summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp2846
1 files changed, 0 insertions, 2846 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp b/contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
deleted file mode 100644
index c358258d24cf..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp
+++ /dev/null
@@ -1,2846 +0,0 @@
-//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// Rewrite call/invoke instructions so as to make potential relocations
-// performed by the garbage collector explicit in the IR.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
-
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/DomTreeUpdater.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallingConv.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/MDBuilder.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Statepoint.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/PromoteMemToReg.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <iterator>
-#include <set>
-#include <string>
-#include <utility>
-#include <vector>
-
-#define DEBUG_TYPE "rewrite-statepoints-for-gc"
-
-using namespace llvm;
-
-// Print the liveset found at the insert location
-static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
- cl::init(false));
-static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
- cl::init(false));
-
-// Print out the base pointers for debugging
-static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
- cl::init(false));
-
-// Cost threshold measuring when it is profitable to rematerialize value instead
-// of relocating it
-static cl::opt<unsigned>
-RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
- cl::init(6));
-
-#ifdef EXPENSIVE_CHECKS
-static bool ClobberNonLive = true;
-#else
-static bool ClobberNonLive = false;
-#endif
-
-static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
- cl::location(ClobberNonLive),
- cl::Hidden);
-
-static cl::opt<bool>
- AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
- cl::Hidden, cl::init(true));
-
-/// The IR fed into RewriteStatepointsForGC may have had attributes and
-/// metadata implying dereferenceability that are no longer valid/correct after
-/// RewriteStatepointsForGC has run. This is because semantically, after
-/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
-/// heap. stripNonValidData (conservatively) restores
-/// correctness by erasing all attributes in the module that externally imply
-/// dereferenceability. Similar reasoning also applies to the noalias
-/// attributes and metadata. gc.statepoint can touch the entire heap including
-/// noalias objects.
-/// Apart from attributes and metadata, we also remove instructions that imply
-/// constant physical memory: llvm.invariant.start.
-static void stripNonValidData(Module &M);
-
-static bool shouldRewriteStatepointsIn(Function &F);
-
-PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
- ModuleAnalysisManager &AM) {
- bool Changed = false;
- auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
- for (Function &F : M) {
- // Nothing to do for declarations.
- if (F.isDeclaration() || F.empty())
- continue;
-
- // Policy choice says not to rewrite - the most common reason is that we're
- // compiling code without a GCStrategy.
- if (!shouldRewriteStatepointsIn(F))
- continue;
-
- auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
- auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
- auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
- Changed |= runOnFunction(F, DT, TTI, TLI);
- }
- if (!Changed)
- return PreservedAnalyses::all();
-
- // stripNonValidData asserts that shouldRewriteStatepointsIn
- // returns true for at least one function in the module. Since at least
- // one function changed, we know that the precondition is satisfied.
- stripNonValidData(M);
-
- PreservedAnalyses PA;
- PA.preserve<TargetIRAnalysis>();
- PA.preserve<TargetLibraryAnalysis>();
- return PA;
-}
-
-namespace {
-
-class RewriteStatepointsForGCLegacyPass : public ModulePass {
- RewriteStatepointsForGC Impl;
-
-public:
- static char ID; // Pass identification, replacement for typeid
-
- RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
- initializeRewriteStatepointsForGCLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
-
- bool runOnModule(Module &M) override {
- bool Changed = false;
- const TargetLibraryInfo &TLI =
- getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- for (Function &F : M) {
- // Nothing to do for declarations.
- if (F.isDeclaration() || F.empty())
- continue;
-
- // Policy choice says not to rewrite - the most common reason is that
- // we're compiling code without a GCStrategy.
- if (!shouldRewriteStatepointsIn(F))
- continue;
-
- TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
-
- Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
- }
-
- if (!Changed)
- return false;
-
- // stripNonValidData asserts that shouldRewriteStatepointsIn
- // returns true for at least one function in the module. Since at least
- // one function changed, we know that the precondition is satisfied.
- stripNonValidData(M);
- return true;
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- // We add and rewrite a bunch of instructions, but don't really do much
- // else. We could in theory preserve a lot more analyses here.
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
-};
-
-} // end anonymous namespace
-
-char RewriteStatepointsForGCLegacyPass::ID = 0;
-
-ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
- return new RewriteStatepointsForGCLegacyPass();
-}
-
-INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
- "rewrite-statepoints-for-gc",
- "Make relocations explicit at statepoints", false, false)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
- "rewrite-statepoints-for-gc",
- "Make relocations explicit at statepoints", false, false)
-
-namespace {
-
-struct GCPtrLivenessData {
- /// Values defined in this block.
- MapVector<BasicBlock *, SetVector<Value *>> KillSet;
-
- /// Values used in this block (and thus live); does not included values
- /// killed within this block.
- MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
-
- /// Values live into this basic block (i.e. used by any
- /// instruction in this basic block or ones reachable from here)
- MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
-
- /// Values live out of this basic block (i.e. live into
- /// any successor block)
- MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
-};
-
-// The type of the internal cache used inside the findBasePointers family
-// of functions. From the callers perspective, this is an opaque type and
-// should not be inspected.
-//
-// In the actual implementation this caches two relations:
-// - The base relation itself (i.e. this pointer is based on that one)
-// - The base defining value relation (i.e. before base_phi insertion)
-// Generally, after the execution of a full findBasePointer call, only the
-// base relation will remain. Internally, we add a mixture of the two
-// types, then update all the second type to the first type
-using DefiningValueMapTy = MapVector<Value *, Value *>;
-using StatepointLiveSetTy = SetVector<Value *>;
-using RematerializedValueMapTy =
- MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
-
-struct PartiallyConstructedSafepointRecord {
- /// The set of values known to be live across this safepoint
- StatepointLiveSetTy LiveSet;
-
- /// Mapping from live pointers to a base-defining-value
- MapVector<Value *, Value *> PointerToBase;
-
- /// The *new* gc.statepoint instruction itself. This produces the token
- /// that normal path gc.relocates and the gc.result are tied to.
- Instruction *StatepointToken;
-
- /// Instruction to which exceptional gc relocates are attached
- /// Makes it easier to iterate through them during relocationViaAlloca.
- Instruction *UnwindToken;
-
- /// Record live values we are rematerialized instead of relocating.
- /// They are not included into 'LiveSet' field.
- /// Maps rematerialized copy to it's original value.
- RematerializedValueMapTy RematerializedValues;
-};
-
-} // end anonymous namespace
-
-static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
- Optional<OperandBundleUse> DeoptBundle =
- Call->getOperandBundle(LLVMContext::OB_deopt);
-
- if (!DeoptBundle.hasValue()) {
- assert(AllowStatepointWithNoDeoptInfo &&
- "Found non-leaf call without deopt info!");
- return None;
- }
-
- return DeoptBundle.getValue().Inputs;
-}
-
-/// Compute the live-in set for every basic block in the function
-static void computeLiveInValues(DominatorTree &DT, Function &F,
- GCPtrLivenessData &Data);
-
-/// Given results from the dataflow liveness computation, find the set of live
-/// Values at a particular instruction.
-static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
- StatepointLiveSetTy &out);
-
-// TODO: Once we can get to the GCStrategy, this becomes
-// Optional<bool> isGCManagedPointer(const Type *Ty) const override {
-
-static bool isGCPointerType(Type *T) {
- if (auto *PT = dyn_cast<PointerType>(T))
- // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
- // GC managed heap. We know that a pointer into this heap needs to be
- // updated and that no other pointer does.
- return PT->getAddressSpace() == 1;
- return false;
-}
-
-// Return true if this type is one which a) is a gc pointer or contains a GC
-// pointer and b) is of a type this code expects to encounter as a live value.
-// (The insertion code will assert that a type which matches (a) and not (b)
-// is not encountered.)
-static bool isHandledGCPointerType(Type *T) {
- // We fully support gc pointers
- if (isGCPointerType(T))
- return true;
- // We partially support vectors of gc pointers. The code will assert if it
- // can't handle something.
- if (auto VT = dyn_cast<VectorType>(T))
- if (isGCPointerType(VT->getElementType()))
- return true;
- return false;
-}
-
-#ifndef NDEBUG
-/// Returns true if this type contains a gc pointer whether we know how to
-/// handle that type or not.
-static bool containsGCPtrType(Type *Ty) {
- if (isGCPointerType(Ty))
- return true;
- if (VectorType *VT = dyn_cast<VectorType>(Ty))
- return isGCPointerType(VT->getScalarType());
- if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
- return containsGCPtrType(AT->getElementType());
- if (StructType *ST = dyn_cast<StructType>(Ty))
- return llvm::any_of(ST->elements(), containsGCPtrType);
- return false;
-}
-
-// Returns true if this is a type which a) is a gc pointer or contains a GC
-// pointer and b) is of a type which the code doesn't expect (i.e. first class
-// aggregates). Used to trip assertions.
-static bool isUnhandledGCPointerType(Type *Ty) {
- return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
-}
-#endif
-
-// Return the name of the value suffixed with the provided value, or if the
-// value didn't have a name, the default value specified.
-static std::string suffixed_name_or(Value *V, StringRef Suffix,
- StringRef DefaultName) {
- return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
-}
-
-// Conservatively identifies any definitions which might be live at the
-// given instruction. The analysis is performed immediately before the
-// given instruction. Values defined by that instruction are not considered
-// live. Values used by that instruction are considered live.
-static void analyzeParsePointLiveness(
- DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
- PartiallyConstructedSafepointRecord &Result) {
- StatepointLiveSetTy LiveSet;
- findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
-
- if (PrintLiveSet) {
- dbgs() << "Live Variables:\n";
- for (Value *V : LiveSet)
- dbgs() << " " << V->getName() << " " << *V << "\n";
- }
- if (PrintLiveSetSize) {
- dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n";
- dbgs() << "Number live values: " << LiveSet.size() << "\n";
- }
- Result.LiveSet = LiveSet;
-}
-
-static bool isKnownBaseResult(Value *V);
-
-namespace {
-
-/// A single base defining value - An immediate base defining value for an
-/// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
-/// For instructions which have multiple pointer [vector] inputs or that
-/// transition between vector and scalar types, there is no immediate base
-/// defining value. The 'base defining value' for 'Def' is the transitive
-/// closure of this relation stopping at the first instruction which has no
-/// immediate base defining value. The b.d.v. might itself be a base pointer,
-/// but it can also be an arbitrary derived pointer.
-struct BaseDefiningValueResult {
- /// Contains the value which is the base defining value.
- Value * const BDV;
-
- /// True if the base defining value is also known to be an actual base
- /// pointer.
- const bool IsKnownBase;
-
- BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
- : BDV(BDV), IsKnownBase(IsKnownBase) {
-#ifndef NDEBUG
- // Check consistency between new and old means of checking whether a BDV is
- // a base.
- bool MustBeBase = isKnownBaseResult(BDV);
- assert(!MustBeBase || MustBeBase == IsKnownBase);
-#endif
- }
-};
-
-} // end anonymous namespace
-
-static BaseDefiningValueResult findBaseDefiningValue(Value *I);
-
-/// Return a base defining value for the 'Index' element of the given vector
-/// instruction 'I'. If Index is null, returns a BDV for the entire vector
-/// 'I'. As an optimization, this method will try to determine when the
-/// element is known to already be a base pointer. If this can be established,
-/// the second value in the returned pair will be true. Note that either a
-/// vector or a pointer typed value can be returned. For the former, the
-/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
-/// If the later, the return pointer is a BDV (or possibly a base) for the
-/// particular element in 'I'.
-static BaseDefiningValueResult
-findBaseDefiningValueOfVector(Value *I) {
- // Each case parallels findBaseDefiningValue below, see that code for
- // detailed motivation.
-
- if (isa<Argument>(I))
- // An incoming argument to the function is a base pointer
- return BaseDefiningValueResult(I, true);
-
- if (isa<Constant>(I))
- // Base of constant vector consists only of constant null pointers.
- // For reasoning see similar case inside 'findBaseDefiningValue' function.
- return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
- true);
-
- if (isa<LoadInst>(I))
- return BaseDefiningValueResult(I, true);
-
- if (isa<InsertElementInst>(I))
- // We don't know whether this vector contains entirely base pointers or
- // not. To be conservatively correct, we treat it as a BDV and will
- // duplicate code as needed to construct a parallel vector of bases.
- return BaseDefiningValueResult(I, false);
-
- if (isa<ShuffleVectorInst>(I))
- // We don't know whether this vector contains entirely base pointers or
- // not. To be conservatively correct, we treat it as a BDV and will
- // duplicate code as needed to construct a parallel vector of bases.
- // TODO: There a number of local optimizations which could be applied here
- // for particular sufflevector patterns.
- return BaseDefiningValueResult(I, false);
-
- // The behavior of getelementptr instructions is the same for vector and
- // non-vector data types.
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
- return findBaseDefiningValue(GEP->getPointerOperand());
-
- // If the pointer comes through a bitcast of a vector of pointers to
- // a vector of another type of pointer, then look through the bitcast
- if (auto *BC = dyn_cast<BitCastInst>(I))
- return findBaseDefiningValue(BC->getOperand(0));
-
- // We assume that functions in the source language only return base
- // pointers. This should probably be generalized via attributes to support
- // both source language and internal functions.
- if (isa<CallInst>(I) || isa<InvokeInst>(I))
- return BaseDefiningValueResult(I, true);
-
- // A PHI or Select is a base defining value. The outer findBasePointer
- // algorithm is responsible for constructing a base value for this BDV.
- assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
- "unknown vector instruction - no base found for vector element");
- return BaseDefiningValueResult(I, false);
-}
-
-/// Helper function for findBasePointer - Will return a value which either a)
-/// defines the base pointer for the input, b) blocks the simple search
-/// (i.e. a PHI or Select of two derived pointers), or c) involves a change
-/// from pointer to vector type or back.
-static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
- assert(I->getType()->isPtrOrPtrVectorTy() &&
- "Illegal to ask for the base pointer of a non-pointer type");
-
- if (I->getType()->isVectorTy())
- return findBaseDefiningValueOfVector(I);
-
- if (isa<Argument>(I))
- // An incoming argument to the function is a base pointer
- // We should have never reached here if this argument isn't an gc value
- return BaseDefiningValueResult(I, true);
-
- if (isa<Constant>(I)) {
- // We assume that objects with a constant base (e.g. a global) can't move
- // and don't need to be reported to the collector because they are always
- // live. Besides global references, all kinds of constants (e.g. undef,
- // constant expressions, null pointers) can be introduced by the inliner or
- // the optimizer, especially on dynamically dead paths.
- // Here we treat all of them as having single null base. By doing this we
- // trying to avoid problems reporting various conflicts in a form of
- // "phi (const1, const2)" or "phi (const, regular gc ptr)".
- // See constant.ll file for relevant test cases.
-
- return BaseDefiningValueResult(
- ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
- }
-
- if (CastInst *CI = dyn_cast<CastInst>(I)) {
- Value *Def = CI->stripPointerCasts();
- // If stripping pointer casts changes the address space there is an
- // addrspacecast in between.
- assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
- cast<PointerType>(CI->getType())->getAddressSpace() &&
- "unsupported addrspacecast");
- // If we find a cast instruction here, it means we've found a cast which is
- // not simply a pointer cast (i.e. an inttoptr). We don't know how to
- // handle int->ptr conversion.
- assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
- return findBaseDefiningValue(Def);
- }
-
- if (isa<LoadInst>(I))
- // The value loaded is an gc base itself
- return BaseDefiningValueResult(I, true);
-
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
- // The base of this GEP is the base
- return findBaseDefiningValue(GEP->getPointerOperand());
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default:
- // fall through to general call handling
- break;
- case Intrinsic::experimental_gc_statepoint:
- llvm_unreachable("statepoints don't produce pointers");
- case Intrinsic::experimental_gc_relocate:
- // Rerunning safepoint insertion after safepoints are already
- // inserted is not supported. It could probably be made to work,
- // but why are you doing this? There's no good reason.
- llvm_unreachable("repeat safepoint insertion is not supported");
- case Intrinsic::gcroot:
- // Currently, this mechanism hasn't been extended to work with gcroot.
- // There's no reason it couldn't be, but I haven't thought about the
- // implications much.
- llvm_unreachable(
- "interaction with the gcroot mechanism is not supported");
- }
- }
- // We assume that functions in the source language only return base
- // pointers. This should probably be generalized via attributes to support
- // both source language and internal functions.
- if (isa<CallInst>(I) || isa<InvokeInst>(I))
- return BaseDefiningValueResult(I, true);
-
- // TODO: I have absolutely no idea how to implement this part yet. It's not
- // necessarily hard, I just haven't really looked at it yet.
- assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
-
- if (isa<AtomicCmpXchgInst>(I))
- // A CAS is effectively a atomic store and load combined under a
- // predicate. From the perspective of base pointers, we just treat it
- // like a load.
- return BaseDefiningValueResult(I, true);
-
- assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
- "binary ops which don't apply to pointers");
-
- // The aggregate ops. Aggregates can either be in the heap or on the
- // stack, but in either case, this is simply a field load. As a result,
- // this is a defining definition of the base just like a load is.
- if (isa<ExtractValueInst>(I))
- return BaseDefiningValueResult(I, true);
-
- // We should never see an insert vector since that would require we be
- // tracing back a struct value not a pointer value.
- assert(!isa<InsertValueInst>(I) &&
- "Base pointer for a struct is meaningless");
-
- // An extractelement produces a base result exactly when it's input does.
- // We may need to insert a parallel instruction to extract the appropriate
- // element out of the base vector corresponding to the input. Given this,
- // it's analogous to the phi and select case even though it's not a merge.
- if (isa<ExtractElementInst>(I))
- // Note: There a lot of obvious peephole cases here. This are deliberately
- // handled after the main base pointer inference algorithm to make writing
- // test cases to exercise that code easier.
- return BaseDefiningValueResult(I, false);
-
- // The last two cases here don't return a base pointer. Instead, they
- // return a value which dynamically selects from among several base
- // derived pointers (each with it's own base potentially). It's the job of
- // the caller to resolve these.
- assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
- "missing instruction case in findBaseDefiningValing");
- return BaseDefiningValueResult(I, false);
-}
-
-/// Returns the base defining value for this value.
-static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
- Value *&Cached = Cache[I];
- if (!Cached) {
- Cached = findBaseDefiningValue(I).BDV;
- LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
- << Cached->getName() << "\n");
- }
- assert(Cache[I] != nullptr);
- return Cached;
-}
-
-/// Return a base pointer for this value if known. Otherwise, return it's
-/// base defining value.
-static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
- Value *Def = findBaseDefiningValueCached(I, Cache);
- auto Found = Cache.find(Def);
- if (Found != Cache.end()) {
- // Either a base-of relation, or a self reference. Caller must check.
- return Found->second;
- }
- // Only a BDV available
- return Def;
-}
-
-/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
-/// is it known to be a base pointer? Or do we need to continue searching.
-static bool isKnownBaseResult(Value *V) {
- if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
- !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
- !isa<ShuffleVectorInst>(V)) {
- // no recursion possible
- return true;
- }
- if (isa<Instruction>(V) &&
- cast<Instruction>(V)->getMetadata("is_base_value")) {
- // This is a previously inserted base phi or select. We know
- // that this is a base value.
- return true;
- }
-
- // We need to keep searching
- return false;
-}
-
-namespace {
-
-/// Models the state of a single base defining value in the findBasePointer
-/// algorithm for determining where a new instruction is needed to propagate
-/// the base of this BDV.
-class BDVState {
-public:
- enum Status { Unknown, Base, Conflict };
-
- BDVState() : BaseValue(nullptr) {}
-
- explicit BDVState(Status Status, Value *BaseValue = nullptr)
- : Status(Status), BaseValue(BaseValue) {
- assert(Status != Base || BaseValue);
- }
-
- explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
-
- Status getStatus() const { return Status; }
- Value *getBaseValue() const { return BaseValue; }
-
- bool isBase() const { return getStatus() == Base; }
- bool isUnknown() const { return getStatus() == Unknown; }
- bool isConflict() const { return getStatus() == Conflict; }
-
- bool operator==(const BDVState &Other) const {
- return BaseValue == Other.BaseValue && Status == Other.Status;
- }
-
- bool operator!=(const BDVState &other) const { return !(*this == other); }
-
- LLVM_DUMP_METHOD
- void dump() const {
- print(dbgs());
- dbgs() << '\n';
- }
-
- void print(raw_ostream &OS) const {
- switch (getStatus()) {
- case Unknown:
- OS << "U";
- break;
- case Base:
- OS << "B";
- break;
- case Conflict:
- OS << "C";
- break;
- }
- OS << " (" << getBaseValue() << " - "
- << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
- }
-
-private:
- Status Status = Unknown;
- AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
-};
-
-} // end anonymous namespace
-
-#ifndef NDEBUG
-static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
- State.print(OS);
- return OS;
-}
-#endif
-
-static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
- switch (LHS.getStatus()) {
- case BDVState::Unknown:
- return RHS;
-
- case BDVState::Base:
- assert(LHS.getBaseValue() && "can't be null");
- if (RHS.isUnknown())
- return LHS;
-
- if (RHS.isBase()) {
- if (LHS.getBaseValue() == RHS.getBaseValue()) {
- assert(LHS == RHS && "equality broken!");
- return LHS;
- }
- return BDVState(BDVState::Conflict);
- }
- assert(RHS.isConflict() && "only three states!");
- return BDVState(BDVState::Conflict);
-
- case BDVState::Conflict:
- return LHS;
- }
- llvm_unreachable("only three states!");
-}
-
-// Values of type BDVState form a lattice, and this function implements the meet
-// operation.
-static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
- BDVState Result = meetBDVStateImpl(LHS, RHS);
- assert(Result == meetBDVStateImpl(RHS, LHS) &&
- "Math is wrong: meet does not commute!");
- return Result;
-}
-
-/// For a given value or instruction, figure out what base ptr its derived from.
-/// For gc objects, this is simply itself. On success, returns a value which is
-/// the base pointer. (This is reliable and can be used for relocation.) On
-/// failure, returns nullptr.
-static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
- Value *Def = findBaseOrBDV(I, Cache);
-
- if (isKnownBaseResult(Def))
- return Def;
-
- // Here's the rough algorithm:
- // - For every SSA value, construct a mapping to either an actual base
- // pointer or a PHI which obscures the base pointer.
- // - Construct a mapping from PHI to unknown TOP state. Use an
- // optimistic algorithm to propagate base pointer information. Lattice
- // looks like:
- // UNKNOWN
- // b1 b2 b3 b4
- // CONFLICT
- // When algorithm terminates, all PHIs will either have a single concrete
- // base or be in a conflict state.
- // - For every conflict, insert a dummy PHI node without arguments. Add
- // these to the base[Instruction] = BasePtr mapping. For every
- // non-conflict, add the actual base.
- // - For every conflict, add arguments for the base[a] of each input
- // arguments.
- //
- // Note: A simpler form of this would be to add the conflict form of all
- // PHIs without running the optimistic algorithm. This would be
- // analogous to pessimistic data flow and would likely lead to an
- // overall worse solution.
-
-#ifndef NDEBUG
- auto isExpectedBDVType = [](Value *BDV) {
- return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
- isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
- isa<ShuffleVectorInst>(BDV);
- };
-#endif
-
- // Once populated, will contain a mapping from each potentially non-base BDV
- // to a lattice value (described above) which corresponds to that BDV.
- // We use the order of insertion (DFS over the def/use graph) to provide a
- // stable deterministic ordering for visiting DenseMaps (which are unordered)
- // below. This is important for deterministic compilation.
- MapVector<Value *, BDVState> States;
-
- // Recursively fill in all base defining values reachable from the initial
- // one for which we don't already know a definite base value for
- /* scope */ {
- SmallVector<Value*, 16> Worklist;
- Worklist.push_back(Def);
- States.insert({Def, BDVState()});
- while (!Worklist.empty()) {
- Value *Current = Worklist.pop_back_val();
- assert(!isKnownBaseResult(Current) && "why did it get added?");
-
- auto visitIncomingValue = [&](Value *InVal) {
- Value *Base = findBaseOrBDV(InVal, Cache);
- if (isKnownBaseResult(Base))
- // Known bases won't need new instructions introduced and can be
- // ignored safely
- return;
- assert(isExpectedBDVType(Base) && "the only non-base values "
- "we see should be base defining values");
- if (States.insert(std::make_pair(Base, BDVState())).second)
- Worklist.push_back(Base);
- };
- if (PHINode *PN = dyn_cast<PHINode>(Current)) {
- for (Value *InVal : PN->incoming_values())
- visitIncomingValue(InVal);
- } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
- visitIncomingValue(SI->getTrueValue());
- visitIncomingValue(SI->getFalseValue());
- } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
- visitIncomingValue(EE->getVectorOperand());
- } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
- visitIncomingValue(IE->getOperand(0)); // vector operand
- visitIncomingValue(IE->getOperand(1)); // scalar operand
- } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
- visitIncomingValue(SV->getOperand(0));
- visitIncomingValue(SV->getOperand(1));
- }
- else {
- llvm_unreachable("Unimplemented instruction case");
- }
- }
- }
-
-#ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "States after initialization:\n");
- for (auto Pair : States) {
- LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
- }
-#endif
-
- // Return a phi state for a base defining value. We'll generate a new
- // base state for known bases and expect to find a cached state otherwise.
- auto getStateForBDV = [&](Value *baseValue) {
- if (isKnownBaseResult(baseValue))
- return BDVState(baseValue);
- auto I = States.find(baseValue);
- assert(I != States.end() && "lookup failed!");
- return I->second;
- };
-
- bool Progress = true;
- while (Progress) {
-#ifndef NDEBUG
- const size_t OldSize = States.size();
-#endif
- Progress = false;
- // We're only changing values in this loop, thus safe to keep iterators.
- // Since this is computing a fixed point, the order of visit does not
- // effect the result. TODO: We could use a worklist here and make this run
- // much faster.
- for (auto Pair : States) {
- Value *BDV = Pair.first;
- assert(!isKnownBaseResult(BDV) && "why did it get added?");
-
- // Given an input value for the current instruction, return a BDVState
- // instance which represents the BDV of that value.
- auto getStateForInput = [&](Value *V) mutable {
- Value *BDV = findBaseOrBDV(V, Cache);
- return getStateForBDV(BDV);
- };
-
- BDVState NewState;
- if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
- NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
- NewState =
- meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
- } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
- for (Value *Val : PN->incoming_values())
- NewState = meetBDVState(NewState, getStateForInput(Val));
- } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
- // The 'meet' for an extractelement is slightly trivial, but it's still
- // useful in that it drives us to conflict if our input is.
- NewState =
- meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
- } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
- // Given there's a inherent type mismatch between the operands, will
- // *always* produce Conflict.
- NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
- NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
- } else {
- // The only instance this does not return a Conflict is when both the
- // vector operands are the same vector.
- auto *SV = cast<ShuffleVectorInst>(BDV);
- NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
- NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
- }
-
- BDVState OldState = States[BDV];
- if (OldState != NewState) {
- Progress = true;
- States[BDV] = NewState;
- }
- }
-
- assert(OldSize == States.size() &&
- "fixed point shouldn't be adding any new nodes to state");
- }
-
-#ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
- for (auto Pair : States) {
- LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
- }
-#endif
-
- // Insert Phis for all conflicts
- // TODO: adjust naming patterns to avoid this order of iteration dependency
- for (auto Pair : States) {
- Instruction *I = cast<Instruction>(Pair.first);
- BDVState State = Pair.second;
- assert(!isKnownBaseResult(I) && "why did it get added?");
- assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
-
- // extractelement instructions are a bit special in that we may need to
- // insert an extract even when we know an exact base for the instruction.
- // The problem is that we need to convert from a vector base to a scalar
- // base for the particular indice we're interested in.
- if (State.isBase() && isa<ExtractElementInst>(I) &&
- isa<VectorType>(State.getBaseValue()->getType())) {
- auto *EE = cast<ExtractElementInst>(I);
- // TODO: In many cases, the new instruction is just EE itself. We should
- // exploit this, but can't do it here since it would break the invariant
- // about the BDV not being known to be a base.
- auto *BaseInst = ExtractElementInst::Create(
- State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
- BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
- States[I] = BDVState(BDVState::Base, BaseInst);
- }
-
- // Since we're joining a vector and scalar base, they can never be the
- // same. As a result, we should always see insert element having reached
- // the conflict state.
- assert(!isa<InsertElementInst>(I) || State.isConflict());
-
- if (!State.isConflict())
- continue;
-
- /// Create and insert a new instruction which will represent the base of
- /// the given instruction 'I'.
- auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
- if (isa<PHINode>(I)) {
- BasicBlock *BB = I->getParent();
- int NumPreds = pred_size(BB);
- assert(NumPreds > 0 && "how did we reach here");
- std::string Name = suffixed_name_or(I, ".base", "base_phi");
- return PHINode::Create(I->getType(), NumPreds, Name, I);
- } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
- // The undef will be replaced later
- UndefValue *Undef = UndefValue::get(SI->getType());
- std::string Name = suffixed_name_or(I, ".base", "base_select");
- return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
- } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
- UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
- std::string Name = suffixed_name_or(I, ".base", "base_ee");
- return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
- EE);
- } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
- UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
- UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
- std::string Name = suffixed_name_or(I, ".base", "base_ie");
- return InsertElementInst::Create(VecUndef, ScalarUndef,
- IE->getOperand(2), Name, IE);
- } else {
- auto *SV = cast<ShuffleVectorInst>(I);
- UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
- std::string Name = suffixed_name_or(I, ".base", "base_sv");
- return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
- Name, SV);
- }
- };
- Instruction *BaseInst = MakeBaseInstPlaceholder(I);
- // Add metadata marking this as a base value
- BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
- States[I] = BDVState(BDVState::Conflict, BaseInst);
- }
-
- // Returns a instruction which produces the base pointer for a given
- // instruction. The instruction is assumed to be an input to one of the BDVs
- // seen in the inference algorithm above. As such, we must either already
- // know it's base defining value is a base, or have inserted a new
- // instruction to propagate the base of it's BDV and have entered that newly
- // introduced instruction into the state table. In either case, we are
- // assured to be able to determine an instruction which produces it's base
- // pointer.
- auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
- Value *BDV = findBaseOrBDV(Input, Cache);
- Value *Base = nullptr;
- if (isKnownBaseResult(BDV)) {
- Base = BDV;
- } else {
- // Either conflict or base.
- assert(States.count(BDV));
- Base = States[BDV].getBaseValue();
- }
- assert(Base && "Can't be null");
- // The cast is needed since base traversal may strip away bitcasts
- if (Base->getType() != Input->getType() && InsertPt)
- Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
- return Base;
- };
-
- // Fixup all the inputs of the new PHIs. Visit order needs to be
- // deterministic and predictable because we're naming newly created
- // instructions.
- for (auto Pair : States) {
- Instruction *BDV = cast<Instruction>(Pair.first);
- BDVState State = Pair.second;
-
- assert(!isKnownBaseResult(BDV) && "why did it get added?");
- assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
- if (!State.isConflict())
- continue;
-
- if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
- PHINode *PN = cast<PHINode>(BDV);
- unsigned NumPHIValues = PN->getNumIncomingValues();
- for (unsigned i = 0; i < NumPHIValues; i++) {
- Value *InVal = PN->getIncomingValue(i);
- BasicBlock *InBB = PN->getIncomingBlock(i);
-
- // If we've already seen InBB, add the same incoming value
- // we added for it earlier. The IR verifier requires phi
- // nodes with multiple entries from the same basic block
- // to have the same incoming value for each of those
- // entries. If we don't do this check here and basephi
- // has a different type than base, we'll end up adding two
- // bitcasts (and hence two distinct values) as incoming
- // values for the same basic block.
-
- int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
- if (BlockIndex != -1) {
- Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
- BasePHI->addIncoming(OldBase, InBB);
-
-#ifndef NDEBUG
- Value *Base = getBaseForInput(InVal, nullptr);
- // In essence this assert states: the only way two values
- // incoming from the same basic block may be different is by
- // being different bitcasts of the same value. A cleanup
- // that remains TODO is changing findBaseOrBDV to return an
- // llvm::Value of the correct type (and still remain pure).
- // This will remove the need to add bitcasts.
- assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
- "Sanity -- findBaseOrBDV should be pure!");
-#endif
- continue;
- }
-
- // Find the instruction which produces the base for each input. We may
- // need to insert a bitcast in the incoming block.
- // TODO: Need to split critical edges if insertion is needed
- Value *Base = getBaseForInput(InVal, InBB->getTerminator());
- BasePHI->addIncoming(Base, InBB);
- }
- assert(BasePHI->getNumIncomingValues() == NumPHIValues);
- } else if (SelectInst *BaseSI =
- dyn_cast<SelectInst>(State.getBaseValue())) {
- SelectInst *SI = cast<SelectInst>(BDV);
-
- // Find the instruction which produces the base for each input.
- // We may need to insert a bitcast.
- BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
- BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
- } else if (auto *BaseEE =
- dyn_cast<ExtractElementInst>(State.getBaseValue())) {
- Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
- // Find the instruction which produces the base for each input. We may
- // need to insert a bitcast.
- BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
- } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
- auto *BdvIE = cast<InsertElementInst>(BDV);
- auto UpdateOperand = [&](int OperandIdx) {
- Value *InVal = BdvIE->getOperand(OperandIdx);
- Value *Base = getBaseForInput(InVal, BaseIE);
- BaseIE->setOperand(OperandIdx, Base);
- };
- UpdateOperand(0); // vector operand
- UpdateOperand(1); // scalar operand
- } else {
- auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
- auto *BdvSV = cast<ShuffleVectorInst>(BDV);
- auto UpdateOperand = [&](int OperandIdx) {
- Value *InVal = BdvSV->getOperand(OperandIdx);
- Value *Base = getBaseForInput(InVal, BaseSV);
- BaseSV->setOperand(OperandIdx, Base);
- };
- UpdateOperand(0); // vector operand
- UpdateOperand(1); // vector operand
- }
- }
-
- // Cache all of our results so we can cheaply reuse them
- // NOTE: This is actually two caches: one of the base defining value
- // relation and one of the base pointer relation! FIXME
- for (auto Pair : States) {
- auto *BDV = Pair.first;
- Value *Base = Pair.second.getBaseValue();
- assert(BDV && Base);
- assert(!isKnownBaseResult(BDV) && "why did it get added?");
-
- LLVM_DEBUG(
- dbgs() << "Updating base value cache"
- << " for: " << BDV->getName() << " from: "
- << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
- << " to: " << Base->getName() << "\n");
-
- if (Cache.count(BDV)) {
- assert(isKnownBaseResult(Base) &&
- "must be something we 'know' is a base pointer");
- // Once we transition from the BDV relation being store in the Cache to
- // the base relation being stored, it must be stable
- assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
- "base relation should be stable");
- }
- Cache[BDV] = Base;
- }
- assert(Cache.count(Def));
- return Cache[Def];
-}
-
-// For a set of live pointers (base and/or derived), identify the base
-// pointer of the object which they are derived from. This routine will
-// mutate the IR graph as needed to make the 'base' pointer live at the
-// definition site of 'derived'. This ensures that any use of 'derived' can
-// also use 'base'. This may involve the insertion of a number of
-// additional PHI nodes.
-//
-// preconditions: live is a set of pointer type Values
-//
-// side effects: may insert PHI nodes into the existing CFG, will preserve
-// CFG, will not remove or mutate any existing nodes
-//
-// post condition: PointerToBase contains one (derived, base) pair for every
-// pointer in live. Note that derived can be equal to base if the original
-// pointer was a base pointer.
-static void
-findBasePointers(const StatepointLiveSetTy &live,
- MapVector<Value *, Value *> &PointerToBase,
- DominatorTree *DT, DefiningValueMapTy &DVCache) {
- for (Value *ptr : live) {
- Value *base = findBasePointer(ptr, DVCache);
- assert(base && "failed to find base pointer");
- PointerToBase[ptr] = base;
- assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
- DT->dominates(cast<Instruction>(base)->getParent(),
- cast<Instruction>(ptr)->getParent())) &&
- "The base we found better dominate the derived pointer");
- }
-}
-
-/// Find the required based pointers (and adjust the live set) for the given
-/// parse point.
-static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
- CallBase *Call,
- PartiallyConstructedSafepointRecord &result) {
- MapVector<Value *, Value *> PointerToBase;
- findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
-
- if (PrintBasePointers) {
- errs() << "Base Pairs (w/o Relocation):\n";
- for (auto &Pair : PointerToBase) {
- errs() << " derived ";
- Pair.first->printAsOperand(errs(), false);
- errs() << " base ";
- Pair.second->printAsOperand(errs(), false);
- errs() << "\n";;
- }
- }
-
- result.PointerToBase = PointerToBase;
-}
-
-/// Given an updated version of the dataflow liveness results, update the
-/// liveset and base pointer maps for the call site CS.
-static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
- CallBase *Call,
- PartiallyConstructedSafepointRecord &result);
-
-static void recomputeLiveInValues(
- Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
- MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
- // TODO-PERF: reuse the original liveness, then simply run the dataflow
- // again. The old values are still live and will help it stabilize quickly.
- GCPtrLivenessData RevisedLivenessData;
- computeLiveInValues(DT, F, RevisedLivenessData);
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
- }
-}
-
-// When inserting gc.relocate and gc.result calls, we need to ensure there are
-// no uses of the original value / return value between the gc.statepoint and
-// the gc.relocate / gc.result call. One case which can arise is a phi node
-// starting one of the successor blocks. We also need to be able to insert the
-// gc.relocates only on the path which goes through the statepoint. We might
-// need to split an edge to make this possible.
-static BasicBlock *
-normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
- DominatorTree &DT) {
- BasicBlock *Ret = BB;
- if (!BB->getUniquePredecessor())
- Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
-
- // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
- // from it
- FoldSingleEntryPHINodes(Ret);
- assert(!isa<PHINode>(Ret->begin()) &&
- "All PHI nodes should have been removed!");
-
- // At this point, we can safely insert a gc.relocate or gc.result as the first
- // instruction in Ret if needed.
- return Ret;
-}
-
-// Create new attribute set containing only attributes which can be transferred
-// from original call to the safepoint.
-static AttributeList legalizeCallAttributes(AttributeList AL) {
- if (AL.isEmpty())
- return AL;
-
- // Remove the readonly, readnone, and statepoint function attributes.
- AttrBuilder FnAttrs = AL.getFnAttributes();
- FnAttrs.removeAttribute(Attribute::ReadNone);
- FnAttrs.removeAttribute(Attribute::ReadOnly);
- for (Attribute A : AL.getFnAttributes()) {
- if (isStatepointDirectiveAttr(A))
- FnAttrs.remove(A);
- }
-
- // Just skip parameter and return attributes for now
- LLVMContext &Ctx = AL.getContext();
- return AttributeList::get(Ctx, AttributeList::FunctionIndex,
- AttributeSet::get(Ctx, FnAttrs));
-}
-
-/// Helper function to place all gc relocates necessary for the given
-/// statepoint.
-/// Inputs:
-/// liveVariables - list of variables to be relocated.
-/// liveStart - index of the first live variable.
-/// basePtrs - base pointers.
-/// statepointToken - statepoint instruction to which relocates should be
-/// bound.
-/// Builder - Llvm IR builder to be used to construct new calls.
-static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
- const int LiveStart,
- ArrayRef<Value *> BasePtrs,
- Instruction *StatepointToken,
- IRBuilder<> Builder) {
- if (LiveVariables.empty())
- return;
-
- auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
- auto ValIt = llvm::find(LiveVec, Val);
- assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
- size_t Index = std::distance(LiveVec.begin(), ValIt);
- assert(Index < LiveVec.size() && "Bug in std::find?");
- return Index;
- };
- Module *M = StatepointToken->getModule();
-
- // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
- // element type is i8 addrspace(1)*). We originally generated unique
- // declarations for each pointer type, but this proved problematic because
- // the intrinsic mangling code is incomplete and fragile. Since we're moving
- // towards a single unified pointer type anyways, we can just cast everything
- // to an i8* of the right address space. A bitcast is added later to convert
- // gc_relocate to the actual value's type.
- auto getGCRelocateDecl = [&] (Type *Ty) {
- assert(isHandledGCPointerType(Ty));
- auto AS = Ty->getScalarType()->getPointerAddressSpace();
- Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
- if (auto *VT = dyn_cast<VectorType>(Ty))
- NewTy = VectorType::get(NewTy, VT->getNumElements());
- return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
- {NewTy});
- };
-
- // Lazily populated map from input types to the canonicalized form mentioned
- // in the comment above. This should probably be cached somewhere more
- // broadly.
- DenseMap<Type *, Function *> TypeToDeclMap;
-
- for (unsigned i = 0; i < LiveVariables.size(); i++) {
- // Generate the gc.relocate call and save the result
- Value *BaseIdx =
- Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
- Value *LiveIdx = Builder.getInt32(LiveStart + i);
-
- Type *Ty = LiveVariables[i]->getType();
- if (!TypeToDeclMap.count(Ty))
- TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
- Function *GCRelocateDecl = TypeToDeclMap[Ty];
-
- // only specify a debug name if we can give a useful one
- CallInst *Reloc = Builder.CreateCall(
- GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
- suffixed_name_or(LiveVariables[i], ".relocated", ""));
- // Trick CodeGen into thinking there are lots of free registers at this
- // fake call.
- Reloc->setCallingConv(CallingConv::Cold);
- }
-}
-
-namespace {
-
-/// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
-/// avoids having to worry about keeping around dangling pointers to Values.
-class DeferredReplacement {
- AssertingVH<Instruction> Old;
- AssertingVH<Instruction> New;
- bool IsDeoptimize = false;
-
- DeferredReplacement() = default;
-
-public:
- static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
- assert(Old != New && Old && New &&
- "Cannot RAUW equal values or to / from null!");
-
- DeferredReplacement D;
- D.Old = Old;
- D.New = New;
- return D;
- }
-
- static DeferredReplacement createDelete(Instruction *ToErase) {
- DeferredReplacement D;
- D.Old = ToErase;
- return D;
- }
-
- static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
-#ifndef NDEBUG
- auto *F = cast<CallInst>(Old)->getCalledFunction();
- assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
- "Only way to construct a deoptimize deferred replacement");
-#endif
- DeferredReplacement D;
- D.Old = Old;
- D.IsDeoptimize = true;
- return D;
- }
-
- /// Does the task represented by this instance.
- void doReplacement() {
- Instruction *OldI = Old;
- Instruction *NewI = New;
-
- assert(OldI != NewI && "Disallowed at construction?!");
- assert((!IsDeoptimize || !New) &&
- "Deoptimize intrinsics are not replaced!");
-
- Old = nullptr;
- New = nullptr;
-
- if (NewI)
- OldI->replaceAllUsesWith(NewI);
-
- if (IsDeoptimize) {
- // Note: we've inserted instructions, so the call to llvm.deoptimize may
- // not necessarily be followed by the matching return.
- auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
- new UnreachableInst(RI->getContext(), RI);
- RI->eraseFromParent();
- }
-
- OldI->eraseFromParent();
- }
-};
-
-} // end anonymous namespace
-
-static StringRef getDeoptLowering(CallBase *Call) {
- const char *DeoptLowering = "deopt-lowering";
- if (Call->hasFnAttr(DeoptLowering)) {
- // FIXME: Calls have a *really* confusing interface around attributes
- // with values.
- const AttributeList &CSAS = Call->getAttributes();
- if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
- return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
- .getValueAsString();
- Function *F = Call->getCalledFunction();
- assert(F && F->hasFnAttribute(DeoptLowering));
- return F->getFnAttribute(DeoptLowering).getValueAsString();
- }
- return "live-through";
-}
-
-static void
-makeStatepointExplicitImpl(CallBase *Call, /* to replace */
- const SmallVectorImpl<Value *> &BasePtrs,
- const SmallVectorImpl<Value *> &LiveVariables,
- PartiallyConstructedSafepointRecord &Result,
- std::vector<DeferredReplacement> &Replacements) {
- assert(BasePtrs.size() == LiveVariables.size());
-
- // Then go ahead and use the builder do actually do the inserts. We insert
- // immediately before the previous instruction under the assumption that all
- // arguments will be available here. We can't insert afterwards since we may
- // be replacing a terminator.
- IRBuilder<> Builder(Call);
-
- ArrayRef<Value *> GCArgs(LiveVariables);
- uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
- uint32_t NumPatchBytes = 0;
- uint32_t Flags = uint32_t(StatepointFlags::None);
-
- ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end());
- ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call);
- ArrayRef<Use> TransitionArgs;
- if (auto TransitionBundle =
- Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
- Flags |= uint32_t(StatepointFlags::GCTransition);
- TransitionArgs = TransitionBundle->Inputs;
- }
-
- // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
- // with a return value, we lower then as never returning calls to
- // __llvm_deoptimize that are followed by unreachable to get better codegen.
- bool IsDeoptimize = false;
-
- StatepointDirectives SD =
- parseStatepointDirectivesFromAttrs(Call->getAttributes());
- if (SD.NumPatchBytes)
- NumPatchBytes = *SD.NumPatchBytes;
- if (SD.StatepointID)
- StatepointID = *SD.StatepointID;
-
- // Pass through the requested lowering if any. The default is live-through.
- StringRef DeoptLowering = getDeoptLowering(Call);
- if (DeoptLowering.equals("live-in"))
- Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
- else {
- assert(DeoptLowering.equals("live-through") && "Unsupported value!");
- }
-
- Value *CallTarget = Call->getCalledValue();
- if (Function *F = dyn_cast<Function>(CallTarget)) {
- if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
- // Calls to llvm.experimental.deoptimize are lowered to calls to the
- // __llvm_deoptimize symbol. We want to resolve this now, since the
- // verifier does not allow taking the address of an intrinsic function.
-
- SmallVector<Type *, 8> DomainTy;
- for (Value *Arg : CallArgs)
- DomainTy.push_back(Arg->getType());
- auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
- /* isVarArg = */ false);
-
- // Note: CallTarget can be a bitcast instruction of a symbol if there are
- // calls to @llvm.experimental.deoptimize with different argument types in
- // the same module. This is fine -- we assume the frontend knew what it
- // was doing when generating this kind of IR.
- CallTarget = F->getParent()
- ->getOrInsertFunction("__llvm_deoptimize", FTy)
- .getCallee();
-
- IsDeoptimize = true;
- }
- }
-
- // Create the statepoint given all the arguments
- Instruction *Token = nullptr;
- if (auto *CI = dyn_cast<CallInst>(Call)) {
- CallInst *SPCall = Builder.CreateGCStatepointCall(
- StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
- TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
-
- SPCall->setTailCallKind(CI->getTailCallKind());
- SPCall->setCallingConv(CI->getCallingConv());
-
- // Currently we will fail on parameter attributes and on certain
- // function attributes. In case if we can handle this set of attributes -
- // set up function attrs directly on statepoint and return attrs later for
- // gc_result intrinsic.
- SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes()));
-
- Token = SPCall;
-
- // Put the following gc_result and gc_relocate calls immediately after the
- // the old call (which we're about to delete)
- assert(CI->getNextNode() && "Not a terminator, must have next!");
- Builder.SetInsertPoint(CI->getNextNode());
- Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
- } else {
- auto *II = cast<InvokeInst>(Call);
-
- // Insert the new invoke into the old block. We'll remove the old one in a
- // moment at which point this will become the new terminator for the
- // original block.
- InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
- StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
- II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
- "statepoint_token");
-
- SPInvoke->setCallingConv(II->getCallingConv());
-
- // Currently we will fail on parameter attributes and on certain
- // function attributes. In case if we can handle this set of attributes -
- // set up function attrs directly on statepoint and return attrs later for
- // gc_result intrinsic.
- SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes()));
-
- Token = SPInvoke;
-
- // Generate gc relocates in exceptional path
- BasicBlock *UnwindBlock = II->getUnwindDest();
- assert(!isa<PHINode>(UnwindBlock->begin()) &&
- UnwindBlock->getUniquePredecessor() &&
- "can't safely insert in this block!");
-
- Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
- Builder.SetCurrentDebugLocation(II->getDebugLoc());
-
- // Attach exceptional gc relocates to the landingpad.
- Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
- Result.UnwindToken = ExceptionalToken;
-
- const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
- CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
- Builder);
-
- // Generate gc relocates and returns for normal block
- BasicBlock *NormalDest = II->getNormalDest();
- assert(!isa<PHINode>(NormalDest->begin()) &&
- NormalDest->getUniquePredecessor() &&
- "can't safely insert in this block!");
-
- Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
-
- // gc relocates will be generated later as if it were regular call
- // statepoint
- }
- assert(Token && "Should be set in one of the above branches!");
-
- if (IsDeoptimize) {
- // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
- // transform the tail-call like structure to a call to a void function
- // followed by unreachable to get better codegen.
- Replacements.push_back(
- DeferredReplacement::createDeoptimizeReplacement(Call));
- } else {
- Token->setName("statepoint_token");
- if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
- StringRef Name = Call->hasName() ? Call->getName() : "";
- CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
- GCResult->setAttributes(
- AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
- Call->getAttributes().getRetAttributes()));
-
- // We cannot RAUW or delete CS.getInstruction() because it could be in the
- // live set of some other safepoint, in which case that safepoint's
- // PartiallyConstructedSafepointRecord will hold a raw pointer to this
- // llvm::Instruction. Instead, we defer the replacement and deletion to
- // after the live sets have been made explicit in the IR, and we no longer
- // have raw pointers to worry about.
- Replacements.emplace_back(
- DeferredReplacement::createRAUW(Call, GCResult));
- } else {
- Replacements.emplace_back(DeferredReplacement::createDelete(Call));
- }
- }
-
- Result.StatepointToken = Token;
-
- // Second, create a gc.relocate for every live variable
- const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
- CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
-}
-
-// Replace an existing gc.statepoint with a new one and a set of gc.relocates
-// which make the relocations happening at this safepoint explicit.
-//
-// WARNING: Does not do any fixup to adjust users of the original live
-// values. That's the callers responsibility.
-static void
-makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
- PartiallyConstructedSafepointRecord &Result,
- std::vector<DeferredReplacement> &Replacements) {
- const auto &LiveSet = Result.LiveSet;
- const auto &PointerToBase = Result.PointerToBase;
-
- // Convert to vector for efficient cross referencing.
- SmallVector<Value *, 64> BaseVec, LiveVec;
- LiveVec.reserve(LiveSet.size());
- BaseVec.reserve(LiveSet.size());
- for (Value *L : LiveSet) {
- LiveVec.push_back(L);
- assert(PointerToBase.count(L));
- Value *Base = PointerToBase.find(L)->second;
- BaseVec.push_back(Base);
- }
- assert(LiveVec.size() == BaseVec.size());
-
- // Do the actual rewriting and delete the old statepoint
- makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
-}
-
-// Helper function for the relocationViaAlloca.
-//
-// It receives iterator to the statepoint gc relocates and emits a store to the
-// assigned location (via allocaMap) for the each one of them. It adds the
-// visited values into the visitedLiveValues set, which we will later use them
-// for sanity checking.
-static void
-insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
- DenseMap<Value *, AllocaInst *> &AllocaMap,
- DenseSet<Value *> &VisitedLiveValues) {
- for (User *U : GCRelocs) {
- GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
- if (!Relocate)
- continue;
-
- Value *OriginalValue = Relocate->getDerivedPtr();
- assert(AllocaMap.count(OriginalValue));
- Value *Alloca = AllocaMap[OriginalValue];
-
- // Emit store into the related alloca
- // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
- // the correct type according to alloca.
- assert(Relocate->getNextNode() &&
- "Should always have one since it's not a terminator");
- IRBuilder<> Builder(Relocate->getNextNode());
- Value *CastedRelocatedValue =
- Builder.CreateBitCast(Relocate,
- cast<AllocaInst>(Alloca)->getAllocatedType(),
- suffixed_name_or(Relocate, ".casted", ""));
-
- StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
- Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
-
-#ifndef NDEBUG
- VisitedLiveValues.insert(OriginalValue);
-#endif
- }
-}
-
-// Helper function for the "relocationViaAlloca". Similar to the
-// "insertRelocationStores" but works for rematerialized values.
-static void insertRematerializationStores(
- const RematerializedValueMapTy &RematerializedValues,
- DenseMap<Value *, AllocaInst *> &AllocaMap,
- DenseSet<Value *> &VisitedLiveValues) {
- for (auto RematerializedValuePair: RematerializedValues) {
- Instruction *RematerializedValue = RematerializedValuePair.first;
- Value *OriginalValue = RematerializedValuePair.second;
-
- assert(AllocaMap.count(OriginalValue) &&
- "Can not find alloca for rematerialized value");
- Value *Alloca = AllocaMap[OriginalValue];
-
- StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
- Store->insertAfter(RematerializedValue);
-
-#ifndef NDEBUG
- VisitedLiveValues.insert(OriginalValue);
-#endif
- }
-}
-
-/// Do all the relocation update via allocas and mem2reg
-static void relocationViaAlloca(
- Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
- ArrayRef<PartiallyConstructedSafepointRecord> Records) {
-#ifndef NDEBUG
- // record initial number of (static) allocas; we'll check we have the same
- // number when we get done.
- int InitialAllocaNum = 0;
- for (Instruction &I : F.getEntryBlock())
- if (isa<AllocaInst>(I))
- InitialAllocaNum++;
-#endif
-
- // TODO-PERF: change data structures, reserve
- DenseMap<Value *, AllocaInst *> AllocaMap;
- SmallVector<AllocaInst *, 200> PromotableAllocas;
- // Used later to chack that we have enough allocas to store all values
- std::size_t NumRematerializedValues = 0;
- PromotableAllocas.reserve(Live.size());
-
- // Emit alloca for "LiveValue" and record it in "allocaMap" and
- // "PromotableAllocas"
- const DataLayout &DL = F.getParent()->getDataLayout();
- auto emitAllocaFor = [&](Value *LiveValue) {
- AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
- DL.getAllocaAddrSpace(), "",
- F.getEntryBlock().getFirstNonPHI());
- AllocaMap[LiveValue] = Alloca;
- PromotableAllocas.push_back(Alloca);
- };
-
- // Emit alloca for each live gc pointer
- for (Value *V : Live)
- emitAllocaFor(V);
-
- // Emit allocas for rematerialized values
- for (const auto &Info : Records)
- for (auto RematerializedValuePair : Info.RematerializedValues) {
- Value *OriginalValue = RematerializedValuePair.second;
- if (AllocaMap.count(OriginalValue) != 0)
- continue;
-
- emitAllocaFor(OriginalValue);
- ++NumRematerializedValues;
- }
-
- // The next two loops are part of the same conceptual operation. We need to
- // insert a store to the alloca after the original def and at each
- // redefinition. We need to insert a load before each use. These are split
- // into distinct loops for performance reasons.
-
- // Update gc pointer after each statepoint: either store a relocated value or
- // null (if no relocated value was found for this gc pointer and it is not a
- // gc_result). This must happen before we update the statepoint with load of
- // alloca otherwise we lose the link between statepoint and old def.
- for (const auto &Info : Records) {
- Value *Statepoint = Info.StatepointToken;
-
- // This will be used for consistency check
- DenseSet<Value *> VisitedLiveValues;
-
- // Insert stores for normal statepoint gc relocates
- insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
-
- // In case if it was invoke statepoint
- // we will insert stores for exceptional path gc relocates.
- if (isa<InvokeInst>(Statepoint)) {
- insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
- VisitedLiveValues);
- }
-
- // Do similar thing with rematerialized values
- insertRematerializationStores(Info.RematerializedValues, AllocaMap,
- VisitedLiveValues);
-
- if (ClobberNonLive) {
- // As a debugging aid, pretend that an unrelocated pointer becomes null at
- // the gc.statepoint. This will turn some subtle GC problems into
- // slightly easier to debug SEGVs. Note that on large IR files with
- // lots of gc.statepoints this is extremely costly both memory and time
- // wise.
- SmallVector<AllocaInst *, 64> ToClobber;
- for (auto Pair : AllocaMap) {
- Value *Def = Pair.first;
- AllocaInst *Alloca = Pair.second;
-
- // This value was relocated
- if (VisitedLiveValues.count(Def)) {
- continue;
- }
- ToClobber.push_back(Alloca);
- }
-
- auto InsertClobbersAt = [&](Instruction *IP) {
- for (auto *AI : ToClobber) {
- auto PT = cast<PointerType>(AI->getAllocatedType());
- Constant *CPN = ConstantPointerNull::get(PT);
- StoreInst *Store = new StoreInst(CPN, AI);
- Store->insertBefore(IP);
- }
- };
-
- // Insert the clobbering stores. These may get intermixed with the
- // gc.results and gc.relocates, but that's fine.
- if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
- InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
- InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
- } else {
- InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
- }
- }
- }
-
- // Update use with load allocas and add store for gc_relocated.
- for (auto Pair : AllocaMap) {
- Value *Def = Pair.first;
- AllocaInst *Alloca = Pair.second;
-
- // We pre-record the uses of allocas so that we dont have to worry about
- // later update that changes the user information..
-
- SmallVector<Instruction *, 20> Uses;
- // PERF: trade a linear scan for repeated reallocation
- Uses.reserve(Def->getNumUses());
- for (User *U : Def->users()) {
- if (!isa<ConstantExpr>(U)) {
- // If the def has a ConstantExpr use, then the def is either a
- // ConstantExpr use itself or null. In either case
- // (recursively in the first, directly in the second), the oop
- // it is ultimately dependent on is null and this particular
- // use does not need to be fixed up.
- Uses.push_back(cast<Instruction>(U));
- }
- }
-
- llvm::sort(Uses);
- auto Last = std::unique(Uses.begin(), Uses.end());
- Uses.erase(Last, Uses.end());
-
- for (Instruction *Use : Uses) {
- if (isa<PHINode>(Use)) {
- PHINode *Phi = cast<PHINode>(Use);
- for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
- if (Def == Phi->getIncomingValue(i)) {
- LoadInst *Load =
- new LoadInst(Alloca->getAllocatedType(), Alloca, "",
- Phi->getIncomingBlock(i)->getTerminator());
- Phi->setIncomingValue(i, Load);
- }
- }
- } else {
- LoadInst *Load =
- new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
- Use->replaceUsesOfWith(Def, Load);
- }
- }
-
- // Emit store for the initial gc value. Store must be inserted after load,
- // otherwise store will be in alloca's use list and an extra load will be
- // inserted before it.
- StoreInst *Store = new StoreInst(Def, Alloca);
- if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
- if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
- // InvokeInst is a terminator so the store need to be inserted into its
- // normal destination block.
- BasicBlock *NormalDest = Invoke->getNormalDest();
- Store->insertBefore(NormalDest->getFirstNonPHI());
- } else {
- assert(!Inst->isTerminator() &&
- "The only terminator that can produce a value is "
- "InvokeInst which is handled above.");
- Store->insertAfter(Inst);
- }
- } else {
- assert(isa<Argument>(Def));
- Store->insertAfter(cast<Instruction>(Alloca));
- }
- }
-
- assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
- "we must have the same allocas with lives");
- if (!PromotableAllocas.empty()) {
- // Apply mem2reg to promote alloca to SSA
- PromoteMemToReg(PromotableAllocas, DT);
- }
-
-#ifndef NDEBUG
- for (auto &I : F.getEntryBlock())
- if (isa<AllocaInst>(I))
- InitialAllocaNum--;
- assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
-#endif
-}
-
-/// Implement a unique function which doesn't require we sort the input
-/// vector. Doing so has the effect of changing the output of a couple of
-/// tests in ways which make them less useful in testing fused safepoints.
-template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
- SmallSet<T, 8> Seen;
- Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
- Vec.end());
-}
-
-/// Insert holders so that each Value is obviously live through the entire
-/// lifetime of the call.
-static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
- SmallVectorImpl<CallInst *> &Holders) {
- if (Values.empty())
- // No values to hold live, might as well not insert the empty holder
- return;
-
- Module *M = Call->getModule();
- // Use a dummy vararg function to actually hold the values live
- FunctionCallee Func = M->getOrInsertFunction(
- "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
- if (isa<CallInst>(Call)) {
- // For call safepoints insert dummy calls right after safepoint
- Holders.push_back(
- CallInst::Create(Func, Values, "", &*++Call->getIterator()));
- return;
- }
- // For invoke safepooints insert dummy calls both in normal and
- // exceptional destination blocks
- auto *II = cast<InvokeInst>(Call);
- Holders.push_back(CallInst::Create(
- Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
- Holders.push_back(CallInst::Create(
- Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
-}
-
-static void findLiveReferences(
- Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
- MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
- GCPtrLivenessData OriginalLivenessData;
- computeLiveInValues(DT, F, OriginalLivenessData);
- for (size_t i = 0; i < records.size(); i++) {
- struct PartiallyConstructedSafepointRecord &info = records[i];
- analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
- }
-}
-
-// Helper function for the "rematerializeLiveValues". It walks use chain
-// starting from the "CurrentValue" until it reaches the root of the chain, i.e.
-// the base or a value it cannot process. Only "simple" values are processed
-// (currently it is GEP's and casts). The returned root is examined by the
-// callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
-// with all visited values.
-static Value* findRematerializableChainToBasePointer(
- SmallVectorImpl<Instruction*> &ChainToBase,
- Value *CurrentValue) {
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
- ChainToBase.push_back(GEP);
- return findRematerializableChainToBasePointer(ChainToBase,
- GEP->getPointerOperand());
- }
-
- if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
- if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
- return CI;
-
- ChainToBase.push_back(CI);
- return findRematerializableChainToBasePointer(ChainToBase,
- CI->getOperand(0));
- }
-
- // We have reached the root of the chain, which is either equal to the base or
- // is the first unsupported value along the use chain.
- return CurrentValue;
-}
-
-// Helper function for the "rematerializeLiveValues". Compute cost of the use
-// chain we are going to rematerialize.
-static unsigned
-chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
- TargetTransformInfo &TTI) {
- unsigned Cost = 0;
-
- for (Instruction *Instr : Chain) {
- if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
- assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
- "non noop cast is found during rematerialization");
-
- Type *SrcTy = CI->getOperand(0)->getType();
- Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
-
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
- // Cost of the address calculation
- Type *ValTy = GEP->getSourceElementType();
- Cost += TTI.getAddressComputationCost(ValTy);
-
- // And cost of the GEP itself
- // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
- // allowed for the external usage)
- if (!GEP->hasAllConstantIndices())
- Cost += 2;
-
- } else {
- llvm_unreachable("unsupported instruction type during rematerialization");
- }
- }
-
- return Cost;
-}
-
-static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
- unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
- if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
- OrigRootPhi.getParent() != AlternateRootPhi.getParent())
- return false;
- // Map of incoming values and their corresponding basic blocks of
- // OrigRootPhi.
- SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
- for (unsigned i = 0; i < PhiNum; i++)
- CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
- OrigRootPhi.getIncomingBlock(i);
-
- // Both current and base PHIs should have same incoming values and
- // the same basic blocks corresponding to the incoming values.
- for (unsigned i = 0; i < PhiNum; i++) {
- auto CIVI =
- CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
- if (CIVI == CurrentIncomingValues.end())
- return false;
- BasicBlock *CurrentIncomingBB = CIVI->second;
- if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
- return false;
- }
- return true;
-}
-
-// From the statepoint live set pick values that are cheaper to recompute then
-// to relocate. Remove this values from the live set, rematerialize them after
-// statepoint and record them in "Info" structure. Note that similar to
-// relocated values we don't do any user adjustments here.
-static void rematerializeLiveValues(CallBase *Call,
- PartiallyConstructedSafepointRecord &Info,
- TargetTransformInfo &TTI) {
- const unsigned int ChainLengthThreshold = 10;
-
- // Record values we are going to delete from this statepoint live set.
- // We can not di this in following loop due to iterator invalidation.
- SmallVector<Value *, 32> LiveValuesToBeDeleted;
-
- for (Value *LiveValue: Info.LiveSet) {
- // For each live pointer find its defining chain
- SmallVector<Instruction *, 3> ChainToBase;
- assert(Info.PointerToBase.count(LiveValue));
- Value *RootOfChain =
- findRematerializableChainToBasePointer(ChainToBase,
- LiveValue);
-
- // Nothing to do, or chain is too long
- if ( ChainToBase.size() == 0 ||
- ChainToBase.size() > ChainLengthThreshold)
- continue;
-
- // Handle the scenario where the RootOfChain is not equal to the
- // Base Value, but they are essentially the same phi values.
- if (RootOfChain != Info.PointerToBase[LiveValue]) {
- PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
- PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
- if (!OrigRootPhi || !AlternateRootPhi)
- continue;
- // PHI nodes that have the same incoming values, and belonging to the same
- // basic blocks are essentially the same SSA value. When the original phi
- // has incoming values with different base pointers, the original phi is
- // marked as conflict, and an additional `AlternateRootPhi` with the same
- // incoming values get generated by the findBasePointer function. We need
- // to identify the newly generated AlternateRootPhi (.base version of phi)
- // and RootOfChain (the original phi node itself) are the same, so that we
- // can rematerialize the gep and casts. This is a workaround for the
- // deficiency in the findBasePointer algorithm.
- if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
- continue;
- // Now that the phi nodes are proved to be the same, assert that
- // findBasePointer's newly generated AlternateRootPhi is present in the
- // liveset of the call.
- assert(Info.LiveSet.count(AlternateRootPhi));
- }
- // Compute cost of this chain
- unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
- // TODO: We can also account for cases when we will be able to remove some
- // of the rematerialized values by later optimization passes. I.e if
- // we rematerialized several intersecting chains. Or if original values
- // don't have any uses besides this statepoint.
-
- // For invokes we need to rematerialize each chain twice - for normal and
- // for unwind basic blocks. Model this by multiplying cost by two.
- if (isa<InvokeInst>(Call)) {
- Cost *= 2;
- }
- // If it's too expensive - skip it
- if (Cost >= RematerializationThreshold)
- continue;
-
- // Remove value from the live set
- LiveValuesToBeDeleted.push_back(LiveValue);
-
- // Clone instructions and record them inside "Info" structure
-
- // Walk backwards to visit top-most instructions first
- std::reverse(ChainToBase.begin(), ChainToBase.end());
-
- // Utility function which clones all instructions from "ChainToBase"
- // and inserts them before "InsertBefore". Returns rematerialized value
- // which should be used after statepoint.
- auto rematerializeChain = [&ChainToBase](
- Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
- Instruction *LastClonedValue = nullptr;
- Instruction *LastValue = nullptr;
- for (Instruction *Instr: ChainToBase) {
- // Only GEP's and casts are supported as we need to be careful to not
- // introduce any new uses of pointers not in the liveset.
- // Note that it's fine to introduce new uses of pointers which were
- // otherwise not used after this statepoint.
- assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
-
- Instruction *ClonedValue = Instr->clone();
- ClonedValue->insertBefore(InsertBefore);
- ClonedValue->setName(Instr->getName() + ".remat");
-
- // If it is not first instruction in the chain then it uses previously
- // cloned value. We should update it to use cloned value.
- if (LastClonedValue) {
- assert(LastValue);
- ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
-#ifndef NDEBUG
- for (auto OpValue : ClonedValue->operand_values()) {
- // Assert that cloned instruction does not use any instructions from
- // this chain other than LastClonedValue
- assert(!is_contained(ChainToBase, OpValue) &&
- "incorrect use in rematerialization chain");
- // Assert that the cloned instruction does not use the RootOfChain
- // or the AlternateLiveBase.
- assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
- }
-#endif
- } else {
- // For the first instruction, replace the use of unrelocated base i.e.
- // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
- // live set. They have been proved to be the same PHI nodes. Note
- // that the *only* use of the RootOfChain in the ChainToBase list is
- // the first Value in the list.
- if (RootOfChain != AlternateLiveBase)
- ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
- }
-
- LastClonedValue = ClonedValue;
- LastValue = Instr;
- }
- assert(LastClonedValue);
- return LastClonedValue;
- };
-
- // Different cases for calls and invokes. For invokes we need to clone
- // instructions both on normal and unwind path.
- if (isa<CallInst>(Call)) {
- Instruction *InsertBefore = Call->getNextNode();
- assert(InsertBefore);
- Instruction *RematerializedValue = rematerializeChain(
- InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
- Info.RematerializedValues[RematerializedValue] = LiveValue;
- } else {
- auto *Invoke = cast<InvokeInst>(Call);
-
- Instruction *NormalInsertBefore =
- &*Invoke->getNormalDest()->getFirstInsertionPt();
- Instruction *UnwindInsertBefore =
- &*Invoke->getUnwindDest()->getFirstInsertionPt();
-
- Instruction *NormalRematerializedValue = rematerializeChain(
- NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
- Instruction *UnwindRematerializedValue = rematerializeChain(
- UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
-
- Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
- Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
- }
- }
-
- // Remove rematerializaed values from the live set
- for (auto LiveValue: LiveValuesToBeDeleted) {
- Info.LiveSet.remove(LiveValue);
- }
-}
-
-static bool insertParsePoints(Function &F, DominatorTree &DT,
- TargetTransformInfo &TTI,
- SmallVectorImpl<CallBase *> &ToUpdate) {
-#ifndef NDEBUG
- // sanity check the input
- std::set<CallBase *> Uniqued;
- Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
- assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
-
- for (CallBase *Call : ToUpdate)
- assert(Call->getFunction() == &F);
-#endif
-
- // When inserting gc.relocates for invokes, we need to be able to insert at
- // the top of the successor blocks. See the comment on
- // normalForInvokeSafepoint on exactly what is needed. Note that this step
- // may restructure the CFG.
- for (CallBase *Call : ToUpdate) {
- auto *II = dyn_cast<InvokeInst>(Call);
- if (!II)
- continue;
- normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
- normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
- }
-
- // A list of dummy calls added to the IR to keep various values obviously
- // live in the IR. We'll remove all of these when done.
- SmallVector<CallInst *, 64> Holders;
-
- // Insert a dummy call with all of the deopt operands we'll need for the
- // actual safepoint insertion as arguments. This ensures reference operands
- // in the deopt argument list are considered live through the safepoint (and
- // thus makes sure they get relocated.)
- for (CallBase *Call : ToUpdate) {
- SmallVector<Value *, 64> DeoptValues;
-
- for (Value *Arg : GetDeoptBundleOperands(Call)) {
- assert(!isUnhandledGCPointerType(Arg->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(Arg->getType()))
- DeoptValues.push_back(Arg);
- }
-
- insertUseHolderAfter(Call, DeoptValues, Holders);
- }
-
- SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
-
- // A) Identify all gc pointers which are statically live at the given call
- // site.
- findLiveReferences(F, DT, ToUpdate, Records);
-
- // B) Find the base pointers for each live pointer
- /* scope for caching */ {
- // Cache the 'defining value' relation used in the computation and
- // insertion of base phis and selects. This ensures that we don't insert
- // large numbers of duplicate base_phis.
- DefiningValueMapTy DVCache;
-
- for (size_t i = 0; i < Records.size(); i++) {
- PartiallyConstructedSafepointRecord &info = Records[i];
- findBasePointers(DT, DVCache, ToUpdate[i], info);
- }
- } // end of cache scope
-
- // The base phi insertion logic (for any safepoint) may have inserted new
- // instructions which are now live at some safepoint. The simplest such
- // example is:
- // loop:
- // phi a <-- will be a new base_phi here
- // safepoint 1 <-- that needs to be live here
- // gep a + 1
- // safepoint 2
- // br loop
- // We insert some dummy calls after each safepoint to definitely hold live
- // the base pointers which were identified for that safepoint. We'll then
- // ask liveness for _every_ base inserted to see what is now live. Then we
- // remove the dummy calls.
- Holders.reserve(Holders.size() + Records.size());
- for (size_t i = 0; i < Records.size(); i++) {
- PartiallyConstructedSafepointRecord &Info = Records[i];
-
- SmallVector<Value *, 128> Bases;
- for (auto Pair : Info.PointerToBase)
- Bases.push_back(Pair.second);
-
- insertUseHolderAfter(ToUpdate[i], Bases, Holders);
- }
-
- // By selecting base pointers, we've effectively inserted new uses. Thus, we
- // need to rerun liveness. We may *also* have inserted new defs, but that's
- // not the key issue.
- recomputeLiveInValues(F, DT, ToUpdate, Records);
-
- if (PrintBasePointers) {
- for (auto &Info : Records) {
- errs() << "Base Pairs: (w/Relocation)\n";
- for (auto Pair : Info.PointerToBase) {
- errs() << " derived ";
- Pair.first->printAsOperand(errs(), false);
- errs() << " base ";
- Pair.second->printAsOperand(errs(), false);
- errs() << "\n";
- }
- }
- }
-
- // It is possible that non-constant live variables have a constant base. For
- // example, a GEP with a variable offset from a global. In this case we can
- // remove it from the liveset. We already don't add constants to the liveset
- // because we assume they won't move at runtime and the GC doesn't need to be
- // informed about them. The same reasoning applies if the base is constant.
- // Note that the relocation placement code relies on this filtering for
- // correctness as it expects the base to be in the liveset, which isn't true
- // if the base is constant.
- for (auto &Info : Records)
- for (auto &BasePair : Info.PointerToBase)
- if (isa<Constant>(BasePair.second))
- Info.LiveSet.remove(BasePair.first);
-
- for (CallInst *CI : Holders)
- CI->eraseFromParent();
-
- Holders.clear();
-
- // In order to reduce live set of statepoint we might choose to rematerialize
- // some values instead of relocating them. This is purely an optimization and
- // does not influence correctness.
- for (size_t i = 0; i < Records.size(); i++)
- rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
-
- // We need this to safely RAUW and delete call or invoke return values that
- // may themselves be live over a statepoint. For details, please see usage in
- // makeStatepointExplicitImpl.
- std::vector<DeferredReplacement> Replacements;
-
- // Now run through and replace the existing statepoints with new ones with
- // the live variables listed. We do not yet update uses of the values being
- // relocated. We have references to live variables that need to
- // survive to the last iteration of this loop. (By construction, the
- // previous statepoint can not be a live variable, thus we can and remove
- // the old statepoint calls as we go.)
- for (size_t i = 0; i < Records.size(); i++)
- makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
-
- ToUpdate.clear(); // prevent accident use of invalid calls.
-
- for (auto &PR : Replacements)
- PR.doReplacement();
-
- Replacements.clear();
-
- for (auto &Info : Records) {
- // These live sets may contain state Value pointers, since we replaced calls
- // with operand bundles with calls wrapped in gc.statepoint, and some of
- // those calls may have been def'ing live gc pointers. Clear these out to
- // avoid accidentally using them.
- //
- // TODO: We should create a separate data structure that does not contain
- // these live sets, and migrate to using that data structure from this point
- // onward.
- Info.LiveSet.clear();
- Info.PointerToBase.clear();
- }
-
- // Do all the fixups of the original live variables to their relocated selves
- SmallVector<Value *, 128> Live;
- for (size_t i = 0; i < Records.size(); i++) {
- PartiallyConstructedSafepointRecord &Info = Records[i];
-
- // We can't simply save the live set from the original insertion. One of
- // the live values might be the result of a call which needs a safepoint.
- // That Value* no longer exists and we need to use the new gc_result.
- // Thankfully, the live set is embedded in the statepoint (and updated), so
- // we just grab that.
- Statepoint Statepoint(Info.StatepointToken);
- Live.insert(Live.end(), Statepoint.gc_args_begin(),
- Statepoint.gc_args_end());
-#ifndef NDEBUG
- // Do some basic sanity checks on our liveness results before performing
- // relocation. Relocation can and will turn mistakes in liveness results
- // into non-sensical code which is must harder to debug.
- // TODO: It would be nice to test consistency as well
- assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
- "statepoint must be reachable or liveness is meaningless");
- for (Value *V : Statepoint.gc_args()) {
- if (!isa<Instruction>(V))
- // Non-instruction values trivial dominate all possible uses
- continue;
- auto *LiveInst = cast<Instruction>(V);
- assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
- "unreachable values should never be live");
- assert(DT.dominates(LiveInst, Info.StatepointToken) &&
- "basic SSA liveness expectation violated by liveness analysis");
- }
-#endif
- }
- unique_unsorted(Live);
-
-#ifndef NDEBUG
- // sanity check
- for (auto *Ptr : Live)
- assert(isHandledGCPointerType(Ptr->getType()) &&
- "must be a gc pointer type");
-#endif
-
- relocationViaAlloca(F, DT, Live, Records);
- return !Records.empty();
-}
-
-// Handles both return values and arguments for Functions and calls.
-template <typename AttrHolder>
-static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
- unsigned Index) {
- AttrBuilder R;
- if (AH.getDereferenceableBytes(Index))
- R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
- AH.getDereferenceableBytes(Index)));
- if (AH.getDereferenceableOrNullBytes(Index))
- R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
- AH.getDereferenceableOrNullBytes(Index)));
- if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
- R.addAttribute(Attribute::NoAlias);
-
- if (!R.empty())
- AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
-}
-
-static void stripNonValidAttributesFromPrototype(Function &F) {
- LLVMContext &Ctx = F.getContext();
-
- for (Argument &A : F.args())
- if (isa<PointerType>(A.getType()))
- RemoveNonValidAttrAtIndex(Ctx, F,
- A.getArgNo() + AttributeList::FirstArgIndex);
-
- if (isa<PointerType>(F.getReturnType()))
- RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
-}
-
-/// Certain metadata on instructions are invalid after running RS4GC.
-/// Optimizations that run after RS4GC can incorrectly use this metadata to
-/// optimize functions. We drop such metadata on the instruction.
-static void stripInvalidMetadataFromInstruction(Instruction &I) {
- if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
- return;
- // These are the attributes that are still valid on loads and stores after
- // RS4GC.
- // The metadata implying dereferenceability and noalias are (conservatively)
- // dropped. This is because semantically, after RewriteStatepointsForGC runs,
- // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
- // touch the entire heap including noalias objects. Note: The reasoning is
- // same as stripping the dereferenceability and noalias attributes that are
- // analogous to the metadata counterparts.
- // We also drop the invariant.load metadata on the load because that metadata
- // implies the address operand to the load points to memory that is never
- // changed once it became dereferenceable. This is no longer true after RS4GC.
- // Similar reasoning applies to invariant.group metadata, which applies to
- // loads within a group.
- unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
- LLVMContext::MD_range,
- LLVMContext::MD_alias_scope,
- LLVMContext::MD_nontemporal,
- LLVMContext::MD_nonnull,
- LLVMContext::MD_align,
- LLVMContext::MD_type};
-
- // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
- I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
-}
-
-static void stripNonValidDataFromBody(Function &F) {
- if (F.empty())
- return;
-
- LLVMContext &Ctx = F.getContext();
- MDBuilder Builder(Ctx);
-
- // Set of invariantstart instructions that we need to remove.
- // Use this to avoid invalidating the instruction iterator.
- SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
-
- for (Instruction &I : instructions(F)) {
- // invariant.start on memory location implies that the referenced memory
- // location is constant and unchanging. This is no longer true after
- // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
- // which frees the entire heap and the presence of invariant.start allows
- // the optimizer to sink the load of a memory location past a statepoint,
- // which is incorrect.
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if (II->getIntrinsicID() == Intrinsic::invariant_start) {
- InvariantStartInstructions.push_back(II);
- continue;
- }
-
- if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
- MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
- I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
- }
-
- stripInvalidMetadataFromInstruction(I);
-
- if (auto *Call = dyn_cast<CallBase>(&I)) {
- for (int i = 0, e = Call->arg_size(); i != e; i++)
- if (isa<PointerType>(Call->getArgOperand(i)->getType()))
- RemoveNonValidAttrAtIndex(Ctx, *Call,
- i + AttributeList::FirstArgIndex);
- if (isa<PointerType>(Call->getType()))
- RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
- }
- }
-
- // Delete the invariant.start instructions and RAUW undef.
- for (auto *II : InvariantStartInstructions) {
- II->replaceAllUsesWith(UndefValue::get(II->getType()));
- II->eraseFromParent();
- }
-}
-
-/// Returns true if this function should be rewritten by this pass. The main
-/// point of this function is as an extension point for custom logic.
-static bool shouldRewriteStatepointsIn(Function &F) {
- // TODO: This should check the GCStrategy
- if (F.hasGC()) {
- const auto &FunctionGCName = F.getGC();
- const StringRef StatepointExampleName("statepoint-example");
- const StringRef CoreCLRName("coreclr");
- return (StatepointExampleName == FunctionGCName) ||
- (CoreCLRName == FunctionGCName);
- } else
- return false;
-}
-
-static void stripNonValidData(Module &M) {
-#ifndef NDEBUG
- assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
-#endif
-
- for (Function &F : M)
- stripNonValidAttributesFromPrototype(F);
-
- for (Function &F : M)
- stripNonValidDataFromBody(F);
-}
-
-bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
- TargetTransformInfo &TTI,
- const TargetLibraryInfo &TLI) {
- assert(!F.isDeclaration() && !F.empty() &&
- "need function body to rewrite statepoints in");
- assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
-
- auto NeedsRewrite = [&TLI](Instruction &I) {
- if (const auto *Call = dyn_cast<CallBase>(&I))
- return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call);
- return false;
- };
-
- // Delete any unreachable statepoints so that we don't have unrewritten
- // statepoints surviving this pass. This makes testing easier and the
- // resulting IR less confusing to human readers.
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
- bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU);
- // Flush the Dominator Tree.
- DTU.getDomTree();
-
- // Gather all the statepoints which need rewritten. Be careful to only
- // consider those in reachable code since we need to ask dominance queries
- // when rewriting. We'll delete the unreachable ones in a moment.
- SmallVector<CallBase *, 64> ParsePointNeeded;
- for (Instruction &I : instructions(F)) {
- // TODO: only the ones with the flag set!
- if (NeedsRewrite(I)) {
- // NOTE removeUnreachableBlocks() is stronger than
- // DominatorTree::isReachableFromEntry(). In other words
- // removeUnreachableBlocks can remove some blocks for which
- // isReachableFromEntry() returns true.
- assert(DT.isReachableFromEntry(I.getParent()) &&
- "no unreachable blocks expected");
- ParsePointNeeded.push_back(cast<CallBase>(&I));
- }
- }
-
- // Return early if no work to do.
- if (ParsePointNeeded.empty())
- return MadeChange;
-
- // As a prepass, go ahead and aggressively destroy single entry phi nodes.
- // These are created by LCSSA. They have the effect of increasing the size
- // of liveness sets for no good reason. It may be harder to do this post
- // insertion since relocations and base phis can confuse things.
- for (BasicBlock &BB : F)
- if (BB.getUniquePredecessor()) {
- MadeChange = true;
- FoldSingleEntryPHINodes(&BB);
- }
-
- // Before we start introducing relocations, we want to tweak the IR a bit to
- // avoid unfortunate code generation effects. The main example is that we
- // want to try to make sure the comparison feeding a branch is after any
- // safepoints. Otherwise, we end up with a comparison of pre-relocation
- // values feeding a branch after relocation. This is semantically correct,
- // but results in extra register pressure since both the pre-relocation and
- // post-relocation copies must be available in registers. For code without
- // relocations this is handled elsewhere, but teaching the scheduler to
- // reverse the transform we're about to do would be slightly complex.
- // Note: This may extend the live range of the inputs to the icmp and thus
- // increase the liveset of any statepoint we move over. This is profitable
- // as long as all statepoints are in rare blocks. If we had in-register
- // lowering for live values this would be a much safer transform.
- auto getConditionInst = [](Instruction *TI) -> Instruction * {
- if (auto *BI = dyn_cast<BranchInst>(TI))
- if (BI->isConditional())
- return dyn_cast<Instruction>(BI->getCondition());
- // TODO: Extend this to handle switches
- return nullptr;
- };
- for (BasicBlock &BB : F) {
- Instruction *TI = BB.getTerminator();
- if (auto *Cond = getConditionInst(TI))
- // TODO: Handle more than just ICmps here. We should be able to move
- // most instructions without side effects or memory access.
- if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
- MadeChange = true;
- Cond->moveBefore(TI);
- }
- }
-
- // Nasty workaround - The base computation code in the main algorithm doesn't
- // consider the fact that a GEP can be used to convert a scalar to a vector.
- // The right fix for this is to integrate GEPs into the base rewriting
- // algorithm properly, this is just a short term workaround to prevent
- // crashes by canonicalizing such GEPs into fully vector GEPs.
- for (Instruction &I : instructions(F)) {
- if (!isa<GetElementPtrInst>(I))
- continue;
-
- unsigned VF = 0;
- for (unsigned i = 0; i < I.getNumOperands(); i++)
- if (I.getOperand(i)->getType()->isVectorTy()) {
- assert(VF == 0 ||
- VF == I.getOperand(i)->getType()->getVectorNumElements());
- VF = I.getOperand(i)->getType()->getVectorNumElements();
- }
-
- // It's the vector to scalar traversal through the pointer operand which
- // confuses base pointer rewriting, so limit ourselves to that case.
- if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
- IRBuilder<> B(&I);
- auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
- I.setOperand(0, Splat);
- MadeChange = true;
- }
- }
-
- MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
- return MadeChange;
-}
-
-// liveness computation via standard dataflow
-// -------------------------------------------------------------------
-
-// TODO: Consider using bitvectors for liveness, the set of potentially
-// interesting values should be small and easy to pre-compute.
-
-/// Compute the live-in set for the location rbegin starting from
-/// the live-out set of the basic block
-static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
- BasicBlock::reverse_iterator End,
- SetVector<Value *> &LiveTmp) {
- for (auto &I : make_range(Begin, End)) {
- // KILL/Def - Remove this definition from LiveIn
- LiveTmp.remove(&I);
-
- // Don't consider *uses* in PHI nodes, we handle their contribution to
- // predecessor blocks when we seed the LiveOut sets
- if (isa<PHINode>(I))
- continue;
-
- // USE - Add to the LiveIn set for this instruction
- for (Value *V : I.operands()) {
- assert(!isUnhandledGCPointerType(V->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
- // The choice to exclude all things constant here is slightly subtle.
- // There are two independent reasons:
- // - We assume that things which are constant (from LLVM's definition)
- // do not move at runtime. For example, the address of a global
- // variable is fixed, even though it's contents may not be.
- // - Second, we can't disallow arbitrary inttoptr constants even
- // if the language frontend does. Optimization passes are free to
- // locally exploit facts without respect to global reachability. This
- // can create sections of code which are dynamically unreachable and
- // contain just about anything. (see constants.ll in tests)
- LiveTmp.insert(V);
- }
- }
- }
-}
-
-static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
- for (BasicBlock *Succ : successors(BB)) {
- for (auto &I : *Succ) {
- PHINode *PN = dyn_cast<PHINode>(&I);
- if (!PN)
- break;
-
- Value *V = PN->getIncomingValueForBlock(BB);
- assert(!isUnhandledGCPointerType(V->getType()) &&
- "support for FCA unimplemented");
- if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
- LiveTmp.insert(V);
- }
- }
-}
-
-static SetVector<Value *> computeKillSet(BasicBlock *BB) {
- SetVector<Value *> KillSet;
- for (Instruction &I : *BB)
- if (isHandledGCPointerType(I.getType()))
- KillSet.insert(&I);
- return KillSet;
-}
-
-#ifndef NDEBUG
-/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
-/// sanity check for the liveness computation.
-static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
- Instruction *TI, bool TermOkay = false) {
- for (Value *V : Live) {
- if (auto *I = dyn_cast<Instruction>(V)) {
- // The terminator can be a member of the LiveOut set. LLVM's definition
- // of instruction dominance states that V does not dominate itself. As
- // such, we need to special case this to allow it.
- if (TermOkay && TI == I)
- continue;
- assert(DT.dominates(I, TI) &&
- "basic SSA liveness expectation violated by liveness analysis");
- }
- }
-}
-
-/// Check that all the liveness sets used during the computation of liveness
-/// obey basic SSA properties. This is useful for finding cases where we miss
-/// a def.
-static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
- BasicBlock &BB) {
- checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
- checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
- checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
-}
-#endif
-
-static void computeLiveInValues(DominatorTree &DT, Function &F,
- GCPtrLivenessData &Data) {
- SmallSetVector<BasicBlock *, 32> Worklist;
-
- // Seed the liveness for each individual block
- for (BasicBlock &BB : F) {
- Data.KillSet[&BB] = computeKillSet(&BB);
- Data.LiveSet[&BB].clear();
- computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
-
-#ifndef NDEBUG
- for (Value *Kill : Data.KillSet[&BB])
- assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
-#endif
-
- Data.LiveOut[&BB] = SetVector<Value *>();
- computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
- Data.LiveIn[&BB] = Data.LiveSet[&BB];
- Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
- Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
- if (!Data.LiveIn[&BB].empty())
- Worklist.insert(pred_begin(&BB), pred_end(&BB));
- }
-
- // Propagate that liveness until stable
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
-
- // Compute our new liveout set, then exit early if it hasn't changed despite
- // the contribution of our successor.
- SetVector<Value *> LiveOut = Data.LiveOut[BB];
- const auto OldLiveOutSize = LiveOut.size();
- for (BasicBlock *Succ : successors(BB)) {
- assert(Data.LiveIn.count(Succ));
- LiveOut.set_union(Data.LiveIn[Succ]);
- }
- // assert OutLiveOut is a subset of LiveOut
- if (OldLiveOutSize == LiveOut.size()) {
- // If the sets are the same size, then we didn't actually add anything
- // when unioning our successors LiveIn. Thus, the LiveIn of this block
- // hasn't changed.
- continue;
- }
- Data.LiveOut[BB] = LiveOut;
-
- // Apply the effects of this basic block
- SetVector<Value *> LiveTmp = LiveOut;
- LiveTmp.set_union(Data.LiveSet[BB]);
- LiveTmp.set_subtract(Data.KillSet[BB]);
-
- assert(Data.LiveIn.count(BB));
- const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
- // assert: OldLiveIn is a subset of LiveTmp
- if (OldLiveIn.size() != LiveTmp.size()) {
- Data.LiveIn[BB] = LiveTmp;
- Worklist.insert(pred_begin(BB), pred_end(BB));
- }
- } // while (!Worklist.empty())
-
-#ifndef NDEBUG
- // Sanity check our output against SSA properties. This helps catch any
- // missing kills during the above iteration.
- for (BasicBlock &BB : F)
- checkBasicSSA(DT, Data, BB);
-#endif
-}
-
-static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
- StatepointLiveSetTy &Out) {
- BasicBlock *BB = Inst->getParent();
-
- // Note: The copy is intentional and required
- assert(Data.LiveOut.count(BB));
- SetVector<Value *> LiveOut = Data.LiveOut[BB];
-
- // We want to handle the statepoint itself oddly. It's
- // call result is not live (normal), nor are it's arguments
- // (unless they're used again later). This adjustment is
- // specifically what we need to relocate
- computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
- LiveOut);
- LiveOut.remove(Inst);
- Out.insert(LiveOut.begin(), LiveOut.end());
-}
-
-static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
- CallBase *Call,
- PartiallyConstructedSafepointRecord &Info) {
- StatepointLiveSetTy Updated;
- findLiveSetAtInst(Call, RevisedLivenessData, Updated);
-
- // We may have base pointers which are now live that weren't before. We need
- // to update the PointerToBase structure to reflect this.
- for (auto V : Updated)
- if (Info.PointerToBase.insert({V, V}).second) {
- assert(isKnownBaseResult(V) &&
- "Can't find base for unexpected live value!");
- continue;
- }
-
-#ifndef NDEBUG
- for (auto V : Updated)
- assert(Info.PointerToBase.count(V) &&
- "Must be able to find base for live value!");
-#endif
-
- // Remove any stale base mappings - this can happen since our liveness is
- // more precise then the one inherent in the base pointer analysis.
- DenseSet<Value *> ToErase;
- for (auto KVPair : Info.PointerToBase)
- if (!Updated.count(KVPair.first))
- ToErase.insert(KVPair.first);
-
- for (auto *V : ToErase)
- Info.PointerToBase.erase(V);
-
-#ifndef NDEBUG
- for (auto KVPair : Info.PointerToBase)
- assert(Updated.count(KVPair.first) && "record for non-live value");
-#endif
-
- Info.LiveSet = Updated;
-}