diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp | 741 | 
1 files changed, 0 insertions, 741 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp b/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp deleted file mode 100644 index a58c32cc5894..000000000000 --- a/contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp +++ /dev/null @@ -1,741 +0,0 @@ -//===- StraightLineStrengthReduce.cpp - -----------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements straight-line strength reduction (SLSR). Unlike loop -// strength reduction, this algorithm is designed to reduce arithmetic -// redundancy in straight-line code instead of loops. It has proven to be -// effective in simplifying arithmetic statements derived from an unrolled loop. -// It can also simplify the logic of SeparateConstOffsetFromGEP. -// -// There are many optimizations we can perform in the domain of SLSR. This file -// for now contains only an initial step. Specifically, we look for strength -// reduction candidates in the following forms: -// -// Form 1: B + i * S -// Form 2: (B + i) * S -// Form 3: &B[i * S] -// -// where S is an integer variable, and i is a constant integer. If we found two -// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 -// in a simpler way with respect to S1. For example, -// -// S1: X = B + i * S -// S2: Y = B + i' * S   => X + (i' - i) * S -// -// S1: X = (B + i) * S -// S2: Y = (B + i') * S => X + (i' - i) * S -// -// S1: X = &B[i * S] -// S2: Y = &B[i' * S]   => &X[(i' - i) * S] -// -// Note: (i' - i) * S is folded to the extent possible. -// -// This rewriting is in general a good idea. The code patterns we focus on -// usually come from loop unrolling, so (i' - i) * S is likely the same -// across iterations and can be reused. When that happens, the optimized form -// takes only one add starting from the second iteration. -// -// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has -// multiple bases, we choose to rewrite S2 with respect to its "immediate" -// basis, the basis that is the closest ancestor in the dominator tree. -// -// TODO: -// -// - Floating point arithmetics when fast math is enabled. -// -// - SLSR may decrease ILP at the architecture level. Targets that are very -//   sensitive to ILP may want to disable it. Having SLSR to consider ILP is -//   left as future work. -// -// - When (i' - i) is constant but i and i' are not, we could still perform -//   SLSR. - -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Transforms/Scalar.h" -#include <cassert> -#include <cstdint> -#include <limits> -#include <list> -#include <vector> - -using namespace llvm; -using namespace PatternMatch; - -static const unsigned UnknownAddressSpace = -    std::numeric_limits<unsigned>::max(); - -namespace { - -class StraightLineStrengthReduce : public FunctionPass { -public: -  // SLSR candidate. Such a candidate must be in one of the forms described in -  // the header comments. -  struct Candidate { -    enum Kind { -      Invalid, // reserved for the default constructor -      Add,     // B + i * S -      Mul,     // (B + i) * S -      GEP,     // &B[..][i * S][..] -    }; - -    Candidate() = default; -    Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, -              Instruction *I) -        : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {} - -    Kind CandidateKind = Invalid; - -    const SCEV *Base = nullptr; - -    // Note that Index and Stride of a GEP candidate do not necessarily have the -    // same integer type. In that case, during rewriting, Stride will be -    // sign-extended or truncated to Index's type. -    ConstantInt *Index = nullptr; - -    Value *Stride = nullptr; - -    // The instruction this candidate corresponds to. It helps us to rewrite a -    // candidate with respect to its immediate basis. Note that one instruction -    // can correspond to multiple candidates depending on how you associate the -    // expression. For instance, -    // -    // (a + 1) * (b + 2) -    // -    // can be treated as -    // -    // <Base: a, Index: 1, Stride: b + 2> -    // -    // or -    // -    // <Base: b, Index: 2, Stride: a + 1> -    Instruction *Ins = nullptr; - -    // Points to the immediate basis of this candidate, or nullptr if we cannot -    // find any basis for this candidate. -    Candidate *Basis = nullptr; -  }; - -  static char ID; - -  StraightLineStrengthReduce() : FunctionPass(ID) { -    initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); -  } - -  void getAnalysisUsage(AnalysisUsage &AU) const override { -    AU.addRequired<DominatorTreeWrapperPass>(); -    AU.addRequired<ScalarEvolutionWrapperPass>(); -    AU.addRequired<TargetTransformInfoWrapperPass>(); -    // We do not modify the shape of the CFG. -    AU.setPreservesCFG(); -  } - -  bool doInitialization(Module &M) override { -    DL = &M.getDataLayout(); -    return false; -  } - -  bool runOnFunction(Function &F) override; - -private: -  // Returns true if Basis is a basis for C, i.e., Basis dominates C and they -  // share the same base and stride. -  bool isBasisFor(const Candidate &Basis, const Candidate &C); - -  // Returns whether the candidate can be folded into an addressing mode. -  bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, -                  const DataLayout *DL); - -  // Returns true if C is already in a simplest form and not worth being -  // rewritten. -  bool isSimplestForm(const Candidate &C); - -  // Checks whether I is in a candidate form. If so, adds all the matching forms -  // to Candidates, and tries to find the immediate basis for each of them. -  void allocateCandidatesAndFindBasis(Instruction *I); - -  // Allocate candidates and find bases for Add instructions. -  void allocateCandidatesAndFindBasisForAdd(Instruction *I); - -  // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a -  // candidate. -  void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, -                                            Instruction *I); -  // Allocate candidates and find bases for Mul instructions. -  void allocateCandidatesAndFindBasisForMul(Instruction *I); - -  // Splits LHS into Base + Index and, if succeeds, calls -  // allocateCandidatesAndFindBasis. -  void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, -                                            Instruction *I); - -  // Allocate candidates and find bases for GetElementPtr instructions. -  void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); - -  // A helper function that scales Idx with ElementSize before invoking -  // allocateCandidatesAndFindBasis. -  void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, -                                            Value *S, uint64_t ElementSize, -                                            Instruction *I); - -  // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate -  // basis. -  void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, -                                      ConstantInt *Idx, Value *S, -                                      Instruction *I); - -  // Rewrites candidate C with respect to Basis. -  void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); - -  // A helper function that factors ArrayIdx to a product of a stride and a -  // constant index, and invokes allocateCandidatesAndFindBasis with the -  // factorings. -  void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, -                        GetElementPtrInst *GEP); - -  // Emit code that computes the "bump" from Basis to C. If the candidate is a -  // GEP and the bump is not divisible by the element size of the GEP, this -  // function sets the BumpWithUglyGEP flag to notify its caller to bump the -  // basis using an ugly GEP. -  static Value *emitBump(const Candidate &Basis, const Candidate &C, -                         IRBuilder<> &Builder, const DataLayout *DL, -                         bool &BumpWithUglyGEP); - -  const DataLayout *DL = nullptr; -  DominatorTree *DT = nullptr; -  ScalarEvolution *SE; -  TargetTransformInfo *TTI = nullptr; -  std::list<Candidate> Candidates; - -  // Temporarily holds all instructions that are unlinked (but not deleted) by -  // rewriteCandidateWithBasis. These instructions will be actually removed -  // after all rewriting finishes. -  std::vector<Instruction *> UnlinkedInstructions; -}; - -} // end anonymous namespace - -char StraightLineStrengthReduce::ID = 0; - -INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", -                      "Straight line strength reduction", false, false) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", -                    "Straight line strength reduction", false, false) - -FunctionPass *llvm::createStraightLineStrengthReducePass() { -  return new StraightLineStrengthReduce(); -} - -bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, -                                            const Candidate &C) { -  return (Basis.Ins != C.Ins && // skip the same instruction -          // They must have the same type too. Basis.Base == C.Base doesn't -          // guarantee their types are the same (PR23975). -          Basis.Ins->getType() == C.Ins->getType() && -          // Basis must dominate C in order to rewrite C with respect to Basis. -          DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && -          // They share the same base, stride, and candidate kind. -          Basis.Base == C.Base && Basis.Stride == C.Stride && -          Basis.CandidateKind == C.CandidateKind); -} - -static bool isGEPFoldable(GetElementPtrInst *GEP, -                          const TargetTransformInfo *TTI) { -  SmallVector<const Value*, 4> Indices; -  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) -    Indices.push_back(*I); -  return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), -                         Indices) == TargetTransformInfo::TCC_Free; -} - -// Returns whether (Base + Index * Stride) can be folded to an addressing mode. -static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, -                          TargetTransformInfo *TTI) { -  // Index->getSExtValue() may crash if Index is wider than 64-bit. -  return Index->getBitWidth() <= 64 && -         TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, -                                    Index->getSExtValue(), UnknownAddressSpace); -} - -bool StraightLineStrengthReduce::isFoldable(const Candidate &C, -                                            TargetTransformInfo *TTI, -                                            const DataLayout *DL) { -  if (C.CandidateKind == Candidate::Add) -    return isAddFoldable(C.Base, C.Index, C.Stride, TTI); -  if (C.CandidateKind == Candidate::GEP) -    return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI); -  return false; -} - -// Returns true if GEP has zero or one non-zero index. -static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { -  unsigned NumNonZeroIndices = 0; -  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { -    ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); -    if (ConstIdx == nullptr || !ConstIdx->isZero()) -      ++NumNonZeroIndices; -  } -  return NumNonZeroIndices <= 1; -} - -bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { -  if (C.CandidateKind == Candidate::Add) { -    // B + 1 * S or B + (-1) * S -    return C.Index->isOne() || C.Index->isMinusOne(); -  } -  if (C.CandidateKind == Candidate::Mul) { -    // (B + 0) * S -    return C.Index->isZero(); -  } -  if (C.CandidateKind == Candidate::GEP) { -    // (char*)B + S or (char*)B - S -    return ((C.Index->isOne() || C.Index->isMinusOne()) && -            hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); -  } -  return false; -} - -// TODO: We currently implement an algorithm whose time complexity is linear in -// the number of existing candidates. However, we could do better by using -// ScopedHashTable. Specifically, while traversing the dominator tree, we could -// maintain all the candidates that dominate the basic block being traversed in -// a ScopedHashTable. This hash table is indexed by the base and the stride of -// a candidate. Therefore, finding the immediate basis of a candidate boils down -// to one hash-table look up. -void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( -    Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, -    Instruction *I) { -  Candidate C(CT, B, Idx, S, I); -  // SLSR can complicate an instruction in two cases: -  // -  // 1. If we can fold I into an addressing mode, computing I is likely free or -  // takes only one instruction. -  // -  // 2. I is already in a simplest form. For example, when -  //      X = B + 8 * S -  //      Y = B + S, -  //    rewriting Y to X - 7 * S is probably a bad idea. -  // -  // In the above cases, we still add I to the candidate list so that I can be -  // the basis of other candidates, but we leave I's basis blank so that I -  // won't be rewritten. -  if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { -    // Try to compute the immediate basis of C. -    unsigned NumIterations = 0; -    // Limit the scan radius to avoid running in quadratice time. -    static const unsigned MaxNumIterations = 50; -    for (auto Basis = Candidates.rbegin(); -         Basis != Candidates.rend() && NumIterations < MaxNumIterations; -         ++Basis, ++NumIterations) { -      if (isBasisFor(*Basis, C)) { -        C.Basis = &(*Basis); -        break; -      } -    } -  } -  // Regardless of whether we find a basis for C, we need to push C to the -  // candidate list so that it can be the basis of other candidates. -  Candidates.push_back(C); -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( -    Instruction *I) { -  switch (I->getOpcode()) { -  case Instruction::Add: -    allocateCandidatesAndFindBasisForAdd(I); -    break; -  case Instruction::Mul: -    allocateCandidatesAndFindBasisForMul(I); -    break; -  case Instruction::GetElementPtr: -    allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); -    break; -  } -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( -    Instruction *I) { -  // Try matching B + i * S. -  if (!isa<IntegerType>(I->getType())) -    return; - -  assert(I->getNumOperands() == 2 && "isn't I an add?"); -  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); -  allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); -  if (LHS != RHS) -    allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( -    Value *LHS, Value *RHS, Instruction *I) { -  Value *S = nullptr; -  ConstantInt *Idx = nullptr; -  if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { -    // I = LHS + RHS = LHS + Idx * S -    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); -  } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { -    // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) -    APInt One(Idx->getBitWidth(), 1); -    Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); -    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); -  } else { -    // At least, I = LHS + 1 * RHS -    ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); -    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, -                                   I); -  } -} - -// Returns true if A matches B + C where C is constant. -static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { -  return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) || -          match(A, m_Add(m_ConstantInt(C), m_Value(B)))); -} - -// Returns true if A matches B | C where C is constant. -static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { -  return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) || -          match(A, m_Or(m_ConstantInt(C), m_Value(B)))); -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( -    Value *LHS, Value *RHS, Instruction *I) { -  Value *B = nullptr; -  ConstantInt *Idx = nullptr; -  if (matchesAdd(LHS, B, Idx)) { -    // If LHS is in the form of "Base + Index", then I is in the form of -    // "(Base + Index) * RHS". -    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); -  } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { -    // If LHS is in the form of "Base | Index" and Base and Index have no common -    // bits set, then -    //   Base | Index = Base + Index -    // and I is thus in the form of "(Base + Index) * RHS". -    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); -  } else { -    // Otherwise, at least try the form (LHS + 0) * RHS. -    ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); -    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, -                                   I); -  } -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( -    Instruction *I) { -  // Try matching (B + i) * S. -  // TODO: we could extend SLSR to float and vector types. -  if (!isa<IntegerType>(I->getType())) -    return; - -  assert(I->getNumOperands() == 2 && "isn't I a mul?"); -  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); -  allocateCandidatesAndFindBasisForMul(LHS, RHS, I); -  if (LHS != RHS) { -    // Symmetrically, try to split RHS to Base + Index. -    allocateCandidatesAndFindBasisForMul(RHS, LHS, I); -  } -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( -    const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, -    Instruction *I) { -  // I = B + sext(Idx *nsw S) * ElementSize -  //   = B + (sext(Idx) * sext(S)) * ElementSize -  //   = B + (sext(Idx) * ElementSize) * sext(S) -  // Casting to IntegerType is safe because we skipped vector GEPs. -  IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType())); -  ConstantInt *ScaledIdx = ConstantInt::get( -      IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); -  allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); -} - -void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, -                                                  const SCEV *Base, -                                                  uint64_t ElementSize, -                                                  GetElementPtrInst *GEP) { -  // At least, ArrayIdx = ArrayIdx *nsw 1. -  allocateCandidatesAndFindBasisForGEP( -      Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), -      ArrayIdx, ElementSize, GEP); -  Value *LHS = nullptr; -  ConstantInt *RHS = nullptr; -  // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx -  // itself. This would allow us to handle the shl case for free. However, -  // matching SCEVs has two issues: -  // -  // 1. this would complicate rewriting because the rewriting procedure -  // would have to translate SCEVs back to IR instructions. This translation -  // is difficult when LHS is further evaluated to a composite SCEV. -  // -  // 2. ScalarEvolution is designed to be control-flow oblivious. It tends -  // to strip nsw/nuw flags which are critical for SLSR to trace into -  // sext'ed multiplication. -  if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { -    // SLSR is currently unsafe if i * S may overflow. -    // GEP = Base + sext(LHS *nsw RHS) * ElementSize -    allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); -  } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { -    // GEP = Base + sext(LHS <<nsw RHS) * ElementSize -    //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize -    APInt One(RHS->getBitWidth(), 1); -    ConstantInt *PowerOf2 = -        ConstantInt::get(RHS->getContext(), One << RHS->getValue()); -    allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); -  } -} - -void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( -    GetElementPtrInst *GEP) { -  // TODO: handle vector GEPs -  if (GEP->getType()->isVectorTy()) -    return; - -  SmallVector<const SCEV *, 4> IndexExprs; -  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) -    IndexExprs.push_back(SE->getSCEV(*I)); - -  gep_type_iterator GTI = gep_type_begin(GEP); -  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { -    if (GTI.isStruct()) -      continue; - -    const SCEV *OrigIndexExpr = IndexExprs[I - 1]; -    IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType()); - -    // The base of this candidate is GEP's base plus the offsets of all -    // indices except this current one. -    const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs); -    Value *ArrayIdx = GEP->getOperand(I); -    uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); -    if (ArrayIdx->getType()->getIntegerBitWidth() <= -        DL->getPointerSizeInBits(GEP->getAddressSpace())) { -      // Skip factoring if ArrayIdx is wider than the pointer size, because -      // ArrayIdx is implicitly truncated to the pointer size. -      factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP); -    } -    // When ArrayIdx is the sext of a value, we try to factor that value as -    // well.  Handling this case is important because array indices are -    // typically sign-extended to the pointer size. -    Value *TruncatedArrayIdx = nullptr; -    if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) && -        TruncatedArrayIdx->getType()->getIntegerBitWidth() <= -            DL->getPointerSizeInBits(GEP->getAddressSpace())) { -      // Skip factoring if TruncatedArrayIdx is wider than the pointer size, -      // because TruncatedArrayIdx is implicitly truncated to the pointer size. -      factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP); -    } - -    IndexExprs[I - 1] = OrigIndexExpr; -  } -} - -// A helper function that unifies the bitwidth of A and B. -static void unifyBitWidth(APInt &A, APInt &B) { -  if (A.getBitWidth() < B.getBitWidth()) -    A = A.sext(B.getBitWidth()); -  else if (A.getBitWidth() > B.getBitWidth()) -    B = B.sext(A.getBitWidth()); -} - -Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, -                                            const Candidate &C, -                                            IRBuilder<> &Builder, -                                            const DataLayout *DL, -                                            bool &BumpWithUglyGEP) { -  APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); -  unifyBitWidth(Idx, BasisIdx); -  APInt IndexOffset = Idx - BasisIdx; - -  BumpWithUglyGEP = false; -  if (Basis.CandidateKind == Candidate::GEP) { -    APInt ElementSize( -        IndexOffset.getBitWidth(), -        DL->getTypeAllocSize( -            cast<GetElementPtrInst>(Basis.Ins)->getResultElementType())); -    APInt Q, R; -    APInt::sdivrem(IndexOffset, ElementSize, Q, R); -    if (R == 0) -      IndexOffset = Q; -    else -      BumpWithUglyGEP = true; -  } - -  // Compute Bump = C - Basis = (i' - i) * S. -  // Common case 1: if (i' - i) is 1, Bump = S. -  if (IndexOffset == 1) -    return C.Stride; -  // Common case 2: if (i' - i) is -1, Bump = -S. -  if (IndexOffset.isAllOnesValue()) -    return Builder.CreateNeg(C.Stride); - -  // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may -  // have different bit widths. -  IntegerType *DeltaType = -      IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); -  Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); -  if (IndexOffset.isPowerOf2()) { -    // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). -    ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); -    return Builder.CreateShl(ExtendedStride, Exponent); -  } -  if ((-IndexOffset).isPowerOf2()) { -    // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). -    ConstantInt *Exponent = -        ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); -    return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); -  } -  Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); -  return Builder.CreateMul(ExtendedStride, Delta); -} - -void StraightLineStrengthReduce::rewriteCandidateWithBasis( -    const Candidate &C, const Candidate &Basis) { -  assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && -         C.Stride == Basis.Stride); -  // We run rewriteCandidateWithBasis on all candidates in a post-order, so the -  // basis of a candidate cannot be unlinked before the candidate. -  assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); - -  // An instruction can correspond to multiple candidates. Therefore, instead of -  // simply deleting an instruction when we rewrite it, we mark its parent as -  // nullptr (i.e. unlink it) so that we can skip the candidates whose -  // instruction is already rewritten. -  if (!C.Ins->getParent()) -    return; - -  IRBuilder<> Builder(C.Ins); -  bool BumpWithUglyGEP; -  Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); -  Value *Reduced = nullptr; // equivalent to but weaker than C.Ins -  switch (C.CandidateKind) { -  case Candidate::Add: -  case Candidate::Mul: { -    // C = Basis + Bump -    Value *NegBump; -    if (match(Bump, m_Neg(m_Value(NegBump)))) { -      // If Bump is a neg instruction, emit C = Basis - (-Bump). -      Reduced = Builder.CreateSub(Basis.Ins, NegBump); -      // We only use the negative argument of Bump, and Bump itself may be -      // trivially dead. -      RecursivelyDeleteTriviallyDeadInstructions(Bump); -    } else { -      // It's tempting to preserve nsw on Bump and/or Reduced. However, it's -      // usually unsound, e.g., -      // -      // X = (-2 +nsw 1) *nsw INT_MAX -      // Y = (-2 +nsw 3) *nsw INT_MAX -      //   => -      // Y = X + 2 * INT_MAX -      // -      // Neither + and * in the resultant expression are nsw. -      Reduced = Builder.CreateAdd(Basis.Ins, Bump); -    } -    break; -  } -  case Candidate::GEP: -    { -      Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); -      bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); -      if (BumpWithUglyGEP) { -        // C = (char *)Basis + Bump -        unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); -        Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); -        Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); -        if (InBounds) -          Reduced = -              Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump); -        else -          Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump); -        Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); -      } else { -        // C = gep Basis, Bump -        // Canonicalize bump to pointer size. -        Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); -        if (InBounds) -          Reduced = Builder.CreateInBoundsGEP( -              cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(), -              Basis.Ins, Bump); -        else -          Reduced = Builder.CreateGEP( -              cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(), -              Basis.Ins, Bump); -      } -      break; -    } -  default: -    llvm_unreachable("C.CandidateKind is invalid"); -  }; -  Reduced->takeName(C.Ins); -  C.Ins->replaceAllUsesWith(Reduced); -  // Unlink C.Ins so that we can skip other candidates also corresponding to -  // C.Ins. The actual deletion is postponed to the end of runOnFunction. -  C.Ins->removeFromParent(); -  UnlinkedInstructions.push_back(C.Ins); -} - -bool StraightLineStrengthReduce::runOnFunction(Function &F) { -  if (skipFunction(F)) -    return false; - -  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); -  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); -  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); -  // Traverse the dominator tree in the depth-first order. This order makes sure -  // all bases of a candidate are in Candidates when we process it. -  for (const auto Node : depth_first(DT)) -    for (auto &I : *(Node->getBlock())) -      allocateCandidatesAndFindBasis(&I); - -  // Rewrite candidates in the reverse depth-first order. This order makes sure -  // a candidate being rewritten is not a basis for any other candidate. -  while (!Candidates.empty()) { -    const Candidate &C = Candidates.back(); -    if (C.Basis != nullptr) { -      rewriteCandidateWithBasis(C, *C.Basis); -    } -    Candidates.pop_back(); -  } - -  // Delete all unlink instructions. -  for (auto *UnlinkedInst : UnlinkedInstructions) { -    for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { -      Value *Op = UnlinkedInst->getOperand(I); -      UnlinkedInst->setOperand(I, nullptr); -      RecursivelyDeleteTriviallyDeadInstructions(Op); -    } -    UnlinkedInst->deleteValue(); -  } -  bool Ret = !UnlinkedInstructions.empty(); -  UnlinkedInstructions.clear(); -  return Ret; -}  | 
