summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/Evaluator.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/Evaluator.cpp731
1 files changed, 0 insertions, 731 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp b/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp
deleted file mode 100644
index 0e203f4e075d..000000000000
--- a/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp
+++ /dev/null
@@ -1,731 +0,0 @@
-//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// Function evaluator for LLVM IR.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/Evaluator.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include <iterator>
-
-#define DEBUG_TYPE "evaluator"
-
-using namespace llvm;
-
-static inline bool
-isSimpleEnoughValueToCommit(Constant *C,
- SmallPtrSetImpl<Constant *> &SimpleConstants,
- const DataLayout &DL);
-
-/// Return true if the specified constant can be handled by the code generator.
-/// We don't want to generate something like:
-/// void *X = &X/42;
-/// because the code generator doesn't have a relocation that can handle that.
-///
-/// This function should be called if C was not found (but just got inserted)
-/// in SimpleConstants to avoid having to rescan the same constants all the
-/// time.
-static bool
-isSimpleEnoughValueToCommitHelper(Constant *C,
- SmallPtrSetImpl<Constant *> &SimpleConstants,
- const DataLayout &DL) {
- // Simple global addresses are supported, do not allow dllimport or
- // thread-local globals.
- if (auto *GV = dyn_cast<GlobalValue>(C))
- return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
-
- // Simple integer, undef, constant aggregate zero, etc are all supported.
- if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
- return true;
-
- // Aggregate values are safe if all their elements are.
- if (isa<ConstantAggregate>(C)) {
- for (Value *Op : C->operands())
- if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
- return false;
- return true;
- }
-
- // We don't know exactly what relocations are allowed in constant expressions,
- // so we allow &global+constantoffset, which is safe and uniformly supported
- // across targets.
- ConstantExpr *CE = cast<ConstantExpr>(C);
- switch (CE->getOpcode()) {
- case Instruction::BitCast:
- // Bitcast is fine if the casted value is fine.
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
-
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- // int <=> ptr is fine if the int type is the same size as the
- // pointer type.
- if (DL.getTypeSizeInBits(CE->getType()) !=
- DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
- return false;
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
-
- // GEP is fine if it is simple + constant offset.
- case Instruction::GetElementPtr:
- for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
- if (!isa<ConstantInt>(CE->getOperand(i)))
- return false;
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
-
- case Instruction::Add:
- // We allow simple+cst.
- if (!isa<ConstantInt>(CE->getOperand(1)))
- return false;
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
- }
- return false;
-}
-
-static inline bool
-isSimpleEnoughValueToCommit(Constant *C,
- SmallPtrSetImpl<Constant *> &SimpleConstants,
- const DataLayout &DL) {
- // If we already checked this constant, we win.
- if (!SimpleConstants.insert(C).second)
- return true;
- // Check the constant.
- return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
-}
-
-/// Return true if this constant is simple enough for us to understand. In
-/// particular, if it is a cast to anything other than from one pointer type to
-/// another pointer type, we punt. We basically just support direct accesses to
-/// globals and GEP's of globals. This should be kept up to date with
-/// CommitValueTo.
-static bool isSimpleEnoughPointerToCommit(Constant *C) {
- // Conservatively, avoid aggregate types. This is because we don't
- // want to worry about them partially overlapping other stores.
- if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
- return false;
-
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
- // Do not allow weak/*_odr/linkonce linkage or external globals.
- return GV->hasUniqueInitializer();
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- // Handle a constantexpr gep.
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- isa<GlobalVariable>(CE->getOperand(0)) &&
- cast<GEPOperator>(CE)->isInBounds()) {
- GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
- // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
- // external globals.
- if (!GV->hasUniqueInitializer())
- return false;
-
- // The first index must be zero.
- ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
- if (!CI || !CI->isZero()) return false;
-
- // The remaining indices must be compile-time known integers within the
- // notional bounds of the corresponding static array types.
- if (!CE->isGEPWithNoNotionalOverIndexing())
- return false;
-
- return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
-
- // A constantexpr bitcast from a pointer to another pointer is a no-op,
- // and we know how to evaluate it by moving the bitcast from the pointer
- // operand to the value operand.
- } else if (CE->getOpcode() == Instruction::BitCast &&
- isa<GlobalVariable>(CE->getOperand(0))) {
- // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
- // external globals.
- return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
- }
- }
-
- return false;
-}
-
-/// Apply 'Func' to Ptr. If this returns nullptr, introspect the pointer's
-/// type and walk down through the initial elements to obtain additional
-/// pointers to try. Returns the first non-null return value from Func, or
-/// nullptr if the type can't be introspected further.
-static Constant *
-evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- std::function<Constant *(Constant *)> Func) {
- Constant *Val;
- while (!(Val = Func(Ptr))) {
- // If Ty is a struct, we can convert the pointer to the struct
- // into a pointer to its first member.
- // FIXME: This could be extended to support arrays as well.
- Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
- if (!isa<StructType>(Ty))
- break;
-
- IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32);
- Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
- Constant *const IdxList[] = {IdxZero, IdxZero};
-
- Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList);
- if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI))
- Ptr = FoldedPtr;
- }
- return Val;
-}
-
-static Constant *getInitializer(Constant *C) {
- auto *GV = dyn_cast<GlobalVariable>(C);
- return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr;
-}
-
-/// Return the value that would be computed by a load from P after the stores
-/// reflected by 'memory' have been performed. If we can't decide, return null.
-Constant *Evaluator::ComputeLoadResult(Constant *P) {
- // If this memory location has been recently stored, use the stored value: it
- // is the most up-to-date.
- auto findMemLoc = [this](Constant *Ptr) {
- DenseMap<Constant *, Constant *>::const_iterator I =
- MutatedMemory.find(Ptr);
- return I != MutatedMemory.end() ? I->second : nullptr;
- };
-
- if (Constant *Val = findMemLoc(P))
- return Val;
-
- // Access it.
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
- if (GV->hasDefinitiveInitializer())
- return GV->getInitializer();
- return nullptr;
- }
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) {
- switch (CE->getOpcode()) {
- // Handle a constantexpr getelementptr.
- case Instruction::GetElementPtr:
- if (auto *I = getInitializer(CE->getOperand(0)))
- return ConstantFoldLoadThroughGEPConstantExpr(I, CE);
- break;
- // Handle a constantexpr bitcast.
- case Instruction::BitCast:
- // We're evaluating a load through a pointer that was bitcast to a
- // different type. See if the "from" pointer has recently been stored.
- // If it hasn't, we may still be able to find a stored pointer by
- // introspecting the type.
- Constant *Val =
- evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, findMemLoc);
- if (!Val)
- Val = getInitializer(CE->getOperand(0));
- if (Val)
- return ConstantFoldLoadThroughBitcast(
- Val, P->getType()->getPointerElementType(), DL);
- break;
- }
- }
-
- return nullptr; // don't know how to evaluate.
-}
-
-static Function *getFunction(Constant *C) {
- if (auto *Fn = dyn_cast<Function>(C))
- return Fn;
-
- if (auto *Alias = dyn_cast<GlobalAlias>(C))
- if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
- return Fn;
- return nullptr;
-}
-
-Function *
-Evaluator::getCalleeWithFormalArgs(CallSite &CS,
- SmallVector<Constant *, 8> &Formals) {
- auto *V = CS.getCalledValue();
- if (auto *Fn = getFunction(getVal(V)))
- return getFormalParams(CS, Fn, Formals) ? Fn : nullptr;
-
- auto *CE = dyn_cast<ConstantExpr>(V);
- if (!CE || CE->getOpcode() != Instruction::BitCast ||
- !getFormalParams(CS, getFunction(CE->getOperand(0)), Formals))
- return nullptr;
-
- return dyn_cast<Function>(
- ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL));
-}
-
-bool Evaluator::getFormalParams(CallSite &CS, Function *F,
- SmallVector<Constant *, 8> &Formals) {
- if (!F)
- return false;
-
- auto *FTy = F->getFunctionType();
- if (FTy->getNumParams() > CS.getNumArgOperands()) {
- LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
- return false;
- }
-
- auto ArgI = CS.arg_begin();
- for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE;
- ++ParI) {
- auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL);
- if (!ArgC) {
- LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
- return false;
- }
- Formals.push_back(ArgC);
- ++ArgI;
- }
- return true;
-}
-
-/// If call expression contains bitcast then we may need to cast
-/// evaluated return value to a type of the call expression.
-Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) {
- ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr);
- if (!RV || !CE || CE->getOpcode() != Instruction::BitCast)
- return RV;
-
- if (auto *FT =
- dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) {
- RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL);
- if (!RV)
- LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
- }
- return RV;
-}
-
-/// Evaluate all instructions in block BB, returning true if successful, false
-/// if we can't evaluate it. NewBB returns the next BB that control flows into,
-/// or null upon return.
-bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
- BasicBlock *&NextBB) {
- // This is the main evaluation loop.
- while (true) {
- Constant *InstResult = nullptr;
-
- LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
-
- if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
- if (!SI->isSimple()) {
- LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
- return false; // no volatile/atomic accesses.
- }
- Constant *Ptr = getVal(SI->getOperand(1));
- if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
- LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
- Ptr = FoldedPtr;
- LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
- }
- if (!isSimpleEnoughPointerToCommit(Ptr)) {
- // If this is too complex for us to commit, reject it.
- LLVM_DEBUG(
- dbgs() << "Pointer is too complex for us to evaluate store.");
- return false;
- }
-
- Constant *Val = getVal(SI->getOperand(0));
-
- // If this might be too difficult for the backend to handle (e.g. the addr
- // of one global variable divided by another) then we can't commit it.
- if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
- LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
- << *Val << "\n");
- return false;
- }
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
- if (CE->getOpcode() == Instruction::BitCast) {
- LLVM_DEBUG(dbgs()
- << "Attempting to resolve bitcast on constant ptr.\n");
- // If we're evaluating a store through a bitcast, then we need
- // to pull the bitcast off the pointer type and push it onto the
- // stored value. In order to push the bitcast onto the stored value,
- // a bitcast from the pointer's element type to Val's type must be
- // legal. If it's not, we can try introspecting the type to find a
- // legal conversion.
-
- auto castValTy = [&](Constant *P) -> Constant * {
- Type *Ty = cast<PointerType>(P->getType())->getElementType();
- if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, Ty, DL)) {
- Ptr = P;
- return FV;
- }
- return nullptr;
- };
-
- Constant *NewVal =
- evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, castValTy);
- if (!NewVal) {
- LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
- "evaluate.\n");
- return false;
- }
-
- Val = NewVal;
- LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
- }
- }
-
- MutatedMemory[Ptr] = Val;
- } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
- InstResult = ConstantExpr::get(BO->getOpcode(),
- getVal(BO->getOperand(0)),
- getVal(BO->getOperand(1)));
- LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
- << *InstResult << "\n");
- } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
- InstResult = ConstantExpr::getCompare(CI->getPredicate(),
- getVal(CI->getOperand(0)),
- getVal(CI->getOperand(1)));
- LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
- << "\n");
- } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
- InstResult = ConstantExpr::getCast(CI->getOpcode(),
- getVal(CI->getOperand(0)),
- CI->getType());
- LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
- << "\n");
- } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
- InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
- getVal(SI->getOperand(1)),
- getVal(SI->getOperand(2)));
- LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
- << "\n");
- } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
- InstResult = ConstantExpr::getExtractValue(
- getVal(EVI->getAggregateOperand()), EVI->getIndices());
- LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
- << *InstResult << "\n");
- } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
- InstResult = ConstantExpr::getInsertValue(
- getVal(IVI->getAggregateOperand()),
- getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
- LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
- << *InstResult << "\n");
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
- Constant *P = getVal(GEP->getOperand(0));
- SmallVector<Constant*, 8> GEPOps;
- for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
- i != e; ++i)
- GEPOps.push_back(getVal(*i));
- InstResult =
- ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
- cast<GEPOperator>(GEP)->isInBounds());
- LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n");
- } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
- if (!LI->isSimple()) {
- LLVM_DEBUG(
- dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
- return false; // no volatile/atomic accesses.
- }
-
- Constant *Ptr = getVal(LI->getOperand(0));
- if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
- Ptr = FoldedPtr;
- LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
- "folding: "
- << *Ptr << "\n");
- }
- InstResult = ComputeLoadResult(Ptr);
- if (!InstResult) {
- LLVM_DEBUG(
- dbgs() << "Failed to compute load result. Can not evaluate load."
- "\n");
- return false; // Could not evaluate load.
- }
-
- LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
- } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
- if (AI->isArrayAllocation()) {
- LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
- return false; // Cannot handle array allocs.
- }
- Type *Ty = AI->getAllocatedType();
- AllocaTmps.push_back(llvm::make_unique<GlobalVariable>(
- Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
- AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
- AI->getType()->getPointerAddressSpace()));
- InstResult = AllocaTmps.back().get();
- LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
- } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
- CallSite CS(&*CurInst);
-
- // Debug info can safely be ignored here.
- if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
- LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
- ++CurInst;
- continue;
- }
-
- // Cannot handle inline asm.
- if (isa<InlineAsm>(CS.getCalledValue())) {
- LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
- return false;
- }
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
- if (MSI->isVolatile()) {
- LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
- << "intrinsic.\n");
- return false;
- }
- Constant *Ptr = getVal(MSI->getDest());
- Constant *Val = getVal(MSI->getValue());
- Constant *DestVal = ComputeLoadResult(getVal(Ptr));
- if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
- // This memset is a no-op.
- LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
- ++CurInst;
- continue;
- }
- }
-
- if (II->isLifetimeStartOrEnd()) {
- LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
- ++CurInst;
- continue;
- }
-
- if (II->getIntrinsicID() == Intrinsic::invariant_start) {
- // We don't insert an entry into Values, as it doesn't have a
- // meaningful return value.
- if (!II->use_empty()) {
- LLVM_DEBUG(dbgs()
- << "Found unused invariant_start. Can't evaluate.\n");
- return false;
- }
- ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
- Value *PtrArg = getVal(II->getArgOperand(1));
- Value *Ptr = PtrArg->stripPointerCasts();
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
- Type *ElemTy = GV->getValueType();
- if (!Size->isMinusOne() &&
- Size->getValue().getLimitedValue() >=
- DL.getTypeStoreSize(ElemTy)) {
- Invariants.insert(GV);
- LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
- << *GV << "\n");
- } else {
- LLVM_DEBUG(dbgs()
- << "Found a global var, but can not treat it as an "
- "invariant.\n");
- }
- }
- // Continue even if we do nothing.
- ++CurInst;
- continue;
- } else if (II->getIntrinsicID() == Intrinsic::assume) {
- LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
- ++CurInst;
- continue;
- } else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
- LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
- ++CurInst;
- continue;
- }
-
- LLVM_DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
- return false;
- }
-
- // Resolve function pointers.
- SmallVector<Constant *, 8> Formals;
- Function *Callee = getCalleeWithFormalArgs(CS, Formals);
- if (!Callee || Callee->isInterposable()) {
- LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
- return false; // Cannot resolve.
- }
-
- if (Callee->isDeclaration()) {
- // If this is a function we can constant fold, do it.
- if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()),
- Callee, Formals, TLI)) {
- InstResult = castCallResultIfNeeded(CS.getCalledValue(), C);
- if (!InstResult)
- return false;
- LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
- << *InstResult << "\n");
- } else {
- LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
- return false;
- }
- } else {
- if (Callee->getFunctionType()->isVarArg()) {
- LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
- return false;
- }
-
- Constant *RetVal = nullptr;
- // Execute the call, if successful, use the return value.
- ValueStack.emplace_back();
- if (!EvaluateFunction(Callee, RetVal, Formals)) {
- LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
- return false;
- }
- ValueStack.pop_back();
- InstResult = castCallResultIfNeeded(CS.getCalledValue(), RetVal);
- if (RetVal && !InstResult)
- return false;
-
- if (InstResult) {
- LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
- << *InstResult << "\n\n");
- } else {
- LLVM_DEBUG(dbgs()
- << "Successfully evaluated function. Result: 0\n\n");
- }
- }
- } else if (CurInst->isTerminator()) {
- LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
-
- if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
- if (BI->isUnconditional()) {
- NextBB = BI->getSuccessor(0);
- } else {
- ConstantInt *Cond =
- dyn_cast<ConstantInt>(getVal(BI->getCondition()));
- if (!Cond) return false; // Cannot determine.
-
- NextBB = BI->getSuccessor(!Cond->getZExtValue());
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
- ConstantInt *Val =
- dyn_cast<ConstantInt>(getVal(SI->getCondition()));
- if (!Val) return false; // Cannot determine.
- NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
- } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
- Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
- if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
- NextBB = BA->getBasicBlock();
- else
- return false; // Cannot determine.
- } else if (isa<ReturnInst>(CurInst)) {
- NextBB = nullptr;
- } else {
- // invoke, unwind, resume, unreachable.
- LLVM_DEBUG(dbgs() << "Can not handle terminator.");
- return false; // Cannot handle this terminator.
- }
-
- // We succeeded at evaluating this block!
- LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
- return true;
- } else {
- // Did not know how to evaluate this!
- LLVM_DEBUG(
- dbgs() << "Failed to evaluate block due to unhandled instruction."
- "\n");
- return false;
- }
-
- if (!CurInst->use_empty()) {
- if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI))
- InstResult = FoldedInstResult;
-
- setVal(&*CurInst, InstResult);
- }
-
- // If we just processed an invoke, we finished evaluating the block.
- if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
- NextBB = II->getNormalDest();
- LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
- return true;
- }
-
- // Advance program counter.
- ++CurInst;
- }
-}
-
-/// Evaluate a call to function F, returning true if successful, false if we
-/// can't evaluate it. ActualArgs contains the formal arguments for the
-/// function.
-bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
- const SmallVectorImpl<Constant*> &ActualArgs) {
- // Check to see if this function is already executing (recursion). If so,
- // bail out. TODO: we might want to accept limited recursion.
- if (is_contained(CallStack, F))
- return false;
-
- CallStack.push_back(F);
-
- // Initialize arguments to the incoming values specified.
- unsigned ArgNo = 0;
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
- ++AI, ++ArgNo)
- setVal(&*AI, ActualArgs[ArgNo]);
-
- // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
- // we can only evaluate any one basic block at most once. This set keeps
- // track of what we have executed so we can detect recursive cases etc.
- SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
-
- // CurBB - The current basic block we're evaluating.
- BasicBlock *CurBB = &F->front();
-
- BasicBlock::iterator CurInst = CurBB->begin();
-
- while (true) {
- BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
- LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
-
- if (!EvaluateBlock(CurInst, NextBB))
- return false;
-
- if (!NextBB) {
- // Successfully running until there's no next block means that we found
- // the return. Fill it the return value and pop the call stack.
- ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
- if (RI->getNumOperands())
- RetVal = getVal(RI->getOperand(0));
- CallStack.pop_back();
- return true;
- }
-
- // Okay, we succeeded in evaluating this control flow. See if we have
- // executed the new block before. If so, we have a looping function,
- // which we cannot evaluate in reasonable time.
- if (!ExecutedBlocks.insert(NextBB).second)
- return false; // looped!
-
- // Okay, we have never been in this block before. Check to see if there
- // are any PHI nodes. If so, evaluate them with information about where
- // we came from.
- PHINode *PN = nullptr;
- for (CurInst = NextBB->begin();
- (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
- setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
-
- // Advance to the next block.
- CurBB = NextBB;
- }
-}