space by filtering non-optimal formulae with
-// the same ScaledReg and Scale.
-static cl::opt<bool> FilterSameScaledReg(
- "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
- cl::desc("Narrow LSR search space by filtering non-optimal formulae"
- " with the same ScaledReg and Scale"));
-
-static cl::opt<bool> EnableBackedgeIndexing(
- "lsr-backedge-indexing", cl::Hidden, cl::init(true),
- cl::desc("Enable the generation of cross iteration indexed memops"));
-
-static cl::opt<unsigned> ComplexityLimit(
- "lsr-complexity-limit", cl::Hidden,
- cl::init(std::numeric_limits<uint16_t>::max()),
- cl::desc("LSR search space complexity limit"));
-
-static cl::opt<unsigned> SetupCostDepthLimit(
- "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
- cl::desc("The limit on recursion depth for LSRs setup cost"));
-
-#ifndef NDEBUG
-// Stress test IV chain generation.
-static cl::opt<bool> StressIVChain(
- "stress-ivchain", cl::Hidden, cl::init(false),
- cl::desc("Stress test LSR IV chains"));
-#else
-static bool StressIVChain = false;
-#endif
-
-namespace {
-
-struct MemAccessTy {
- /// Used in situations where the accessed memory type is unknown.
- static const unsigned UnknownAddressSpace =
- std::numeric_limits<unsigned>::max();
-
- Type *MemTy = nullptr;
- unsigned AddrSpace = UnknownAddressSpace;
-
- MemAccessTy() = default;
- MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
-
- bool operator==(MemAccessTy Other) const {
- return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
- }
-
- bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
-
- static MemAccessTy getUnknown(LLVMContext &Ctx,
- unsigned AS = UnknownAddressSpace) {
- return MemAccessTy(Type::getVoidTy(Ctx), AS);
- }
-
- Type *getType() { return MemTy; }
-};
-
-/// This class holds data which is used to order reuse candidates.
-class RegSortData {
-public:
- /// This represents the set of LSRUse indices which reference
- /// a particular register.
- SmallBitVector UsedByIndices;
-
- void print(raw_ostream &OS) const;
- void dump() const;
-};
-
-} // end anonymous namespace
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void RegSortData::print(raw_ostream &OS) const {
- OS << "[NumUses=" << UsedByIndices.count() << ']';
-}
-
-LLVM_DUMP_METHOD void RegSortData::dump() const {
- print(errs()); errs() << '\n';
-}
-#endif
-
-namespace {
-
-/// Map register candidates to information about how they are used.
-class RegUseTracker {
- using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
-
- RegUsesTy RegUsesMap;
- SmallVector<const SCEV *, 16> RegSequence;
-
-public:
- void countRegister(const SCEV *Reg, size_t LUIdx);
- void dropRegister(const SCEV *Reg, size_t LUIdx);
- void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
-
- bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
-
- const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
-
- void clear();
-
- using iterator = SmallVectorImpl<const SCEV *>::iterator;
- using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
-
- iterator begin() { return RegSequence.begin(); }
- iterator end() { return RegSequence.end(); }
- const_iterator begin() const { return RegSequence.begin(); }
- const_iterator end() const { return RegSequence.end(); }
-};
-
-} // end anonymous namespace
-
-void
-RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
- std::pair<RegUsesTy::iterator, bool> Pair =
- RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
- RegSortData &RSD = Pair.first->second;
- if (Pair.second)
- RegSequence.push_back(Reg);
- RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
- RSD.UsedByIndices.set(LUIdx);
-}
-
-void
-RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
- RegUsesTy::iterator It = RegUsesMap.find(Reg);
- assert(It != RegUsesMap.end());
- RegSortData &RSD = It->second;
- assert(RSD.UsedByIndices.size() > LUIdx);
- RSD.UsedByIndices.reset(LUIdx);
-}
-
-void
-RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
- assert(LUIdx <= LastLUIdx);
-
- // Update RegUses. The data structure is not optimized for this purpose;
- // we must iterate through it and update each of the bit vectors.
- for (auto &Pair : RegUsesMap) {
- SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
- if (LUIdx < UsedByIndices.size())
- UsedByIndices[LUIdx] =
- LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
- UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
- }
-}
-
-bool
-RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
- RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
- if (I == RegUsesMap.end())
- return false;
- const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
- int i = UsedByIndices.find_first();
- if (i == -1) return false;
- if ((size_t)i != LUIdx) return true;
- return UsedByIndices.find_next(i) != -1;
-}
-
-const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
- RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
- assert(I != RegUsesMap.end() && "Unknown register!");
- return I->second.UsedByIndices;
-}
-
-void RegUseTracker::clear() {
- RegUsesMap.clear();
- RegSequence.clear();
-}
-
-namespace {
-
-/// This class holds information that describes a formula for computing
-/// satisfying a use. It may include broken-out immediates and scaled registers.
-struct Formula {
- /// Global base address used for complex addressing.
- GlobalValue *BaseGV = nullptr;
-
- /// Base offset for complex addressing.
- int64_t BaseOffset = 0;
-
- /// Whether any complex addressing has a base register.
- bool HasBaseReg = false;
-
- /// The scale of any complex addressing.
- int64_t Scale = 0;
-
- /// The list of "base" registers for this use. When this is non-empty. The
- /// canonical representation of a formula is
- /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
- /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
- /// 3. The reg containing recurrent expr related with currect loop in the
- /// formula should be put in the ScaledReg.
- /// #1 enforces that the scaled register is always used when at least two
- /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
- /// #2 enforces that 1 * reg is reg.
- /// #3 ensures invariant regs with respect to current loop can be combined
- /// together in LSR codegen.
- /// This invariant can be temporarily broken while building a formula.
- /// However, every formula inserted into the LSRInstance must be in canonical
- /// form.
- SmallVector<const SCEV *, 4> BaseRegs;
-
- /// The 'scaled' register for this use. This should be non-null when Scale is
- /// not zero.
- const SCEV *ScaledReg = nullptr;
-
- /// An additional constant offset which added near the use. This requires a
- /// temporary register, but the offset itself can live in an add immediate
- /// field rather than a register.
- int64_t UnfoldedOffset = 0;
-
- Formula() = default;
-
- void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
-
- bool isCanonical(const Loop &L) const;
-
- void canonicalize(const Loop &L);
-
- bool unscale();
-
- bool hasZeroEnd() const;
-
- size_t getNumRegs() const;
- Type *getType() const;
-
- void deleteBaseReg(const SCEV *&S);
-
- bool referencesReg(const SCEV *S) const;
- bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
- const RegUseTracker &RegUses) const;
-
- void print(raw_ostream &OS) const;
- void dump() const;
-};
-
-} // end anonymous namespace
-
-/// Recursion helper for initialMatch.
-static void DoInitialMatch(const SCEV *S, Loop *L,
- SmallVectorImpl<const SCEV *> &Good,
- SmallVectorImpl<const SCEV *> &Bad,
- ScalarEvolution &SE) {
- // Collect expressions which properly dominate the loop header.
- if (SE.properlyDominates(S, L->getHeader())) {
- Good.push_back(S);
- return;
- }
-
- // Look at add operands.
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- for (const SCEV *S : Add->operands())
- DoInitialMatch(S, L, Good, Bad, SE);
- return;
- }
-
- // Look at addrec operands.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
- if (!AR->getStart()->isZero() && AR->isAffine()) {
- DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
- DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
- AR->getStepRecurrence(SE),
- // FIXME: AR->getNoWrapFlags()
- AR->getLoop(), SCEV::FlagAnyWrap),
- L, Good, Bad, SE);
- return;
- }
-
- // Handle a multiplication by -1 (negation) if it didn't fold.
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
- if (Mul->getOperand(0)->isAllOnesValue()) {
- SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
- const SCEV *NewMul = SE.getMulExpr(Ops);
-
- SmallVector<const SCEV *, 4> MyGood;
- SmallVector<const SCEV *, 4> MyBad;
- DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
- const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
- SE.getEffectiveSCEVType(NewMul->getType())));
- for (const SCEV *S : MyGood)
- Good.push_back(SE.getMulExpr(NegOne, S));
- for (const SCEV *S : MyBad)
- Bad.push_back(SE.getMulExpr(NegOne, S));
- return;
- }
-
- // Ok, we can't do anything interesting. Just stuff the whole thing into a
- // register and hope for the best.
- Bad.push_back(S);
-}
-
-/// Incorporate loop-variant parts of S into this Formula, attempting to keep
-/// all loop-invariant and loop-computable values in a single base register.
-void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
- SmallVector<const SCEV *, 4> Good;
- SmallVector<const SCEV *, 4> Bad;
- DoInitialMatch(S, L, Good, Bad, SE);
- if (!Good.empty()) {
- const SCEV *Sum = SE.getAddExpr(Good);
- if (!Sum->isZero())
- BaseRegs.push_back(Sum);
- HasBaseReg = true;
- }
- if (!Bad.empty()) {
- const SCEV *Sum = SE.getAddExpr(Bad);
- if (!Sum->isZero())
- BaseRegs.push_back(Sum);
- HasBaseReg = true;
- }
- canonicalize(*L);
-}
-
-/// Check whether or not this formula satisfies the canonical
-/// representation.
-/// \see Formula::BaseRegs.
-bool Formula::isCanonical(const Loop &L) const {
- if (!ScaledReg)
- return BaseRegs.size() <= 1;
-
- if (Scale != 1)
- return true;
-
- if (Scale == 1 && BaseRegs.empty())
- return false;
-
- const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
- if (SAR && SAR->getLoop() == &L)
- return true;
-
- // If ScaledReg is not a recurrent expr, or it is but its loop is not current
- // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
- // loop, we want to swap the reg in BaseRegs with ScaledReg.
- auto I =
- find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
- return isa<const SCEVAddRecExpr>(S) &&
- (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
- });
- return I == BaseRegs.end();
-}
-
-/// Helper method to morph a formula into its canonical representation.
-/// \see Formula::BaseRegs.
-/// Every formula having more than one base register, must use the ScaledReg
-/// field. Otherwise, we would have to do special cases everywhere in LSR
-/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
-/// On the other hand, 1*reg should be canonicalized into reg.
-void Formula::canonicalize(const Loop &L) {
- if (isCanonical(L))
- return;
- // So far we did not need this case. This is easy to implement but it is
- // useless to maintain dead code. Beside it could hurt compile time.
- assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
-
- // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
- if (!ScaledReg) {
- ScaledReg = BaseRegs.back();
- BaseRegs.pop_back();
- Scale = 1;
- }
-
- // If ScaledReg is an invariant with respect to L, find the reg from
- // BaseRegs containing the recurrent expr related with Loop L. Swap the
- // reg with ScaledReg.
- const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
- if (!SAR || SAR->getLoop() != &L) {
- auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
- [&](const SCEV *S) {
- return isa<const SCEVAddRecExpr>(S) &&
- (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
- });
- if (I != BaseRegs.end())
- std::swap(ScaledReg, *I);
- }
-}
-
-/// Get rid of the scale in the formula.
-/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
-/// \return true if it was possible to get rid of the scale, false otherwise.
-/// \note After this operation the formula may not be in the canonical form.
-bool Formula::unscale() {
- if (Scale != 1)
- return false;
- Scale = 0;
- BaseRegs.push_back(ScaledReg);
- ScaledReg = nullptr;
- return true;
-}
-
-bool Formula::hasZeroEnd() const {
- if (UnfoldedOffset || BaseOffset)
- return false;
- if (BaseRegs.size() != 1 || ScaledReg)
- return false;
- return true;
-}
-
-/// Return the total number of register operands used by this formula. This does
-/// not include register uses implied by non-constant addrec strides.
-size_t Formula::getNumRegs() const {
- return !!ScaledReg + BaseRegs.size();
-}
-
-/// Return the type of this formula, if it has one, or null otherwise. This type
-/// is meaningless except for the bit size.
-Type *Formula::getType() const {
- return !BaseRegs.empty() ? BaseRegs.front()->getType() :
- ScaledReg ? ScaledReg->getType() :
- BaseGV ? BaseGV->getType() :
- nullptr;
-}
-
-/// Delete the given base reg from the BaseRegs list.
-void Formula::deleteBaseReg(const SCEV *&S) {
- if (&S != &BaseRegs.back())
- std::swap(S, BaseRegs.back());
- BaseRegs.pop_back();
-}
-
-/// Test if this formula references the given register.
-bool Formula::referencesReg(const SCEV *S) const {
- return S == ScaledReg || is_contained(BaseRegs, S);
-}
-
-/// Test whether this formula uses registers which are used by uses other than
-/// the use with the given index.
-bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
- const RegUseTracker &RegUses) const {
- if (ScaledReg)
- if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
- return true;
- for (const SCEV *BaseReg : BaseRegs)
- if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
- return true;
- return false;
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void Formula::print(raw_ostream &OS) const {
- bool First = true;
- if (BaseGV) {
- if (!First) OS << " + "; else First = false;
- BaseGV->printAsOperand(OS, /*PrintType=*/false);
- }
- if (BaseOffset != 0) {
- if (!First) OS << " + "; else First = false;
- OS << BaseOffset;
- }
- for (const SCEV *BaseReg : BaseRegs) {
- if (!First) OS << " + "; else First = false;
- OS << "reg(" << *BaseReg << ')';
- }
- if (HasBaseReg && BaseRegs.empty()) {
- if (!First) OS << " + "; else First = false;
- OS << "**error: HasBaseReg**";
- } else if (!HasBaseReg && !BaseRegs.empty()) {
- if (!First) OS << " + "; else First = false;
- OS << "**error: !HasBaseReg**";
- }
- if (Scale != 0) {
- if (!First) OS << " + "; else First = false;
- OS << Scale << "*reg(";
- if (ScaledReg)
- OS << *ScaledReg;
- else
- OS << "<unknown>";
- OS << ')';
- }
- if (UnfoldedOffset != 0) {
- if (!First) OS << " + ";
- OS << "imm(" << UnfoldedOffset << ')';
- }
-}
-
-LLVM_DUMP_METHOD void Formula::dump() const {
- print(errs()); errs() << '\n';
-}
-#endif
-
-/// Return true if the given addrec can be sign-extended without changing its
-/// value.
-static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
- Type *WideTy =
- IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
- return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
-}
-
-/// Return true if the given add can be sign-extended without changing its
-/// value.
-static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
- Type *WideTy =
- IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
- return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
-}
-
-/// Return true if the given mul can be sign-extended without changing its
-/// value.
-static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
- Type *WideTy =
- IntegerType::get(SE.getContext(),
- SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
- return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
-}
-
-/// Return an expression for LHS /s RHS, if it can be determined and if the
-/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
-/// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
-/// the multiplication may overflow, which is useful when the result will be
-/// used in a context where the most significant bits are ignored.
-static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
- ScalarEvolution &SE,
- bool IgnoreSignificantBits = false) {
- // Handle the trivial case, which works for any SCEV type.
- if (LHS == RHS)
- return SE.getConstant(LHS->getType(), 1);
-
- // Handle a few RHS special cases.
- const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
- if (RC) {
- const APInt &RA = RC->getAPInt();
- // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
- // some folding.
- if (RA.isAllOnesValue())
- return SE.getMulExpr(LHS, RC);
- // Handle x /s 1 as x.
- if (RA == 1)
- return LHS;
- }
-
- // Check for a division of a constant by a constant.
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
- if (!RC)
- return nullptr;
- const APInt &LA = C->getAPInt();
- const APInt &RA = RC->getAPInt();
- if (LA.srem(RA) != 0)
- return nullptr;
- return SE.getConstant(LA.sdiv(RA));
- }
-
- // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
- if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
- const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
- IgnoreSignificantBits);
- if (!Step) return nullptr;
- const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
- IgnoreSignificantBits);
- if (!Start) return nullptr;
- // FlagNW is independent of the start value, step direction, and is
- // preserved with smaller magnitude steps.
- // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
- return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
- }
- return nullptr;
- }
-
- // Distribute the sdiv over add operands, if the add doesn't overflow.
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
- if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
- SmallVector<const SCEV *, 8> Ops;
- for (const SCEV *S : Add->operands()) {
- const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
- if (!Op) return nullptr;
- Ops.push_back(Op);
- }
- return SE.getAddExpr(Ops);
- }
- return nullptr;
- }
-
- // Check for a multiply operand that we can pull RHS out of.
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
- if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
- SmallVector<const SCEV *, 4> Ops;
- bool Found = false;
- for (const SCEV *S : Mul->operands()) {
- if (!Found)
- if (const SCEV *Q = getExactSDiv(S, RHS, SE,
- IgnoreSignificantBits)) {
- S = Q;
- Found = true;
- }
- Ops.push_back(S);
- }
- return Found ? SE.getMulExpr(Ops) : nullptr;
- }
- return nullptr;
- }
-
- // Otherwise we don't know.
- return nullptr;
-}
-
-/// If S involves the addition of a constant integer value, return that integer
-/// value, and mutate S to point to a new SCEV with that value excluded.
-static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
- if (C->getAPInt().getMinSignedBits() <= 64) {
- S = SE.getConstant(C->getType(), 0);
- return C->getValue()->getSExtValue();
- }
- } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
- int64_t Result = ExtractImmediate(NewOps.front(), SE);
- if (Result != 0)
- S = SE.getAddExpr(NewOps);
- return Result;
- } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
- int64_t Result = ExtractImmediate(NewOps.front(), SE);
- if (Result != 0)
- S = SE.getAddRecExpr(NewOps, AR->getLoop(),
- // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
- SCEV::FlagAnyWrap);
- return Result;
- }
- return 0;
-}
-
-/// If S involves the addition of a GlobalValue address, return that symbol, and
-/// mutate S to point to a new SCEV with that value excluded.
-static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
- S = SE.getConstant(GV->getType(), 0);
- return GV;
- }
- } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
- GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
- if (Result)
- S = SE.getAddExpr(NewOps);
- return Result;
- } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
- GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
- if (Result)
- S = SE.getAddRecExpr(NewOps, AR->getLoop(),
- // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
- SCEV::FlagAnyWrap);
- return Result;
- }
- return nullptr;
-}
-
-/// Returns true if the specified instruction is using the specified value as an
-/// address.
-static bool isAddressUse(const TargetTransformInfo &TTI,
- Instruction *Inst, Value *OperandVal) {
- bool isAddress = isa<LoadInst>(Inst);
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (SI->getPointerOperand() == OperandVal)
- isAddress = true;
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- // Addressing modes can also be folded into prefetches and a variety
- // of intrinsics.
- switch (II->getIntrinsicID()) {
- case Intrinsic::memset:
- case Intrinsic::prefetch:
- if (II->getArgOperand(0) == OperandVal)
- isAddress = true;
- break;
- case Intrinsic::memmove:
- case Intrinsic::memcpy:
- if (II->getArgOperand(0) == OperandVal ||
- II->getArgOperand(1) == OperandVal)
- isAddress = true;
- break;
- default: {
- MemIntrinsicInfo IntrInfo;
- if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
- if (IntrInfo.PtrVal == OperandVal)
- isAddress = true;
- }
- }
- }
- } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
- if (RMW->getPointerOperand() == OperandVal)
- isAddress = true;
- } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
- if (CmpX->getPointerOperand() == OperandVal)
- isAddress = true;
- }
- return isAddress;
-}
-
-/// Return the type of the memory being accessed.
-static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
- Instruction *Inst, Value *OperandVal) {
- MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
- if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- AccessTy.MemTy = SI->getOperand(0)->getType();
- AccessTy.AddrSpace = SI->getPointerAddressSpace();
- } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- AccessTy.AddrSpace = LI->getPointerAddressSpace();
- } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
- AccessTy.AddrSpace = RMW->getPointerAddressSpace();
- } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
- AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::prefetch:
- case Intrinsic::memset:
- AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
- AccessTy.MemTy = OperandVal->getType();
- break;
- case Intrinsic::memmove:
- case Intrinsic::memcpy:
- AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
- AccessTy.MemTy = OperandVal->getType();
- break;
- default: {
- MemIntrinsicInfo IntrInfo;
- if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
- AccessTy.AddrSpace
- = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
- }
-
- break;
- }
- }
- }
-
- // All pointers have the same requirements, so canonicalize them to an
- // arbitrary pointer type to minimize variation.
- if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
- AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
- PTy->getAddressSpace());
-
- return AccessTy;
-}
-
-/// Return true if this AddRec is already a phi in its loop.
-static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
- for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
- if (SE.isSCEVable(PN.getType()) &&
- (SE.getEffectiveSCEVType(PN.getType()) ==
- SE.getEffectiveSCEVType(AR->getType())) &&
- SE.getSCEV(&PN) == AR)
- return true;
- }
- return false;
-}
-
-/// Check if expanding this expression is likely to incur significant cost. This
-/// is tricky because SCEV doesn't track which expressions are actually computed
-/// by the current IR.
-///
-/// We currently allow expansion of IV increments that involve adds,
-/// multiplication by constants, and AddRecs from existing phis.
-///
-/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
-/// obvious multiple of the UDivExpr.
-static bool isHighCostExpansion(const SCEV *S,
- SmallPtrSetImpl<const SCEV*> &Processed,
- ScalarEvolution &SE) {
- // Zero/One operand expressions
- switch (S->getSCEVType()) {
- case scUnknown:
- case scConstant:
- return false;
- case scTruncate:
- return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
- Processed, SE);
- case scZeroExtend:
- return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
- Processed, SE);
- case scSignExtend:
- return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
- Processed, SE);
- }
-
- if (!Processed.insert(S).second)
- return false;
-
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- for (const SCEV *S : Add->operands()) {
- if (isHighCostExpansion(S, Processed, SE))
- return true;
- }
- return false;
- }
-
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
- if (Mul->getNumOperands() == 2) {
- // Multiplication by a constant is ok
- if (isa<SCEVConstant>(Mul->getOperand(0)))
- return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
-
- // If we have the value of one operand, check if an existing
- // multiplication already generates this expression.
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
- Value *UVal = U->getValue();
- for (User *UR : UVal->users()) {
- // If U is a constant, it may be used by a ConstantExpr.
- Instruction *UI = dyn_cast<Instruction>(UR);
- if (UI && UI->getOpcode() == Instruction::Mul &&
- SE.isSCEVable(UI->getType())) {
- return SE.getSCEV(UI) == Mul;
- }
- }
- }
- }
- }
-
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- if (isExistingPhi(AR, SE))
- return false;
- }
-
- // Fow now, consider any other type of expression (div/mul/min/max) high cost.
- return true;
-}
-
-/// If any of the instructions in the specified set are trivially dead, delete
-/// them and see if this makes any of their operands subsequently dead.
-static bool
-DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
- bool Changed = false;
-
- while (!DeadInsts.empty()) {
- Value *V = DeadInsts.pop_back_val();
- Instruction *I = dyn_cast_or_null<Instruction>(V);
-
- if (!I || !isInstructionTriviallyDead(I))
- continue;
-
- for (Use &O : I->operands())
- if (Instruction *U = dyn_cast<Instruction>(O)) {
- O = nullptr;
- if (U->use_empty())
- DeadInsts.emplace_back(U);
- }
-
- I->eraseFromParent();
- Changed = true;
- }
-
- return Changed;
-}
-
-namespace {
-
-class LSRUse;
-
-} // end anonymous namespace
-
-/// Check if the addressing mode defined by \p F is completely
-/// folded in \p LU at isel time.
-/// This includes address-mode folding and special icmp tricks.
-/// This function returns true if \p LU can accommodate what \p F
-/// defines and up to 1 base + 1 scaled + offset.
-/// In other words, if \p F has several base registers, this function may
-/// still return true. Therefore, users still need to account for
-/// additional base registers and/or unfolded offsets to derive an
-/// accurate cost model.
-static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- const LSRUse &LU, const Formula &F);
-
-// Get the cost of the scaling factor used in F for LU.
-static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
- const LSRUse &LU, const Formula &F,
- const Loop &L);
-
-namespace {
-
-/// This class is used to measure and compare candidate formulae.
-class Cost {
- const Loop *L = nullptr;
- ScalarEvolution *SE = nullptr;
- const TargetTransformInfo *TTI = nullptr;
- TargetTransformInfo::LSRCost C;
-
-public:
- Cost() = delete;
- Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
- L(L), SE(&SE), TTI(&TTI) {
- C.Insns = 0;
- C.NumRegs = 0;
- C.AddRecCost = 0;
- C.NumIVMuls = 0;
- C.NumBaseAdds = 0;
- C.ImmCost = 0;
- C.SetupCost = 0;
- C.ScaleCost = 0;
- }
-
- bool isLess(Cost &Other);
-
- void Lose();
-
-#ifndef NDEBUG
- // Once any of the metrics loses, they must all remain losers.
- bool isValid() {
- return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
- | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
- || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
- & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
- }
-#endif
-
- bool isLoser() {
- assert(isValid() && "invalid cost");
- return C.NumRegs == ~0u;
- }
-
- void RateFormula(const Formula &F,
- SmallPtrSetImpl<const SCEV *> &Regs,
- const DenseSet<const SCEV *> &VisitedRegs,
- const LSRUse &LU,
- SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
-
- void print(raw_ostream &OS) const;
- void dump() const;
-
-private:
- void RateRegister(const Formula &F, const SCEV *Reg,
- SmallPtrSetImpl<const SCEV *> &Regs);
- void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
- SmallPtrSetImpl<const SCEV *> &Regs,
- SmallPtrSetImpl<const SCEV *> *LoserRegs);
-};
-
-/// An operand value in an instruction which is to be replaced with some
-/// equivalent, possibly strength-reduced, replacement.
-struct LSRFixup {
- /// The instruction which will be updated.
- Instruction *UserInst = nullptr;
-
- /// The operand of the instruction which will be replaced. The operand may be
- /// used more than once; every instance will be replaced.
- Value *OperandValToReplace = nullptr;
-
- /// If this user is to use the post-incremented value of an induction
- /// variable, this set is non-empty and holds the loops associated with the
- /// induction variable.
- PostIncLoopSet PostIncLoops;
-
- /// A constant offset to be added to the LSRUse expression. This allows
- /// multiple fixups to share the same LSRUse with different offsets, for
- /// example in an unrolled loop.
- int64_t Offset = 0;
-
- LSRFixup() = default;
-
- bool isUseFullyOutsideLoop(const Loop *L) const;
-
- void print(raw_ostream &OS) const;
- void dump() const;
-};
-
-/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
-/// SmallVectors of const SCEV*.
-struct UniquifierDenseMapInfo {
- static SmallVector<const SCEV *, 4> getEmptyKey() {
- SmallVector<const SCEV *, 4> V;
- V.push_back(reinterpret_cast<const SCEV *>(-1));
- return V;
- }
-
- static SmallVector<const SCEV *, 4> getTombstoneKey() {
- SmallVector<const SCEV *, 4> V;
- V.push_back(reinterpret_cast<const SCEV *>(-2));
- return V;
- }
-
- static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
- return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
- }
-
- static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
- const SmallVector<const SCEV *, 4> &RHS) {
- return LHS == RHS;
- }
-};
-
-/// This class holds the state that LSR keeps for each use in IVUsers, as well
-/// as uses invented by LSR itself. It includes information about what kinds of
-/// things can be folded into the user, information about the user itself, and
-/// information about how the use may be satisfied. TODO: Represent multiple
-/// users of the same expression in common?
-class LSRUse {
- DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
-
-public:
- /// An enum for a kind of use, indicating what types of scaled and immediate
- /// operands it might support.
- enum KindType {
- Basic, ///< A normal use, with no folding.
- Special, ///< A special case of basic, allowing -1 scales.
- Address, ///< An address use; folding according to TargetLowering
- ICmpZero ///< An equality icmp with both operands folded into one.
- // TODO: Add a generic icmp too?
- };
-
- using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
-
- KindType Kind;
- MemAccessTy AccessTy;
-
- /// The list of operands which are to be replaced.
- SmallVector<LSRFixup, 8> Fixups;
-
- /// Keep track of the min and max offsets of the fixups.
- int64_t MinOffset = std::numeric_limits<int64_t>::max();
- int64_t MaxOffset = std::numeric_limits<int64_t>::min();
-
- /// This records whether all of the fixups using this LSRUse are outside of
- /// the loop, in which case some special-case heuristics may be used.
- bool AllFixupsOutsideLoop = true;
-
- /// RigidFormula is set to true to guarantee that this use will be associated
- /// with a single formula--the one that initially matched. Some SCEV
- /// expressions cannot be expanded. This allows LSR to consider the registers
- /// used by those expressions without the need to expand them later after
- /// changing the formula.
- bool RigidFormula = false;
-
- /// This records the widest use type for any fixup using this
- /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
- /// fixup widths to be equivalent, because the narrower one may be relying on
- /// the implicit truncation to truncate away bogus bits.
- Type *WidestFixupType = nullptr;
-
- /// A list of ways to build a value that can satisfy this user. After the
- /// list is populated, one of these is selected heuristically and used to
- /// formulate a replacement for OperandValToReplace in UserInst.
- SmallVector<Formula, 12> Formulae;
-
- /// The set of register candidates used by all formulae in this LSRUse.
- SmallPtrSet<const SCEV *, 4> Regs;
-
- LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
-
- LSRFixup &getNewFixup() {
- Fixups.push_back(LSRFixup());
- return Fixups.back();
- }
-
- void pushFixup(LSRFixup &f) {
- Fixups.push_back(f);
- if (f.Offset > MaxOffset)
- MaxOffset = f.Offset;
- if (f.Offset < MinOffset)
- MinOffset = f.Offset;
- }
-
- bool HasFormulaWithSameRegs(const Formula &F) const;
- float getNotSelectedProbability(const SCEV *Reg) const;
- bool InsertFormula(const Formula &F, const Loop &L);
- void DeleteFormula(Formula &F);
- void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
-
- void print(raw_ostream &OS) const;
- void dump() const;
-};
-
-} // end anonymous namespace
-
-static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- LSRUse::KindType Kind, MemAccessTy AccessTy,
- GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- Instruction *Fixup = nullptr);
-
-static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
- if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
- return 1;
- if (Depth == 0)
- return 0;
- if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
- return getSetupCost(S->getStart(), Depth - 1);
- if (auto S = dyn_cast<SCEVCastExpr>(Reg))
- return getSetupCost(S->getOperand(), Depth - 1);
- if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
- return std::accumulate(S->op_begin(), S->op_end(), 0,
- [&](unsigned i, const SCEV *Reg) {
- return i + getSetupCost(Reg, Depth - 1);
- });
- if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
- return getSetupCost(S->getLHS(), Depth - 1) +
- getSetupCost(S->getRHS(), Depth - 1);
- return 0;
-}
-
-/// Tally up interesting quantities from the given register.
-void Cost::RateRegister(const Formula &F, const SCEV *Reg,
- SmallPtrSetImpl<const SCEV *> &Regs) {
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
- // If this is an addrec for another loop, it should be an invariant
- // with respect to L since L is the innermost loop (at least
- // for now LSR only handles innermost loops).
- if (AR->getLoop() != L) {
- // If the AddRec exists, consider it's register free and leave it alone.
- if (isExistingPhi(AR, *SE))
- return;
-
- // It is bad to allow LSR for current loop to add induction variables
- // for its sibling loops.
- if (!AR->getLoop()->contains(L)) {
- Lose();
- return;
- }
-
- // Otherwise, it will be an invariant with respect to Loop L.
- ++C.NumRegs;
- return;
- }
-
- unsigned LoopCost = 1;
- if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
- TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
-
- // If the step size matches the base offset, we could use pre-indexed
- // addressing.
- if (TTI->shouldFavorBackedgeIndex(L)) {
- if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
- if (Step->getAPInt() == F.BaseOffset)
- LoopCost = 0;
- }
-
- if (TTI->shouldFavorPostInc()) {
- const SCEV *LoopStep = AR->getStepRecurrence(*SE);
- if (isa<SCEVConstant>(LoopStep)) {
- const SCEV *LoopStart = AR->getStart();
- if (!isa<SCEVConstant>(LoopStart) &&
- SE->isLoopInvariant(LoopStart, L))
- LoopCost = 0;
- }
- }
- }
- C.AddRecCost += LoopCost;
-
- // Add the step value register, if it needs one.
- // TODO: The non-affine case isn't precisely modeled here.
- if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
- if (!Regs.count(AR->getOperand(1))) {
- RateRegister(F, AR->getOperand(1), Regs);
- if (isLoser())
- return;
- }
- }
- }
- ++C.NumRegs;
-
- // Rough heuristic; favor registers which don't require extra setup
- // instructions in the preheader.
- C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
- // Ensure we don't, even with the recusion limit, produce invalid costs.
- C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
-
- C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
- SE->hasComputableLoopEvolution(Reg, L);
-}
-
-/// Record this register in the set. If we haven't seen it before, rate
-/// it. Optional LoserRegs provides a way to declare any formula that refers to
-/// one of those regs an instant loser.
-void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
- SmallPtrSetImpl<const SCEV *> &Regs,
- SmallPtrSetImpl<const SCEV *> *LoserRegs) {
- if (LoserRegs && LoserRegs->count(Reg)) {
- Lose();
- return;
- }
- if (Regs.insert(Reg).second) {
- RateRegister(F, Reg, Regs);
- if (LoserRegs && isLoser())
- LoserRegs->insert(Reg);
- }
-}
-
-void Cost::RateFormula(const Formula &F,
- SmallPtrSetImpl<const SCEV *> &Regs,
- const DenseSet<const SCEV *> &VisitedRegs,
- const LSRUse &LU,
- SmallPtrSetImpl<const SCEV *> *LoserRegs) {
- assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
- // Tally up the registers.
- unsigned PrevAddRecCost = C.AddRecCost;
- unsigned PrevNumRegs = C.NumRegs;
- unsigned PrevNumBaseAdds = C.NumBaseAdds;
- if (const SCEV *ScaledReg = F.ScaledReg) {
- if (VisitedRegs.count(ScaledReg)) {
- Lose();
- return;
- }
- RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
- if (isLoser())
- return;
- }
- for (const SCEV *BaseReg : F.BaseRegs) {
- if (VisitedRegs.count(BaseReg)) {
- Lose();
- return;
- }
- RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
- if (isLoser())
- return;
- }
-
- // Determine how many (unfolded) adds we'll need inside the loop.
- size_t NumBaseParts = F.getNumRegs();
- if (NumBaseParts > 1)
- // Do not count the base and a possible second register if the target
- // allows to fold 2 registers.
- C.NumBaseAdds +=
- NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
- C.NumBaseAdds += (F.UnfoldedOffset != 0);
-
- // Accumulate non-free scaling amounts.
- C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
-
- // Tally up the non-zero immediates.
- for (const LSRFixup &Fixup : LU.Fixups) {
- int64_t O = Fixup.Offset;
- int64_t Offset = (uint64_t)O + F.BaseOffset;
- if (F.BaseGV)
- C.ImmCost += 64; // Handle symbolic values conservatively.
- // TODO: This should probably be the pointer size.
- else if (Offset != 0)
- C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
-
- // Check with target if this offset with this instruction is
- // specifically not supported.
- if (LU.Kind == LSRUse::Address && Offset != 0 &&
- !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
- Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
- C.NumBaseAdds++;
- }
-
- // If we don't count instruction cost exit here.
- if (!InsnsCost) {
- assert(isValid() && "invalid cost");
- return;
- }
-
- // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
- // additional instruction (at least fill).
- unsigned TTIRegNum = TTI->getNumberOfRegisters(false) - 1;
- if (C.NumRegs > TTIRegNum) {
- // Cost already exceeded TTIRegNum, then only newly added register can add
- // new instructions.
- if (PrevNumRegs > TTIRegNum)
- C.Insns += (C.NumRegs - PrevNumRegs);
- else
- C.Insns += (C.NumRegs - TTIRegNum);
- }
-
- // If ICmpZero formula ends with not 0, it could not be replaced by
- // just add or sub. We'll need to compare final result of AddRec.
- // That means we'll need an additional instruction. But if the target can
- // macro-fuse a compare with a branch, don't count this extra instruction.
- // For -10 + {0, +, 1}:
- // i = i + 1;
- // cmp i, 10
- //
- // For {-10, +, 1}:
- // i = i + 1;
- if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
- !TTI->canMacroFuseCmp())
- C.Insns++;
- // Each new AddRec adds 1 instruction to calculation.
- C.Insns += (C.AddRecCost - PrevAddRecCost);
-
- // BaseAdds adds instructions for unfolded registers.
- if (LU.Kind != LSRUse::ICmpZero)
- C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
- assert(isValid() && "invalid cost");
-}
-
-/// Set this cost to a losing value.
-void Cost::Lose() {
- C.Insns = std::numeric_limits<unsigned>::max();
- C.NumRegs = std::numeric_limits<unsigned>::max();
- C.AddRecCost = std::numeric_limits<unsigned>::max();
- C.NumIVMuls = std::numeric_limits<unsigned>::max();
- C.NumBaseAdds = std::numeric_limits<unsigned>::max();
- C.ImmCost = std::numeric_limits<unsigned>::max();
- C.SetupCost = std::numeric_limits<unsigned>::max();
- C.ScaleCost = std::numeric_limits<unsigned>::max();
-}
-
-/// Choose the lower cost.
-bool Cost::isLess(Cost &Other) {
- if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
- C.Insns != Other.C.Insns)
- return C.Insns < Other.C.Insns;
- return TTI->isLSRCostLess(C, Other.C);
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void Cost::print(raw_ostream &OS) const {
- if (InsnsCost)
- OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
- OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
- if (C.AddRecCost != 0)
- OS << ", with addrec cost " << C.AddRecCost;
- if (C.NumIVMuls != 0)
- OS << ", plus " << C.NumIVMuls << " IV mul"
- << (C.NumIVMuls == 1 ? "" : "s");
- if (C.NumBaseAdds != 0)
- OS << ", plus " << C.NumBaseAdds << " base add"
- << (C.NumBaseAdds == 1 ? "" : "s");
- if (C.ScaleCost != 0)
- OS << ", plus " << C.ScaleCost << " scale cost";
- if (C.ImmCost != 0)
- OS << ", plus " << C.ImmCost << " imm cost";
- if (C.SetupCost != 0)
- OS << ", plus " << C.SetupCost << " setup cost";
-}
-
-LLVM_DUMP_METHOD void Cost::dump() const {
- print(errs()); errs() << '\n';
-}
-#endif
-
-/// Test whether this fixup always uses its value outside of the given loop.
-bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
- // PHI nodes use their value in their incoming blocks.
- if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) == OperandValToReplace &&
- L->contains(PN->getIncomingBlock(i)))
- return false;
- return true;
- }
-
- return !L->contains(UserInst);
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void LSRFixup::print(raw_ostream &OS) const {
- OS << "UserInst=";
- // Store is common and interesting enough to be worth special-casing.
- if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
- OS << "store ";
- Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
- } else if (UserInst->getType()->isVoidTy())
- OS << UserInst->getOpcodeName();
- else
- UserInst->printAsOperand(OS, /*PrintType=*/false);
-
- OS << ", OperandValToReplace=";
- OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
-
- for (const Loop *PIL : PostIncLoops) {
- OS << ", PostIncLoop=";
- PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- }
-
- if (Offset != 0)
- OS << ", Offset=" << Offset;
-}
-
-LLVM_DUMP_METHOD void LSRFixup::dump() const {
- print(errs()); errs() << '\n';
-}
-#endif
-
-/// Test whether this use as a formula which has the same registers as the given
-/// formula.
-bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
- SmallVector<const SCEV *, 4> Key = F.BaseRegs;
- if (F.ScaledReg) Key.push_back(F.ScaledReg);
- // Unstable sort by host order ok, because this is only used for uniquifying.
- llvm::sort(Key);
- return Uniquifier.count(Key);
-}
-
-/// The function returns a probability of selecting formula without Reg.
-float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
- unsigned FNum = 0;
- for (const Formula &F : Formulae)
- if (F.referencesReg(Reg))
- FNum++;
- return ((float)(Formulae.size() - FNum)) / Formulae.size();
-}
-
-/// If the given formula has not yet been inserted, add it to the list, and
-/// return true. Return false otherwise. The formula must be in canonical form.
-bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
- assert(F.isCanonical(L) && "Invalid canonical representation");
-
- if (!Formulae.empty() && RigidFormula)
- return false;
-
- SmallVector<const SCEV *, 4> Key = F.BaseRegs;
- if (F.ScaledReg) Key.push_back(F.ScaledReg);
- // Unstable sort by host order ok, because this is only used for uniquifying.
- llvm::sort(Key);
-
- if (!Uniquifier.insert(Key).second)
- return false;
-
- // Using a register to hold the value of 0 is not profitable.
- assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
- "Zero allocated in a scaled register!");
-#ifndef NDEBUG
- for (const SCEV *BaseReg : F.BaseRegs)
- assert(!BaseReg->isZero() && "Zero allocated in a base register!");
-#endif
-
- // Add the formula to the list.
- Formulae.push_back(F);
-
- // Record registers now being used by this use.
- Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
- if (F.ScaledReg)
- Regs.insert(F.ScaledReg);
-
- return true;
-}
-
-/// Remove the given formula from this use's list.
-void LSRUse::DeleteFormula(Formula &F) {
- if (&F != &Formulae.back())
- std::swap(F, Formulae.back());
- Formulae.pop_back();
-}
-
-/// Recompute the Regs field, and update RegUses.
-void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
- // Now that we've filtered out some formulae, recompute the Regs set.
- SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
- Regs.clear();
- for (const Formula &F : Formulae) {
- if (F.ScaledReg) Regs.insert(F.ScaledReg);
- Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
- }
-
- // Update the RegTracker.
- for (const SCEV *S : OldRegs)
- if (!Regs.count(S))
- RegUses.dropRegister(S, LUIdx);
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void LSRUse::print(raw_ostream &OS) const {
- OS << "LSR Use: Kind=";
- switch (Kind) {
- case Basic: OS << "Basic"; break;
- case Special: OS << "Special"; break;
- case ICmpZero: OS << "ICmpZero"; break;
- case Address:
- OS << "Address of ";
- if (AccessTy.MemTy->isPointerTy())
- OS << "pointer"; // the full pointer type could be really verbose
- else {
- OS << *AccessTy.MemTy;
- }
-
- OS << " in addrspace(" << AccessTy.AddrSpace << ')';
- }
-
- OS << ", Offsets={";
- bool NeedComma = false;
- for (const LSRFixup &Fixup : Fixups) {
- if (NeedComma) OS << ',';
- OS << Fixup.Offset;
- NeedComma = true;
- }
- OS << '}';
-
- if (AllFixupsOutsideLoop)
- OS << ", all-fixups-outside-loop";
-
- if (WidestFixupType)
- OS << ", widest fixup type: " << *WidestFixupType;
-}
-
-LLVM_DUMP_METHOD void LSRUse::dump() const {
- print(errs()); errs() << '\n';
-}
-#endif
-
-static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- LSRUse::KindType Kind, MemAccessTy AccessTy,
- GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale,
- Instruction *Fixup/*= nullptr*/) {
- switch (Kind) {
- case LSRUse::Address:
- return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
- HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
-
- case LSRUse::ICmpZero:
- // There's not even a target hook for querying whether it would be legal to
- // fold a GV into an ICmp.
- if (BaseGV)
- return false;
-
- // ICmp only has two operands; don't allow more than two non-trivial parts.
- if (Scale != 0 && HasBaseReg && BaseOffset != 0)
- return false;
-
- // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
- // putting the scaled register in the other operand of the icmp.
- if (Scale != 0 && Scale != -1)
- return false;
-
- // If we have low-level target information, ask the target if it can fold an
- // integer immediate on an icmp.
- if (BaseOffset != 0) {
- // We have one of:
- // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
- // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
- // Offs is the ICmp immediate.
- if (Scale == 0)
- // The cast does the right thing with
- // std::numeric_limits<int64_t>::min().
- BaseOffset = -(uint64_t)BaseOffset;
- return TTI.isLegalICmpImmediate(BaseOffset);
- }
-
- // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
- return true;
-
- case LSRUse::Basic:
- // Only handle single-register values.
- return !BaseGV && Scale == 0 && BaseOffset == 0;
-
- case LSRUse::Special:
- // Special case Basic to handle -1 scales.
- return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
- }
-
- llvm_unreachable("Invalid LSRUse Kind!");
-}
-
-static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, MemAccessTy AccessTy,
- GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg, int64_t Scale) {
- // Check for overflow.
- if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
- (MinOffset > 0))
- return false;
- MinOffset = (uint64_t)BaseOffset + MinOffset;
- if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
- (MaxOffset > 0))
- return false;
- MaxOffset = (uint64_t)BaseOffset + MaxOffset;
-
- return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
- HasBaseReg, Scale) &&
- isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
- HasBaseReg, Scale);
-}
-
-static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- int64_t MinOffset, int64_t MaxOffset,
- LSRUse::KindType Kind, MemAccessTy AccessTy,
- const Formula &F, const Loop &L) {
- // For the purpose of isAMCompletelyFolded either having a canonical formula
- // or a scale not equal to zero is correct.
- // Problems may arise from non canonical formulae having a scale == 0.
- // Strictly speaking it would best to just rely on canonical formulae.
- // However, when we generate the scaled formulae, we first check that the
- // scaling factor is profitable before computing the actual ScaledReg for
- // compile time sake.
- assert((F.isCanonical(L) || F.Scale != 0));
- return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
- F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
-}
-
-/// Test whether we know how to expand the current formula.
-static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
- int64_t MaxOffset, LSRUse::KindType Kind,
- MemAccessTy AccessTy, GlobalValue *BaseGV,
- int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
- // We know how to expand completely foldable formulae.
- return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
- BaseOffset, HasBaseReg, Scale) ||
- // Or formulae that use a base register produced by a sum of base
- // registers.
- (Scale == 1 &&
- isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
- BaseGV, BaseOffset, true, 0));
-}
-
-static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
- int64_t MaxOffset, LSRUse::KindType Kind,
- MemAccessTy AccessTy, const Formula &F) {
- return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
- F.BaseOffset, F.HasBaseReg, F.Scale);
-}
-
-static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
- const LSRUse &LU, const Formula &F) {
- // Target may want to look at the user instructions.
- if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
- for (const LSRFixup &Fixup : LU.Fixups)
- if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
- (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
- F.Scale, Fixup.UserInst))
- return false;
- return true;
- }
-
- return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
- LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
- F.Scale);
-}
-
-static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
- const LSRUse &LU, const Formula &F,
- const Loop &L) {
- if (!F.Scale)
- return 0;
-
- // If the use is not completely folded in that instruction, we will have to
- // pay an extra cost only for scale != 1.
- if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
- LU.AccessTy, F, L))
- return F.Scale != 1;
-
- switch (LU.Kind) {
- case LSRUse::Address: {
- // Check the scaling factor cost with both the min and max offsets.
- int ScaleCostMinOffset = TTI.getScalingFactorCost(
- LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
- F.Scale, LU.AccessTy.AddrSpace);
- int ScaleCostMaxOffset = TTI.getScalingFactorCost(
- LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
- F.Scale, LU.AccessTy.AddrSpace);
-
- assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
- "Legal addressing mode has an illegal cost!");
- return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
- }
- case LSRUse::ICmpZero:
- case LSRUse::Basic:
- case LSRUse::Special:
- // The use is completely folded, i.e., everything is folded into the
- // instruction.
- return 0;
- }
-
- llvm_unreachable("Invalid LSRUse Kind!");
-}
-
-static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
- LSRUse::KindType Kind, MemAccessTy AccessTy,
- GlobalValue *BaseGV, int64_t BaseOffset,
- bool HasBaseReg) {
- // Fast-path: zero is always foldable.
- if (BaseOffset == 0 && !BaseGV) return true;
-
- // Conservatively, create an address with an immediate and a
- // base and a scale.
- int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
-
- // Canonicalize a scale of 1 to a base register if the formula doesn't
- // already have a base register.
- if (!HasBaseReg && Scale == 1) {
- Scale = 0;
- HasBaseReg = true;
- }
-
- return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
- HasBaseReg, Scale);
-}
-
-static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
- ScalarEvolution &SE, int64_t MinOffset,
- int64_t MaxOffset, LSRUse::KindType Kind,
- MemAccessTy AccessTy, const SCEV *S,
- bool HasBaseReg) {
- // Fast-path: zero is always foldable.
- if (S->isZero()) return true;
-
- // Conservatively, create an address with an immediate and a
- // base and a scale.
- int64_t BaseOffset = ExtractImmediate(S, SE);
- GlobalValue *BaseGV = ExtractSymbol(S, SE);
-
- // If there's anything else involved, it's not foldable.
- if (!S->isZero()) return false;
-
- // Fast-path: zero is always foldable.
- if (BaseOffset == 0 && !BaseGV) return true;
-
- // Conservatively, create an address with an immediate and a
- // base and a scale.
- int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
-
- return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
- BaseOffset, HasBaseReg, Scale);
-}
-
-namespace {
-
-/// An individual increment in a Chain of IV increments. Relate an IV user to
-/// an expression that computes the IV it uses from the IV used by the previous
-/// link in the Chain.
-///
-/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
-/// original IVOperand. The head of the chain's IVOperand is only valid during
-/// chain collection, before LSR replaces IV users. During chain generation,
-/// IncExpr can be used to find the new IVOperand that computes the same
-/// expression.
-struct IVInc {
- Instruction *UserInst;
- Value* IVOperand;
- const SCEV *IncExpr;
-
- IVInc(Instruction *U, Value *O, const SCEV *E)
- : UserInst(U), IVOperand(O), IncExpr(E) {}
-};
-
-// The list of IV increments in program order. We typically add the head of a
-// chain without finding subsequent links.
-struct IVChain {
- SmallVector<IVInc, 1> Incs;
- const SCEV *ExprBase = nullptr;
-
- IVChain() = default;
- IVChain(const IVInc &Head, const SCEV *Base)
- : Incs(1, Head), ExprBase(Base) {}
-
- using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
-
- // Return the first increment in the chain.
- const_iterator begin() const {
- assert(!Incs.empty());
- return std::next(Incs.begin());
- }
- const_iterator end() const {
- return Incs.end();
- }
-
- // Returns true if this chain contains any increments.
- bool hasIncs() const { return Incs.size() >= 2; }
-
- // Add an IVInc to the end of this chain.
- void add(const IVInc &X) { Incs.push_back(X); }
-
- // Returns the last UserInst in the chain.
- Instruction *tailUserInst() const { return Incs.back().UserInst; }
-
- // Returns true if IncExpr can be profitably added to this chain.
- bool isProfitableIncrement(const SCEV *OperExpr,
- const SCEV *IncExpr,
- ScalarEvolution&);
-};
-
-/// Helper for CollectChains to track multiple IV increment uses. Distinguish
-/// between FarUsers that definitely cross IV increments and NearUsers that may
-/// be used between IV increments.
-struct ChainUsers {
- SmallPtrSet<Instruction*, 4> FarUsers;
- SmallPtrSet<Instruction*, 4> NearUsers;
-};
-
-/// This class holds state for the main loop strength reduction logic.
-class LSRInstance {
- IVUsers &IU;
- ScalarEvolution &SE;
- DominatorTree &DT;
- LoopInfo &LI;
- AssumptionCache &AC;
- TargetLibraryInfo &LibInfo;
- const TargetTransformInfo &TTI;
- Loop *const L;
- bool FavorBackedgeIndex = false;
- bool Changed = false;
-
- /// This is the insert position that the current loop's induction variable
- /// increment should be placed. In simple loops, this is the latch block's
- /// terminator. But in more complicated cases, this is a position which will
- /// dominate all the in-loop post-increment users.
- Instruction *IVIncInsertPos = nullptr;
-
- /// Interesting factors between use strides.
- ///
- /// We explicitly use a SetVector which contains a SmallSet, instead of the
- /// default, a SmallDenseSet, because we need to use the full range of
- /// int64_ts, and there's currently no good way of doing that with
- /// SmallDenseSet.
- SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
-
- /// Interesting use types, to facilitate truncation reuse.
- SmallSetVector<Type *, 4> Types;
-
- /// The list of interesting uses.
- mutable SmallVector<LSRUse, 16> Uses;
-
- /// Track which uses use which register candidates.
- RegUseTracker RegUses;
-
- // Limit the number of chains to avoid quadratic behavior. We don't expect to
- // have more than a few IV increment chains in a loop. Missing a Chain falls
- // back to normal LSR behavior for those uses.
- static const unsigned MaxChains = 8;
-
- /// IV users can form a chain of IV increments.
- SmallVector<IVChain, MaxChains> IVChainVec;
-
- /// IV users that belong to profitable IVChains.
- SmallPtrSet<Use*, MaxChains> IVIncSet;
-
- void OptimizeShadowIV();
- bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
- ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
- void OptimizeLoopTermCond();
-
- void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
- SmallVectorImpl<ChainUsers> &ChainUsersVec);
- void FinalizeChain(IVChain &Chain);
- void CollectChains();
- void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts);
-
- void CollectInterestingTypesAndFactors();
- void CollectFixupsAndInitialFormulae();
-
- // Support for sharing of LSRUses between LSRFixups.
- using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
- UseMapTy UseMap;
-
- bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
- LSRUse::KindType Kind, MemAccessTy AccessTy);
-
- std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
- MemAccessTy AccessTy);
-
- void DeleteUse(LSRUse &LU, size_t LUIdx);
-
- LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
-
- void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
- void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
- void CountRegisters(const Formula &F, size_t LUIdx);
- bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
-
- void CollectLoopInvariantFixupsAndFormulae();
-
- void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
- unsigned Depth = 0);
-
- void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base, unsigned Depth,
- size_t Idx, bool IsScaledReg = false);
- void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base, size_t Idx,
- bool IsScaledReg = false);
- void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base,
- const SmallVectorImpl<int64_t> &Worklist,
- size_t Idx, bool IsScaledReg = false);
- void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
- void GenerateCrossUseConstantOffsets();
- void GenerateAllReuseFormulae();
-
- void FilterOutUndesirableDedicatedRegisters();
-
- size_t EstimateSearchSpaceComplexity() const;
- void NarrowSearchSpaceByDetectingSupersets();
- void NarrowSearchSpaceByCollapsingUnrolledCode();
- void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
- void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
- void NarrowSearchSpaceByDeletingCostlyFormulas();
- void NarrowSearchSpaceByPickingWinnerRegs();
- void NarrowSearchSpaceUsingHeuristics();
-
- void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
- Cost &SolutionCost,
- SmallVectorImpl<const Formula *> &Workspace,
- const Cost &CurCost,
- const SmallPtrSet<const SCEV *, 16> &CurRegs,
- DenseSet<const SCEV *> &VisitedRegs) const;
- void Solve(SmallVectorImpl<const Formula *> &Solution) const;
-
- BasicBlock::iterator
- HoistInsertPosition(BasicBlock::iterator IP,
- const SmallVectorImpl<Instruction *> &Inputs) const;
- BasicBlock::iterator
- AdjustInsertPositionForExpand(BasicBlock::iterator IP,
- const LSRFixup &LF,
- const LSRUse &LU,
- SCEVExpander &Rewriter) const;
-
- Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
- BasicBlock::iterator IP, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
- void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
- const Formula &F, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
- void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
- SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
- void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
-
-public:
- LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
- LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
- TargetLibraryInfo &LibInfo);
-
- bool getChanged() const { return Changed; }
-
- void print_factors_and_types(raw_ostream &OS) const;
- void print_fixups(raw_ostream &OS) const;
- void print_uses(raw_ostream &OS) const;
- void print(raw_ostream &OS) const;
- void dump() const;
-};
-
-} // end anonymous namespace
-
-/// If IV is used in a int-to-float cast inside the loop then try to eliminate
-/// the cast operation.
-void LSRInstance::OptimizeShadowIV() {
- const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
- return;
-
- for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
- UI != E; /* empty */) {
- IVUsers::const_iterator CandidateUI = UI;
- ++UI;
- Instruction *ShadowUse = CandidateUI->getUser();
- Type *DestTy = nullptr;
- bool IsSigned = false;
-
- /* If shadow use is a int->float cast then insert a second IV
- to eliminate this cast.
-
- for (unsigned i = 0; i < n; ++i)
- foo((double)i);
-
- is transformed into
-
- double d = 0.0;
- for (unsigned i = 0; i < n; ++i, ++d)
- foo(d);
- */
- if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
- IsSigned = false;
- DestTy = UCast->getDestTy();
- }
- else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
- IsSigned = true;
- DestTy = SCast->getDestTy();
- }
- if (!DestTy) continue;
-
- // If target does not support DestTy natively then do not apply
- // this transformation.
- if (!TTI.isTypeLegal(DestTy)) continue;
-
- PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
- if (!PH) continue;
- if (PH->getNumIncomingValues() != 2) continue;
-
- // If the calculation in integers overflows, the result in FP type will
- // differ. So we only can do this transformation if we are guaranteed to not
- // deal with overflowing values
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
- if (!AR) continue;
- if (IsSigned && !AR->hasNoSignedWrap()) continue;
- if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
-
- Type *SrcTy = PH->getType();
- int Mantissa = DestTy->getFPMantissaWidth();
- if (Mantissa == -1) continue;
- if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
- continue;
-
- unsigned Entry, Latch;
- if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
- Entry = 0;
- Latch = 1;
- } else {
- Entry = 1;
- Latch = 0;
- }
-
- ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
- if (!Init) continue;
- Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
- (double)Init->getSExtValue() :
- (double)Init->getZExtValue());
-
- BinaryOperator *Incr =
- dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
- if (!Incr) continue;
- if (Incr->getOpcode() != Instruction::Add
- && Incr->getOpcode() != Instruction::Sub)
- continue;
-
- /* Initialize new IV, double d = 0.0 in above example. */
- ConstantInt *C = nullptr;
- if (Incr->getOperand(0) == PH)
- C = dyn_cast<ConstantInt>(Incr->getOperand(1));
- else if (Incr->getOperand(1) == PH)
- C = dyn_cast<ConstantInt>(Incr->getOperand(0));
- else
- continue;
-
- if (!C) continue;
-
- // Ignore negative constants, as the code below doesn't handle them
- // correctly. TODO: Remove this restriction.
- if (!C->getValue().isStrictlyPositive()) continue;
-
- /* Add new PHINode. */
- PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
-
- /* create new increment. '++d' in above example. */
- Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
- BinaryOperator *NewIncr =
- BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
- Instruction::FAdd : Instruction::FSub,
- NewPH, CFP, "IV.S.next.", Incr);
-
- NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
- NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
-
- /* Remove cast operation */
- ShadowUse->replaceAllUsesWith(NewPH);
- ShadowUse->eraseFromParent();
- Changed = true;
- break;
- }
-}
-
-/// If Cond has an operand that is an expression of an IV, set the IV user and
-/// stride information and return true, otherwise return false.
-bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
- for (IVStrideUse &U : IU)
- if (U.getUser() == Cond) {
- // NOTE: we could handle setcc instructions with multiple uses here, but
- // InstCombine does it as well for simple uses, it's not clear that it
- // occurs enough in real life to handle.
- CondUse = &U;
- return true;
- }
- return false;
-}
-
-/// Rewrite the loop's terminating condition if it uses a max computation.
-///
-/// This is a narrow solution to a specific, but acute, problem. For loops
-/// like this:
-///
-/// i = 0;
-/// do {
-/// p[i] = 0.0;
-/// } while (++i < n);
-///
-/// the trip count isn't just 'n', because 'n' might not be positive. And
-/// unfortunately this can come up even for loops where the user didn't use
-/// a C do-while loop. For example, seemingly well-behaved top-test loops
-/// will commonly be lowered like this:
-///
-/// if (n > 0) {
-/// i = 0;
-/// do {
-/// p[i] = 0.0;
-/// } while (++i < n);
-/// }
-///
-/// and then it's possible for subsequent optimization to obscure the if
-/// test in such a way that indvars can't find it.
-///
-/// When indvars can't find the if test in loops like this, it creates a
-/// max expression, which allows it to give the loop a canonical
-/// induction variable:
-///
-/// i = 0;
-/// max = n < 1 ? 1 : n;
-/// do {
-/// p[i] = 0.0;
-/// } while (++i != max);
-///
-/// Canonical induction variables are necessary because the loop passes
-/// are designed around them. The most obvious example of this is the
-/// LoopInfo analysis, which doesn't remember trip count values. It
-/// expects to be able to rediscover the trip count each time it is
-/// needed, and it does this using a simple analysis that only succeeds if
-/// the loop has a canonical induction variable.
-///
-/// However, when it comes time to generate code, the maximum operation
-/// can be quite costly, especially if it's inside of an outer loop.
-///
-/// This function solves this problem by detecting this type of loop and
-/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
-/// the instructions for the maximum computation.
-ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
- // Check that the loop matches the pattern we're looking for.
- if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
- Cond->getPredicate() != CmpInst::ICMP_NE)
- return Cond;
-
- SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
- if (!Sel || !Sel->hasOneUse()) return Cond;
-
- const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
- return Cond;
- const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
-
- // Add one to the backedge-taken count to get the trip count.
- const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
- if (IterationCount != SE.getSCEV(Sel)) return Cond;
-
- // Check for a max calculation that matches the pattern. There's no check
- // for ICMP_ULE here because the comparison would be with zero, which
- // isn't interesting.
- CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
- const SCEVNAryExpr *Max = nullptr;
- if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
- Pred = ICmpInst::ICMP_SLE;
- Max = S;
- } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
- Pred = ICmpInst::ICMP_SLT;
- Max = S;
- } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
- Pred = ICmpInst::ICMP_ULT;
- Max = U;
- } else {
- // No match; bail.
- return Cond;
- }
-
- // To handle a max with more than two operands, this optimization would
- // require additional checking and setup.
- if (Max->getNumOperands() != 2)
- return Cond;
-
- const SCEV *MaxLHS = Max->getOperand(0);
- const SCEV *MaxRHS = Max->getOperand(1);
-
- // ScalarEvolution canonicalizes constants to the left. For < and >, look
- // for a comparison with 1. For <= and >=, a comparison with zero.
- if (!MaxLHS ||
- (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
- return Cond;
-
- // Check the relevant induction variable for conformance to
- // the pattern.
- const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
- if (!AR || !AR->isAffine() ||
- AR->getStart() != One ||
- AR->getStepRecurrence(SE) != One)
- return Cond;
-
- assert(AR->getLoop() == L &&
- "Loop condition operand is an addrec in a different loop!");
-
- // Check the right operand of the select, and remember it, as it will
- // be used in the new comparison instruction.
- Value *NewRHS = nullptr;
- if (ICmpInst::isTrueWhenEqual(Pred)) {
- // Look for n+1, and grab n.
- if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
- if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
- if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
- NewRHS = BO->getOperand(0);
- if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
- if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
- if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
- NewRHS = BO->getOperand(0);
- if (!NewRHS)
- return Cond;
- } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
- NewRHS = Sel->getOperand(1);
- else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
- NewRHS = Sel->getOperand(2);
- else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
- NewRHS = SU->getValue();
- else
- // Max doesn't match expected pattern.
- return Cond;
-
- // Determine the new comparison opcode. It may be signed or unsigned,
- // and the original comparison may be either equality or inequality.
- if (Cond->getPredicate() == CmpInst::ICMP_EQ)
- Pred = CmpInst::getInversePredicate(Pred);
-
- // Ok, everything looks ok to change the condition into an SLT or SGE and
- // delete the max calculation.
- ICmpInst *NewCond =
- new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
-
- // Delete the max calculation instructions.
- Cond->replaceAllUsesWith(NewCond);
- CondUse->setUser(NewCond);
- Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
- Cond->eraseFromParent();
- Sel->eraseFromParent();
- if (Cmp->use_empty())
- Cmp->eraseFromParent();
- return NewCond;
-}
-
-/// Change loop terminating condition to use the postinc iv when possible.
-void
-LSRInstance::OptimizeLoopTermCond() {
- SmallPtrSet<Instruction *, 4> PostIncs;
-
- // We need a different set of heuristics for rotated and non-rotated loops.
- // If a loop is rotated then the latch is also the backedge, so inserting
- // post-inc expressions just before the latch is ideal. To reduce live ranges
- // it also makes sense to rewrite terminating conditions to use post-inc
- // expressions.
- //
- // If the loop is not rotated then the latch is not a backedge; the latch
- // check is done in the loop head. Adding post-inc expressions before the
- // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
- // in the loop body. In this case we do *not* want to use post-inc expressions
- // in the latch check, and we want to insert post-inc expressions before
- // the backedge.
- BasicBlock *LatchBlock = L->getLoopLatch();
- SmallVector<BasicBlock*, 8> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
- return LatchBlock != BB;
- })) {
- // The backedge doesn't exit the loop; treat this as a head-tested loop.
- IVIncInsertPos = LatchBlock->getTerminator();
- return;
- }
-
- // Otherwise treat this as a rotated loop.
- for (BasicBlock *ExitingBlock : ExitingBlocks) {
- // Get the terminating condition for the loop if possible. If we
- // can, we want to change it to use a post-incremented version of its
- // induction variable, to allow coalescing the live ranges for the IV into
- // one register value.
-
- BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
- if (!TermBr)
- continue;
- // FIXME: Overly conservative, termination condition could be an 'or' etc..
- if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
- continue;
-
- // Search IVUsesByStride to find Cond's IVUse if there is one.
- IVStrideUse *CondUse = nullptr;
- ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
- if (!FindIVUserForCond(Cond, CondUse))
- continue;
-
- // If the trip count is computed in terms of a max (due to ScalarEvolution
- // being unable to find a sufficient guard, for example), change the loop
- // comparison to use SLT or ULT instead of NE.
- // One consequence of doing this now is that it disrupts the count-down
- // optimization. That's not always a bad thing though, because in such
- // cases it may still be worthwhile to avoid a max.
- Cond = OptimizeMax(Cond, CondUse);
-
- // If this exiting block dominates the latch block, it may also use
- // the post-inc value if it won't be shared with other uses.
- // Check for dominance.
- if (!DT.dominates(ExitingBlock, LatchBlock))
- continue;
-
- // Conservatively avoid trying to use the post-inc value in non-latch
- // exits if there may be pre-inc users in intervening blocks.
- if (LatchBlock != ExitingBlock)
- for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
- // Test if the use is reachable from the exiting block. This dominator
- // query is a conservative approximation of reachability.
- if (&*UI != CondUse &&
- !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
- // Conservatively assume there may be reuse if the quotient of their
- // strides could be a legal scale.
- const SCEV *A = IU.getStride(*CondUse, L);
- const SCEV *B = IU.getStride(*UI, L);
- if (!A || !B) continue;
- if (SE.getTypeSizeInBits(A->getType()) !=
- SE.getTypeSizeInBits(B->getType())) {
- if (SE.getTypeSizeInBits(A->getType()) >
- SE.getTypeSizeInBits(B->getType()))
- B = SE.getSignExtendExpr(B, A->getType());
- else
- A = SE.getSignExtendExpr(A, B->getType());
- }
- if (const SCEVConstant *D =
- dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
- const ConstantInt *C = D->getValue();
- // Stride of one or negative one can have reuse with non-addresses.
- if (C->isOne() || C->isMinusOne())
- goto decline_post_inc;
- // Avoid weird situations.
- if (C->getValue().getMinSignedBits() >= 64 ||
- C->getValue().isMinSignedValue())
- goto decline_post_inc;
- // Check for possible scaled-address reuse.
- if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
- MemAccessTy AccessTy = getAccessType(
- TTI, UI->getUser(), UI->getOperandValToReplace());
- int64_t Scale = C->getSExtValue();
- if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
- /*BaseOffset=*/0,
- /*HasBaseReg=*/false, Scale,
- AccessTy.AddrSpace))
- goto decline_post_inc;
- Scale = -Scale;
- if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
- /*BaseOffset=*/0,
- /*HasBaseReg=*/false, Scale,
- AccessTy.AddrSpace))
- goto decline_post_inc;
- }
- }
- }
-
- LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
- << *Cond << '\n');
-
- // It's possible for the setcc instruction to be anywhere in the loop, and
- // possible for it to have multiple users. If it is not immediately before
- // the exiting block branch, move it.
- if (&*++BasicBlock::iterator(Cond) != TermBr) {
- if (Cond->hasOneUse()) {
- Cond->moveBefore(TermBr);
- } else {
- // Clone the terminating condition and insert into the loopend.
- ICmpInst *OldCond = Cond;
- Cond = cast<ICmpInst>(Cond->clone());
- Cond->setName(L->getHeader()->getName() + ".termcond");
- ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
-
- // Clone the IVUse, as the old use still exists!
- CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
- TermBr->replaceUsesOfWith(OldCond, Cond);
- }
- }
-
- // If we get to here, we know that we can transform the setcc instruction to
- // use the post-incremented version of the IV, allowing us to coalesce the
- // live ranges for the IV correctly.
- CondUse->transformToPostInc(L);
- Changed = true;
-
- PostIncs.insert(Cond);
- decline_post_inc:;
- }
-
- // Determine an insertion point for the loop induction variable increment. It
- // must dominate all the post-inc comparisons we just set up, and it must
- // dominate the loop latch edge.
- IVIncInsertPos = L->getLoopLatch()->getTerminator();
- for (Instruction *Inst : PostIncs) {
- BasicBlock *BB =
- DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
- Inst->getParent());
- if (BB == Inst->getParent())
- IVIncInsertPos = Inst;
- else if (BB != IVIncInsertPos->getParent())
- IVIncInsertPos = BB->getTerminator();
- }
-}
-
-/// Determine if the given use can accommodate a fixup at the given offset and
-/// other details. If so, update the use and return true.
-bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
- bool HasBaseReg, LSRUse::KindType Kind,
- MemAccessTy AccessTy) {
- int64_t NewMinOffset = LU.MinOffset;
- int64_t NewMaxOffset = LU.MaxOffset;
- MemAccessTy NewAccessTy = AccessTy;
-
- // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
- // something conservative, however this can pessimize in the case that one of
- // the uses will have all its uses outside the loop, for example.
- if (LU.Kind != Kind)
- return false;
-
- // Check for a mismatched access type, and fall back conservatively as needed.
- // TODO: Be less conservative when the type is similar and can use the same
- // addressing modes.
- if (Kind == LSRUse::Address) {
- if (AccessTy.MemTy != LU.AccessTy.MemTy) {
- NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
- AccessTy.AddrSpace);
- }
- }
-
- // Conservatively assume HasBaseReg is true for now.
- if (NewOffset < LU.MinOffset) {
- if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
- LU.MaxOffset - NewOffset, HasBaseReg))
- return false;
- NewMinOffset = NewOffset;
- } else if (NewOffset > LU.MaxOffset) {
- if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
- NewOffset - LU.MinOffset, HasBaseReg))
- return false;
- NewMaxOffset = NewOffset;
- }
-
- // Update the use.
- LU.MinOffset = NewMinOffset;
- LU.MaxOffset = NewMaxOffset;
- LU.AccessTy = NewAccessTy;
- return true;
-}
-
-/// Return an LSRUse index and an offset value for a fixup which needs the given
-/// expression, with the given kind and optional access type. Either reuse an
-/// existing use or create a new one, as needed.
-std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
- LSRUse::KindType Kind,
- MemAccessTy AccessTy) {
- const SCEV *Copy = Expr;
- int64_t Offset = ExtractImmediate(Expr, SE);
-
- // Basic uses can't accept any offset, for example.
- if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
- Offset, /*HasBaseReg=*/ true)) {
- Expr = Copy;
- Offset = 0;
- }
-
- std::pair<UseMapTy::iterator, bool> P =
- UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
- if (!P.second) {
- // A use already existed with this base.
- size_t LUIdx = P.first->second;
- LSRUse &LU = Uses[LUIdx];
- if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
- // Reuse this use.
- return std::make_pair(LUIdx, Offset);
- }
-
- // Create a new use.
- size_t LUIdx = Uses.size();
- P.first->second = LUIdx;
- Uses.push_back(LSRUse(Kind, AccessTy));
- LSRUse &LU = Uses[LUIdx];
-
- LU.MinOffset = Offset;
- LU.MaxOffset = Offset;
- return std::make_pair(LUIdx, Offset);
-}
-
-/// Delete the given use from the Uses list.
-void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
- if (&LU != &Uses.back())
- std::swap(LU, Uses.back());
- Uses.pop_back();
-
- // Update RegUses.
- RegUses.swapAndDropUse(LUIdx, Uses.size());
-}
-
-/// Look for a use distinct from OrigLU which is has a formula that has the same
-/// registers as the given formula.
-LSRUse *
-LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
- const LSRUse &OrigLU) {
- // Search all uses for the formula. This could be more clever.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- // Check whether this use is close enough to OrigLU, to see whether it's
- // worthwhile looking through its formulae.
- // Ignore ICmpZero uses because they may contain formulae generated by
- // GenerateICmpZeroScales, in which case adding fixup offsets may
- // be invalid.
- if (&LU != &OrigLU &&
- LU.Kind != LSRUse::ICmpZero &&
- LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
- LU.WidestFixupType == OrigLU.WidestFixupType &&
- LU.HasFormulaWithSameRegs(OrigF)) {
- // Scan through this use's formulae.
- for (const Formula &F : LU.Formulae) {
- // Check to see if this formula has the same registers and symbols
- // as OrigF.
- if (F.BaseRegs == OrigF.BaseRegs &&
- F.ScaledReg == OrigF.ScaledReg &&
- F.BaseGV == OrigF.BaseGV &&
- F.Scale == OrigF.Scale &&
- F.UnfoldedOffset == OrigF.UnfoldedOffset) {
- if (F.BaseOffset == 0)
- return &LU;
- // This is the formula where all the registers and symbols matched;
- // there aren't going to be any others. Since we declined it, we
- // can skip the rest of the formulae and proceed to the next LSRUse.
- break;
- }
- }
- }
- }
-
- // Nothing looked good.
- return nullptr;
-}
-
-void LSRInstance::CollectInterestingTypesAndFactors() {
- SmallSetVector<const SCEV *, 4> Strides;
-
- // Collect interesting types and strides.
- SmallVector<const SCEV *, 4> Worklist;
- for (const IVStrideUse &U : IU) {
- const SCEV *Expr = IU.getExpr(U);
-
- // Collect interesting types.
- Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
-
- // Add strides for mentioned loops.
- Worklist.push_back(Expr);
- do {
- const SCEV *S = Worklist.pop_back_val();
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- if (AR->getLoop() == L)
- Strides.insert(AR->getStepRecurrence(SE));
- Worklist.push_back(AR->getStart());
- } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- Worklist.append(Add->op_begin(), Add->op_end());
- }
- } while (!Worklist.empty());
- }
-
- // Compute interesting factors from the set of interesting strides.
- for (SmallSetVector<const SCEV *, 4>::const_iterator
- I = Strides.begin(), E = Strides.end(); I != E; ++I)
- for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
- std::next(I); NewStrideIter != E; ++NewStrideIter) {
- const SCEV *OldStride = *I;
- const SCEV *NewStride = *NewStrideIter;
-
- if (SE.getTypeSizeInBits(OldStride->getType()) !=
- SE.getTypeSizeInBits(NewStride->getType())) {
- if (SE.getTypeSizeInBits(OldStride->getType()) >
- SE.getTypeSizeInBits(NewStride->getType()))
- NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
- else
- OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
- }
- if (const SCEVConstant *Factor =
- dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
- SE, true))) {
- if (Factor->getAPInt().getMinSignedBits() <= 64)
- Factors.insert(Factor->getAPInt().getSExtValue());
- } else if (const SCEVConstant *Factor =
- dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
- NewStride,
- SE, true))) {
- if (Factor->getAPInt().getMinSignedBits() <= 64)
- Factors.insert(Factor->getAPInt().getSExtValue());
- }
- }
-
- // If all uses use the same type, don't bother looking for truncation-based
- // reuse.
- if (Types.size() == 1)
- Types.clear();
-
- LLVM_DEBUG(print_factors_and_types(dbgs()));
-}
-
-/// Helper for CollectChains that finds an IV operand (computed by an AddRec in
-/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
-/// IVStrideUses, we could partially skip this.
-static User::op_iterator
-findIVOperand(User::op_iterator OI, User::op_iterator OE,
- Loop *L, ScalarEvolution &SE) {
- for(; OI != OE; ++OI) {
- if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
- if (!SE.isSCEVable(Oper->getType()))
- continue;
-
- if (const SCEVAddRecExpr *AR =
- dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
- if (AR->getLoop() == L)
- break;
- }
- }
- }
- return OI;
-}
-
-/// IVChain logic must consistently peek base TruncInst operands, so wrap it in
-/// a convenient helper.
-static Value *getWideOperand(Value *Oper) {
- if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
- return Trunc->getOperand(0);
- return Oper;
-}
-
-/// Return true if we allow an IV chain to include both types.
-static bool isCompatibleIVType(Value *LVal, Value *RVal) {
- Type *LType = LVal->getType();
- Type *RType = RVal->getType();
- return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
- // Different address spaces means (possibly)
- // different types of the pointer implementation,
- // e.g. i16 vs i32 so disallow that.
- (LType->getPointerAddressSpace() ==
- RType->getPointerAddressSpace()));
-}
-
-/// Return an approximation of this SCEV expression's "base", or NULL for any
-/// constant. Returning the expression itself is conservative. Returning a
-/// deeper subexpression is more precise and valid as long as it isn't less
-/// complex than another subexpression. For expressions involving multiple
-/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
-/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
-/// IVInc==b-a.
-///
-/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
-/// SCEVUnknown, we simply return the rightmost SCEV operand.
-static const SCEV *getExprBase(const SCEV *S) {
- switch (S->getSCEVType()) {
- default: // uncluding scUnknown.
- return S;
- case scConstant:
- return nullptr;
- case scTruncate:
- return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
- case scZeroExtend:
- return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
- case scSignExtend:
- return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
- case scAddExpr: {
- // Skip over scaled operands (scMulExpr) to follow add operands as long as
- // there's nothing more complex.
- // FIXME: not sure if we want to recognize negation.
- const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
- for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
- E(Add->op_begin()); I != E; ++I) {
- const SCEV *SubExpr = *I;
- if (SubExpr->getSCEVType() == scAddExpr)
- return getExprBase(SubExpr);
-
- if (SubExpr->getSCEVType() != scMulExpr)
- return SubExpr;
- }
- return S; // all operands are scaled, be conservative.
- }
- case scAddRecExpr:
- return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
- }
-}
-
-/// Return true if the chain increment is profitable to expand into a loop
-/// invariant value, which may require its own register. A profitable chain
-/// increment will be an offset relative to the same base. We allow such offsets
-/// to potentially be used as chain increment as long as it's not obviously
-/// expensive to expand using real instructions.
-bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
- const SCEV *IncExpr,
- ScalarEvolution &SE) {
- // Aggressively form chains when -stress-ivchain.
- if (StressIVChain)
- return true;
-
- // Do not replace a constant offset from IV head with a nonconstant IV
- // increment.
- if (!isa<SCEVConstant>(IncExpr)) {
- const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
- if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
- return false;
- }
-
- SmallPtrSet<const SCEV*, 8> Processed;
- return !isHighCostExpansion(IncExpr, Processed, SE);
-}
-
-/// Return true if the number of registers needed for the chain is estimated to
-/// be less than the number required for the individual IV users. First prohibit
-/// any IV users that keep the IV live across increments (the Users set should
-/// be empty). Next count the number and type of increments in the chain.
-///
-/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
-/// effectively use postinc addressing modes. Only consider it profitable it the
-/// increments can be computed in fewer registers when chained.
-///
-/// TODO: Consider IVInc free if it's already used in another chains.
-static bool
-isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
- ScalarEvolution &SE) {
- if (StressIVChain)
- return true;
-
- if (!Chain.hasIncs())
- return false;
-
- if (!Users.empty()) {
- LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
- for (Instruction *Inst
- : Users) { dbgs() << " " << *Inst << "\n"; });
- return false;
- }
- assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
-
- // The chain itself may require a register, so intialize cost to 1.
- int cost = 1;
-
- // A complete chain likely eliminates the need for keeping the original IV in
- // a register. LSR does not currently know how to form a complete chain unless
- // the header phi already exists.
- if (isa<PHINode>(Chain.tailUserInst())
- && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
- --cost;
- }
- const SCEV *LastIncExpr = nullptr;
- unsigned NumConstIncrements = 0;
- unsigned NumVarIncrements = 0;
- unsigned NumReusedIncrements = 0;
- for (const IVInc &Inc : Chain) {
- if (Inc.IncExpr->isZero())
- continue;
-
- // Incrementing by zero or some constant is neutral. We assume constants can
- // be folded into an addressing mode or an add's immediate operand.
- if (isa<SCEVConstant>(Inc.IncExpr)) {
- ++NumConstIncrements;
- continue;
- }
-
- if (Inc.IncExpr == LastIncExpr)
- ++NumReusedIncrements;
- else
- ++NumVarIncrements;
-
- LastIncExpr = Inc.IncExpr;
- }
- // An IV chain with a single increment is handled by LSR's postinc
- // uses. However, a chain with multiple increments requires keeping the IV's
- // value live longer than it needs to be if chained.
- if (NumConstIncrements > 1)
- --cost;
-
- // Materializing increment expressions in the preheader that didn't exist in
- // the original code may cost a register. For example, sign-extended array
- // indices can produce ridiculous increments like this:
- // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
- cost += NumVarIncrements;
-
- // Reusing variable increments likely saves a register to hold the multiple of
- // the stride.
- cost -= NumReusedIncrements;
-
- LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
- << "\n");
-
- return cost < 0;
-}
-
-/// Add this IV user to an existing chain or make it the head of a new chain.
-void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
- SmallVectorImpl<ChainUsers> &ChainUsersVec) {
- // When IVs are used as types of varying widths, they are generally converted
- // to a wider type with some uses remaining narrow under a (free) trunc.
- Value *const NextIV = getWideOperand(IVOper);
- const SCEV *const OperExpr = SE.getSCEV(NextIV);
- const SCEV *const OperExprBase = getExprBase(OperExpr);
-
- // Visit all existing chains. Check if its IVOper can be computed as a
- // profitable loop invariant increment from the last link in the Chain.
- unsigned ChainIdx = 0, NChains = IVChainVec.size();
- const SCEV *LastIncExpr = nullptr;
- for (; ChainIdx < NChains; ++ChainIdx) {
- IVChain &Chain = IVChainVec[ChainIdx];
-
- // Prune the solution space aggressively by checking that both IV operands
- // are expressions that operate on the same unscaled SCEVUnknown. This
- // "base" will be canceled by the subsequent getMinusSCEV call. Checking
- // first avoids creating extra SCEV expressions.
- if (!StressIVChain && Chain.ExprBase != OperExprBase)
- continue;
-
- Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
- if (!isCompatibleIVType(PrevIV, NextIV))
- continue;
-
- // A phi node terminates a chain.
- if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
- continue;
-
- // The increment must be loop-invariant so it can be kept in a register.
- const SCEV *PrevExpr = SE.getSCEV(PrevIV);
- const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
- if (!SE.isLoopInvariant(IncExpr, L))
- continue;
-
- if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
- LastIncExpr = IncExpr;
- break;
- }
- }
- // If we haven't found a chain, create a new one, unless we hit the max. Don't
- // bother for phi nodes, because they must be last in the chain.
- if (ChainIdx == NChains) {
- if (isa<PHINode>(UserInst))
- return;
- if (NChains >= MaxChains && !StressIVChain) {
- LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
- return;
- }
- LastIncExpr = OperExpr;
- // IVUsers may have skipped over sign/zero extensions. We don't currently
- // attempt to form chains involving extensions unless they can be hoisted
- // into this loop's AddRec.
- if (!isa<SCEVAddRecExpr>(LastIncExpr))
- return;
- ++NChains;
- IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
- OperExprBase));
- ChainUsersVec.resize(NChains);
- LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
- << ") IV=" << *LastIncExpr << "\n");
- } else {
- LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
- << ") IV+" << *LastIncExpr << "\n");
- // Add this IV user to the end of the chain.
- IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
- }
- IVChain &Chain = IVChainVec[ChainIdx];
-
- SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
- // This chain's NearUsers become FarUsers.
- if (!LastIncExpr->isZero()) {
- ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
- NearUsers.end());
- NearUsers.clear();
- }
-
- // All other uses of IVOperand become near uses of the chain.
- // We currently ignore intermediate values within SCEV expressions, assuming
- // they will eventually be used be the current chain, or can be computed
- // from one of the chain increments. To be more precise we could
- // transitively follow its user and only add leaf IV users to the set.
- for (User *U : IVOper->users()) {
- Instruction *OtherUse = dyn_cast<Instruction>(U);
- if (!OtherUse)
- continue;
- // Uses in the chain will no longer be uses if the chain is formed.
- // Include the head of the chain in this iteration (not Chain.begin()).
- IVChain::const_iterator IncIter = Chain.Incs.begin();
- IVChain::const_iterator IncEnd = Chain.Incs.end();
- for( ; IncIter != IncEnd; ++IncIter) {
- if (IncIter->UserInst == OtherUse)
- break;
- }
- if (IncIter != IncEnd)
- continue;
-
- if (SE.isSCEVable(OtherUse->getType())
- && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
- && IU.isIVUserOrOperand(OtherUse)) {
- continue;
- }
- NearUsers.insert(OtherUse);
- }
-
- // Since this user is part of the chain, it's no longer considered a use
- // of the chain.
- ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
-}
-
-/// Populate the vector of Chains.
-///
-/// This decreases ILP at the architecture level. Targets with ample registers,
-/// multiple memory ports, and no register renaming probably don't want
-/// this. However, such targets should probably disable LSR altogether.
-///
-/// The job of LSR is to make a reasonable choice of induction variables across
-/// the loop. Subsequent passes can easily "unchain" computation exposing more
-/// ILP *within the loop* if the target wants it.
-///
-/// Finding the best IV chain is potentially a scheduling problem. Since LSR
-/// will not reorder memory operations, it will recognize this as a chain, but
-/// will generate redundant IV increments. Ideally this would be corrected later
-/// by a smart scheduler:
-/// = A[i]
-/// = A[i+x]
-/// A[i] =
-/// A[i+x] =
-///
-/// TODO: Walk the entire domtree within this loop, not just the path to the
-/// loop latch. This will discover chains on side paths, but requires
-/// maintaining multiple copies of the Chains state.
-void LSRInstance::CollectChains() {
- LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
- SmallVector<ChainUsers, 8> ChainUsersVec;
-
- SmallVector<BasicBlock *,8> LatchPath;
- BasicBlock *LoopHeader = L->getHeader();
- for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
- Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
- LatchPath.push_back(Rung->getBlock());
- }
- LatchPath.push_back(LoopHeader);
-
- // Walk the instruction stream from the loop header to the loop latch.
- for (BasicBlock *BB : reverse(LatchPath)) {
- for (Instruction &I : *BB) {
- // Skip instructions that weren't seen by IVUsers analysis.
- if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
- continue;
-
- // Ignore users that are part of a SCEV expression. This way we only
- // consider leaf IV Users. This effectively rediscovers a portion of
- // IVUsers analysis but in program order this time.
- if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
- continue;
-
- // Remove this instruction from any NearUsers set it may be in.
- for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
- ChainIdx < NChains; ++ChainIdx) {
- ChainUsersVec[ChainIdx].NearUsers.erase(&I);
- }
- // Search for operands that can be chained.
- SmallPtrSet<Instruction*, 4> UniqueOperands;
- User::op_iterator IVOpEnd = I.op_end();
- User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
- while (IVOpIter != IVOpEnd) {
- Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
- if (UniqueOperands.insert(IVOpInst).second)
- ChainInstruction(&I, IVOpInst, ChainUsersVec);
- IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
- }
- } // Continue walking down the instructions.
- } // Continue walking down the domtree.
- // Visit phi backedges to determine if the chain can generate the IV postinc.
- for (PHINode &PN : L->getHeader()->phis()) {
- if (!SE.isSCEVable(PN.getType()))
- continue;
-
- Instruction *IncV =
- dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
- if (IncV)
- ChainInstruction(&PN, IncV, ChainUsersVec);
- }
- // Remove any unprofitable chains.
- unsigned ChainIdx = 0;
- for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
- UsersIdx < NChains; ++UsersIdx) {
- if (!isProfitableChain(IVChainVec[UsersIdx],
- ChainUsersVec[UsersIdx].FarUsers, SE))
- continue;
- // Preserve the chain at UsesIdx.
- if (ChainIdx != UsersIdx)
- IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
- FinalizeChain(IVChainVec[ChainIdx]);
- ++ChainIdx;
- }
- IVChainVec.resize(ChainIdx);
-}
-
-void LSRInstance::FinalizeChain(IVChain &Chain) {
- assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
- LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
-
- for (const IVInc &Inc : Chain) {
- LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n");
- auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
- assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
- IVIncSet.insert(UseI);
- }
-}
-
-/// Return true if the IVInc can be folded into an addressing mode.
-static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
- Value *Operand, const TargetTransformInfo &TTI) {
- const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
- if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
- return false;
-
- if (IncConst->getAPInt().getMinSignedBits() > 64)
- return false;
-
- MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
- int64_t IncOffset = IncConst->getValue()->getSExtValue();
- if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
- IncOffset, /*HasBaseReg=*/false))
- return false;
-
- return true;
-}
-
-/// Generate an add or subtract for each IVInc in a chain to materialize the IV
-/// user's operand from the previous IV user's operand.
-void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
- // Find the new IVOperand for the head of the chain. It may have been replaced
- // by LSR.
- const IVInc &Head = Chain.Incs[0];
- User::op_iterator IVOpEnd = Head.UserInst->op_end();
- // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
- User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
- IVOpEnd, L, SE);
- Value *IVSrc = nullptr;
- while (IVOpIter != IVOpEnd) {
- IVSrc = getWideOperand(*IVOpIter);
-
- // If this operand computes the expression that the chain needs, we may use
- // it. (Check this after setting IVSrc which is used below.)
- //
- // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
- // narrow for the chain, so we can no longer use it. We do allow using a
- // wider phi, assuming the LSR checked for free truncation. In that case we
- // should already have a truncate on this operand such that
- // getSCEV(IVSrc) == IncExpr.
- if (SE.getSCEV(*IVOpIter) == Head.IncExpr
- || SE.getSCEV(IVSrc) == Head.IncExpr) {
- break;
- }
- IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
- }
- if (IVOpIter == IVOpEnd) {
- // Gracefully give up on this chain.
- LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
- return;
- }
-
- LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
- Type *IVTy = IVSrc->getType();
- Type *IntTy = SE.getEffectiveSCEVType(IVTy);
- const SCEV *LeftOverExpr = nullptr;
- for (const IVInc &Inc : Chain) {
- Instruction *InsertPt = Inc.UserInst;
- if (isa<PHINode>(InsertPt))
- InsertPt = L->getLoopLatch()->getTerminator();
-
- // IVOper will replace the current IV User's operand. IVSrc is the IV
- // value currently held in a register.
- Value *IVOper = IVSrc;
- if (!Inc.IncExpr->isZero()) {
- // IncExpr was the result of subtraction of two narrow values, so must
- // be signed.
- const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
- LeftOverExpr = LeftOverExpr ?
- SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
- }
- if (LeftOverExpr && !LeftOverExpr->isZero()) {
- // Expand the IV increment.
- Rewriter.clearPostInc();
- Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
- const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
- SE.getUnknown(IncV));
- IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
-
- // If an IV increment can't be folded, use it as the next IV value.
- if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
- assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
- IVSrc = IVOper;
- LeftOverExpr = nullptr;
- }
- }
- Type *OperTy = Inc.IVOperand->getType();
- if (IVTy != OperTy) {
- assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
- "cannot extend a chained IV");
- IRBuilder<> Builder(InsertPt);
- IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
- }
- Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
- DeadInsts.emplace_back(Inc.IVOperand);
- }
- // If LSR created a new, wider phi, we may also replace its postinc. We only
- // do this if we also found a wide value for the head of the chain.
- if (isa<PHINode>(Chain.tailUserInst())) {
- for (PHINode &Phi : L->getHeader()->phis()) {
- if (!isCompatibleIVType(&Phi, IVSrc))
- continue;
- Instruction *PostIncV = dyn_cast<Instruction>(
- Phi.getIncomingValueForBlock(L->getLoopLatch()));
- if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
- continue;
- Value *IVOper = IVSrc;
- Type *PostIncTy = PostIncV->getType();
- if (IVTy != PostIncTy) {
- assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
- IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
- Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
- IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
- }
- Phi.replaceUsesOfWith(PostIncV, IVOper);
- DeadInsts.emplace_back(PostIncV);
- }
- }
-}
-
-void LSRInstance::CollectFixupsAndInitialFormulae() {
- BranchInst *ExitBranch = nullptr;
- bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo);
-
- for (const IVStrideUse &U : IU) {
- Instruction *UserInst = U.getUser();
- // Skip IV users that are part of profitable IV Chains.
- User::op_iterator UseI =
- find(UserInst->operands(), U.getOperandValToReplace());
- assert(UseI != UserInst->op_end() && "cannot find IV operand");
- if (IVIncSet.count(UseI)) {
- LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
- continue;
- }
-
- LSRUse::KindType Kind = LSRUse::Basic;
- MemAccessTy AccessTy;
- if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
- Kind = LSRUse::Address;
- AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
- }
-
- const SCEV *S = IU.getExpr(U);
- PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
-
- // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
- // (N - i == 0), and this allows (N - i) to be the expression that we work
- // with rather than just N or i, so we can consider the register
- // requirements for both N and i at the same time. Limiting this code to
- // equality icmps is not a problem because all interesting loops use
- // equality icmps, thanks to IndVarSimplify.
- if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
- if (CI->isEquality()) {
- // If CI can be saved in some target, like replaced inside hardware loop
- // in PowerPC, no need to generate initial formulae for it.
- if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
- continue;
- // Swap the operands if needed to put the OperandValToReplace on the
- // left, for consistency.
- Value *NV = CI->getOperand(1);
- if (NV == U.getOperandValToReplace()) {
- CI->setOperand(1, CI->getOperand(0));
- CI->setOperand(0, NV);
- NV = CI->getOperand(1);
- Changed = true;
- }
-
- // x == y --> x - y == 0
- const SCEV *N = SE.getSCEV(NV);
- if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
- // S is normalized, so normalize N before folding it into S
- // to keep the result normalized.
- N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
- Kind = LSRUse::ICmpZero;
- S = SE.getMinusSCEV(N, S);
- }
-
- // -1 and the negations of all interesting strides (except the negation
- // of -1) are now also interesting.
- for (size_t i = 0, e = Factors.size(); i != e; ++i)
- if (Factors[i] != -1)
- Factors.insert(-(uint64_t)Factors[i]);
- Factors.insert(-1);
- }
-
- // Get or create an LSRUse.
- std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
- size_t LUIdx = P.first;
- int64_t Offset = P.second;
- LSRUse &LU = Uses[LUIdx];
-
- // Record the fixup.
- LSRFixup &LF = LU.getNewFixup();
- LF.UserInst = UserInst;
- LF.OperandValToReplace = U.getOperandValToReplace();
- LF.PostIncLoops = TmpPostIncLoops;
- LF.Offset = Offset;
- LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
-
- if (!LU.WidestFixupType ||
- SE.getTypeSizeInBits(LU.WidestFixupType) <
- SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
- LU.WidestFixupType = LF.OperandValToReplace->getType();
-
- // If this is the first use of this LSRUse, give it a formula.
- if (LU.Formulae.empty()) {
- InsertInitialFormula(S, LU, LUIdx);
- CountRegisters(LU.Formulae.back(), LUIdx);
- }
- }
-
- LLVM_DEBUG(print_fixups(dbgs()));
-}
-
-/// Insert a formula for the given expression into the given use, separating out
-/// loop-variant portions from loop-invariant and loop-computable portions.
-void
-LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
- // Mark uses whose expressions cannot be expanded.
- if (!isSafeToExpand(S, SE))
- LU.RigidFormula = true;
-
- Formula F;
- F.initialMatch(S, L, SE);
- bool Inserted = InsertFormula(LU, LUIdx, F);
- assert(Inserted && "Initial formula already exists!"); (void)Inserted;
-}
-
-/// Insert a simple single-register formula for the given expression into the
-/// given use.
-void
-LSRInstance::InsertSupplementalFormula(const SCEV *S,
- LSRUse &LU, size_t LUIdx) {
- Formula F;
- F.BaseRegs.push_back(S);
- F.HasBaseReg = true;
- bool Inserted = InsertFormula(LU, LUIdx, F);
- assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
-}
-
-/// Note which registers are used by the given formula, updating RegUses.
-void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
- if (F.ScaledReg)
- RegUses.countRegister(F.ScaledReg, LUIdx);
- for (const SCEV *BaseReg : F.BaseRegs)
- RegUses.countRegister(BaseReg, LUIdx);
-}
-
-/// If the given formula has not yet been inserted, add it to the list, and
-/// return true. Return false otherwise.
-bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
- // Do not insert formula that we will not be able to expand.
- assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
- "Formula is illegal");
-
- if (!LU.InsertFormula(F, *L))
- return false;
-
- CountRegisters(F, LUIdx);
- return true;
-}
-
-/// Check for other uses of loop-invariant values which we're tracking. These
-/// other uses will pin these values in registers, making them less profitable
-/// for elimination.
-/// TODO: This currently misses non-constant addrec step registers.
-/// TODO: Should this give more weight to users inside the loop?
-void
-LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
- SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
- SmallPtrSet<const SCEV *, 32> Visited;
-
- while (!Worklist.empty()) {
- const SCEV *S = Worklist.pop_back_val();
-
- // Don't process the same SCEV twice
- if (!Visited.insert(S).second)
- continue;
-
- if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
- Worklist.append(N->op_begin(), N->op_end());
- else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
- Worklist.push_back(C->getOperand());
- else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
- Worklist.push_back(D->getLHS());
- Worklist.push_back(D->getRHS());
- } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
- const Value *V = US->getValue();
- if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
- // Look for instructions defined outside the loop.
- if (L->contains(Inst)) continue;
- } else if (isa<UndefValue>(V))
- // Undef doesn't have a live range, so it doesn't matter.
- continue;
- for (const Use &U : V->uses()) {
- const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
- // Ignore non-instructions.
- if (!UserInst)
- continue;
- // Ignore instructions in other functions (as can happen with
- // Constants).
- if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
- continue;
- // Ignore instructions not dominated by the loop.
- const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
- UserInst->getParent() :
- cast<PHINode>(UserInst)->getIncomingBlock(
- PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
- if (!DT.dominates(L->getHeader(), UseBB))
- continue;
- // Don't bother if the instruction is in a BB which ends in an EHPad.
- if (UseBB->getTerminator()->isEHPad())
- continue;
- // Don't bother rewriting PHIs in catchswitch blocks.
- if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
- continue;
- // Ignore uses which are part of other SCEV expressions, to avoid
- // analyzing them multiple times.
- if (SE.isSCEVable(UserInst->getType())) {
- const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
- // If the user is a no-op, look through to its uses.
- if (!isa<SCEVUnknown>(UserS))
- continue;
- if (UserS == US) {
- Worklist.push_back(
- SE.getUnknown(const_cast<Instruction *>(UserInst)));
- continue;
- }
- }
- // Ignore icmp instructions which are already being analyzed.
- if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
- unsigned OtherIdx = !U.getOperandNo();
- Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
- if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
- continue;
- }
-
- std::pair<size_t, int64_t> P = getUse(
- S, LSRUse::Basic, MemAccessTy());
- size_t LUIdx = P.first;
- int64_t Offset = P.second;
- LSRUse &LU = Uses[LUIdx];
- LSRFixup &LF = LU.getNewFixup();
- LF.UserInst = const_cast<Instruction *>(UserInst);
- LF.OperandValToReplace = U;
- LF.Offset = Offset;
- LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
- if (!LU.WidestFixupType ||
- SE.getTypeSizeInBits(LU.WidestFixupType) <
- SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
- LU.WidestFixupType = LF.OperandValToReplace->getType();
- InsertSupplementalFormula(US, LU, LUIdx);
- CountRegisters(LU.Formulae.back(), Uses.size() - 1);
- break;
- }
- }
- }
-}
-
-/// Split S into subexpressions which can be pulled out into separate
-/// registers. If C is non-null, multiply each subexpression by C.
-///
-/// Return remainder expression after factoring the subexpressions captured by
-/// Ops. If Ops is complete, return NULL.
-static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
- SmallVectorImpl<const SCEV *> &Ops,
- const Loop *L,
- ScalarEvolution &SE,
- unsigned Depth = 0) {
- // Arbitrarily cap recursion to protect compile time.
- if (Depth >= 3)
- return S;
-
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- // Break out add operands.
- for (const SCEV *S : Add->operands()) {
- const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
- if (Remainder)
- Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
- }
- return nullptr;
- } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
- // Split a non-zero base out of an addrec.
- if (AR->getStart()->isZero() || !AR->isAffine())
- return S;
-
- const SCEV *Remainder = CollectSubexprs(AR->getStart(),
- C, Ops, L, SE, Depth+1);
- // Split the non-zero AddRec unless it is part of a nested recurrence that
- // does not pertain to this loop.
- if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
- Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
- Remainder = nullptr;
- }
- if (Remainder != AR->getStart()) {
- if (!Remainder)
- Remainder = SE.getConstant(AR->getType(), 0);
- return SE.getAddRecExpr(Remainder,
- AR->getStepRecurrence(SE),
- AR->getLoop(),
- //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
- SCEV::FlagAnyWrap);
- }
- } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
- // Break (C * (a + b + c)) into C*a + C*b + C*c.
- if (Mul->getNumOperands() != 2)
- return S;
- if (const SCEVConstant *Op0 =
- dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
- C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
- const SCEV *Remainder =
- CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
- if (Remainder)
- Ops.push_back(SE.getMulExpr(C, Remainder));
- return nullptr;
- }
- }
- return S;
-}
-
-/// Return true if the SCEV represents a value that may end up as a
-/// post-increment operation.
-static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
- LSRUse &LU, const SCEV *S, const Loop *L,
- ScalarEvolution &SE) {
- if (LU.Kind != LSRUse::Address ||
- !LU.AccessTy.getType()->isIntOrIntVectorTy())
- return false;
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
- if (!AR)
- return false;
- const SCEV *LoopStep = AR->getStepRecurrence(SE);
- if (!isa<SCEVConstant>(LoopStep))
- return false;
- if (LU.AccessTy.getType()->getScalarSizeInBits() !=
- LoopStep->getType()->getScalarSizeInBits())
- return false;
- // Check if a post-indexed load/store can be used.
- if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
- TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
- const SCEV *LoopStart = AR->getStart();
- if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
- return true;
- }
- return false;
-}
-
-/// Helper function for LSRInstance::GenerateReassociations.
-void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base,
- unsigned Depth, size_t Idx,
- bool IsScaledReg) {
- const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
- // Don't generate reassociations for the base register of a value that
- // may generate a post-increment operator. The reason is that the
- // reassociations cause extra base+register formula to be created,
- // and possibly chosen, but the post-increment is more efficient.
- if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
- return;
- SmallVector<const SCEV *, 8> AddOps;
- const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
- if (Remainder)
- AddOps.push_back(Remainder);
-
- if (AddOps.size() == 1)
- return;
-
- for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
- JE = AddOps.end();
- J != JE; ++J) {
- // Loop-variant "unknown" values are uninteresting; we won't be able to
- // do anything meaningful with them.
- if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
- continue;
-
- // Don't pull a constant into a register if the constant could be folded
- // into an immediate field.
- if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
- LU.AccessTy, *J, Base.getNumRegs() > 1))
- continue;
-
- // Collect all operands except *J.
- SmallVector<const SCEV *, 8> InnerAddOps(
- ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
- InnerAddOps.append(std::next(J),
- ((const SmallVector<const SCEV *, 8> &)AddOps).end());
-
- // Don't leave just a constant behind in a register if the constant could
- // be folded into an immediate field.
- if (InnerAddOps.size() == 1 &&
- isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
- LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
- continue;
-
- const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
- if (InnerSum->isZero())
- continue;
- Formula F = Base;
-
- // Add the remaining pieces of the add back into the new formula.
- const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
- if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
- TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- InnerSumSC->getValue()->getZExtValue())) {
- F.UnfoldedOffset =
- (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
- if (IsScaledReg)
- F.ScaledReg = nullptr;
- else
- F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
- } else if (IsScaledReg)
- F.ScaledReg = InnerSum;
- else
- F.BaseRegs[Idx] = InnerSum;
-
- // Add J as its own register, or an unfolded immediate.
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
- if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
- TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
- SC->getValue()->getZExtValue()))
- F.UnfoldedOffset =
- (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
- else
- F.BaseRegs.push_back(*J);
- // We may have changed the number of register in base regs, adjust the
- // formula accordingly.
- F.canonicalize(*L);
-
- if (InsertFormula(LU, LUIdx, F))
- // If that formula hadn't been seen before, recurse to find more like
- // it.
- // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
- // Because just Depth is not enough to bound compile time.
- // This means that every time AddOps.size() is greater 16^x we will add
- // x to Depth.
- GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
- Depth + 1 + (Log2_32(AddOps.size()) >> 2));
- }
-}
-
-/// Split out subexpressions from adds and the bases of addrecs.
-void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
- Formula Base, unsigned Depth) {
- assert(Base.isCanonical(*L) && "Input must be in the canonical form");
- // Arbitrarily cap recursion to protect compile time.
- if (Depth >= 3)
- return;
-
- for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
- GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
-
- if (Base.Scale == 1)
- GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
- /* Idx */ -1, /* IsScaledReg */ true);
-}
-
-/// Generate a formula consisting of all of the loop-dominating registers added
-/// into a single register.
-void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
- Formula Base) {
- // This method is only interesting on a plurality of registers.
- if (Base.BaseRegs.size() + (Base.Scale == 1) +
- (Base.UnfoldedOffset != 0) <= 1)
- return;
-
- // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
- // processing the formula.
- Base.unscale();
- SmallVector<const SCEV *, 4> Ops;
- Formula NewBase = Base;
- NewBase.BaseRegs.clear();
- Type *CombinedIntegerType = nullptr;
- for (const SCEV *BaseReg : Base.BaseRegs) {
- if (SE.properlyDominates(BaseReg, L->getHeader()) &&
- !SE.hasComputableLoopEvolution(BaseReg, L)) {
- if (!CombinedIntegerType)
- CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
- Ops.push_back(BaseReg);
- }
- else
- NewBase.BaseRegs.push_back(BaseReg);
- }
-
- // If no register is relevant, we're done.
- if (Ops.size() == 0)
- return;
-
- // Utility function for generating the required variants of the combined
- // registers.
- auto GenerateFormula = [&](const SCEV *Sum) {
- Formula F = NewBase;
-
- // TODO: If Sum is zero, it probably means ScalarEvolution missed an
- // opportunity to fold something. For now, just ignore such cases
- // rather than proceed with zero in a register.
- if (Sum->isZero())
- return;
-
- F.BaseRegs.push_back(Sum);
- F.canonicalize(*L);
- (void)InsertFormula(LU, LUIdx, F);
- };
-
- // If we collected at least two registers, generate a formula combining them.
- if (Ops.size() > 1) {
- SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
- GenerateFormula(SE.getAddExpr(OpsCopy));
- }
-
- // If we have an unfolded offset, generate a formula combining it with the
- // registers collected.
- if (NewBase.UnfoldedOffset) {
- assert(CombinedIntegerType && "Missing a type for the unfolded offset");
- Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
- true));
- NewBase.UnfoldedOffset = 0;
- GenerateFormula(SE.getAddExpr(Ops));
- }
-}
-
-/// Helper function for LSRInstance::GenerateSymbolicOffsets.
-void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
- const Formula &Base, size_t Idx,
- bool IsScaledReg) {
- const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
- GlobalValue *GV = ExtractSymbol(G, SE);
- if (G->isZero() || !GV)
- return;
- Formula F = Base;
- F.BaseGV = GV;
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
- return;
- if (IsScaledReg)
- F.ScaledReg = G;
- else
- F.BaseRegs[Idx] = G;
- (void)InsertFormula(LU, LUIdx, F);
-}
-
-/// Generate reuse formulae using symbolic offsets.
-void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
- Formula Base) {
- // We can't add a symbolic offset if the address already contains one.
- if (Base.BaseGV) return;
-
- for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
- GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
- if (Base.Scale == 1)
- GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
- /* IsScaledReg */ true);
-}
-
-/// Helper function for LSRInstance::GenerateConstantOffsets.
-void LSRInstance::GenerateConstantOffsetsImpl(
- LSRUse &LU, unsigned LUIdx, const Formula &Base,
- const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
-
- auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
- Formula F = Base;
- F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
-
- if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
- LU.AccessTy, F)) {
- // Add the offset to the base register.
- const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
- // If it cancelled out, drop the base register, otherwise update it.
- if (NewG->isZero()) {
- if (IsScaledReg) {
- F.Scale = 0;
- F.ScaledReg = nullptr;
- } else
- F.deleteBaseReg(F.BaseRegs[Idx]);
- F.canonicalize(*L);
- } else if (IsScaledReg)
- F.ScaledReg = NewG;
- else
- F.BaseRegs[Idx] = NewG;
-
- (void)InsertFormula(LU, LUIdx, F);
- }
- };
-
- const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
-
- // With constant offsets and constant steps, we can generate pre-inc
- // accesses by having the offset equal the step. So, for access #0 with a
- // step of 8, we generate a G - 8 base which would require the first access
- // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
- // for itself and hopefully becomes the base for other accesses. This means
- // means that a single pre-indexed access can be generated to become the new
- // base pointer for each iteration of the loop, resulting in no extra add/sub
- // instructions for pointer updating.
- if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
- if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
- if (auto *StepRec =
- dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
- const APInt &StepInt = StepRec->getAPInt();
- int64_t Step = StepInt.isNegative() ?
- StepInt.getSExtValue() : StepInt.getZExtValue();
-
- for (int64_t Offset : Worklist) {
- Offset -= Step;
- GenerateOffset(G, Offset);
- }
- }
- }
- }
- for (int64_t Offset : Worklist)
- GenerateOffset(G, Offset);
-
- int64_t Imm = ExtractImmediate(G, SE);
- if (G->isZero() || Imm == 0)
- return;
- Formula F = Base;
- F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
- return;
- if (IsScaledReg)
- F.ScaledReg = G;
- else
- F.BaseRegs[Idx] = G;
- (void)InsertFormula(LU, LUIdx, F);
-}
-
-/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
-void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
- Formula Base) {
- // TODO: For now, just add the min and max offset, because it usually isn't
- // worthwhile looking at everything inbetween.
- SmallVector<int64_t, 2> Worklist;
- Worklist.push_back(LU.MinOffset);
- if (LU.MaxOffset != LU.MinOffset)
- Worklist.push_back(LU.MaxOffset);
-
- for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
- GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
- if (Base.Scale == 1)
- GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
- /* IsScaledReg */ true);
-}
-
-/// For ICmpZero, check to see if we can scale up the comparison. For example, x
-/// == y -> x*c == y*c.
-void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
- Formula Base) {
- if (LU.Kind != LSRUse::ICmpZero) return;
-
- // Determine the integer type for the base formula.
- Type *IntTy = Base.getType();
- if (!IntTy) return;
- if (SE.getTypeSizeInBits(IntTy) > 64) return;
-
- // Don't do this if there is more than one offset.
- if (LU.MinOffset != LU.MaxOffset) return;
-
- // Check if transformation is valid. It is illegal to multiply pointer.
- if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
- return;
- for (const SCEV *BaseReg : Base.BaseRegs)
- if (BaseReg->getType()->isPointerTy())
- return;
- assert(!Base.BaseGV && "ICmpZero use is not legal!");
-
- // Check each interesting stride.
- for (int64_t Factor : Factors) {
- // Check that the multiplication doesn't overflow.
- if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
- continue;
- int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
- if (NewBaseOffset / Factor != Base.BaseOffset)
- continue;
- // If the offset will be truncated at this use, check that it is in bounds.
- if (!IntTy->isPointerTy() &&
- !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
- continue;
-
- // Check that multiplying with the use offset doesn't overflow.
- int64_t Offset = LU.MinOffset;
- if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
- continue;
- Offset = (uint64_t)Offset * Factor;
- if (Offset / Factor != LU.MinOffset)
- continue;
- // If the offset will be truncated at this use, check that it is in bounds.
- if (!IntTy->isPointerTy() &&
- !ConstantInt::isValueValidForType(IntTy, Offset))
- continue;
-
- Formula F = Base;
- F.BaseOffset = NewBaseOffset;
-
- // Check that this scale is legal.
- if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
- continue;
-
- // Compensate for the use having MinOffset built into it.
- F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
-
- const SCEV *FactorS = SE.getConstant(IntTy, Factor);
-
- // Check that multiplying with each base register doesn't overflow.
- for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
- F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
- if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
- goto next;
- }
-
- // Check that multiplying with the scaled register doesn't overflow.
- if (F.ScaledReg) {
- F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
- if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
- continue;
- }
-
- // Check that multiplying with the unfolded offset doesn't overflow.
- if (F.UnfoldedOffset != 0) {
- if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
- Factor == -1)
- continue;
- F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
- if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
- continue;
- // If the offset will be truncated, check that it is in bounds.
- if (!IntTy->isPointerTy() &&
- !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
- continue;
- }
-
- // If we make it here and it's legal, add it.
- (void)InsertFormula(LU, LUIdx, F);
- next:;
- }
-}
-
-/// Generate stride factor reuse formulae by making use of scaled-offset address
-/// modes, for example.
-void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
- // Determine the integer type for the base formula.
- Type *IntTy = Base.getType();
- if (!IntTy) return;
-
- // If this Formula already has a scaled register, we can't add another one.
- // Try to unscale the formula to generate a better scale.
- if (Base.Scale != 0 && !Base.unscale())
- return;
-
- assert(Base.Scale == 0 && "unscale did not did its job!");
-
- // Check each interesting stride.
- for (int64_t Factor : Factors) {
- Base.Scale = Factor;
- Base.HasBaseReg = Base.BaseRegs.size() > 1;
- // Check whether this scale is going to be legal.
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
- Base)) {
- // As a special-case, handle special out-of-loop Basic users specially.
- // TODO: Reconsider this special case.
- if (LU.Kind == LSRUse::Basic &&
- isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
- LU.AccessTy, Base) &&
- LU.AllFixupsOutsideLoop)
- LU.Kind = LSRUse::Special;
- else
- continue;
- }
- // For an ICmpZero, negating a solitary base register won't lead to
- // new solutions.
- if (LU.Kind == LSRUse::ICmpZero &&
- !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
- continue;
- // For each addrec base reg, if its loop is current loop, apply the scale.
- for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
- if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
- const SCEV *FactorS = SE.getConstant(IntTy, Factor);
- if (FactorS->isZero())
- continue;
- // Divide out the factor, ignoring high bits, since we'll be
- // scaling the value back up in the end.
- if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
- // TODO: This could be optimized to avoid all the copying.
- Formula F = Base;
- F.ScaledReg = Quotient;
- F.deleteBaseReg(F.BaseRegs[i]);
- // The canonical representation of 1*reg is reg, which is already in
- // Base. In that case, do not try to insert the formula, it will be
- // rejected anyway.
- if (F.Scale == 1 && (F.BaseRegs.empty() ||
- (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
- continue;
- // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
- // non canonical Formula with ScaledReg's loop not being L.
- if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
- F.canonicalize(*L);
- (void)InsertFormula(LU, LUIdx, F);
- }
- }
- }
- }
-}
-
-/// Generate reuse formulae from different IV types.
-void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
- // Don't bother truncating symbolic values.
- if (Base.BaseGV) return;
-
- // Determine the integer type for the base formula.
- Type *DstTy = Base.getType();
- if (!DstTy) return;
- DstTy = SE.getEffectiveSCEVType(DstTy);
-
- for (Type *SrcTy : Types) {
- if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
- Formula F = Base;
-
- // Sometimes SCEV is able to prove zero during ext transform. It may
- // happen if SCEV did not do all possible transforms while creating the
- // initial node (maybe due to depth limitations), but it can do them while
- // taking ext.
- if (F.ScaledReg) {
- const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
- if (NewScaledReg->isZero())
- continue;
- F.ScaledReg = NewScaledReg;
- }
- bool HasZeroBaseReg = false;
- for (const SCEV *&BaseReg : F.BaseRegs) {
- const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
- if (NewBaseReg->isZero()) {
- HasZeroBaseReg = true;
- break;
- }
- BaseReg = NewBaseReg;
- }
- if (HasZeroBaseReg)
- continue;
-
- // TODO: This assumes we've done basic processing on all uses and
- // have an idea what the register usage is.
- if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
- continue;
-
- F.canonicalize(*L);
- (void)InsertFormula(LU, LUIdx, F);
- }
- }
-}
-
-namespace {
-
-/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
-/// modifications so that the search phase doesn't have to worry about the data
-/// structures moving underneath it.
-struct WorkItem {
- size_t LUIdx;
- int64_t Imm;
- const SCEV *OrigReg;
-
- WorkItem(size_t LI, int64_t I, const SCEV *R)
- : LUIdx(LI), Imm(I), OrigReg(R) {}
-
- void print(raw_ostream &OS) const;
- void dump() const;
-};
-
-} // end anonymous namespace
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void WorkItem::print(raw_ostream &OS) const {
- OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
- << " , add offset " << Imm;
-}
-
-LLVM_DUMP_METHOD void WorkItem::dump() const {
- print(errs()); errs() << '\n';
-}
-#endif
-
-/// Look for registers which are a constant distance apart and try to form reuse
-/// opportunities between them.
-void LSRInstance::GenerateCrossUseConstantOffsets() {
- // Group the registers by their value without any added constant offset.
- using ImmMapTy = std::map<int64_t, const SCEV *>;
-
- DenseMap<const SCEV *, ImmMapTy> Map;
- DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
- SmallVector<const SCEV *, 8> Sequence;
- for (const SCEV *Use : RegUses) {
- const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
- int64_t Imm = ExtractImmediate(Reg, SE);
- auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
- if (Pair.second)
- Sequence.push_back(Reg);
- Pair.first->second.insert(std::make_pair(Imm, Use));
- UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
- }
-
- // Now examine each set of registers with the same base value. Build up
- // a list of work to do and do the work in a separate step so that we're
- // not adding formulae and register counts while we're searching.
- SmallVector<WorkItem, 32> WorkItems;
- SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
- for (const SCEV *Reg : Sequence) {
- const ImmMapTy &Imms = Map.find(Reg)->second;
-
- // It's not worthwhile looking for reuse if there's only one offset.
- if (Imms.size() == 1)
- continue;
-
- LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
- for (const auto &Entry
- : Imms) dbgs()
- << ' ' << Entry.first;
- dbgs() << '\n');
-
- // Examine each offset.
- for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
- J != JE; ++J) {
- const SCEV *OrigReg = J->second;
-
- int64_t JImm = J->first;
- const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
-
- if (!isa<SCEVConstant>(OrigReg) &&
- UsedByIndicesMap[Reg].count() == 1) {
- LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
- << '\n');
- continue;
- }
-
- // Conservatively examine offsets between this orig reg a few selected
- // other orig regs.
- int64_t First = Imms.begin()->first;
- int64_t Last = std::prev(Imms.end())->first;
- // Compute (First + Last) / 2 without overflow using the fact that
- // First + Last = 2 * (First + Last) + (First ^ Last).
- int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
- // If the result is negative and First is odd and Last even (or vice versa),
- // we rounded towards -inf. Add 1 in that case, to round towards 0.
- Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
- ImmMapTy::const_iterator OtherImms[] = {
- Imms.begin(), std::prev(Imms.end()),
- Imms.lower_bound(Avg)};
- for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
- ImmMapTy::const_iterator M = OtherImms[i];
- if (M == J || M == JE) continue;
-
- // Compute the difference between the two.
- int64_t Imm = (uint64_t)JImm - M->first;
- for (unsigned LUIdx : UsedByIndices.set_bits())
- // Make a memo of this use, offset, and register tuple.
- if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
- WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
- }
- }
- }
-
- Map.clear();
- Sequence.clear();
- UsedByIndicesMap.clear();
- UniqueItems.clear();
-
- // Now iterate through the worklist and add new formulae.
- for (const WorkItem &WI : WorkItems) {
- size_t LUIdx = WI.LUIdx;
- LSRUse &LU = Uses[LUIdx];
- int64_t Imm = WI.Imm;
- const SCEV *OrigReg = WI.OrigReg;
-
- Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
- const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
- unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
-
- // TODO: Use a more targeted data structure.
- for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
- Formula F = LU.Formulae[L];
- // FIXME: The code for the scaled and unscaled registers looks
- // very similar but slightly different. Investigate if they
- // could be merged. That way, we would not have to unscale the
- // Formula.
- F.unscale();
- // Use the immediate in the scaled register.
- if (F.ScaledReg == OrigReg) {
- int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
- // Don't create 50 + reg(-50).
- if (F.referencesReg(SE.getSCEV(
- ConstantInt::get(IntTy, -(uint64_t)Offset))))
- continue;
- Formula NewF = F;
- NewF.BaseOffset = Offset;
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
- NewF))
- continue;
- NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
-
- // If the new scale is a constant in a register, and adding the constant
- // value to the immediate would produce a value closer to zero than the
- // immediate itself, then the formula isn't worthwhile.
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
- if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
- (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
- .ule(std::abs(NewF.BaseOffset)))
- continue;
-
- // OK, looks good.
- NewF.canonicalize(*this->L);
- (void)InsertFormula(LU, LUIdx, NewF);
- } else {
- // Use the immediate in a base register.
- for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
- const SCEV *BaseReg = F.BaseRegs[N];
- if (BaseReg != OrigReg)
- continue;
- Formula NewF = F;
- NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
- if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
- LU.Kind, LU.AccessTy, NewF)) {
- if (TTI.shouldFavorPostInc() &&
- mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
- continue;
- if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
- continue;
- NewF = F;
- NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
- }
- NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
-
- // If the new formula has a constant in a register, and adding the
- // constant value to the immediate would produce a value closer to
- // zero than the immediate itself, then the formula isn't worthwhile.
- for (const SCEV *NewReg : NewF.BaseRegs)
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
- if ((C->getAPInt() + NewF.BaseOffset)
- .abs()
- .slt(std::abs(NewF.BaseOffset)) &&
- (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
- countTrailingZeros<uint64_t>(NewF.BaseOffset))
- goto skip_formula;
-
- // Ok, looks good.
- NewF.canonicalize(*this->L);
- (void)InsertFormula(LU, LUIdx, NewF);
- break;
- skip_formula:;
- }
- }
- }
- }
-}
-
-/// Generate formulae for each use.
-void
-LSRInstance::GenerateAllReuseFormulae() {
- // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
- // queries are more precise.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
- }
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateScales(LU, LUIdx, LU.Formulae[i]);
- }
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
- GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
- }
-
- GenerateCrossUseConstantOffsets();
-
- LLVM_DEBUG(dbgs() << "\n"
- "After generating reuse formulae:\n";
- print_uses(dbgs()));
-}
-
-/// If there are multiple formulae with the same set of registers used
-/// by other uses, pick the best one and delete the others.
-void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
- DenseSet<const SCEV *> VisitedRegs;
- SmallPtrSet<const SCEV *, 16> Regs;
- SmallPtrSet<const SCEV *, 16> LoserRegs;
-#ifndef NDEBUG
- bool ChangedFormulae = false;
-#endif
-
- // Collect the best formula for each unique set of shared registers. This
- // is reset for each use.
- using BestFormulaeTy =
- DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
-
- BestFormulaeTy BestFormulae;
-
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
- dbgs() << '\n');
-
- bool Any = false;
- for (size_t FIdx = 0, NumForms = LU.Formulae.size();
- FIdx != NumForms; ++FIdx) {
- Formula &F = LU.Formulae[FIdx];
-
- // Some formulas are instant losers. For example, they may depend on
- // nonexistent AddRecs from other loops. These need to be filtered
- // immediately, otherwise heuristics could choose them over others leading
- // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
- // avoids the need to recompute this information across formulae using the
- // same bad AddRec. Passing LoserRegs is also essential unless we remove
- // the corresponding bad register from the Regs set.
- Cost CostF(L, SE, TTI);
- Regs.clear();
- CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
- if (CostF.isLoser()) {
- // During initial formula generation, undesirable formulae are generated
- // by uses within other loops that have some non-trivial address mode or
- // use the postinc form of the IV. LSR needs to provide these formulae
- // as the basis of rediscovering the desired formula that uses an AddRec
- // corresponding to the existing phi. Once all formulae have been
- // generated, these initial losers may be pruned.
- LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
- dbgs() << "\n");
- }
- else {
- SmallVector<const SCEV *, 4> Key;
- for (const SCEV *Reg : F.BaseRegs) {
- if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
- Key.push_back(Reg);
- }
- if (F.ScaledReg &&
- RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
- Key.push_back(F.ScaledReg);
- // Unstable sort by host order ok, because this is only used for
- // uniquifying.
- llvm::sort(Key);
-
- std::pair<BestFormulaeTy::const_iterator, bool> P =
- BestFormulae.insert(std::make_pair(Key, FIdx));
- if (P.second)
- continue;
-
- Formula &Best = LU.Formulae[P.first->second];
-
- Cost CostBest(L, SE, TTI);
- Regs.clear();
- CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
- if (CostF.isLess(CostBest))
- std::swap(F, Best);
- LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
- dbgs() << "\n"
- " in favor of formula ";
- Best.print(dbgs()); dbgs() << '\n');
- }
-#ifndef NDEBUG
- ChangedFormulae = true;
-#endif
- LU.DeleteFormula(F);
- --FIdx;
- --NumForms;
- Any = true;
- }
-
- // Now that we've filtered out some formulae, recompute the Regs set.
- if (Any)
- LU.RecomputeRegs(LUIdx, RegUses);
-
- // Reset this to prepare for the next use.
- BestFormulae.clear();
- }
-
- LLVM_DEBUG(if (ChangedFormulae) {
- dbgs() << "\n"
- "After filtering out undesirable candidates:\n";
- print_uses(dbgs());
- });
-}
-
-/// Estimate the worst-case number of solutions the solver might have to
-/// consider. It almost never considers this many solutions because it prune the
-/// search space, but the pruning isn't always sufficient.
-size_t LSRInstance::EstimateSearchSpaceComplexity() const {
- size_t Power = 1;
- for (const LSRUse &LU : Uses) {
- size_t FSize = LU.Formulae.size();
- if (FSize >= ComplexityLimit) {
- Power = ComplexityLimit;
- break;
- }
- Power *= FSize;
- if (Power >= ComplexityLimit)
- break;
- }
- return Power;
-}
-
-/// When one formula uses a superset of the registers of another formula, it
-/// won't help reduce register pressure (though it may not necessarily hurt
-/// register pressure); remove it to simplify the system.
-void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
- if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
- LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
-
- LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
- "which use a superset of registers used by other "
- "formulae.\n");
-
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- bool Any = false;
- for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
- Formula &F = LU.Formulae[i];
- // Look for a formula with a constant or GV in a register. If the use
- // also has a formula with that same value in an immediate field,
- // delete the one that uses a register.
- for (SmallVectorImpl<const SCEV *>::const_iterator
- I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
- Formula NewF = F;
- //FIXME: Formulas should store bitwidth to do wrapping properly.
- // See PR41034.
- NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
- NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
- (I - F.BaseRegs.begin()));
- if (LU.HasFormulaWithSameRegs(NewF)) {
- LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
- dbgs() << '\n');
- LU.DeleteFormula(F);
- --i;
- --e;
- Any = true;
- break;
- }
- } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
- if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
- if (!F.BaseGV) {
- Formula NewF = F;
- NewF.BaseGV = GV;
- NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
- (I - F.BaseRegs.begin()));
- if (LU.HasFormulaWithSameRegs(NewF)) {
- LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
- dbgs() << '\n');
- LU.DeleteFormula(F);
- --i;
- --e;
- Any = true;
- break;
- }
- }
- }
- }
- }
- if (Any)
- LU.RecomputeRegs(LUIdx, RegUses);
- }
-
- LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
- }
-}
-
-/// When there are many registers for expressions like A, A+1, A+2, etc.,
-/// allocate a single register for them.
-void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
- if (EstimateSearchSpaceComplexity() < ComplexityLimit)
- return;
-
- LLVM_DEBUG(
- dbgs() << "The search space is too complex.\n"
- "Narrowing the search space by assuming that uses separated "
- "by a constant offset will use the same registers.\n");
-
- // This is especially useful for unrolled loops.
-
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- for (const Formula &F : LU.Formulae) {
- if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
- continue;
-
- LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
- if (!LUThatHas)
- continue;
-
- if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
- LU.Kind, LU.AccessTy))
- continue;
-
- LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
-
- LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
-
- // Transfer the fixups of LU to LUThatHas.
- for (LSRFixup &Fixup : LU.Fixups) {
- Fixup.Offset += F.BaseOffset;
- LUThatHas->pushFixup(Fixup);
- LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
- }
-
- // Delete formulae from the new use which are no longer legal.
- bool Any = false;
- for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
- Formula &F = LUThatHas->Formulae[i];
- if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
- LUThatHas->Kind, LUThatHas->AccessTy, F)) {
- LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
- LUThatHas->DeleteFormula(F);
- --i;
- --e;
- Any = true;
- }
- }
-
- if (Any)
- LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
-
- // Delete the old use.
- DeleteUse(LU, LUIdx);
- --LUIdx;
- --NumUses;
- break;
- }
- }
-
- LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
-}
-
-/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
-/// we've done more filtering, as it may be able to find more formulae to
-/// eliminate.
-void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
- if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
- LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
-
- LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
- "undesirable dedicated registers.\n");
-
- FilterOutUndesirableDedicatedRegisters();
-
- LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
- }
-}
-
-/// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
-/// Pick the best one and delete the others.
-/// This narrowing heuristic is to keep as many formulae with different
-/// Scale and ScaledReg pair as possible while narrowing the search space.
-/// The benefit is that it is more likely to find out a better solution
-/// from a formulae set with more Scale and ScaledReg variations than
-/// a formulae set with the same Scale and ScaledReg. The picking winner
-/// reg heuristic will often keep the formulae with the same Scale and
-/// ScaledReg and filter others, and we want to avoid that if possible.
-void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
- if (EstimateSearchSpaceComplexity() < ComplexityLimit)
- return;
-
- LLVM_DEBUG(
- dbgs() << "The search space is too complex.\n"
- "Narrowing the search space by choosing the best Formula "
- "from the Formulae with the same Scale and ScaledReg.\n");
-
- // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
- using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
-
- BestFormulaeTy BestFormulae;
-#ifndef NDEBUG
- bool ChangedFormulae = false;
-#endif
- DenseSet<const SCEV *> VisitedRegs;
- SmallPtrSet<const SCEV *, 16> Regs;
-
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
- dbgs() << '\n');
-
- // Return true if Formula FA is better than Formula FB.
- auto IsBetterThan = [&](Formula &FA, Formula &FB) {
- // First we will try to choose the Formula with fewer new registers.
- // For a register used by current Formula, the more the register is
- // shared among LSRUses, the less we increase the register number
- // counter of the formula.
- size_t FARegNum = 0;
- for (const SCEV *Reg : FA.BaseRegs) {
- const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
- FARegNum += (NumUses - UsedByIndices.count() + 1);
- }
- size_t FBRegNum = 0;
- for (const SCEV *Reg : FB.BaseRegs) {
- const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
- FBRegNum += (NumUses - UsedByIndices.count() + 1);
- }
- if (FARegNum != FBRegNum)
- return FARegNum < FBRegNum;
-
- // If the new register numbers are the same, choose the Formula with
- // less Cost.
- Cost CostFA(L, SE, TTI);
- Cost CostFB(L, SE, TTI);
- Regs.clear();
- CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
- Regs.clear();
- CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
- return CostFA.isLess(CostFB);
- };
-
- bool Any = false;
- for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
- ++FIdx) {
- Formula &F = LU.Formulae[FIdx];
- if (!F.ScaledReg)
- continue;
- auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
- if (P.second)
- continue;
-
- Formula &Best = LU.Formulae[P.first->second];
- if (IsBetterThan(F, Best))
- std::swap(F, Best);
- LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
- dbgs() << "\n"
- " in favor of formula ";
- Best.print(dbgs()); dbgs() << '\n');
-#ifndef NDEBUG
- ChangedFormulae = true;
-#endif
- LU.DeleteFormula(F);
- --FIdx;
- --NumForms;
- Any = true;
- }
- if (Any)
- LU.RecomputeRegs(LUIdx, RegUses);
-
- // Reset this to prepare for the next use.
- BestFormulae.clear();
- }
-
- LLVM_DEBUG(if (ChangedFormulae) {
- dbgs() << "\n"
- "After filtering out undesirable candidates:\n";
- print_uses(dbgs());
- });
-}
-
-/// The function delete formulas with high registers number expectation.
-/// Assuming we don't know the value of each formula (already delete
-/// all inefficient), generate probability of not selecting for each
-/// register.
-/// For example,
-/// Use1:
-/// reg(a) + reg({0,+,1})
-/// reg(a) + reg({-1,+,1}) + 1
-/// reg({a,+,1})
-/// Use2:
-/// reg(b) + reg({0,+,1})
-/// reg(b) + reg({-1,+,1}) + 1
-/// reg({b,+,1})
-/// Use3:
-/// reg(c) + reg(b) + reg({0,+,1})
-/// reg(c) + reg({b,+,1})
-///
-/// Probability of not selecting
-/// Use1 Use2 Use3
-/// reg(a) (1/3) * 1 * 1
-/// reg(b) 1 * (1/3) * (1/2)
-/// reg({0,+,1}) (2/3) * (2/3) * (1/2)
-/// reg({-1,+,1}) (2/3) * (2/3) * 1
-/// reg({a,+,1}) (2/3) * 1 * 1
-/// reg({b,+,1}) 1 * (2/3) * (2/3)
-/// reg(c) 1 * 1 * 0
-///
-/// Now count registers number mathematical expectation for each formula:
-/// Note that for each use we exclude probability if not selecting for the use.
-/// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
-/// probabilty 1/3 of not selecting for Use1).
-/// Use1:
-/// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
-/// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
-/// reg({a,+,1}) 1
-/// Use2:
-/// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
-/// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
-/// reg({b,+,1}) 2/3
-/// Use3:
-/// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
-/// reg(c) + reg({b,+,1}) 1 + 2/3
-void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
- if (EstimateSearchSpaceComplexity() < ComplexityLimit)
- return;
- // Ok, we have too many of formulae on our hands to conveniently handle.
- // Use a rough heuristic to thin out the list.
-
- // Set of Regs wich will be 100% used in final solution.
- // Used in each formula of a solution (in example above this is reg(c)).
- // We can skip them in calculations.
- SmallPtrSet<const SCEV *, 4> UniqRegs;
- LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
-
- // Map each register to probability of not selecting
- DenseMap <const SCEV *, float> RegNumMap;
- for (const SCEV *Reg : RegUses) {
- if (UniqRegs.count(Reg))
- continue;
- float PNotSel = 1;
- for (const LSRUse &LU : Uses) {
- if (!LU.Regs.count(Reg))
- continue;
- float P = LU.getNotSelectedProbability(Reg);
- if (P != 0.0)
- PNotSel *= P;
- else
- UniqRegs.insert(Reg);
- }
- RegNumMap.insert(std::make_pair(Reg, PNotSel));
- }
-
- LLVM_DEBUG(
- dbgs() << "Narrowing the search space by deleting costly formulas\n");
-
- // Delete formulas where registers number expectation is high.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- // If nothing to delete - continue.
- if (LU.Formulae.size() < 2)
- continue;
- // This is temporary solution to test performance. Float should be
- // replaced with round independent type (based on integers) to avoid
- // different results for different target builds.
- float FMinRegNum = LU.Formulae[0].getNumRegs();
- float FMinARegNum = LU.Formulae[0].getNumRegs();
- size_t MinIdx = 0;
- for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
- Formula &F = LU.Formulae[i];
- float FRegNum = 0;
- float FARegNum = 0;
- for (const SCEV *BaseReg : F.BaseRegs) {
- if (UniqRegs.count(BaseReg))
- continue;
- FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
- if (isa<SCEVAddRecExpr>(BaseReg))
- FARegNum +=
- RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
- }
- if (const SCEV *ScaledReg = F.ScaledReg) {
- if (!UniqRegs.count(ScaledReg)) {
- FRegNum +=
- RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
- if (isa<SCEVAddRecExpr>(ScaledReg))
- FARegNum +=
- RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
- }
- }
- if (FMinRegNum > FRegNum ||
- (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
- FMinRegNum = FRegNum;
- FMinARegNum = FARegNum;
- MinIdx = i;
- }
- }
- LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs());
- dbgs() << " with min reg num " << FMinRegNum << '\n');
- if (MinIdx != 0)
- std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
- while (LU.Formulae.size() != 1) {
- LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs());
- dbgs() << '\n');
- LU.Formulae.pop_back();
- }
- LU.RecomputeRegs(LUIdx, RegUses);
- assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
- Formula &F = LU.Formulae[0];
- LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n');
- // When we choose the formula, the regs become unique.
- UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
- if (F.ScaledReg)
- UniqRegs.insert(F.ScaledReg);
- }
- LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
-}
-
-/// Pick a register which seems likely to be profitable, and then in any use
-/// which has any reference to that register, delete all formulae which do not
-/// reference that register.
-void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
- // With all other options exhausted, loop until the system is simple
- // enough to handle.
- SmallPtrSet<const SCEV *, 4> Taken;
- while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
- // Ok, we have too many of formulae on our hands to conveniently handle.
- // Use a rough heuristic to thin out the list.
- LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
-
- // Pick the register which is used by the most LSRUses, which is likely
- // to be a good reuse register candidate.
- const SCEV *Best = nullptr;
- unsigned BestNum = 0;
- for (const SCEV *Reg : RegUses) {
- if (Taken.count(Reg))
- continue;
- if (!Best) {
- Best = Reg;
- BestNum = RegUses.getUsedByIndices(Reg).count();
- } else {
- unsigned Count = RegUses.getUsedByIndices(Reg).count();
- if (Count > BestNum) {
- Best = Reg;
- BestNum = Count;
- }
- }
- }
-
- LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
- << " will yield profitable reuse.\n");
- Taken.insert(Best);
-
- // In any use with formulae which references this register, delete formulae
- // which don't reference it.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
- LSRUse &LU = Uses[LUIdx];
- if (!LU.Regs.count(Best)) continue;
-
- bool Any = false;
- for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
- Formula &F = LU.Formulae[i];
- if (!F.referencesReg(Best)) {
- LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
- LU.DeleteFormula(F);
- --e;
- --i;
- Any = true;
- assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
- continue;
- }
- }
-
- if (Any)
- LU.RecomputeRegs(LUIdx, RegUses);
- }
-
- LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
- }
-}
-
-/// If there are an extraordinary number of formulae to choose from, use some
-/// rough heuristics to prune down the number of formulae. This keeps the main
-/// solver from taking an extraordinary amount of time in some worst-case
-/// scenarios.
-void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
- NarrowSearchSpaceByDetectingSupersets();
- NarrowSearchSpaceByCollapsingUnrolledCode();
- NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
- if (FilterSameScaledReg)
- NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
- if (LSRExpNarrow)
- NarrowSearchSpaceByDeletingCostlyFormulas();
- else
- NarrowSearchSpaceByPickingWinnerRegs();
-}
-
-/// This is the recursive solver.
-void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
- Cost &SolutionCost,
- SmallVectorImpl<const Formula *> &Workspace,
- const Cost &CurCost,
- const SmallPtrSet<const SCEV *, 16> &CurRegs,
- DenseSet<const SCEV *> &VisitedRegs) const {
- // Some ideas:
- // - prune more:
- // - use more aggressive filtering
- // - sort the formula so that the most profitable solutions are found first
- // - sort the uses too
- // - search faster:
- // - don't compute a cost, and then compare. compare while computing a cost
- // and bail early.
- // - track register sets with SmallBitVector
-
- const LSRUse &LU = Uses[Workspace.size()];
-
- // If this use references any register that's already a part of the
- // in-progress solution, consider it a requirement that a formula must
- // reference that register in order to be considered. This prunes out
- // unprofitable searching.
- SmallSetVector<const SCEV *, 4> ReqRegs;
- for (const SCEV *S : CurRegs)
- if (LU.Regs.count(S))
- ReqRegs.insert(S);
-
- SmallPtrSet<const SCEV *, 16> NewRegs;
- Cost NewCost(L, SE, TTI);
- for (const Formula &F : LU.Formulae) {
- // Ignore formulae which may not be ideal in terms of register reuse of
- // ReqRegs. The formula should use all required registers before
- // introducing new ones.
- int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
- for (const SCEV *Reg : ReqRegs) {
- if ((F.ScaledReg && F.ScaledReg == Reg) ||
- is_contained(F.BaseRegs, Reg)) {
- --NumReqRegsToFind;
- if (NumReqRegsToFind == 0)
- break;
- }
- }
- if (NumReqRegsToFind != 0) {
- // If none of the formulae satisfied the required registers, then we could
- // clear ReqRegs and try again. Currently, we simply give up in this case.
- continue;
- }
-
- // Evaluate the cost of the current formula. If it's already worse than
- // the current best, prune the search at that point.
- NewCost = CurCost;
- NewRegs = CurRegs;
- NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
- if (NewCost.isLess(SolutionCost)) {
- Workspace.push_back(&F);
- if (Workspace.size() != Uses.size()) {
- SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
- NewRegs, VisitedRegs);
- if (F.getNumRegs() == 1 && Workspace.size() == 1)
- VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
- } else {
- LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
- dbgs() << ".\nRegs:\n";
- for (const SCEV *S : NewRegs) dbgs()
- << "- " << *S << "\n";
- dbgs() << '\n');
-
- SolutionCost = NewCost;
- Solution = Workspace;
- }
- Workspace.pop_back();
- }
- }
-}
-
-/// Choose one formula from each use. Return the results in the given Solution
-/// vector.
-void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
- SmallVector<const Formula *, 8> Workspace;
- Cost SolutionCost(L, SE, TTI);
- SolutionCost.Lose();
- Cost CurCost(L, SE, TTI);
- SmallPtrSet<const SCEV *, 16> CurRegs;
- DenseSet<const SCEV *> VisitedRegs;
- Workspace.reserve(Uses.size());
-
- // SolveRecurse does all the work.
- SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
- CurRegs, VisitedRegs);
- if (Solution.empty()) {
- LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
- return;
- }
-
- // Ok, we've now made all our decisions.
- LLVM_DEBUG(dbgs() << "\n"
- "The chosen solution requires ";
- SolutionCost.print(dbgs()); dbgs() << ":\n";
- for (size_t i = 0, e = Uses.size(); i != e; ++i) {
- dbgs() << " ";
- Uses[i].print(dbgs());
- dbgs() << "\n"
- " ";
- Solution[i]->print(dbgs());
- dbgs() << '\n';
- });
-
- assert(Solution.size() == Uses.size() && "Malformed solution!");
-}
-
-/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
-/// we can go while still being dominated by the input positions. This helps
-/// canonicalize the insert position, which encourages sharing.
-BasicBlock::iterator
-LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
- const SmallVectorImpl<Instruction *> &Inputs)
- const {
- Instruction *Tentative = &*IP;
- while (true) {
- bool AllDominate = true;
- Instruction *BetterPos = nullptr;
- // Don't bother attempting to insert before a catchswitch, their basic block
- // cannot have other non-PHI instructions.
- if (isa<CatchSwitchInst>(Tentative))
- return IP;
-
- for (Instruction *Inst : Inputs) {
- if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
- AllDominate = false;
- break;
- }
- // Attempt to find an insert position in the middle of the block,
- // instead of at the end, so that it can be used for other expansions.
- if (Tentative->getParent() == Inst->getParent() &&
- (!BetterPos || !DT.dominates(Inst, BetterPos)))
- BetterPos = &*std::next(BasicBlock::iterator(Inst));
- }
- if (!AllDominate)
- break;
- if (BetterPos)
- IP = BetterPos->getIterator();
- else
- IP = Tentative->getIterator();
-
- const Loop *IPLoop = LI.getLoopFor(IP->getParent());
- unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
-
- BasicBlock *IDom;
- for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
- if (!Rung) return IP;
- Rung = Rung->getIDom();
- if (!Rung) return IP;
- IDom = Rung->getBlock();
-
- // Don't climb into a loop though.
- const Loop *IDomLoop = LI.getLoopFor(IDom);
- unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
- if (IDomDepth <= IPLoopDepth &&
- (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
- break;
- }
-
- Tentative = IDom->getTerminator();
- }
-
- return IP;
-}
-
-/// Determine an input position which will be dominated by the operands and
-/// which will dominate the result.
-BasicBlock::iterator
-LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
- const LSRFixup &LF,
- const LSRUse &LU,
- SCEVExpander &Rewriter) const {
- // Collect some instructions which must be dominated by the
- // expanding replacement. These must be dominated by any operands that
- // will be required in the expansion.
- SmallVector<Instruction *, 4> Inputs;
- if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
- Inputs.push_back(I);
- if (LU.Kind == LSRUse::ICmpZero)
- if (Instruction *I =
- dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
- Inputs.push_back(I);
- if (LF.PostIncLoops.count(L)) {
- if (LF.isUseFullyOutsideLoop(L))
- Inputs.push_back(L->getLoopLatch()->getTerminator());
- else
- Inputs.push_back(IVIncInsertPos);
- }
- // The expansion must also be dominated by the increment positions of any
- // loops it for which it is using post-inc mode.
- for (const Loop *PIL : LF.PostIncLoops) {
- if (PIL == L) continue;
-
- // Be dominated by the loop exit.
- SmallVector<BasicBlock *, 4> ExitingBlocks;
- PIL->getExitingBlocks(ExitingBlocks);
- if (!ExitingBlocks.empty()) {
- BasicBlock *BB = ExitingBlocks[0];
- for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
- BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
- Inputs.push_back(BB->getTerminator());
- }
- }
-
- assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
- && !isa<DbgInfoIntrinsic>(LowestIP) &&
- "Insertion point must be a normal instruction");
-
- // Then, climb up the immediate dominator tree as far as we can go while
- // still being dominated by the input positions.
- BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
-
- // Don't insert instructions before PHI nodes.
- while (isa<PHINode>(IP)) ++IP;
-
- // Ignore landingpad instructions.
- while (IP->isEHPad()) ++IP;
-
- // Ignore debug intrinsics.
- while (isa<DbgInfoIntrinsic>(IP)) ++IP;
-
- // Set IP below instructions recently inserted by SCEVExpander. This keeps the
- // IP consistent across expansions and allows the previously inserted
- // instructions to be reused by subsequent expansion.
- while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
- ++IP;
-
- return IP;
-}
-
-/// Emit instructions for the leading candidate expression for this LSRUse (this
-/// is called "expanding").
-Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
- const Formula &F, BasicBlock::iterator IP,
- SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
- if (LU.RigidFormula)
- return LF.OperandValToReplace;
-
- // Determine an input position which will be dominated by the operands and
- // which will dominate the result.
- IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
- Rewriter.setInsertPoint(&*IP);
-
- // Inform the Rewriter if we have a post-increment use, so that it can
- // perform an advantageous expansion.
- Rewriter.setPostInc(LF.PostIncLoops);
-
- // This is the type that the user actually needs.
- Type *OpTy = LF.OperandValToReplace->getType();
- // This will be the type that we'll initially expand to.
- Type *Ty = F.getType();
- if (!Ty)
- // No type known; just expand directly to the ultimate type.
- Ty = OpTy;
- else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
- // Expand directly to the ultimate type if it's the right size.
- Ty = OpTy;
- // This is the type to do integer arithmetic in.
- Type *IntTy = SE.getEffectiveSCEVType(Ty);
-
- // Build up a list of operands to add together to form the full base.
- SmallVector<const SCEV *, 8> Ops;
-
- // Expand the BaseRegs portion.
- for (const SCEV *Reg : F.BaseRegs) {
- assert(!Reg->isZero() && "Zero allocated in a base register!");
-
- // If we're expanding for a post-inc user, make the post-inc adjustment.
- Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
- Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
- }
-
- // Expand the ScaledReg portion.
- Value *ICmpScaledV = nullptr;
- if (F.Scale != 0) {
- const SCEV *ScaledS = F.ScaledReg;
-
- // If we're expanding for a post-inc user, make the post-inc adjustment.
- PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
- ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
-
- if (LU.Kind == LSRUse::ICmpZero) {
- // Expand ScaleReg as if it was part of the base regs.
- if (F.Scale == 1)
- Ops.push_back(
- SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
- else {
- // An interesting way of "folding" with an icmp is to use a negated
- // scale, which we'll implement by inserting it into the other operand
- // of the icmp.
- assert(F.Scale == -1 &&
- "The only scale supported by ICmpZero uses is -1!");
- ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
- }
- } else {
- // Otherwise just expand the scaled register and an explicit scale,
- // which is expected to be matched as part of the address.
-
- // Flush the operand list to suppress SCEVExpander hoisting address modes.
- // Unless the addressing mode will not be folded.
- if (!Ops.empty() && LU.Kind == LSRUse::Address &&
- isAMCompletelyFolded(TTI, LU, F)) {
- Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
- Ops.clear();
- Ops.push_back(SE.getUnknown(FullV));
- }
- ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
- if (F.Scale != 1)
- ScaledS =
- SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
- Ops.push_back(ScaledS);
- }
- }
-
- // Expand the GV portion.
- if (F.BaseGV) {
- // Flush the operand list to suppress SCEVExpander hoisting.
- if (!Ops.empty()) {
- Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
- Ops.clear();
- Ops.push_back(SE.getUnknown(FullV));
- }
- Ops.push_back(SE.getUnknown(F.BaseGV));
- }
-
- // Flush the operand list to suppress SCEVExpander hoisting of both folded and
- // unfolded offsets. LSR assumes they both live next to their uses.
- if (!Ops.empty()) {
- Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
- Ops.clear();
- Ops.push_back(SE.getUnknown(FullV));
- }
-
- // Expand the immediate portion.
- int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
- if (Offset != 0) {
- if (LU.Kind == LSRUse::ICmpZero) {
- // The other interesting way of "folding" with an ICmpZero is to use a
- // negated immediate.
- if (!ICmpScaledV)
- ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
- else {
- Ops.push_back(SE.getUnknown(ICmpScaledV));
- ICmpScaledV = ConstantInt::get(IntTy, Offset);
- }
- } else {
- // Just add the immediate values. These again are expected to be matched
- // as part of the address.
- Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
- }
- }
-
- // Expand the unfolded offset portion.
- int64_t UnfoldedOffset = F.UnfoldedOffset;
- if (UnfoldedOffset != 0) {
- // Just add the immediate values.
- Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
- UnfoldedOffset)));
- }
-
- // Emit instructions summing all the operands.
- const SCEV *FullS = Ops.empty() ?
- SE.getConstant(IntTy, 0) :
- SE.getAddExpr(Ops);
- Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
-
- // We're done expanding now, so reset the rewriter.
- Rewriter.clearPostInc();
-
- // An ICmpZero Formula represents an ICmp which we're handling as a
- // comparison against zero. Now that we've expanded an expression for that
- // form, update the ICmp's other operand.
- if (LU.Kind == LSRUse::ICmpZero) {
- ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
- DeadInsts.emplace_back(CI->getOperand(1));
- assert(!F.BaseGV && "ICmp does not support folding a global value and "
- "a scale at the same time!");
- if (F.Scale == -1) {
- if (ICmpScaledV->getType() != OpTy) {
- Instruction *Cast =
- CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
- OpTy, false),
- ICmpScaledV, OpTy, "tmp", CI);
- ICmpScaledV = Cast;
- }
- CI->setOperand(1, ICmpScaledV);
- } else {
- // A scale of 1 means that the scale has been expanded as part of the
- // base regs.
- assert((F.Scale == 0 || F.Scale == 1) &&
- "ICmp does not support folding a global value and "
- "a scale at the same time!");
- Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
- -(uint64_t)Offset);
- if (C->getType() != OpTy)
- C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
- OpTy, false),
- C, OpTy);
-
- CI->setOperand(1, C);
- }
- }
-
- return FullV;
-}
-
-/// Helper for Rewrite. PHI nodes are special because the use of their operands
-/// effectively happens in their predecessor blocks, so the expression may need
-/// to be expanded in multiple places.
-void LSRInstance::RewriteForPHI(
- PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
- SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
- DenseMap<BasicBlock *, Value *> Inserted;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
- bool needUpdateFixups = false;
- BasicBlock *BB = PN->getIncomingBlock(i);
-
- // If this is a critical edge, split the edge so that we do not insert
- // the code on all predecessor/successor paths. We do this unless this
- // is the canonical backedge for this loop, which complicates post-inc
- // users.
- if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
- !isa<IndirectBrInst>(BB->getTerminator()) &&
- !isa<CatchSwitchInst>(BB->getTerminator())) {
- BasicBlock *Parent = PN->getParent();
- Loop *PNLoop = LI.getLoopFor(Parent);
- if (!PNLoop || Parent != PNLoop->getHeader()) {
- // Split the critical edge.
- BasicBlock *NewBB = nullptr;
- if (!Parent->isLandingPad()) {
- NewBB = SplitCriticalEdge(BB, Parent,
- CriticalEdgeSplittingOptions(&DT, &LI)
- .setMergeIdenticalEdges()
- .setKeepOneInputPHIs());
- } else {
- SmallVector<BasicBlock*, 2> NewBBs;
- SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
- NewBB = NewBBs[0];
- }
- // If NewBB==NULL, then SplitCriticalEdge refused to split because all
- // phi predecessors are identical. The simple thing to do is skip
- // splitting in this case rather than complicate the API.
- if (NewBB) {
- // If PN is outside of the loop and BB is in the loop, we want to
- // move the block to be immediately before the PHI block, not
- // immediately after BB.
- if (L->contains(BB) && !L->contains(PN))
- NewBB->moveBefore(PN->getParent());
-
- // Splitting the edge can reduce the number of PHI entries we have.
- e = PN->getNumIncomingValues();
- BB = NewBB;
- i = PN->getBasicBlockIndex(BB);
-
- needUpdateFixups = true;
- }
- }
- }
-
- std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
- Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
- if (!Pair.second)
- PN->setIncomingValue(i, Pair.first->second);
- else {
- Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
- Rewriter, DeadInsts);
-
- // If this is reuse-by-noop-cast, insert the noop cast.
- Type *OpTy = LF.OperandValToReplace->getType();
- if (FullV->getType() != OpTy)
- FullV =
- CastInst::Create(CastInst::getCastOpcode(FullV, false,
- OpTy, false),
- FullV, LF.OperandValToReplace->getType(),
- "tmp", BB->getTerminator());
-
- PN->setIncomingValue(i, FullV);
- Pair.first->second = FullV;
- }
-
- // If LSR splits critical edge and phi node has other pending
- // fixup operands, we need to update those pending fixups. Otherwise
- // formulae will not be implemented completely and some instructions
- // will not be eliminated.
- if (needUpdateFixups) {
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
- for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
- // If fixup is supposed to rewrite some operand in the phi
- // that was just updated, it may be already moved to
- // another phi node. Such fixup requires update.
- if (Fixup.UserInst == PN) {
- // Check if the operand we try to replace still exists in the
- // original phi.
- bool foundInOriginalPHI = false;
- for (const auto &val : PN->incoming_values())
- if (val == Fixup.OperandValToReplace) {
- foundInOriginalPHI = true;
- break;
- }
-
- // If fixup operand found in original PHI - nothing to do.
- if (foundInOriginalPHI)
- continue;
-
- // Otherwise it might be moved to another PHI and requires update.
- // If fixup operand not found in any of the incoming blocks that
- // means we have already rewritten it - nothing to do.
- for (const auto &Block : PN->blocks())
- for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
- ++I) {
- PHINode *NewPN = cast<PHINode>(I);
- for (const auto &val : NewPN->incoming_values())
- if (val == Fixup.OperandValToReplace)
- Fixup.UserInst = NewPN;
- }
- }
- }
- }
-}
-
-/// Emit instructions for the leading candidate expression for this LSRUse (this
-/// is called "expanding"), and update the UserInst to reference the newly
-/// expanded value.
-void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
- const Formula &F, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
- // First, find an insertion point that dominates UserInst. For PHI nodes,
- // find the nearest block which dominates all the relevant uses.
- if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
- RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
- } else {
- Value *FullV =
- Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
-
- // If this is reuse-by-noop-cast, insert the noop cast.
- Type *OpTy = LF.OperandValToReplace->getType();
- if (FullV->getType() != OpTy) {
- Instruction *Cast =
- CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
- FullV, OpTy, "tmp", LF.UserInst);
- FullV = Cast;
- }
-
- // Update the user. ICmpZero is handled specially here (for now) because
- // Expand may have updated one of the operands of the icmp already, and
- // its new value may happen to be equal to LF.OperandValToReplace, in
- // which case doing replaceUsesOfWith leads to replacing both operands
- // with the same value. TODO: Reorganize this.
- if (LU.Kind == LSRUse::ICmpZero)
- LF.UserInst->setOperand(0, FullV);
- else
- LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
- }
-
- DeadInsts.emplace_back(LF.OperandValToReplace);
-}
-
-/// Rewrite all the fixup locations with new values, following the chosen
-/// solution.
-void LSRInstance::ImplementSolution(
- const SmallVectorImpl<const Formula *> &Solution) {
- // Keep track of instructions we may have made dead, so that
- // we can remove them after we are done working.
- SmallVector<WeakTrackingVH, 16> DeadInsts;
-
- SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
- "lsr");
-#ifndef NDEBUG
- Rewriter.setDebugType(DEBUG_TYPE);
-#endif
- Rewriter.disableCanonicalMode();
- Rewriter.enableLSRMode();
- Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
-
- // Mark phi nodes that terminate chains so the expander tries to reuse them.
- for (const IVChain &Chain : IVChainVec) {
- if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
- Rewriter.setChainedPhi(PN);
- }
-
- // Expand the new value definitions and update the users.
- for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
- for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
- Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
- Changed = true;
- }
-
- for (const IVChain &Chain : IVChainVec) {
- GenerateIVChain(Chain, Rewriter, DeadInsts);
- Changed = true;
- }
- // Clean up after ourselves. This must be done before deleting any
- // instructions.
- Rewriter.clear();
-
- Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
-}
-
-LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
- DominatorTree &DT, LoopInfo &LI,
- const TargetTransformInfo &TTI, AssumptionCache &AC,
- TargetLibraryInfo &LibInfo)
- : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L),
- FavorBackedgeIndex(EnableBackedgeIndexing &&
- TTI.shouldFavorBackedgeIndex(L)) {
- // If LoopSimplify form is not available, stay out of trouble.
- if (!L->isLoopSimplifyForm())
- return;
-
- // If there's no interesting work to be done, bail early.
- if (IU.empty()) return;
-
- // If there's too much analysis to be done, bail early. We won't be able to
- // model the problem anyway.
- unsigned NumUsers = 0;
- for (const IVStrideUse &U : IU) {
- if (++NumUsers > MaxIVUsers) {
- (void)U;
- LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
- << "\n");
- return;
- }
- // Bail out if we have a PHI on an EHPad that gets a value from a
- // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
- // no good place to stick any instructions.
- if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
- auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
- if (isa<FuncletPadInst>(FirstNonPHI) ||
- isa<CatchSwitchInst>(FirstNonPHI))
- for (BasicBlock *PredBB : PN->blocks())
- if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
- return;
- }
- }
-
-#ifndef NDEBUG
- // All dominating loops must have preheaders, or SCEVExpander may not be able
- // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
- //
- // IVUsers analysis should only create users that are dominated by simple loop
- // headers. Since this loop should dominate all of its users, its user list
- // should be empty if this loop itself is not within a simple loop nest.
- for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
- Rung; Rung = Rung->getIDom()) {
- BasicBlock *BB = Rung->getBlock();
- const Loop *DomLoop = LI.getLoopFor(BB);
- if (DomLoop && DomLoop->getHeader() == BB) {
- assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
- }
- }
-#endif // DEBUG
-
- LLVM_DEBUG(dbgs() << "\nLSR on loop ";
- L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
- dbgs() << ":\n");
-
- // First, perform some low-level loop optimizations.
- OptimizeShadowIV();
- OptimizeLoopTermCond();
-
- // If loop preparation eliminates all interesting IV users, bail.
- if (IU.empty()) return;
-
- // Skip nested loops until we can model them better with formulae.
- if (!L->empty()) {
- LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
- return;
- }
-
- // Start collecting data and preparing for the solver.
- CollectChains();
- CollectInterestingTypesAndFactors();
- CollectFixupsAndInitialFormulae();
- CollectLoopInvariantFixupsAndFormulae();
-
- if (Uses.empty())
- return;
-
- LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
- print_uses(dbgs()));
-
- // Now use the reuse data to generate a bunch of interesting ways
- // to formulate the values needed for the uses.
- GenerateAllReuseFormulae();
-
- FilterOutUndesirableDedicatedRegisters();
- NarrowSearchSpaceUsingHeuristics();
-
- SmallVector<const Formula *, 8> Solution;
- Solve(Solution);
-
- // Release memory that is no longer needed.
- Factors.clear();
- Types.clear();
- RegUses.clear();
-
- if (Solution.empty())
- return;
-
-#ifndef NDEBUG
- // Formulae should be legal.
- for (const LSRUse &LU : Uses) {
- for (const Formula &F : LU.Formulae)
- assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
- F) && "Illegal formula generated!");
- };
-#endif
-
- // Now that we've decided what we want, make it so.
- ImplementSolution(Solution);
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
- if (Factors.empty() && Types.empty()) return;
-
- OS << "LSR has identified the following interesting factors and types: ";
- bool First = true;
-
- for (int64_t Factor : Factors) {
- if (!First) OS << ", ";
- First = false;
- OS << '*' << Factor;
- }
-
- for (Type *Ty : Types) {
- if (!First) OS << ", ";
- First = false;
- OS << '(' << *Ty << ')';
- }
- OS << '\n';
-}
-
-void LSRInstance::print_fixups(raw_ostream &OS) const {
- OS << "LSR is examining the following fixup sites:\n";
- for (const LSRUse &LU : Uses)
- for (const LSRFixup &LF : LU.Fixups) {
- dbgs() << " ";
- LF.print(OS);
- OS << '\n';
- }
-}
-
-void LSRInstance::print_uses(raw_ostream &OS) const {
- OS << "LSR is examining the following uses:\n";
- for (const LSRUse &LU : Uses) {
- dbgs() << " ";
- LU.print(OS);
- OS << '\n';
- for (const Formula &F : LU.Formulae) {
- OS << " ";
- F.print(OS);
- OS << '\n';
- }
- }
-}
-
-void LSRInstance::print(raw_ostream &OS) const {
- print_factors_and_types(OS);
- print_fixups(OS);
- print_uses(OS);
-}
-
-LLVM_DUMP_METHOD void LSRInstance::dump() const {
- print(errs()); errs() << '\n';
-}
-#endif
-
-namespace {
-
-class LoopStrengthReduce : public LoopPass {
-public:
- static char ID; // Pass ID, replacement for typeid
-
- LoopStrengthReduce();
-
-private:
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
-};
-
-} // end anonymous namespace
-
-LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
- initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
-}
-
-void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
- // We split critical edges, so we change the CFG. However, we do update
- // many analyses if they are around.
- AU.addPreservedID(LoopSimplifyID);
-
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addPreserved<ScalarEvolutionWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- // Requiring LoopSimplify a second time here prevents IVUsers from running
- // twice, since LoopSimplify was invalidated by running ScalarEvolution.
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<IVUsersWrapperPass>();
- AU.addPreserved<IVUsersWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
-}
-
-static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
- DominatorTree &DT, LoopInfo &LI,
- const TargetTransformInfo &TTI,
- AssumptionCache &AC,
- TargetLibraryInfo &LibInfo) {
-
- bool Changed = false;
-
- // Run the main LSR transformation.
- Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged();
-
- // Remove any extra phis created by processing inner loops.
- Changed |= DeleteDeadPHIs(L->getHeader());
- if (EnablePhiElim && L->isLoopSimplifyForm()) {
- SmallVector<WeakTrackingVH, 16> DeadInsts;
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- SCEVExpander Rewriter(SE, DL, "lsr");
-#ifndef NDEBUG
- Rewriter.setDebugType(DEBUG_TYPE);
-#endif
- unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
- if (numFolded) {
- Changed = true;
- DeleteTriviallyDeadInstructions(DeadInsts);
- DeleteDeadPHIs(L->getHeader());
- }
- }
- return Changed;
-}
-
-bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
- if (skipLoop(L))
- return false;
-
- auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
- auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *L->getHeader()->getParent());
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
- *L->getHeader()->getParent());
- auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo);
-}
-
-PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &) {
- if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
- AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI))
- return PreservedAnalyses::all();
-
- return getLoopPassPreservedAnalyses();
-}
-
-char LoopStrengthReduce::ID = 0;
-
-INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
- "Loop Strength Reduction", false, false)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
-INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
- "Loop Strength Reduction", false, false)
-
-Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }