diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp | 2846 | 
1 files changed, 0 insertions, 2846 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp b/contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp deleted file mode 100644 index c358258d24cf..000000000000 --- a/contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp +++ /dev/null @@ -1,2846 +0,0 @@ -//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Rewrite call/invoke instructions so as to make potential relocations -// performed by the garbage collector explicit in the IR. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" - -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/DomTreeUpdater.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Statepoint.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/PromoteMemToReg.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <iterator> -#include <set> -#include <string> -#include <utility> -#include <vector> - -#define DEBUG_TYPE "rewrite-statepoints-for-gc" - -using namespace llvm; - -// Print the liveset found at the insert location -static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, -                                  cl::init(false)); -static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, -                                      cl::init(false)); - -// Print out the base pointers for debugging -static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, -                                       cl::init(false)); - -// Cost threshold measuring when it is profitable to rematerialize value instead -// of relocating it -static cl::opt<unsigned> -RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, -                           cl::init(6)); - -#ifdef EXPENSIVE_CHECKS -static bool ClobberNonLive = true; -#else -static bool ClobberNonLive = false; -#endif - -static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", -                                                  cl::location(ClobberNonLive), -                                                  cl::Hidden); - -static cl::opt<bool> -    AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", -                                   cl::Hidden, cl::init(true)); - -/// The IR fed into RewriteStatepointsForGC may have had attributes and -/// metadata implying dereferenceability that are no longer valid/correct after -/// RewriteStatepointsForGC has run. This is because semantically, after -/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire -/// heap. stripNonValidData (conservatively) restores -/// correctness by erasing all attributes in the module that externally imply -/// dereferenceability. Similar reasoning also applies to the noalias -/// attributes and metadata. gc.statepoint can touch the entire heap including -/// noalias objects. -/// Apart from attributes and metadata, we also remove instructions that imply -/// constant physical memory: llvm.invariant.start. -static void stripNonValidData(Module &M); - -static bool shouldRewriteStatepointsIn(Function &F); - -PreservedAnalyses RewriteStatepointsForGC::run(Module &M, -                                               ModuleAnalysisManager &AM) { -  bool Changed = false; -  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); -  for (Function &F : M) { -    // Nothing to do for declarations. -    if (F.isDeclaration() || F.empty()) -      continue; - -    // Policy choice says not to rewrite - the most common reason is that we're -    // compiling code without a GCStrategy. -    if (!shouldRewriteStatepointsIn(F)) -      continue; - -    auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); -    auto &TTI = FAM.getResult<TargetIRAnalysis>(F); -    auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); -    Changed |= runOnFunction(F, DT, TTI, TLI); -  } -  if (!Changed) -    return PreservedAnalyses::all(); - -  // stripNonValidData asserts that shouldRewriteStatepointsIn -  // returns true for at least one function in the module.  Since at least -  // one function changed, we know that the precondition is satisfied. -  stripNonValidData(M); - -  PreservedAnalyses PA; -  PA.preserve<TargetIRAnalysis>(); -  PA.preserve<TargetLibraryAnalysis>(); -  return PA; -} - -namespace { - -class RewriteStatepointsForGCLegacyPass : public ModulePass { -  RewriteStatepointsForGC Impl; - -public: -  static char ID; // Pass identification, replacement for typeid - -  RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { -    initializeRewriteStatepointsForGCLegacyPassPass( -        *PassRegistry::getPassRegistry()); -  } - -  bool runOnModule(Module &M) override { -    bool Changed = false; -    const TargetLibraryInfo &TLI = -        getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); -    for (Function &F : M) { -      // Nothing to do for declarations. -      if (F.isDeclaration() || F.empty()) -        continue; - -      // Policy choice says not to rewrite - the most common reason is that -      // we're compiling code without a GCStrategy. -      if (!shouldRewriteStatepointsIn(F)) -        continue; - -      TargetTransformInfo &TTI = -          getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); -      auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); - -      Changed |= Impl.runOnFunction(F, DT, TTI, TLI); -    } - -    if (!Changed) -      return false; - -    // stripNonValidData asserts that shouldRewriteStatepointsIn -    // returns true for at least one function in the module.  Since at least -    // one function changed, we know that the precondition is satisfied. -    stripNonValidData(M); -    return true; -  } - -  void getAnalysisUsage(AnalysisUsage &AU) const override { -    // We add and rewrite a bunch of instructions, but don't really do much -    // else.  We could in theory preserve a lot more analyses here. -    AU.addRequired<DominatorTreeWrapperPass>(); -    AU.addRequired<TargetTransformInfoWrapperPass>(); -    AU.addRequired<TargetLibraryInfoWrapperPass>(); -  } -}; - -} // end anonymous namespace - -char RewriteStatepointsForGCLegacyPass::ID = 0; - -ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { -  return new RewriteStatepointsForGCLegacyPass(); -} - -INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, -                      "rewrite-statepoints-for-gc", -                      "Make relocations explicit at statepoints", false, false) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, -                    "rewrite-statepoints-for-gc", -                    "Make relocations explicit at statepoints", false, false) - -namespace { - -struct GCPtrLivenessData { -  /// Values defined in this block. -  MapVector<BasicBlock *, SetVector<Value *>> KillSet; - -  /// Values used in this block (and thus live); does not included values -  /// killed within this block. -  MapVector<BasicBlock *, SetVector<Value *>> LiveSet; - -  /// Values live into this basic block (i.e. used by any -  /// instruction in this basic block or ones reachable from here) -  MapVector<BasicBlock *, SetVector<Value *>> LiveIn; - -  /// Values live out of this basic block (i.e. live into -  /// any successor block) -  MapVector<BasicBlock *, SetVector<Value *>> LiveOut; -}; - -// The type of the internal cache used inside the findBasePointers family -// of functions.  From the callers perspective, this is an opaque type and -// should not be inspected. -// -// In the actual implementation this caches two relations: -// - The base relation itself (i.e. this pointer is based on that one) -// - The base defining value relation (i.e. before base_phi insertion) -// Generally, after the execution of a full findBasePointer call, only the -// base relation will remain.  Internally, we add a mixture of the two -// types, then update all the second type to the first type -using DefiningValueMapTy = MapVector<Value *, Value *>; -using StatepointLiveSetTy = SetVector<Value *>; -using RematerializedValueMapTy = -    MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; - -struct PartiallyConstructedSafepointRecord { -  /// The set of values known to be live across this safepoint -  StatepointLiveSetTy LiveSet; - -  /// Mapping from live pointers to a base-defining-value -  MapVector<Value *, Value *> PointerToBase; - -  /// The *new* gc.statepoint instruction itself.  This produces the token -  /// that normal path gc.relocates and the gc.result are tied to. -  Instruction *StatepointToken; - -  /// Instruction to which exceptional gc relocates are attached -  /// Makes it easier to iterate through them during relocationViaAlloca. -  Instruction *UnwindToken; - -  /// Record live values we are rematerialized instead of relocating. -  /// They are not included into 'LiveSet' field. -  /// Maps rematerialized copy to it's original value. -  RematerializedValueMapTy RematerializedValues; -}; - -} // end anonymous namespace - -static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { -  Optional<OperandBundleUse> DeoptBundle = -      Call->getOperandBundle(LLVMContext::OB_deopt); - -  if (!DeoptBundle.hasValue()) { -    assert(AllowStatepointWithNoDeoptInfo && -           "Found non-leaf call without deopt info!"); -    return None; -  } - -  return DeoptBundle.getValue().Inputs; -} - -/// Compute the live-in set for every basic block in the function -static void computeLiveInValues(DominatorTree &DT, Function &F, -                                GCPtrLivenessData &Data); - -/// Given results from the dataflow liveness computation, find the set of live -/// Values at a particular instruction. -static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, -                              StatepointLiveSetTy &out); - -// TODO: Once we can get to the GCStrategy, this becomes -// Optional<bool> isGCManagedPointer(const Type *Ty) const override { - -static bool isGCPointerType(Type *T) { -  if (auto *PT = dyn_cast<PointerType>(T)) -    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our -    // GC managed heap.  We know that a pointer into this heap needs to be -    // updated and that no other pointer does. -    return PT->getAddressSpace() == 1; -  return false; -} - -// Return true if this type is one which a) is a gc pointer or contains a GC -// pointer and b) is of a type this code expects to encounter as a live value. -// (The insertion code will assert that a type which matches (a) and not (b) -// is not encountered.) -static bool isHandledGCPointerType(Type *T) { -  // We fully support gc pointers -  if (isGCPointerType(T)) -    return true; -  // We partially support vectors of gc pointers. The code will assert if it -  // can't handle something. -  if (auto VT = dyn_cast<VectorType>(T)) -    if (isGCPointerType(VT->getElementType())) -      return true; -  return false; -} - -#ifndef NDEBUG -/// Returns true if this type contains a gc pointer whether we know how to -/// handle that type or not. -static bool containsGCPtrType(Type *Ty) { -  if (isGCPointerType(Ty)) -    return true; -  if (VectorType *VT = dyn_cast<VectorType>(Ty)) -    return isGCPointerType(VT->getScalarType()); -  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) -    return containsGCPtrType(AT->getElementType()); -  if (StructType *ST = dyn_cast<StructType>(Ty)) -    return llvm::any_of(ST->elements(), containsGCPtrType); -  return false; -} - -// Returns true if this is a type which a) is a gc pointer or contains a GC -// pointer and b) is of a type which the code doesn't expect (i.e. first class -// aggregates).  Used to trip assertions. -static bool isUnhandledGCPointerType(Type *Ty) { -  return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); -} -#endif - -// Return the name of the value suffixed with the provided value, or if the -// value didn't have a name, the default value specified. -static std::string suffixed_name_or(Value *V, StringRef Suffix, -                                    StringRef DefaultName) { -  return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); -} - -// Conservatively identifies any definitions which might be live at the -// given instruction. The  analysis is performed immediately before the -// given instruction. Values defined by that instruction are not considered -// live.  Values used by that instruction are considered live. -static void analyzeParsePointLiveness( -    DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, -    PartiallyConstructedSafepointRecord &Result) { -  StatepointLiveSetTy LiveSet; -  findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); - -  if (PrintLiveSet) { -    dbgs() << "Live Variables:\n"; -    for (Value *V : LiveSet) -      dbgs() << " " << V->getName() << " " << *V << "\n"; -  } -  if (PrintLiveSetSize) { -    dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n"; -    dbgs() << "Number live values: " << LiveSet.size() << "\n"; -  } -  Result.LiveSet = LiveSet; -} - -static bool isKnownBaseResult(Value *V); - -namespace { - -/// A single base defining value - An immediate base defining value for an -/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. -/// For instructions which have multiple pointer [vector] inputs or that -/// transition between vector and scalar types, there is no immediate base -/// defining value.  The 'base defining value' for 'Def' is the transitive -/// closure of this relation stopping at the first instruction which has no -/// immediate base defining value.  The b.d.v. might itself be a base pointer, -/// but it can also be an arbitrary derived pointer. -struct BaseDefiningValueResult { -  /// Contains the value which is the base defining value. -  Value * const BDV; - -  /// True if the base defining value is also known to be an actual base -  /// pointer. -  const bool IsKnownBase; - -  BaseDefiningValueResult(Value *BDV, bool IsKnownBase) -    : BDV(BDV), IsKnownBase(IsKnownBase) { -#ifndef NDEBUG -    // Check consistency between new and old means of checking whether a BDV is -    // a base. -    bool MustBeBase = isKnownBaseResult(BDV); -    assert(!MustBeBase || MustBeBase == IsKnownBase); -#endif -  } -}; - -} // end anonymous namespace - -static BaseDefiningValueResult findBaseDefiningValue(Value *I); - -/// Return a base defining value for the 'Index' element of the given vector -/// instruction 'I'.  If Index is null, returns a BDV for the entire vector -/// 'I'.  As an optimization, this method will try to determine when the -/// element is known to already be a base pointer.  If this can be established, -/// the second value in the returned pair will be true.  Note that either a -/// vector or a pointer typed value can be returned.  For the former, the -/// vector returned is a BDV (and possibly a base) of the entire vector 'I'. -/// If the later, the return pointer is a BDV (or possibly a base) for the -/// particular element in 'I'. -static BaseDefiningValueResult -findBaseDefiningValueOfVector(Value *I) { -  // Each case parallels findBaseDefiningValue below, see that code for -  // detailed motivation. - -  if (isa<Argument>(I)) -    // An incoming argument to the function is a base pointer -    return BaseDefiningValueResult(I, true); - -  if (isa<Constant>(I)) -    // Base of constant vector consists only of constant null pointers. -    // For reasoning see similar case inside 'findBaseDefiningValue' function. -    return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), -                                   true); - -  if (isa<LoadInst>(I)) -    return BaseDefiningValueResult(I, true); - -  if (isa<InsertElementInst>(I)) -    // We don't know whether this vector contains entirely base pointers or -    // not.  To be conservatively correct, we treat it as a BDV and will -    // duplicate code as needed to construct a parallel vector of bases. -    return BaseDefiningValueResult(I, false); - -  if (isa<ShuffleVectorInst>(I)) -    // We don't know whether this vector contains entirely base pointers or -    // not.  To be conservatively correct, we treat it as a BDV and will -    // duplicate code as needed to construct a parallel vector of bases. -    // TODO: There a number of local optimizations which could be applied here -    // for particular sufflevector patterns. -    return BaseDefiningValueResult(I, false); - -  // The behavior of getelementptr instructions is the same for vector and -  // non-vector data types. -  if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) -    return findBaseDefiningValue(GEP->getPointerOperand()); - -  // If the pointer comes through a bitcast of a vector of pointers to -  // a vector of another type of pointer, then look through the bitcast -  if (auto *BC = dyn_cast<BitCastInst>(I)) -    return findBaseDefiningValue(BC->getOperand(0)); - -  // We assume that functions in the source language only return base -  // pointers.  This should probably be generalized via attributes to support -  // both source language and internal functions. -  if (isa<CallInst>(I) || isa<InvokeInst>(I)) -    return BaseDefiningValueResult(I, true); - -  // A PHI or Select is a base defining value.  The outer findBasePointer -  // algorithm is responsible for constructing a base value for this BDV. -  assert((isa<SelectInst>(I) || isa<PHINode>(I)) && -         "unknown vector instruction - no base found for vector element"); -  return BaseDefiningValueResult(I, false); -} - -/// Helper function for findBasePointer - Will return a value which either a) -/// defines the base pointer for the input, b) blocks the simple search -/// (i.e. a PHI or Select of two derived pointers), or c) involves a change -/// from pointer to vector type or back. -static BaseDefiningValueResult findBaseDefiningValue(Value *I) { -  assert(I->getType()->isPtrOrPtrVectorTy() && -         "Illegal to ask for the base pointer of a non-pointer type"); - -  if (I->getType()->isVectorTy()) -    return findBaseDefiningValueOfVector(I); - -  if (isa<Argument>(I)) -    // An incoming argument to the function is a base pointer -    // We should have never reached here if this argument isn't an gc value -    return BaseDefiningValueResult(I, true); - -  if (isa<Constant>(I)) { -    // We assume that objects with a constant base (e.g. a global) can't move -    // and don't need to be reported to the collector because they are always -    // live. Besides global references, all kinds of constants (e.g. undef, -    // constant expressions, null pointers) can be introduced by the inliner or -    // the optimizer, especially on dynamically dead paths. -    // Here we treat all of them as having single null base. By doing this we -    // trying to avoid problems reporting various conflicts in a form of -    // "phi (const1, const2)" or "phi (const, regular gc ptr)". -    // See constant.ll file for relevant test cases. - -    return BaseDefiningValueResult( -        ConstantPointerNull::get(cast<PointerType>(I->getType())), true); -  } - -  if (CastInst *CI = dyn_cast<CastInst>(I)) { -    Value *Def = CI->stripPointerCasts(); -    // If stripping pointer casts changes the address space there is an -    // addrspacecast in between. -    assert(cast<PointerType>(Def->getType())->getAddressSpace() == -               cast<PointerType>(CI->getType())->getAddressSpace() && -           "unsupported addrspacecast"); -    // If we find a cast instruction here, it means we've found a cast which is -    // not simply a pointer cast (i.e. an inttoptr).  We don't know how to -    // handle int->ptr conversion. -    assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); -    return findBaseDefiningValue(Def); -  } - -  if (isa<LoadInst>(I)) -    // The value loaded is an gc base itself -    return BaseDefiningValueResult(I, true); - -  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) -    // The base of this GEP is the base -    return findBaseDefiningValue(GEP->getPointerOperand()); - -  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { -    switch (II->getIntrinsicID()) { -    default: -      // fall through to general call handling -      break; -    case Intrinsic::experimental_gc_statepoint: -      llvm_unreachable("statepoints don't produce pointers"); -    case Intrinsic::experimental_gc_relocate: -      // Rerunning safepoint insertion after safepoints are already -      // inserted is not supported.  It could probably be made to work, -      // but why are you doing this?  There's no good reason. -      llvm_unreachable("repeat safepoint insertion is not supported"); -    case Intrinsic::gcroot: -      // Currently, this mechanism hasn't been extended to work with gcroot. -      // There's no reason it couldn't be, but I haven't thought about the -      // implications much. -      llvm_unreachable( -          "interaction with the gcroot mechanism is not supported"); -    } -  } -  // We assume that functions in the source language only return base -  // pointers.  This should probably be generalized via attributes to support -  // both source language and internal functions. -  if (isa<CallInst>(I) || isa<InvokeInst>(I)) -    return BaseDefiningValueResult(I, true); - -  // TODO: I have absolutely no idea how to implement this part yet.  It's not -  // necessarily hard, I just haven't really looked at it yet. -  assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); - -  if (isa<AtomicCmpXchgInst>(I)) -    // A CAS is effectively a atomic store and load combined under a -    // predicate.  From the perspective of base pointers, we just treat it -    // like a load. -    return BaseDefiningValueResult(I, true); - -  assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " -                                   "binary ops which don't apply to pointers"); - -  // The aggregate ops.  Aggregates can either be in the heap or on the -  // stack, but in either case, this is simply a field load.  As a result, -  // this is a defining definition of the base just like a load is. -  if (isa<ExtractValueInst>(I)) -    return BaseDefiningValueResult(I, true); - -  // We should never see an insert vector since that would require we be -  // tracing back a struct value not a pointer value. -  assert(!isa<InsertValueInst>(I) && -         "Base pointer for a struct is meaningless"); - -  // An extractelement produces a base result exactly when it's input does. -  // We may need to insert a parallel instruction to extract the appropriate -  // element out of the base vector corresponding to the input. Given this, -  // it's analogous to the phi and select case even though it's not a merge. -  if (isa<ExtractElementInst>(I)) -    // Note: There a lot of obvious peephole cases here.  This are deliberately -    // handled after the main base pointer inference algorithm to make writing -    // test cases to exercise that code easier. -    return BaseDefiningValueResult(I, false); - -  // The last two cases here don't return a base pointer.  Instead, they -  // return a value which dynamically selects from among several base -  // derived pointers (each with it's own base potentially).  It's the job of -  // the caller to resolve these. -  assert((isa<SelectInst>(I) || isa<PHINode>(I)) && -         "missing instruction case in findBaseDefiningValing"); -  return BaseDefiningValueResult(I, false); -} - -/// Returns the base defining value for this value. -static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { -  Value *&Cached = Cache[I]; -  if (!Cached) { -    Cached = findBaseDefiningValue(I).BDV; -    LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " -                      << Cached->getName() << "\n"); -  } -  assert(Cache[I] != nullptr); -  return Cached; -} - -/// Return a base pointer for this value if known.  Otherwise, return it's -/// base defining value. -static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { -  Value *Def = findBaseDefiningValueCached(I, Cache); -  auto Found = Cache.find(Def); -  if (Found != Cache.end()) { -    // Either a base-of relation, or a self reference.  Caller must check. -    return Found->second; -  } -  // Only a BDV available -  return Def; -} - -/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, -/// is it known to be a base pointer?  Or do we need to continue searching. -static bool isKnownBaseResult(Value *V) { -  if (!isa<PHINode>(V) && !isa<SelectInst>(V) && -      !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && -      !isa<ShuffleVectorInst>(V)) { -    // no recursion possible -    return true; -  } -  if (isa<Instruction>(V) && -      cast<Instruction>(V)->getMetadata("is_base_value")) { -    // This is a previously inserted base phi or select.  We know -    // that this is a base value. -    return true; -  } - -  // We need to keep searching -  return false; -} - -namespace { - -/// Models the state of a single base defining value in the findBasePointer -/// algorithm for determining where a new instruction is needed to propagate -/// the base of this BDV. -class BDVState { -public: -  enum Status { Unknown, Base, Conflict }; - -  BDVState() : BaseValue(nullptr) {} - -  explicit BDVState(Status Status, Value *BaseValue = nullptr) -      : Status(Status), BaseValue(BaseValue) { -    assert(Status != Base || BaseValue); -  } - -  explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} - -  Status getStatus() const { return Status; } -  Value *getBaseValue() const { return BaseValue; } - -  bool isBase() const { return getStatus() == Base; } -  bool isUnknown() const { return getStatus() == Unknown; } -  bool isConflict() const { return getStatus() == Conflict; } - -  bool operator==(const BDVState &Other) const { -    return BaseValue == Other.BaseValue && Status == Other.Status; -  } - -  bool operator!=(const BDVState &other) const { return !(*this == other); } - -  LLVM_DUMP_METHOD -  void dump() const { -    print(dbgs()); -    dbgs() << '\n'; -  } - -  void print(raw_ostream &OS) const { -    switch (getStatus()) { -    case Unknown: -      OS << "U"; -      break; -    case Base: -      OS << "B"; -      break; -    case Conflict: -      OS << "C"; -      break; -    } -    OS << " (" << getBaseValue() << " - " -       << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; -  } - -private: -  Status Status = Unknown; -  AssertingVH<Value> BaseValue; // Non-null only if Status == Base. -}; - -} // end anonymous namespace - -#ifndef NDEBUG -static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { -  State.print(OS); -  return OS; -} -#endif - -static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { -  switch (LHS.getStatus()) { -  case BDVState::Unknown: -    return RHS; - -  case BDVState::Base: -    assert(LHS.getBaseValue() && "can't be null"); -    if (RHS.isUnknown()) -      return LHS; - -    if (RHS.isBase()) { -      if (LHS.getBaseValue() == RHS.getBaseValue()) { -        assert(LHS == RHS && "equality broken!"); -        return LHS; -      } -      return BDVState(BDVState::Conflict); -    } -    assert(RHS.isConflict() && "only three states!"); -    return BDVState(BDVState::Conflict); - -  case BDVState::Conflict: -    return LHS; -  } -  llvm_unreachable("only three states!"); -} - -// Values of type BDVState form a lattice, and this function implements the meet -// operation. -static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { -  BDVState Result = meetBDVStateImpl(LHS, RHS); -  assert(Result == meetBDVStateImpl(RHS, LHS) && -         "Math is wrong: meet does not commute!"); -  return Result; -} - -/// For a given value or instruction, figure out what base ptr its derived from. -/// For gc objects, this is simply itself.  On success, returns a value which is -/// the base pointer.  (This is reliable and can be used for relocation.)  On -/// failure, returns nullptr. -static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { -  Value *Def = findBaseOrBDV(I, Cache); - -  if (isKnownBaseResult(Def)) -    return Def; - -  // Here's the rough algorithm: -  // - For every SSA value, construct a mapping to either an actual base -  //   pointer or a PHI which obscures the base pointer. -  // - Construct a mapping from PHI to unknown TOP state.  Use an -  //   optimistic algorithm to propagate base pointer information.  Lattice -  //   looks like: -  //   UNKNOWN -  //   b1 b2 b3 b4 -  //   CONFLICT -  //   When algorithm terminates, all PHIs will either have a single concrete -  //   base or be in a conflict state. -  // - For every conflict, insert a dummy PHI node without arguments.  Add -  //   these to the base[Instruction] = BasePtr mapping.  For every -  //   non-conflict, add the actual base. -  //  - For every conflict, add arguments for the base[a] of each input -  //   arguments. -  // -  // Note: A simpler form of this would be to add the conflict form of all -  // PHIs without running the optimistic algorithm.  This would be -  // analogous to pessimistic data flow and would likely lead to an -  // overall worse solution. - -#ifndef NDEBUG -  auto isExpectedBDVType = [](Value *BDV) { -    return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || -           isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || -           isa<ShuffleVectorInst>(BDV); -  }; -#endif - -  // Once populated, will contain a mapping from each potentially non-base BDV -  // to a lattice value (described above) which corresponds to that BDV. -  // We use the order of insertion (DFS over the def/use graph) to provide a -  // stable deterministic ordering for visiting DenseMaps (which are unordered) -  // below.  This is important for deterministic compilation. -  MapVector<Value *, BDVState> States; - -  // Recursively fill in all base defining values reachable from the initial -  // one for which we don't already know a definite base value for -  /* scope */ { -    SmallVector<Value*, 16> Worklist; -    Worklist.push_back(Def); -    States.insert({Def, BDVState()}); -    while (!Worklist.empty()) { -      Value *Current = Worklist.pop_back_val(); -      assert(!isKnownBaseResult(Current) && "why did it get added?"); - -      auto visitIncomingValue = [&](Value *InVal) { -        Value *Base = findBaseOrBDV(InVal, Cache); -        if (isKnownBaseResult(Base)) -          // Known bases won't need new instructions introduced and can be -          // ignored safely -          return; -        assert(isExpectedBDVType(Base) && "the only non-base values " -               "we see should be base defining values"); -        if (States.insert(std::make_pair(Base, BDVState())).second) -          Worklist.push_back(Base); -      }; -      if (PHINode *PN = dyn_cast<PHINode>(Current)) { -        for (Value *InVal : PN->incoming_values()) -          visitIncomingValue(InVal); -      } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { -        visitIncomingValue(SI->getTrueValue()); -        visitIncomingValue(SI->getFalseValue()); -      } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { -        visitIncomingValue(EE->getVectorOperand()); -      } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { -        visitIncomingValue(IE->getOperand(0)); // vector operand -        visitIncomingValue(IE->getOperand(1)); // scalar operand -      } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { -        visitIncomingValue(SV->getOperand(0)); -        visitIncomingValue(SV->getOperand(1)); -      } -      else { -        llvm_unreachable("Unimplemented instruction case"); -      } -    } -  } - -#ifndef NDEBUG -  LLVM_DEBUG(dbgs() << "States after initialization:\n"); -  for (auto Pair : States) { -    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); -  } -#endif - -  // Return a phi state for a base defining value.  We'll generate a new -  // base state for known bases and expect to find a cached state otherwise. -  auto getStateForBDV = [&](Value *baseValue) { -    if (isKnownBaseResult(baseValue)) -      return BDVState(baseValue); -    auto I = States.find(baseValue); -    assert(I != States.end() && "lookup failed!"); -    return I->second; -  }; - -  bool Progress = true; -  while (Progress) { -#ifndef NDEBUG -    const size_t OldSize = States.size(); -#endif -    Progress = false; -    // We're only changing values in this loop, thus safe to keep iterators. -    // Since this is computing a fixed point, the order of visit does not -    // effect the result.  TODO: We could use a worklist here and make this run -    // much faster. -    for (auto Pair : States) { -      Value *BDV = Pair.first; -      assert(!isKnownBaseResult(BDV) && "why did it get added?"); - -      // Given an input value for the current instruction, return a BDVState -      // instance which represents the BDV of that value. -      auto getStateForInput = [&](Value *V) mutable { -        Value *BDV = findBaseOrBDV(V, Cache); -        return getStateForBDV(BDV); -      }; - -      BDVState NewState; -      if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { -        NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); -        NewState = -            meetBDVState(NewState, getStateForInput(SI->getFalseValue())); -      } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { -        for (Value *Val : PN->incoming_values()) -          NewState = meetBDVState(NewState, getStateForInput(Val)); -      } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { -        // The 'meet' for an extractelement is slightly trivial, but it's still -        // useful in that it drives us to conflict if our input is. -        NewState = -            meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); -      } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ -        // Given there's a inherent type mismatch between the operands, will -        // *always* produce Conflict. -        NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); -        NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); -      } else { -        // The only instance this does not return a Conflict is when both the -        // vector operands are the same vector. -        auto *SV = cast<ShuffleVectorInst>(BDV); -        NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); -        NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); -      } - -      BDVState OldState = States[BDV]; -      if (OldState != NewState) { -        Progress = true; -        States[BDV] = NewState; -      } -    } - -    assert(OldSize == States.size() && -           "fixed point shouldn't be adding any new nodes to state"); -  } - -#ifndef NDEBUG -  LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); -  for (auto Pair : States) { -    LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); -  } -#endif - -  // Insert Phis for all conflicts -  // TODO: adjust naming patterns to avoid this order of iteration dependency -  for (auto Pair : States) { -    Instruction *I = cast<Instruction>(Pair.first); -    BDVState State = Pair.second; -    assert(!isKnownBaseResult(I) && "why did it get added?"); -    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); - -    // extractelement instructions are a bit special in that we may need to -    // insert an extract even when we know an exact base for the instruction. -    // The problem is that we need to convert from a vector base to a scalar -    // base for the particular indice we're interested in. -    if (State.isBase() && isa<ExtractElementInst>(I) && -        isa<VectorType>(State.getBaseValue()->getType())) { -      auto *EE = cast<ExtractElementInst>(I); -      // TODO: In many cases, the new instruction is just EE itself.  We should -      // exploit this, but can't do it here since it would break the invariant -      // about the BDV not being known to be a base. -      auto *BaseInst = ExtractElementInst::Create( -          State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); -      BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); -      States[I] = BDVState(BDVState::Base, BaseInst); -    } - -    // Since we're joining a vector and scalar base, they can never be the -    // same.  As a result, we should always see insert element having reached -    // the conflict state. -    assert(!isa<InsertElementInst>(I) || State.isConflict()); - -    if (!State.isConflict()) -      continue; - -    /// Create and insert a new instruction which will represent the base of -    /// the given instruction 'I'. -    auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { -      if (isa<PHINode>(I)) { -        BasicBlock *BB = I->getParent(); -        int NumPreds = pred_size(BB); -        assert(NumPreds > 0 && "how did we reach here"); -        std::string Name = suffixed_name_or(I, ".base", "base_phi"); -        return PHINode::Create(I->getType(), NumPreds, Name, I); -      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { -        // The undef will be replaced later -        UndefValue *Undef = UndefValue::get(SI->getType()); -        std::string Name = suffixed_name_or(I, ".base", "base_select"); -        return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); -      } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { -        UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); -        std::string Name = suffixed_name_or(I, ".base", "base_ee"); -        return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, -                                          EE); -      } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { -        UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); -        UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); -        std::string Name = suffixed_name_or(I, ".base", "base_ie"); -        return InsertElementInst::Create(VecUndef, ScalarUndef, -                                         IE->getOperand(2), Name, IE); -      } else { -        auto *SV = cast<ShuffleVectorInst>(I); -        UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); -        std::string Name = suffixed_name_or(I, ".base", "base_sv"); -        return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), -                                     Name, SV); -      } -    }; -    Instruction *BaseInst = MakeBaseInstPlaceholder(I); -    // Add metadata marking this as a base value -    BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); -    States[I] = BDVState(BDVState::Conflict, BaseInst); -  } - -  // Returns a instruction which produces the base pointer for a given -  // instruction.  The instruction is assumed to be an input to one of the BDVs -  // seen in the inference algorithm above.  As such, we must either already -  // know it's base defining value is a base, or have inserted a new -  // instruction to propagate the base of it's BDV and have entered that newly -  // introduced instruction into the state table.  In either case, we are -  // assured to be able to determine an instruction which produces it's base -  // pointer. -  auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { -    Value *BDV = findBaseOrBDV(Input, Cache); -    Value *Base = nullptr; -    if (isKnownBaseResult(BDV)) { -      Base = BDV; -    } else { -      // Either conflict or base. -      assert(States.count(BDV)); -      Base = States[BDV].getBaseValue(); -    } -    assert(Base && "Can't be null"); -    // The cast is needed since base traversal may strip away bitcasts -    if (Base->getType() != Input->getType() && InsertPt) -      Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); -    return Base; -  }; - -  // Fixup all the inputs of the new PHIs.  Visit order needs to be -  // deterministic and predictable because we're naming newly created -  // instructions. -  for (auto Pair : States) { -    Instruction *BDV = cast<Instruction>(Pair.first); -    BDVState State = Pair.second; - -    assert(!isKnownBaseResult(BDV) && "why did it get added?"); -    assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); -    if (!State.isConflict()) -      continue; - -    if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { -      PHINode *PN = cast<PHINode>(BDV); -      unsigned NumPHIValues = PN->getNumIncomingValues(); -      for (unsigned i = 0; i < NumPHIValues; i++) { -        Value *InVal = PN->getIncomingValue(i); -        BasicBlock *InBB = PN->getIncomingBlock(i); - -        // If we've already seen InBB, add the same incoming value -        // we added for it earlier.  The IR verifier requires phi -        // nodes with multiple entries from the same basic block -        // to have the same incoming value for each of those -        // entries.  If we don't do this check here and basephi -        // has a different type than base, we'll end up adding two -        // bitcasts (and hence two distinct values) as incoming -        // values for the same basic block. - -        int BlockIndex = BasePHI->getBasicBlockIndex(InBB); -        if (BlockIndex != -1) { -          Value *OldBase = BasePHI->getIncomingValue(BlockIndex); -          BasePHI->addIncoming(OldBase, InBB); - -#ifndef NDEBUG -          Value *Base = getBaseForInput(InVal, nullptr); -          // In essence this assert states: the only way two values -          // incoming from the same basic block may be different is by -          // being different bitcasts of the same value.  A cleanup -          // that remains TODO is changing findBaseOrBDV to return an -          // llvm::Value of the correct type (and still remain pure). -          // This will remove the need to add bitcasts. -          assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && -                 "Sanity -- findBaseOrBDV should be pure!"); -#endif -          continue; -        } - -        // Find the instruction which produces the base for each input.  We may -        // need to insert a bitcast in the incoming block. -        // TODO: Need to split critical edges if insertion is needed -        Value *Base = getBaseForInput(InVal, InBB->getTerminator()); -        BasePHI->addIncoming(Base, InBB); -      } -      assert(BasePHI->getNumIncomingValues() == NumPHIValues); -    } else if (SelectInst *BaseSI = -                   dyn_cast<SelectInst>(State.getBaseValue())) { -      SelectInst *SI = cast<SelectInst>(BDV); - -      // Find the instruction which produces the base for each input. -      // We may need to insert a bitcast. -      BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); -      BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); -    } else if (auto *BaseEE = -                   dyn_cast<ExtractElementInst>(State.getBaseValue())) { -      Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); -      // Find the instruction which produces the base for each input.  We may -      // need to insert a bitcast. -      BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); -    } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ -      auto *BdvIE = cast<InsertElementInst>(BDV); -      auto UpdateOperand = [&](int OperandIdx) { -        Value *InVal = BdvIE->getOperand(OperandIdx); -        Value *Base = getBaseForInput(InVal, BaseIE); -        BaseIE->setOperand(OperandIdx, Base); -      }; -      UpdateOperand(0); // vector operand -      UpdateOperand(1); // scalar operand -    } else { -      auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); -      auto *BdvSV = cast<ShuffleVectorInst>(BDV); -      auto UpdateOperand = [&](int OperandIdx) { -        Value *InVal = BdvSV->getOperand(OperandIdx); -        Value *Base = getBaseForInput(InVal, BaseSV); -        BaseSV->setOperand(OperandIdx, Base); -      }; -      UpdateOperand(0); // vector operand -      UpdateOperand(1); // vector operand -    } -  } - -  // Cache all of our results so we can cheaply reuse them -  // NOTE: This is actually two caches: one of the base defining value -  // relation and one of the base pointer relation!  FIXME -  for (auto Pair : States) { -    auto *BDV = Pair.first; -    Value *Base = Pair.second.getBaseValue(); -    assert(BDV && Base); -    assert(!isKnownBaseResult(BDV) && "why did it get added?"); - -    LLVM_DEBUG( -        dbgs() << "Updating base value cache" -               << " for: " << BDV->getName() << " from: " -               << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") -               << " to: " << Base->getName() << "\n"); - -    if (Cache.count(BDV)) { -      assert(isKnownBaseResult(Base) && -             "must be something we 'know' is a base pointer"); -      // Once we transition from the BDV relation being store in the Cache to -      // the base relation being stored, it must be stable -      assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && -             "base relation should be stable"); -    } -    Cache[BDV] = Base; -  } -  assert(Cache.count(Def)); -  return Cache[Def]; -} - -// For a set of live pointers (base and/or derived), identify the base -// pointer of the object which they are derived from.  This routine will -// mutate the IR graph as needed to make the 'base' pointer live at the -// definition site of 'derived'.  This ensures that any use of 'derived' can -// also use 'base'.  This may involve the insertion of a number of -// additional PHI nodes. -// -// preconditions: live is a set of pointer type Values -// -// side effects: may insert PHI nodes into the existing CFG, will preserve -// CFG, will not remove or mutate any existing nodes -// -// post condition: PointerToBase contains one (derived, base) pair for every -// pointer in live.  Note that derived can be equal to base if the original -// pointer was a base pointer. -static void -findBasePointers(const StatepointLiveSetTy &live, -                 MapVector<Value *, Value *> &PointerToBase, -                 DominatorTree *DT, DefiningValueMapTy &DVCache) { -  for (Value *ptr : live) { -    Value *base = findBasePointer(ptr, DVCache); -    assert(base && "failed to find base pointer"); -    PointerToBase[ptr] = base; -    assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || -            DT->dominates(cast<Instruction>(base)->getParent(), -                          cast<Instruction>(ptr)->getParent())) && -           "The base we found better dominate the derived pointer"); -  } -} - -/// Find the required based pointers (and adjust the live set) for the given -/// parse point. -static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, -                             CallBase *Call, -                             PartiallyConstructedSafepointRecord &result) { -  MapVector<Value *, Value *> PointerToBase; -  findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); - -  if (PrintBasePointers) { -    errs() << "Base Pairs (w/o Relocation):\n"; -    for (auto &Pair : PointerToBase) { -      errs() << " derived "; -      Pair.first->printAsOperand(errs(), false); -      errs() << " base "; -      Pair.second->printAsOperand(errs(), false); -      errs() << "\n";; -    } -  } - -  result.PointerToBase = PointerToBase; -} - -/// Given an updated version of the dataflow liveness results, update the -/// liveset and base pointer maps for the call site CS. -static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, -                                  CallBase *Call, -                                  PartiallyConstructedSafepointRecord &result); - -static void recomputeLiveInValues( -    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, -    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { -  // TODO-PERF: reuse the original liveness, then simply run the dataflow -  // again.  The old values are still live and will help it stabilize quickly. -  GCPtrLivenessData RevisedLivenessData; -  computeLiveInValues(DT, F, RevisedLivenessData); -  for (size_t i = 0; i < records.size(); i++) { -    struct PartiallyConstructedSafepointRecord &info = records[i]; -    recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); -  } -} - -// When inserting gc.relocate and gc.result calls, we need to ensure there are -// no uses of the original value / return value between the gc.statepoint and -// the gc.relocate / gc.result call.  One case which can arise is a phi node -// starting one of the successor blocks.  We also need to be able to insert the -// gc.relocates only on the path which goes through the statepoint.  We might -// need to split an edge to make this possible. -static BasicBlock * -normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, -                            DominatorTree &DT) { -  BasicBlock *Ret = BB; -  if (!BB->getUniquePredecessor()) -    Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); - -  // Now that 'Ret' has unique predecessor we can safely remove all phi nodes -  // from it -  FoldSingleEntryPHINodes(Ret); -  assert(!isa<PHINode>(Ret->begin()) && -         "All PHI nodes should have been removed!"); - -  // At this point, we can safely insert a gc.relocate or gc.result as the first -  // instruction in Ret if needed. -  return Ret; -} - -// Create new attribute set containing only attributes which can be transferred -// from original call to the safepoint. -static AttributeList legalizeCallAttributes(AttributeList AL) { -  if (AL.isEmpty()) -    return AL; - -  // Remove the readonly, readnone, and statepoint function attributes. -  AttrBuilder FnAttrs = AL.getFnAttributes(); -  FnAttrs.removeAttribute(Attribute::ReadNone); -  FnAttrs.removeAttribute(Attribute::ReadOnly); -  for (Attribute A : AL.getFnAttributes()) { -    if (isStatepointDirectiveAttr(A)) -      FnAttrs.remove(A); -  } - -  // Just skip parameter and return attributes for now -  LLVMContext &Ctx = AL.getContext(); -  return AttributeList::get(Ctx, AttributeList::FunctionIndex, -                            AttributeSet::get(Ctx, FnAttrs)); -} - -/// Helper function to place all gc relocates necessary for the given -/// statepoint. -/// Inputs: -///   liveVariables - list of variables to be relocated. -///   liveStart - index of the first live variable. -///   basePtrs - base pointers. -///   statepointToken - statepoint instruction to which relocates should be -///   bound. -///   Builder - Llvm IR builder to be used to construct new calls. -static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, -                              const int LiveStart, -                              ArrayRef<Value *> BasePtrs, -                              Instruction *StatepointToken, -                              IRBuilder<> Builder) { -  if (LiveVariables.empty()) -    return; - -  auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { -    auto ValIt = llvm::find(LiveVec, Val); -    assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); -    size_t Index = std::distance(LiveVec.begin(), ValIt); -    assert(Index < LiveVec.size() && "Bug in std::find?"); -    return Index; -  }; -  Module *M = StatepointToken->getModule(); - -  // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose -  // element type is i8 addrspace(1)*). We originally generated unique -  // declarations for each pointer type, but this proved problematic because -  // the intrinsic mangling code is incomplete and fragile.  Since we're moving -  // towards a single unified pointer type anyways, we can just cast everything -  // to an i8* of the right address space.  A bitcast is added later to convert -  // gc_relocate to the actual value's type. -  auto getGCRelocateDecl = [&] (Type *Ty) { -    assert(isHandledGCPointerType(Ty)); -    auto AS = Ty->getScalarType()->getPointerAddressSpace(); -    Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); -    if (auto *VT = dyn_cast<VectorType>(Ty)) -      NewTy = VectorType::get(NewTy, VT->getNumElements()); -    return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, -                                     {NewTy}); -  }; - -  // Lazily populated map from input types to the canonicalized form mentioned -  // in the comment above.  This should probably be cached somewhere more -  // broadly. -  DenseMap<Type *, Function *> TypeToDeclMap; - -  for (unsigned i = 0; i < LiveVariables.size(); i++) { -    // Generate the gc.relocate call and save the result -    Value *BaseIdx = -      Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); -    Value *LiveIdx = Builder.getInt32(LiveStart + i); - -    Type *Ty = LiveVariables[i]->getType(); -    if (!TypeToDeclMap.count(Ty)) -      TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); -    Function *GCRelocateDecl = TypeToDeclMap[Ty]; - -    // only specify a debug name if we can give a useful one -    CallInst *Reloc = Builder.CreateCall( -        GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, -        suffixed_name_or(LiveVariables[i], ".relocated", "")); -    // Trick CodeGen into thinking there are lots of free registers at this -    // fake call. -    Reloc->setCallingConv(CallingConv::Cold); -  } -} - -namespace { - -/// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this -/// avoids having to worry about keeping around dangling pointers to Values. -class DeferredReplacement { -  AssertingVH<Instruction> Old; -  AssertingVH<Instruction> New; -  bool IsDeoptimize = false; - -  DeferredReplacement() = default; - -public: -  static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { -    assert(Old != New && Old && New && -           "Cannot RAUW equal values or to / from null!"); - -    DeferredReplacement D; -    D.Old = Old; -    D.New = New; -    return D; -  } - -  static DeferredReplacement createDelete(Instruction *ToErase) { -    DeferredReplacement D; -    D.Old = ToErase; -    return D; -  } - -  static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { -#ifndef NDEBUG -    auto *F = cast<CallInst>(Old)->getCalledFunction(); -    assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && -           "Only way to construct a deoptimize deferred replacement"); -#endif -    DeferredReplacement D; -    D.Old = Old; -    D.IsDeoptimize = true; -    return D; -  } - -  /// Does the task represented by this instance. -  void doReplacement() { -    Instruction *OldI = Old; -    Instruction *NewI = New; - -    assert(OldI != NewI && "Disallowed at construction?!"); -    assert((!IsDeoptimize || !New) && -           "Deoptimize intrinsics are not replaced!"); - -    Old = nullptr; -    New = nullptr; - -    if (NewI) -      OldI->replaceAllUsesWith(NewI); - -    if (IsDeoptimize) { -      // Note: we've inserted instructions, so the call to llvm.deoptimize may -      // not necessarily be followed by the matching return. -      auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); -      new UnreachableInst(RI->getContext(), RI); -      RI->eraseFromParent(); -    } - -    OldI->eraseFromParent(); -  } -}; - -} // end anonymous namespace - -static StringRef getDeoptLowering(CallBase *Call) { -  const char *DeoptLowering = "deopt-lowering"; -  if (Call->hasFnAttr(DeoptLowering)) { -    // FIXME: Calls have a *really* confusing interface around attributes -    // with values. -    const AttributeList &CSAS = Call->getAttributes(); -    if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) -      return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) -          .getValueAsString(); -    Function *F = Call->getCalledFunction(); -    assert(F && F->hasFnAttribute(DeoptLowering)); -    return F->getFnAttribute(DeoptLowering).getValueAsString(); -  } -  return "live-through"; -} - -static void -makeStatepointExplicitImpl(CallBase *Call, /* to replace */ -                           const SmallVectorImpl<Value *> &BasePtrs, -                           const SmallVectorImpl<Value *> &LiveVariables, -                           PartiallyConstructedSafepointRecord &Result, -                           std::vector<DeferredReplacement> &Replacements) { -  assert(BasePtrs.size() == LiveVariables.size()); - -  // Then go ahead and use the builder do actually do the inserts.  We insert -  // immediately before the previous instruction under the assumption that all -  // arguments will be available here.  We can't insert afterwards since we may -  // be replacing a terminator. -  IRBuilder<> Builder(Call); - -  ArrayRef<Value *> GCArgs(LiveVariables); -  uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; -  uint32_t NumPatchBytes = 0; -  uint32_t Flags = uint32_t(StatepointFlags::None); - -  ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end()); -  ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call); -  ArrayRef<Use> TransitionArgs; -  if (auto TransitionBundle = -          Call->getOperandBundle(LLVMContext::OB_gc_transition)) { -    Flags |= uint32_t(StatepointFlags::GCTransition); -    TransitionArgs = TransitionBundle->Inputs; -  } - -  // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls -  // with a return value, we lower then as never returning calls to -  // __llvm_deoptimize that are followed by unreachable to get better codegen. -  bool IsDeoptimize = false; - -  StatepointDirectives SD = -      parseStatepointDirectivesFromAttrs(Call->getAttributes()); -  if (SD.NumPatchBytes) -    NumPatchBytes = *SD.NumPatchBytes; -  if (SD.StatepointID) -    StatepointID = *SD.StatepointID; - -  // Pass through the requested lowering if any.  The default is live-through. -  StringRef DeoptLowering = getDeoptLowering(Call); -  if (DeoptLowering.equals("live-in")) -    Flags |= uint32_t(StatepointFlags::DeoptLiveIn); -  else { -    assert(DeoptLowering.equals("live-through") && "Unsupported value!"); -  } - -  Value *CallTarget = Call->getCalledValue(); -  if (Function *F = dyn_cast<Function>(CallTarget)) { -    if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { -      // Calls to llvm.experimental.deoptimize are lowered to calls to the -      // __llvm_deoptimize symbol.  We want to resolve this now, since the -      // verifier does not allow taking the address of an intrinsic function. - -      SmallVector<Type *, 8> DomainTy; -      for (Value *Arg : CallArgs) -        DomainTy.push_back(Arg->getType()); -      auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, -                                    /* isVarArg = */ false); - -      // Note: CallTarget can be a bitcast instruction of a symbol if there are -      // calls to @llvm.experimental.deoptimize with different argument types in -      // the same module.  This is fine -- we assume the frontend knew what it -      // was doing when generating this kind of IR. -      CallTarget = F->getParent() -                       ->getOrInsertFunction("__llvm_deoptimize", FTy) -                       .getCallee(); - -      IsDeoptimize = true; -    } -  } - -  // Create the statepoint given all the arguments -  Instruction *Token = nullptr; -  if (auto *CI = dyn_cast<CallInst>(Call)) { -    CallInst *SPCall = Builder.CreateGCStatepointCall( -        StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, -        TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); - -    SPCall->setTailCallKind(CI->getTailCallKind()); -    SPCall->setCallingConv(CI->getCallingConv()); - -    // Currently we will fail on parameter attributes and on certain -    // function attributes.  In case if we can handle this set of attributes - -    // set up function attrs directly on statepoint and return attrs later for -    // gc_result intrinsic. -    SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes())); - -    Token = SPCall; - -    // Put the following gc_result and gc_relocate calls immediately after the -    // the old call (which we're about to delete) -    assert(CI->getNextNode() && "Not a terminator, must have next!"); -    Builder.SetInsertPoint(CI->getNextNode()); -    Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); -  } else { -    auto *II = cast<InvokeInst>(Call); - -    // Insert the new invoke into the old block.  We'll remove the old one in a -    // moment at which point this will become the new terminator for the -    // original block. -    InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( -        StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), -        II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, -        "statepoint_token"); - -    SPInvoke->setCallingConv(II->getCallingConv()); - -    // Currently we will fail on parameter attributes and on certain -    // function attributes.  In case if we can handle this set of attributes - -    // set up function attrs directly on statepoint and return attrs later for -    // gc_result intrinsic. -    SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes())); - -    Token = SPInvoke; - -    // Generate gc relocates in exceptional path -    BasicBlock *UnwindBlock = II->getUnwindDest(); -    assert(!isa<PHINode>(UnwindBlock->begin()) && -           UnwindBlock->getUniquePredecessor() && -           "can't safely insert in this block!"); - -    Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); -    Builder.SetCurrentDebugLocation(II->getDebugLoc()); - -    // Attach exceptional gc relocates to the landingpad. -    Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); -    Result.UnwindToken = ExceptionalToken; - -    const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); -    CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, -                      Builder); - -    // Generate gc relocates and returns for normal block -    BasicBlock *NormalDest = II->getNormalDest(); -    assert(!isa<PHINode>(NormalDest->begin()) && -           NormalDest->getUniquePredecessor() && -           "can't safely insert in this block!"); - -    Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); - -    // gc relocates will be generated later as if it were regular call -    // statepoint -  } -  assert(Token && "Should be set in one of the above branches!"); - -  if (IsDeoptimize) { -    // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we -    // transform the tail-call like structure to a call to a void function -    // followed by unreachable to get better codegen. -    Replacements.push_back( -        DeferredReplacement::createDeoptimizeReplacement(Call)); -  } else { -    Token->setName("statepoint_token"); -    if (!Call->getType()->isVoidTy() && !Call->use_empty()) { -      StringRef Name = Call->hasName() ? Call->getName() : ""; -      CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); -      GCResult->setAttributes( -          AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, -                             Call->getAttributes().getRetAttributes())); - -      // We cannot RAUW or delete CS.getInstruction() because it could be in the -      // live set of some other safepoint, in which case that safepoint's -      // PartiallyConstructedSafepointRecord will hold a raw pointer to this -      // llvm::Instruction.  Instead, we defer the replacement and deletion to -      // after the live sets have been made explicit in the IR, and we no longer -      // have raw pointers to worry about. -      Replacements.emplace_back( -          DeferredReplacement::createRAUW(Call, GCResult)); -    } else { -      Replacements.emplace_back(DeferredReplacement::createDelete(Call)); -    } -  } - -  Result.StatepointToken = Token; - -  // Second, create a gc.relocate for every live variable -  const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); -  CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); -} - -// Replace an existing gc.statepoint with a new one and a set of gc.relocates -// which make the relocations happening at this safepoint explicit. -// -// WARNING: Does not do any fixup to adjust users of the original live -// values.  That's the callers responsibility. -static void -makeStatepointExplicit(DominatorTree &DT, CallBase *Call, -                       PartiallyConstructedSafepointRecord &Result, -                       std::vector<DeferredReplacement> &Replacements) { -  const auto &LiveSet = Result.LiveSet; -  const auto &PointerToBase = Result.PointerToBase; - -  // Convert to vector for efficient cross referencing. -  SmallVector<Value *, 64> BaseVec, LiveVec; -  LiveVec.reserve(LiveSet.size()); -  BaseVec.reserve(LiveSet.size()); -  for (Value *L : LiveSet) { -    LiveVec.push_back(L); -    assert(PointerToBase.count(L)); -    Value *Base = PointerToBase.find(L)->second; -    BaseVec.push_back(Base); -  } -  assert(LiveVec.size() == BaseVec.size()); - -  // Do the actual rewriting and delete the old statepoint -  makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements); -} - -// Helper function for the relocationViaAlloca. -// -// It receives iterator to the statepoint gc relocates and emits a store to the -// assigned location (via allocaMap) for the each one of them.  It adds the -// visited values into the visitedLiveValues set, which we will later use them -// for sanity checking. -static void -insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, -                       DenseMap<Value *, AllocaInst *> &AllocaMap, -                       DenseSet<Value *> &VisitedLiveValues) { -  for (User *U : GCRelocs) { -    GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); -    if (!Relocate) -      continue; - -    Value *OriginalValue = Relocate->getDerivedPtr(); -    assert(AllocaMap.count(OriginalValue)); -    Value *Alloca = AllocaMap[OriginalValue]; - -    // Emit store into the related alloca -    // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to -    // the correct type according to alloca. -    assert(Relocate->getNextNode() && -           "Should always have one since it's not a terminator"); -    IRBuilder<> Builder(Relocate->getNextNode()); -    Value *CastedRelocatedValue = -      Builder.CreateBitCast(Relocate, -                            cast<AllocaInst>(Alloca)->getAllocatedType(), -                            suffixed_name_or(Relocate, ".casted", "")); - -    StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); -    Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); - -#ifndef NDEBUG -    VisitedLiveValues.insert(OriginalValue); -#endif -  } -} - -// Helper function for the "relocationViaAlloca". Similar to the -// "insertRelocationStores" but works for rematerialized values. -static void insertRematerializationStores( -    const RematerializedValueMapTy &RematerializedValues, -    DenseMap<Value *, AllocaInst *> &AllocaMap, -    DenseSet<Value *> &VisitedLiveValues) { -  for (auto RematerializedValuePair: RematerializedValues) { -    Instruction *RematerializedValue = RematerializedValuePair.first; -    Value *OriginalValue = RematerializedValuePair.second; - -    assert(AllocaMap.count(OriginalValue) && -           "Can not find alloca for rematerialized value"); -    Value *Alloca = AllocaMap[OriginalValue]; - -    StoreInst *Store = new StoreInst(RematerializedValue, Alloca); -    Store->insertAfter(RematerializedValue); - -#ifndef NDEBUG -    VisitedLiveValues.insert(OriginalValue); -#endif -  } -} - -/// Do all the relocation update via allocas and mem2reg -static void relocationViaAlloca( -    Function &F, DominatorTree &DT, ArrayRef<Value *> Live, -    ArrayRef<PartiallyConstructedSafepointRecord> Records) { -#ifndef NDEBUG -  // record initial number of (static) allocas; we'll check we have the same -  // number when we get done. -  int InitialAllocaNum = 0; -  for (Instruction &I : F.getEntryBlock()) -    if (isa<AllocaInst>(I)) -      InitialAllocaNum++; -#endif - -  // TODO-PERF: change data structures, reserve -  DenseMap<Value *, AllocaInst *> AllocaMap; -  SmallVector<AllocaInst *, 200> PromotableAllocas; -  // Used later to chack that we have enough allocas to store all values -  std::size_t NumRematerializedValues = 0; -  PromotableAllocas.reserve(Live.size()); - -  // Emit alloca for "LiveValue" and record it in "allocaMap" and -  // "PromotableAllocas" -  const DataLayout &DL = F.getParent()->getDataLayout(); -  auto emitAllocaFor = [&](Value *LiveValue) { -    AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), -                                        DL.getAllocaAddrSpace(), "", -                                        F.getEntryBlock().getFirstNonPHI()); -    AllocaMap[LiveValue] = Alloca; -    PromotableAllocas.push_back(Alloca); -  }; - -  // Emit alloca for each live gc pointer -  for (Value *V : Live) -    emitAllocaFor(V); - -  // Emit allocas for rematerialized values -  for (const auto &Info : Records) -    for (auto RematerializedValuePair : Info.RematerializedValues) { -      Value *OriginalValue = RematerializedValuePair.second; -      if (AllocaMap.count(OriginalValue) != 0) -        continue; - -      emitAllocaFor(OriginalValue); -      ++NumRematerializedValues; -    } - -  // The next two loops are part of the same conceptual operation.  We need to -  // insert a store to the alloca after the original def and at each -  // redefinition.  We need to insert a load before each use.  These are split -  // into distinct loops for performance reasons. - -  // Update gc pointer after each statepoint: either store a relocated value or -  // null (if no relocated value was found for this gc pointer and it is not a -  // gc_result).  This must happen before we update the statepoint with load of -  // alloca otherwise we lose the link between statepoint and old def. -  for (const auto &Info : Records) { -    Value *Statepoint = Info.StatepointToken; - -    // This will be used for consistency check -    DenseSet<Value *> VisitedLiveValues; - -    // Insert stores for normal statepoint gc relocates -    insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); - -    // In case if it was invoke statepoint -    // we will insert stores for exceptional path gc relocates. -    if (isa<InvokeInst>(Statepoint)) { -      insertRelocationStores(Info.UnwindToken->users(), AllocaMap, -                             VisitedLiveValues); -    } - -    // Do similar thing with rematerialized values -    insertRematerializationStores(Info.RematerializedValues, AllocaMap, -                                  VisitedLiveValues); - -    if (ClobberNonLive) { -      // As a debugging aid, pretend that an unrelocated pointer becomes null at -      // the gc.statepoint.  This will turn some subtle GC problems into -      // slightly easier to debug SEGVs.  Note that on large IR files with -      // lots of gc.statepoints this is extremely costly both memory and time -      // wise. -      SmallVector<AllocaInst *, 64> ToClobber; -      for (auto Pair : AllocaMap) { -        Value *Def = Pair.first; -        AllocaInst *Alloca = Pair.second; - -        // This value was relocated -        if (VisitedLiveValues.count(Def)) { -          continue; -        } -        ToClobber.push_back(Alloca); -      } - -      auto InsertClobbersAt = [&](Instruction *IP) { -        for (auto *AI : ToClobber) { -          auto PT = cast<PointerType>(AI->getAllocatedType()); -          Constant *CPN = ConstantPointerNull::get(PT); -          StoreInst *Store = new StoreInst(CPN, AI); -          Store->insertBefore(IP); -        } -      }; - -      // Insert the clobbering stores.  These may get intermixed with the -      // gc.results and gc.relocates, but that's fine. -      if (auto II = dyn_cast<InvokeInst>(Statepoint)) { -        InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); -        InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); -      } else { -        InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); -      } -    } -  } - -  // Update use with load allocas and add store for gc_relocated. -  for (auto Pair : AllocaMap) { -    Value *Def = Pair.first; -    AllocaInst *Alloca = Pair.second; - -    // We pre-record the uses of allocas so that we dont have to worry about -    // later update that changes the user information.. - -    SmallVector<Instruction *, 20> Uses; -    // PERF: trade a linear scan for repeated reallocation -    Uses.reserve(Def->getNumUses()); -    for (User *U : Def->users()) { -      if (!isa<ConstantExpr>(U)) { -        // If the def has a ConstantExpr use, then the def is either a -        // ConstantExpr use itself or null.  In either case -        // (recursively in the first, directly in the second), the oop -        // it is ultimately dependent on is null and this particular -        // use does not need to be fixed up. -        Uses.push_back(cast<Instruction>(U)); -      } -    } - -    llvm::sort(Uses); -    auto Last = std::unique(Uses.begin(), Uses.end()); -    Uses.erase(Last, Uses.end()); - -    for (Instruction *Use : Uses) { -      if (isa<PHINode>(Use)) { -        PHINode *Phi = cast<PHINode>(Use); -        for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { -          if (Def == Phi->getIncomingValue(i)) { -            LoadInst *Load = -                new LoadInst(Alloca->getAllocatedType(), Alloca, "", -                             Phi->getIncomingBlock(i)->getTerminator()); -            Phi->setIncomingValue(i, Load); -          } -        } -      } else { -        LoadInst *Load = -            new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); -        Use->replaceUsesOfWith(Def, Load); -      } -    } - -    // Emit store for the initial gc value.  Store must be inserted after load, -    // otherwise store will be in alloca's use list and an extra load will be -    // inserted before it. -    StoreInst *Store = new StoreInst(Def, Alloca); -    if (Instruction *Inst = dyn_cast<Instruction>(Def)) { -      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { -        // InvokeInst is a terminator so the store need to be inserted into its -        // normal destination block. -        BasicBlock *NormalDest = Invoke->getNormalDest(); -        Store->insertBefore(NormalDest->getFirstNonPHI()); -      } else { -        assert(!Inst->isTerminator() && -               "The only terminator that can produce a value is " -               "InvokeInst which is handled above."); -        Store->insertAfter(Inst); -      } -    } else { -      assert(isa<Argument>(Def)); -      Store->insertAfter(cast<Instruction>(Alloca)); -    } -  } - -  assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && -         "we must have the same allocas with lives"); -  if (!PromotableAllocas.empty()) { -    // Apply mem2reg to promote alloca to SSA -    PromoteMemToReg(PromotableAllocas, DT); -  } - -#ifndef NDEBUG -  for (auto &I : F.getEntryBlock()) -    if (isa<AllocaInst>(I)) -      InitialAllocaNum--; -  assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); -#endif -} - -/// Implement a unique function which doesn't require we sort the input -/// vector.  Doing so has the effect of changing the output of a couple of -/// tests in ways which make them less useful in testing fused safepoints. -template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { -  SmallSet<T, 8> Seen; -  Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), -            Vec.end()); -} - -/// Insert holders so that each Value is obviously live through the entire -/// lifetime of the call. -static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, -                                 SmallVectorImpl<CallInst *> &Holders) { -  if (Values.empty()) -    // No values to hold live, might as well not insert the empty holder -    return; - -  Module *M = Call->getModule(); -  // Use a dummy vararg function to actually hold the values live -  FunctionCallee Func = M->getOrInsertFunction( -      "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); -  if (isa<CallInst>(Call)) { -    // For call safepoints insert dummy calls right after safepoint -    Holders.push_back( -        CallInst::Create(Func, Values, "", &*++Call->getIterator())); -    return; -  } -  // For invoke safepooints insert dummy calls both in normal and -  // exceptional destination blocks -  auto *II = cast<InvokeInst>(Call); -  Holders.push_back(CallInst::Create( -      Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); -  Holders.push_back(CallInst::Create( -      Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); -} - -static void findLiveReferences( -    Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, -    MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { -  GCPtrLivenessData OriginalLivenessData; -  computeLiveInValues(DT, F, OriginalLivenessData); -  for (size_t i = 0; i < records.size(); i++) { -    struct PartiallyConstructedSafepointRecord &info = records[i]; -    analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); -  } -} - -// Helper function for the "rematerializeLiveValues". It walks use chain -// starting from the "CurrentValue" until it reaches the root of the chain, i.e. -// the base or a value it cannot process. Only "simple" values are processed -// (currently it is GEP's and casts). The returned root is  examined by the -// callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array -// with all visited values. -static Value* findRematerializableChainToBasePointer( -  SmallVectorImpl<Instruction*> &ChainToBase, -  Value *CurrentValue) { -  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { -    ChainToBase.push_back(GEP); -    return findRematerializableChainToBasePointer(ChainToBase, -                                                  GEP->getPointerOperand()); -  } - -  if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { -    if (!CI->isNoopCast(CI->getModule()->getDataLayout())) -      return CI; - -    ChainToBase.push_back(CI); -    return findRematerializableChainToBasePointer(ChainToBase, -                                                  CI->getOperand(0)); -  } - -  // We have reached the root of the chain, which is either equal to the base or -  // is the first unsupported value along the use chain. -  return CurrentValue; -} - -// Helper function for the "rematerializeLiveValues". Compute cost of the use -// chain we are going to rematerialize. -static unsigned -chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, -                       TargetTransformInfo &TTI) { -  unsigned Cost = 0; - -  for (Instruction *Instr : Chain) { -    if (CastInst *CI = dyn_cast<CastInst>(Instr)) { -      assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && -             "non noop cast is found during rematerialization"); - -      Type *SrcTy = CI->getOperand(0)->getType(); -      Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); - -    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { -      // Cost of the address calculation -      Type *ValTy = GEP->getSourceElementType(); -      Cost += TTI.getAddressComputationCost(ValTy); - -      // And cost of the GEP itself -      // TODO: Use TTI->getGEPCost here (it exists, but appears to be not -      //       allowed for the external usage) -      if (!GEP->hasAllConstantIndices()) -        Cost += 2; - -    } else { -      llvm_unreachable("unsupported instruction type during rematerialization"); -    } -  } - -  return Cost; -} - -static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { -  unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); -  if (PhiNum != AlternateRootPhi.getNumIncomingValues() || -      OrigRootPhi.getParent() != AlternateRootPhi.getParent()) -    return false; -  // Map of incoming values and their corresponding basic blocks of -  // OrigRootPhi. -  SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; -  for (unsigned i = 0; i < PhiNum; i++) -    CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = -        OrigRootPhi.getIncomingBlock(i); - -  // Both current and base PHIs should have same incoming values and -  // the same basic blocks corresponding to the incoming values. -  for (unsigned i = 0; i < PhiNum; i++) { -    auto CIVI = -        CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); -    if (CIVI == CurrentIncomingValues.end()) -      return false; -    BasicBlock *CurrentIncomingBB = CIVI->second; -    if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) -      return false; -  } -  return true; -} - -// From the statepoint live set pick values that are cheaper to recompute then -// to relocate. Remove this values from the live set, rematerialize them after -// statepoint and record them in "Info" structure. Note that similar to -// relocated values we don't do any user adjustments here. -static void rematerializeLiveValues(CallBase *Call, -                                    PartiallyConstructedSafepointRecord &Info, -                                    TargetTransformInfo &TTI) { -  const unsigned int ChainLengthThreshold = 10; - -  // Record values we are going to delete from this statepoint live set. -  // We can not di this in following loop due to iterator invalidation. -  SmallVector<Value *, 32> LiveValuesToBeDeleted; - -  for (Value *LiveValue: Info.LiveSet) { -    // For each live pointer find its defining chain -    SmallVector<Instruction *, 3> ChainToBase; -    assert(Info.PointerToBase.count(LiveValue)); -    Value *RootOfChain = -      findRematerializableChainToBasePointer(ChainToBase, -                                             LiveValue); - -    // Nothing to do, or chain is too long -    if ( ChainToBase.size() == 0 || -        ChainToBase.size() > ChainLengthThreshold) -      continue; - -    // Handle the scenario where the RootOfChain is not equal to the -    // Base Value, but they are essentially the same phi values. -    if (RootOfChain != Info.PointerToBase[LiveValue]) { -      PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); -      PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); -      if (!OrigRootPhi || !AlternateRootPhi) -        continue; -      // PHI nodes that have the same incoming values, and belonging to the same -      // basic blocks are essentially the same SSA value.  When the original phi -      // has incoming values with different base pointers, the original phi is -      // marked as conflict, and an additional `AlternateRootPhi` with the same -      // incoming values get generated by the findBasePointer function. We need -      // to identify the newly generated AlternateRootPhi (.base version of phi) -      // and RootOfChain (the original phi node itself) are the same, so that we -      // can rematerialize the gep and casts. This is a workaround for the -      // deficiency in the findBasePointer algorithm. -      if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) -        continue; -      // Now that the phi nodes are proved to be the same, assert that -      // findBasePointer's newly generated AlternateRootPhi is present in the -      // liveset of the call. -      assert(Info.LiveSet.count(AlternateRootPhi)); -    } -    // Compute cost of this chain -    unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); -    // TODO: We can also account for cases when we will be able to remove some -    //       of the rematerialized values by later optimization passes. I.e if -    //       we rematerialized several intersecting chains. Or if original values -    //       don't have any uses besides this statepoint. - -    // For invokes we need to rematerialize each chain twice - for normal and -    // for unwind basic blocks. Model this by multiplying cost by two. -    if (isa<InvokeInst>(Call)) { -      Cost *= 2; -    } -    // If it's too expensive - skip it -    if (Cost >= RematerializationThreshold) -      continue; - -    // Remove value from the live set -    LiveValuesToBeDeleted.push_back(LiveValue); - -    // Clone instructions and record them inside "Info" structure - -    // Walk backwards to visit top-most instructions first -    std::reverse(ChainToBase.begin(), ChainToBase.end()); - -    // Utility function which clones all instructions from "ChainToBase" -    // and inserts them before "InsertBefore". Returns rematerialized value -    // which should be used after statepoint. -    auto rematerializeChain = [&ChainToBase]( -        Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { -      Instruction *LastClonedValue = nullptr; -      Instruction *LastValue = nullptr; -      for (Instruction *Instr: ChainToBase) { -        // Only GEP's and casts are supported as we need to be careful to not -        // introduce any new uses of pointers not in the liveset. -        // Note that it's fine to introduce new uses of pointers which were -        // otherwise not used after this statepoint. -        assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); - -        Instruction *ClonedValue = Instr->clone(); -        ClonedValue->insertBefore(InsertBefore); -        ClonedValue->setName(Instr->getName() + ".remat"); - -        // If it is not first instruction in the chain then it uses previously -        // cloned value. We should update it to use cloned value. -        if (LastClonedValue) { -          assert(LastValue); -          ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); -#ifndef NDEBUG -          for (auto OpValue : ClonedValue->operand_values()) { -            // Assert that cloned instruction does not use any instructions from -            // this chain other than LastClonedValue -            assert(!is_contained(ChainToBase, OpValue) && -                   "incorrect use in rematerialization chain"); -            // Assert that the cloned instruction does not use the RootOfChain -            // or the AlternateLiveBase. -            assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); -          } -#endif -        } else { -          // For the first instruction, replace the use of unrelocated base i.e. -          // RootOfChain/OrigRootPhi, with the corresponding PHI present in the -          // live set. They have been proved to be the same PHI nodes.  Note -          // that the *only* use of the RootOfChain in the ChainToBase list is -          // the first Value in the list. -          if (RootOfChain != AlternateLiveBase) -            ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); -        } - -        LastClonedValue = ClonedValue; -        LastValue = Instr; -      } -      assert(LastClonedValue); -      return LastClonedValue; -    }; - -    // Different cases for calls and invokes. For invokes we need to clone -    // instructions both on normal and unwind path. -    if (isa<CallInst>(Call)) { -      Instruction *InsertBefore = Call->getNextNode(); -      assert(InsertBefore); -      Instruction *RematerializedValue = rematerializeChain( -          InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); -      Info.RematerializedValues[RematerializedValue] = LiveValue; -    } else { -      auto *Invoke = cast<InvokeInst>(Call); - -      Instruction *NormalInsertBefore = -          &*Invoke->getNormalDest()->getFirstInsertionPt(); -      Instruction *UnwindInsertBefore = -          &*Invoke->getUnwindDest()->getFirstInsertionPt(); - -      Instruction *NormalRematerializedValue = rematerializeChain( -          NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); -      Instruction *UnwindRematerializedValue = rematerializeChain( -          UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); - -      Info.RematerializedValues[NormalRematerializedValue] = LiveValue; -      Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; -    } -  } - -  // Remove rematerializaed values from the live set -  for (auto LiveValue: LiveValuesToBeDeleted) { -    Info.LiveSet.remove(LiveValue); -  } -} - -static bool insertParsePoints(Function &F, DominatorTree &DT, -                              TargetTransformInfo &TTI, -                              SmallVectorImpl<CallBase *> &ToUpdate) { -#ifndef NDEBUG -  // sanity check the input -  std::set<CallBase *> Uniqued; -  Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); -  assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); - -  for (CallBase *Call : ToUpdate) -    assert(Call->getFunction() == &F); -#endif - -  // When inserting gc.relocates for invokes, we need to be able to insert at -  // the top of the successor blocks.  See the comment on -  // normalForInvokeSafepoint on exactly what is needed.  Note that this step -  // may restructure the CFG. -  for (CallBase *Call : ToUpdate) { -    auto *II = dyn_cast<InvokeInst>(Call); -    if (!II) -      continue; -    normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); -    normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); -  } - -  // A list of dummy calls added to the IR to keep various values obviously -  // live in the IR.  We'll remove all of these when done. -  SmallVector<CallInst *, 64> Holders; - -  // Insert a dummy call with all of the deopt operands we'll need for the -  // actual safepoint insertion as arguments.  This ensures reference operands -  // in the deopt argument list are considered live through the safepoint (and -  // thus makes sure they get relocated.) -  for (CallBase *Call : ToUpdate) { -    SmallVector<Value *, 64> DeoptValues; - -    for (Value *Arg : GetDeoptBundleOperands(Call)) { -      assert(!isUnhandledGCPointerType(Arg->getType()) && -             "support for FCA unimplemented"); -      if (isHandledGCPointerType(Arg->getType())) -        DeoptValues.push_back(Arg); -    } - -    insertUseHolderAfter(Call, DeoptValues, Holders); -  } - -  SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); - -  // A) Identify all gc pointers which are statically live at the given call -  // site. -  findLiveReferences(F, DT, ToUpdate, Records); - -  // B) Find the base pointers for each live pointer -  /* scope for caching */ { -    // Cache the 'defining value' relation used in the computation and -    // insertion of base phis and selects.  This ensures that we don't insert -    // large numbers of duplicate base_phis. -    DefiningValueMapTy DVCache; - -    for (size_t i = 0; i < Records.size(); i++) { -      PartiallyConstructedSafepointRecord &info = Records[i]; -      findBasePointers(DT, DVCache, ToUpdate[i], info); -    } -  } // end of cache scope - -  // The base phi insertion logic (for any safepoint) may have inserted new -  // instructions which are now live at some safepoint.  The simplest such -  // example is: -  // loop: -  //   phi a  <-- will be a new base_phi here -  //   safepoint 1 <-- that needs to be live here -  //   gep a + 1 -  //   safepoint 2 -  //   br loop -  // We insert some dummy calls after each safepoint to definitely hold live -  // the base pointers which were identified for that safepoint.  We'll then -  // ask liveness for _every_ base inserted to see what is now live.  Then we -  // remove the dummy calls. -  Holders.reserve(Holders.size() + Records.size()); -  for (size_t i = 0; i < Records.size(); i++) { -    PartiallyConstructedSafepointRecord &Info = Records[i]; - -    SmallVector<Value *, 128> Bases; -    for (auto Pair : Info.PointerToBase) -      Bases.push_back(Pair.second); - -    insertUseHolderAfter(ToUpdate[i], Bases, Holders); -  } - -  // By selecting base pointers, we've effectively inserted new uses. Thus, we -  // need to rerun liveness.  We may *also* have inserted new defs, but that's -  // not the key issue. -  recomputeLiveInValues(F, DT, ToUpdate, Records); - -  if (PrintBasePointers) { -    for (auto &Info : Records) { -      errs() << "Base Pairs: (w/Relocation)\n"; -      for (auto Pair : Info.PointerToBase) { -        errs() << " derived "; -        Pair.first->printAsOperand(errs(), false); -        errs() << " base "; -        Pair.second->printAsOperand(errs(), false); -        errs() << "\n"; -      } -    } -  } - -  // It is possible that non-constant live variables have a constant base.  For -  // example, a GEP with a variable offset from a global.  In this case we can -  // remove it from the liveset.  We already don't add constants to the liveset -  // because we assume they won't move at runtime and the GC doesn't need to be -  // informed about them.  The same reasoning applies if the base is constant. -  // Note that the relocation placement code relies on this filtering for -  // correctness as it expects the base to be in the liveset, which isn't true -  // if the base is constant. -  for (auto &Info : Records) -    for (auto &BasePair : Info.PointerToBase) -      if (isa<Constant>(BasePair.second)) -        Info.LiveSet.remove(BasePair.first); - -  for (CallInst *CI : Holders) -    CI->eraseFromParent(); - -  Holders.clear(); - -  // In order to reduce live set of statepoint we might choose to rematerialize -  // some values instead of relocating them. This is purely an optimization and -  // does not influence correctness. -  for (size_t i = 0; i < Records.size(); i++) -    rematerializeLiveValues(ToUpdate[i], Records[i], TTI); - -  // We need this to safely RAUW and delete call or invoke return values that -  // may themselves be live over a statepoint.  For details, please see usage in -  // makeStatepointExplicitImpl. -  std::vector<DeferredReplacement> Replacements; - -  // Now run through and replace the existing statepoints with new ones with -  // the live variables listed.  We do not yet update uses of the values being -  // relocated. We have references to live variables that need to -  // survive to the last iteration of this loop.  (By construction, the -  // previous statepoint can not be a live variable, thus we can and remove -  // the old statepoint calls as we go.) -  for (size_t i = 0; i < Records.size(); i++) -    makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); - -  ToUpdate.clear(); // prevent accident use of invalid calls. - -  for (auto &PR : Replacements) -    PR.doReplacement(); - -  Replacements.clear(); - -  for (auto &Info : Records) { -    // These live sets may contain state Value pointers, since we replaced calls -    // with operand bundles with calls wrapped in gc.statepoint, and some of -    // those calls may have been def'ing live gc pointers.  Clear these out to -    // avoid accidentally using them. -    // -    // TODO: We should create a separate data structure that does not contain -    // these live sets, and migrate to using that data structure from this point -    // onward. -    Info.LiveSet.clear(); -    Info.PointerToBase.clear(); -  } - -  // Do all the fixups of the original live variables to their relocated selves -  SmallVector<Value *, 128> Live; -  for (size_t i = 0; i < Records.size(); i++) { -    PartiallyConstructedSafepointRecord &Info = Records[i]; - -    // We can't simply save the live set from the original insertion.  One of -    // the live values might be the result of a call which needs a safepoint. -    // That Value* no longer exists and we need to use the new gc_result. -    // Thankfully, the live set is embedded in the statepoint (and updated), so -    // we just grab that. -    Statepoint Statepoint(Info.StatepointToken); -    Live.insert(Live.end(), Statepoint.gc_args_begin(), -                Statepoint.gc_args_end()); -#ifndef NDEBUG -    // Do some basic sanity checks on our liveness results before performing -    // relocation.  Relocation can and will turn mistakes in liveness results -    // into non-sensical code which is must harder to debug. -    // TODO: It would be nice to test consistency as well -    assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && -           "statepoint must be reachable or liveness is meaningless"); -    for (Value *V : Statepoint.gc_args()) { -      if (!isa<Instruction>(V)) -        // Non-instruction values trivial dominate all possible uses -        continue; -      auto *LiveInst = cast<Instruction>(V); -      assert(DT.isReachableFromEntry(LiveInst->getParent()) && -             "unreachable values should never be live"); -      assert(DT.dominates(LiveInst, Info.StatepointToken) && -             "basic SSA liveness expectation violated by liveness analysis"); -    } -#endif -  } -  unique_unsorted(Live); - -#ifndef NDEBUG -  // sanity check -  for (auto *Ptr : Live) -    assert(isHandledGCPointerType(Ptr->getType()) && -           "must be a gc pointer type"); -#endif - -  relocationViaAlloca(F, DT, Live, Records); -  return !Records.empty(); -} - -// Handles both return values and arguments for Functions and calls. -template <typename AttrHolder> -static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, -                                      unsigned Index) { -  AttrBuilder R; -  if (AH.getDereferenceableBytes(Index)) -    R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, -                                  AH.getDereferenceableBytes(Index))); -  if (AH.getDereferenceableOrNullBytes(Index)) -    R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, -                                  AH.getDereferenceableOrNullBytes(Index))); -  if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) -    R.addAttribute(Attribute::NoAlias); - -  if (!R.empty()) -    AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); -} - -static void stripNonValidAttributesFromPrototype(Function &F) { -  LLVMContext &Ctx = F.getContext(); - -  for (Argument &A : F.args()) -    if (isa<PointerType>(A.getType())) -      RemoveNonValidAttrAtIndex(Ctx, F, -                                A.getArgNo() + AttributeList::FirstArgIndex); - -  if (isa<PointerType>(F.getReturnType())) -    RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); -} - -/// Certain metadata on instructions are invalid after running RS4GC. -/// Optimizations that run after RS4GC can incorrectly use this metadata to -/// optimize functions. We drop such metadata on the instruction. -static void stripInvalidMetadataFromInstruction(Instruction &I) { -  if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) -    return; -  // These are the attributes that are still valid on loads and stores after -  // RS4GC. -  // The metadata implying dereferenceability and noalias are (conservatively) -  // dropped.  This is because semantically, after RewriteStatepointsForGC runs, -  // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can -  // touch the entire heap including noalias objects. Note: The reasoning is -  // same as stripping the dereferenceability and noalias attributes that are -  // analogous to the metadata counterparts. -  // We also drop the invariant.load metadata on the load because that metadata -  // implies the address operand to the load points to memory that is never -  // changed once it became dereferenceable. This is no longer true after RS4GC. -  // Similar reasoning applies to invariant.group metadata, which applies to -  // loads within a group. -  unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, -                         LLVMContext::MD_range, -                         LLVMContext::MD_alias_scope, -                         LLVMContext::MD_nontemporal, -                         LLVMContext::MD_nonnull, -                         LLVMContext::MD_align, -                         LLVMContext::MD_type}; - -  // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. -  I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); -} - -static void stripNonValidDataFromBody(Function &F) { -  if (F.empty()) -    return; - -  LLVMContext &Ctx = F.getContext(); -  MDBuilder Builder(Ctx); - -  // Set of invariantstart instructions that we need to remove. -  // Use this to avoid invalidating the instruction iterator. -  SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; - -  for (Instruction &I : instructions(F)) { -    // invariant.start on memory location implies that the referenced memory -    // location is constant and unchanging. This is no longer true after -    // RewriteStatepointsForGC runs because there can be calls to gc.statepoint -    // which frees the entire heap and the presence of invariant.start allows -    // the optimizer to sink the load of a memory location past a statepoint, -    // which is incorrect. -    if (auto *II = dyn_cast<IntrinsicInst>(&I)) -      if (II->getIntrinsicID() == Intrinsic::invariant_start) { -        InvariantStartInstructions.push_back(II); -        continue; -      } - -    if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { -      MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); -      I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); -    } - -    stripInvalidMetadataFromInstruction(I); - -    if (auto *Call = dyn_cast<CallBase>(&I)) { -      for (int i = 0, e = Call->arg_size(); i != e; i++) -        if (isa<PointerType>(Call->getArgOperand(i)->getType())) -          RemoveNonValidAttrAtIndex(Ctx, *Call, -                                    i + AttributeList::FirstArgIndex); -      if (isa<PointerType>(Call->getType())) -        RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex); -    } -  } - -  // Delete the invariant.start instructions and RAUW undef. -  for (auto *II : InvariantStartInstructions) { -    II->replaceAllUsesWith(UndefValue::get(II->getType())); -    II->eraseFromParent(); -  } -} - -/// Returns true if this function should be rewritten by this pass.  The main -/// point of this function is as an extension point for custom logic. -static bool shouldRewriteStatepointsIn(Function &F) { -  // TODO: This should check the GCStrategy -  if (F.hasGC()) { -    const auto &FunctionGCName = F.getGC(); -    const StringRef StatepointExampleName("statepoint-example"); -    const StringRef CoreCLRName("coreclr"); -    return (StatepointExampleName == FunctionGCName) || -           (CoreCLRName == FunctionGCName); -  } else -    return false; -} - -static void stripNonValidData(Module &M) { -#ifndef NDEBUG -  assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); -#endif - -  for (Function &F : M) -    stripNonValidAttributesFromPrototype(F); - -  for (Function &F : M) -    stripNonValidDataFromBody(F); -} - -bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, -                                            TargetTransformInfo &TTI, -                                            const TargetLibraryInfo &TLI) { -  assert(!F.isDeclaration() && !F.empty() && -         "need function body to rewrite statepoints in"); -  assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); - -  auto NeedsRewrite = [&TLI](Instruction &I) { -    if (const auto *Call = dyn_cast<CallBase>(&I)) -      return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call); -    return false; -  }; - -  // Delete any unreachable statepoints so that we don't have unrewritten -  // statepoints surviving this pass.  This makes testing easier and the -  // resulting IR less confusing to human readers. -  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); -  bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU); -  // Flush the Dominator Tree. -  DTU.getDomTree(); - -  // Gather all the statepoints which need rewritten.  Be careful to only -  // consider those in reachable code since we need to ask dominance queries -  // when rewriting.  We'll delete the unreachable ones in a moment. -  SmallVector<CallBase *, 64> ParsePointNeeded; -  for (Instruction &I : instructions(F)) { -    // TODO: only the ones with the flag set! -    if (NeedsRewrite(I)) { -      // NOTE removeUnreachableBlocks() is stronger than -      // DominatorTree::isReachableFromEntry(). In other words -      // removeUnreachableBlocks can remove some blocks for which -      // isReachableFromEntry() returns true. -      assert(DT.isReachableFromEntry(I.getParent()) && -            "no unreachable blocks expected"); -      ParsePointNeeded.push_back(cast<CallBase>(&I)); -    } -  } - -  // Return early if no work to do. -  if (ParsePointNeeded.empty()) -    return MadeChange; - -  // As a prepass, go ahead and aggressively destroy single entry phi nodes. -  // These are created by LCSSA.  They have the effect of increasing the size -  // of liveness sets for no good reason.  It may be harder to do this post -  // insertion since relocations and base phis can confuse things. -  for (BasicBlock &BB : F) -    if (BB.getUniquePredecessor()) { -      MadeChange = true; -      FoldSingleEntryPHINodes(&BB); -    } - -  // Before we start introducing relocations, we want to tweak the IR a bit to -  // avoid unfortunate code generation effects.  The main example is that we -  // want to try to make sure the comparison feeding a branch is after any -  // safepoints.  Otherwise, we end up with a comparison of pre-relocation -  // values feeding a branch after relocation.  This is semantically correct, -  // but results in extra register pressure since both the pre-relocation and -  // post-relocation copies must be available in registers.  For code without -  // relocations this is handled elsewhere, but teaching the scheduler to -  // reverse the transform we're about to do would be slightly complex. -  // Note: This may extend the live range of the inputs to the icmp and thus -  // increase the liveset of any statepoint we move over.  This is profitable -  // as long as all statepoints are in rare blocks.  If we had in-register -  // lowering for live values this would be a much safer transform. -  auto getConditionInst = [](Instruction *TI) -> Instruction * { -    if (auto *BI = dyn_cast<BranchInst>(TI)) -      if (BI->isConditional()) -        return dyn_cast<Instruction>(BI->getCondition()); -    // TODO: Extend this to handle switches -    return nullptr; -  }; -  for (BasicBlock &BB : F) { -    Instruction *TI = BB.getTerminator(); -    if (auto *Cond = getConditionInst(TI)) -      // TODO: Handle more than just ICmps here.  We should be able to move -      // most instructions without side effects or memory access. -      if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { -        MadeChange = true; -        Cond->moveBefore(TI); -      } -  } - -  // Nasty workaround - The base computation code in the main algorithm doesn't -  // consider the fact that a GEP can be used to convert a scalar to a vector. -  // The right fix for this is to integrate GEPs into the base rewriting -  // algorithm properly, this is just a short term workaround to prevent -  // crashes by canonicalizing such GEPs into fully vector GEPs. -  for (Instruction &I : instructions(F)) { -    if (!isa<GetElementPtrInst>(I)) -      continue; - -    unsigned VF = 0; -    for (unsigned i = 0; i < I.getNumOperands(); i++) -      if (I.getOperand(i)->getType()->isVectorTy()) { -        assert(VF == 0 || -               VF == I.getOperand(i)->getType()->getVectorNumElements()); -        VF = I.getOperand(i)->getType()->getVectorNumElements(); -      } - -    // It's the vector to scalar traversal through the pointer operand which -    // confuses base pointer rewriting, so limit ourselves to that case. -    if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { -      IRBuilder<> B(&I); -      auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); -      I.setOperand(0, Splat); -      MadeChange = true; -    } -  } - -  MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); -  return MadeChange; -} - -// liveness computation via standard dataflow -// ------------------------------------------------------------------- - -// TODO: Consider using bitvectors for liveness, the set of potentially -// interesting values should be small and easy to pre-compute. - -/// Compute the live-in set for the location rbegin starting from -/// the live-out set of the basic block -static void computeLiveInValues(BasicBlock::reverse_iterator Begin, -                                BasicBlock::reverse_iterator End, -                                SetVector<Value *> &LiveTmp) { -  for (auto &I : make_range(Begin, End)) { -    // KILL/Def - Remove this definition from LiveIn -    LiveTmp.remove(&I); - -    // Don't consider *uses* in PHI nodes, we handle their contribution to -    // predecessor blocks when we seed the LiveOut sets -    if (isa<PHINode>(I)) -      continue; - -    // USE - Add to the LiveIn set for this instruction -    for (Value *V : I.operands()) { -      assert(!isUnhandledGCPointerType(V->getType()) && -             "support for FCA unimplemented"); -      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { -        // The choice to exclude all things constant here is slightly subtle. -        // There are two independent reasons: -        // - We assume that things which are constant (from LLVM's definition) -        // do not move at runtime.  For example, the address of a global -        // variable is fixed, even though it's contents may not be. -        // - Second, we can't disallow arbitrary inttoptr constants even -        // if the language frontend does.  Optimization passes are free to -        // locally exploit facts without respect to global reachability.  This -        // can create sections of code which are dynamically unreachable and -        // contain just about anything.  (see constants.ll in tests) -        LiveTmp.insert(V); -      } -    } -  } -} - -static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { -  for (BasicBlock *Succ : successors(BB)) { -    for (auto &I : *Succ) { -      PHINode *PN = dyn_cast<PHINode>(&I); -      if (!PN) -        break; - -      Value *V = PN->getIncomingValueForBlock(BB); -      assert(!isUnhandledGCPointerType(V->getType()) && -             "support for FCA unimplemented"); -      if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) -        LiveTmp.insert(V); -    } -  } -} - -static SetVector<Value *> computeKillSet(BasicBlock *BB) { -  SetVector<Value *> KillSet; -  for (Instruction &I : *BB) -    if (isHandledGCPointerType(I.getType())) -      KillSet.insert(&I); -  return KillSet; -} - -#ifndef NDEBUG -/// Check that the items in 'Live' dominate 'TI'.  This is used as a basic -/// sanity check for the liveness computation. -static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, -                          Instruction *TI, bool TermOkay = false) { -  for (Value *V : Live) { -    if (auto *I = dyn_cast<Instruction>(V)) { -      // The terminator can be a member of the LiveOut set.  LLVM's definition -      // of instruction dominance states that V does not dominate itself.  As -      // such, we need to special case this to allow it. -      if (TermOkay && TI == I) -        continue; -      assert(DT.dominates(I, TI) && -             "basic SSA liveness expectation violated by liveness analysis"); -    } -  } -} - -/// Check that all the liveness sets used during the computation of liveness -/// obey basic SSA properties.  This is useful for finding cases where we miss -/// a def. -static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, -                          BasicBlock &BB) { -  checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); -  checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); -  checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); -} -#endif - -static void computeLiveInValues(DominatorTree &DT, Function &F, -                                GCPtrLivenessData &Data) { -  SmallSetVector<BasicBlock *, 32> Worklist; - -  // Seed the liveness for each individual block -  for (BasicBlock &BB : F) { -    Data.KillSet[&BB] = computeKillSet(&BB); -    Data.LiveSet[&BB].clear(); -    computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); - -#ifndef NDEBUG -    for (Value *Kill : Data.KillSet[&BB]) -      assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); -#endif - -    Data.LiveOut[&BB] = SetVector<Value *>(); -    computeLiveOutSeed(&BB, Data.LiveOut[&BB]); -    Data.LiveIn[&BB] = Data.LiveSet[&BB]; -    Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); -    Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); -    if (!Data.LiveIn[&BB].empty()) -      Worklist.insert(pred_begin(&BB), pred_end(&BB)); -  } - -  // Propagate that liveness until stable -  while (!Worklist.empty()) { -    BasicBlock *BB = Worklist.pop_back_val(); - -    // Compute our new liveout set, then exit early if it hasn't changed despite -    // the contribution of our successor. -    SetVector<Value *> LiveOut = Data.LiveOut[BB]; -    const auto OldLiveOutSize = LiveOut.size(); -    for (BasicBlock *Succ : successors(BB)) { -      assert(Data.LiveIn.count(Succ)); -      LiveOut.set_union(Data.LiveIn[Succ]); -    } -    // assert OutLiveOut is a subset of LiveOut -    if (OldLiveOutSize == LiveOut.size()) { -      // If the sets are the same size, then we didn't actually add anything -      // when unioning our successors LiveIn.  Thus, the LiveIn of this block -      // hasn't changed. -      continue; -    } -    Data.LiveOut[BB] = LiveOut; - -    // Apply the effects of this basic block -    SetVector<Value *> LiveTmp = LiveOut; -    LiveTmp.set_union(Data.LiveSet[BB]); -    LiveTmp.set_subtract(Data.KillSet[BB]); - -    assert(Data.LiveIn.count(BB)); -    const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; -    // assert: OldLiveIn is a subset of LiveTmp -    if (OldLiveIn.size() != LiveTmp.size()) { -      Data.LiveIn[BB] = LiveTmp; -      Worklist.insert(pred_begin(BB), pred_end(BB)); -    } -  } // while (!Worklist.empty()) - -#ifndef NDEBUG -  // Sanity check our output against SSA properties.  This helps catch any -  // missing kills during the above iteration. -  for (BasicBlock &BB : F) -    checkBasicSSA(DT, Data, BB); -#endif -} - -static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, -                              StatepointLiveSetTy &Out) { -  BasicBlock *BB = Inst->getParent(); - -  // Note: The copy is intentional and required -  assert(Data.LiveOut.count(BB)); -  SetVector<Value *> LiveOut = Data.LiveOut[BB]; - -  // We want to handle the statepoint itself oddly.  It's -  // call result is not live (normal), nor are it's arguments -  // (unless they're used again later).  This adjustment is -  // specifically what we need to relocate -  computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), -                      LiveOut); -  LiveOut.remove(Inst); -  Out.insert(LiveOut.begin(), LiveOut.end()); -} - -static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, -                                  CallBase *Call, -                                  PartiallyConstructedSafepointRecord &Info) { -  StatepointLiveSetTy Updated; -  findLiveSetAtInst(Call, RevisedLivenessData, Updated); - -  // We may have base pointers which are now live that weren't before.  We need -  // to update the PointerToBase structure to reflect this. -  for (auto V : Updated) -    if (Info.PointerToBase.insert({V, V}).second) { -      assert(isKnownBaseResult(V) && -             "Can't find base for unexpected live value!"); -      continue; -    } - -#ifndef NDEBUG -  for (auto V : Updated) -    assert(Info.PointerToBase.count(V) && -           "Must be able to find base for live value!"); -#endif - -  // Remove any stale base mappings - this can happen since our liveness is -  // more precise then the one inherent in the base pointer analysis. -  DenseSet<Value *> ToErase; -  for (auto KVPair : Info.PointerToBase) -    if (!Updated.count(KVPair.first)) -      ToErase.insert(KVPair.first); - -  for (auto *V : ToErase) -    Info.PointerToBase.erase(V); - -#ifndef NDEBUG -  for (auto KVPair : Info.PointerToBase) -    assert(Updated.count(KVPair.first) && "record for non-live value"); -#endif - -  Info.LiveSet = Updated; -}  | 
