summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp741
1 files changed, 0 insertions, 741 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
deleted file mode 100644
index a58c32cc5894..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
+++ /dev/null
@@ -1,741 +0,0 @@
-//===- StraightLineStrengthReduce.cpp - -----------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements straight-line strength reduction (SLSR). Unlike loop
-// strength reduction, this algorithm is designed to reduce arithmetic
-// redundancy in straight-line code instead of loops. It has proven to be
-// effective in simplifying arithmetic statements derived from an unrolled loop.
-// It can also simplify the logic of SeparateConstOffsetFromGEP.
-//
-// There are many optimizations we can perform in the domain of SLSR. This file
-// for now contains only an initial step. Specifically, we look for strength
-// reduction candidates in the following forms:
-//
-// Form 1: B + i * S
-// Form 2: (B + i) * S
-// Form 3: &B[i * S]
-//
-// where S is an integer variable, and i is a constant integer. If we found two
-// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
-// in a simpler way with respect to S1. For example,
-//
-// S1: X = B + i * S
-// S2: Y = B + i' * S => X + (i' - i) * S
-//
-// S1: X = (B + i) * S
-// S2: Y = (B + i') * S => X + (i' - i) * S
-//
-// S1: X = &B[i * S]
-// S2: Y = &B[i' * S] => &X[(i' - i) * S]
-//
-// Note: (i' - i) * S is folded to the extent possible.
-//
-// This rewriting is in general a good idea. The code patterns we focus on
-// usually come from loop unrolling, so (i' - i) * S is likely the same
-// across iterations and can be reused. When that happens, the optimized form
-// takes only one add starting from the second iteration.
-//
-// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
-// multiple bases, we choose to rewrite S2 with respect to its "immediate"
-// basis, the basis that is the closest ancestor in the dominator tree.
-//
-// TODO:
-//
-// - Floating point arithmetics when fast math is enabled.
-//
-// - SLSR may decrease ILP at the architecture level. Targets that are very
-// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
-// left as future work.
-//
-// - When (i' - i) is constant but i and i' are not, we could still perform
-// SLSR.
-
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/GetElementPtrTypeIterator.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Transforms/Scalar.h"
-#include <cassert>
-#include <cstdint>
-#include <limits>
-#include <list>
-#include <vector>
-
-using namespace llvm;
-using namespace PatternMatch;
-
-static const unsigned UnknownAddressSpace =
- std::numeric_limits<unsigned>::max();
-
-namespace {
-
-class StraightLineStrengthReduce : public FunctionPass {
-public:
- // SLSR candidate. Such a candidate must be in one of the forms described in
- // the header comments.
- struct Candidate {
- enum Kind {
- Invalid, // reserved for the default constructor
- Add, // B + i * S
- Mul, // (B + i) * S
- GEP, // &B[..][i * S][..]
- };
-
- Candidate() = default;
- Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
- Instruction *I)
- : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
-
- Kind CandidateKind = Invalid;
-
- const SCEV *Base = nullptr;
-
- // Note that Index and Stride of a GEP candidate do not necessarily have the
- // same integer type. In that case, during rewriting, Stride will be
- // sign-extended or truncated to Index's type.
- ConstantInt *Index = nullptr;
-
- Value *Stride = nullptr;
-
- // The instruction this candidate corresponds to. It helps us to rewrite a
- // candidate with respect to its immediate basis. Note that one instruction
- // can correspond to multiple candidates depending on how you associate the
- // expression. For instance,
- //
- // (a + 1) * (b + 2)
- //
- // can be treated as
- //
- // <Base: a, Index: 1, Stride: b + 2>
- //
- // or
- //
- // <Base: b, Index: 2, Stride: a + 1>
- Instruction *Ins = nullptr;
-
- // Points to the immediate basis of this candidate, or nullptr if we cannot
- // find any basis for this candidate.
- Candidate *Basis = nullptr;
- };
-
- static char ID;
-
- StraightLineStrengthReduce() : FunctionPass(ID) {
- initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- // We do not modify the shape of the CFG.
- AU.setPreservesCFG();
- }
-
- bool doInitialization(Module &M) override {
- DL = &M.getDataLayout();
- return false;
- }
-
- bool runOnFunction(Function &F) override;
-
-private:
- // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
- // share the same base and stride.
- bool isBasisFor(const Candidate &Basis, const Candidate &C);
-
- // Returns whether the candidate can be folded into an addressing mode.
- bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
- const DataLayout *DL);
-
- // Returns true if C is already in a simplest form and not worth being
- // rewritten.
- bool isSimplestForm(const Candidate &C);
-
- // Checks whether I is in a candidate form. If so, adds all the matching forms
- // to Candidates, and tries to find the immediate basis for each of them.
- void allocateCandidatesAndFindBasis(Instruction *I);
-
- // Allocate candidates and find bases for Add instructions.
- void allocateCandidatesAndFindBasisForAdd(Instruction *I);
-
- // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
- // candidate.
- void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
- Instruction *I);
- // Allocate candidates and find bases for Mul instructions.
- void allocateCandidatesAndFindBasisForMul(Instruction *I);
-
- // Splits LHS into Base + Index and, if succeeds, calls
- // allocateCandidatesAndFindBasis.
- void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
- Instruction *I);
-
- // Allocate candidates and find bases for GetElementPtr instructions.
- void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
-
- // A helper function that scales Idx with ElementSize before invoking
- // allocateCandidatesAndFindBasis.
- void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
- Value *S, uint64_t ElementSize,
- Instruction *I);
-
- // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
- // basis.
- void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
- ConstantInt *Idx, Value *S,
- Instruction *I);
-
- // Rewrites candidate C with respect to Basis.
- void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
-
- // A helper function that factors ArrayIdx to a product of a stride and a
- // constant index, and invokes allocateCandidatesAndFindBasis with the
- // factorings.
- void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
- GetElementPtrInst *GEP);
-
- // Emit code that computes the "bump" from Basis to C. If the candidate is a
- // GEP and the bump is not divisible by the element size of the GEP, this
- // function sets the BumpWithUglyGEP flag to notify its caller to bump the
- // basis using an ugly GEP.
- static Value *emitBump(const Candidate &Basis, const Candidate &C,
- IRBuilder<> &Builder, const DataLayout *DL,
- bool &BumpWithUglyGEP);
-
- const DataLayout *DL = nullptr;
- DominatorTree *DT = nullptr;
- ScalarEvolution *SE;
- TargetTransformInfo *TTI = nullptr;
- std::list<Candidate> Candidates;
-
- // Temporarily holds all instructions that are unlinked (but not deleted) by
- // rewriteCandidateWithBasis. These instructions will be actually removed
- // after all rewriting finishes.
- std::vector<Instruction *> UnlinkedInstructions;
-};
-
-} // end anonymous namespace
-
-char StraightLineStrengthReduce::ID = 0;
-
-INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
- "Straight line strength reduction", false, false)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
- "Straight line strength reduction", false, false)
-
-FunctionPass *llvm::createStraightLineStrengthReducePass() {
- return new StraightLineStrengthReduce();
-}
-
-bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
- const Candidate &C) {
- return (Basis.Ins != C.Ins && // skip the same instruction
- // They must have the same type too. Basis.Base == C.Base doesn't
- // guarantee their types are the same (PR23975).
- Basis.Ins->getType() == C.Ins->getType() &&
- // Basis must dominate C in order to rewrite C with respect to Basis.
- DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
- // They share the same base, stride, and candidate kind.
- Basis.Base == C.Base && Basis.Stride == C.Stride &&
- Basis.CandidateKind == C.CandidateKind);
-}
-
-static bool isGEPFoldable(GetElementPtrInst *GEP,
- const TargetTransformInfo *TTI) {
- SmallVector<const Value*, 4> Indices;
- for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
- Indices.push_back(*I);
- return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
- Indices) == TargetTransformInfo::TCC_Free;
-}
-
-// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
-static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
- TargetTransformInfo *TTI) {
- // Index->getSExtValue() may crash if Index is wider than 64-bit.
- return Index->getBitWidth() <= 64 &&
- TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
- Index->getSExtValue(), UnknownAddressSpace);
-}
-
-bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
- TargetTransformInfo *TTI,
- const DataLayout *DL) {
- if (C.CandidateKind == Candidate::Add)
- return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
- if (C.CandidateKind == Candidate::GEP)
- return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
- return false;
-}
-
-// Returns true if GEP has zero or one non-zero index.
-static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
- unsigned NumNonZeroIndices = 0;
- for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
- ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
- if (ConstIdx == nullptr || !ConstIdx->isZero())
- ++NumNonZeroIndices;
- }
- return NumNonZeroIndices <= 1;
-}
-
-bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
- if (C.CandidateKind == Candidate::Add) {
- // B + 1 * S or B + (-1) * S
- return C.Index->isOne() || C.Index->isMinusOne();
- }
- if (C.CandidateKind == Candidate::Mul) {
- // (B + 0) * S
- return C.Index->isZero();
- }
- if (C.CandidateKind == Candidate::GEP) {
- // (char*)B + S or (char*)B - S
- return ((C.Index->isOne() || C.Index->isMinusOne()) &&
- hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
- }
- return false;
-}
-
-// TODO: We currently implement an algorithm whose time complexity is linear in
-// the number of existing candidates. However, we could do better by using
-// ScopedHashTable. Specifically, while traversing the dominator tree, we could
-// maintain all the candidates that dominate the basic block being traversed in
-// a ScopedHashTable. This hash table is indexed by the base and the stride of
-// a candidate. Therefore, finding the immediate basis of a candidate boils down
-// to one hash-table look up.
-void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
- Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
- Instruction *I) {
- Candidate C(CT, B, Idx, S, I);
- // SLSR can complicate an instruction in two cases:
- //
- // 1. If we can fold I into an addressing mode, computing I is likely free or
- // takes only one instruction.
- //
- // 2. I is already in a simplest form. For example, when
- // X = B + 8 * S
- // Y = B + S,
- // rewriting Y to X - 7 * S is probably a bad idea.
- //
- // In the above cases, we still add I to the candidate list so that I can be
- // the basis of other candidates, but we leave I's basis blank so that I
- // won't be rewritten.
- if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
- // Try to compute the immediate basis of C.
- unsigned NumIterations = 0;
- // Limit the scan radius to avoid running in quadratice time.
- static const unsigned MaxNumIterations = 50;
- for (auto Basis = Candidates.rbegin();
- Basis != Candidates.rend() && NumIterations < MaxNumIterations;
- ++Basis, ++NumIterations) {
- if (isBasisFor(*Basis, C)) {
- C.Basis = &(*Basis);
- break;
- }
- }
- }
- // Regardless of whether we find a basis for C, we need to push C to the
- // candidate list so that it can be the basis of other candidates.
- Candidates.push_back(C);
-}
-
-void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
- Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::Add:
- allocateCandidatesAndFindBasisForAdd(I);
- break;
- case Instruction::Mul:
- allocateCandidatesAndFindBasisForMul(I);
- break;
- case Instruction::GetElementPtr:
- allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
- break;
- }
-}
-
-void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
- Instruction *I) {
- // Try matching B + i * S.
- if (!isa<IntegerType>(I->getType()))
- return;
-
- assert(I->getNumOperands() == 2 && "isn't I an add?");
- Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
- allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
- if (LHS != RHS)
- allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
-}
-
-void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
- Value *LHS, Value *RHS, Instruction *I) {
- Value *S = nullptr;
- ConstantInt *Idx = nullptr;
- if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
- // I = LHS + RHS = LHS + Idx * S
- allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
- } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
- // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
- APInt One(Idx->getBitWidth(), 1);
- Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
- allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
- } else {
- // At least, I = LHS + 1 * RHS
- ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
- allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
- I);
- }
-}
-
-// Returns true if A matches B + C where C is constant.
-static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
- return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
- match(A, m_Add(m_ConstantInt(C), m_Value(B))));
-}
-
-// Returns true if A matches B | C where C is constant.
-static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
- return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
- match(A, m_Or(m_ConstantInt(C), m_Value(B))));
-}
-
-void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
- Value *LHS, Value *RHS, Instruction *I) {
- Value *B = nullptr;
- ConstantInt *Idx = nullptr;
- if (matchesAdd(LHS, B, Idx)) {
- // If LHS is in the form of "Base + Index", then I is in the form of
- // "(Base + Index) * RHS".
- allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
- } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
- // If LHS is in the form of "Base | Index" and Base and Index have no common
- // bits set, then
- // Base | Index = Base + Index
- // and I is thus in the form of "(Base + Index) * RHS".
- allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
- } else {
- // Otherwise, at least try the form (LHS + 0) * RHS.
- ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
- allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
- I);
- }
-}
-
-void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
- Instruction *I) {
- // Try matching (B + i) * S.
- // TODO: we could extend SLSR to float and vector types.
- if (!isa<IntegerType>(I->getType()))
- return;
-
- assert(I->getNumOperands() == 2 && "isn't I a mul?");
- Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
- allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
- if (LHS != RHS) {
- // Symmetrically, try to split RHS to Base + Index.
- allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
- }
-}
-
-void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
- const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
- Instruction *I) {
- // I = B + sext(Idx *nsw S) * ElementSize
- // = B + (sext(Idx) * sext(S)) * ElementSize
- // = B + (sext(Idx) * ElementSize) * sext(S)
- // Casting to IntegerType is safe because we skipped vector GEPs.
- IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
- ConstantInt *ScaledIdx = ConstantInt::get(
- IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
- allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
-}
-
-void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
- const SCEV *Base,
- uint64_t ElementSize,
- GetElementPtrInst *GEP) {
- // At least, ArrayIdx = ArrayIdx *nsw 1.
- allocateCandidatesAndFindBasisForGEP(
- Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
- ArrayIdx, ElementSize, GEP);
- Value *LHS = nullptr;
- ConstantInt *RHS = nullptr;
- // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
- // itself. This would allow us to handle the shl case for free. However,
- // matching SCEVs has two issues:
- //
- // 1. this would complicate rewriting because the rewriting procedure
- // would have to translate SCEVs back to IR instructions. This translation
- // is difficult when LHS is further evaluated to a composite SCEV.
- //
- // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
- // to strip nsw/nuw flags which are critical for SLSR to trace into
- // sext'ed multiplication.
- if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
- // SLSR is currently unsafe if i * S may overflow.
- // GEP = Base + sext(LHS *nsw RHS) * ElementSize
- allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
- } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
- // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
- // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
- APInt One(RHS->getBitWidth(), 1);
- ConstantInt *PowerOf2 =
- ConstantInt::get(RHS->getContext(), One << RHS->getValue());
- allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
- }
-}
-
-void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
- GetElementPtrInst *GEP) {
- // TODO: handle vector GEPs
- if (GEP->getType()->isVectorTy())
- return;
-
- SmallVector<const SCEV *, 4> IndexExprs;
- for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
- IndexExprs.push_back(SE->getSCEV(*I));
-
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
- if (GTI.isStruct())
- continue;
-
- const SCEV *OrigIndexExpr = IndexExprs[I - 1];
- IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
-
- // The base of this candidate is GEP's base plus the offsets of all
- // indices except this current one.
- const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
- Value *ArrayIdx = GEP->getOperand(I);
- uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
- if (ArrayIdx->getType()->getIntegerBitWidth() <=
- DL->getPointerSizeInBits(GEP->getAddressSpace())) {
- // Skip factoring if ArrayIdx is wider than the pointer size, because
- // ArrayIdx is implicitly truncated to the pointer size.
- factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
- }
- // When ArrayIdx is the sext of a value, we try to factor that value as
- // well. Handling this case is important because array indices are
- // typically sign-extended to the pointer size.
- Value *TruncatedArrayIdx = nullptr;
- if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
- TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
- DL->getPointerSizeInBits(GEP->getAddressSpace())) {
- // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
- // because TruncatedArrayIdx is implicitly truncated to the pointer size.
- factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
- }
-
- IndexExprs[I - 1] = OrigIndexExpr;
- }
-}
-
-// A helper function that unifies the bitwidth of A and B.
-static void unifyBitWidth(APInt &A, APInt &B) {
- if (A.getBitWidth() < B.getBitWidth())
- A = A.sext(B.getBitWidth());
- else if (A.getBitWidth() > B.getBitWidth())
- B = B.sext(A.getBitWidth());
-}
-
-Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
- const Candidate &C,
- IRBuilder<> &Builder,
- const DataLayout *DL,
- bool &BumpWithUglyGEP) {
- APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
- unifyBitWidth(Idx, BasisIdx);
- APInt IndexOffset = Idx - BasisIdx;
-
- BumpWithUglyGEP = false;
- if (Basis.CandidateKind == Candidate::GEP) {
- APInt ElementSize(
- IndexOffset.getBitWidth(),
- DL->getTypeAllocSize(
- cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
- APInt Q, R;
- APInt::sdivrem(IndexOffset, ElementSize, Q, R);
- if (R == 0)
- IndexOffset = Q;
- else
- BumpWithUglyGEP = true;
- }
-
- // Compute Bump = C - Basis = (i' - i) * S.
- // Common case 1: if (i' - i) is 1, Bump = S.
- if (IndexOffset == 1)
- return C.Stride;
- // Common case 2: if (i' - i) is -1, Bump = -S.
- if (IndexOffset.isAllOnesValue())
- return Builder.CreateNeg(C.Stride);
-
- // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
- // have different bit widths.
- IntegerType *DeltaType =
- IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
- Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
- if (IndexOffset.isPowerOf2()) {
- // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
- ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
- return Builder.CreateShl(ExtendedStride, Exponent);
- }
- if ((-IndexOffset).isPowerOf2()) {
- // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
- ConstantInt *Exponent =
- ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
- return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
- }
- Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
- return Builder.CreateMul(ExtendedStride, Delta);
-}
-
-void StraightLineStrengthReduce::rewriteCandidateWithBasis(
- const Candidate &C, const Candidate &Basis) {
- assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
- C.Stride == Basis.Stride);
- // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
- // basis of a candidate cannot be unlinked before the candidate.
- assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
-
- // An instruction can correspond to multiple candidates. Therefore, instead of
- // simply deleting an instruction when we rewrite it, we mark its parent as
- // nullptr (i.e. unlink it) so that we can skip the candidates whose
- // instruction is already rewritten.
- if (!C.Ins->getParent())
- return;
-
- IRBuilder<> Builder(C.Ins);
- bool BumpWithUglyGEP;
- Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
- Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
- switch (C.CandidateKind) {
- case Candidate::Add:
- case Candidate::Mul: {
- // C = Basis + Bump
- Value *NegBump;
- if (match(Bump, m_Neg(m_Value(NegBump)))) {
- // If Bump is a neg instruction, emit C = Basis - (-Bump).
- Reduced = Builder.CreateSub(Basis.Ins, NegBump);
- // We only use the negative argument of Bump, and Bump itself may be
- // trivially dead.
- RecursivelyDeleteTriviallyDeadInstructions(Bump);
- } else {
- // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
- // usually unsound, e.g.,
- //
- // X = (-2 +nsw 1) *nsw INT_MAX
- // Y = (-2 +nsw 3) *nsw INT_MAX
- // =>
- // Y = X + 2 * INT_MAX
- //
- // Neither + and * in the resultant expression are nsw.
- Reduced = Builder.CreateAdd(Basis.Ins, Bump);
- }
- break;
- }
- case Candidate::GEP:
- {
- Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
- bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
- if (BumpWithUglyGEP) {
- // C = (char *)Basis + Bump
- unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
- Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
- Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
- if (InBounds)
- Reduced =
- Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
- else
- Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
- Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
- } else {
- // C = gep Basis, Bump
- // Canonicalize bump to pointer size.
- Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
- if (InBounds)
- Reduced = Builder.CreateInBoundsGEP(
- cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
- Basis.Ins, Bump);
- else
- Reduced = Builder.CreateGEP(
- cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
- Basis.Ins, Bump);
- }
- break;
- }
- default:
- llvm_unreachable("C.CandidateKind is invalid");
- };
- Reduced->takeName(C.Ins);
- C.Ins->replaceAllUsesWith(Reduced);
- // Unlink C.Ins so that we can skip other candidates also corresponding to
- // C.Ins. The actual deletion is postponed to the end of runOnFunction.
- C.Ins->removeFromParent();
- UnlinkedInstructions.push_back(C.Ins);
-}
-
-bool StraightLineStrengthReduce::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
-
- TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- // Traverse the dominator tree in the depth-first order. This order makes sure
- // all bases of a candidate are in Candidates when we process it.
- for (const auto Node : depth_first(DT))
- for (auto &I : *(Node->getBlock()))
- allocateCandidatesAndFindBasis(&I);
-
- // Rewrite candidates in the reverse depth-first order. This order makes sure
- // a candidate being rewritten is not a basis for any other candidate.
- while (!Candidates.empty()) {
- const Candidate &C = Candidates.back();
- if (C.Basis != nullptr) {
- rewriteCandidateWithBasis(C, *C.Basis);
- }
- Candidates.pop_back();
- }
-
- // Delete all unlink instructions.
- for (auto *UnlinkedInst : UnlinkedInstructions) {
- for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
- Value *Op = UnlinkedInst->getOperand(I);
- UnlinkedInst->setOperand(I, nullptr);
- RecursivelyDeleteTriviallyDeadInstructions(Op);
- }
- UnlinkedInst->deleteValue();
- }
- bool Ret = !UnlinkedInstructions.empty();
- UnlinkedInstructions.clear();
- return Ret;
-}