summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp1671
1 files changed, 0 insertions, 1671 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
deleted file mode 100644
index b5b8e720069c..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
+++ /dev/null
@@ -1,1671 +0,0 @@
-//===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass transforms loops that contain branches on loop-invariant conditions
-// to multiple loops. For example, it turns the left into the right code:
-//
-// for (...) if (lic)
-// A for (...)
-// if (lic) A; B; C
-// B else
-// C for (...)
-// A; C
-//
-// This can increase the size of the code exponentially (doubling it every time
-// a loop is unswitched) so we only unswitch if the resultant code will be
-// smaller than a threshold.
-//
-// This pass expects LICM to be run before it to hoist invariant conditions out
-// of the loop, to make the unswitching opportunity obvious.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/CodeMetrics.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopIterator.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/MemorySSA.h"
-#include "llvm/Analysis/MemorySSAUpdater.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Scalar/LoopPassManager.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include "llvm/Transforms/Utils/ValueMapper.h"
-#include <algorithm>
-#include <cassert>
-#include <map>
-#include <set>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "loop-unswitch"
-
-STATISTIC(NumBranches, "Number of branches unswitched");
-STATISTIC(NumSwitches, "Number of switches unswitched");
-STATISTIC(NumGuards, "Number of guards unswitched");
-STATISTIC(NumSelects , "Number of selects unswitched");
-STATISTIC(NumTrivial , "Number of unswitches that are trivial");
-STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
-STATISTIC(TotalInsts, "Total number of instructions analyzed");
-
-// The specific value of 100 here was chosen based only on intuition and a
-// few specific examples.
-static cl::opt<unsigned>
-Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
- cl::init(100), cl::Hidden);
-
-namespace {
-
- class LUAnalysisCache {
- using UnswitchedValsMap =
- DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
- using UnswitchedValsIt = UnswitchedValsMap::iterator;
-
- struct LoopProperties {
- unsigned CanBeUnswitchedCount;
- unsigned WasUnswitchedCount;
- unsigned SizeEstimation;
- UnswitchedValsMap UnswitchedVals;
- };
-
- // Here we use std::map instead of DenseMap, since we need to keep valid
- // LoopProperties pointer for current loop for better performance.
- using LoopPropsMap = std::map<const Loop *, LoopProperties>;
- using LoopPropsMapIt = LoopPropsMap::iterator;
-
- LoopPropsMap LoopsProperties;
- UnswitchedValsMap *CurLoopInstructions = nullptr;
- LoopProperties *CurrentLoopProperties = nullptr;
-
- // A loop unswitching with an estimated cost above this threshold
- // is not performed. MaxSize is turned into unswitching quota for
- // the current loop, and reduced correspondingly, though note that
- // the quota is returned by releaseMemory() when the loop has been
- // processed, so that MaxSize will return to its previous
- // value. So in most cases MaxSize will equal the Threshold flag
- // when a new loop is processed. An exception to that is that
- // MaxSize will have a smaller value while processing nested loops
- // that were introduced due to loop unswitching of an outer loop.
- //
- // FIXME: The way that MaxSize works is subtle and depends on the
- // pass manager processing loops and calling releaseMemory() in a
- // specific order. It would be good to find a more straightforward
- // way of doing what MaxSize does.
- unsigned MaxSize;
-
- public:
- LUAnalysisCache() : MaxSize(Threshold) {}
-
- // Analyze loop. Check its size, calculate is it possible to unswitch
- // it. Returns true if we can unswitch this loop.
- bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
- AssumptionCache *AC);
-
- // Clean all data related to given loop.
- void forgetLoop(const Loop *L);
-
- // Mark case value as unswitched.
- // Since SI instruction can be partly unswitched, in order to avoid
- // extra unswitching in cloned loops keep track all unswitched values.
- void setUnswitched(const SwitchInst *SI, const Value *V);
-
- // Check was this case value unswitched before or not.
- bool isUnswitched(const SwitchInst *SI, const Value *V);
-
- // Returns true if another unswitching could be done within the cost
- // threshold.
- bool CostAllowsUnswitching();
-
- // Clone all loop-unswitch related loop properties.
- // Redistribute unswitching quotas.
- // Note, that new loop data is stored inside the VMap.
- void cloneData(const Loop *NewLoop, const Loop *OldLoop,
- const ValueToValueMapTy &VMap);
- };
-
- class LoopUnswitch : public LoopPass {
- LoopInfo *LI; // Loop information
- LPPassManager *LPM;
- AssumptionCache *AC;
-
- // Used to check if second loop needs processing after
- // RewriteLoopBodyWithConditionConstant rewrites first loop.
- std::vector<Loop*> LoopProcessWorklist;
-
- LUAnalysisCache BranchesInfo;
-
- bool OptimizeForSize;
- bool redoLoop = false;
-
- Loop *currentLoop = nullptr;
- DominatorTree *DT = nullptr;
- MemorySSA *MSSA = nullptr;
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- BasicBlock *loopHeader = nullptr;
- BasicBlock *loopPreheader = nullptr;
-
- bool SanitizeMemory;
- SimpleLoopSafetyInfo SafetyInfo;
-
- // LoopBlocks contains all of the basic blocks of the loop, including the
- // preheader of the loop, the body of the loop, and the exit blocks of the
- // loop, in that order.
- std::vector<BasicBlock*> LoopBlocks;
- // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
- std::vector<BasicBlock*> NewBlocks;
-
- bool hasBranchDivergence;
-
- public:
- static char ID; // Pass ID, replacement for typeid
-
- explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
- : LoopPass(ID), OptimizeForSize(Os),
- hasBranchDivergence(hasBranchDivergence) {
- initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- bool processCurrentLoop();
- bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
-
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG.
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- if (EnableMSSALoopDependency) {
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- if (hasBranchDivergence)
- AU.addRequired<LegacyDivergenceAnalysis>();
- getLoopAnalysisUsage(AU);
- }
-
- private:
- void releaseMemory() override {
- BranchesInfo.forgetLoop(currentLoop);
- }
-
- void initLoopData() {
- loopHeader = currentLoop->getHeader();
- loopPreheader = currentLoop->getLoopPreheader();
- }
-
- /// Split all of the edges from inside the loop to their exit blocks.
- /// Update the appropriate Phi nodes as we do so.
- void SplitExitEdges(Loop *L,
- const SmallVectorImpl<BasicBlock *> &ExitBlocks);
-
- bool TryTrivialLoopUnswitch(bool &Changed);
-
- bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
- Instruction *TI = nullptr);
- void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
- BasicBlock *ExitBlock, Instruction *TI);
- void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
- Instruction *TI);
-
- void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
- Constant *Val, bool isEqual);
-
- void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
- BasicBlock *TrueDest,
- BasicBlock *FalseDest,
- BranchInst *OldBranch, Instruction *TI);
-
- void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
-
- /// Given that the Invariant is not equal to Val. Simplify instructions
- /// in the loop.
- Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
- Constant *Val);
- };
-
-} // end anonymous namespace
-
-// Analyze loop. Check its size, calculate is it possible to unswitch
-// it. Returns true if we can unswitch this loop.
-bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
- AssumptionCache *AC) {
- LoopPropsMapIt PropsIt;
- bool Inserted;
- std::tie(PropsIt, Inserted) =
- LoopsProperties.insert(std::make_pair(L, LoopProperties()));
-
- LoopProperties &Props = PropsIt->second;
-
- if (Inserted) {
- // New loop.
-
- // Limit the number of instructions to avoid causing significant code
- // expansion, and the number of basic blocks, to avoid loops with
- // large numbers of branches which cause loop unswitching to go crazy.
- // This is a very ad-hoc heuristic.
-
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(L, AC, EphValues);
-
- // FIXME: This is overly conservative because it does not take into
- // consideration code simplification opportunities and code that can
- // be shared by the resultant unswitched loops.
- CodeMetrics Metrics;
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
- ++I)
- Metrics.analyzeBasicBlock(*I, TTI, EphValues);
-
- Props.SizeEstimation = Metrics.NumInsts;
- Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
- Props.WasUnswitchedCount = 0;
- MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
-
- if (Metrics.notDuplicatable) {
- LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
- << ", contents cannot be "
- << "duplicated!\n");
- return false;
- }
- }
-
- // Be careful. This links are good only before new loop addition.
- CurrentLoopProperties = &Props;
- CurLoopInstructions = &Props.UnswitchedVals;
-
- return true;
-}
-
-// Clean all data related to given loop.
-void LUAnalysisCache::forgetLoop(const Loop *L) {
- LoopPropsMapIt LIt = LoopsProperties.find(L);
-
- if (LIt != LoopsProperties.end()) {
- LoopProperties &Props = LIt->second;
- MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
- Props.SizeEstimation;
- LoopsProperties.erase(LIt);
- }
-
- CurrentLoopProperties = nullptr;
- CurLoopInstructions = nullptr;
-}
-
-// Mark case value as unswitched.
-// Since SI instruction can be partly unswitched, in order to avoid
-// extra unswitching in cloned loops keep track all unswitched values.
-void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
- (*CurLoopInstructions)[SI].insert(V);
-}
-
-// Check was this case value unswitched before or not.
-bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
- return (*CurLoopInstructions)[SI].count(V);
-}
-
-bool LUAnalysisCache::CostAllowsUnswitching() {
- return CurrentLoopProperties->CanBeUnswitchedCount > 0;
-}
-
-// Clone all loop-unswitch related loop properties.
-// Redistribute unswitching quotas.
-// Note, that new loop data is stored inside the VMap.
-void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
- const ValueToValueMapTy &VMap) {
- LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
- LoopProperties &OldLoopProps = *CurrentLoopProperties;
- UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
-
- // Reallocate "can-be-unswitched quota"
-
- --OldLoopProps.CanBeUnswitchedCount;
- ++OldLoopProps.WasUnswitchedCount;
- NewLoopProps.WasUnswitchedCount = 0;
- unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
- NewLoopProps.CanBeUnswitchedCount = Quota / 2;
- OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
-
- NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
-
- // Clone unswitched values info:
- // for new loop switches we clone info about values that was
- // already unswitched and has redundant successors.
- for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
- const SwitchInst *OldInst = I->first;
- Value *NewI = VMap.lookup(OldInst);
- const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
- assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
-
- NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
- }
-}
-
-char LoopUnswitch::ID = 0;
-
-INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
- false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
-INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
-INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
- false, false)
-
-Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
- return new LoopUnswitch(Os, hasBranchDivergence);
-}
-
-/// Operator chain lattice.
-enum OperatorChain {
- OC_OpChainNone, ///< There is no operator.
- OC_OpChainOr, ///< There are only ORs.
- OC_OpChainAnd, ///< There are only ANDs.
- OC_OpChainMixed ///< There are ANDs and ORs.
-};
-
-/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
-/// an invariant piece, return the invariant. Otherwise, return null.
-//
-/// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
-/// mixed operator chain, as we can not reliably find a value which will simplify
-/// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
-/// to simplify the chain.
-///
-/// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
-/// simplify the condition itself to a loop variant condition, but at the
-/// cost of creating an entirely new loop.
-static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
- OperatorChain &ParentChain,
- DenseMap<Value *, Value *> &Cache) {
- auto CacheIt = Cache.find(Cond);
- if (CacheIt != Cache.end())
- return CacheIt->second;
-
- // We started analyze new instruction, increment scanned instructions counter.
- ++TotalInsts;
-
- // We can never unswitch on vector conditions.
- if (Cond->getType()->isVectorTy())
- return nullptr;
-
- // Constants should be folded, not unswitched on!
- if (isa<Constant>(Cond)) return nullptr;
-
- // TODO: Handle: br (VARIANT|INVARIANT).
-
- // Hoist simple values out.
- if (L->makeLoopInvariant(Cond, Changed)) {
- Cache[Cond] = Cond;
- return Cond;
- }
-
- // Walk up the operator chain to find partial invariant conditions.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
- if (BO->getOpcode() == Instruction::And ||
- BO->getOpcode() == Instruction::Or) {
- // Given the previous operator, compute the current operator chain status.
- OperatorChain NewChain;
- switch (ParentChain) {
- case OC_OpChainNone:
- NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
- OC_OpChainOr;
- break;
- case OC_OpChainOr:
- NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
- OC_OpChainMixed;
- break;
- case OC_OpChainAnd:
- NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
- OC_OpChainMixed;
- break;
- case OC_OpChainMixed:
- NewChain = OC_OpChainMixed;
- break;
- }
-
- // If we reach a Mixed state, we do not want to keep walking up as we can not
- // reliably find a value that will simplify the chain. With this check, we
- // will return null on the first sight of mixed chain and the caller will
- // either backtrack to find partial LIV in other operand or return null.
- if (NewChain != OC_OpChainMixed) {
- // Update the current operator chain type before we search up the chain.
- ParentChain = NewChain;
- // If either the left or right side is invariant, we can unswitch on this,
- // which will cause the branch to go away in one loop and the condition to
- // simplify in the other one.
- if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
- ParentChain, Cache)) {
- Cache[Cond] = LHS;
- return LHS;
- }
- // We did not manage to find a partial LIV in operand(0). Backtrack and try
- // operand(1).
- ParentChain = NewChain;
- if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
- ParentChain, Cache)) {
- Cache[Cond] = RHS;
- return RHS;
- }
- }
- }
-
- Cache[Cond] = nullptr;
- return nullptr;
-}
-
-/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
-/// an invariant piece, return the invariant along with the operator chain type.
-/// Otherwise, return null.
-static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
- Loop *L,
- bool &Changed) {
- DenseMap<Value *, Value *> Cache;
- OperatorChain OpChain = OC_OpChainNone;
- Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
-
- // In case we do find a LIV, it can not be obtained by walking up a mixed
- // operator chain.
- assert((!FCond || OpChain != OC_OpChainMixed) &&
- "Do not expect a partial LIV with mixed operator chain");
- return {FCond, OpChain};
-}
-
-bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
- if (skipLoop(L))
- return false;
-
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
- *L->getHeader()->getParent());
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- LPM = &LPM_Ref;
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- if (EnableMSSALoopDependency) {
- MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
- MSSAU = make_unique<MemorySSAUpdater>(MSSA);
- assert(DT && "Cannot update MemorySSA without a valid DomTree.");
- }
- currentLoop = L;
- Function *F = currentLoop->getHeader()->getParent();
-
- SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
- if (SanitizeMemory)
- SafetyInfo.computeLoopSafetyInfo(L);
-
- if (MSSA && VerifyMemorySSA)
- MSSA->verifyMemorySSA();
-
- bool Changed = false;
- do {
- assert(currentLoop->isLCSSAForm(*DT));
- if (MSSA && VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- redoLoop = false;
- Changed |= processCurrentLoop();
- } while(redoLoop);
-
- if (MSSA && VerifyMemorySSA)
- MSSA->verifyMemorySSA();
-
- return Changed;
-}
-
-// Return true if the BasicBlock BB is unreachable from the loop header.
-// Return false, otherwise.
-bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
- auto *Node = DT->getNode(BB)->getIDom();
- BasicBlock *DomBB = Node->getBlock();
- while (currentLoop->contains(DomBB)) {
- BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
-
- Node = DT->getNode(DomBB)->getIDom();
- DomBB = Node->getBlock();
-
- if (!BInst || !BInst->isConditional())
- continue;
-
- Value *Cond = BInst->getCondition();
- if (!isa<ConstantInt>(Cond))
- continue;
-
- BasicBlock *UnreachableSucc =
- Cond == ConstantInt::getTrue(Cond->getContext())
- ? BInst->getSuccessor(1)
- : BInst->getSuccessor(0);
-
- if (DT->dominates(UnreachableSucc, BB))
- return true;
- }
- return false;
-}
-
-/// FIXME: Remove this workaround when freeze related patches are done.
-/// LoopUnswitch and Equality propagation in GVN have discrepancy about
-/// whether branch on undef/poison has undefine behavior. Here it is to
-/// rule out some common cases that we found such discrepancy already
-/// causing problems. Detail could be found in PR31652. Note if the
-/// func returns true, it is unsafe. But if it is false, it doesn't mean
-/// it is necessarily safe.
-static bool EqualityPropUnSafe(Value &LoopCond) {
- ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
- if (!CI || !CI->isEquality())
- return false;
-
- Value *LHS = CI->getOperand(0);
- Value *RHS = CI->getOperand(1);
- if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
- return true;
-
- auto hasUndefInPHI = [](PHINode &PN) {
- for (Value *Opd : PN.incoming_values()) {
- if (isa<UndefValue>(Opd))
- return true;
- }
- return false;
- };
- PHINode *LPHI = dyn_cast<PHINode>(LHS);
- PHINode *RPHI = dyn_cast<PHINode>(RHS);
- if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
- return true;
-
- auto hasUndefInSelect = [](SelectInst &SI) {
- if (isa<UndefValue>(SI.getTrueValue()) ||
- isa<UndefValue>(SI.getFalseValue()))
- return true;
- return false;
- };
- SelectInst *LSI = dyn_cast<SelectInst>(LHS);
- SelectInst *RSI = dyn_cast<SelectInst>(RHS);
- if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
- return true;
- return false;
-}
-
-/// Do actual work and unswitch loop if possible and profitable.
-bool LoopUnswitch::processCurrentLoop() {
- bool Changed = false;
-
- initLoopData();
-
- // If LoopSimplify was unable to form a preheader, don't do any unswitching.
- if (!loopPreheader)
- return false;
-
- // Loops with indirectbr cannot be cloned.
- if (!currentLoop->isSafeToClone())
- return false;
-
- // Without dedicated exits, splitting the exit edge may fail.
- if (!currentLoop->hasDedicatedExits())
- return false;
-
- LLVMContext &Context = loopHeader->getContext();
-
- // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
- if (!BranchesInfo.countLoop(
- currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *currentLoop->getHeader()->getParent()),
- AC))
- return false;
-
- // Try trivial unswitch first before loop over other basic blocks in the loop.
- if (TryTrivialLoopUnswitch(Changed)) {
- return true;
- }
-
- // Do not do non-trivial unswitch while optimizing for size.
- // FIXME: Use Function::hasOptSize().
- if (OptimizeForSize ||
- loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
- return false;
-
- // Run through the instructions in the loop, keeping track of three things:
- //
- // - That we do not unswitch loops containing convergent operations, as we
- // might be making them control dependent on the unswitch value when they
- // were not before.
- // FIXME: This could be refined to only bail if the convergent operation is
- // not already control-dependent on the unswitch value.
- //
- // - That basic blocks in the loop contain invokes whose predecessor edges we
- // cannot split.
- //
- // - The set of guard intrinsics encountered (these are non terminator
- // instructions that are also profitable to be unswitched).
-
- SmallVector<IntrinsicInst *, 4> Guards;
-
- for (const auto BB : currentLoop->blocks()) {
- for (auto &I : *BB) {
- auto CS = CallSite(&I);
- if (!CS) continue;
- if (CS.hasFnAttr(Attribute::Convergent))
- return false;
- if (auto *II = dyn_cast<InvokeInst>(&I))
- if (!II->getUnwindDest()->canSplitPredecessors())
- return false;
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if (II->getIntrinsicID() == Intrinsic::experimental_guard)
- Guards.push_back(II);
- }
- }
-
- for (IntrinsicInst *Guard : Guards) {
- Value *LoopCond =
- FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
- if (LoopCond &&
- UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
- // NB! Unswitching (if successful) could have erased some of the
- // instructions in Guards leaving dangling pointers there. This is fine
- // because we're returning now, and won't look at Guards again.
- ++NumGuards;
- return true;
- }
- }
-
- // Loop over all of the basic blocks in the loop. If we find an interior
- // block that is branching on a loop-invariant condition, we can unswitch this
- // loop.
- for (Loop::block_iterator I = currentLoop->block_begin(),
- E = currentLoop->block_end(); I != E; ++I) {
- Instruction *TI = (*I)->getTerminator();
-
- // Unswitching on a potentially uninitialized predicate is not
- // MSan-friendly. Limit this to the cases when the original predicate is
- // guaranteed to execute, to avoid creating a use-of-uninitialized-value
- // in the code that did not have one.
- // This is a workaround for the discrepancy between LLVM IR and MSan
- // semantics. See PR28054 for more details.
- if (SanitizeMemory &&
- !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop))
- continue;
-
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- // Some branches may be rendered unreachable because of previous
- // unswitching.
- // Unswitch only those branches that are reachable.
- if (isUnreachableDueToPreviousUnswitching(*I))
- continue;
-
- // If this isn't branching on an invariant condition, we can't unswitch
- // it.
- if (BI->isConditional()) {
- // See if this, or some part of it, is loop invariant. If so, we can
- // unswitch on it if we desire.
- Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
- currentLoop, Changed).first;
- if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
- UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
- ++NumBranches;
- return true;
- }
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- Value *SC = SI->getCondition();
- Value *LoopCond;
- OperatorChain OpChain;
- std::tie(LoopCond, OpChain) =
- FindLIVLoopCondition(SC, currentLoop, Changed);
-
- unsigned NumCases = SI->getNumCases();
- if (LoopCond && NumCases) {
- // Find a value to unswitch on:
- // FIXME: this should chose the most expensive case!
- // FIXME: scan for a case with a non-critical edge?
- Constant *UnswitchVal = nullptr;
- // Find a case value such that at least one case value is unswitched
- // out.
- if (OpChain == OC_OpChainAnd) {
- // If the chain only has ANDs and the switch has a case value of 0.
- // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
- auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
- if (BranchesInfo.isUnswitched(SI, AllZero))
- continue;
- // We are unswitching 0 out.
- UnswitchVal = AllZero;
- } else if (OpChain == OC_OpChainOr) {
- // If the chain only has ORs and the switch has a case value of ~0.
- // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
- auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
- if (BranchesInfo.isUnswitched(SI, AllOne))
- continue;
- // We are unswitching ~0 out.
- UnswitchVal = AllOne;
- } else {
- assert(OpChain == OC_OpChainNone &&
- "Expect to unswitch on trivial chain");
- // Do not process same value again and again.
- // At this point we have some cases already unswitched and
- // some not yet unswitched. Let's find the first not yet unswitched one.
- for (auto Case : SI->cases()) {
- Constant *UnswitchValCandidate = Case.getCaseValue();
- if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
- UnswitchVal = UnswitchValCandidate;
- break;
- }
- }
- }
-
- if (!UnswitchVal)
- continue;
-
- if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
- ++NumSwitches;
- // In case of a full LIV, UnswitchVal is the value we unswitched out.
- // In case of a partial LIV, we only unswitch when its an AND-chain
- // or OR-chain. In both cases switch input value simplifies to
- // UnswitchVal.
- BranchesInfo.setUnswitched(SI, UnswitchVal);
- return true;
- }
- }
- }
-
- // Scan the instructions to check for unswitchable values.
- for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
- BBI != E; ++BBI)
- if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
- Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
- currentLoop, Changed).first;
- if (LoopCond && UnswitchIfProfitable(LoopCond,
- ConstantInt::getTrue(Context))) {
- ++NumSelects;
- return true;
- }
- }
- }
- return Changed;
-}
-
-/// Check to see if all paths from BB exit the loop with no side effects
-/// (including infinite loops).
-///
-/// If true, we return true and set ExitBB to the block we
-/// exit through.
-///
-static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
- BasicBlock *&ExitBB,
- std::set<BasicBlock*> &Visited) {
- if (!Visited.insert(BB).second) {
- // Already visited. Without more analysis, this could indicate an infinite
- // loop.
- return false;
- }
- if (!L->contains(BB)) {
- // Otherwise, this is a loop exit, this is fine so long as this is the
- // first exit.
- if (ExitBB) return false;
- ExitBB = BB;
- return true;
- }
-
- // Otherwise, this is an unvisited intra-loop node. Check all successors.
- for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
- // Check to see if the successor is a trivial loop exit.
- if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
- return false;
- }
-
- // Okay, everything after this looks good, check to make sure that this block
- // doesn't include any side effects.
- for (Instruction &I : *BB)
- if (I.mayHaveSideEffects())
- return false;
-
- return true;
-}
-
-/// Return true if the specified block unconditionally leads to an exit from
-/// the specified loop, and has no side-effects in the process. If so, return
-/// the block that is exited to, otherwise return null.
-static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
- std::set<BasicBlock*> Visited;
- Visited.insert(L->getHeader()); // Branches to header make infinite loops.
- BasicBlock *ExitBB = nullptr;
- if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
- return ExitBB;
- return nullptr;
-}
-
-/// We have found that we can unswitch currentLoop when LoopCond == Val to
-/// simplify the loop. If we decide that this is profitable,
-/// unswitch the loop, reprocess the pieces, then return true.
-bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
- Instruction *TI) {
- // Check to see if it would be profitable to unswitch current loop.
- if (!BranchesInfo.CostAllowsUnswitching()) {
- LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
- << currentLoop->getHeader()->getName()
- << " at non-trivial condition '" << *Val
- << "' == " << *LoopCond << "\n"
- << ". Cost too high.\n");
- return false;
- }
- if (hasBranchDivergence &&
- getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
- LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
- << currentLoop->getHeader()->getName()
- << " at non-trivial condition '" << *Val
- << "' == " << *LoopCond << "\n"
- << ". Condition is divergent.\n");
- return false;
- }
-
- UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
- return true;
-}
-
-/// Recursively clone the specified loop and all of its children,
-/// mapping the blocks with the specified map.
-static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
- LoopInfo *LI, LPPassManager *LPM) {
- Loop &New = *LI->AllocateLoop();
- if (PL)
- PL->addChildLoop(&New);
- else
- LI->addTopLevelLoop(&New);
- LPM->addLoop(New);
-
- // Add all of the blocks in L to the new loop.
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
- I != E; ++I)
- if (LI->getLoopFor(*I) == L)
- New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
-
- // Add all of the subloops to the new loop.
- for (Loop *I : *L)
- CloneLoop(I, &New, VM, LI, LPM);
-
- return &New;
-}
-
-/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
-/// otherwise branch to FalseDest. Insert the code immediately before OldBranch
-/// and remove (but not erase!) it from the function.
-void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
- BasicBlock *TrueDest,
- BasicBlock *FalseDest,
- BranchInst *OldBranch,
- Instruction *TI) {
- assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
- assert(TrueDest != FalseDest && "Branch targets should be different");
- // Insert a conditional branch on LIC to the two preheaders. The original
- // code is the true version and the new code is the false version.
- Value *BranchVal = LIC;
- bool Swapped = false;
- if (!isa<ConstantInt>(Val) ||
- Val->getType() != Type::getInt1Ty(LIC->getContext()))
- BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
- else if (Val != ConstantInt::getTrue(Val->getContext())) {
- // We want to enter the new loop when the condition is true.
- std::swap(TrueDest, FalseDest);
- Swapped = true;
- }
-
- // Old branch will be removed, so save its parent and successor to update the
- // DomTree.
- auto *OldBranchSucc = OldBranch->getSuccessor(0);
- auto *OldBranchParent = OldBranch->getParent();
-
- // Insert the new branch.
- BranchInst *BI =
- IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
- if (Swapped)
- BI->swapProfMetadata();
-
- // Remove the old branch so there is only one branch at the end. This is
- // needed to perform DomTree's internal DFS walk on the function's CFG.
- OldBranch->removeFromParent();
-
- // Inform the DT about the new branch.
- if (DT) {
- // First, add both successors.
- SmallVector<DominatorTree::UpdateType, 3> Updates;
- if (TrueDest != OldBranchSucc)
- Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
- if (FalseDest != OldBranchSucc)
- Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
- // If both of the new successors are different from the old one, inform the
- // DT that the edge was deleted.
- if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
- Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
- }
- DT->applyUpdates(Updates);
-
- if (MSSAU)
- MSSAU->applyUpdates(Updates, *DT);
- }
-
- // If either edge is critical, split it. This helps preserve LoopSimplify
- // form for enclosing loops.
- auto Options =
- CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
- SplitCriticalEdge(BI, 0, Options);
- SplitCriticalEdge(BI, 1, Options);
-}
-
-/// Given a loop that has a trivial unswitchable condition in it (a cond branch
-/// from its header block to its latch block, where the path through the loop
-/// that doesn't execute its body has no side-effects), unswitch it. This
-/// doesn't involve any code duplication, just moving the conditional branch
-/// outside of the loop and updating loop info.
-void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
- BasicBlock *ExitBlock,
- Instruction *TI) {
- LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
- << loopHeader->getName() << " [" << L->getBlocks().size()
- << " blocks] in Function "
- << L->getHeader()->getParent()->getName()
- << " on cond: " << *Val << " == " << *Cond << "\n");
- // We are going to make essential changes to CFG. This may invalidate cached
- // information for L or one of its parent loops in SCEV.
- if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
- SEWP->getSE().forgetTopmostLoop(L);
-
- // First step, split the preheader, so that we know that there is a safe place
- // to insert the conditional branch. We will change loopPreheader to have a
- // conditional branch on Cond.
- BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
-
- // Now that we have a place to insert the conditional branch, create a place
- // to branch to: this is the exit block out of the loop that we should
- // short-circuit to.
-
- // Split this block now, so that the loop maintains its exit block, and so
- // that the jump from the preheader can execute the contents of the exit block
- // without actually branching to it (the exit block should be dominated by the
- // loop header, not the preheader).
- assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
- BasicBlock *NewExit =
- SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());
-
- // Okay, now we have a position to branch from and a position to branch to,
- // insert the new conditional branch.
- auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
- assert(OldBranch && "Failed to split the preheader");
- EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
- LPM->deleteSimpleAnalysisValue(OldBranch, L);
-
- // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
- // Delete it, as it is no longer needed.
- delete OldBranch;
-
- // We need to reprocess this loop, it could be unswitched again.
- redoLoop = true;
-
- // Now that we know that the loop is never entered when this condition is a
- // particular value, rewrite the loop with this info. We know that this will
- // at least eliminate the old branch.
- RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
-
- ++NumTrivial;
-}
-
-/// Check if the first non-constant condition starting from the loop header is
-/// a trivial unswitch condition: that is, a condition controls whether or not
-/// the loop does anything at all. If it is a trivial condition, unswitching
-/// produces no code duplications (equivalently, it produces a simpler loop and
-/// a new empty loop, which gets deleted). Therefore always unswitch trivial
-/// condition.
-bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
- BasicBlock *CurrentBB = currentLoop->getHeader();
- Instruction *CurrentTerm = CurrentBB->getTerminator();
- LLVMContext &Context = CurrentBB->getContext();
-
- // If loop header has only one reachable successor (currently via an
- // unconditional branch or constant foldable conditional branch, but
- // should also consider adding constant foldable switch instruction in
- // future), we should keep looking for trivial condition candidates in
- // the successor as well. An alternative is to constant fold conditions
- // and merge successors into loop header (then we only need to check header's
- // terminator). The reason for not doing this in LoopUnswitch pass is that
- // it could potentially break LoopPassManager's invariants. Folding dead
- // branches could either eliminate the current loop or make other loops
- // unreachable. LCSSA form might also not be preserved after deleting
- // branches. The following code keeps traversing loop header's successors
- // until it finds the trivial condition candidate (condition that is not a
- // constant). Since unswitching generates branches with constant conditions,
- // this scenario could be very common in practice.
- SmallPtrSet<BasicBlock*, 8> Visited;
-
- while (true) {
- // If we exit loop or reach a previous visited block, then
- // we can not reach any trivial condition candidates (unfoldable
- // branch instructions or switch instructions) and no unswitch
- // can happen. Exit and return false.
- if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
- return false;
-
- // Check if this loop will execute any side-effecting instructions (e.g.
- // stores, calls, volatile loads) in the part of the loop that the code
- // *would* execute. Check the header first.
- for (Instruction &I : *CurrentBB)
- if (I.mayHaveSideEffects())
- return false;
-
- if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
- if (BI->isUnconditional()) {
- CurrentBB = BI->getSuccessor(0);
- } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
- CurrentBB = BI->getSuccessor(0);
- } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
- CurrentBB = BI->getSuccessor(1);
- } else {
- // Found a trivial condition candidate: non-foldable conditional branch.
- break;
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
- // At this point, any constant-foldable instructions should have probably
- // been folded.
- ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
- if (!Cond)
- break;
- // Find the target block we are definitely going to.
- CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
- } else {
- // We do not understand these terminator instructions.
- break;
- }
-
- CurrentTerm = CurrentBB->getTerminator();
- }
-
- // CondVal is the condition that controls the trivial condition.
- // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
- Constant *CondVal = nullptr;
- BasicBlock *LoopExitBB = nullptr;
-
- if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
- // If this isn't branching on an invariant condition, we can't unswitch it.
- if (!BI->isConditional())
- return false;
-
- Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
- currentLoop, Changed).first;
-
- // Unswitch only if the trivial condition itself is an LIV (not
- // partial LIV which could occur in and/or)
- if (!LoopCond || LoopCond != BI->getCondition())
- return false;
-
- // Check to see if a successor of the branch is guaranteed to
- // exit through a unique exit block without having any
- // side-effects. If so, determine the value of Cond that causes
- // it to do this.
- if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
- BI->getSuccessor(0)))) {
- CondVal = ConstantInt::getTrue(Context);
- } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
- BI->getSuccessor(1)))) {
- CondVal = ConstantInt::getFalse(Context);
- }
-
- // If we didn't find a single unique LoopExit block, or if the loop exit
- // block contains phi nodes, this isn't trivial.
- if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
- return false; // Can't handle this.
-
- if (EqualityPropUnSafe(*LoopCond))
- return false;
-
- UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
- CurrentTerm);
- ++NumBranches;
- return true;
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
- // If this isn't switching on an invariant condition, we can't unswitch it.
- Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
- currentLoop, Changed).first;
-
- // Unswitch only if the trivial condition itself is an LIV (not
- // partial LIV which could occur in and/or)
- if (!LoopCond || LoopCond != SI->getCondition())
- return false;
-
- // Check to see if a successor of the switch is guaranteed to go to the
- // latch block or exit through a one exit block without having any
- // side-effects. If so, determine the value of Cond that causes it to do
- // this.
- // Note that we can't trivially unswitch on the default case or
- // on already unswitched cases.
- for (auto Case : SI->cases()) {
- BasicBlock *LoopExitCandidate;
- if ((LoopExitCandidate =
- isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
- // Okay, we found a trivial case, remember the value that is trivial.
- ConstantInt *CaseVal = Case.getCaseValue();
-
- // Check that it was not unswitched before, since already unswitched
- // trivial vals are looks trivial too.
- if (BranchesInfo.isUnswitched(SI, CaseVal))
- continue;
- LoopExitBB = LoopExitCandidate;
- CondVal = CaseVal;
- break;
- }
- }
-
- // If we didn't find a single unique LoopExit block, or if the loop exit
- // block contains phi nodes, this isn't trivial.
- if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
- return false; // Can't handle this.
-
- UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
- nullptr);
-
- // We are only unswitching full LIV.
- BranchesInfo.setUnswitched(SI, CondVal);
- ++NumSwitches;
- return true;
- }
- return false;
-}
-
-/// Split all of the edges from inside the loop to their exit blocks.
-/// Update the appropriate Phi nodes as we do so.
-void LoopUnswitch::SplitExitEdges(Loop *L,
- const SmallVectorImpl<BasicBlock *> &ExitBlocks){
-
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBlock = ExitBlocks[i];
- SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
- pred_end(ExitBlock));
-
- // Although SplitBlockPredecessors doesn't preserve loop-simplify in
- // general, if we call it on all predecessors of all exits then it does.
- SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
- /*PreserveLCSSA*/ true);
- }
-}
-
-/// We determined that the loop is profitable to unswitch when LIC equal Val.
-/// Split it into loop versions and test the condition outside of either loop.
-/// Return the loops created as Out1/Out2.
-void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
- Loop *L, Instruction *TI) {
- Function *F = loopHeader->getParent();
- LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
- << loopHeader->getName() << " [" << L->getBlocks().size()
- << " blocks] in Function " << F->getName() << " when '"
- << *Val << "' == " << *LIC << "\n");
-
- // We are going to make essential changes to CFG. This may invalidate cached
- // information for L or one of its parent loops in SCEV.
- if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
- SEWP->getSE().forgetTopmostLoop(L);
-
- LoopBlocks.clear();
- NewBlocks.clear();
-
- // First step, split the preheader and exit blocks, and add these blocks to
- // the LoopBlocks list.
- BasicBlock *NewPreheader =
- SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
- LoopBlocks.push_back(NewPreheader);
-
- // We want the loop to come after the preheader, but before the exit blocks.
- LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
-
- SmallVector<BasicBlock*, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
-
- // Split all of the edges from inside the loop to their exit blocks. Update
- // the appropriate Phi nodes as we do so.
- SplitExitEdges(L, ExitBlocks);
-
- // The exit blocks may have been changed due to edge splitting, recompute.
- ExitBlocks.clear();
- L->getUniqueExitBlocks(ExitBlocks);
-
- // Add exit blocks to the loop blocks.
- LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
-
- // Next step, clone all of the basic blocks that make up the loop (including
- // the loop preheader and exit blocks), keeping track of the mapping between
- // the instructions and blocks.
- NewBlocks.reserve(LoopBlocks.size());
- ValueToValueMapTy VMap;
- for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
- BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
-
- NewBlocks.push_back(NewBB);
- VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
- LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
- }
-
- // Splice the newly inserted blocks into the function right before the
- // original preheader.
- F->getBasicBlockList().splice(NewPreheader->getIterator(),
- F->getBasicBlockList(),
- NewBlocks[0]->getIterator(), F->end());
-
- // Now we create the new Loop object for the versioned loop.
- Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
-
- // Recalculate unswitching quota, inherit simplified switches info for NewBB,
- // Probably clone more loop-unswitch related loop properties.
- BranchesInfo.cloneData(NewLoop, L, VMap);
-
- Loop *ParentLoop = L->getParentLoop();
- if (ParentLoop) {
- // Make sure to add the cloned preheader and exit blocks to the parent loop
- // as well.
- ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
- }
-
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
- BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
- // The new exit block should be in the same loop as the old one.
- if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
- ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
-
- assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
- "Exit block should have been split to have one successor!");
- BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
-
- // If the successor of the exit block had PHI nodes, add an entry for
- // NewExit.
- for (PHINode &PN : ExitSucc->phis()) {
- Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
- ValueToValueMapTy::iterator It = VMap.find(V);
- if (It != VMap.end()) V = It->second;
- PN.addIncoming(V, NewExit);
- }
-
- if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
- PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
- &*ExitSucc->getFirstInsertionPt());
-
- for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
- I != E; ++I) {
- BasicBlock *BB = *I;
- LandingPadInst *LPI = BB->getLandingPadInst();
- LPI->replaceAllUsesWith(PN);
- PN->addIncoming(LPI, BB);
- }
- }
- }
-
- // Rewrite the code to refer to itself.
- for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
- for (Instruction &I : *NewBlocks[i]) {
- RemapInstruction(&I, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if (II->getIntrinsicID() == Intrinsic::assume)
- AC->registerAssumption(II);
- }
- }
-
- // Rewrite the original preheader to select between versions of the loop.
- BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
- assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
- "Preheader splitting did not work correctly!");
-
- if (MSSAU) {
- // Update MemorySSA after cloning, and before splitting to unreachables,
- // since that invalidates the 1:1 mapping of clones in VMap.
- LoopBlocksRPO LBRPO(L);
- LBRPO.perform(LI);
- MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
- }
-
- // Emit the new branch that selects between the two versions of this loop.
- EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
- TI);
- LPM->deleteSimpleAnalysisValue(OldBR, L);
- if (MSSAU) {
- // Update MemoryPhis in Exit blocks.
- MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- }
-
- // The OldBr was replaced by a new one and removed (but not erased) by
- // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
- delete OldBR;
-
- LoopProcessWorklist.push_back(NewLoop);
- redoLoop = true;
-
- // Keep a WeakTrackingVH holding onto LIC. If the first call to
- // RewriteLoopBody
- // deletes the instruction (for example by simplifying a PHI that feeds into
- // the condition that we're unswitching on), we don't rewrite the second
- // iteration.
- WeakTrackingVH LICHandle(LIC);
-
- // Now we rewrite the original code to know that the condition is true and the
- // new code to know that the condition is false.
- RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
-
- // It's possible that simplifying one loop could cause the other to be
- // changed to another value or a constant. If its a constant, don't simplify
- // it.
- if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
- LICHandle && !isa<Constant>(LICHandle))
- RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
-
- if (MSSA && VerifyMemorySSA)
- MSSA->verifyMemorySSA();
-}
-
-/// Remove all instances of I from the worklist vector specified.
-static void RemoveFromWorklist(Instruction *I,
- std::vector<Instruction*> &Worklist) {
-
- Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
- Worklist.end());
-}
-
-/// When we find that I really equals V, remove I from the
-/// program, replacing all uses with V and update the worklist.
-static void ReplaceUsesOfWith(Instruction *I, Value *V,
- std::vector<Instruction *> &Worklist, Loop *L,
- LPPassManager *LPM, MemorySSAUpdater *MSSAU) {
- LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
-
- // Add uses to the worklist, which may be dead now.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
- Worklist.push_back(Use);
-
- // Add users to the worklist which may be simplified now.
- for (User *U : I->users())
- Worklist.push_back(cast<Instruction>(U));
- LPM->deleteSimpleAnalysisValue(I, L);
- RemoveFromWorklist(I, Worklist);
- I->replaceAllUsesWith(V);
- if (!I->mayHaveSideEffects()) {
- if (MSSAU)
- MSSAU->removeMemoryAccess(I);
- I->eraseFromParent();
- }
- ++NumSimplify;
-}
-
-/// We know either that the value LIC has the value specified by Val in the
-/// specified loop, or we know it does NOT have that value.
-/// Rewrite any uses of LIC or of properties correlated to it.
-void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
- Constant *Val,
- bool IsEqual) {
- assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
-
- // FIXME: Support correlated properties, like:
- // for (...)
- // if (li1 < li2)
- // ...
- // if (li1 > li2)
- // ...
-
- // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
- // selects, switches.
- std::vector<Instruction*> Worklist;
- LLVMContext &Context = Val->getContext();
-
- // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
- // in the loop with the appropriate one directly.
- if (IsEqual || (isa<ConstantInt>(Val) &&
- Val->getType()->isIntegerTy(1))) {
- Value *Replacement;
- if (IsEqual)
- Replacement = Val;
- else
- Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
- !cast<ConstantInt>(Val)->getZExtValue());
-
- for (User *U : LIC->users()) {
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI || !L->contains(UI))
- continue;
- Worklist.push_back(UI);
- }
-
- for (Instruction *UI : Worklist)
- UI->replaceUsesOfWith(LIC, Replacement);
-
- SimplifyCode(Worklist, L);
- return;
- }
-
- // Otherwise, we don't know the precise value of LIC, but we do know that it
- // is certainly NOT "Val". As such, simplify any uses in the loop that we
- // can. This case occurs when we unswitch switch statements.
- for (User *U : LIC->users()) {
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI || !L->contains(UI))
- continue;
-
- // At this point, we know LIC is definitely not Val. Try to use some simple
- // logic to simplify the user w.r.t. to the context.
- if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
- if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
- // This in-loop instruction has been simplified w.r.t. its context,
- // i.e. LIC != Val, make sure we propagate its replacement value to
- // all its users.
- //
- // We can not yet delete UI, the LIC user, yet, because that would invalidate
- // the LIC->users() iterator !. However, we can make this instruction
- // dead by replacing all its users and push it onto the worklist so that
- // it can be properly deleted and its operands simplified.
- UI->replaceAllUsesWith(Replacement);
- }
- }
-
- // This is a LIC user, push it into the worklist so that SimplifyCode can
- // attempt to simplify it.
- Worklist.push_back(UI);
-
- // If we know that LIC is not Val, use this info to simplify code.
- SwitchInst *SI = dyn_cast<SwitchInst>(UI);
- if (!SI || !isa<ConstantInt>(Val)) continue;
-
- // NOTE: if a case value for the switch is unswitched out, we record it
- // after the unswitch finishes. We can not record it here as the switch
- // is not a direct user of the partial LIV.
- SwitchInst::CaseHandle DeadCase =
- *SI->findCaseValue(cast<ConstantInt>(Val));
- // Default case is live for multiple values.
- if (DeadCase == *SI->case_default())
- continue;
-
- // Found a dead case value. Don't remove PHI nodes in the
- // successor if they become single-entry, those PHI nodes may
- // be in the Users list.
-
- BasicBlock *Switch = SI->getParent();
- BasicBlock *SISucc = DeadCase.getCaseSuccessor();
- BasicBlock *Latch = L->getLoopLatch();
-
- if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
- // If the DeadCase successor dominates the loop latch, then the
- // transformation isn't safe since it will delete the sole predecessor edge
- // to the latch.
- if (Latch && DT->dominates(SISucc, Latch))
- continue;
-
- // FIXME: This is a hack. We need to keep the successor around
- // and hooked up so as to preserve the loop structure, because
- // trying to update it is complicated. So instead we preserve the
- // loop structure and put the block on a dead code path.
- SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
- // Compute the successors instead of relying on the return value
- // of SplitEdge, since it may have split the switch successor
- // after PHI nodes.
- BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
- BasicBlock *OldSISucc = *succ_begin(NewSISucc);
- // Create an "unreachable" destination.
- BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
- Switch->getParent(),
- OldSISucc);
- new UnreachableInst(Context, Abort);
- // Force the new case destination to branch to the "unreachable"
- // block while maintaining a (dead) CFG edge to the old block.
- NewSISucc->getTerminator()->eraseFromParent();
- BranchInst::Create(Abort, OldSISucc,
- ConstantInt::getTrue(Context), NewSISucc);
- // Release the PHI operands for this edge.
- for (PHINode &PN : NewSISucc->phis())
- PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType()));
- // Tell the domtree about the new block. We don't fully update the
- // domtree here -- instead we force it to do a full recomputation
- // after the pass is complete -- but we do need to inform it of
- // new blocks.
- DT->addNewBlock(Abort, NewSISucc);
- }
-
- SimplifyCode(Worklist, L);
-}
-
-/// Now that we have simplified some instructions in the loop, walk over it and
-/// constant prop, dce, and fold control flow where possible. Note that this is
-/// effectively a very simple loop-structure-aware optimizer. During processing
-/// of this loop, L could very well be deleted, so it must not be used.
-///
-/// FIXME: When the loop optimizer is more mature, separate this out to a new
-/// pass.
-///
-void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- while (!Worklist.empty()) {
- Instruction *I = Worklist.back();
- Worklist.pop_back();
-
- // Simple DCE.
- if (isInstructionTriviallyDead(I)) {
- LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
-
- // Add uses to the worklist, which may be dead now.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
- if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
- Worklist.push_back(Use);
- LPM->deleteSimpleAnalysisValue(I, L);
- RemoveFromWorklist(I, Worklist);
- if (MSSAU)
- MSSAU->removeMemoryAccess(I);
- I->eraseFromParent();
- ++NumSimplify;
- continue;
- }
-
- // See if instruction simplification can hack this up. This is common for
- // things like "select false, X, Y" after unswitching made the condition be
- // 'false'. TODO: update the domtree properly so we can pass it here.
- if (Value *V = SimplifyInstruction(I, DL))
- if (LI->replacementPreservesLCSSAForm(I, V)) {
- ReplaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get());
- continue;
- }
-
- // Special case hacks that appear commonly in unswitched code.
- if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
- if (BI->isUnconditional()) {
- // If BI's parent is the only pred of the successor, fold the two blocks
- // together.
- BasicBlock *Pred = BI->getParent();
- BasicBlock *Succ = BI->getSuccessor(0);
- BasicBlock *SinglePred = Succ->getSinglePredecessor();
- if (!SinglePred) continue; // Nothing to do.
- assert(SinglePred == Pred && "CFG broken");
-
- LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
- << Succ->getName() << "\n");
-
- // Resolve any single entry PHI nodes in Succ.
- while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
- ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM,
- MSSAU.get());
-
- // If Succ has any successors with PHI nodes, update them to have
- // entries coming from Pred instead of Succ.
- Succ->replaceAllUsesWith(Pred);
-
- // Move all of the successor contents from Succ to Pred.
- Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
- Succ->begin(), Succ->end());
- if (MSSAU)
- MSSAU->moveAllAfterMergeBlocks(Succ, Pred, BI);
- LPM->deleteSimpleAnalysisValue(BI, L);
- RemoveFromWorklist(BI, Worklist);
- BI->eraseFromParent();
-
- // Remove Succ from the loop tree.
- LI->removeBlock(Succ);
- LPM->deleteSimpleAnalysisValue(Succ, L);
- Succ->eraseFromParent();
- ++NumSimplify;
- continue;
- }
-
- continue;
- }
- }
-}
-
-/// Simple simplifications we can do given the information that Cond is
-/// definitely not equal to Val.
-Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
- Value *Invariant,
- Constant *Val) {
- // icmp eq cond, val -> false
- ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
- if (CI && CI->isEquality()) {
- Value *Op0 = CI->getOperand(0);
- Value *Op1 = CI->getOperand(1);
- if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
- LLVMContext &Ctx = Inst->getContext();
- if (CI->getPredicate() == CmpInst::ICMP_EQ)
- return ConstantInt::getFalse(Ctx);
- else
- return ConstantInt::getTrue(Ctx);
- }
- }
-
- // FIXME: there may be other opportunities, e.g. comparison with floating
- // point, or Invariant - Val != 0, etc.
- return nullptr;
-}