summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp863
1 files changed, 0 insertions, 863 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp b/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
deleted file mode 100644
index 1026c9d37038..000000000000
--- a/contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
+++ /dev/null
@@ -1,863 +0,0 @@
-//===- CloneFunction.cpp - Clone a function into another function ---------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the CloneFunctionInto interface, which is used as the
-// low-level function cloner. This is used by the CloneFunction and function
-// inliner to do the dirty work of copying the body of a function around.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/DomTreeUpdater.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DebugInfo.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/ValueMapper.h"
-#include <map>
-using namespace llvm;
-
-/// See comments in Cloning.h.
-BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
- const Twine &NameSuffix, Function *F,
- ClonedCodeInfo *CodeInfo,
- DebugInfoFinder *DIFinder) {
- DenseMap<const MDNode *, MDNode *> Cache;
- BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
- if (BB->hasName())
- NewBB->setName(BB->getName() + NameSuffix);
-
- bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
- Module *TheModule = F ? F->getParent() : nullptr;
-
- // Loop over all instructions, and copy them over.
- for (const Instruction &I : *BB) {
- if (DIFinder && TheModule)
- DIFinder->processInstruction(*TheModule, I);
-
- Instruction *NewInst = I.clone();
- if (I.hasName())
- NewInst->setName(I.getName() + NameSuffix);
- NewBB->getInstList().push_back(NewInst);
- VMap[&I] = NewInst; // Add instruction map to value.
-
- hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
- if (isa<ConstantInt>(AI->getArraySize()))
- hasStaticAllocas = true;
- else
- hasDynamicAllocas = true;
- }
- }
-
- if (CodeInfo) {
- CodeInfo->ContainsCalls |= hasCalls;
- CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
- CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
- BB != &BB->getParent()->getEntryBlock();
- }
- return NewBB;
-}
-
-// Clone OldFunc into NewFunc, transforming the old arguments into references to
-// VMap values.
-//
-void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
- ValueToValueMapTy &VMap,
- bool ModuleLevelChanges,
- SmallVectorImpl<ReturnInst*> &Returns,
- const char *NameSuffix, ClonedCodeInfo *CodeInfo,
- ValueMapTypeRemapper *TypeMapper,
- ValueMaterializer *Materializer) {
- assert(NameSuffix && "NameSuffix cannot be null!");
-
-#ifndef NDEBUG
- for (const Argument &I : OldFunc->args())
- assert(VMap.count(&I) && "No mapping from source argument specified!");
-#endif
-
- // Copy all attributes other than those stored in the AttributeList. We need
- // to remap the parameter indices of the AttributeList.
- AttributeList NewAttrs = NewFunc->getAttributes();
- NewFunc->copyAttributesFrom(OldFunc);
- NewFunc->setAttributes(NewAttrs);
-
- // Fix up the personality function that got copied over.
- if (OldFunc->hasPersonalityFn())
- NewFunc->setPersonalityFn(
- MapValue(OldFunc->getPersonalityFn(), VMap,
- ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
- TypeMapper, Materializer));
-
- SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
- AttributeList OldAttrs = OldFunc->getAttributes();
-
- // Clone any argument attributes that are present in the VMap.
- for (const Argument &OldArg : OldFunc->args()) {
- if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
- NewArgAttrs[NewArg->getArgNo()] =
- OldAttrs.getParamAttributes(OldArg.getArgNo());
- }
- }
-
- NewFunc->setAttributes(
- AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
- OldAttrs.getRetAttributes(), NewArgAttrs));
-
- bool MustCloneSP =
- OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
- DISubprogram *SP = OldFunc->getSubprogram();
- if (SP) {
- assert(!MustCloneSP || ModuleLevelChanges);
- // Add mappings for some DebugInfo nodes that we don't want duplicated
- // even if they're distinct.
- auto &MD = VMap.MD();
- MD[SP->getUnit()].reset(SP->getUnit());
- MD[SP->getType()].reset(SP->getType());
- MD[SP->getFile()].reset(SP->getFile());
- // If we're not cloning into the same module, no need to clone the
- // subprogram
- if (!MustCloneSP)
- MD[SP].reset(SP);
- }
-
- SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
- OldFunc->getAllMetadata(MDs);
- for (auto MD : MDs) {
- NewFunc->addMetadata(
- MD.first,
- *MapMetadata(MD.second, VMap,
- ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
- TypeMapper, Materializer));
- }
-
- // When we remap instructions, we want to avoid duplicating inlined
- // DISubprograms, so record all subprograms we find as we duplicate
- // instructions and then freeze them in the MD map.
- // We also record information about dbg.value and dbg.declare to avoid
- // duplicating the types.
- DebugInfoFinder DIFinder;
-
- // Loop over all of the basic blocks in the function, cloning them as
- // appropriate. Note that we save BE this way in order to handle cloning of
- // recursive functions into themselves.
- //
- for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
- BI != BE; ++BI) {
- const BasicBlock &BB = *BI;
-
- // Create a new basic block and copy instructions into it!
- BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
- ModuleLevelChanges ? &DIFinder : nullptr);
-
- // Add basic block mapping.
- VMap[&BB] = CBB;
-
- // It is only legal to clone a function if a block address within that
- // function is never referenced outside of the function. Given that, we
- // want to map block addresses from the old function to block addresses in
- // the clone. (This is different from the generic ValueMapper
- // implementation, which generates an invalid blockaddress when
- // cloning a function.)
- if (BB.hasAddressTaken()) {
- Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
- const_cast<BasicBlock*>(&BB));
- VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
- }
-
- // Note return instructions for the caller.
- if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
- Returns.push_back(RI);
- }
-
- for (DISubprogram *ISP : DIFinder.subprograms())
- if (ISP != SP)
- VMap.MD()[ISP].reset(ISP);
-
- for (DICompileUnit *CU : DIFinder.compile_units())
- VMap.MD()[CU].reset(CU);
-
- for (DIType *Type : DIFinder.types())
- VMap.MD()[Type].reset(Type);
-
- // Loop over all of the instructions in the function, fixing up operand
- // references as we go. This uses VMap to do all the hard work.
- for (Function::iterator BB =
- cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
- BE = NewFunc->end();
- BB != BE; ++BB)
- // Loop over all instructions, fixing each one as we find it...
- for (Instruction &II : *BB)
- RemapInstruction(&II, VMap,
- ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
- TypeMapper, Materializer);
-}
-
-/// Return a copy of the specified function and add it to that function's
-/// module. Also, any references specified in the VMap are changed to refer to
-/// their mapped value instead of the original one. If any of the arguments to
-/// the function are in the VMap, the arguments are deleted from the resultant
-/// function. The VMap is updated to include mappings from all of the
-/// instructions and basicblocks in the function from their old to new values.
-///
-Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
- ClonedCodeInfo *CodeInfo) {
- std::vector<Type*> ArgTypes;
-
- // The user might be deleting arguments to the function by specifying them in
- // the VMap. If so, we need to not add the arguments to the arg ty vector
- //
- for (const Argument &I : F->args())
- if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
- ArgTypes.push_back(I.getType());
-
- // Create a new function type...
- FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
- ArgTypes, F->getFunctionType()->isVarArg());
-
- // Create the new function...
- Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
- F->getName(), F->getParent());
-
- // Loop over the arguments, copying the names of the mapped arguments over...
- Function::arg_iterator DestI = NewF->arg_begin();
- for (const Argument & I : F->args())
- if (VMap.count(&I) == 0) { // Is this argument preserved?
- DestI->setName(I.getName()); // Copy the name over...
- VMap[&I] = &*DestI++; // Add mapping to VMap
- }
-
- SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
- CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
- CodeInfo);
-
- return NewF;
-}
-
-
-
-namespace {
- /// This is a private class used to implement CloneAndPruneFunctionInto.
- struct PruningFunctionCloner {
- Function *NewFunc;
- const Function *OldFunc;
- ValueToValueMapTy &VMap;
- bool ModuleLevelChanges;
- const char *NameSuffix;
- ClonedCodeInfo *CodeInfo;
-
- public:
- PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
- ValueToValueMapTy &valueMap, bool moduleLevelChanges,
- const char *nameSuffix, ClonedCodeInfo *codeInfo)
- : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
- ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
- CodeInfo(codeInfo) {}
-
- /// The specified block is found to be reachable, clone it and
- /// anything that it can reach.
- void CloneBlock(const BasicBlock *BB,
- BasicBlock::const_iterator StartingInst,
- std::vector<const BasicBlock*> &ToClone);
- };
-}
-
-/// The specified block is found to be reachable, clone it and
-/// anything that it can reach.
-void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
- BasicBlock::const_iterator StartingInst,
- std::vector<const BasicBlock*> &ToClone){
- WeakTrackingVH &BBEntry = VMap[BB];
-
- // Have we already cloned this block?
- if (BBEntry) return;
-
- // Nope, clone it now.
- BasicBlock *NewBB;
- BBEntry = NewBB = BasicBlock::Create(BB->getContext());
- if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
-
- // It is only legal to clone a function if a block address within that
- // function is never referenced outside of the function. Given that, we
- // want to map block addresses from the old function to block addresses in
- // the clone. (This is different from the generic ValueMapper
- // implementation, which generates an invalid blockaddress when
- // cloning a function.)
- //
- // Note that we don't need to fix the mapping for unreachable blocks;
- // the default mapping there is safe.
- if (BB->hasAddressTaken()) {
- Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
- const_cast<BasicBlock*>(BB));
- VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
- }
-
- bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
-
- // Loop over all instructions, and copy them over, DCE'ing as we go. This
- // loop doesn't include the terminator.
- for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
- II != IE; ++II) {
-
- Instruction *NewInst = II->clone();
-
- // Eagerly remap operands to the newly cloned instruction, except for PHI
- // nodes for which we defer processing until we update the CFG.
- if (!isa<PHINode>(NewInst)) {
- RemapInstruction(NewInst, VMap,
- ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
-
- // If we can simplify this instruction to some other value, simply add
- // a mapping to that value rather than inserting a new instruction into
- // the basic block.
- if (Value *V =
- SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
- // On the off-chance that this simplifies to an instruction in the old
- // function, map it back into the new function.
- if (NewFunc != OldFunc)
- if (Value *MappedV = VMap.lookup(V))
- V = MappedV;
-
- if (!NewInst->mayHaveSideEffects()) {
- VMap[&*II] = V;
- NewInst->deleteValue();
- continue;
- }
- }
- }
-
- if (II->hasName())
- NewInst->setName(II->getName()+NameSuffix);
- VMap[&*II] = NewInst; // Add instruction map to value.
- NewBB->getInstList().push_back(NewInst);
- hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
-
- if (CodeInfo)
- if (auto CS = ImmutableCallSite(&*II))
- if (CS.hasOperandBundles())
- CodeInfo->OperandBundleCallSites.push_back(NewInst);
-
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
- if (isa<ConstantInt>(AI->getArraySize()))
- hasStaticAllocas = true;
- else
- hasDynamicAllocas = true;
- }
- }
-
- // Finally, clone over the terminator.
- const Instruction *OldTI = BB->getTerminator();
- bool TerminatorDone = false;
- if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
- if (BI->isConditional()) {
- // If the condition was a known constant in the callee...
- ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
- // Or is a known constant in the caller...
- if (!Cond) {
- Value *V = VMap.lookup(BI->getCondition());
- Cond = dyn_cast_or_null<ConstantInt>(V);
- }
-
- // Constant fold to uncond branch!
- if (Cond) {
- BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
- VMap[OldTI] = BranchInst::Create(Dest, NewBB);
- ToClone.push_back(Dest);
- TerminatorDone = true;
- }
- }
- } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
- // If switching on a value known constant in the caller.
- ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
- if (!Cond) { // Or known constant after constant prop in the callee...
- Value *V = VMap.lookup(SI->getCondition());
- Cond = dyn_cast_or_null<ConstantInt>(V);
- }
- if (Cond) { // Constant fold to uncond branch!
- SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
- BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
- VMap[OldTI] = BranchInst::Create(Dest, NewBB);
- ToClone.push_back(Dest);
- TerminatorDone = true;
- }
- }
-
- if (!TerminatorDone) {
- Instruction *NewInst = OldTI->clone();
- if (OldTI->hasName())
- NewInst->setName(OldTI->getName()+NameSuffix);
- NewBB->getInstList().push_back(NewInst);
- VMap[OldTI] = NewInst; // Add instruction map to value.
-
- if (CodeInfo)
- if (auto CS = ImmutableCallSite(OldTI))
- if (CS.hasOperandBundles())
- CodeInfo->OperandBundleCallSites.push_back(NewInst);
-
- // Recursively clone any reachable successor blocks.
- const Instruction *TI = BB->getTerminator();
- for (const BasicBlock *Succ : successors(TI))
- ToClone.push_back(Succ);
- }
-
- if (CodeInfo) {
- CodeInfo->ContainsCalls |= hasCalls;
- CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
- CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
- BB != &BB->getParent()->front();
- }
-}
-
-/// This works like CloneAndPruneFunctionInto, except that it does not clone the
-/// entire function. Instead it starts at an instruction provided by the caller
-/// and copies (and prunes) only the code reachable from that instruction.
-void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
- const Instruction *StartingInst,
- ValueToValueMapTy &VMap,
- bool ModuleLevelChanges,
- SmallVectorImpl<ReturnInst *> &Returns,
- const char *NameSuffix,
- ClonedCodeInfo *CodeInfo) {
- assert(NameSuffix && "NameSuffix cannot be null!");
-
- ValueMapTypeRemapper *TypeMapper = nullptr;
- ValueMaterializer *Materializer = nullptr;
-
-#ifndef NDEBUG
- // If the cloning starts at the beginning of the function, verify that
- // the function arguments are mapped.
- if (!StartingInst)
- for (const Argument &II : OldFunc->args())
- assert(VMap.count(&II) && "No mapping from source argument specified!");
-#endif
-
- PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
- NameSuffix, CodeInfo);
- const BasicBlock *StartingBB;
- if (StartingInst)
- StartingBB = StartingInst->getParent();
- else {
- StartingBB = &OldFunc->getEntryBlock();
- StartingInst = &StartingBB->front();
- }
-
- // Clone the entry block, and anything recursively reachable from it.
- std::vector<const BasicBlock*> CloneWorklist;
- PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
- while (!CloneWorklist.empty()) {
- const BasicBlock *BB = CloneWorklist.back();
- CloneWorklist.pop_back();
- PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
- }
-
- // Loop over all of the basic blocks in the old function. If the block was
- // reachable, we have cloned it and the old block is now in the value map:
- // insert it into the new function in the right order. If not, ignore it.
- //
- // Defer PHI resolution until rest of function is resolved.
- SmallVector<const PHINode*, 16> PHIToResolve;
- for (const BasicBlock &BI : *OldFunc) {
- Value *V = VMap.lookup(&BI);
- BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
- if (!NewBB) continue; // Dead block.
-
- // Add the new block to the new function.
- NewFunc->getBasicBlockList().push_back(NewBB);
-
- // Handle PHI nodes specially, as we have to remove references to dead
- // blocks.
- for (const PHINode &PN : BI.phis()) {
- // PHI nodes may have been remapped to non-PHI nodes by the caller or
- // during the cloning process.
- if (isa<PHINode>(VMap[&PN]))
- PHIToResolve.push_back(&PN);
- else
- break;
- }
-
- // Finally, remap the terminator instructions, as those can't be remapped
- // until all BBs are mapped.
- RemapInstruction(NewBB->getTerminator(), VMap,
- ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
- TypeMapper, Materializer);
- }
-
- // Defer PHI resolution until rest of function is resolved, PHI resolution
- // requires the CFG to be up-to-date.
- for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
- const PHINode *OPN = PHIToResolve[phino];
- unsigned NumPreds = OPN->getNumIncomingValues();
- const BasicBlock *OldBB = OPN->getParent();
- BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
-
- // Map operands for blocks that are live and remove operands for blocks
- // that are dead.
- for (; phino != PHIToResolve.size() &&
- PHIToResolve[phino]->getParent() == OldBB; ++phino) {
- OPN = PHIToResolve[phino];
- PHINode *PN = cast<PHINode>(VMap[OPN]);
- for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
- Value *V = VMap.lookup(PN->getIncomingBlock(pred));
- if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
- Value *InVal = MapValue(PN->getIncomingValue(pred),
- VMap,
- ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
- assert(InVal && "Unknown input value?");
- PN->setIncomingValue(pred, InVal);
- PN->setIncomingBlock(pred, MappedBlock);
- } else {
- PN->removeIncomingValue(pred, false);
- --pred; // Revisit the next entry.
- --e;
- }
- }
- }
-
- // The loop above has removed PHI entries for those blocks that are dead
- // and has updated others. However, if a block is live (i.e. copied over)
- // but its terminator has been changed to not go to this block, then our
- // phi nodes will have invalid entries. Update the PHI nodes in this
- // case.
- PHINode *PN = cast<PHINode>(NewBB->begin());
- NumPreds = pred_size(NewBB);
- if (NumPreds != PN->getNumIncomingValues()) {
- assert(NumPreds < PN->getNumIncomingValues());
- // Count how many times each predecessor comes to this block.
- std::map<BasicBlock*, unsigned> PredCount;
- for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
- PI != E; ++PI)
- --PredCount[*PI];
-
- // Figure out how many entries to remove from each PHI.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- ++PredCount[PN->getIncomingBlock(i)];
-
- // At this point, the excess predecessor entries are positive in the
- // map. Loop over all of the PHIs and remove excess predecessor
- // entries.
- BasicBlock::iterator I = NewBB->begin();
- for (; (PN = dyn_cast<PHINode>(I)); ++I) {
- for (const auto &PCI : PredCount) {
- BasicBlock *Pred = PCI.first;
- for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
- PN->removeIncomingValue(Pred, false);
- }
- }
- }
-
- // If the loops above have made these phi nodes have 0 or 1 operand,
- // replace them with undef or the input value. We must do this for
- // correctness, because 0-operand phis are not valid.
- PN = cast<PHINode>(NewBB->begin());
- if (PN->getNumIncomingValues() == 0) {
- BasicBlock::iterator I = NewBB->begin();
- BasicBlock::const_iterator OldI = OldBB->begin();
- while ((PN = dyn_cast<PHINode>(I++))) {
- Value *NV = UndefValue::get(PN->getType());
- PN->replaceAllUsesWith(NV);
- assert(VMap[&*OldI] == PN && "VMap mismatch");
- VMap[&*OldI] = NV;
- PN->eraseFromParent();
- ++OldI;
- }
- }
- }
-
- // Make a second pass over the PHINodes now that all of them have been
- // remapped into the new function, simplifying the PHINode and performing any
- // recursive simplifications exposed. This will transparently update the
- // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
- // two PHINodes, the iteration over the old PHIs remains valid, and the
- // mapping will just map us to the new node (which may not even be a PHI
- // node).
- const DataLayout &DL = NewFunc->getParent()->getDataLayout();
- SmallSetVector<const Value *, 8> Worklist;
- for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
- if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
- Worklist.insert(PHIToResolve[Idx]);
-
- // Note that we must test the size on each iteration, the worklist can grow.
- for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
- const Value *OrigV = Worklist[Idx];
- auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
- if (!I)
- continue;
-
- // Skip over non-intrinsic callsites, we don't want to remove any nodes from
- // the CGSCC.
- CallSite CS = CallSite(I);
- if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
- continue;
-
- // See if this instruction simplifies.
- Value *SimpleV = SimplifyInstruction(I, DL);
- if (!SimpleV)
- continue;
-
- // Stash away all the uses of the old instruction so we can check them for
- // recursive simplifications after a RAUW. This is cheaper than checking all
- // uses of To on the recursive step in most cases.
- for (const User *U : OrigV->users())
- Worklist.insert(cast<Instruction>(U));
-
- // Replace the instruction with its simplified value.
- I->replaceAllUsesWith(SimpleV);
-
- // If the original instruction had no side effects, remove it.
- if (isInstructionTriviallyDead(I))
- I->eraseFromParent();
- else
- VMap[OrigV] = I;
- }
-
- // Now that the inlined function body has been fully constructed, go through
- // and zap unconditional fall-through branches. This happens all the time when
- // specializing code: code specialization turns conditional branches into
- // uncond branches, and this code folds them.
- Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
- Function::iterator I = Begin;
- while (I != NewFunc->end()) {
- // We need to simplify conditional branches and switches with a constant
- // operand. We try to prune these out when cloning, but if the
- // simplification required looking through PHI nodes, those are only
- // available after forming the full basic block. That may leave some here,
- // and we still want to prune the dead code as early as possible.
- //
- // Do the folding before we check if the block is dead since we want code
- // like
- // bb:
- // br i1 undef, label %bb, label %bb
- // to be simplified to
- // bb:
- // br label %bb
- // before we call I->getSinglePredecessor().
- ConstantFoldTerminator(&*I);
-
- // Check if this block has become dead during inlining or other
- // simplifications. Note that the first block will appear dead, as it has
- // not yet been wired up properly.
- if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
- I->getSinglePredecessor() == &*I)) {
- BasicBlock *DeadBB = &*I++;
- DeleteDeadBlock(DeadBB);
- continue;
- }
-
- BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
- if (!BI || BI->isConditional()) { ++I; continue; }
-
- BasicBlock *Dest = BI->getSuccessor(0);
- if (!Dest->getSinglePredecessor()) {
- ++I; continue;
- }
-
- // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
- // above should have zapped all of them..
- assert(!isa<PHINode>(Dest->begin()));
-
- // We know all single-entry PHI nodes in the inlined function have been
- // removed, so we just need to splice the blocks.
- BI->eraseFromParent();
-
- // Make all PHI nodes that referred to Dest now refer to I as their source.
- Dest->replaceAllUsesWith(&*I);
-
- // Move all the instructions in the succ to the pred.
- I->getInstList().splice(I->end(), Dest->getInstList());
-
- // Remove the dest block.
- Dest->eraseFromParent();
-
- // Do not increment I, iteratively merge all things this block branches to.
- }
-
- // Make a final pass over the basic blocks from the old function to gather
- // any return instructions which survived folding. We have to do this here
- // because we can iteratively remove and merge returns above.
- for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
- E = NewFunc->end();
- I != E; ++I)
- if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
- Returns.push_back(RI);
-}
-
-
-/// This works exactly like CloneFunctionInto,
-/// except that it does some simple constant prop and DCE on the fly. The
-/// effect of this is to copy significantly less code in cases where (for
-/// example) a function call with constant arguments is inlined, and those
-/// constant arguments cause a significant amount of code in the callee to be
-/// dead. Since this doesn't produce an exact copy of the input, it can't be
-/// used for things like CloneFunction or CloneModule.
-void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
- ValueToValueMapTy &VMap,
- bool ModuleLevelChanges,
- SmallVectorImpl<ReturnInst*> &Returns,
- const char *NameSuffix,
- ClonedCodeInfo *CodeInfo,
- Instruction *TheCall) {
- CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
- ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
-}
-
-/// Remaps instructions in \p Blocks using the mapping in \p VMap.
-void llvm::remapInstructionsInBlocks(
- const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
- // Rewrite the code to refer to itself.
- for (auto *BB : Blocks)
- for (auto &Inst : *BB)
- RemapInstruction(&Inst, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
-}
-
-/// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
-/// Blocks.
-///
-/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
-/// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
-Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
- Loop *OrigLoop, ValueToValueMapTy &VMap,
- const Twine &NameSuffix, LoopInfo *LI,
- DominatorTree *DT,
- SmallVectorImpl<BasicBlock *> &Blocks) {
- Function *F = OrigLoop->getHeader()->getParent();
- Loop *ParentLoop = OrigLoop->getParentLoop();
- DenseMap<Loop *, Loop *> LMap;
-
- Loop *NewLoop = LI->AllocateLoop();
- LMap[OrigLoop] = NewLoop;
- if (ParentLoop)
- ParentLoop->addChildLoop(NewLoop);
- else
- LI->addTopLevelLoop(NewLoop);
-
- BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
- assert(OrigPH && "No preheader");
- BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
- // To rename the loop PHIs.
- VMap[OrigPH] = NewPH;
- Blocks.push_back(NewPH);
-
- // Update LoopInfo.
- if (ParentLoop)
- ParentLoop->addBasicBlockToLoop(NewPH, *LI);
-
- // Update DominatorTree.
- DT->addNewBlock(NewPH, LoopDomBB);
-
- for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
- Loop *&NewLoop = LMap[CurLoop];
- if (!NewLoop) {
- NewLoop = LI->AllocateLoop();
-
- // Establish the parent/child relationship.
- Loop *OrigParent = CurLoop->getParentLoop();
- assert(OrigParent && "Could not find the original parent loop");
- Loop *NewParentLoop = LMap[OrigParent];
- assert(NewParentLoop && "Could not find the new parent loop");
-
- NewParentLoop->addChildLoop(NewLoop);
- }
- }
-
- for (BasicBlock *BB : OrigLoop->getBlocks()) {
- Loop *CurLoop = LI->getLoopFor(BB);
- Loop *&NewLoop = LMap[CurLoop];
- assert(NewLoop && "Expecting new loop to be allocated");
-
- BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
- VMap[BB] = NewBB;
-
- // Update LoopInfo.
- NewLoop->addBasicBlockToLoop(NewBB, *LI);
- if (BB == CurLoop->getHeader())
- NewLoop->moveToHeader(NewBB);
-
- // Add DominatorTree node. After seeing all blocks, update to correct
- // IDom.
- DT->addNewBlock(NewBB, NewPH);
-
- Blocks.push_back(NewBB);
- }
-
- for (BasicBlock *BB : OrigLoop->getBlocks()) {
- // Update DominatorTree.
- BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
- DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
- cast<BasicBlock>(VMap[IDomBB]));
- }
-
- // Move them physically from the end of the block list.
- F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
- NewPH);
- F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
- NewLoop->getHeader()->getIterator(), F->end());
-
- return NewLoop;
-}
-
-/// Duplicate non-Phi instructions from the beginning of block up to
-/// StopAt instruction into a split block between BB and its predecessor.
-BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
- BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
- ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
-
- assert(count(successors(PredBB), BB) == 1 &&
- "There must be a single edge between PredBB and BB!");
- // We are going to have to map operands from the original BB block to the new
- // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
- // account for entry from PredBB.
- BasicBlock::iterator BI = BB->begin();
- for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
- ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
-
- BasicBlock *NewBB = SplitEdge(PredBB, BB);
- NewBB->setName(PredBB->getName() + ".split");
- Instruction *NewTerm = NewBB->getTerminator();
-
- // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
- // in the update set here.
- DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
- {DominatorTree::Insert, PredBB, NewBB},
- {DominatorTree::Insert, NewBB, BB}});
-
- // Clone the non-phi instructions of BB into NewBB, keeping track of the
- // mapping and using it to remap operands in the cloned instructions.
- // Stop once we see the terminator too. This covers the case where BB's
- // terminator gets replaced and StopAt == BB's terminator.
- for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
- Instruction *New = BI->clone();
- New->setName(BI->getName());
- New->insertBefore(NewTerm);
- ValueMapping[&*BI] = New;
-
- // Remap operands to patch up intra-block references.
- for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
- if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
- auto I = ValueMapping.find(Inst);
- if (I != ValueMapping.end())
- New->setOperand(i, I->second);
- }
- }
-
- return NewBB;
-}