diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/SCCP.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/SCCP.cpp | 2203 |
1 files changed, 0 insertions, 2203 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp b/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp deleted file mode 100644 index 4093e50ce899..000000000000 --- a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp +++ /dev/null @@ -1,2203 +0,0 @@ -//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements sparse conditional constant propagation and merging: -// -// Specifically, this: -// * Assumes values are constant unless proven otherwise -// * Assumes BasicBlocks are dead unless proven otherwise -// * Proves values to be constant, and replaces them with constants -// * Proves conditional branches to be unconditional -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/SCCP.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/PointerIntPair.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueLattice.h" -#include "llvm/Analysis/ValueLatticeUtils.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/PredicateInfo.h" -#include <cassert> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "sccp" - -STATISTIC(NumInstRemoved, "Number of instructions removed"); -STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); - -STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); -STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); -STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); - -namespace { - -/// LatticeVal class - This class represents the different lattice values that -/// an LLVM value may occupy. It is a simple class with value semantics. -/// -class LatticeVal { - enum LatticeValueTy { - /// unknown - This LLVM Value has no known value yet. - unknown, - - /// constant - This LLVM Value has a specific constant value. - constant, - - /// forcedconstant - This LLVM Value was thought to be undef until - /// ResolvedUndefsIn. This is treated just like 'constant', but if merged - /// with another (different) constant, it goes to overdefined, instead of - /// asserting. - forcedconstant, - - /// overdefined - This instruction is not known to be constant, and we know - /// it has a value. - overdefined - }; - - /// Val: This stores the current lattice value along with the Constant* for - /// the constant if this is a 'constant' or 'forcedconstant' value. - PointerIntPair<Constant *, 2, LatticeValueTy> Val; - - LatticeValueTy getLatticeValue() const { - return Val.getInt(); - } - -public: - LatticeVal() : Val(nullptr, unknown) {} - - bool isUnknown() const { return getLatticeValue() == unknown; } - - bool isConstant() const { - return getLatticeValue() == constant || getLatticeValue() == forcedconstant; - } - - bool isOverdefined() const { return getLatticeValue() == overdefined; } - - Constant *getConstant() const { - assert(isConstant() && "Cannot get the constant of a non-constant!"); - return Val.getPointer(); - } - - /// markOverdefined - Return true if this is a change in status. - bool markOverdefined() { - if (isOverdefined()) - return false; - - Val.setInt(overdefined); - return true; - } - - /// markConstant - Return true if this is a change in status. - bool markConstant(Constant *V) { - if (getLatticeValue() == constant) { // Constant but not forcedconstant. - assert(getConstant() == V && "Marking constant with different value"); - return false; - } - - if (isUnknown()) { - Val.setInt(constant); - assert(V && "Marking constant with NULL"); - Val.setPointer(V); - } else { - assert(getLatticeValue() == forcedconstant && - "Cannot move from overdefined to constant!"); - // Stay at forcedconstant if the constant is the same. - if (V == getConstant()) return false; - - // Otherwise, we go to overdefined. Assumptions made based on the - // forced value are possibly wrong. Assuming this is another constant - // could expose a contradiction. - Val.setInt(overdefined); - } - return true; - } - - /// getConstantInt - If this is a constant with a ConstantInt value, return it - /// otherwise return null. - ConstantInt *getConstantInt() const { - if (isConstant()) - return dyn_cast<ConstantInt>(getConstant()); - return nullptr; - } - - /// getBlockAddress - If this is a constant with a BlockAddress value, return - /// it, otherwise return null. - BlockAddress *getBlockAddress() const { - if (isConstant()) - return dyn_cast<BlockAddress>(getConstant()); - return nullptr; - } - - void markForcedConstant(Constant *V) { - assert(isUnknown() && "Can't force a defined value!"); - Val.setInt(forcedconstant); - Val.setPointer(V); - } - - ValueLatticeElement toValueLattice() const { - if (isOverdefined()) - return ValueLatticeElement::getOverdefined(); - if (isConstant()) - return ValueLatticeElement::get(getConstant()); - return ValueLatticeElement(); - } -}; - -//===----------------------------------------------------------------------===// -// -/// SCCPSolver - This class is a general purpose solver for Sparse Conditional -/// Constant Propagation. -/// -class SCCPSolver : public InstVisitor<SCCPSolver> { - const DataLayout &DL; - const TargetLibraryInfo *TLI; - SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. - DenseMap<Value *, LatticeVal> ValueState; // The state each value is in. - // The state each parameter is in. - DenseMap<Value *, ValueLatticeElement> ParamState; - - /// StructValueState - This maintains ValueState for values that have - /// StructType, for example for formal arguments, calls, insertelement, etc. - DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState; - - /// GlobalValue - If we are tracking any values for the contents of a global - /// variable, we keep a mapping from the constant accessor to the element of - /// the global, to the currently known value. If the value becomes - /// overdefined, it's entry is simply removed from this map. - DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals; - - /// TrackedRetVals - If we are tracking arguments into and the return - /// value out of a function, it will have an entry in this map, indicating - /// what the known return value for the function is. - MapVector<Function *, LatticeVal> TrackedRetVals; - - /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions - /// that return multiple values. - MapVector<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals; - - /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is - /// represented here for efficient lookup. - SmallPtrSet<Function *, 16> MRVFunctionsTracked; - - /// MustTailFunctions - Each function here is a callee of non-removable - /// musttail call site. - SmallPtrSet<Function *, 16> MustTailCallees; - - /// TrackingIncomingArguments - This is the set of functions for whose - /// arguments we make optimistic assumptions about and try to prove as - /// constants. - SmallPtrSet<Function *, 16> TrackingIncomingArguments; - - /// The reason for two worklists is that overdefined is the lowest state - /// on the lattice, and moving things to overdefined as fast as possible - /// makes SCCP converge much faster. - /// - /// By having a separate worklist, we accomplish this because everything - /// possibly overdefined will become overdefined at the soonest possible - /// point. - SmallVector<Value *, 64> OverdefinedInstWorkList; - SmallVector<Value *, 64> InstWorkList; - - // The BasicBlock work list - SmallVector<BasicBlock *, 64> BBWorkList; - - /// KnownFeasibleEdges - Entries in this set are edges which have already had - /// PHI nodes retriggered. - using Edge = std::pair<BasicBlock *, BasicBlock *>; - DenseSet<Edge> KnownFeasibleEdges; - - DenseMap<Function *, AnalysisResultsForFn> AnalysisResults; - DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; - -public: - void addAnalysis(Function &F, AnalysisResultsForFn A) { - AnalysisResults.insert({&F, std::move(A)}); - } - - const PredicateBase *getPredicateInfoFor(Instruction *I) { - auto A = AnalysisResults.find(I->getParent()->getParent()); - if (A == AnalysisResults.end()) - return nullptr; - return A->second.PredInfo->getPredicateInfoFor(I); - } - - DomTreeUpdater getDTU(Function &F) { - auto A = AnalysisResults.find(&F); - assert(A != AnalysisResults.end() && "Need analysis results for function."); - return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy}; - } - - SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli) - : DL(DL), TLI(tli) {} - - /// MarkBlockExecutable - This method can be used by clients to mark all of - /// the blocks that are known to be intrinsically live in the processed unit. - /// - /// This returns true if the block was not considered live before. - bool MarkBlockExecutable(BasicBlock *BB) { - if (!BBExecutable.insert(BB).second) - return false; - LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); - BBWorkList.push_back(BB); // Add the block to the work list! - return true; - } - - /// TrackValueOfGlobalVariable - Clients can use this method to - /// inform the SCCPSolver that it should track loads and stores to the - /// specified global variable if it can. This is only legal to call if - /// performing Interprocedural SCCP. - void TrackValueOfGlobalVariable(GlobalVariable *GV) { - // We only track the contents of scalar globals. - if (GV->getValueType()->isSingleValueType()) { - LatticeVal &IV = TrackedGlobals[GV]; - if (!isa<UndefValue>(GV->getInitializer())) - IV.markConstant(GV->getInitializer()); - } - } - - /// AddTrackedFunction - If the SCCP solver is supposed to track calls into - /// and out of the specified function (which cannot have its address taken), - /// this method must be called. - void AddTrackedFunction(Function *F) { - // Add an entry, F -> undef. - if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { - MRVFunctionsTracked.insert(F); - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) - TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), - LatticeVal())); - } else - TrackedRetVals.insert(std::make_pair(F, LatticeVal())); - } - - /// AddMustTailCallee - If the SCCP solver finds that this function is called - /// from non-removable musttail call site. - void AddMustTailCallee(Function *F) { - MustTailCallees.insert(F); - } - - /// Returns true if the given function is called from non-removable musttail - /// call site. - bool isMustTailCallee(Function *F) { - return MustTailCallees.count(F); - } - - void AddArgumentTrackedFunction(Function *F) { - TrackingIncomingArguments.insert(F); - } - - /// Returns true if the given function is in the solver's set of - /// argument-tracked functions. - bool isArgumentTrackedFunction(Function *F) { - return TrackingIncomingArguments.count(F); - } - - /// Solve - Solve for constants and executable blocks. - void Solve(); - - /// ResolvedUndefsIn - While solving the dataflow for a function, we assume - /// that branches on undef values cannot reach any of their successors. - /// However, this is not a safe assumption. After we solve dataflow, this - /// method should be use to handle this. If this returns true, the solver - /// should be rerun. - bool ResolvedUndefsIn(Function &F); - - bool isBlockExecutable(BasicBlock *BB) const { - return BBExecutable.count(BB); - } - - // isEdgeFeasible - Return true if the control flow edge from the 'From' basic - // block to the 'To' basic block is currently feasible. - bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); - - std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const { - std::vector<LatticeVal> StructValues; - auto *STy = dyn_cast<StructType>(V->getType()); - assert(STy && "getStructLatticeValueFor() can be called only on structs"); - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - auto I = StructValueState.find(std::make_pair(V, i)); - assert(I != StructValueState.end() && "Value not in valuemap!"); - StructValues.push_back(I->second); - } - return StructValues; - } - - const LatticeVal &getLatticeValueFor(Value *V) const { - assert(!V->getType()->isStructTy() && - "Should use getStructLatticeValueFor"); - DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V); - assert(I != ValueState.end() && - "V not found in ValueState nor Paramstate map!"); - return I->second; - } - - /// getTrackedRetVals - Get the inferred return value map. - const MapVector<Function*, LatticeVal> &getTrackedRetVals() { - return TrackedRetVals; - } - - /// getTrackedGlobals - Get and return the set of inferred initializers for - /// global variables. - const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { - return TrackedGlobals; - } - - /// getMRVFunctionsTracked - Get the set of functions which return multiple - /// values tracked by the pass. - const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { - return MRVFunctionsTracked; - } - - /// getMustTailCallees - Get the set of functions which are called - /// from non-removable musttail call sites. - const SmallPtrSet<Function *, 16> getMustTailCallees() { - return MustTailCallees; - } - - /// markOverdefined - Mark the specified value overdefined. This - /// works with both scalars and structs. - void markOverdefined(Value *V) { - if (auto *STy = dyn_cast<StructType>(V->getType())) - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) - markOverdefined(getStructValueState(V, i), V); - else - markOverdefined(ValueState[V], V); - } - - // isStructLatticeConstant - Return true if all the lattice values - // corresponding to elements of the structure are not overdefined, - // false otherwise. - bool isStructLatticeConstant(Function *F, StructType *STy) { - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); - assert(It != TrackedMultipleRetVals.end()); - LatticeVal LV = It->second; - if (LV.isOverdefined()) - return false; - } - return true; - } - -private: - // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined - void pushToWorkList(LatticeVal &IV, Value *V) { - if (IV.isOverdefined()) - return OverdefinedInstWorkList.push_back(V); - InstWorkList.push_back(V); - } - - // markConstant - Make a value be marked as "constant". If the value - // is not already a constant, add it to the instruction work list so that - // the users of the instruction are updated later. - bool markConstant(LatticeVal &IV, Value *V, Constant *C) { - if (!IV.markConstant(C)) return false; - LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); - pushToWorkList(IV, V); - return true; - } - - bool markConstant(Value *V, Constant *C) { - assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); - return markConstant(ValueState[V], V, C); - } - - void markForcedConstant(Value *V, Constant *C) { - assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); - LatticeVal &IV = ValueState[V]; - IV.markForcedConstant(C); - LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); - pushToWorkList(IV, V); - } - - // markOverdefined - Make a value be marked as "overdefined". If the - // value is not already overdefined, add it to the overdefined instruction - // work list so that the users of the instruction are updated later. - bool markOverdefined(LatticeVal &IV, Value *V) { - if (!IV.markOverdefined()) return false; - - LLVM_DEBUG(dbgs() << "markOverdefined: "; - if (auto *F = dyn_cast<Function>(V)) dbgs() - << "Function '" << F->getName() << "'\n"; - else dbgs() << *V << '\n'); - // Only instructions go on the work list - pushToWorkList(IV, V); - return true; - } - - bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { - if (IV.isOverdefined() || MergeWithV.isUnknown()) - return false; // Noop. - if (MergeWithV.isOverdefined()) - return markOverdefined(IV, V); - if (IV.isUnknown()) - return markConstant(IV, V, MergeWithV.getConstant()); - if (IV.getConstant() != MergeWithV.getConstant()) - return markOverdefined(IV, V); - return false; - } - - bool mergeInValue(Value *V, LatticeVal MergeWithV) { - assert(!V->getType()->isStructTy() && - "non-structs should use markConstant"); - return mergeInValue(ValueState[V], V, MergeWithV); - } - - /// getValueState - Return the LatticeVal object that corresponds to the - /// value. This function handles the case when the value hasn't been seen yet - /// by properly seeding constants etc. - LatticeVal &getValueState(Value *V) { - assert(!V->getType()->isStructTy() && "Should use getStructValueState"); - - std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = - ValueState.insert(std::make_pair(V, LatticeVal())); - LatticeVal &LV = I.first->second; - - if (!I.second) - return LV; // Common case, already in the map. - - if (auto *C = dyn_cast<Constant>(V)) { - // Undef values remain unknown. - if (!isa<UndefValue>(V)) - LV.markConstant(C); // Constants are constant - } - - // All others are underdefined by default. - return LV; - } - - ValueLatticeElement &getParamState(Value *V) { - assert(!V->getType()->isStructTy() && "Should use getStructValueState"); - - std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool> - PI = ParamState.insert(std::make_pair(V, ValueLatticeElement())); - ValueLatticeElement &LV = PI.first->second; - if (PI.second) - LV = getValueState(V).toValueLattice(); - - return LV; - } - - /// getStructValueState - Return the LatticeVal object that corresponds to the - /// value/field pair. This function handles the case when the value hasn't - /// been seen yet by properly seeding constants etc. - LatticeVal &getStructValueState(Value *V, unsigned i) { - assert(V->getType()->isStructTy() && "Should use getValueState"); - assert(i < cast<StructType>(V->getType())->getNumElements() && - "Invalid element #"); - - std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, - bool> I = StructValueState.insert( - std::make_pair(std::make_pair(V, i), LatticeVal())); - LatticeVal &LV = I.first->second; - - if (!I.second) - return LV; // Common case, already in the map. - - if (auto *C = dyn_cast<Constant>(V)) { - Constant *Elt = C->getAggregateElement(i); - - if (!Elt) - LV.markOverdefined(); // Unknown sort of constant. - else if (isa<UndefValue>(Elt)) - ; // Undef values remain unknown. - else - LV.markConstant(Elt); // Constants are constant. - } - - // All others are underdefined by default. - return LV; - } - - /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB - /// work list if it is not already executable. - bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { - if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) - return false; // This edge is already known to be executable! - - if (!MarkBlockExecutable(Dest)) { - // If the destination is already executable, we just made an *edge* - // feasible that wasn't before. Revisit the PHI nodes in the block - // because they have potentially new operands. - LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() - << " -> " << Dest->getName() << '\n'); - - for (PHINode &PN : Dest->phis()) - visitPHINode(PN); - } - return true; - } - - // getFeasibleSuccessors - Return a vector of booleans to indicate which - // successors are reachable from a given terminator instruction. - void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); - - // OperandChangedState - This method is invoked on all of the users of an - // instruction that was just changed state somehow. Based on this - // information, we need to update the specified user of this instruction. - void OperandChangedState(Instruction *I) { - if (BBExecutable.count(I->getParent())) // Inst is executable? - visit(*I); - } - - // Add U as additional user of V. - void addAdditionalUser(Value *V, User *U) { - auto Iter = AdditionalUsers.insert({V, {}}); - Iter.first->second.insert(U); - } - - // Mark I's users as changed, including AdditionalUsers. - void markUsersAsChanged(Value *I) { - for (User *U : I->users()) - if (auto *UI = dyn_cast<Instruction>(U)) - OperandChangedState(UI); - - auto Iter = AdditionalUsers.find(I); - if (Iter != AdditionalUsers.end()) { - for (User *U : Iter->second) - if (auto *UI = dyn_cast<Instruction>(U)) - OperandChangedState(UI); - } - } - -private: - friend class InstVisitor<SCCPSolver>; - - // visit implementations - Something changed in this instruction. Either an - // operand made a transition, or the instruction is newly executable. Change - // the value type of I to reflect these changes if appropriate. - void visitPHINode(PHINode &I); - - // Terminators - - void visitReturnInst(ReturnInst &I); - void visitTerminator(Instruction &TI); - - void visitCastInst(CastInst &I); - void visitSelectInst(SelectInst &I); - void visitUnaryOperator(Instruction &I); - void visitBinaryOperator(Instruction &I); - void visitCmpInst(CmpInst &I); - void visitExtractValueInst(ExtractValueInst &EVI); - void visitInsertValueInst(InsertValueInst &IVI); - - void visitCatchSwitchInst(CatchSwitchInst &CPI) { - markOverdefined(&CPI); - visitTerminator(CPI); - } - - // Instructions that cannot be folded away. - - void visitStoreInst (StoreInst &I); - void visitLoadInst (LoadInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - - void visitCallInst (CallInst &I) { - visitCallSite(&I); - } - - void visitInvokeInst (InvokeInst &II) { - visitCallSite(&II); - visitTerminator(II); - } - - void visitCallBrInst (CallBrInst &CBI) { - visitCallSite(&CBI); - visitTerminator(CBI); - } - - void visitCallSite (CallSite CS); - void visitResumeInst (ResumeInst &I) { /*returns void*/ } - void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ } - void visitFenceInst (FenceInst &I) { /*returns void*/ } - - void visitInstruction(Instruction &I) { - // All the instructions we don't do any special handling for just - // go to overdefined. - LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); - markOverdefined(&I); - } -}; - -} // end anonymous namespace - -// getFeasibleSuccessors - Return a vector of booleans to indicate which -// successors are reachable from a given terminator instruction. -void SCCPSolver::getFeasibleSuccessors(Instruction &TI, - SmallVectorImpl<bool> &Succs) { - Succs.resize(TI.getNumSuccessors()); - if (auto *BI = dyn_cast<BranchInst>(&TI)) { - if (BI->isUnconditional()) { - Succs[0] = true; - return; - } - - LatticeVal BCValue = getValueState(BI->getCondition()); - ConstantInt *CI = BCValue.getConstantInt(); - if (!CI) { - // Overdefined condition variables, and branches on unfoldable constant - // conditions, mean the branch could go either way. - if (!BCValue.isUnknown()) - Succs[0] = Succs[1] = true; - return; - } - - // Constant condition variables mean the branch can only go a single way. - Succs[CI->isZero()] = true; - return; - } - - // Unwinding instructions successors are always executable. - if (TI.isExceptionalTerminator()) { - Succs.assign(TI.getNumSuccessors(), true); - return; - } - - if (auto *SI = dyn_cast<SwitchInst>(&TI)) { - if (!SI->getNumCases()) { - Succs[0] = true; - return; - } - LatticeVal SCValue = getValueState(SI->getCondition()); - ConstantInt *CI = SCValue.getConstantInt(); - - if (!CI) { // Overdefined or unknown condition? - // All destinations are executable! - if (!SCValue.isUnknown()) - Succs.assign(TI.getNumSuccessors(), true); - return; - } - - Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; - return; - } - - // In case of indirect branch and its address is a blockaddress, we mark - // the target as executable. - if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { - // Casts are folded by visitCastInst. - LatticeVal IBRValue = getValueState(IBR->getAddress()); - BlockAddress *Addr = IBRValue.getBlockAddress(); - if (!Addr) { // Overdefined or unknown condition? - // All destinations are executable! - if (!IBRValue.isUnknown()) - Succs.assign(TI.getNumSuccessors(), true); - return; - } - - BasicBlock* T = Addr->getBasicBlock(); - assert(Addr->getFunction() == T->getParent() && - "Block address of a different function ?"); - for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { - // This is the target. - if (IBR->getDestination(i) == T) { - Succs[i] = true; - return; - } - } - - // If we didn't find our destination in the IBR successor list, then we - // have undefined behavior. Its ok to assume no successor is executable. - return; - } - - // In case of callbr, we pessimistically assume that all successors are - // feasible. - if (isa<CallBrInst>(&TI)) { - Succs.assign(TI.getNumSuccessors(), true); - return; - } - - LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); - llvm_unreachable("SCCP: Don't know how to handle this terminator!"); -} - -// isEdgeFeasible - Return true if the control flow edge from the 'From' basic -// block to the 'To' basic block is currently feasible. -bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { - // Check if we've called markEdgeExecutable on the edge yet. (We could - // be more aggressive and try to consider edges which haven't been marked - // yet, but there isn't any need.) - return KnownFeasibleEdges.count(Edge(From, To)); -} - -// visit Implementations - Something changed in this instruction, either an -// operand made a transition, or the instruction is newly executable. Change -// the value type of I to reflect these changes if appropriate. This method -// makes sure to do the following actions: -// -// 1. If a phi node merges two constants in, and has conflicting value coming -// from different branches, or if the PHI node merges in an overdefined -// value, then the PHI node becomes overdefined. -// 2. If a phi node merges only constants in, and they all agree on value, the -// PHI node becomes a constant value equal to that. -// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant -// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined -// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined -// 6. If a conditional branch has a value that is constant, make the selected -// destination executable -// 7. If a conditional branch has a value that is overdefined, make all -// successors executable. -void SCCPSolver::visitPHINode(PHINode &PN) { - // If this PN returns a struct, just mark the result overdefined. - // TODO: We could do a lot better than this if code actually uses this. - if (PN.getType()->isStructTy()) - return (void)markOverdefined(&PN); - - if (getValueState(&PN).isOverdefined()) - return; // Quick exit - - // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, - // and slow us down a lot. Just mark them overdefined. - if (PN.getNumIncomingValues() > 64) - return (void)markOverdefined(&PN); - - // Look at all of the executable operands of the PHI node. If any of them - // are overdefined, the PHI becomes overdefined as well. If they are all - // constant, and they agree with each other, the PHI becomes the identical - // constant. If they are constant and don't agree, the PHI is overdefined. - // If there are no executable operands, the PHI remains unknown. - Constant *OperandVal = nullptr; - for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { - LatticeVal IV = getValueState(PN.getIncomingValue(i)); - if (IV.isUnknown()) continue; // Doesn't influence PHI node. - - if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) - continue; - - if (IV.isOverdefined()) // PHI node becomes overdefined! - return (void)markOverdefined(&PN); - - if (!OperandVal) { // Grab the first value. - OperandVal = IV.getConstant(); - continue; - } - - // There is already a reachable operand. If we conflict with it, - // then the PHI node becomes overdefined. If we agree with it, we - // can continue on. - - // Check to see if there are two different constants merging, if so, the PHI - // node is overdefined. - if (IV.getConstant() != OperandVal) - return (void)markOverdefined(&PN); - } - - // If we exited the loop, this means that the PHI node only has constant - // arguments that agree with each other(and OperandVal is the constant) or - // OperandVal is null because there are no defined incoming arguments. If - // this is the case, the PHI remains unknown. - if (OperandVal) - markConstant(&PN, OperandVal); // Acquire operand value -} - -void SCCPSolver::visitReturnInst(ReturnInst &I) { - if (I.getNumOperands() == 0) return; // ret void - - Function *F = I.getParent()->getParent(); - Value *ResultOp = I.getOperand(0); - - // If we are tracking the return value of this function, merge it in. - if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { - MapVector<Function*, LatticeVal>::iterator TFRVI = - TrackedRetVals.find(F); - if (TFRVI != TrackedRetVals.end()) { - mergeInValue(TFRVI->second, F, getValueState(ResultOp)); - return; - } - } - - // Handle functions that return multiple values. - if (!TrackedMultipleRetVals.empty()) { - if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) - if (MRVFunctionsTracked.count(F)) - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) - mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, - getStructValueState(ResultOp, i)); - } -} - -void SCCPSolver::visitTerminator(Instruction &TI) { - SmallVector<bool, 16> SuccFeasible; - getFeasibleSuccessors(TI, SuccFeasible); - - BasicBlock *BB = TI.getParent(); - - // Mark all feasible successors executable. - for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) - if (SuccFeasible[i]) - markEdgeExecutable(BB, TI.getSuccessor(i)); -} - -void SCCPSolver::visitCastInst(CastInst &I) { - LatticeVal OpSt = getValueState(I.getOperand(0)); - if (OpSt.isOverdefined()) // Inherit overdefinedness of operand - markOverdefined(&I); - else if (OpSt.isConstant()) { - // Fold the constant as we build. - Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(), - I.getType(), DL); - if (isa<UndefValue>(C)) - return; - // Propagate constant value - markConstant(&I, C); - } -} - -void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { - // If this returns a struct, mark all elements over defined, we don't track - // structs in structs. - if (EVI.getType()->isStructTy()) - return (void)markOverdefined(&EVI); - - // If this is extracting from more than one level of struct, we don't know. - if (EVI.getNumIndices() != 1) - return (void)markOverdefined(&EVI); - - Value *AggVal = EVI.getAggregateOperand(); - if (AggVal->getType()->isStructTy()) { - unsigned i = *EVI.idx_begin(); - LatticeVal EltVal = getStructValueState(AggVal, i); - mergeInValue(getValueState(&EVI), &EVI, EltVal); - } else { - // Otherwise, must be extracting from an array. - return (void)markOverdefined(&EVI); - } -} - -void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { - auto *STy = dyn_cast<StructType>(IVI.getType()); - if (!STy) - return (void)markOverdefined(&IVI); - - // If this has more than one index, we can't handle it, drive all results to - // undef. - if (IVI.getNumIndices() != 1) - return (void)markOverdefined(&IVI); - - Value *Aggr = IVI.getAggregateOperand(); - unsigned Idx = *IVI.idx_begin(); - - // Compute the result based on what we're inserting. - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - // This passes through all values that aren't the inserted element. - if (i != Idx) { - LatticeVal EltVal = getStructValueState(Aggr, i); - mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); - continue; - } - - Value *Val = IVI.getInsertedValueOperand(); - if (Val->getType()->isStructTy()) - // We don't track structs in structs. - markOverdefined(getStructValueState(&IVI, i), &IVI); - else { - LatticeVal InVal = getValueState(Val); - mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); - } - } -} - -void SCCPSolver::visitSelectInst(SelectInst &I) { - // If this select returns a struct, just mark the result overdefined. - // TODO: We could do a lot better than this if code actually uses this. - if (I.getType()->isStructTy()) - return (void)markOverdefined(&I); - - LatticeVal CondValue = getValueState(I.getCondition()); - if (CondValue.isUnknown()) - return; - - if (ConstantInt *CondCB = CondValue.getConstantInt()) { - Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); - mergeInValue(&I, getValueState(OpVal)); - return; - } - - // Otherwise, the condition is overdefined or a constant we can't evaluate. - // See if we can produce something better than overdefined based on the T/F - // value. - LatticeVal TVal = getValueState(I.getTrueValue()); - LatticeVal FVal = getValueState(I.getFalseValue()); - - // select ?, C, C -> C. - if (TVal.isConstant() && FVal.isConstant() && - TVal.getConstant() == FVal.getConstant()) - return (void)markConstant(&I, FVal.getConstant()); - - if (TVal.isUnknown()) // select ?, undef, X -> X. - return (void)mergeInValue(&I, FVal); - if (FVal.isUnknown()) // select ?, X, undef -> X. - return (void)mergeInValue(&I, TVal); - markOverdefined(&I); -} - -// Handle Unary Operators. -void SCCPSolver::visitUnaryOperator(Instruction &I) { - LatticeVal V0State = getValueState(I.getOperand(0)); - - LatticeVal &IV = ValueState[&I]; - if (IV.isOverdefined()) return; - - if (V0State.isConstant()) { - Constant *C = ConstantExpr::get(I.getOpcode(), V0State.getConstant()); - - // op Y -> undef. - if (isa<UndefValue>(C)) - return; - return (void)markConstant(IV, &I, C); - } - - // If something is undef, wait for it to resolve. - if (!V0State.isOverdefined()) - return; - - markOverdefined(&I); -} - -// Handle Binary Operators. -void SCCPSolver::visitBinaryOperator(Instruction &I) { - LatticeVal V1State = getValueState(I.getOperand(0)); - LatticeVal V2State = getValueState(I.getOperand(1)); - - LatticeVal &IV = ValueState[&I]; - if (IV.isOverdefined()) return; - - if (V1State.isConstant() && V2State.isConstant()) { - Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(), - V2State.getConstant()); - // X op Y -> undef. - if (isa<UndefValue>(C)) - return; - return (void)markConstant(IV, &I, C); - } - - // If something is undef, wait for it to resolve. - if (!V1State.isOverdefined() && !V2State.isOverdefined()) - return; - - // Otherwise, one of our operands is overdefined. Try to produce something - // better than overdefined with some tricks. - // If this is 0 / Y, it doesn't matter that the second operand is - // overdefined, and we can replace it with zero. - if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv) - if (V1State.isConstant() && V1State.getConstant()->isNullValue()) - return (void)markConstant(IV, &I, V1State.getConstant()); - - // If this is: - // -> AND/MUL with 0 - // -> OR with -1 - // it doesn't matter that the other operand is overdefined. - if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul || - I.getOpcode() == Instruction::Or) { - LatticeVal *NonOverdefVal = nullptr; - if (!V1State.isOverdefined()) - NonOverdefVal = &V1State; - else if (!V2State.isOverdefined()) - NonOverdefVal = &V2State; - - if (NonOverdefVal) { - if (NonOverdefVal->isUnknown()) - return; - - if (I.getOpcode() == Instruction::And || - I.getOpcode() == Instruction::Mul) { - // X and 0 = 0 - // X * 0 = 0 - if (NonOverdefVal->getConstant()->isNullValue()) - return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); - } else { - // X or -1 = -1 - if (ConstantInt *CI = NonOverdefVal->getConstantInt()) - if (CI->isMinusOne()) - return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); - } - } - } - - markOverdefined(&I); -} - -// Handle ICmpInst instruction. -void SCCPSolver::visitCmpInst(CmpInst &I) { - // Do not cache this lookup, getValueState calls later in the function might - // invalidate the reference. - if (ValueState[&I].isOverdefined()) return; - - Value *Op1 = I.getOperand(0); - Value *Op2 = I.getOperand(1); - - // For parameters, use ParamState which includes constant range info if - // available. - auto V1Param = ParamState.find(Op1); - ValueLatticeElement V1State = (V1Param != ParamState.end()) - ? V1Param->second - : getValueState(Op1).toValueLattice(); - - auto V2Param = ParamState.find(Op2); - ValueLatticeElement V2State = V2Param != ParamState.end() - ? V2Param->second - : getValueState(Op2).toValueLattice(); - - Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); - if (C) { - if (isa<UndefValue>(C)) - return; - LatticeVal CV; - CV.markConstant(C); - mergeInValue(&I, CV); - return; - } - - // If operands are still unknown, wait for it to resolve. - if (!V1State.isOverdefined() && !V2State.isOverdefined() && - !ValueState[&I].isConstant()) - return; - - markOverdefined(&I); -} - -// Handle getelementptr instructions. If all operands are constants then we -// can turn this into a getelementptr ConstantExpr. -void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { - if (ValueState[&I].isOverdefined()) return; - - SmallVector<Constant*, 8> Operands; - Operands.reserve(I.getNumOperands()); - - for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { - LatticeVal State = getValueState(I.getOperand(i)); - if (State.isUnknown()) - return; // Operands are not resolved yet. - - if (State.isOverdefined()) - return (void)markOverdefined(&I); - - assert(State.isConstant() && "Unknown state!"); - Operands.push_back(State.getConstant()); - } - - Constant *Ptr = Operands[0]; - auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); - Constant *C = - ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); - if (isa<UndefValue>(C)) - return; - markConstant(&I, C); -} - -void SCCPSolver::visitStoreInst(StoreInst &SI) { - // If this store is of a struct, ignore it. - if (SI.getOperand(0)->getType()->isStructTy()) - return; - - if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) - return; - - GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); - DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); - if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; - - // Get the value we are storing into the global, then merge it. - mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); - if (I->second.isOverdefined()) - TrackedGlobals.erase(I); // No need to keep tracking this! -} - -// Handle load instructions. If the operand is a constant pointer to a constant -// global, we can replace the load with the loaded constant value! -void SCCPSolver::visitLoadInst(LoadInst &I) { - // If this load is of a struct, just mark the result overdefined. - if (I.getType()->isStructTy()) - return (void)markOverdefined(&I); - - LatticeVal PtrVal = getValueState(I.getOperand(0)); - if (PtrVal.isUnknown()) return; // The pointer is not resolved yet! - - LatticeVal &IV = ValueState[&I]; - if (IV.isOverdefined()) return; - - if (!PtrVal.isConstant() || I.isVolatile()) - return (void)markOverdefined(IV, &I); - - Constant *Ptr = PtrVal.getConstant(); - - // load null is undefined. - if (isa<ConstantPointerNull>(Ptr)) { - if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) - return (void)markOverdefined(IV, &I); - else - return; - } - - // Transform load (constant global) into the value loaded. - if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { - if (!TrackedGlobals.empty()) { - // If we are tracking this global, merge in the known value for it. - DenseMap<GlobalVariable*, LatticeVal>::iterator It = - TrackedGlobals.find(GV); - if (It != TrackedGlobals.end()) { - mergeInValue(IV, &I, It->second); - return; - } - } - } - - // Transform load from a constant into a constant if possible. - if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { - if (isa<UndefValue>(C)) - return; - return (void)markConstant(IV, &I, C); - } - - // Otherwise we cannot say for certain what value this load will produce. - // Bail out. - markOverdefined(IV, &I); -} - -void SCCPSolver::visitCallSite(CallSite CS) { - Function *F = CS.getCalledFunction(); - Instruction *I = CS.getInstruction(); - - if (auto *II = dyn_cast<IntrinsicInst>(I)) { - if (II->getIntrinsicID() == Intrinsic::ssa_copy) { - if (ValueState[I].isOverdefined()) - return; - - auto *PI = getPredicateInfoFor(I); - if (!PI) - return; - - Value *CopyOf = I->getOperand(0); - auto *PBranch = dyn_cast<PredicateBranch>(PI); - if (!PBranch) { - mergeInValue(ValueState[I], I, getValueState(CopyOf)); - return; - } - - Value *Cond = PBranch->Condition; - - // Everything below relies on the condition being a comparison. - auto *Cmp = dyn_cast<CmpInst>(Cond); - if (!Cmp) { - mergeInValue(ValueState[I], I, getValueState(CopyOf)); - return; - } - - Value *CmpOp0 = Cmp->getOperand(0); - Value *CmpOp1 = Cmp->getOperand(1); - if (CopyOf != CmpOp0 && CopyOf != CmpOp1) { - mergeInValue(ValueState[I], I, getValueState(CopyOf)); - return; - } - - if (CmpOp0 != CopyOf) - std::swap(CmpOp0, CmpOp1); - - LatticeVal OriginalVal = getValueState(CopyOf); - LatticeVal EqVal = getValueState(CmpOp1); - LatticeVal &IV = ValueState[I]; - if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) { - addAdditionalUser(CmpOp1, I); - if (OriginalVal.isConstant()) - mergeInValue(IV, I, OriginalVal); - else - mergeInValue(IV, I, EqVal); - return; - } - if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) { - addAdditionalUser(CmpOp1, I); - if (OriginalVal.isConstant()) - mergeInValue(IV, I, OriginalVal); - else - mergeInValue(IV, I, EqVal); - return; - } - - return (void)mergeInValue(IV, I, getValueState(CopyOf)); - } - } - - // The common case is that we aren't tracking the callee, either because we - // are not doing interprocedural analysis or the callee is indirect, or is - // external. Handle these cases first. - if (!F || F->isDeclaration()) { -CallOverdefined: - // Void return and not tracking callee, just bail. - if (I->getType()->isVoidTy()) return; - - // Otherwise, if we have a single return value case, and if the function is - // a declaration, maybe we can constant fold it. - if (F && F->isDeclaration() && !I->getType()->isStructTy() && - canConstantFoldCallTo(cast<CallBase>(CS.getInstruction()), F)) { - SmallVector<Constant*, 8> Operands; - for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); - AI != E; ++AI) { - if (AI->get()->getType()->isStructTy()) - return markOverdefined(I); // Can't handle struct args. - LatticeVal State = getValueState(*AI); - - if (State.isUnknown()) - return; // Operands are not resolved yet. - if (State.isOverdefined()) - return (void)markOverdefined(I); - assert(State.isConstant() && "Unknown state!"); - Operands.push_back(State.getConstant()); - } - - if (getValueState(I).isOverdefined()) - return; - - // If we can constant fold this, mark the result of the call as a - // constant. - if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), F, - Operands, TLI)) { - // call -> undef. - if (isa<UndefValue>(C)) - return; - return (void)markConstant(I, C); - } - } - - // Otherwise, we don't know anything about this call, mark it overdefined. - return (void)markOverdefined(I); - } - - // If this is a local function that doesn't have its address taken, mark its - // entry block executable and merge in the actual arguments to the call into - // the formal arguments of the function. - if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ - MarkBlockExecutable(&F->front()); - - // Propagate information from this call site into the callee. - CallSite::arg_iterator CAI = CS.arg_begin(); - for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); - AI != E; ++AI, ++CAI) { - // If this argument is byval, and if the function is not readonly, there - // will be an implicit copy formed of the input aggregate. - if (AI->hasByValAttr() && !F->onlyReadsMemory()) { - markOverdefined(&*AI); - continue; - } - - if (auto *STy = dyn_cast<StructType>(AI->getType())) { - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - LatticeVal CallArg = getStructValueState(*CAI, i); - mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg); - } - } else { - // Most other parts of the Solver still only use the simpler value - // lattice, so we propagate changes for parameters to both lattices. - LatticeVal ConcreteArgument = getValueState(*CAI); - bool ParamChanged = - getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL); - bool ValueChanged = mergeInValue(&*AI, ConcreteArgument); - // Add argument to work list, if the state of a parameter changes but - // ValueState does not change (because it is already overdefined there), - // We have to take changes in ParamState into account, as it is used - // when evaluating Cmp instructions. - if (!ValueChanged && ParamChanged) - pushToWorkList(ValueState[&*AI], &*AI); - } - } - } - - // If this is a single/zero retval case, see if we're tracking the function. - if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { - if (!MRVFunctionsTracked.count(F)) - goto CallOverdefined; // Not tracking this callee. - - // If we are tracking this callee, propagate the result of the function - // into this call site. - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) - mergeInValue(getStructValueState(I, i), I, - TrackedMultipleRetVals[std::make_pair(F, i)]); - } else { - MapVector<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); - if (TFRVI == TrackedRetVals.end()) - goto CallOverdefined; // Not tracking this callee. - - // If so, propagate the return value of the callee into this call result. - mergeInValue(I, TFRVI->second); - } -} - -void SCCPSolver::Solve() { - // Process the work lists until they are empty! - while (!BBWorkList.empty() || !InstWorkList.empty() || - !OverdefinedInstWorkList.empty()) { - // Process the overdefined instruction's work list first, which drives other - // things to overdefined more quickly. - while (!OverdefinedInstWorkList.empty()) { - Value *I = OverdefinedInstWorkList.pop_back_val(); - - LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); - - // "I" got into the work list because it either made the transition from - // bottom to constant, or to overdefined. - // - // Anything on this worklist that is overdefined need not be visited - // since all of its users will have already been marked as overdefined - // Update all of the users of this instruction's value. - // - markUsersAsChanged(I); - } - - // Process the instruction work list. - while (!InstWorkList.empty()) { - Value *I = InstWorkList.pop_back_val(); - - LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); - - // "I" got into the work list because it made the transition from undef to - // constant. - // - // Anything on this worklist that is overdefined need not be visited - // since all of its users will have already been marked as overdefined. - // Update all of the users of this instruction's value. - // - if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) - markUsersAsChanged(I); - } - - // Process the basic block work list. - while (!BBWorkList.empty()) { - BasicBlock *BB = BBWorkList.back(); - BBWorkList.pop_back(); - - LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); - - // Notify all instructions in this basic block that they are newly - // executable. - visit(BB); - } - } -} - -/// ResolvedUndefsIn - While solving the dataflow for a function, we assume -/// that branches on undef values cannot reach any of their successors. -/// However, this is not a safe assumption. After we solve dataflow, this -/// method should be use to handle this. If this returns true, the solver -/// should be rerun. -/// -/// This method handles this by finding an unresolved branch and marking it one -/// of the edges from the block as being feasible, even though the condition -/// doesn't say it would otherwise be. This allows SCCP to find the rest of the -/// CFG and only slightly pessimizes the analysis results (by marking one, -/// potentially infeasible, edge feasible). This cannot usefully modify the -/// constraints on the condition of the branch, as that would impact other users -/// of the value. -/// -/// This scan also checks for values that use undefs, whose results are actually -/// defined. For example, 'zext i8 undef to i32' should produce all zeros -/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, -/// even if X isn't defined. -bool SCCPSolver::ResolvedUndefsIn(Function &F) { - for (BasicBlock &BB : F) { - if (!BBExecutable.count(&BB)) - continue; - - for (Instruction &I : BB) { - // Look for instructions which produce undef values. - if (I.getType()->isVoidTy()) continue; - - if (auto *STy = dyn_cast<StructType>(I.getType())) { - // Only a few things that can be structs matter for undef. - - // Tracked calls must never be marked overdefined in ResolvedUndefsIn. - if (CallSite CS = CallSite(&I)) - if (Function *F = CS.getCalledFunction()) - if (MRVFunctionsTracked.count(F)) - continue; - - // extractvalue and insertvalue don't need to be marked; they are - // tracked as precisely as their operands. - if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) - continue; - - // Send the results of everything else to overdefined. We could be - // more precise than this but it isn't worth bothering. - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - LatticeVal &LV = getStructValueState(&I, i); - if (LV.isUnknown()) - markOverdefined(LV, &I); - } - continue; - } - - LatticeVal &LV = getValueState(&I); - if (!LV.isUnknown()) continue; - - // extractvalue is safe; check here because the argument is a struct. - if (isa<ExtractValueInst>(I)) - continue; - - // Compute the operand LatticeVals, for convenience below. - // Anything taking a struct is conservatively assumed to require - // overdefined markings. - if (I.getOperand(0)->getType()->isStructTy()) { - markOverdefined(&I); - return true; - } - LatticeVal Op0LV = getValueState(I.getOperand(0)); - LatticeVal Op1LV; - if (I.getNumOperands() == 2) { - if (I.getOperand(1)->getType()->isStructTy()) { - markOverdefined(&I); - return true; - } - - Op1LV = getValueState(I.getOperand(1)); - } - // If this is an instructions whose result is defined even if the input is - // not fully defined, propagate the information. - Type *ITy = I.getType(); - switch (I.getOpcode()) { - case Instruction::Add: - case Instruction::Sub: - case Instruction::Trunc: - case Instruction::FPTrunc: - case Instruction::BitCast: - break; // Any undef -> undef - case Instruction::FSub: - case Instruction::FAdd: - case Instruction::FMul: - case Instruction::FDiv: - case Instruction::FRem: - // Floating-point binary operation: be conservative. - if (Op0LV.isUnknown() && Op1LV.isUnknown()) - markForcedConstant(&I, Constant::getNullValue(ITy)); - else - markOverdefined(&I); - return true; - case Instruction::FNeg: - break; // fneg undef -> undef - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::FPExt: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::SIToFP: - case Instruction::UIToFP: - // undef -> 0; some outputs are impossible - markForcedConstant(&I, Constant::getNullValue(ITy)); - return true; - case Instruction::Mul: - case Instruction::And: - // Both operands undef -> undef - if (Op0LV.isUnknown() && Op1LV.isUnknown()) - break; - // undef * X -> 0. X could be zero. - // undef & X -> 0. X could be zero. - markForcedConstant(&I, Constant::getNullValue(ITy)); - return true; - case Instruction::Or: - // Both operands undef -> undef - if (Op0LV.isUnknown() && Op1LV.isUnknown()) - break; - // undef | X -> -1. X could be -1. - markForcedConstant(&I, Constant::getAllOnesValue(ITy)); - return true; - case Instruction::Xor: - // undef ^ undef -> 0; strictly speaking, this is not strictly - // necessary, but we try to be nice to people who expect this - // behavior in simple cases - if (Op0LV.isUnknown() && Op1LV.isUnknown()) { - markForcedConstant(&I, Constant::getNullValue(ITy)); - return true; - } - // undef ^ X -> undef - break; - case Instruction::SDiv: - case Instruction::UDiv: - case Instruction::SRem: - case Instruction::URem: - // X / undef -> undef. No change. - // X % undef -> undef. No change. - if (Op1LV.isUnknown()) break; - - // X / 0 -> undef. No change. - // X % 0 -> undef. No change. - if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue()) - break; - - // undef / X -> 0. X could be maxint. - // undef % X -> 0. X could be 1. - markForcedConstant(&I, Constant::getNullValue(ITy)); - return true; - case Instruction::AShr: - // X >>a undef -> undef. - if (Op1LV.isUnknown()) break; - - // Shifting by the bitwidth or more is undefined. - if (Op1LV.isConstant()) { - if (auto *ShiftAmt = Op1LV.getConstantInt()) - if (ShiftAmt->getLimitedValue() >= - ShiftAmt->getType()->getScalarSizeInBits()) - break; - } - - // undef >>a X -> 0 - markForcedConstant(&I, Constant::getNullValue(ITy)); - return true; - case Instruction::LShr: - case Instruction::Shl: - // X << undef -> undef. - // X >> undef -> undef. - if (Op1LV.isUnknown()) break; - - // Shifting by the bitwidth or more is undefined. - if (Op1LV.isConstant()) { - if (auto *ShiftAmt = Op1LV.getConstantInt()) - if (ShiftAmt->getLimitedValue() >= - ShiftAmt->getType()->getScalarSizeInBits()) - break; - } - - // undef << X -> 0 - // undef >> X -> 0 - markForcedConstant(&I, Constant::getNullValue(ITy)); - return true; - case Instruction::Select: - Op1LV = getValueState(I.getOperand(1)); - // undef ? X : Y -> X or Y. There could be commonality between X/Y. - if (Op0LV.isUnknown()) { - if (!Op1LV.isConstant()) // Pick the constant one if there is any. - Op1LV = getValueState(I.getOperand(2)); - } else if (Op1LV.isUnknown()) { - // c ? undef : undef -> undef. No change. - Op1LV = getValueState(I.getOperand(2)); - if (Op1LV.isUnknown()) - break; - // Otherwise, c ? undef : x -> x. - } else { - // Leave Op1LV as Operand(1)'s LatticeValue. - } - - if (Op1LV.isConstant()) - markForcedConstant(&I, Op1LV.getConstant()); - else - markOverdefined(&I); - return true; - case Instruction::Load: - // A load here means one of two things: a load of undef from a global, - // a load from an unknown pointer. Either way, having it return undef - // is okay. - break; - case Instruction::ICmp: - // X == undef -> undef. Other comparisons get more complicated. - Op0LV = getValueState(I.getOperand(0)); - Op1LV = getValueState(I.getOperand(1)); - - if ((Op0LV.isUnknown() || Op1LV.isUnknown()) && - cast<ICmpInst>(&I)->isEquality()) - break; - markOverdefined(&I); - return true; - case Instruction::Call: - case Instruction::Invoke: - case Instruction::CallBr: - // There are two reasons a call can have an undef result - // 1. It could be tracked. - // 2. It could be constant-foldable. - // Because of the way we solve return values, tracked calls must - // never be marked overdefined in ResolvedUndefsIn. - if (Function *F = CallSite(&I).getCalledFunction()) - if (TrackedRetVals.count(F)) - break; - - // If the call is constant-foldable, we mark it overdefined because - // we do not know what return values are valid. - markOverdefined(&I); - return true; - default: - // If we don't know what should happen here, conservatively mark it - // overdefined. - markOverdefined(&I); - return true; - } - } - - // Check to see if we have a branch or switch on an undefined value. If so - // we force the branch to go one way or the other to make the successor - // values live. It doesn't really matter which way we force it. - Instruction *TI = BB.getTerminator(); - if (auto *BI = dyn_cast<BranchInst>(TI)) { - if (!BI->isConditional()) continue; - if (!getValueState(BI->getCondition()).isUnknown()) - continue; - - // If the input to SCCP is actually branch on undef, fix the undef to - // false. - if (isa<UndefValue>(BI->getCondition())) { - BI->setCondition(ConstantInt::getFalse(BI->getContext())); - markEdgeExecutable(&BB, TI->getSuccessor(1)); - return true; - } - - // Otherwise, it is a branch on a symbolic value which is currently - // considered to be undef. Make sure some edge is executable, so a - // branch on "undef" always flows somewhere. - // FIXME: Distinguish between dead code and an LLVM "undef" value. - BasicBlock *DefaultSuccessor = TI->getSuccessor(1); - if (markEdgeExecutable(&BB, DefaultSuccessor)) - return true; - - continue; - } - - if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { - // Indirect branch with no successor ?. Its ok to assume it branches - // to no target. - if (IBR->getNumSuccessors() < 1) - continue; - - if (!getValueState(IBR->getAddress()).isUnknown()) - continue; - - // If the input to SCCP is actually branch on undef, fix the undef to - // the first successor of the indirect branch. - if (isa<UndefValue>(IBR->getAddress())) { - IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); - markEdgeExecutable(&BB, IBR->getSuccessor(0)); - return true; - } - - // Otherwise, it is a branch on a symbolic value which is currently - // considered to be undef. Make sure some edge is executable, so a - // branch on "undef" always flows somewhere. - // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere: - // we can assume the branch has undefined behavior instead. - BasicBlock *DefaultSuccessor = IBR->getSuccessor(0); - if (markEdgeExecutable(&BB, DefaultSuccessor)) - return true; - - continue; - } - - if (auto *SI = dyn_cast<SwitchInst>(TI)) { - if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown()) - continue; - - // If the input to SCCP is actually switch on undef, fix the undef to - // the first constant. - if (isa<UndefValue>(SI->getCondition())) { - SI->setCondition(SI->case_begin()->getCaseValue()); - markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); - return true; - } - - // Otherwise, it is a branch on a symbolic value which is currently - // considered to be undef. Make sure some edge is executable, so a - // branch on "undef" always flows somewhere. - // FIXME: Distinguish between dead code and an LLVM "undef" value. - BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor(); - if (markEdgeExecutable(&BB, DefaultSuccessor)) - return true; - - continue; - } - } - - return false; -} - -static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { - Constant *Const = nullptr; - if (V->getType()->isStructTy()) { - std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V); - if (llvm::any_of(IVs, - [](const LatticeVal &LV) { return LV.isOverdefined(); })) - return false; - std::vector<Constant *> ConstVals; - auto *ST = dyn_cast<StructType>(V->getType()); - for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { - LatticeVal V = IVs[i]; - ConstVals.push_back(V.isConstant() - ? V.getConstant() - : UndefValue::get(ST->getElementType(i))); - } - Const = ConstantStruct::get(ST, ConstVals); - } else { - const LatticeVal &IV = Solver.getLatticeValueFor(V); - if (IV.isOverdefined()) - return false; - - Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType()); - } - assert(Const && "Constant is nullptr here!"); - - // Replacing `musttail` instructions with constant breaks `musttail` invariant - // unless the call itself can be removed - CallInst *CI = dyn_cast<CallInst>(V); - if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) { - CallSite CS(CI); - Function *F = CS.getCalledFunction(); - - // Don't zap returns of the callee - if (F) - Solver.AddMustTailCallee(F); - - LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI - << " as a constant\n"); - return false; - } - - LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); - - // Replaces all of the uses of a variable with uses of the constant. - V->replaceAllUsesWith(Const); - return true; -} - -// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, -// and return true if the function was modified. -static bool runSCCP(Function &F, const DataLayout &DL, - const TargetLibraryInfo *TLI) { - LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); - SCCPSolver Solver(DL, TLI); - - // Mark the first block of the function as being executable. - Solver.MarkBlockExecutable(&F.front()); - - // Mark all arguments to the function as being overdefined. - for (Argument &AI : F.args()) - Solver.markOverdefined(&AI); - - // Solve for constants. - bool ResolvedUndefs = true; - while (ResolvedUndefs) { - Solver.Solve(); - LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n"); - ResolvedUndefs = Solver.ResolvedUndefsIn(F); - } - - bool MadeChanges = false; - - // If we decided that there are basic blocks that are dead in this function, - // delete their contents now. Note that we cannot actually delete the blocks, - // as we cannot modify the CFG of the function. - - for (BasicBlock &BB : F) { - if (!Solver.isBlockExecutable(&BB)) { - LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); - - ++NumDeadBlocks; - NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB); - - MadeChanges = true; - continue; - } - - // Iterate over all of the instructions in a function, replacing them with - // constants if we have found them to be of constant values. - for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { - Instruction *Inst = &*BI++; - if (Inst->getType()->isVoidTy() || Inst->isTerminator()) - continue; - - if (tryToReplaceWithConstant(Solver, Inst)) { - if (isInstructionTriviallyDead(Inst)) - Inst->eraseFromParent(); - // Hey, we just changed something! - MadeChanges = true; - ++NumInstRemoved; - } - } - } - - return MadeChanges; -} - -PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { - const DataLayout &DL = F.getParent()->getDataLayout(); - auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); - if (!runSCCP(F, DL, &TLI)) - return PreservedAnalyses::all(); - - auto PA = PreservedAnalyses(); - PA.preserve<GlobalsAA>(); - PA.preserveSet<CFGAnalyses>(); - return PA; -} - -namespace { - -//===--------------------------------------------------------------------===// -// -/// SCCP Class - This class uses the SCCPSolver to implement a per-function -/// Sparse Conditional Constant Propagator. -/// -class SCCPLegacyPass : public FunctionPass { -public: - // Pass identification, replacement for typeid - static char ID; - - SCCPLegacyPass() : FunctionPass(ID) { - initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<TargetLibraryInfoWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.setPreservesCFG(); - } - - // runOnFunction - Run the Sparse Conditional Constant Propagation - // algorithm, and return true if the function was modified. - bool runOnFunction(Function &F) override { - if (skipFunction(F)) - return false; - const DataLayout &DL = F.getParent()->getDataLayout(); - const TargetLibraryInfo *TLI = - &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - return runSCCP(F, DL, TLI); - } -}; - -} // end anonymous namespace - -char SCCPLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", - "Sparse Conditional Constant Propagation", false, false) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", - "Sparse Conditional Constant Propagation", false, false) - -// createSCCPPass - This is the public interface to this file. -FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } - -static void findReturnsToZap(Function &F, - SmallVector<ReturnInst *, 8> &ReturnsToZap, - SCCPSolver &Solver) { - // We can only do this if we know that nothing else can call the function. - if (!Solver.isArgumentTrackedFunction(&F)) - return; - - // There is a non-removable musttail call site of this function. Zapping - // returns is not allowed. - if (Solver.isMustTailCallee(&F)) { - LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName() - << " due to present musttail call of it\n"); - return; - } - - for (BasicBlock &BB : F) { - if (CallInst *CI = BB.getTerminatingMustTailCall()) { - LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present " - << "musttail call : " << *CI << "\n"); - (void)CI; - return; - } - - if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) - if (!isa<UndefValue>(RI->getOperand(0))) - ReturnsToZap.push_back(RI); - } -} - -// Update the condition for terminators that are branching on indeterminate -// values, forcing them to use a specific edge. -static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) { - BasicBlock *Dest = nullptr; - Constant *C = nullptr; - if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { - if (!isa<ConstantInt>(SI->getCondition())) { - // Indeterminate switch; use first case value. - Dest = SI->case_begin()->getCaseSuccessor(); - C = SI->case_begin()->getCaseValue(); - } - } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) { - if (!isa<ConstantInt>(BI->getCondition())) { - // Indeterminate branch; use false. - Dest = BI->getSuccessor(1); - C = ConstantInt::getFalse(BI->getContext()); - } - } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) { - if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) { - // Indeterminate indirectbr; use successor 0. - Dest = IBR->getSuccessor(0); - C = BlockAddress::get(IBR->getSuccessor(0)); - } - } else { - llvm_unreachable("Unexpected terminator instruction"); - } - if (C) { - assert(Solver.isEdgeFeasible(I->getParent(), Dest) && - "Didn't find feasible edge?"); - (void)Dest; - - I->setOperand(0, C); - } -} - -bool llvm::runIPSCCP( - Module &M, const DataLayout &DL, const TargetLibraryInfo *TLI, - function_ref<AnalysisResultsForFn(Function &)> getAnalysis) { - SCCPSolver Solver(DL, TLI); - - // Loop over all functions, marking arguments to those with their addresses - // taken or that are external as overdefined. - for (Function &F : M) { - if (F.isDeclaration()) - continue; - - Solver.addAnalysis(F, getAnalysis(F)); - - // Determine if we can track the function's return values. If so, add the - // function to the solver's set of return-tracked functions. - if (canTrackReturnsInterprocedurally(&F)) - Solver.AddTrackedFunction(&F); - - // Determine if we can track the function's arguments. If so, add the - // function to the solver's set of argument-tracked functions. - if (canTrackArgumentsInterprocedurally(&F)) { - Solver.AddArgumentTrackedFunction(&F); - continue; - } - - // Assume the function is called. - Solver.MarkBlockExecutable(&F.front()); - - // Assume nothing about the incoming arguments. - for (Argument &AI : F.args()) - Solver.markOverdefined(&AI); - } - - // Determine if we can track any of the module's global variables. If so, add - // the global variables we can track to the solver's set of tracked global - // variables. - for (GlobalVariable &G : M.globals()) { - G.removeDeadConstantUsers(); - if (canTrackGlobalVariableInterprocedurally(&G)) - Solver.TrackValueOfGlobalVariable(&G); - } - - // Solve for constants. - bool ResolvedUndefs = true; - Solver.Solve(); - while (ResolvedUndefs) { - LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n"); - ResolvedUndefs = false; - for (Function &F : M) - if (Solver.ResolvedUndefsIn(F)) { - // We run Solve() after we resolved an undef in a function, because - // we might deduce a fact that eliminates an undef in another function. - Solver.Solve(); - ResolvedUndefs = true; - } - } - - bool MadeChanges = false; - - // Iterate over all of the instructions in the module, replacing them with - // constants if we have found them to be of constant values. - - for (Function &F : M) { - if (F.isDeclaration()) - continue; - - SmallVector<BasicBlock *, 512> BlocksToErase; - - if (Solver.isBlockExecutable(&F.front())) - for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; - ++AI) { - if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) { - ++IPNumArgsElimed; - continue; - } - } - - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { - if (!Solver.isBlockExecutable(&*BB)) { - LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); - ++NumDeadBlocks; - - MadeChanges = true; - - if (&*BB != &F.front()) - BlocksToErase.push_back(&*BB); - continue; - } - - for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { - Instruction *Inst = &*BI++; - if (Inst->getType()->isVoidTy()) - continue; - if (tryToReplaceWithConstant(Solver, Inst)) { - if (Inst->isSafeToRemove()) - Inst->eraseFromParent(); - // Hey, we just changed something! - MadeChanges = true; - ++IPNumInstRemoved; - } - } - } - - DomTreeUpdater DTU = Solver.getDTU(F); - // Change dead blocks to unreachable. We do it after replacing constants - // in all executable blocks, because changeToUnreachable may remove PHI - // nodes in executable blocks we found values for. The function's entry - // block is not part of BlocksToErase, so we have to handle it separately. - for (BasicBlock *BB : BlocksToErase) { - NumInstRemoved += - changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false, - /*PreserveLCSSA=*/false, &DTU); - } - if (!Solver.isBlockExecutable(&F.front())) - NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(), - /*UseLLVMTrap=*/false, - /*PreserveLCSSA=*/false, &DTU); - - // Now that all instructions in the function are constant folded, - // use ConstantFoldTerminator to get rid of in-edges, record DT updates and - // delete dead BBs. - for (BasicBlock *DeadBB : BlocksToErase) { - // If there are any PHI nodes in this successor, drop entries for BB now. - for (Value::user_iterator UI = DeadBB->user_begin(), - UE = DeadBB->user_end(); - UI != UE;) { - // Grab the user and then increment the iterator early, as the user - // will be deleted. Step past all adjacent uses from the same user. - auto *I = dyn_cast<Instruction>(*UI); - do { ++UI; } while (UI != UE && *UI == I); - - // Ignore blockaddress users; BasicBlock's dtor will handle them. - if (!I) continue; - - // If we have forced an edge for an indeterminate value, then force the - // terminator to fold to that edge. - forceIndeterminateEdge(I, Solver); - BasicBlock *InstBB = I->getParent(); - bool Folded = ConstantFoldTerminator(InstBB, - /*DeleteDeadConditions=*/false, - /*TLI=*/nullptr, &DTU); - assert(Folded && - "Expect TermInst on constantint or blockaddress to be folded"); - (void) Folded; - // If we folded the terminator to an unconditional branch to another - // dead block, replace it with Unreachable, to avoid trying to fold that - // branch again. - BranchInst *BI = cast<BranchInst>(InstBB->getTerminator()); - if (BI && BI->isUnconditional() && - !Solver.isBlockExecutable(BI->getSuccessor(0))) { - InstBB->getTerminator()->eraseFromParent(); - new UnreachableInst(InstBB->getContext(), InstBB); - } - } - // Mark dead BB for deletion. - DTU.deleteBB(DeadBB); - } - - for (BasicBlock &BB : F) { - for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { - Instruction *Inst = &*BI++; - if (Solver.getPredicateInfoFor(Inst)) { - if (auto *II = dyn_cast<IntrinsicInst>(Inst)) { - if (II->getIntrinsicID() == Intrinsic::ssa_copy) { - Value *Op = II->getOperand(0); - Inst->replaceAllUsesWith(Op); - Inst->eraseFromParent(); - } - } - } - } - } - } - - // If we inferred constant or undef return values for a function, we replaced - // all call uses with the inferred value. This means we don't need to bother - // actually returning anything from the function. Replace all return - // instructions with return undef. - // - // Do this in two stages: first identify the functions we should process, then - // actually zap their returns. This is important because we can only do this - // if the address of the function isn't taken. In cases where a return is the - // last use of a function, the order of processing functions would affect - // whether other functions are optimizable. - SmallVector<ReturnInst*, 8> ReturnsToZap; - - const MapVector<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); - for (const auto &I : RV) { - Function *F = I.first; - if (I.second.isOverdefined() || F->getReturnType()->isVoidTy()) - continue; - findReturnsToZap(*F, ReturnsToZap, Solver); - } - - for (const auto &F : Solver.getMRVFunctionsTracked()) { - assert(F->getReturnType()->isStructTy() && - "The return type should be a struct"); - StructType *STy = cast<StructType>(F->getReturnType()); - if (Solver.isStructLatticeConstant(F, STy)) - findReturnsToZap(*F, ReturnsToZap, Solver); - } - - // Zap all returns which we've identified as zap to change. - for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { - Function *F = ReturnsToZap[i]->getParent()->getParent(); - ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); - } - - // If we inferred constant or undef values for globals variables, we can - // delete the global and any stores that remain to it. - const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); - for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), - E = TG.end(); I != E; ++I) { - GlobalVariable *GV = I->first; - assert(!I->second.isOverdefined() && - "Overdefined values should have been taken out of the map!"); - LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName() - << "' is constant!\n"); - while (!GV->use_empty()) { - StoreInst *SI = cast<StoreInst>(GV->user_back()); - SI->eraseFromParent(); - } - M.getGlobalList().erase(GV); - ++IPNumGlobalConst; - } - - return MadeChanges; -} |
