summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/SCCP.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/SCCP.cpp2203
1 files changed, 0 insertions, 2203 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp b/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp
deleted file mode 100644
index 4093e50ce899..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/SCCP.cpp
+++ /dev/null
@@ -1,2203 +0,0 @@
-//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements sparse conditional constant propagation and merging:
-//
-// Specifically, this:
-// * Assumes values are constant unless proven otherwise
-// * Assumes BasicBlocks are dead unless proven otherwise
-// * Proves values to be constant, and replaces them with constants
-// * Proves conditional branches to be unconditional
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/SCCP.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/PointerIntPair.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueLattice.h"
-#include "llvm/Analysis/ValueLatticeUtils.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/InstVisitor.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/PredicateInfo.h"
-#include <cassert>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "sccp"
-
-STATISTIC(NumInstRemoved, "Number of instructions removed");
-STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
-
-STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
-STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
-STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
-
-namespace {
-
-/// LatticeVal class - This class represents the different lattice values that
-/// an LLVM value may occupy. It is a simple class with value semantics.
-///
-class LatticeVal {
- enum LatticeValueTy {
- /// unknown - This LLVM Value has no known value yet.
- unknown,
-
- /// constant - This LLVM Value has a specific constant value.
- constant,
-
- /// forcedconstant - This LLVM Value was thought to be undef until
- /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
- /// with another (different) constant, it goes to overdefined, instead of
- /// asserting.
- forcedconstant,
-
- /// overdefined - This instruction is not known to be constant, and we know
- /// it has a value.
- overdefined
- };
-
- /// Val: This stores the current lattice value along with the Constant* for
- /// the constant if this is a 'constant' or 'forcedconstant' value.
- PointerIntPair<Constant *, 2, LatticeValueTy> Val;
-
- LatticeValueTy getLatticeValue() const {
- return Val.getInt();
- }
-
-public:
- LatticeVal() : Val(nullptr, unknown) {}
-
- bool isUnknown() const { return getLatticeValue() == unknown; }
-
- bool isConstant() const {
- return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
- }
-
- bool isOverdefined() const { return getLatticeValue() == overdefined; }
-
- Constant *getConstant() const {
- assert(isConstant() && "Cannot get the constant of a non-constant!");
- return Val.getPointer();
- }
-
- /// markOverdefined - Return true if this is a change in status.
- bool markOverdefined() {
- if (isOverdefined())
- return false;
-
- Val.setInt(overdefined);
- return true;
- }
-
- /// markConstant - Return true if this is a change in status.
- bool markConstant(Constant *V) {
- if (getLatticeValue() == constant) { // Constant but not forcedconstant.
- assert(getConstant() == V && "Marking constant with different value");
- return false;
- }
-
- if (isUnknown()) {
- Val.setInt(constant);
- assert(V && "Marking constant with NULL");
- Val.setPointer(V);
- } else {
- assert(getLatticeValue() == forcedconstant &&
- "Cannot move from overdefined to constant!");
- // Stay at forcedconstant if the constant is the same.
- if (V == getConstant()) return false;
-
- // Otherwise, we go to overdefined. Assumptions made based on the
- // forced value are possibly wrong. Assuming this is another constant
- // could expose a contradiction.
- Val.setInt(overdefined);
- }
- return true;
- }
-
- /// getConstantInt - If this is a constant with a ConstantInt value, return it
- /// otherwise return null.
- ConstantInt *getConstantInt() const {
- if (isConstant())
- return dyn_cast<ConstantInt>(getConstant());
- return nullptr;
- }
-
- /// getBlockAddress - If this is a constant with a BlockAddress value, return
- /// it, otherwise return null.
- BlockAddress *getBlockAddress() const {
- if (isConstant())
- return dyn_cast<BlockAddress>(getConstant());
- return nullptr;
- }
-
- void markForcedConstant(Constant *V) {
- assert(isUnknown() && "Can't force a defined value!");
- Val.setInt(forcedconstant);
- Val.setPointer(V);
- }
-
- ValueLatticeElement toValueLattice() const {
- if (isOverdefined())
- return ValueLatticeElement::getOverdefined();
- if (isConstant())
- return ValueLatticeElement::get(getConstant());
- return ValueLatticeElement();
- }
-};
-
-//===----------------------------------------------------------------------===//
-//
-/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
-/// Constant Propagation.
-///
-class SCCPSolver : public InstVisitor<SCCPSolver> {
- const DataLayout &DL;
- const TargetLibraryInfo *TLI;
- SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
- DenseMap<Value *, LatticeVal> ValueState; // The state each value is in.
- // The state each parameter is in.
- DenseMap<Value *, ValueLatticeElement> ParamState;
-
- /// StructValueState - This maintains ValueState for values that have
- /// StructType, for example for formal arguments, calls, insertelement, etc.
- DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState;
-
- /// GlobalValue - If we are tracking any values for the contents of a global
- /// variable, we keep a mapping from the constant accessor to the element of
- /// the global, to the currently known value. If the value becomes
- /// overdefined, it's entry is simply removed from this map.
- DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals;
-
- /// TrackedRetVals - If we are tracking arguments into and the return
- /// value out of a function, it will have an entry in this map, indicating
- /// what the known return value for the function is.
- MapVector<Function *, LatticeVal> TrackedRetVals;
-
- /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
- /// that return multiple values.
- MapVector<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals;
-
- /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
- /// represented here for efficient lookup.
- SmallPtrSet<Function *, 16> MRVFunctionsTracked;
-
- /// MustTailFunctions - Each function here is a callee of non-removable
- /// musttail call site.
- SmallPtrSet<Function *, 16> MustTailCallees;
-
- /// TrackingIncomingArguments - This is the set of functions for whose
- /// arguments we make optimistic assumptions about and try to prove as
- /// constants.
- SmallPtrSet<Function *, 16> TrackingIncomingArguments;
-
- /// The reason for two worklists is that overdefined is the lowest state
- /// on the lattice, and moving things to overdefined as fast as possible
- /// makes SCCP converge much faster.
- ///
- /// By having a separate worklist, we accomplish this because everything
- /// possibly overdefined will become overdefined at the soonest possible
- /// point.
- SmallVector<Value *, 64> OverdefinedInstWorkList;
- SmallVector<Value *, 64> InstWorkList;
-
- // The BasicBlock work list
- SmallVector<BasicBlock *, 64> BBWorkList;
-
- /// KnownFeasibleEdges - Entries in this set are edges which have already had
- /// PHI nodes retriggered.
- using Edge = std::pair<BasicBlock *, BasicBlock *>;
- DenseSet<Edge> KnownFeasibleEdges;
-
- DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
- DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
-
-public:
- void addAnalysis(Function &F, AnalysisResultsForFn A) {
- AnalysisResults.insert({&F, std::move(A)});
- }
-
- const PredicateBase *getPredicateInfoFor(Instruction *I) {
- auto A = AnalysisResults.find(I->getParent()->getParent());
- if (A == AnalysisResults.end())
- return nullptr;
- return A->second.PredInfo->getPredicateInfoFor(I);
- }
-
- DomTreeUpdater getDTU(Function &F) {
- auto A = AnalysisResults.find(&F);
- assert(A != AnalysisResults.end() && "Need analysis results for function.");
- return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
- }
-
- SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
- : DL(DL), TLI(tli) {}
-
- /// MarkBlockExecutable - This method can be used by clients to mark all of
- /// the blocks that are known to be intrinsically live in the processed unit.
- ///
- /// This returns true if the block was not considered live before.
- bool MarkBlockExecutable(BasicBlock *BB) {
- if (!BBExecutable.insert(BB).second)
- return false;
- LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
- BBWorkList.push_back(BB); // Add the block to the work list!
- return true;
- }
-
- /// TrackValueOfGlobalVariable - Clients can use this method to
- /// inform the SCCPSolver that it should track loads and stores to the
- /// specified global variable if it can. This is only legal to call if
- /// performing Interprocedural SCCP.
- void TrackValueOfGlobalVariable(GlobalVariable *GV) {
- // We only track the contents of scalar globals.
- if (GV->getValueType()->isSingleValueType()) {
- LatticeVal &IV = TrackedGlobals[GV];
- if (!isa<UndefValue>(GV->getInitializer()))
- IV.markConstant(GV->getInitializer());
- }
- }
-
- /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
- /// and out of the specified function (which cannot have its address taken),
- /// this method must be called.
- void AddTrackedFunction(Function *F) {
- // Add an entry, F -> undef.
- if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
- MRVFunctionsTracked.insert(F);
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
- LatticeVal()));
- } else
- TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
- }
-
- /// AddMustTailCallee - If the SCCP solver finds that this function is called
- /// from non-removable musttail call site.
- void AddMustTailCallee(Function *F) {
- MustTailCallees.insert(F);
- }
-
- /// Returns true if the given function is called from non-removable musttail
- /// call site.
- bool isMustTailCallee(Function *F) {
- return MustTailCallees.count(F);
- }
-
- void AddArgumentTrackedFunction(Function *F) {
- TrackingIncomingArguments.insert(F);
- }
-
- /// Returns true if the given function is in the solver's set of
- /// argument-tracked functions.
- bool isArgumentTrackedFunction(Function *F) {
- return TrackingIncomingArguments.count(F);
- }
-
- /// Solve - Solve for constants and executable blocks.
- void Solve();
-
- /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
- /// that branches on undef values cannot reach any of their successors.
- /// However, this is not a safe assumption. After we solve dataflow, this
- /// method should be use to handle this. If this returns true, the solver
- /// should be rerun.
- bool ResolvedUndefsIn(Function &F);
-
- bool isBlockExecutable(BasicBlock *BB) const {
- return BBExecutable.count(BB);
- }
-
- // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
- // block to the 'To' basic block is currently feasible.
- bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
-
- std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
- std::vector<LatticeVal> StructValues;
- auto *STy = dyn_cast<StructType>(V->getType());
- assert(STy && "getStructLatticeValueFor() can be called only on structs");
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- auto I = StructValueState.find(std::make_pair(V, i));
- assert(I != StructValueState.end() && "Value not in valuemap!");
- StructValues.push_back(I->second);
- }
- return StructValues;
- }
-
- const LatticeVal &getLatticeValueFor(Value *V) const {
- assert(!V->getType()->isStructTy() &&
- "Should use getStructLatticeValueFor");
- DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V);
- assert(I != ValueState.end() &&
- "V not found in ValueState nor Paramstate map!");
- return I->second;
- }
-
- /// getTrackedRetVals - Get the inferred return value map.
- const MapVector<Function*, LatticeVal> &getTrackedRetVals() {
- return TrackedRetVals;
- }
-
- /// getTrackedGlobals - Get and return the set of inferred initializers for
- /// global variables.
- const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
- return TrackedGlobals;
- }
-
- /// getMRVFunctionsTracked - Get the set of functions which return multiple
- /// values tracked by the pass.
- const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
- return MRVFunctionsTracked;
- }
-
- /// getMustTailCallees - Get the set of functions which are called
- /// from non-removable musttail call sites.
- const SmallPtrSet<Function *, 16> getMustTailCallees() {
- return MustTailCallees;
- }
-
- /// markOverdefined - Mark the specified value overdefined. This
- /// works with both scalars and structs.
- void markOverdefined(Value *V) {
- if (auto *STy = dyn_cast<StructType>(V->getType()))
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- markOverdefined(getStructValueState(V, i), V);
- else
- markOverdefined(ValueState[V], V);
- }
-
- // isStructLatticeConstant - Return true if all the lattice values
- // corresponding to elements of the structure are not overdefined,
- // false otherwise.
- bool isStructLatticeConstant(Function *F, StructType *STy) {
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
- assert(It != TrackedMultipleRetVals.end());
- LatticeVal LV = It->second;
- if (LV.isOverdefined())
- return false;
- }
- return true;
- }
-
-private:
- // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
- void pushToWorkList(LatticeVal &IV, Value *V) {
- if (IV.isOverdefined())
- return OverdefinedInstWorkList.push_back(V);
- InstWorkList.push_back(V);
- }
-
- // markConstant - Make a value be marked as "constant". If the value
- // is not already a constant, add it to the instruction work list so that
- // the users of the instruction are updated later.
- bool markConstant(LatticeVal &IV, Value *V, Constant *C) {
- if (!IV.markConstant(C)) return false;
- LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
- pushToWorkList(IV, V);
- return true;
- }
-
- bool markConstant(Value *V, Constant *C) {
- assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
- return markConstant(ValueState[V], V, C);
- }
-
- void markForcedConstant(Value *V, Constant *C) {
- assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
- LatticeVal &IV = ValueState[V];
- IV.markForcedConstant(C);
- LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
- pushToWorkList(IV, V);
- }
-
- // markOverdefined - Make a value be marked as "overdefined". If the
- // value is not already overdefined, add it to the overdefined instruction
- // work list so that the users of the instruction are updated later.
- bool markOverdefined(LatticeVal &IV, Value *V) {
- if (!IV.markOverdefined()) return false;
-
- LLVM_DEBUG(dbgs() << "markOverdefined: ";
- if (auto *F = dyn_cast<Function>(V)) dbgs()
- << "Function '" << F->getName() << "'\n";
- else dbgs() << *V << '\n');
- // Only instructions go on the work list
- pushToWorkList(IV, V);
- return true;
- }
-
- bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
- if (IV.isOverdefined() || MergeWithV.isUnknown())
- return false; // Noop.
- if (MergeWithV.isOverdefined())
- return markOverdefined(IV, V);
- if (IV.isUnknown())
- return markConstant(IV, V, MergeWithV.getConstant());
- if (IV.getConstant() != MergeWithV.getConstant())
- return markOverdefined(IV, V);
- return false;
- }
-
- bool mergeInValue(Value *V, LatticeVal MergeWithV) {
- assert(!V->getType()->isStructTy() &&
- "non-structs should use markConstant");
- return mergeInValue(ValueState[V], V, MergeWithV);
- }
-
- /// getValueState - Return the LatticeVal object that corresponds to the
- /// value. This function handles the case when the value hasn't been seen yet
- /// by properly seeding constants etc.
- LatticeVal &getValueState(Value *V) {
- assert(!V->getType()->isStructTy() && "Should use getStructValueState");
-
- std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
- ValueState.insert(std::make_pair(V, LatticeVal()));
- LatticeVal &LV = I.first->second;
-
- if (!I.second)
- return LV; // Common case, already in the map.
-
- if (auto *C = dyn_cast<Constant>(V)) {
- // Undef values remain unknown.
- if (!isa<UndefValue>(V))
- LV.markConstant(C); // Constants are constant
- }
-
- // All others are underdefined by default.
- return LV;
- }
-
- ValueLatticeElement &getParamState(Value *V) {
- assert(!V->getType()->isStructTy() && "Should use getStructValueState");
-
- std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
- PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
- ValueLatticeElement &LV = PI.first->second;
- if (PI.second)
- LV = getValueState(V).toValueLattice();
-
- return LV;
- }
-
- /// getStructValueState - Return the LatticeVal object that corresponds to the
- /// value/field pair. This function handles the case when the value hasn't
- /// been seen yet by properly seeding constants etc.
- LatticeVal &getStructValueState(Value *V, unsigned i) {
- assert(V->getType()->isStructTy() && "Should use getValueState");
- assert(i < cast<StructType>(V->getType())->getNumElements() &&
- "Invalid element #");
-
- std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
- bool> I = StructValueState.insert(
- std::make_pair(std::make_pair(V, i), LatticeVal()));
- LatticeVal &LV = I.first->second;
-
- if (!I.second)
- return LV; // Common case, already in the map.
-
- if (auto *C = dyn_cast<Constant>(V)) {
- Constant *Elt = C->getAggregateElement(i);
-
- if (!Elt)
- LV.markOverdefined(); // Unknown sort of constant.
- else if (isa<UndefValue>(Elt))
- ; // Undef values remain unknown.
- else
- LV.markConstant(Elt); // Constants are constant.
- }
-
- // All others are underdefined by default.
- return LV;
- }
-
- /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
- /// work list if it is not already executable.
- bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
- if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
- return false; // This edge is already known to be executable!
-
- if (!MarkBlockExecutable(Dest)) {
- // If the destination is already executable, we just made an *edge*
- // feasible that wasn't before. Revisit the PHI nodes in the block
- // because they have potentially new operands.
- LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
- << " -> " << Dest->getName() << '\n');
-
- for (PHINode &PN : Dest->phis())
- visitPHINode(PN);
- }
- return true;
- }
-
- // getFeasibleSuccessors - Return a vector of booleans to indicate which
- // successors are reachable from a given terminator instruction.
- void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
-
- // OperandChangedState - This method is invoked on all of the users of an
- // instruction that was just changed state somehow. Based on this
- // information, we need to update the specified user of this instruction.
- void OperandChangedState(Instruction *I) {
- if (BBExecutable.count(I->getParent())) // Inst is executable?
- visit(*I);
- }
-
- // Add U as additional user of V.
- void addAdditionalUser(Value *V, User *U) {
- auto Iter = AdditionalUsers.insert({V, {}});
- Iter.first->second.insert(U);
- }
-
- // Mark I's users as changed, including AdditionalUsers.
- void markUsersAsChanged(Value *I) {
- for (User *U : I->users())
- if (auto *UI = dyn_cast<Instruction>(U))
- OperandChangedState(UI);
-
- auto Iter = AdditionalUsers.find(I);
- if (Iter != AdditionalUsers.end()) {
- for (User *U : Iter->second)
- if (auto *UI = dyn_cast<Instruction>(U))
- OperandChangedState(UI);
- }
- }
-
-private:
- friend class InstVisitor<SCCPSolver>;
-
- // visit implementations - Something changed in this instruction. Either an
- // operand made a transition, or the instruction is newly executable. Change
- // the value type of I to reflect these changes if appropriate.
- void visitPHINode(PHINode &I);
-
- // Terminators
-
- void visitReturnInst(ReturnInst &I);
- void visitTerminator(Instruction &TI);
-
- void visitCastInst(CastInst &I);
- void visitSelectInst(SelectInst &I);
- void visitUnaryOperator(Instruction &I);
- void visitBinaryOperator(Instruction &I);
- void visitCmpInst(CmpInst &I);
- void visitExtractValueInst(ExtractValueInst &EVI);
- void visitInsertValueInst(InsertValueInst &IVI);
-
- void visitCatchSwitchInst(CatchSwitchInst &CPI) {
- markOverdefined(&CPI);
- visitTerminator(CPI);
- }
-
- // Instructions that cannot be folded away.
-
- void visitStoreInst (StoreInst &I);
- void visitLoadInst (LoadInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
-
- void visitCallInst (CallInst &I) {
- visitCallSite(&I);
- }
-
- void visitInvokeInst (InvokeInst &II) {
- visitCallSite(&II);
- visitTerminator(II);
- }
-
- void visitCallBrInst (CallBrInst &CBI) {
- visitCallSite(&CBI);
- visitTerminator(CBI);
- }
-
- void visitCallSite (CallSite CS);
- void visitResumeInst (ResumeInst &I) { /*returns void*/ }
- void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
- void visitFenceInst (FenceInst &I) { /*returns void*/ }
-
- void visitInstruction(Instruction &I) {
- // All the instructions we don't do any special handling for just
- // go to overdefined.
- LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
- markOverdefined(&I);
- }
-};
-
-} // end anonymous namespace
-
-// getFeasibleSuccessors - Return a vector of booleans to indicate which
-// successors are reachable from a given terminator instruction.
-void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
- SmallVectorImpl<bool> &Succs) {
- Succs.resize(TI.getNumSuccessors());
- if (auto *BI = dyn_cast<BranchInst>(&TI)) {
- if (BI->isUnconditional()) {
- Succs[0] = true;
- return;
- }
-
- LatticeVal BCValue = getValueState(BI->getCondition());
- ConstantInt *CI = BCValue.getConstantInt();
- if (!CI) {
- // Overdefined condition variables, and branches on unfoldable constant
- // conditions, mean the branch could go either way.
- if (!BCValue.isUnknown())
- Succs[0] = Succs[1] = true;
- return;
- }
-
- // Constant condition variables mean the branch can only go a single way.
- Succs[CI->isZero()] = true;
- return;
- }
-
- // Unwinding instructions successors are always executable.
- if (TI.isExceptionalTerminator()) {
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
-
- if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
- if (!SI->getNumCases()) {
- Succs[0] = true;
- return;
- }
- LatticeVal SCValue = getValueState(SI->getCondition());
- ConstantInt *CI = SCValue.getConstantInt();
-
- if (!CI) { // Overdefined or unknown condition?
- // All destinations are executable!
- if (!SCValue.isUnknown())
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
-
- Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
- return;
- }
-
- // In case of indirect branch and its address is a blockaddress, we mark
- // the target as executable.
- if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
- // Casts are folded by visitCastInst.
- LatticeVal IBRValue = getValueState(IBR->getAddress());
- BlockAddress *Addr = IBRValue.getBlockAddress();
- if (!Addr) { // Overdefined or unknown condition?
- // All destinations are executable!
- if (!IBRValue.isUnknown())
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
-
- BasicBlock* T = Addr->getBasicBlock();
- assert(Addr->getFunction() == T->getParent() &&
- "Block address of a different function ?");
- for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
- // This is the target.
- if (IBR->getDestination(i) == T) {
- Succs[i] = true;
- return;
- }
- }
-
- // If we didn't find our destination in the IBR successor list, then we
- // have undefined behavior. Its ok to assume no successor is executable.
- return;
- }
-
- // In case of callbr, we pessimistically assume that all successors are
- // feasible.
- if (isa<CallBrInst>(&TI)) {
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
-
- LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
- llvm_unreachable("SCCP: Don't know how to handle this terminator!");
-}
-
-// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
-// block to the 'To' basic block is currently feasible.
-bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
- // Check if we've called markEdgeExecutable on the edge yet. (We could
- // be more aggressive and try to consider edges which haven't been marked
- // yet, but there isn't any need.)
- return KnownFeasibleEdges.count(Edge(From, To));
-}
-
-// visit Implementations - Something changed in this instruction, either an
-// operand made a transition, or the instruction is newly executable. Change
-// the value type of I to reflect these changes if appropriate. This method
-// makes sure to do the following actions:
-//
-// 1. If a phi node merges two constants in, and has conflicting value coming
-// from different branches, or if the PHI node merges in an overdefined
-// value, then the PHI node becomes overdefined.
-// 2. If a phi node merges only constants in, and they all agree on value, the
-// PHI node becomes a constant value equal to that.
-// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
-// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
-// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
-// 6. If a conditional branch has a value that is constant, make the selected
-// destination executable
-// 7. If a conditional branch has a value that is overdefined, make all
-// successors executable.
-void SCCPSolver::visitPHINode(PHINode &PN) {
- // If this PN returns a struct, just mark the result overdefined.
- // TODO: We could do a lot better than this if code actually uses this.
- if (PN.getType()->isStructTy())
- return (void)markOverdefined(&PN);
-
- if (getValueState(&PN).isOverdefined())
- return; // Quick exit
-
- // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
- // and slow us down a lot. Just mark them overdefined.
- if (PN.getNumIncomingValues() > 64)
- return (void)markOverdefined(&PN);
-
- // Look at all of the executable operands of the PHI node. If any of them
- // are overdefined, the PHI becomes overdefined as well. If they are all
- // constant, and they agree with each other, the PHI becomes the identical
- // constant. If they are constant and don't agree, the PHI is overdefined.
- // If there are no executable operands, the PHI remains unknown.
- Constant *OperandVal = nullptr;
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
- LatticeVal IV = getValueState(PN.getIncomingValue(i));
- if (IV.isUnknown()) continue; // Doesn't influence PHI node.
-
- if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
- continue;
-
- if (IV.isOverdefined()) // PHI node becomes overdefined!
- return (void)markOverdefined(&PN);
-
- if (!OperandVal) { // Grab the first value.
- OperandVal = IV.getConstant();
- continue;
- }
-
- // There is already a reachable operand. If we conflict with it,
- // then the PHI node becomes overdefined. If we agree with it, we
- // can continue on.
-
- // Check to see if there are two different constants merging, if so, the PHI
- // node is overdefined.
- if (IV.getConstant() != OperandVal)
- return (void)markOverdefined(&PN);
- }
-
- // If we exited the loop, this means that the PHI node only has constant
- // arguments that agree with each other(and OperandVal is the constant) or
- // OperandVal is null because there are no defined incoming arguments. If
- // this is the case, the PHI remains unknown.
- if (OperandVal)
- markConstant(&PN, OperandVal); // Acquire operand value
-}
-
-void SCCPSolver::visitReturnInst(ReturnInst &I) {
- if (I.getNumOperands() == 0) return; // ret void
-
- Function *F = I.getParent()->getParent();
- Value *ResultOp = I.getOperand(0);
-
- // If we are tracking the return value of this function, merge it in.
- if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
- MapVector<Function*, LatticeVal>::iterator TFRVI =
- TrackedRetVals.find(F);
- if (TFRVI != TrackedRetVals.end()) {
- mergeInValue(TFRVI->second, F, getValueState(ResultOp));
- return;
- }
- }
-
- // Handle functions that return multiple values.
- if (!TrackedMultipleRetVals.empty()) {
- if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
- if (MRVFunctionsTracked.count(F))
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
- getStructValueState(ResultOp, i));
- }
-}
-
-void SCCPSolver::visitTerminator(Instruction &TI) {
- SmallVector<bool, 16> SuccFeasible;
- getFeasibleSuccessors(TI, SuccFeasible);
-
- BasicBlock *BB = TI.getParent();
-
- // Mark all feasible successors executable.
- for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
- if (SuccFeasible[i])
- markEdgeExecutable(BB, TI.getSuccessor(i));
-}
-
-void SCCPSolver::visitCastInst(CastInst &I) {
- LatticeVal OpSt = getValueState(I.getOperand(0));
- if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
- markOverdefined(&I);
- else if (OpSt.isConstant()) {
- // Fold the constant as we build.
- Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
- I.getType(), DL);
- if (isa<UndefValue>(C))
- return;
- // Propagate constant value
- markConstant(&I, C);
- }
-}
-
-void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
- // If this returns a struct, mark all elements over defined, we don't track
- // structs in structs.
- if (EVI.getType()->isStructTy())
- return (void)markOverdefined(&EVI);
-
- // If this is extracting from more than one level of struct, we don't know.
- if (EVI.getNumIndices() != 1)
- return (void)markOverdefined(&EVI);
-
- Value *AggVal = EVI.getAggregateOperand();
- if (AggVal->getType()->isStructTy()) {
- unsigned i = *EVI.idx_begin();
- LatticeVal EltVal = getStructValueState(AggVal, i);
- mergeInValue(getValueState(&EVI), &EVI, EltVal);
- } else {
- // Otherwise, must be extracting from an array.
- return (void)markOverdefined(&EVI);
- }
-}
-
-void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
- auto *STy = dyn_cast<StructType>(IVI.getType());
- if (!STy)
- return (void)markOverdefined(&IVI);
-
- // If this has more than one index, we can't handle it, drive all results to
- // undef.
- if (IVI.getNumIndices() != 1)
- return (void)markOverdefined(&IVI);
-
- Value *Aggr = IVI.getAggregateOperand();
- unsigned Idx = *IVI.idx_begin();
-
- // Compute the result based on what we're inserting.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- // This passes through all values that aren't the inserted element.
- if (i != Idx) {
- LatticeVal EltVal = getStructValueState(Aggr, i);
- mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
- continue;
- }
-
- Value *Val = IVI.getInsertedValueOperand();
- if (Val->getType()->isStructTy())
- // We don't track structs in structs.
- markOverdefined(getStructValueState(&IVI, i), &IVI);
- else {
- LatticeVal InVal = getValueState(Val);
- mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
- }
- }
-}
-
-void SCCPSolver::visitSelectInst(SelectInst &I) {
- // If this select returns a struct, just mark the result overdefined.
- // TODO: We could do a lot better than this if code actually uses this.
- if (I.getType()->isStructTy())
- return (void)markOverdefined(&I);
-
- LatticeVal CondValue = getValueState(I.getCondition());
- if (CondValue.isUnknown())
- return;
-
- if (ConstantInt *CondCB = CondValue.getConstantInt()) {
- Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
- mergeInValue(&I, getValueState(OpVal));
- return;
- }
-
- // Otherwise, the condition is overdefined or a constant we can't evaluate.
- // See if we can produce something better than overdefined based on the T/F
- // value.
- LatticeVal TVal = getValueState(I.getTrueValue());
- LatticeVal FVal = getValueState(I.getFalseValue());
-
- // select ?, C, C -> C.
- if (TVal.isConstant() && FVal.isConstant() &&
- TVal.getConstant() == FVal.getConstant())
- return (void)markConstant(&I, FVal.getConstant());
-
- if (TVal.isUnknown()) // select ?, undef, X -> X.
- return (void)mergeInValue(&I, FVal);
- if (FVal.isUnknown()) // select ?, X, undef -> X.
- return (void)mergeInValue(&I, TVal);
- markOverdefined(&I);
-}
-
-// Handle Unary Operators.
-void SCCPSolver::visitUnaryOperator(Instruction &I) {
- LatticeVal V0State = getValueState(I.getOperand(0));
-
- LatticeVal &IV = ValueState[&I];
- if (IV.isOverdefined()) return;
-
- if (V0State.isConstant()) {
- Constant *C = ConstantExpr::get(I.getOpcode(), V0State.getConstant());
-
- // op Y -> undef.
- if (isa<UndefValue>(C))
- return;
- return (void)markConstant(IV, &I, C);
- }
-
- // If something is undef, wait for it to resolve.
- if (!V0State.isOverdefined())
- return;
-
- markOverdefined(&I);
-}
-
-// Handle Binary Operators.
-void SCCPSolver::visitBinaryOperator(Instruction &I) {
- LatticeVal V1State = getValueState(I.getOperand(0));
- LatticeVal V2State = getValueState(I.getOperand(1));
-
- LatticeVal &IV = ValueState[&I];
- if (IV.isOverdefined()) return;
-
- if (V1State.isConstant() && V2State.isConstant()) {
- Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
- V2State.getConstant());
- // X op Y -> undef.
- if (isa<UndefValue>(C))
- return;
- return (void)markConstant(IV, &I, C);
- }
-
- // If something is undef, wait for it to resolve.
- if (!V1State.isOverdefined() && !V2State.isOverdefined())
- return;
-
- // Otherwise, one of our operands is overdefined. Try to produce something
- // better than overdefined with some tricks.
- // If this is 0 / Y, it doesn't matter that the second operand is
- // overdefined, and we can replace it with zero.
- if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv)
- if (V1State.isConstant() && V1State.getConstant()->isNullValue())
- return (void)markConstant(IV, &I, V1State.getConstant());
-
- // If this is:
- // -> AND/MUL with 0
- // -> OR with -1
- // it doesn't matter that the other operand is overdefined.
- if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul ||
- I.getOpcode() == Instruction::Or) {
- LatticeVal *NonOverdefVal = nullptr;
- if (!V1State.isOverdefined())
- NonOverdefVal = &V1State;
- else if (!V2State.isOverdefined())
- NonOverdefVal = &V2State;
-
- if (NonOverdefVal) {
- if (NonOverdefVal->isUnknown())
- return;
-
- if (I.getOpcode() == Instruction::And ||
- I.getOpcode() == Instruction::Mul) {
- // X and 0 = 0
- // X * 0 = 0
- if (NonOverdefVal->getConstant()->isNullValue())
- return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
- } else {
- // X or -1 = -1
- if (ConstantInt *CI = NonOverdefVal->getConstantInt())
- if (CI->isMinusOne())
- return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
- }
- }
- }
-
- markOverdefined(&I);
-}
-
-// Handle ICmpInst instruction.
-void SCCPSolver::visitCmpInst(CmpInst &I) {
- // Do not cache this lookup, getValueState calls later in the function might
- // invalidate the reference.
- if (ValueState[&I].isOverdefined()) return;
-
- Value *Op1 = I.getOperand(0);
- Value *Op2 = I.getOperand(1);
-
- // For parameters, use ParamState which includes constant range info if
- // available.
- auto V1Param = ParamState.find(Op1);
- ValueLatticeElement V1State = (V1Param != ParamState.end())
- ? V1Param->second
- : getValueState(Op1).toValueLattice();
-
- auto V2Param = ParamState.find(Op2);
- ValueLatticeElement V2State = V2Param != ParamState.end()
- ? V2Param->second
- : getValueState(Op2).toValueLattice();
-
- Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
- if (C) {
- if (isa<UndefValue>(C))
- return;
- LatticeVal CV;
- CV.markConstant(C);
- mergeInValue(&I, CV);
- return;
- }
-
- // If operands are still unknown, wait for it to resolve.
- if (!V1State.isOverdefined() && !V2State.isOverdefined() &&
- !ValueState[&I].isConstant())
- return;
-
- markOverdefined(&I);
-}
-
-// Handle getelementptr instructions. If all operands are constants then we
-// can turn this into a getelementptr ConstantExpr.
-void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
- if (ValueState[&I].isOverdefined()) return;
-
- SmallVector<Constant*, 8> Operands;
- Operands.reserve(I.getNumOperands());
-
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- LatticeVal State = getValueState(I.getOperand(i));
- if (State.isUnknown())
- return; // Operands are not resolved yet.
-
- if (State.isOverdefined())
- return (void)markOverdefined(&I);
-
- assert(State.isConstant() && "Unknown state!");
- Operands.push_back(State.getConstant());
- }
-
- Constant *Ptr = Operands[0];
- auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
- Constant *C =
- ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
- if (isa<UndefValue>(C))
- return;
- markConstant(&I, C);
-}
-
-void SCCPSolver::visitStoreInst(StoreInst &SI) {
- // If this store is of a struct, ignore it.
- if (SI.getOperand(0)->getType()->isStructTy())
- return;
-
- if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
- return;
-
- GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
- DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
- if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
-
- // Get the value we are storing into the global, then merge it.
- mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
- if (I->second.isOverdefined())
- TrackedGlobals.erase(I); // No need to keep tracking this!
-}
-
-// Handle load instructions. If the operand is a constant pointer to a constant
-// global, we can replace the load with the loaded constant value!
-void SCCPSolver::visitLoadInst(LoadInst &I) {
- // If this load is of a struct, just mark the result overdefined.
- if (I.getType()->isStructTy())
- return (void)markOverdefined(&I);
-
- LatticeVal PtrVal = getValueState(I.getOperand(0));
- if (PtrVal.isUnknown()) return; // The pointer is not resolved yet!
-
- LatticeVal &IV = ValueState[&I];
- if (IV.isOverdefined()) return;
-
- if (!PtrVal.isConstant() || I.isVolatile())
- return (void)markOverdefined(IV, &I);
-
- Constant *Ptr = PtrVal.getConstant();
-
- // load null is undefined.
- if (isa<ConstantPointerNull>(Ptr)) {
- if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
- return (void)markOverdefined(IV, &I);
- else
- return;
- }
-
- // Transform load (constant global) into the value loaded.
- if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
- if (!TrackedGlobals.empty()) {
- // If we are tracking this global, merge in the known value for it.
- DenseMap<GlobalVariable*, LatticeVal>::iterator It =
- TrackedGlobals.find(GV);
- if (It != TrackedGlobals.end()) {
- mergeInValue(IV, &I, It->second);
- return;
- }
- }
- }
-
- // Transform load from a constant into a constant if possible.
- if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
- if (isa<UndefValue>(C))
- return;
- return (void)markConstant(IV, &I, C);
- }
-
- // Otherwise we cannot say for certain what value this load will produce.
- // Bail out.
- markOverdefined(IV, &I);
-}
-
-void SCCPSolver::visitCallSite(CallSite CS) {
- Function *F = CS.getCalledFunction();
- Instruction *I = CS.getInstruction();
-
- if (auto *II = dyn_cast<IntrinsicInst>(I)) {
- if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
- if (ValueState[I].isOverdefined())
- return;
-
- auto *PI = getPredicateInfoFor(I);
- if (!PI)
- return;
-
- Value *CopyOf = I->getOperand(0);
- auto *PBranch = dyn_cast<PredicateBranch>(PI);
- if (!PBranch) {
- mergeInValue(ValueState[I], I, getValueState(CopyOf));
- return;
- }
-
- Value *Cond = PBranch->Condition;
-
- // Everything below relies on the condition being a comparison.
- auto *Cmp = dyn_cast<CmpInst>(Cond);
- if (!Cmp) {
- mergeInValue(ValueState[I], I, getValueState(CopyOf));
- return;
- }
-
- Value *CmpOp0 = Cmp->getOperand(0);
- Value *CmpOp1 = Cmp->getOperand(1);
- if (CopyOf != CmpOp0 && CopyOf != CmpOp1) {
- mergeInValue(ValueState[I], I, getValueState(CopyOf));
- return;
- }
-
- if (CmpOp0 != CopyOf)
- std::swap(CmpOp0, CmpOp1);
-
- LatticeVal OriginalVal = getValueState(CopyOf);
- LatticeVal EqVal = getValueState(CmpOp1);
- LatticeVal &IV = ValueState[I];
- if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) {
- addAdditionalUser(CmpOp1, I);
- if (OriginalVal.isConstant())
- mergeInValue(IV, I, OriginalVal);
- else
- mergeInValue(IV, I, EqVal);
- return;
- }
- if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) {
- addAdditionalUser(CmpOp1, I);
- if (OriginalVal.isConstant())
- mergeInValue(IV, I, OriginalVal);
- else
- mergeInValue(IV, I, EqVal);
- return;
- }
-
- return (void)mergeInValue(IV, I, getValueState(CopyOf));
- }
- }
-
- // The common case is that we aren't tracking the callee, either because we
- // are not doing interprocedural analysis or the callee is indirect, or is
- // external. Handle these cases first.
- if (!F || F->isDeclaration()) {
-CallOverdefined:
- // Void return and not tracking callee, just bail.
- if (I->getType()->isVoidTy()) return;
-
- // Otherwise, if we have a single return value case, and if the function is
- // a declaration, maybe we can constant fold it.
- if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
- canConstantFoldCallTo(cast<CallBase>(CS.getInstruction()), F)) {
- SmallVector<Constant*, 8> Operands;
- for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
- AI != E; ++AI) {
- if (AI->get()->getType()->isStructTy())
- return markOverdefined(I); // Can't handle struct args.
- LatticeVal State = getValueState(*AI);
-
- if (State.isUnknown())
- return; // Operands are not resolved yet.
- if (State.isOverdefined())
- return (void)markOverdefined(I);
- assert(State.isConstant() && "Unknown state!");
- Operands.push_back(State.getConstant());
- }
-
- if (getValueState(I).isOverdefined())
- return;
-
- // If we can constant fold this, mark the result of the call as a
- // constant.
- if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), F,
- Operands, TLI)) {
- // call -> undef.
- if (isa<UndefValue>(C))
- return;
- return (void)markConstant(I, C);
- }
- }
-
- // Otherwise, we don't know anything about this call, mark it overdefined.
- return (void)markOverdefined(I);
- }
-
- // If this is a local function that doesn't have its address taken, mark its
- // entry block executable and merge in the actual arguments to the call into
- // the formal arguments of the function.
- if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
- MarkBlockExecutable(&F->front());
-
- // Propagate information from this call site into the callee.
- CallSite::arg_iterator CAI = CS.arg_begin();
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
- AI != E; ++AI, ++CAI) {
- // If this argument is byval, and if the function is not readonly, there
- // will be an implicit copy formed of the input aggregate.
- if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
- markOverdefined(&*AI);
- continue;
- }
-
- if (auto *STy = dyn_cast<StructType>(AI->getType())) {
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- LatticeVal CallArg = getStructValueState(*CAI, i);
- mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
- }
- } else {
- // Most other parts of the Solver still only use the simpler value
- // lattice, so we propagate changes for parameters to both lattices.
- LatticeVal ConcreteArgument = getValueState(*CAI);
- bool ParamChanged =
- getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL);
- bool ValueChanged = mergeInValue(&*AI, ConcreteArgument);
- // Add argument to work list, if the state of a parameter changes but
- // ValueState does not change (because it is already overdefined there),
- // We have to take changes in ParamState into account, as it is used
- // when evaluating Cmp instructions.
- if (!ValueChanged && ParamChanged)
- pushToWorkList(ValueState[&*AI], &*AI);
- }
- }
- }
-
- // If this is a single/zero retval case, see if we're tracking the function.
- if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
- if (!MRVFunctionsTracked.count(F))
- goto CallOverdefined; // Not tracking this callee.
-
- // If we are tracking this callee, propagate the result of the function
- // into this call site.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- mergeInValue(getStructValueState(I, i), I,
- TrackedMultipleRetVals[std::make_pair(F, i)]);
- } else {
- MapVector<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
- if (TFRVI == TrackedRetVals.end())
- goto CallOverdefined; // Not tracking this callee.
-
- // If so, propagate the return value of the callee into this call result.
- mergeInValue(I, TFRVI->second);
- }
-}
-
-void SCCPSolver::Solve() {
- // Process the work lists until they are empty!
- while (!BBWorkList.empty() || !InstWorkList.empty() ||
- !OverdefinedInstWorkList.empty()) {
- // Process the overdefined instruction's work list first, which drives other
- // things to overdefined more quickly.
- while (!OverdefinedInstWorkList.empty()) {
- Value *I = OverdefinedInstWorkList.pop_back_val();
-
- LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
-
- // "I" got into the work list because it either made the transition from
- // bottom to constant, or to overdefined.
- //
- // Anything on this worklist that is overdefined need not be visited
- // since all of its users will have already been marked as overdefined
- // Update all of the users of this instruction's value.
- //
- markUsersAsChanged(I);
- }
-
- // Process the instruction work list.
- while (!InstWorkList.empty()) {
- Value *I = InstWorkList.pop_back_val();
-
- LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
-
- // "I" got into the work list because it made the transition from undef to
- // constant.
- //
- // Anything on this worklist that is overdefined need not be visited
- // since all of its users will have already been marked as overdefined.
- // Update all of the users of this instruction's value.
- //
- if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
- markUsersAsChanged(I);
- }
-
- // Process the basic block work list.
- while (!BBWorkList.empty()) {
- BasicBlock *BB = BBWorkList.back();
- BBWorkList.pop_back();
-
- LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
-
- // Notify all instructions in this basic block that they are newly
- // executable.
- visit(BB);
- }
- }
-}
-
-/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
-/// that branches on undef values cannot reach any of their successors.
-/// However, this is not a safe assumption. After we solve dataflow, this
-/// method should be use to handle this. If this returns true, the solver
-/// should be rerun.
-///
-/// This method handles this by finding an unresolved branch and marking it one
-/// of the edges from the block as being feasible, even though the condition
-/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
-/// CFG and only slightly pessimizes the analysis results (by marking one,
-/// potentially infeasible, edge feasible). This cannot usefully modify the
-/// constraints on the condition of the branch, as that would impact other users
-/// of the value.
-///
-/// This scan also checks for values that use undefs, whose results are actually
-/// defined. For example, 'zext i8 undef to i32' should produce all zeros
-/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
-/// even if X isn't defined.
-bool SCCPSolver::ResolvedUndefsIn(Function &F) {
- for (BasicBlock &BB : F) {
- if (!BBExecutable.count(&BB))
- continue;
-
- for (Instruction &I : BB) {
- // Look for instructions which produce undef values.
- if (I.getType()->isVoidTy()) continue;
-
- if (auto *STy = dyn_cast<StructType>(I.getType())) {
- // Only a few things that can be structs matter for undef.
-
- // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
- if (CallSite CS = CallSite(&I))
- if (Function *F = CS.getCalledFunction())
- if (MRVFunctionsTracked.count(F))
- continue;
-
- // extractvalue and insertvalue don't need to be marked; they are
- // tracked as precisely as their operands.
- if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
- continue;
-
- // Send the results of everything else to overdefined. We could be
- // more precise than this but it isn't worth bothering.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- LatticeVal &LV = getStructValueState(&I, i);
- if (LV.isUnknown())
- markOverdefined(LV, &I);
- }
- continue;
- }
-
- LatticeVal &LV = getValueState(&I);
- if (!LV.isUnknown()) continue;
-
- // extractvalue is safe; check here because the argument is a struct.
- if (isa<ExtractValueInst>(I))
- continue;
-
- // Compute the operand LatticeVals, for convenience below.
- // Anything taking a struct is conservatively assumed to require
- // overdefined markings.
- if (I.getOperand(0)->getType()->isStructTy()) {
- markOverdefined(&I);
- return true;
- }
- LatticeVal Op0LV = getValueState(I.getOperand(0));
- LatticeVal Op1LV;
- if (I.getNumOperands() == 2) {
- if (I.getOperand(1)->getType()->isStructTy()) {
- markOverdefined(&I);
- return true;
- }
-
- Op1LV = getValueState(I.getOperand(1));
- }
- // If this is an instructions whose result is defined even if the input is
- // not fully defined, propagate the information.
- Type *ITy = I.getType();
- switch (I.getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast:
- break; // Any undef -> undef
- case Instruction::FSub:
- case Instruction::FAdd:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- // Floating-point binary operation: be conservative.
- if (Op0LV.isUnknown() && Op1LV.isUnknown())
- markForcedConstant(&I, Constant::getNullValue(ITy));
- else
- markOverdefined(&I);
- return true;
- case Instruction::FNeg:
- break; // fneg undef -> undef
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- // undef -> 0; some outputs are impossible
- markForcedConstant(&I, Constant::getNullValue(ITy));
- return true;
- case Instruction::Mul:
- case Instruction::And:
- // Both operands undef -> undef
- if (Op0LV.isUnknown() && Op1LV.isUnknown())
- break;
- // undef * X -> 0. X could be zero.
- // undef & X -> 0. X could be zero.
- markForcedConstant(&I, Constant::getNullValue(ITy));
- return true;
- case Instruction::Or:
- // Both operands undef -> undef
- if (Op0LV.isUnknown() && Op1LV.isUnknown())
- break;
- // undef | X -> -1. X could be -1.
- markForcedConstant(&I, Constant::getAllOnesValue(ITy));
- return true;
- case Instruction::Xor:
- // undef ^ undef -> 0; strictly speaking, this is not strictly
- // necessary, but we try to be nice to people who expect this
- // behavior in simple cases
- if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
- markForcedConstant(&I, Constant::getNullValue(ITy));
- return true;
- }
- // undef ^ X -> undef
- break;
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::SRem:
- case Instruction::URem:
- // X / undef -> undef. No change.
- // X % undef -> undef. No change.
- if (Op1LV.isUnknown()) break;
-
- // X / 0 -> undef. No change.
- // X % 0 -> undef. No change.
- if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
- break;
-
- // undef / X -> 0. X could be maxint.
- // undef % X -> 0. X could be 1.
- markForcedConstant(&I, Constant::getNullValue(ITy));
- return true;
- case Instruction::AShr:
- // X >>a undef -> undef.
- if (Op1LV.isUnknown()) break;
-
- // Shifting by the bitwidth or more is undefined.
- if (Op1LV.isConstant()) {
- if (auto *ShiftAmt = Op1LV.getConstantInt())
- if (ShiftAmt->getLimitedValue() >=
- ShiftAmt->getType()->getScalarSizeInBits())
- break;
- }
-
- // undef >>a X -> 0
- markForcedConstant(&I, Constant::getNullValue(ITy));
- return true;
- case Instruction::LShr:
- case Instruction::Shl:
- // X << undef -> undef.
- // X >> undef -> undef.
- if (Op1LV.isUnknown()) break;
-
- // Shifting by the bitwidth or more is undefined.
- if (Op1LV.isConstant()) {
- if (auto *ShiftAmt = Op1LV.getConstantInt())
- if (ShiftAmt->getLimitedValue() >=
- ShiftAmt->getType()->getScalarSizeInBits())
- break;
- }
-
- // undef << X -> 0
- // undef >> X -> 0
- markForcedConstant(&I, Constant::getNullValue(ITy));
- return true;
- case Instruction::Select:
- Op1LV = getValueState(I.getOperand(1));
- // undef ? X : Y -> X or Y. There could be commonality between X/Y.
- if (Op0LV.isUnknown()) {
- if (!Op1LV.isConstant()) // Pick the constant one if there is any.
- Op1LV = getValueState(I.getOperand(2));
- } else if (Op1LV.isUnknown()) {
- // c ? undef : undef -> undef. No change.
- Op1LV = getValueState(I.getOperand(2));
- if (Op1LV.isUnknown())
- break;
- // Otherwise, c ? undef : x -> x.
- } else {
- // Leave Op1LV as Operand(1)'s LatticeValue.
- }
-
- if (Op1LV.isConstant())
- markForcedConstant(&I, Op1LV.getConstant());
- else
- markOverdefined(&I);
- return true;
- case Instruction::Load:
- // A load here means one of two things: a load of undef from a global,
- // a load from an unknown pointer. Either way, having it return undef
- // is okay.
- break;
- case Instruction::ICmp:
- // X == undef -> undef. Other comparisons get more complicated.
- Op0LV = getValueState(I.getOperand(0));
- Op1LV = getValueState(I.getOperand(1));
-
- if ((Op0LV.isUnknown() || Op1LV.isUnknown()) &&
- cast<ICmpInst>(&I)->isEquality())
- break;
- markOverdefined(&I);
- return true;
- case Instruction::Call:
- case Instruction::Invoke:
- case Instruction::CallBr:
- // There are two reasons a call can have an undef result
- // 1. It could be tracked.
- // 2. It could be constant-foldable.
- // Because of the way we solve return values, tracked calls must
- // never be marked overdefined in ResolvedUndefsIn.
- if (Function *F = CallSite(&I).getCalledFunction())
- if (TrackedRetVals.count(F))
- break;
-
- // If the call is constant-foldable, we mark it overdefined because
- // we do not know what return values are valid.
- markOverdefined(&I);
- return true;
- default:
- // If we don't know what should happen here, conservatively mark it
- // overdefined.
- markOverdefined(&I);
- return true;
- }
- }
-
- // Check to see if we have a branch or switch on an undefined value. If so
- // we force the branch to go one way or the other to make the successor
- // values live. It doesn't really matter which way we force it.
- Instruction *TI = BB.getTerminator();
- if (auto *BI = dyn_cast<BranchInst>(TI)) {
- if (!BI->isConditional()) continue;
- if (!getValueState(BI->getCondition()).isUnknown())
- continue;
-
- // If the input to SCCP is actually branch on undef, fix the undef to
- // false.
- if (isa<UndefValue>(BI->getCondition())) {
- BI->setCondition(ConstantInt::getFalse(BI->getContext()));
- markEdgeExecutable(&BB, TI->getSuccessor(1));
- return true;
- }
-
- // Otherwise, it is a branch on a symbolic value which is currently
- // considered to be undef. Make sure some edge is executable, so a
- // branch on "undef" always flows somewhere.
- // FIXME: Distinguish between dead code and an LLVM "undef" value.
- BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
- if (markEdgeExecutable(&BB, DefaultSuccessor))
- return true;
-
- continue;
- }
-
- if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
- // Indirect branch with no successor ?. Its ok to assume it branches
- // to no target.
- if (IBR->getNumSuccessors() < 1)
- continue;
-
- if (!getValueState(IBR->getAddress()).isUnknown())
- continue;
-
- // If the input to SCCP is actually branch on undef, fix the undef to
- // the first successor of the indirect branch.
- if (isa<UndefValue>(IBR->getAddress())) {
- IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
- markEdgeExecutable(&BB, IBR->getSuccessor(0));
- return true;
- }
-
- // Otherwise, it is a branch on a symbolic value which is currently
- // considered to be undef. Make sure some edge is executable, so a
- // branch on "undef" always flows somewhere.
- // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
- // we can assume the branch has undefined behavior instead.
- BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
- if (markEdgeExecutable(&BB, DefaultSuccessor))
- return true;
-
- continue;
- }
-
- if (auto *SI = dyn_cast<SwitchInst>(TI)) {
- if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown())
- continue;
-
- // If the input to SCCP is actually switch on undef, fix the undef to
- // the first constant.
- if (isa<UndefValue>(SI->getCondition())) {
- SI->setCondition(SI->case_begin()->getCaseValue());
- markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
- return true;
- }
-
- // Otherwise, it is a branch on a symbolic value which is currently
- // considered to be undef. Make sure some edge is executable, so a
- // branch on "undef" always flows somewhere.
- // FIXME: Distinguish between dead code and an LLVM "undef" value.
- BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
- if (markEdgeExecutable(&BB, DefaultSuccessor))
- return true;
-
- continue;
- }
- }
-
- return false;
-}
-
-static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
- Constant *Const = nullptr;
- if (V->getType()->isStructTy()) {
- std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
- if (llvm::any_of(IVs,
- [](const LatticeVal &LV) { return LV.isOverdefined(); }))
- return false;
- std::vector<Constant *> ConstVals;
- auto *ST = dyn_cast<StructType>(V->getType());
- for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
- LatticeVal V = IVs[i];
- ConstVals.push_back(V.isConstant()
- ? V.getConstant()
- : UndefValue::get(ST->getElementType(i)));
- }
- Const = ConstantStruct::get(ST, ConstVals);
- } else {
- const LatticeVal &IV = Solver.getLatticeValueFor(V);
- if (IV.isOverdefined())
- return false;
-
- Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
- }
- assert(Const && "Constant is nullptr here!");
-
- // Replacing `musttail` instructions with constant breaks `musttail` invariant
- // unless the call itself can be removed
- CallInst *CI = dyn_cast<CallInst>(V);
- if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
- CallSite CS(CI);
- Function *F = CS.getCalledFunction();
-
- // Don't zap returns of the callee
- if (F)
- Solver.AddMustTailCallee(F);
-
- LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI
- << " as a constant\n");
- return false;
- }
-
- LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
-
- // Replaces all of the uses of a variable with uses of the constant.
- V->replaceAllUsesWith(Const);
- return true;
-}
-
-// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
-// and return true if the function was modified.
-static bool runSCCP(Function &F, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
- SCCPSolver Solver(DL, TLI);
-
- // Mark the first block of the function as being executable.
- Solver.MarkBlockExecutable(&F.front());
-
- // Mark all arguments to the function as being overdefined.
- for (Argument &AI : F.args())
- Solver.markOverdefined(&AI);
-
- // Solve for constants.
- bool ResolvedUndefs = true;
- while (ResolvedUndefs) {
- Solver.Solve();
- LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
- ResolvedUndefs = Solver.ResolvedUndefsIn(F);
- }
-
- bool MadeChanges = false;
-
- // If we decided that there are basic blocks that are dead in this function,
- // delete their contents now. Note that we cannot actually delete the blocks,
- // as we cannot modify the CFG of the function.
-
- for (BasicBlock &BB : F) {
- if (!Solver.isBlockExecutable(&BB)) {
- LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
-
- ++NumDeadBlocks;
- NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
-
- MadeChanges = true;
- continue;
- }
-
- // Iterate over all of the instructions in a function, replacing them with
- // constants if we have found them to be of constant values.
- for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
- Instruction *Inst = &*BI++;
- if (Inst->getType()->isVoidTy() || Inst->isTerminator())
- continue;
-
- if (tryToReplaceWithConstant(Solver, Inst)) {
- if (isInstructionTriviallyDead(Inst))
- Inst->eraseFromParent();
- // Hey, we just changed something!
- MadeChanges = true;
- ++NumInstRemoved;
- }
- }
- }
-
- return MadeChanges;
-}
-
-PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
- const DataLayout &DL = F.getParent()->getDataLayout();
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- if (!runSCCP(F, DL, &TLI))
- return PreservedAnalyses::all();
-
- auto PA = PreservedAnalyses();
- PA.preserve<GlobalsAA>();
- PA.preserveSet<CFGAnalyses>();
- return PA;
-}
-
-namespace {
-
-//===--------------------------------------------------------------------===//
-//
-/// SCCP Class - This class uses the SCCPSolver to implement a per-function
-/// Sparse Conditional Constant Propagator.
-///
-class SCCPLegacyPass : public FunctionPass {
-public:
- // Pass identification, replacement for typeid
- static char ID;
-
- SCCPLegacyPass() : FunctionPass(ID) {
- initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.setPreservesCFG();
- }
-
- // runOnFunction - Run the Sparse Conditional Constant Propagation
- // algorithm, and return true if the function was modified.
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- const DataLayout &DL = F.getParent()->getDataLayout();
- const TargetLibraryInfo *TLI =
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- return runSCCP(F, DL, TLI);
- }
-};
-
-} // end anonymous namespace
-
-char SCCPLegacyPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
- "Sparse Conditional Constant Propagation", false, false)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
- "Sparse Conditional Constant Propagation", false, false)
-
-// createSCCPPass - This is the public interface to this file.
-FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
-
-static void findReturnsToZap(Function &F,
- SmallVector<ReturnInst *, 8> &ReturnsToZap,
- SCCPSolver &Solver) {
- // We can only do this if we know that nothing else can call the function.
- if (!Solver.isArgumentTrackedFunction(&F))
- return;
-
- // There is a non-removable musttail call site of this function. Zapping
- // returns is not allowed.
- if (Solver.isMustTailCallee(&F)) {
- LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
- << " due to present musttail call of it\n");
- return;
- }
-
- for (BasicBlock &BB : F) {
- if (CallInst *CI = BB.getTerminatingMustTailCall()) {
- LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
- << "musttail call : " << *CI << "\n");
- (void)CI;
- return;
- }
-
- if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
- if (!isa<UndefValue>(RI->getOperand(0)))
- ReturnsToZap.push_back(RI);
- }
-}
-
-// Update the condition for terminators that are branching on indeterminate
-// values, forcing them to use a specific edge.
-static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) {
- BasicBlock *Dest = nullptr;
- Constant *C = nullptr;
- if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
- if (!isa<ConstantInt>(SI->getCondition())) {
- // Indeterminate switch; use first case value.
- Dest = SI->case_begin()->getCaseSuccessor();
- C = SI->case_begin()->getCaseValue();
- }
- } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
- if (!isa<ConstantInt>(BI->getCondition())) {
- // Indeterminate branch; use false.
- Dest = BI->getSuccessor(1);
- C = ConstantInt::getFalse(BI->getContext());
- }
- } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) {
- if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) {
- // Indeterminate indirectbr; use successor 0.
- Dest = IBR->getSuccessor(0);
- C = BlockAddress::get(IBR->getSuccessor(0));
- }
- } else {
- llvm_unreachable("Unexpected terminator instruction");
- }
- if (C) {
- assert(Solver.isEdgeFeasible(I->getParent(), Dest) &&
- "Didn't find feasible edge?");
- (void)Dest;
-
- I->setOperand(0, C);
- }
-}
-
-bool llvm::runIPSCCP(
- Module &M, const DataLayout &DL, const TargetLibraryInfo *TLI,
- function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
- SCCPSolver Solver(DL, TLI);
-
- // Loop over all functions, marking arguments to those with their addresses
- // taken or that are external as overdefined.
- for (Function &F : M) {
- if (F.isDeclaration())
- continue;
-
- Solver.addAnalysis(F, getAnalysis(F));
-
- // Determine if we can track the function's return values. If so, add the
- // function to the solver's set of return-tracked functions.
- if (canTrackReturnsInterprocedurally(&F))
- Solver.AddTrackedFunction(&F);
-
- // Determine if we can track the function's arguments. If so, add the
- // function to the solver's set of argument-tracked functions.
- if (canTrackArgumentsInterprocedurally(&F)) {
- Solver.AddArgumentTrackedFunction(&F);
- continue;
- }
-
- // Assume the function is called.
- Solver.MarkBlockExecutable(&F.front());
-
- // Assume nothing about the incoming arguments.
- for (Argument &AI : F.args())
- Solver.markOverdefined(&AI);
- }
-
- // Determine if we can track any of the module's global variables. If so, add
- // the global variables we can track to the solver's set of tracked global
- // variables.
- for (GlobalVariable &G : M.globals()) {
- G.removeDeadConstantUsers();
- if (canTrackGlobalVariableInterprocedurally(&G))
- Solver.TrackValueOfGlobalVariable(&G);
- }
-
- // Solve for constants.
- bool ResolvedUndefs = true;
- Solver.Solve();
- while (ResolvedUndefs) {
- LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
- ResolvedUndefs = false;
- for (Function &F : M)
- if (Solver.ResolvedUndefsIn(F)) {
- // We run Solve() after we resolved an undef in a function, because
- // we might deduce a fact that eliminates an undef in another function.
- Solver.Solve();
- ResolvedUndefs = true;
- }
- }
-
- bool MadeChanges = false;
-
- // Iterate over all of the instructions in the module, replacing them with
- // constants if we have found them to be of constant values.
-
- for (Function &F : M) {
- if (F.isDeclaration())
- continue;
-
- SmallVector<BasicBlock *, 512> BlocksToErase;
-
- if (Solver.isBlockExecutable(&F.front()))
- for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
- ++AI) {
- if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
- ++IPNumArgsElimed;
- continue;
- }
- }
-
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
- if (!Solver.isBlockExecutable(&*BB)) {
- LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
- ++NumDeadBlocks;
-
- MadeChanges = true;
-
- if (&*BB != &F.front())
- BlocksToErase.push_back(&*BB);
- continue;
- }
-
- for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
- Instruction *Inst = &*BI++;
- if (Inst->getType()->isVoidTy())
- continue;
- if (tryToReplaceWithConstant(Solver, Inst)) {
- if (Inst->isSafeToRemove())
- Inst->eraseFromParent();
- // Hey, we just changed something!
- MadeChanges = true;
- ++IPNumInstRemoved;
- }
- }
- }
-
- DomTreeUpdater DTU = Solver.getDTU(F);
- // Change dead blocks to unreachable. We do it after replacing constants
- // in all executable blocks, because changeToUnreachable may remove PHI
- // nodes in executable blocks we found values for. The function's entry
- // block is not part of BlocksToErase, so we have to handle it separately.
- for (BasicBlock *BB : BlocksToErase) {
- NumInstRemoved +=
- changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
- /*PreserveLCSSA=*/false, &DTU);
- }
- if (!Solver.isBlockExecutable(&F.front()))
- NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
- /*UseLLVMTrap=*/false,
- /*PreserveLCSSA=*/false, &DTU);
-
- // Now that all instructions in the function are constant folded,
- // use ConstantFoldTerminator to get rid of in-edges, record DT updates and
- // delete dead BBs.
- for (BasicBlock *DeadBB : BlocksToErase) {
- // If there are any PHI nodes in this successor, drop entries for BB now.
- for (Value::user_iterator UI = DeadBB->user_begin(),
- UE = DeadBB->user_end();
- UI != UE;) {
- // Grab the user and then increment the iterator early, as the user
- // will be deleted. Step past all adjacent uses from the same user.
- auto *I = dyn_cast<Instruction>(*UI);
- do { ++UI; } while (UI != UE && *UI == I);
-
- // Ignore blockaddress users; BasicBlock's dtor will handle them.
- if (!I) continue;
-
- // If we have forced an edge for an indeterminate value, then force the
- // terminator to fold to that edge.
- forceIndeterminateEdge(I, Solver);
- BasicBlock *InstBB = I->getParent();
- bool Folded = ConstantFoldTerminator(InstBB,
- /*DeleteDeadConditions=*/false,
- /*TLI=*/nullptr, &DTU);
- assert(Folded &&
- "Expect TermInst on constantint or blockaddress to be folded");
- (void) Folded;
- // If we folded the terminator to an unconditional branch to another
- // dead block, replace it with Unreachable, to avoid trying to fold that
- // branch again.
- BranchInst *BI = cast<BranchInst>(InstBB->getTerminator());
- if (BI && BI->isUnconditional() &&
- !Solver.isBlockExecutable(BI->getSuccessor(0))) {
- InstBB->getTerminator()->eraseFromParent();
- new UnreachableInst(InstBB->getContext(), InstBB);
- }
- }
- // Mark dead BB for deletion.
- DTU.deleteBB(DeadBB);
- }
-
- for (BasicBlock &BB : F) {
- for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
- Instruction *Inst = &*BI++;
- if (Solver.getPredicateInfoFor(Inst)) {
- if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
- if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
- Value *Op = II->getOperand(0);
- Inst->replaceAllUsesWith(Op);
- Inst->eraseFromParent();
- }
- }
- }
- }
- }
- }
-
- // If we inferred constant or undef return values for a function, we replaced
- // all call uses with the inferred value. This means we don't need to bother
- // actually returning anything from the function. Replace all return
- // instructions with return undef.
- //
- // Do this in two stages: first identify the functions we should process, then
- // actually zap their returns. This is important because we can only do this
- // if the address of the function isn't taken. In cases where a return is the
- // last use of a function, the order of processing functions would affect
- // whether other functions are optimizable.
- SmallVector<ReturnInst*, 8> ReturnsToZap;
-
- const MapVector<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
- for (const auto &I : RV) {
- Function *F = I.first;
- if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
- continue;
- findReturnsToZap(*F, ReturnsToZap, Solver);
- }
-
- for (const auto &F : Solver.getMRVFunctionsTracked()) {
- assert(F->getReturnType()->isStructTy() &&
- "The return type should be a struct");
- StructType *STy = cast<StructType>(F->getReturnType());
- if (Solver.isStructLatticeConstant(F, STy))
- findReturnsToZap(*F, ReturnsToZap, Solver);
- }
-
- // Zap all returns which we've identified as zap to change.
- for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
- Function *F = ReturnsToZap[i]->getParent()->getParent();
- ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
- }
-
- // If we inferred constant or undef values for globals variables, we can
- // delete the global and any stores that remain to it.
- const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
- for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
- E = TG.end(); I != E; ++I) {
- GlobalVariable *GV = I->first;
- assert(!I->second.isOverdefined() &&
- "Overdefined values should have been taken out of the map!");
- LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
- << "' is constant!\n");
- while (!GV->use_empty()) {
- StoreInst *SI = cast<StoreInst>(GV->user_back());
- SI->eraseFromParent();
- }
- M.getGlobalList().erase(GV);
- ++IPNumGlobalConst;
- }
-
- return MadeChanges;
-}