diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp | 1671 |
1 files changed, 0 insertions, 1671 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp b/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp deleted file mode 100644 index b5b8e720069c..000000000000 --- a/contrib/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp +++ /dev/null @@ -1,1671 +0,0 @@ -//===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass transforms loops that contain branches on loop-invariant conditions -// to multiple loops. For example, it turns the left into the right code: -// -// for (...) if (lic) -// A for (...) -// if (lic) A; B; C -// B else -// C for (...) -// A; C -// -// This can increase the size of the code exponentially (doubling it every time -// a loop is unswitched) so we only unswitch if the resultant code will be -// smaller than a threshold. -// -// This pass expects LICM to be run before it to hoist invariant conditions out -// of the loop, to make the unswitching opportunity obvious. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/CodeMetrics.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/LegacyDivergenceAnalysis.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopIterator.h" -#include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/MemorySSA.h" -#include "llvm/Analysis/MemorySSAUpdater.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Scalar/LoopPassManager.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Cloning.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -#include "llvm/Transforms/Utils/ValueMapper.h" -#include <algorithm> -#include <cassert> -#include <map> -#include <set> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "loop-unswitch" - -STATISTIC(NumBranches, "Number of branches unswitched"); -STATISTIC(NumSwitches, "Number of switches unswitched"); -STATISTIC(NumGuards, "Number of guards unswitched"); -STATISTIC(NumSelects , "Number of selects unswitched"); -STATISTIC(NumTrivial , "Number of unswitches that are trivial"); -STATISTIC(NumSimplify, "Number of simplifications of unswitched code"); -STATISTIC(TotalInsts, "Total number of instructions analyzed"); - -// The specific value of 100 here was chosen based only on intuition and a -// few specific examples. -static cl::opt<unsigned> -Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), - cl::init(100), cl::Hidden); - -namespace { - - class LUAnalysisCache { - using UnswitchedValsMap = - DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>; - using UnswitchedValsIt = UnswitchedValsMap::iterator; - - struct LoopProperties { - unsigned CanBeUnswitchedCount; - unsigned WasUnswitchedCount; - unsigned SizeEstimation; - UnswitchedValsMap UnswitchedVals; - }; - - // Here we use std::map instead of DenseMap, since we need to keep valid - // LoopProperties pointer for current loop for better performance. - using LoopPropsMap = std::map<const Loop *, LoopProperties>; - using LoopPropsMapIt = LoopPropsMap::iterator; - - LoopPropsMap LoopsProperties; - UnswitchedValsMap *CurLoopInstructions = nullptr; - LoopProperties *CurrentLoopProperties = nullptr; - - // A loop unswitching with an estimated cost above this threshold - // is not performed. MaxSize is turned into unswitching quota for - // the current loop, and reduced correspondingly, though note that - // the quota is returned by releaseMemory() when the loop has been - // processed, so that MaxSize will return to its previous - // value. So in most cases MaxSize will equal the Threshold flag - // when a new loop is processed. An exception to that is that - // MaxSize will have a smaller value while processing nested loops - // that were introduced due to loop unswitching of an outer loop. - // - // FIXME: The way that MaxSize works is subtle and depends on the - // pass manager processing loops and calling releaseMemory() in a - // specific order. It would be good to find a more straightforward - // way of doing what MaxSize does. - unsigned MaxSize; - - public: - LUAnalysisCache() : MaxSize(Threshold) {} - - // Analyze loop. Check its size, calculate is it possible to unswitch - // it. Returns true if we can unswitch this loop. - bool countLoop(const Loop *L, const TargetTransformInfo &TTI, - AssumptionCache *AC); - - // Clean all data related to given loop. - void forgetLoop(const Loop *L); - - // Mark case value as unswitched. - // Since SI instruction can be partly unswitched, in order to avoid - // extra unswitching in cloned loops keep track all unswitched values. - void setUnswitched(const SwitchInst *SI, const Value *V); - - // Check was this case value unswitched before or not. - bool isUnswitched(const SwitchInst *SI, const Value *V); - - // Returns true if another unswitching could be done within the cost - // threshold. - bool CostAllowsUnswitching(); - - // Clone all loop-unswitch related loop properties. - // Redistribute unswitching quotas. - // Note, that new loop data is stored inside the VMap. - void cloneData(const Loop *NewLoop, const Loop *OldLoop, - const ValueToValueMapTy &VMap); - }; - - class LoopUnswitch : public LoopPass { - LoopInfo *LI; // Loop information - LPPassManager *LPM; - AssumptionCache *AC; - - // Used to check if second loop needs processing after - // RewriteLoopBodyWithConditionConstant rewrites first loop. - std::vector<Loop*> LoopProcessWorklist; - - LUAnalysisCache BranchesInfo; - - bool OptimizeForSize; - bool redoLoop = false; - - Loop *currentLoop = nullptr; - DominatorTree *DT = nullptr; - MemorySSA *MSSA = nullptr; - std::unique_ptr<MemorySSAUpdater> MSSAU; - BasicBlock *loopHeader = nullptr; - BasicBlock *loopPreheader = nullptr; - - bool SanitizeMemory; - SimpleLoopSafetyInfo SafetyInfo; - - // LoopBlocks contains all of the basic blocks of the loop, including the - // preheader of the loop, the body of the loop, and the exit blocks of the - // loop, in that order. - std::vector<BasicBlock*> LoopBlocks; - // NewBlocks contained cloned copy of basic blocks from LoopBlocks. - std::vector<BasicBlock*> NewBlocks; - - bool hasBranchDivergence; - - public: - static char ID; // Pass ID, replacement for typeid - - explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false) - : LoopPass(ID), OptimizeForSize(Os), - hasBranchDivergence(hasBranchDivergence) { - initializeLoopUnswitchPass(*PassRegistry::getPassRegistry()); - } - - bool runOnLoop(Loop *L, LPPassManager &LPM) override; - bool processCurrentLoop(); - bool isUnreachableDueToPreviousUnswitching(BasicBlock *); - - /// This transformation requires natural loop information & requires that - /// loop preheaders be inserted into the CFG. - /// - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - if (EnableMSSALoopDependency) { - AU.addRequired<MemorySSAWrapperPass>(); - AU.addPreserved<MemorySSAWrapperPass>(); - } - if (hasBranchDivergence) - AU.addRequired<LegacyDivergenceAnalysis>(); - getLoopAnalysisUsage(AU); - } - - private: - void releaseMemory() override { - BranchesInfo.forgetLoop(currentLoop); - } - - void initLoopData() { - loopHeader = currentLoop->getHeader(); - loopPreheader = currentLoop->getLoopPreheader(); - } - - /// Split all of the edges from inside the loop to their exit blocks. - /// Update the appropriate Phi nodes as we do so. - void SplitExitEdges(Loop *L, - const SmallVectorImpl<BasicBlock *> &ExitBlocks); - - bool TryTrivialLoopUnswitch(bool &Changed); - - bool UnswitchIfProfitable(Value *LoopCond, Constant *Val, - Instruction *TI = nullptr); - void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, - BasicBlock *ExitBlock, Instruction *TI); - void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L, - Instruction *TI); - - void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, - Constant *Val, bool isEqual); - - void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, - BasicBlock *TrueDest, - BasicBlock *FalseDest, - BranchInst *OldBranch, Instruction *TI); - - void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L); - - /// Given that the Invariant is not equal to Val. Simplify instructions - /// in the loop. - Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant, - Constant *Val); - }; - -} // end anonymous namespace - -// Analyze loop. Check its size, calculate is it possible to unswitch -// it. Returns true if we can unswitch this loop. -bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI, - AssumptionCache *AC) { - LoopPropsMapIt PropsIt; - bool Inserted; - std::tie(PropsIt, Inserted) = - LoopsProperties.insert(std::make_pair(L, LoopProperties())); - - LoopProperties &Props = PropsIt->second; - - if (Inserted) { - // New loop. - - // Limit the number of instructions to avoid causing significant code - // expansion, and the number of basic blocks, to avoid loops with - // large numbers of branches which cause loop unswitching to go crazy. - // This is a very ad-hoc heuristic. - - SmallPtrSet<const Value *, 32> EphValues; - CodeMetrics::collectEphemeralValues(L, AC, EphValues); - - // FIXME: This is overly conservative because it does not take into - // consideration code simplification opportunities and code that can - // be shared by the resultant unswitched loops. - CodeMetrics Metrics; - for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; - ++I) - Metrics.analyzeBasicBlock(*I, TTI, EphValues); - - Props.SizeEstimation = Metrics.NumInsts; - Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation); - Props.WasUnswitchedCount = 0; - MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount; - - if (Metrics.notDuplicatable) { - LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName() - << ", contents cannot be " - << "duplicated!\n"); - return false; - } - } - - // Be careful. This links are good only before new loop addition. - CurrentLoopProperties = &Props; - CurLoopInstructions = &Props.UnswitchedVals; - - return true; -} - -// Clean all data related to given loop. -void LUAnalysisCache::forgetLoop(const Loop *L) { - LoopPropsMapIt LIt = LoopsProperties.find(L); - - if (LIt != LoopsProperties.end()) { - LoopProperties &Props = LIt->second; - MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) * - Props.SizeEstimation; - LoopsProperties.erase(LIt); - } - - CurrentLoopProperties = nullptr; - CurLoopInstructions = nullptr; -} - -// Mark case value as unswitched. -// Since SI instruction can be partly unswitched, in order to avoid -// extra unswitching in cloned loops keep track all unswitched values. -void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) { - (*CurLoopInstructions)[SI].insert(V); -} - -// Check was this case value unswitched before or not. -bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) { - return (*CurLoopInstructions)[SI].count(V); -} - -bool LUAnalysisCache::CostAllowsUnswitching() { - return CurrentLoopProperties->CanBeUnswitchedCount > 0; -} - -// Clone all loop-unswitch related loop properties. -// Redistribute unswitching quotas. -// Note, that new loop data is stored inside the VMap. -void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop, - const ValueToValueMapTy &VMap) { - LoopProperties &NewLoopProps = LoopsProperties[NewLoop]; - LoopProperties &OldLoopProps = *CurrentLoopProperties; - UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals; - - // Reallocate "can-be-unswitched quota" - - --OldLoopProps.CanBeUnswitchedCount; - ++OldLoopProps.WasUnswitchedCount; - NewLoopProps.WasUnswitchedCount = 0; - unsigned Quota = OldLoopProps.CanBeUnswitchedCount; - NewLoopProps.CanBeUnswitchedCount = Quota / 2; - OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2; - - NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation; - - // Clone unswitched values info: - // for new loop switches we clone info about values that was - // already unswitched and has redundant successors. - for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) { - const SwitchInst *OldInst = I->first; - Value *NewI = VMap.lookup(OldInst); - const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI); - assert(NewInst && "All instructions that are in SrcBB must be in VMap."); - - NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst]; - } -} - -char LoopUnswitch::ID = 0; - -INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops", - false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(LoopPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) -INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) -INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops", - false, false) - -Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) { - return new LoopUnswitch(Os, hasBranchDivergence); -} - -/// Operator chain lattice. -enum OperatorChain { - OC_OpChainNone, ///< There is no operator. - OC_OpChainOr, ///< There are only ORs. - OC_OpChainAnd, ///< There are only ANDs. - OC_OpChainMixed ///< There are ANDs and ORs. -}; - -/// Cond is a condition that occurs in L. If it is invariant in the loop, or has -/// an invariant piece, return the invariant. Otherwise, return null. -// -/// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a -/// mixed operator chain, as we can not reliably find a value which will simplify -/// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0 -/// to simplify the chain. -/// -/// NOTE: In case a partial LIV and a mixed operator chain, we may be able to -/// simplify the condition itself to a loop variant condition, but at the -/// cost of creating an entirely new loop. -static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed, - OperatorChain &ParentChain, - DenseMap<Value *, Value *> &Cache) { - auto CacheIt = Cache.find(Cond); - if (CacheIt != Cache.end()) - return CacheIt->second; - - // We started analyze new instruction, increment scanned instructions counter. - ++TotalInsts; - - // We can never unswitch on vector conditions. - if (Cond->getType()->isVectorTy()) - return nullptr; - - // Constants should be folded, not unswitched on! - if (isa<Constant>(Cond)) return nullptr; - - // TODO: Handle: br (VARIANT|INVARIANT). - - // Hoist simple values out. - if (L->makeLoopInvariant(Cond, Changed)) { - Cache[Cond] = Cond; - return Cond; - } - - // Walk up the operator chain to find partial invariant conditions. - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond)) - if (BO->getOpcode() == Instruction::And || - BO->getOpcode() == Instruction::Or) { - // Given the previous operator, compute the current operator chain status. - OperatorChain NewChain; - switch (ParentChain) { - case OC_OpChainNone: - NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : - OC_OpChainOr; - break; - case OC_OpChainOr: - NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr : - OC_OpChainMixed; - break; - case OC_OpChainAnd: - NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd : - OC_OpChainMixed; - break; - case OC_OpChainMixed: - NewChain = OC_OpChainMixed; - break; - } - - // If we reach a Mixed state, we do not want to keep walking up as we can not - // reliably find a value that will simplify the chain. With this check, we - // will return null on the first sight of mixed chain and the caller will - // either backtrack to find partial LIV in other operand or return null. - if (NewChain != OC_OpChainMixed) { - // Update the current operator chain type before we search up the chain. - ParentChain = NewChain; - // If either the left or right side is invariant, we can unswitch on this, - // which will cause the branch to go away in one loop and the condition to - // simplify in the other one. - if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed, - ParentChain, Cache)) { - Cache[Cond] = LHS; - return LHS; - } - // We did not manage to find a partial LIV in operand(0). Backtrack and try - // operand(1). - ParentChain = NewChain; - if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed, - ParentChain, Cache)) { - Cache[Cond] = RHS; - return RHS; - } - } - } - - Cache[Cond] = nullptr; - return nullptr; -} - -/// Cond is a condition that occurs in L. If it is invariant in the loop, or has -/// an invariant piece, return the invariant along with the operator chain type. -/// Otherwise, return null. -static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond, - Loop *L, - bool &Changed) { - DenseMap<Value *, Value *> Cache; - OperatorChain OpChain = OC_OpChainNone; - Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache); - - // In case we do find a LIV, it can not be obtained by walking up a mixed - // operator chain. - assert((!FCond || OpChain != OC_OpChainMixed) && - "Do not expect a partial LIV with mixed operator chain"); - return {FCond, OpChain}; -} - -bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) { - if (skipLoop(L)) - return false; - - AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( - *L->getHeader()->getParent()); - LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - LPM = &LPM_Ref; - DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - if (EnableMSSALoopDependency) { - MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); - MSSAU = make_unique<MemorySSAUpdater>(MSSA); - assert(DT && "Cannot update MemorySSA without a valid DomTree."); - } - currentLoop = L; - Function *F = currentLoop->getHeader()->getParent(); - - SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory); - if (SanitizeMemory) - SafetyInfo.computeLoopSafetyInfo(L); - - if (MSSA && VerifyMemorySSA) - MSSA->verifyMemorySSA(); - - bool Changed = false; - do { - assert(currentLoop->isLCSSAForm(*DT)); - if (MSSA && VerifyMemorySSA) - MSSA->verifyMemorySSA(); - redoLoop = false; - Changed |= processCurrentLoop(); - } while(redoLoop); - - if (MSSA && VerifyMemorySSA) - MSSA->verifyMemorySSA(); - - return Changed; -} - -// Return true if the BasicBlock BB is unreachable from the loop header. -// Return false, otherwise. -bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) { - auto *Node = DT->getNode(BB)->getIDom(); - BasicBlock *DomBB = Node->getBlock(); - while (currentLoop->contains(DomBB)) { - BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator()); - - Node = DT->getNode(DomBB)->getIDom(); - DomBB = Node->getBlock(); - - if (!BInst || !BInst->isConditional()) - continue; - - Value *Cond = BInst->getCondition(); - if (!isa<ConstantInt>(Cond)) - continue; - - BasicBlock *UnreachableSucc = - Cond == ConstantInt::getTrue(Cond->getContext()) - ? BInst->getSuccessor(1) - : BInst->getSuccessor(0); - - if (DT->dominates(UnreachableSucc, BB)) - return true; - } - return false; -} - -/// FIXME: Remove this workaround when freeze related patches are done. -/// LoopUnswitch and Equality propagation in GVN have discrepancy about -/// whether branch on undef/poison has undefine behavior. Here it is to -/// rule out some common cases that we found such discrepancy already -/// causing problems. Detail could be found in PR31652. Note if the -/// func returns true, it is unsafe. But if it is false, it doesn't mean -/// it is necessarily safe. -static bool EqualityPropUnSafe(Value &LoopCond) { - ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond); - if (!CI || !CI->isEquality()) - return false; - - Value *LHS = CI->getOperand(0); - Value *RHS = CI->getOperand(1); - if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) - return true; - - auto hasUndefInPHI = [](PHINode &PN) { - for (Value *Opd : PN.incoming_values()) { - if (isa<UndefValue>(Opd)) - return true; - } - return false; - }; - PHINode *LPHI = dyn_cast<PHINode>(LHS); - PHINode *RPHI = dyn_cast<PHINode>(RHS); - if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI))) - return true; - - auto hasUndefInSelect = [](SelectInst &SI) { - if (isa<UndefValue>(SI.getTrueValue()) || - isa<UndefValue>(SI.getFalseValue())) - return true; - return false; - }; - SelectInst *LSI = dyn_cast<SelectInst>(LHS); - SelectInst *RSI = dyn_cast<SelectInst>(RHS); - if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI))) - return true; - return false; -} - -/// Do actual work and unswitch loop if possible and profitable. -bool LoopUnswitch::processCurrentLoop() { - bool Changed = false; - - initLoopData(); - - // If LoopSimplify was unable to form a preheader, don't do any unswitching. - if (!loopPreheader) - return false; - - // Loops with indirectbr cannot be cloned. - if (!currentLoop->isSafeToClone()) - return false; - - // Without dedicated exits, splitting the exit edge may fail. - if (!currentLoop->hasDedicatedExits()) - return false; - - LLVMContext &Context = loopHeader->getContext(); - - // Analyze loop cost, and stop unswitching if loop content can not be duplicated. - if (!BranchesInfo.countLoop( - currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI( - *currentLoop->getHeader()->getParent()), - AC)) - return false; - - // Try trivial unswitch first before loop over other basic blocks in the loop. - if (TryTrivialLoopUnswitch(Changed)) { - return true; - } - - // Do not do non-trivial unswitch while optimizing for size. - // FIXME: Use Function::hasOptSize(). - if (OptimizeForSize || - loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize)) - return false; - - // Run through the instructions in the loop, keeping track of three things: - // - // - That we do not unswitch loops containing convergent operations, as we - // might be making them control dependent on the unswitch value when they - // were not before. - // FIXME: This could be refined to only bail if the convergent operation is - // not already control-dependent on the unswitch value. - // - // - That basic blocks in the loop contain invokes whose predecessor edges we - // cannot split. - // - // - The set of guard intrinsics encountered (these are non terminator - // instructions that are also profitable to be unswitched). - - SmallVector<IntrinsicInst *, 4> Guards; - - for (const auto BB : currentLoop->blocks()) { - for (auto &I : *BB) { - auto CS = CallSite(&I); - if (!CS) continue; - if (CS.hasFnAttr(Attribute::Convergent)) - return false; - if (auto *II = dyn_cast<InvokeInst>(&I)) - if (!II->getUnwindDest()->canSplitPredecessors()) - return false; - if (auto *II = dyn_cast<IntrinsicInst>(&I)) - if (II->getIntrinsicID() == Intrinsic::experimental_guard) - Guards.push_back(II); - } - } - - for (IntrinsicInst *Guard : Guards) { - Value *LoopCond = - FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first; - if (LoopCond && - UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) { - // NB! Unswitching (if successful) could have erased some of the - // instructions in Guards leaving dangling pointers there. This is fine - // because we're returning now, and won't look at Guards again. - ++NumGuards; - return true; - } - } - - // Loop over all of the basic blocks in the loop. If we find an interior - // block that is branching on a loop-invariant condition, we can unswitch this - // loop. - for (Loop::block_iterator I = currentLoop->block_begin(), - E = currentLoop->block_end(); I != E; ++I) { - Instruction *TI = (*I)->getTerminator(); - - // Unswitching on a potentially uninitialized predicate is not - // MSan-friendly. Limit this to the cases when the original predicate is - // guaranteed to execute, to avoid creating a use-of-uninitialized-value - // in the code that did not have one. - // This is a workaround for the discrepancy between LLVM IR and MSan - // semantics. See PR28054 for more details. - if (SanitizeMemory && - !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop)) - continue; - - if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { - // Some branches may be rendered unreachable because of previous - // unswitching. - // Unswitch only those branches that are reachable. - if (isUnreachableDueToPreviousUnswitching(*I)) - continue; - - // If this isn't branching on an invariant condition, we can't unswitch - // it. - if (BI->isConditional()) { - // See if this, or some part of it, is loop invariant. If so, we can - // unswitch on it if we desire. - Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), - currentLoop, Changed).first; - if (LoopCond && !EqualityPropUnSafe(*LoopCond) && - UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) { - ++NumBranches; - return true; - } - } - } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - Value *SC = SI->getCondition(); - Value *LoopCond; - OperatorChain OpChain; - std::tie(LoopCond, OpChain) = - FindLIVLoopCondition(SC, currentLoop, Changed); - - unsigned NumCases = SI->getNumCases(); - if (LoopCond && NumCases) { - // Find a value to unswitch on: - // FIXME: this should chose the most expensive case! - // FIXME: scan for a case with a non-critical edge? - Constant *UnswitchVal = nullptr; - // Find a case value such that at least one case value is unswitched - // out. - if (OpChain == OC_OpChainAnd) { - // If the chain only has ANDs and the switch has a case value of 0. - // Dropping in a 0 to the chain will unswitch out the 0-casevalue. - auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType())); - if (BranchesInfo.isUnswitched(SI, AllZero)) - continue; - // We are unswitching 0 out. - UnswitchVal = AllZero; - } else if (OpChain == OC_OpChainOr) { - // If the chain only has ORs and the switch has a case value of ~0. - // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue. - auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType())); - if (BranchesInfo.isUnswitched(SI, AllOne)) - continue; - // We are unswitching ~0 out. - UnswitchVal = AllOne; - } else { - assert(OpChain == OC_OpChainNone && - "Expect to unswitch on trivial chain"); - // Do not process same value again and again. - // At this point we have some cases already unswitched and - // some not yet unswitched. Let's find the first not yet unswitched one. - for (auto Case : SI->cases()) { - Constant *UnswitchValCandidate = Case.getCaseValue(); - if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) { - UnswitchVal = UnswitchValCandidate; - break; - } - } - } - - if (!UnswitchVal) - continue; - - if (UnswitchIfProfitable(LoopCond, UnswitchVal)) { - ++NumSwitches; - // In case of a full LIV, UnswitchVal is the value we unswitched out. - // In case of a partial LIV, we only unswitch when its an AND-chain - // or OR-chain. In both cases switch input value simplifies to - // UnswitchVal. - BranchesInfo.setUnswitched(SI, UnswitchVal); - return true; - } - } - } - - // Scan the instructions to check for unswitchable values. - for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); - BBI != E; ++BBI) - if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) { - Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), - currentLoop, Changed).first; - if (LoopCond && UnswitchIfProfitable(LoopCond, - ConstantInt::getTrue(Context))) { - ++NumSelects; - return true; - } - } - } - return Changed; -} - -/// Check to see if all paths from BB exit the loop with no side effects -/// (including infinite loops). -/// -/// If true, we return true and set ExitBB to the block we -/// exit through. -/// -static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB, - BasicBlock *&ExitBB, - std::set<BasicBlock*> &Visited) { - if (!Visited.insert(BB).second) { - // Already visited. Without more analysis, this could indicate an infinite - // loop. - return false; - } - if (!L->contains(BB)) { - // Otherwise, this is a loop exit, this is fine so long as this is the - // first exit. - if (ExitBB) return false; - ExitBB = BB; - return true; - } - - // Otherwise, this is an unvisited intra-loop node. Check all successors. - for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { - // Check to see if the successor is a trivial loop exit. - if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited)) - return false; - } - - // Okay, everything after this looks good, check to make sure that this block - // doesn't include any side effects. - for (Instruction &I : *BB) - if (I.mayHaveSideEffects()) - return false; - - return true; -} - -/// Return true if the specified block unconditionally leads to an exit from -/// the specified loop, and has no side-effects in the process. If so, return -/// the block that is exited to, otherwise return null. -static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) { - std::set<BasicBlock*> Visited; - Visited.insert(L->getHeader()); // Branches to header make infinite loops. - BasicBlock *ExitBB = nullptr; - if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited)) - return ExitBB; - return nullptr; -} - -/// We have found that we can unswitch currentLoop when LoopCond == Val to -/// simplify the loop. If we decide that this is profitable, -/// unswitch the loop, reprocess the pieces, then return true. -bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val, - Instruction *TI) { - // Check to see if it would be profitable to unswitch current loop. - if (!BranchesInfo.CostAllowsUnswitching()) { - LLVM_DEBUG(dbgs() << "NOT unswitching loop %" - << currentLoop->getHeader()->getName() - << " at non-trivial condition '" << *Val - << "' == " << *LoopCond << "\n" - << ". Cost too high.\n"); - return false; - } - if (hasBranchDivergence && - getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) { - LLVM_DEBUG(dbgs() << "NOT unswitching loop %" - << currentLoop->getHeader()->getName() - << " at non-trivial condition '" << *Val - << "' == " << *LoopCond << "\n" - << ". Condition is divergent.\n"); - return false; - } - - UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI); - return true; -} - -/// Recursively clone the specified loop and all of its children, -/// mapping the blocks with the specified map. -static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, - LoopInfo *LI, LPPassManager *LPM) { - Loop &New = *LI->AllocateLoop(); - if (PL) - PL->addChildLoop(&New); - else - LI->addTopLevelLoop(&New); - LPM->addLoop(New); - - // Add all of the blocks in L to the new loop. - for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); - I != E; ++I) - if (LI->getLoopFor(*I) == L) - New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI); - - // Add all of the subloops to the new loop. - for (Loop *I : *L) - CloneLoop(I, &New, VM, LI, LPM); - - return &New; -} - -/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst, -/// otherwise branch to FalseDest. Insert the code immediately before OldBranch -/// and remove (but not erase!) it from the function. -void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val, - BasicBlock *TrueDest, - BasicBlock *FalseDest, - BranchInst *OldBranch, - Instruction *TI) { - assert(OldBranch->isUnconditional() && "Preheader is not split correctly"); - assert(TrueDest != FalseDest && "Branch targets should be different"); - // Insert a conditional branch on LIC to the two preheaders. The original - // code is the true version and the new code is the false version. - Value *BranchVal = LIC; - bool Swapped = false; - if (!isa<ConstantInt>(Val) || - Val->getType() != Type::getInt1Ty(LIC->getContext())) - BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val); - else if (Val != ConstantInt::getTrue(Val->getContext())) { - // We want to enter the new loop when the condition is true. - std::swap(TrueDest, FalseDest); - Swapped = true; - } - - // Old branch will be removed, so save its parent and successor to update the - // DomTree. - auto *OldBranchSucc = OldBranch->getSuccessor(0); - auto *OldBranchParent = OldBranch->getParent(); - - // Insert the new branch. - BranchInst *BI = - IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI); - if (Swapped) - BI->swapProfMetadata(); - - // Remove the old branch so there is only one branch at the end. This is - // needed to perform DomTree's internal DFS walk on the function's CFG. - OldBranch->removeFromParent(); - - // Inform the DT about the new branch. - if (DT) { - // First, add both successors. - SmallVector<DominatorTree::UpdateType, 3> Updates; - if (TrueDest != OldBranchSucc) - Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest}); - if (FalseDest != OldBranchSucc) - Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest}); - // If both of the new successors are different from the old one, inform the - // DT that the edge was deleted. - if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) { - Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc}); - } - DT->applyUpdates(Updates); - - if (MSSAU) - MSSAU->applyUpdates(Updates, *DT); - } - - // If either edge is critical, split it. This helps preserve LoopSimplify - // form for enclosing loops. - auto Options = - CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA(); - SplitCriticalEdge(BI, 0, Options); - SplitCriticalEdge(BI, 1, Options); -} - -/// Given a loop that has a trivial unswitchable condition in it (a cond branch -/// from its header block to its latch block, where the path through the loop -/// that doesn't execute its body has no side-effects), unswitch it. This -/// doesn't involve any code duplication, just moving the conditional branch -/// outside of the loop and updating loop info. -void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val, - BasicBlock *ExitBlock, - Instruction *TI) { - LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %" - << loopHeader->getName() << " [" << L->getBlocks().size() - << " blocks] in Function " - << L->getHeader()->getParent()->getName() - << " on cond: " << *Val << " == " << *Cond << "\n"); - // We are going to make essential changes to CFG. This may invalidate cached - // information for L or one of its parent loops in SCEV. - if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) - SEWP->getSE().forgetTopmostLoop(L); - - // First step, split the preheader, so that we know that there is a safe place - // to insert the conditional branch. We will change loopPreheader to have a - // conditional branch on Cond. - BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get()); - - // Now that we have a place to insert the conditional branch, create a place - // to branch to: this is the exit block out of the loop that we should - // short-circuit to. - - // Split this block now, so that the loop maintains its exit block, and so - // that the jump from the preheader can execute the contents of the exit block - // without actually branching to it (the exit block should be dominated by the - // loop header, not the preheader). - assert(!L->contains(ExitBlock) && "Exit block is in the loop?"); - BasicBlock *NewExit = - SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get()); - - // Okay, now we have a position to branch from and a position to branch to, - // insert the new conditional branch. - auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator()); - assert(OldBranch && "Failed to split the preheader"); - EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI); - LPM->deleteSimpleAnalysisValue(OldBranch, L); - - // EmitPreheaderBranchOnCondition removed the OldBranch from the function. - // Delete it, as it is no longer needed. - delete OldBranch; - - // We need to reprocess this loop, it could be unswitched again. - redoLoop = true; - - // Now that we know that the loop is never entered when this condition is a - // particular value, rewrite the loop with this info. We know that this will - // at least eliminate the old branch. - RewriteLoopBodyWithConditionConstant(L, Cond, Val, false); - - ++NumTrivial; -} - -/// Check if the first non-constant condition starting from the loop header is -/// a trivial unswitch condition: that is, a condition controls whether or not -/// the loop does anything at all. If it is a trivial condition, unswitching -/// produces no code duplications (equivalently, it produces a simpler loop and -/// a new empty loop, which gets deleted). Therefore always unswitch trivial -/// condition. -bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) { - BasicBlock *CurrentBB = currentLoop->getHeader(); - Instruction *CurrentTerm = CurrentBB->getTerminator(); - LLVMContext &Context = CurrentBB->getContext(); - - // If loop header has only one reachable successor (currently via an - // unconditional branch or constant foldable conditional branch, but - // should also consider adding constant foldable switch instruction in - // future), we should keep looking for trivial condition candidates in - // the successor as well. An alternative is to constant fold conditions - // and merge successors into loop header (then we only need to check header's - // terminator). The reason for not doing this in LoopUnswitch pass is that - // it could potentially break LoopPassManager's invariants. Folding dead - // branches could either eliminate the current loop or make other loops - // unreachable. LCSSA form might also not be preserved after deleting - // branches. The following code keeps traversing loop header's successors - // until it finds the trivial condition candidate (condition that is not a - // constant). Since unswitching generates branches with constant conditions, - // this scenario could be very common in practice. - SmallPtrSet<BasicBlock*, 8> Visited; - - while (true) { - // If we exit loop or reach a previous visited block, then - // we can not reach any trivial condition candidates (unfoldable - // branch instructions or switch instructions) and no unswitch - // can happen. Exit and return false. - if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second) - return false; - - // Check if this loop will execute any side-effecting instructions (e.g. - // stores, calls, volatile loads) in the part of the loop that the code - // *would* execute. Check the header first. - for (Instruction &I : *CurrentBB) - if (I.mayHaveSideEffects()) - return false; - - if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { - if (BI->isUnconditional()) { - CurrentBB = BI->getSuccessor(0); - } else if (BI->getCondition() == ConstantInt::getTrue(Context)) { - CurrentBB = BI->getSuccessor(0); - } else if (BI->getCondition() == ConstantInt::getFalse(Context)) { - CurrentBB = BI->getSuccessor(1); - } else { - // Found a trivial condition candidate: non-foldable conditional branch. - break; - } - } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { - // At this point, any constant-foldable instructions should have probably - // been folded. - ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); - if (!Cond) - break; - // Find the target block we are definitely going to. - CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor(); - } else { - // We do not understand these terminator instructions. - break; - } - - CurrentTerm = CurrentBB->getTerminator(); - } - - // CondVal is the condition that controls the trivial condition. - // LoopExitBB is the BasicBlock that loop exits when meets trivial condition. - Constant *CondVal = nullptr; - BasicBlock *LoopExitBB = nullptr; - - if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) { - // If this isn't branching on an invariant condition, we can't unswitch it. - if (!BI->isConditional()) - return false; - - Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), - currentLoop, Changed).first; - - // Unswitch only if the trivial condition itself is an LIV (not - // partial LIV which could occur in and/or) - if (!LoopCond || LoopCond != BI->getCondition()) - return false; - - // Check to see if a successor of the branch is guaranteed to - // exit through a unique exit block without having any - // side-effects. If so, determine the value of Cond that causes - // it to do this. - if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, - BI->getSuccessor(0)))) { - CondVal = ConstantInt::getTrue(Context); - } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop, - BI->getSuccessor(1)))) { - CondVal = ConstantInt::getFalse(Context); - } - - // If we didn't find a single unique LoopExit block, or if the loop exit - // block contains phi nodes, this isn't trivial. - if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) - return false; // Can't handle this. - - if (EqualityPropUnSafe(*LoopCond)) - return false; - - UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB, - CurrentTerm); - ++NumBranches; - return true; - } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) { - // If this isn't switching on an invariant condition, we can't unswitch it. - Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), - currentLoop, Changed).first; - - // Unswitch only if the trivial condition itself is an LIV (not - // partial LIV which could occur in and/or) - if (!LoopCond || LoopCond != SI->getCondition()) - return false; - - // Check to see if a successor of the switch is guaranteed to go to the - // latch block or exit through a one exit block without having any - // side-effects. If so, determine the value of Cond that causes it to do - // this. - // Note that we can't trivially unswitch on the default case or - // on already unswitched cases. - for (auto Case : SI->cases()) { - BasicBlock *LoopExitCandidate; - if ((LoopExitCandidate = - isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) { - // Okay, we found a trivial case, remember the value that is trivial. - ConstantInt *CaseVal = Case.getCaseValue(); - - // Check that it was not unswitched before, since already unswitched - // trivial vals are looks trivial too. - if (BranchesInfo.isUnswitched(SI, CaseVal)) - continue; - LoopExitBB = LoopExitCandidate; - CondVal = CaseVal; - break; - } - } - - // If we didn't find a single unique LoopExit block, or if the loop exit - // block contains phi nodes, this isn't trivial. - if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin())) - return false; // Can't handle this. - - UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB, - nullptr); - - // We are only unswitching full LIV. - BranchesInfo.setUnswitched(SI, CondVal); - ++NumSwitches; - return true; - } - return false; -} - -/// Split all of the edges from inside the loop to their exit blocks. -/// Update the appropriate Phi nodes as we do so. -void LoopUnswitch::SplitExitEdges(Loop *L, - const SmallVectorImpl<BasicBlock *> &ExitBlocks){ - - for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { - BasicBlock *ExitBlock = ExitBlocks[i]; - SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock), - pred_end(ExitBlock)); - - // Although SplitBlockPredecessors doesn't preserve loop-simplify in - // general, if we call it on all predecessors of all exits then it does. - SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(), - /*PreserveLCSSA*/ true); - } -} - -/// We determined that the loop is profitable to unswitch when LIC equal Val. -/// Split it into loop versions and test the condition outside of either loop. -/// Return the loops created as Out1/Out2. -void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val, - Loop *L, Instruction *TI) { - Function *F = loopHeader->getParent(); - LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %" - << loopHeader->getName() << " [" << L->getBlocks().size() - << " blocks] in Function " << F->getName() << " when '" - << *Val << "' == " << *LIC << "\n"); - - // We are going to make essential changes to CFG. This may invalidate cached - // information for L or one of its parent loops in SCEV. - if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) - SEWP->getSE().forgetTopmostLoop(L); - - LoopBlocks.clear(); - NewBlocks.clear(); - - // First step, split the preheader and exit blocks, and add these blocks to - // the LoopBlocks list. - BasicBlock *NewPreheader = - SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get()); - LoopBlocks.push_back(NewPreheader); - - // We want the loop to come after the preheader, but before the exit blocks. - LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); - - SmallVector<BasicBlock*, 8> ExitBlocks; - L->getUniqueExitBlocks(ExitBlocks); - - // Split all of the edges from inside the loop to their exit blocks. Update - // the appropriate Phi nodes as we do so. - SplitExitEdges(L, ExitBlocks); - - // The exit blocks may have been changed due to edge splitting, recompute. - ExitBlocks.clear(); - L->getUniqueExitBlocks(ExitBlocks); - - // Add exit blocks to the loop blocks. - LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end()); - - // Next step, clone all of the basic blocks that make up the loop (including - // the loop preheader and exit blocks), keeping track of the mapping between - // the instructions and blocks. - NewBlocks.reserve(LoopBlocks.size()); - ValueToValueMapTy VMap; - for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { - BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F); - - NewBlocks.push_back(NewBB); - VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping. - LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L); - } - - // Splice the newly inserted blocks into the function right before the - // original preheader. - F->getBasicBlockList().splice(NewPreheader->getIterator(), - F->getBasicBlockList(), - NewBlocks[0]->getIterator(), F->end()); - - // Now we create the new Loop object for the versioned loop. - Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM); - - // Recalculate unswitching quota, inherit simplified switches info for NewBB, - // Probably clone more loop-unswitch related loop properties. - BranchesInfo.cloneData(NewLoop, L, VMap); - - Loop *ParentLoop = L->getParentLoop(); - if (ParentLoop) { - // Make sure to add the cloned preheader and exit blocks to the parent loop - // as well. - ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI); - } - - for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { - BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]); - // The new exit block should be in the same loop as the old one. - if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i])) - ExitBBLoop->addBasicBlockToLoop(NewExit, *LI); - - assert(NewExit->getTerminator()->getNumSuccessors() == 1 && - "Exit block should have been split to have one successor!"); - BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); - - // If the successor of the exit block had PHI nodes, add an entry for - // NewExit. - for (PHINode &PN : ExitSucc->phis()) { - Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]); - ValueToValueMapTy::iterator It = VMap.find(V); - if (It != VMap.end()) V = It->second; - PN.addIncoming(V, NewExit); - } - - if (LandingPadInst *LPad = NewExit->getLandingPadInst()) { - PHINode *PN = PHINode::Create(LPad->getType(), 0, "", - &*ExitSucc->getFirstInsertionPt()); - - for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc); - I != E; ++I) { - BasicBlock *BB = *I; - LandingPadInst *LPI = BB->getLandingPadInst(); - LPI->replaceAllUsesWith(PN); - PN->addIncoming(LPI, BB); - } - } - } - - // Rewrite the code to refer to itself. - for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) { - for (Instruction &I : *NewBlocks[i]) { - RemapInstruction(&I, VMap, - RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); - if (auto *II = dyn_cast<IntrinsicInst>(&I)) - if (II->getIntrinsicID() == Intrinsic::assume) - AC->registerAssumption(II); - } - } - - // Rewrite the original preheader to select between versions of the loop. - BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator()); - assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] && - "Preheader splitting did not work correctly!"); - - if (MSSAU) { - // Update MemorySSA after cloning, and before splitting to unreachables, - // since that invalidates the 1:1 mapping of clones in VMap. - LoopBlocksRPO LBRPO(L); - LBRPO.perform(LI); - MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap); - } - - // Emit the new branch that selects between the two versions of this loop. - EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR, - TI); - LPM->deleteSimpleAnalysisValue(OldBR, L); - if (MSSAU) { - // Update MemoryPhis in Exit blocks. - MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT); - if (VerifyMemorySSA) - MSSA->verifyMemorySSA(); - } - - // The OldBr was replaced by a new one and removed (but not erased) by - // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it. - delete OldBR; - - LoopProcessWorklist.push_back(NewLoop); - redoLoop = true; - - // Keep a WeakTrackingVH holding onto LIC. If the first call to - // RewriteLoopBody - // deletes the instruction (for example by simplifying a PHI that feeds into - // the condition that we're unswitching on), we don't rewrite the second - // iteration. - WeakTrackingVH LICHandle(LIC); - - // Now we rewrite the original code to know that the condition is true and the - // new code to know that the condition is false. - RewriteLoopBodyWithConditionConstant(L, LIC, Val, false); - - // It's possible that simplifying one loop could cause the other to be - // changed to another value or a constant. If its a constant, don't simplify - // it. - if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop && - LICHandle && !isa<Constant>(LICHandle)) - RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true); - - if (MSSA && VerifyMemorySSA) - MSSA->verifyMemorySSA(); -} - -/// Remove all instances of I from the worklist vector specified. -static void RemoveFromWorklist(Instruction *I, - std::vector<Instruction*> &Worklist) { - - Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I), - Worklist.end()); -} - -/// When we find that I really equals V, remove I from the -/// program, replacing all uses with V and update the worklist. -static void ReplaceUsesOfWith(Instruction *I, Value *V, - std::vector<Instruction *> &Worklist, Loop *L, - LPPassManager *LPM, MemorySSAUpdater *MSSAU) { - LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n"); - - // Add uses to the worklist, which may be dead now. - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) - if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) - Worklist.push_back(Use); - - // Add users to the worklist which may be simplified now. - for (User *U : I->users()) - Worklist.push_back(cast<Instruction>(U)); - LPM->deleteSimpleAnalysisValue(I, L); - RemoveFromWorklist(I, Worklist); - I->replaceAllUsesWith(V); - if (!I->mayHaveSideEffects()) { - if (MSSAU) - MSSAU->removeMemoryAccess(I); - I->eraseFromParent(); - } - ++NumSimplify; -} - -/// We know either that the value LIC has the value specified by Val in the -/// specified loop, or we know it does NOT have that value. -/// Rewrite any uses of LIC or of properties correlated to it. -void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC, - Constant *Val, - bool IsEqual) { - assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?"); - - // FIXME: Support correlated properties, like: - // for (...) - // if (li1 < li2) - // ... - // if (li1 > li2) - // ... - - // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches, - // selects, switches. - std::vector<Instruction*> Worklist; - LLVMContext &Context = Val->getContext(); - - // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC - // in the loop with the appropriate one directly. - if (IsEqual || (isa<ConstantInt>(Val) && - Val->getType()->isIntegerTy(1))) { - Value *Replacement; - if (IsEqual) - Replacement = Val; - else - Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()), - !cast<ConstantInt>(Val)->getZExtValue()); - - for (User *U : LIC->users()) { - Instruction *UI = dyn_cast<Instruction>(U); - if (!UI || !L->contains(UI)) - continue; - Worklist.push_back(UI); - } - - for (Instruction *UI : Worklist) - UI->replaceUsesOfWith(LIC, Replacement); - - SimplifyCode(Worklist, L); - return; - } - - // Otherwise, we don't know the precise value of LIC, but we do know that it - // is certainly NOT "Val". As such, simplify any uses in the loop that we - // can. This case occurs when we unswitch switch statements. - for (User *U : LIC->users()) { - Instruction *UI = dyn_cast<Instruction>(U); - if (!UI || !L->contains(UI)) - continue; - - // At this point, we know LIC is definitely not Val. Try to use some simple - // logic to simplify the user w.r.t. to the context. - if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) { - if (LI->replacementPreservesLCSSAForm(UI, Replacement)) { - // This in-loop instruction has been simplified w.r.t. its context, - // i.e. LIC != Val, make sure we propagate its replacement value to - // all its users. - // - // We can not yet delete UI, the LIC user, yet, because that would invalidate - // the LIC->users() iterator !. However, we can make this instruction - // dead by replacing all its users and push it onto the worklist so that - // it can be properly deleted and its operands simplified. - UI->replaceAllUsesWith(Replacement); - } - } - - // This is a LIC user, push it into the worklist so that SimplifyCode can - // attempt to simplify it. - Worklist.push_back(UI); - - // If we know that LIC is not Val, use this info to simplify code. - SwitchInst *SI = dyn_cast<SwitchInst>(UI); - if (!SI || !isa<ConstantInt>(Val)) continue; - - // NOTE: if a case value for the switch is unswitched out, we record it - // after the unswitch finishes. We can not record it here as the switch - // is not a direct user of the partial LIV. - SwitchInst::CaseHandle DeadCase = - *SI->findCaseValue(cast<ConstantInt>(Val)); - // Default case is live for multiple values. - if (DeadCase == *SI->case_default()) - continue; - - // Found a dead case value. Don't remove PHI nodes in the - // successor if they become single-entry, those PHI nodes may - // be in the Users list. - - BasicBlock *Switch = SI->getParent(); - BasicBlock *SISucc = DeadCase.getCaseSuccessor(); - BasicBlock *Latch = L->getLoopLatch(); - - if (!SI->findCaseDest(SISucc)) continue; // Edge is critical. - // If the DeadCase successor dominates the loop latch, then the - // transformation isn't safe since it will delete the sole predecessor edge - // to the latch. - if (Latch && DT->dominates(SISucc, Latch)) - continue; - - // FIXME: This is a hack. We need to keep the successor around - // and hooked up so as to preserve the loop structure, because - // trying to update it is complicated. So instead we preserve the - // loop structure and put the block on a dead code path. - SplitEdge(Switch, SISucc, DT, LI, MSSAU.get()); - // Compute the successors instead of relying on the return value - // of SplitEdge, since it may have split the switch successor - // after PHI nodes. - BasicBlock *NewSISucc = DeadCase.getCaseSuccessor(); - BasicBlock *OldSISucc = *succ_begin(NewSISucc); - // Create an "unreachable" destination. - BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable", - Switch->getParent(), - OldSISucc); - new UnreachableInst(Context, Abort); - // Force the new case destination to branch to the "unreachable" - // block while maintaining a (dead) CFG edge to the old block. - NewSISucc->getTerminator()->eraseFromParent(); - BranchInst::Create(Abort, OldSISucc, - ConstantInt::getTrue(Context), NewSISucc); - // Release the PHI operands for this edge. - for (PHINode &PN : NewSISucc->phis()) - PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType())); - // Tell the domtree about the new block. We don't fully update the - // domtree here -- instead we force it to do a full recomputation - // after the pass is complete -- but we do need to inform it of - // new blocks. - DT->addNewBlock(Abort, NewSISucc); - } - - SimplifyCode(Worklist, L); -} - -/// Now that we have simplified some instructions in the loop, walk over it and -/// constant prop, dce, and fold control flow where possible. Note that this is -/// effectively a very simple loop-structure-aware optimizer. During processing -/// of this loop, L could very well be deleted, so it must not be used. -/// -/// FIXME: When the loop optimizer is more mature, separate this out to a new -/// pass. -/// -void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) { - const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); - while (!Worklist.empty()) { - Instruction *I = Worklist.back(); - Worklist.pop_back(); - - // Simple DCE. - if (isInstructionTriviallyDead(I)) { - LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n"); - - // Add uses to the worklist, which may be dead now. - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) - if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i))) - Worklist.push_back(Use); - LPM->deleteSimpleAnalysisValue(I, L); - RemoveFromWorklist(I, Worklist); - if (MSSAU) - MSSAU->removeMemoryAccess(I); - I->eraseFromParent(); - ++NumSimplify; - continue; - } - - // See if instruction simplification can hack this up. This is common for - // things like "select false, X, Y" after unswitching made the condition be - // 'false'. TODO: update the domtree properly so we can pass it here. - if (Value *V = SimplifyInstruction(I, DL)) - if (LI->replacementPreservesLCSSAForm(I, V)) { - ReplaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get()); - continue; - } - - // Special case hacks that appear commonly in unswitched code. - if (BranchInst *BI = dyn_cast<BranchInst>(I)) { - if (BI->isUnconditional()) { - // If BI's parent is the only pred of the successor, fold the two blocks - // together. - BasicBlock *Pred = BI->getParent(); - BasicBlock *Succ = BI->getSuccessor(0); - BasicBlock *SinglePred = Succ->getSinglePredecessor(); - if (!SinglePred) continue; // Nothing to do. - assert(SinglePred == Pred && "CFG broken"); - - LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- " - << Succ->getName() << "\n"); - - // Resolve any single entry PHI nodes in Succ. - while (PHINode *PN = dyn_cast<PHINode>(Succ->begin())) - ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM, - MSSAU.get()); - - // If Succ has any successors with PHI nodes, update them to have - // entries coming from Pred instead of Succ. - Succ->replaceAllUsesWith(Pred); - - // Move all of the successor contents from Succ to Pred. - Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(), - Succ->begin(), Succ->end()); - if (MSSAU) - MSSAU->moveAllAfterMergeBlocks(Succ, Pred, BI); - LPM->deleteSimpleAnalysisValue(BI, L); - RemoveFromWorklist(BI, Worklist); - BI->eraseFromParent(); - - // Remove Succ from the loop tree. - LI->removeBlock(Succ); - LPM->deleteSimpleAnalysisValue(Succ, L); - Succ->eraseFromParent(); - ++NumSimplify; - continue; - } - - continue; - } - } -} - -/// Simple simplifications we can do given the information that Cond is -/// definitely not equal to Val. -Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst, - Value *Invariant, - Constant *Val) { - // icmp eq cond, val -> false - ICmpInst *CI = dyn_cast<ICmpInst>(Inst); - if (CI && CI->isEquality()) { - Value *Op0 = CI->getOperand(0); - Value *Op1 = CI->getOperand(1); - if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) { - LLVMContext &Ctx = Inst->getContext(); - if (CI->getPredicate() == CmpInst::ICMP_EQ) - return ConstantInt::getFalse(Ctx); - else - return ConstantInt::getTrue(Ctx); - } - } - - // FIXME: there may be other opportunities, e.g. comparison with floating - // point, or Invariant - Val != 0, etc. - return nullptr; -} |
