summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp473
1 files changed, 0 insertions, 473 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp b/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
deleted file mode 100644
index f5e4b53f6d97..000000000000
--- a/contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
+++ /dev/null
@@ -1,473 +0,0 @@
-//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
-// inserting a dummy basic block. This pass may be "required" by passes that
-// cannot deal with critical edges. For this usage, the structure type is
-// forward declared. This pass obviously invalidates the CFG, but can update
-// dominator trees.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/BlockFrequencyInfo.h"
-#include "llvm/Analysis/BranchProbabilityInfo.h"
-#include "llvm/Analysis/CFG.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/MemorySSAUpdater.h"
-#include "llvm/Analysis/PostDominators.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Type.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Transforms/Utils.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/ValueMapper.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "break-crit-edges"
-
-STATISTIC(NumBroken, "Number of blocks inserted");
-
-namespace {
- struct BreakCriticalEdges : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- BreakCriticalEdges() : FunctionPass(ID) {
- initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnFunction(Function &F) override {
- auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
-
- auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
- auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
-
- auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
- auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
- unsigned N =
- SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
- NumBroken += N;
- return N > 0;
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
-
- // No loop canonicalization guarantees are broken by this pass.
- AU.addPreservedID(LoopSimplifyID);
- }
- };
-}
-
-char BreakCriticalEdges::ID = 0;
-INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
- "Break critical edges in CFG", false, false)
-
-// Publicly exposed interface to pass...
-char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
-FunctionPass *llvm::createBreakCriticalEdgesPass() {
- return new BreakCriticalEdges();
-}
-
-PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
- auto *LI = AM.getCachedResult<LoopAnalysis>(F);
- unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
- NumBroken += N;
- if (N == 0)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- return PA;
-}
-
-//===----------------------------------------------------------------------===//
-// Implementation of the external critical edge manipulation functions
-//===----------------------------------------------------------------------===//
-
-/// When a loop exit edge is split, LCSSA form may require new PHIs in the new
-/// exit block. This function inserts the new PHIs, as needed. Preds is a list
-/// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
-/// the old loop exit, now the successor of SplitBB.
-static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
- BasicBlock *SplitBB,
- BasicBlock *DestBB) {
- // SplitBB shouldn't have anything non-trivial in it yet.
- assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
- SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
-
- // For each PHI in the destination block.
- for (PHINode &PN : DestBB->phis()) {
- unsigned Idx = PN.getBasicBlockIndex(SplitBB);
- Value *V = PN.getIncomingValue(Idx);
-
- // If the input is a PHI which already satisfies LCSSA, don't create
- // a new one.
- if (const PHINode *VP = dyn_cast<PHINode>(V))
- if (VP->getParent() == SplitBB)
- continue;
-
- // Otherwise a new PHI is needed. Create one and populate it.
- PHINode *NewPN = PHINode::Create(
- PN.getType(), Preds.size(), "split",
- SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
- for (unsigned i = 0, e = Preds.size(); i != e; ++i)
- NewPN->addIncoming(V, Preds[i]);
-
- // Update the original PHI.
- PN.setIncomingValue(Idx, NewPN);
- }
-}
-
-BasicBlock *
-llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
- const CriticalEdgeSplittingOptions &Options) {
- if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
- return nullptr;
-
- assert(!isa<IndirectBrInst>(TI) &&
- "Cannot split critical edge from IndirectBrInst");
-
- BasicBlock *TIBB = TI->getParent();
- BasicBlock *DestBB = TI->getSuccessor(SuccNum);
-
- // Splitting the critical edge to a pad block is non-trivial. Don't do
- // it in this generic function.
- if (DestBB->isEHPad()) return nullptr;
-
- // Don't split the non-fallthrough edge from a callbr.
- if (isa<CallBrInst>(TI) && SuccNum > 0)
- return nullptr;
-
- if (Options.IgnoreUnreachableDests &&
- isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
- return nullptr;
-
- // Create a new basic block, linking it into the CFG.
- BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
- TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
- // Create our unconditional branch.
- BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
- NewBI->setDebugLoc(TI->getDebugLoc());
-
- // Branch to the new block, breaking the edge.
- TI->setSuccessor(SuccNum, NewBB);
-
- // Insert the block into the function... right after the block TI lives in.
- Function &F = *TIBB->getParent();
- Function::iterator FBBI = TIBB->getIterator();
- F.getBasicBlockList().insert(++FBBI, NewBB);
-
- // If there are any PHI nodes in DestBB, we need to update them so that they
- // merge incoming values from NewBB instead of from TIBB.
- {
- unsigned BBIdx = 0;
- for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
- // We no longer enter through TIBB, now we come in through NewBB.
- // Revector exactly one entry in the PHI node that used to come from
- // TIBB to come from NewBB.
- PHINode *PN = cast<PHINode>(I);
-
- // Reuse the previous value of BBIdx if it lines up. In cases where we
- // have multiple phi nodes with *lots* of predecessors, this is a speed
- // win because we don't have to scan the PHI looking for TIBB. This
- // happens because the BB list of PHI nodes are usually in the same
- // order.
- if (PN->getIncomingBlock(BBIdx) != TIBB)
- BBIdx = PN->getBasicBlockIndex(TIBB);
- PN->setIncomingBlock(BBIdx, NewBB);
- }
- }
-
- // If there are any other edges from TIBB to DestBB, update those to go
- // through the split block, making those edges non-critical as well (and
- // reducing the number of phi entries in the DestBB if relevant).
- if (Options.MergeIdenticalEdges) {
- for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
- if (TI->getSuccessor(i) != DestBB) continue;
-
- // Remove an entry for TIBB from DestBB phi nodes.
- DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
-
- // We found another edge to DestBB, go to NewBB instead.
- TI->setSuccessor(i, NewBB);
- }
- }
-
- // If we have nothing to update, just return.
- auto *DT = Options.DT;
- auto *PDT = Options.PDT;
- auto *LI = Options.LI;
- auto *MSSAU = Options.MSSAU;
- if (MSSAU)
- MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
- DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
-
- if (!DT && !PDT && !LI)
- return NewBB;
-
- if (DT || PDT) {
- // Update the DominatorTree.
- // ---> NewBB -----\
- // / V
- // TIBB -------\\------> DestBB
- //
- // First, inform the DT about the new path from TIBB to DestBB via NewBB,
- // then delete the old edge from TIBB to DestBB. By doing this in that order
- // DestBB stays reachable in the DT the whole time and its subtree doesn't
- // get disconnected.
- SmallVector<DominatorTree::UpdateType, 3> Updates;
- Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
- Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
- if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
- Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
-
- if (DT)
- DT->applyUpdates(Updates);
- if (PDT)
- PDT->applyUpdates(Updates);
- }
-
- // Update LoopInfo if it is around.
- if (LI) {
- if (Loop *TIL = LI->getLoopFor(TIBB)) {
- // If one or the other blocks were not in a loop, the new block is not
- // either, and thus LI doesn't need to be updated.
- if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
- if (TIL == DestLoop) {
- // Both in the same loop, the NewBB joins loop.
- DestLoop->addBasicBlockToLoop(NewBB, *LI);
- } else if (TIL->contains(DestLoop)) {
- // Edge from an outer loop to an inner loop. Add to the outer loop.
- TIL->addBasicBlockToLoop(NewBB, *LI);
- } else if (DestLoop->contains(TIL)) {
- // Edge from an inner loop to an outer loop. Add to the outer loop.
- DestLoop->addBasicBlockToLoop(NewBB, *LI);
- } else {
- // Edge from two loops with no containment relation. Because these
- // are natural loops, we know that the destination block must be the
- // header of its loop (adding a branch into a loop elsewhere would
- // create an irreducible loop).
- assert(DestLoop->getHeader() == DestBB &&
- "Should not create irreducible loops!");
- if (Loop *P = DestLoop->getParentLoop())
- P->addBasicBlockToLoop(NewBB, *LI);
- }
- }
-
- // If TIBB is in a loop and DestBB is outside of that loop, we may need
- // to update LoopSimplify form and LCSSA form.
- if (!TIL->contains(DestBB)) {
- assert(!TIL->contains(NewBB) &&
- "Split point for loop exit is contained in loop!");
-
- // Update LCSSA form in the newly created exit block.
- if (Options.PreserveLCSSA) {
- createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
- }
-
- // The only that we can break LoopSimplify form by splitting a critical
- // edge is if after the split there exists some edge from TIL to DestBB
- // *and* the only edge into DestBB from outside of TIL is that of
- // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
- // is the new exit block and it has no non-loop predecessors. If the
- // second isn't true, then DestBB was not in LoopSimplify form prior to
- // the split as it had a non-loop predecessor. In both of these cases,
- // the predecessor must be directly in TIL, not in a subloop, or again
- // LoopSimplify doesn't hold.
- SmallVector<BasicBlock *, 4> LoopPreds;
- for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
- ++I) {
- BasicBlock *P = *I;
- if (P == NewBB)
- continue; // The new block is known.
- if (LI->getLoopFor(P) != TIL) {
- // No need to re-simplify, it wasn't to start with.
- LoopPreds.clear();
- break;
- }
- LoopPreds.push_back(P);
- }
- if (!LoopPreds.empty()) {
- assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
- BasicBlock *NewExitBB = SplitBlockPredecessors(
- DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
- if (Options.PreserveLCSSA)
- createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
- }
- }
- }
- }
-
- return NewBB;
-}
-
-// Return the unique indirectbr predecessor of a block. This may return null
-// even if such a predecessor exists, if it's not useful for splitting.
-// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
-// predecessors of BB.
-static BasicBlock *
-findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
- // If the block doesn't have any PHIs, we don't care about it, since there's
- // no point in splitting it.
- PHINode *PN = dyn_cast<PHINode>(BB->begin());
- if (!PN)
- return nullptr;
-
- // Verify we have exactly one IBR predecessor.
- // Conservatively bail out if one of the other predecessors is not a "regular"
- // terminator (that is, not a switch or a br).
- BasicBlock *IBB = nullptr;
- for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
- BasicBlock *PredBB = PN->getIncomingBlock(Pred);
- Instruction *PredTerm = PredBB->getTerminator();
- switch (PredTerm->getOpcode()) {
- case Instruction::IndirectBr:
- if (IBB)
- return nullptr;
- IBB = PredBB;
- break;
- case Instruction::Br:
- case Instruction::Switch:
- OtherPreds.push_back(PredBB);
- continue;
- default:
- return nullptr;
- }
- }
-
- return IBB;
-}
-
-bool llvm::SplitIndirectBrCriticalEdges(Function &F,
- BranchProbabilityInfo *BPI,
- BlockFrequencyInfo *BFI) {
- // Check whether the function has any indirectbrs, and collect which blocks
- // they may jump to. Since most functions don't have indirect branches,
- // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
- SmallSetVector<BasicBlock *, 16> Targets;
- for (auto &BB : F) {
- auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
- if (!IBI)
- continue;
-
- for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
- Targets.insert(IBI->getSuccessor(Succ));
- }
-
- if (Targets.empty())
- return false;
-
- bool ShouldUpdateAnalysis = BPI && BFI;
- bool Changed = false;
- for (BasicBlock *Target : Targets) {
- SmallVector<BasicBlock *, 16> OtherPreds;
- BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
- // If we did not found an indirectbr, or the indirectbr is the only
- // incoming edge, this isn't the kind of edge we're looking for.
- if (!IBRPred || OtherPreds.empty())
- continue;
-
- // Don't even think about ehpads/landingpads.
- Instruction *FirstNonPHI = Target->getFirstNonPHI();
- if (FirstNonPHI->isEHPad() || Target->isLandingPad())
- continue;
-
- BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
- if (ShouldUpdateAnalysis) {
- // Copy the BFI/BPI from Target to BodyBlock.
- for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors();
- I < E; ++I)
- BPI->setEdgeProbability(BodyBlock, I,
- BPI->getEdgeProbability(Target, I));
- BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
- }
- // It's possible Target was its own successor through an indirectbr.
- // In this case, the indirectbr now comes from BodyBlock.
- if (IBRPred == Target)
- IBRPred = BodyBlock;
-
- // At this point Target only has PHIs, and BodyBlock has the rest of the
- // block's body. Create a copy of Target that will be used by the "direct"
- // preds.
- ValueToValueMapTy VMap;
- BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
-
- BlockFrequency BlockFreqForDirectSucc;
- for (BasicBlock *Pred : OtherPreds) {
- // If the target is a loop to itself, then the terminator of the split
- // block (BodyBlock) needs to be updated.
- BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
- Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
- if (ShouldUpdateAnalysis)
- BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
- BPI->getEdgeProbability(Src, DirectSucc);
- }
- if (ShouldUpdateAnalysis) {
- BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
- BlockFrequency NewBlockFreqForTarget =
- BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
- BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
- BPI->eraseBlock(Target);
- }
-
- // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
- // they are clones, so the number of PHIs are the same.
- // (a) Remove the edge coming from IBRPred from the "Direct" PHI
- // (b) Leave that as the only edge in the "Indirect" PHI.
- // (c) Merge the two in the body block.
- BasicBlock::iterator Indirect = Target->begin(),
- End = Target->getFirstNonPHI()->getIterator();
- BasicBlock::iterator Direct = DirectSucc->begin();
- BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
-
- assert(&*End == Target->getTerminator() &&
- "Block was expected to only contain PHIs");
-
- while (Indirect != End) {
- PHINode *DirPHI = cast<PHINode>(Direct);
- PHINode *IndPHI = cast<PHINode>(Indirect);
-
- // Now, clean up - the direct block shouldn't get the indirect value,
- // and vice versa.
- DirPHI->removeIncomingValue(IBRPred);
- Direct++;
-
- // Advance the pointer here, to avoid invalidation issues when the old
- // PHI is erased.
- Indirect++;
-
- PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
- NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
- IBRPred);
-
- // Create a PHI in the body block, to merge the direct and indirect
- // predecessors.
- PHINode *MergePHI =
- PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
- MergePHI->addIncoming(NewIndPHI, Target);
- MergePHI->addIncoming(DirPHI, DirectSucc);
-
- IndPHI->replaceAllUsesWith(MergePHI);
- IndPHI->eraseFromParent();
- }
-
- Changed = true;
- }
-
- return Changed;
-}