summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp862
1 files changed, 0 insertions, 862 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp b/contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp
deleted file mode 100644
index 2ee1a3a95f2a..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp
+++ /dev/null
@@ -1,862 +0,0 @@
-//===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass converts vector operations into scalar operations, in order
-// to expose optimization opportunities on the individual scalar operations.
-// It is mainly intended for targets that do not have vector units, but it
-// may also be useful for revectorizing code to different vector widths.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstVisitor.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Options.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Scalar/Scalarizer.h"
-#include <cassert>
-#include <cstdint>
-#include <iterator>
-#include <map>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "scalarizer"
-
-// This is disabled by default because having separate loads and stores
-// makes it more likely that the -combiner-alias-analysis limits will be
-// reached.
-static cl::opt<bool>
- ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden,
- cl::desc("Allow the scalarizer pass to scalarize loads and store"));
-
-namespace {
-
-// Used to store the scattered form of a vector.
-using ValueVector = SmallVector<Value *, 8>;
-
-// Used to map a vector Value to its scattered form. We use std::map
-// because we want iterators to persist across insertion and because the
-// values are relatively large.
-using ScatterMap = std::map<Value *, ValueVector>;
-
-// Lists Instructions that have been replaced with scalar implementations,
-// along with a pointer to their scattered forms.
-using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
-
-// Provides a very limited vector-like interface for lazily accessing one
-// component of a scattered vector or vector pointer.
-class Scatterer {
-public:
- Scatterer() = default;
-
- // Scatter V into Size components. If new instructions are needed,
- // insert them before BBI in BB. If Cache is nonnull, use it to cache
- // the results.
- Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
- ValueVector *cachePtr = nullptr);
-
- // Return component I, creating a new Value for it if necessary.
- Value *operator[](unsigned I);
-
- // Return the number of components.
- unsigned size() const { return Size; }
-
-private:
- BasicBlock *BB;
- BasicBlock::iterator BBI;
- Value *V;
- ValueVector *CachePtr;
- PointerType *PtrTy;
- ValueVector Tmp;
- unsigned Size;
-};
-
-// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
-// called Name that compares X and Y in the same way as FCI.
-struct FCmpSplitter {
- FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
-
- Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
- const Twine &Name) const {
- return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
- }
-
- FCmpInst &FCI;
-};
-
-// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
-// called Name that compares X and Y in the same way as ICI.
-struct ICmpSplitter {
- ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
-
- Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
- const Twine &Name) const {
- return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
- }
-
- ICmpInst &ICI;
-};
-
-// UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
-// a unary operator like UO called Name with operand X.
-struct UnarySplitter {
- UnarySplitter(UnaryOperator &uo) : UO(uo) {}
-
- Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
- return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
- }
-
- UnaryOperator &UO;
-};
-
-// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
-// a binary operator like BO called Name with operands X and Y.
-struct BinarySplitter {
- BinarySplitter(BinaryOperator &bo) : BO(bo) {}
-
- Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
- const Twine &Name) const {
- return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
- }
-
- BinaryOperator &BO;
-};
-
-// Information about a load or store that we're scalarizing.
-struct VectorLayout {
- VectorLayout() = default;
-
- // Return the alignment of element I.
- uint64_t getElemAlign(unsigned I) {
- return MinAlign(VecAlign, I * ElemSize);
- }
-
- // The type of the vector.
- VectorType *VecTy = nullptr;
-
- // The type of each element.
- Type *ElemTy = nullptr;
-
- // The alignment of the vector.
- uint64_t VecAlign = 0;
-
- // The size of each element.
- uint64_t ElemSize = 0;
-};
-
-class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
-public:
- ScalarizerVisitor(unsigned ParallelLoopAccessMDKind)
- : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind) {
- }
-
- bool visit(Function &F);
-
- // InstVisitor methods. They return true if the instruction was scalarized,
- // false if nothing changed.
- bool visitInstruction(Instruction &I) { return false; }
- bool visitSelectInst(SelectInst &SI);
- bool visitICmpInst(ICmpInst &ICI);
- bool visitFCmpInst(FCmpInst &FCI);
- bool visitUnaryOperator(UnaryOperator &UO);
- bool visitBinaryOperator(BinaryOperator &BO);
- bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
- bool visitCastInst(CastInst &CI);
- bool visitBitCastInst(BitCastInst &BCI);
- bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
- bool visitPHINode(PHINode &PHI);
- bool visitLoadInst(LoadInst &LI);
- bool visitStoreInst(StoreInst &SI);
- bool visitCallInst(CallInst &ICI);
-
-private:
- Scatterer scatter(Instruction *Point, Value *V);
- void gather(Instruction *Op, const ValueVector &CV);
- bool canTransferMetadata(unsigned Kind);
- void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
- bool getVectorLayout(Type *Ty, unsigned Alignment, VectorLayout &Layout,
- const DataLayout &DL);
- bool finish();
-
- template<typename T> bool splitUnary(Instruction &, const T &);
- template<typename T> bool splitBinary(Instruction &, const T &);
-
- bool splitCall(CallInst &CI);
-
- ScatterMap Scattered;
- GatherList Gathered;
-
- unsigned ParallelLoopAccessMDKind;
-};
-
-class ScalarizerLegacyPass : public FunctionPass {
-public:
- static char ID;
-
- ScalarizerLegacyPass() : FunctionPass(ID) {
- initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override;
-};
-
-} // end anonymous namespace
-
-char ScalarizerLegacyPass::ID = 0;
-INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
- "Scalarize vector operations", false, false)
-INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
- "Scalarize vector operations", false, false)
-
-Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
- ValueVector *cachePtr)
- : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
- Type *Ty = V->getType();
- PtrTy = dyn_cast<PointerType>(Ty);
- if (PtrTy)
- Ty = PtrTy->getElementType();
- Size = Ty->getVectorNumElements();
- if (!CachePtr)
- Tmp.resize(Size, nullptr);
- else if (CachePtr->empty())
- CachePtr->resize(Size, nullptr);
- else
- assert(Size == CachePtr->size() && "Inconsistent vector sizes");
-}
-
-// Return component I, creating a new Value for it if necessary.
-Value *Scatterer::operator[](unsigned I) {
- ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
- // Try to reuse a previous value.
- if (CV[I])
- return CV[I];
- IRBuilder<> Builder(BB, BBI);
- if (PtrTy) {
- Type *ElTy = PtrTy->getElementType()->getVectorElementType();
- if (!CV[0]) {
- Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace());
- CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
- }
- if (I != 0)
- CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I,
- V->getName() + ".i" + Twine(I));
- } else {
- // Search through a chain of InsertElementInsts looking for element I.
- // Record other elements in the cache. The new V is still suitable
- // for all uncached indices.
- while (true) {
- InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
- if (!Insert)
- break;
- ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
- if (!Idx)
- break;
- unsigned J = Idx->getZExtValue();
- V = Insert->getOperand(0);
- if (I == J) {
- CV[J] = Insert->getOperand(1);
- return CV[J];
- } else if (!CV[J]) {
- // Only cache the first entry we find for each index we're not actively
- // searching for. This prevents us from going too far up the chain and
- // caching incorrect entries.
- CV[J] = Insert->getOperand(1);
- }
- }
- CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
- V->getName() + ".i" + Twine(I));
- }
- return CV[I];
-}
-
-bool ScalarizerLegacyPass::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
-
- Module &M = *F.getParent();
- unsigned ParallelLoopAccessMDKind =
- M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
- ScalarizerVisitor Impl(ParallelLoopAccessMDKind);
- return Impl.visit(F);
-}
-
-FunctionPass *llvm::createScalarizerPass() {
- return new ScalarizerLegacyPass();
-}
-
-bool ScalarizerVisitor::visit(Function &F) {
- assert(Gathered.empty() && Scattered.empty());
-
- // To ensure we replace gathered components correctly we need to do an ordered
- // traversal of the basic blocks in the function.
- ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
- for (BasicBlock *BB : RPOT) {
- for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
- Instruction *I = &*II;
- bool Done = InstVisitor::visit(I);
- ++II;
- if (Done && I->getType()->isVoidTy())
- I->eraseFromParent();
- }
- }
- return finish();
-}
-
-// Return a scattered form of V that can be accessed by Point. V must be a
-// vector or a pointer to a vector.
-Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) {
- if (Argument *VArg = dyn_cast<Argument>(V)) {
- // Put the scattered form of arguments in the entry block,
- // so that it can be used everywhere.
- Function *F = VArg->getParent();
- BasicBlock *BB = &F->getEntryBlock();
- return Scatterer(BB, BB->begin(), V, &Scattered[V]);
- }
- if (Instruction *VOp = dyn_cast<Instruction>(V)) {
- // Put the scattered form of an instruction directly after the
- // instruction.
- BasicBlock *BB = VOp->getParent();
- return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
- V, &Scattered[V]);
- }
- // In the fallback case, just put the scattered before Point and
- // keep the result local to Point.
- return Scatterer(Point->getParent(), Point->getIterator(), V);
-}
-
-// Replace Op with the gathered form of the components in CV. Defer the
-// deletion of Op and creation of the gathered form to the end of the pass,
-// so that we can avoid creating the gathered form if all uses of Op are
-// replaced with uses of CV.
-void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
- // Since we're not deleting Op yet, stub out its operands, so that it
- // doesn't make anything live unnecessarily.
- for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
- Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
-
- transferMetadataAndIRFlags(Op, CV);
-
- // If we already have a scattered form of Op (created from ExtractElements
- // of Op itself), replace them with the new form.
- ValueVector &SV = Scattered[Op];
- if (!SV.empty()) {
- for (unsigned I = 0, E = SV.size(); I != E; ++I) {
- Value *V = SV[I];
- if (V == nullptr)
- continue;
-
- Instruction *Old = cast<Instruction>(V);
- CV[I]->takeName(Old);
- Old->replaceAllUsesWith(CV[I]);
- Old->eraseFromParent();
- }
- }
- SV = CV;
- Gathered.push_back(GatherList::value_type(Op, &SV));
-}
-
-// Return true if it is safe to transfer the given metadata tag from
-// vector to scalar instructions.
-bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
- return (Tag == LLVMContext::MD_tbaa
- || Tag == LLVMContext::MD_fpmath
- || Tag == LLVMContext::MD_tbaa_struct
- || Tag == LLVMContext::MD_invariant_load
- || Tag == LLVMContext::MD_alias_scope
- || Tag == LLVMContext::MD_noalias
- || Tag == ParallelLoopAccessMDKind
- || Tag == LLVMContext::MD_access_group);
-}
-
-// Transfer metadata from Op to the instructions in CV if it is known
-// to be safe to do so.
-void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
- const ValueVector &CV) {
- SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
- Op->getAllMetadataOtherThanDebugLoc(MDs);
- for (unsigned I = 0, E = CV.size(); I != E; ++I) {
- if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
- for (const auto &MD : MDs)
- if (canTransferMetadata(MD.first))
- New->setMetadata(MD.first, MD.second);
- New->copyIRFlags(Op);
- if (Op->getDebugLoc() && !New->getDebugLoc())
- New->setDebugLoc(Op->getDebugLoc());
- }
- }
-}
-
-// Try to fill in Layout from Ty, returning true on success. Alignment is
-// the alignment of the vector, or 0 if the ABI default should be used.
-bool ScalarizerVisitor::getVectorLayout(Type *Ty, unsigned Alignment,
- VectorLayout &Layout, const DataLayout &DL) {
- // Make sure we're dealing with a vector.
- Layout.VecTy = dyn_cast<VectorType>(Ty);
- if (!Layout.VecTy)
- return false;
-
- // Check that we're dealing with full-byte elements.
- Layout.ElemTy = Layout.VecTy->getElementType();
- if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
- return false;
-
- if (Alignment)
- Layout.VecAlign = Alignment;
- else
- Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
- Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
- return true;
-}
-
-// Scalarize one-operand instruction I, using Split(Builder, X, Name)
-// to create an instruction like I with operand X and name Name.
-template<typename Splitter>
-bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
- VectorType *VT = dyn_cast<VectorType>(I.getType());
- if (!VT)
- return false;
-
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&I);
- Scatterer Op = scatter(&I, I.getOperand(0));
- assert(Op.size() == NumElems && "Mismatched unary operation");
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned Elem = 0; Elem < NumElems; ++Elem)
- Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
- gather(&I, Res);
- return true;
-}
-
-// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
-// to create an instruction like I with operands X and Y and name Name.
-template<typename Splitter>
-bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
- VectorType *VT = dyn_cast<VectorType>(I.getType());
- if (!VT)
- return false;
-
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&I);
- Scatterer Op0 = scatter(&I, I.getOperand(0));
- Scatterer Op1 = scatter(&I, I.getOperand(1));
- assert(Op0.size() == NumElems && "Mismatched binary operation");
- assert(Op1.size() == NumElems && "Mismatched binary operation");
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned Elem = 0; Elem < NumElems; ++Elem)
- Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
- I.getName() + ".i" + Twine(Elem));
- gather(&I, Res);
- return true;
-}
-
-static bool isTriviallyScalariable(Intrinsic::ID ID) {
- return isTriviallyVectorizable(ID);
-}
-
-// All of the current scalarizable intrinsics only have one mangled type.
-static Function *getScalarIntrinsicDeclaration(Module *M,
- Intrinsic::ID ID,
- VectorType *Ty) {
- return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
-}
-
-/// If a call to a vector typed intrinsic function, split into a scalar call per
-/// element if possible for the intrinsic.
-bool ScalarizerVisitor::splitCall(CallInst &CI) {
- VectorType *VT = dyn_cast<VectorType>(CI.getType());
- if (!VT)
- return false;
-
- Function *F = CI.getCalledFunction();
- if (!F)
- return false;
-
- Intrinsic::ID ID = F->getIntrinsicID();
- if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
- return false;
-
- unsigned NumElems = VT->getNumElements();
- unsigned NumArgs = CI.getNumArgOperands();
-
- ValueVector ScalarOperands(NumArgs);
- SmallVector<Scatterer, 8> Scattered(NumArgs);
-
- Scattered.resize(NumArgs);
-
- // Assumes that any vector type has the same number of elements as the return
- // vector type, which is true for all current intrinsics.
- for (unsigned I = 0; I != NumArgs; ++I) {
- Value *OpI = CI.getOperand(I);
- if (OpI->getType()->isVectorTy()) {
- Scattered[I] = scatter(&CI, OpI);
- assert(Scattered[I].size() == NumElems && "mismatched call operands");
- } else {
- ScalarOperands[I] = OpI;
- }
- }
-
- ValueVector Res(NumElems);
- ValueVector ScalarCallOps(NumArgs);
-
- Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
- IRBuilder<> Builder(&CI);
-
- // Perform actual scalarization, taking care to preserve any scalar operands.
- for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
- ScalarCallOps.clear();
-
- for (unsigned J = 0; J != NumArgs; ++J) {
- if (hasVectorInstrinsicScalarOpd(ID, J))
- ScalarCallOps.push_back(ScalarOperands[J]);
- else
- ScalarCallOps.push_back(Scattered[J][Elem]);
- }
-
- Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
- CI.getName() + ".i" + Twine(Elem));
- }
-
- gather(&CI, Res);
- return true;
-}
-
-bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
- VectorType *VT = dyn_cast<VectorType>(SI.getType());
- if (!VT)
- return false;
-
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&SI);
- Scatterer Op1 = scatter(&SI, SI.getOperand(1));
- Scatterer Op2 = scatter(&SI, SI.getOperand(2));
- assert(Op1.size() == NumElems && "Mismatched select");
- assert(Op2.size() == NumElems && "Mismatched select");
- ValueVector Res;
- Res.resize(NumElems);
-
- if (SI.getOperand(0)->getType()->isVectorTy()) {
- Scatterer Op0 = scatter(&SI, SI.getOperand(0));
- assert(Op0.size() == NumElems && "Mismatched select");
- for (unsigned I = 0; I < NumElems; ++I)
- Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
- SI.getName() + ".i" + Twine(I));
- } else {
- Value *Op0 = SI.getOperand(0);
- for (unsigned I = 0; I < NumElems; ++I)
- Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
- SI.getName() + ".i" + Twine(I));
- }
- gather(&SI, Res);
- return true;
-}
-
-bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
- return splitBinary(ICI, ICmpSplitter(ICI));
-}
-
-bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
- return splitBinary(FCI, FCmpSplitter(FCI));
-}
-
-bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
- return splitUnary(UO, UnarySplitter(UO));
-}
-
-bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
- return splitBinary(BO, BinarySplitter(BO));
-}
-
-bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
- VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
- if (!VT)
- return false;
-
- IRBuilder<> Builder(&GEPI);
- unsigned NumElems = VT->getNumElements();
- unsigned NumIndices = GEPI.getNumIndices();
-
- // The base pointer might be scalar even if it's a vector GEP. In those cases,
- // splat the pointer into a vector value, and scatter that vector.
- Value *Op0 = GEPI.getOperand(0);
- if (!Op0->getType()->isVectorTy())
- Op0 = Builder.CreateVectorSplat(NumElems, Op0);
- Scatterer Base = scatter(&GEPI, Op0);
-
- SmallVector<Scatterer, 8> Ops;
- Ops.resize(NumIndices);
- for (unsigned I = 0; I < NumIndices; ++I) {
- Value *Op = GEPI.getOperand(I + 1);
-
- // The indices might be scalars even if it's a vector GEP. In those cases,
- // splat the scalar into a vector value, and scatter that vector.
- if (!Op->getType()->isVectorTy())
- Op = Builder.CreateVectorSplat(NumElems, Op);
-
- Ops[I] = scatter(&GEPI, Op);
- }
-
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned I = 0; I < NumElems; ++I) {
- SmallVector<Value *, 8> Indices;
- Indices.resize(NumIndices);
- for (unsigned J = 0; J < NumIndices; ++J)
- Indices[J] = Ops[J][I];
- Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
- GEPI.getName() + ".i" + Twine(I));
- if (GEPI.isInBounds())
- if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
- NewGEPI->setIsInBounds();
- }
- gather(&GEPI, Res);
- return true;
-}
-
-bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
- VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
- if (!VT)
- return false;
-
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&CI);
- Scatterer Op0 = scatter(&CI, CI.getOperand(0));
- assert(Op0.size() == NumElems && "Mismatched cast");
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned I = 0; I < NumElems; ++I)
- Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
- CI.getName() + ".i" + Twine(I));
- gather(&CI, Res);
- return true;
-}
-
-bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
- VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
- VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
- if (!DstVT || !SrcVT)
- return false;
-
- unsigned DstNumElems = DstVT->getNumElements();
- unsigned SrcNumElems = SrcVT->getNumElements();
- IRBuilder<> Builder(&BCI);
- Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
- ValueVector Res;
- Res.resize(DstNumElems);
-
- if (DstNumElems == SrcNumElems) {
- for (unsigned I = 0; I < DstNumElems; ++I)
- Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
- BCI.getName() + ".i" + Twine(I));
- } else if (DstNumElems > SrcNumElems) {
- // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
- // individual elements to the destination.
- unsigned FanOut = DstNumElems / SrcNumElems;
- Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
- unsigned ResI = 0;
- for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
- Value *V = Op0[Op0I];
- Instruction *VI;
- // Look through any existing bitcasts before converting to <N x t2>.
- // In the best case, the resulting conversion might be a no-op.
- while ((VI = dyn_cast<Instruction>(V)) &&
- VI->getOpcode() == Instruction::BitCast)
- V = VI->getOperand(0);
- V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
- Scatterer Mid = scatter(&BCI, V);
- for (unsigned MidI = 0; MidI < FanOut; ++MidI)
- Res[ResI++] = Mid[MidI];
- }
- } else {
- // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
- unsigned FanIn = SrcNumElems / DstNumElems;
- Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
- unsigned Op0I = 0;
- for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
- Value *V = UndefValue::get(MidTy);
- for (unsigned MidI = 0; MidI < FanIn; ++MidI)
- V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
- BCI.getName() + ".i" + Twine(ResI)
- + ".upto" + Twine(MidI));
- Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
- BCI.getName() + ".i" + Twine(ResI));
- }
- }
- gather(&BCI, Res);
- return true;
-}
-
-bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
- VectorType *VT = dyn_cast<VectorType>(SVI.getType());
- if (!VT)
- return false;
-
- unsigned NumElems = VT->getNumElements();
- Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
- Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
- ValueVector Res;
- Res.resize(NumElems);
-
- for (unsigned I = 0; I < NumElems; ++I) {
- int Selector = SVI.getMaskValue(I);
- if (Selector < 0)
- Res[I] = UndefValue::get(VT->getElementType());
- else if (unsigned(Selector) < Op0.size())
- Res[I] = Op0[Selector];
- else
- Res[I] = Op1[Selector - Op0.size()];
- }
- gather(&SVI, Res);
- return true;
-}
-
-bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
- VectorType *VT = dyn_cast<VectorType>(PHI.getType());
- if (!VT)
- return false;
-
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&PHI);
- ValueVector Res;
- Res.resize(NumElems);
-
- unsigned NumOps = PHI.getNumOperands();
- for (unsigned I = 0; I < NumElems; ++I)
- Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
- PHI.getName() + ".i" + Twine(I));
-
- for (unsigned I = 0; I < NumOps; ++I) {
- Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
- BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
- for (unsigned J = 0; J < NumElems; ++J)
- cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
- }
- gather(&PHI, Res);
- return true;
-}
-
-bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
- if (!ScalarizeLoadStore)
- return false;
- if (!LI.isSimple())
- return false;
-
- VectorLayout Layout;
- if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
- LI.getModule()->getDataLayout()))
- return false;
-
- unsigned NumElems = Layout.VecTy->getNumElements();
- IRBuilder<> Builder(&LI);
- Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
- ValueVector Res;
- Res.resize(NumElems);
-
- for (unsigned I = 0; I < NumElems; ++I)
- Res[I] = Builder.CreateAlignedLoad(Layout.VecTy->getElementType(), Ptr[I],
- Layout.getElemAlign(I),
- LI.getName() + ".i" + Twine(I));
- gather(&LI, Res);
- return true;
-}
-
-bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
- if (!ScalarizeLoadStore)
- return false;
- if (!SI.isSimple())
- return false;
-
- VectorLayout Layout;
- Value *FullValue = SI.getValueOperand();
- if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
- SI.getModule()->getDataLayout()))
- return false;
-
- unsigned NumElems = Layout.VecTy->getNumElements();
- IRBuilder<> Builder(&SI);
- Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
- Scatterer Val = scatter(&SI, FullValue);
-
- ValueVector Stores;
- Stores.resize(NumElems);
- for (unsigned I = 0; I < NumElems; ++I) {
- unsigned Align = Layout.getElemAlign(I);
- Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
- }
- transferMetadataAndIRFlags(&SI, Stores);
- return true;
-}
-
-bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
- return splitCall(CI);
-}
-
-// Delete the instructions that we scalarized. If a full vector result
-// is still needed, recreate it using InsertElements.
-bool ScalarizerVisitor::finish() {
- // The presence of data in Gathered or Scattered indicates changes
- // made to the Function.
- if (Gathered.empty() && Scattered.empty())
- return false;
- for (const auto &GMI : Gathered) {
- Instruction *Op = GMI.first;
- ValueVector &CV = *GMI.second;
- if (!Op->use_empty()) {
- // The value is still needed, so recreate it using a series of
- // InsertElements.
- Type *Ty = Op->getType();
- Value *Res = UndefValue::get(Ty);
- BasicBlock *BB = Op->getParent();
- unsigned Count = Ty->getVectorNumElements();
- IRBuilder<> Builder(Op);
- if (isa<PHINode>(Op))
- Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
- for (unsigned I = 0; I < Count; ++I)
- Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
- Op->getName() + ".upto" + Twine(I));
- Res->takeName(Op);
- Op->replaceAllUsesWith(Res);
- }
- Op->eraseFromParent();
- }
- Gathered.clear();
- Scattered.clear();
- return true;
-}
-
-PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
- Module &M = *F.getParent();
- unsigned ParallelLoopAccessMDKind =
- M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
- ScalarizerVisitor Impl(ParallelLoopAccessMDKind);
- bool Changed = Impl.visit(F);
- return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
-}