diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/Evaluator.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Utils/Evaluator.cpp | 731 |
1 files changed, 0 insertions, 731 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp b/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp deleted file mode 100644 index 0e203f4e075d..000000000000 --- a/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp +++ /dev/null @@ -1,731 +0,0 @@ -//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Function evaluator for LLVM IR. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Utils/Evaluator.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include <iterator> - -#define DEBUG_TYPE "evaluator" - -using namespace llvm; - -static inline bool -isSimpleEnoughValueToCommit(Constant *C, - SmallPtrSetImpl<Constant *> &SimpleConstants, - const DataLayout &DL); - -/// Return true if the specified constant can be handled by the code generator. -/// We don't want to generate something like: -/// void *X = &X/42; -/// because the code generator doesn't have a relocation that can handle that. -/// -/// This function should be called if C was not found (but just got inserted) -/// in SimpleConstants to avoid having to rescan the same constants all the -/// time. -static bool -isSimpleEnoughValueToCommitHelper(Constant *C, - SmallPtrSetImpl<Constant *> &SimpleConstants, - const DataLayout &DL) { - // Simple global addresses are supported, do not allow dllimport or - // thread-local globals. - if (auto *GV = dyn_cast<GlobalValue>(C)) - return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); - - // Simple integer, undef, constant aggregate zero, etc are all supported. - if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) - return true; - - // Aggregate values are safe if all their elements are. - if (isa<ConstantAggregate>(C)) { - for (Value *Op : C->operands()) - if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) - return false; - return true; - } - - // We don't know exactly what relocations are allowed in constant expressions, - // so we allow &global+constantoffset, which is safe and uniformly supported - // across targets. - ConstantExpr *CE = cast<ConstantExpr>(C); - switch (CE->getOpcode()) { - case Instruction::BitCast: - // Bitcast is fine if the casted value is fine. - return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); - - case Instruction::IntToPtr: - case Instruction::PtrToInt: - // int <=> ptr is fine if the int type is the same size as the - // pointer type. - if (DL.getTypeSizeInBits(CE->getType()) != - DL.getTypeSizeInBits(CE->getOperand(0)->getType())) - return false; - return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); - - // GEP is fine if it is simple + constant offset. - case Instruction::GetElementPtr: - for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) - if (!isa<ConstantInt>(CE->getOperand(i))) - return false; - return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); - - case Instruction::Add: - // We allow simple+cst. - if (!isa<ConstantInt>(CE->getOperand(1))) - return false; - return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); - } - return false; -} - -static inline bool -isSimpleEnoughValueToCommit(Constant *C, - SmallPtrSetImpl<Constant *> &SimpleConstants, - const DataLayout &DL) { - // If we already checked this constant, we win. - if (!SimpleConstants.insert(C).second) - return true; - // Check the constant. - return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); -} - -/// Return true if this constant is simple enough for us to understand. In -/// particular, if it is a cast to anything other than from one pointer type to -/// another pointer type, we punt. We basically just support direct accesses to -/// globals and GEP's of globals. This should be kept up to date with -/// CommitValueTo. -static bool isSimpleEnoughPointerToCommit(Constant *C) { - // Conservatively, avoid aggregate types. This is because we don't - // want to worry about them partially overlapping other stores. - if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) - return false; - - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) - // Do not allow weak/*_odr/linkonce linkage or external globals. - return GV->hasUniqueInitializer(); - - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { - // Handle a constantexpr gep. - if (CE->getOpcode() == Instruction::GetElementPtr && - isa<GlobalVariable>(CE->getOperand(0)) && - cast<GEPOperator>(CE)->isInBounds()) { - GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); - // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or - // external globals. - if (!GV->hasUniqueInitializer()) - return false; - - // The first index must be zero. - ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); - if (!CI || !CI->isZero()) return false; - - // The remaining indices must be compile-time known integers within the - // notional bounds of the corresponding static array types. - if (!CE->isGEPWithNoNotionalOverIndexing()) - return false; - - return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); - - // A constantexpr bitcast from a pointer to another pointer is a no-op, - // and we know how to evaluate it by moving the bitcast from the pointer - // operand to the value operand. - } else if (CE->getOpcode() == Instruction::BitCast && - isa<GlobalVariable>(CE->getOperand(0))) { - // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or - // external globals. - return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); - } - } - - return false; -} - -/// Apply 'Func' to Ptr. If this returns nullptr, introspect the pointer's -/// type and walk down through the initial elements to obtain additional -/// pointers to try. Returns the first non-null return value from Func, or -/// nullptr if the type can't be introspected further. -static Constant * -evaluateBitcastFromPtr(Constant *Ptr, const DataLayout &DL, - const TargetLibraryInfo *TLI, - std::function<Constant *(Constant *)> Func) { - Constant *Val; - while (!(Val = Func(Ptr))) { - // If Ty is a struct, we can convert the pointer to the struct - // into a pointer to its first member. - // FIXME: This could be extended to support arrays as well. - Type *Ty = cast<PointerType>(Ptr->getType())->getElementType(); - if (!isa<StructType>(Ty)) - break; - - IntegerType *IdxTy = IntegerType::get(Ty->getContext(), 32); - Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); - Constant *const IdxList[] = {IdxZero, IdxZero}; - - Ptr = ConstantExpr::getGetElementPtr(Ty, Ptr, IdxList); - if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) - Ptr = FoldedPtr; - } - return Val; -} - -static Constant *getInitializer(Constant *C) { - auto *GV = dyn_cast<GlobalVariable>(C); - return GV && GV->hasDefinitiveInitializer() ? GV->getInitializer() : nullptr; -} - -/// Return the value that would be computed by a load from P after the stores -/// reflected by 'memory' have been performed. If we can't decide, return null. -Constant *Evaluator::ComputeLoadResult(Constant *P) { - // If this memory location has been recently stored, use the stored value: it - // is the most up-to-date. - auto findMemLoc = [this](Constant *Ptr) { - DenseMap<Constant *, Constant *>::const_iterator I = - MutatedMemory.find(Ptr); - return I != MutatedMemory.end() ? I->second : nullptr; - }; - - if (Constant *Val = findMemLoc(P)) - return Val; - - // Access it. - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { - if (GV->hasDefinitiveInitializer()) - return GV->getInitializer(); - return nullptr; - } - - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) { - switch (CE->getOpcode()) { - // Handle a constantexpr getelementptr. - case Instruction::GetElementPtr: - if (auto *I = getInitializer(CE->getOperand(0))) - return ConstantFoldLoadThroughGEPConstantExpr(I, CE); - break; - // Handle a constantexpr bitcast. - case Instruction::BitCast: - // We're evaluating a load through a pointer that was bitcast to a - // different type. See if the "from" pointer has recently been stored. - // If it hasn't, we may still be able to find a stored pointer by - // introspecting the type. - Constant *Val = - evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, findMemLoc); - if (!Val) - Val = getInitializer(CE->getOperand(0)); - if (Val) - return ConstantFoldLoadThroughBitcast( - Val, P->getType()->getPointerElementType(), DL); - break; - } - } - - return nullptr; // don't know how to evaluate. -} - -static Function *getFunction(Constant *C) { - if (auto *Fn = dyn_cast<Function>(C)) - return Fn; - - if (auto *Alias = dyn_cast<GlobalAlias>(C)) - if (auto *Fn = dyn_cast<Function>(Alias->getAliasee())) - return Fn; - return nullptr; -} - -Function * -Evaluator::getCalleeWithFormalArgs(CallSite &CS, - SmallVector<Constant *, 8> &Formals) { - auto *V = CS.getCalledValue(); - if (auto *Fn = getFunction(getVal(V))) - return getFormalParams(CS, Fn, Formals) ? Fn : nullptr; - - auto *CE = dyn_cast<ConstantExpr>(V); - if (!CE || CE->getOpcode() != Instruction::BitCast || - !getFormalParams(CS, getFunction(CE->getOperand(0)), Formals)) - return nullptr; - - return dyn_cast<Function>( - ConstantFoldLoadThroughBitcast(CE, CE->getOperand(0)->getType(), DL)); -} - -bool Evaluator::getFormalParams(CallSite &CS, Function *F, - SmallVector<Constant *, 8> &Formals) { - if (!F) - return false; - - auto *FTy = F->getFunctionType(); - if (FTy->getNumParams() > CS.getNumArgOperands()) { - LLVM_DEBUG(dbgs() << "Too few arguments for function.\n"); - return false; - } - - auto ArgI = CS.arg_begin(); - for (auto ParI = FTy->param_begin(), ParE = FTy->param_end(); ParI != ParE; - ++ParI) { - auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), *ParI, DL); - if (!ArgC) { - LLVM_DEBUG(dbgs() << "Can not convert function argument.\n"); - return false; - } - Formals.push_back(ArgC); - ++ArgI; - } - return true; -} - -/// If call expression contains bitcast then we may need to cast -/// evaluated return value to a type of the call expression. -Constant *Evaluator::castCallResultIfNeeded(Value *CallExpr, Constant *RV) { - ConstantExpr *CE = dyn_cast<ConstantExpr>(CallExpr); - if (!RV || !CE || CE->getOpcode() != Instruction::BitCast) - return RV; - - if (auto *FT = - dyn_cast<FunctionType>(CE->getType()->getPointerElementType())) { - RV = ConstantFoldLoadThroughBitcast(RV, FT->getReturnType(), DL); - if (!RV) - LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n"); - } - return RV; -} - -/// Evaluate all instructions in block BB, returning true if successful, false -/// if we can't evaluate it. NewBB returns the next BB that control flows into, -/// or null upon return. -bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, - BasicBlock *&NextBB) { - // This is the main evaluation loop. - while (true) { - Constant *InstResult = nullptr; - - LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); - - if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { - if (!SI->isSimple()) { - LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); - return false; // no volatile/atomic accesses. - } - Constant *Ptr = getVal(SI->getOperand(1)); - if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { - LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); - Ptr = FoldedPtr; - LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n"); - } - if (!isSimpleEnoughPointerToCommit(Ptr)) { - // If this is too complex for us to commit, reject it. - LLVM_DEBUG( - dbgs() << "Pointer is too complex for us to evaluate store."); - return false; - } - - Constant *Val = getVal(SI->getOperand(0)); - - // If this might be too difficult for the backend to handle (e.g. the addr - // of one global variable divided by another) then we can't commit it. - if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { - LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. " - << *Val << "\n"); - return false; - } - - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { - if (CE->getOpcode() == Instruction::BitCast) { - LLVM_DEBUG(dbgs() - << "Attempting to resolve bitcast on constant ptr.\n"); - // If we're evaluating a store through a bitcast, then we need - // to pull the bitcast off the pointer type and push it onto the - // stored value. In order to push the bitcast onto the stored value, - // a bitcast from the pointer's element type to Val's type must be - // legal. If it's not, we can try introspecting the type to find a - // legal conversion. - - auto castValTy = [&](Constant *P) -> Constant * { - Type *Ty = cast<PointerType>(P->getType())->getElementType(); - if (Constant *FV = ConstantFoldLoadThroughBitcast(Val, Ty, DL)) { - Ptr = P; - return FV; - } - return nullptr; - }; - - Constant *NewVal = - evaluateBitcastFromPtr(CE->getOperand(0), DL, TLI, castValTy); - if (!NewVal) { - LLVM_DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " - "evaluate.\n"); - return false; - } - - Val = NewVal; - LLVM_DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); - } - } - - MutatedMemory[Ptr] = Val; - } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { - InstResult = ConstantExpr::get(BO->getOpcode(), - getVal(BO->getOperand(0)), - getVal(BO->getOperand(1))); - LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " - << *InstResult << "\n"); - } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { - InstResult = ConstantExpr::getCompare(CI->getPredicate(), - getVal(CI->getOperand(0)), - getVal(CI->getOperand(1))); - LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult - << "\n"); - } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { - InstResult = ConstantExpr::getCast(CI->getOpcode(), - getVal(CI->getOperand(0)), - CI->getType()); - LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult - << "\n"); - } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { - InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), - getVal(SI->getOperand(1)), - getVal(SI->getOperand(2))); - LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult - << "\n"); - } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { - InstResult = ConstantExpr::getExtractValue( - getVal(EVI->getAggregateOperand()), EVI->getIndices()); - LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " - << *InstResult << "\n"); - } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { - InstResult = ConstantExpr::getInsertValue( - getVal(IVI->getAggregateOperand()), - getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); - LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " - << *InstResult << "\n"); - } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { - Constant *P = getVal(GEP->getOperand(0)); - SmallVector<Constant*, 8> GEPOps; - for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); - i != e; ++i) - GEPOps.push_back(getVal(*i)); - InstResult = - ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, - cast<GEPOperator>(GEP)->isInBounds()); - LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n"); - } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { - if (!LI->isSimple()) { - LLVM_DEBUG( - dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); - return false; // no volatile/atomic accesses. - } - - Constant *Ptr = getVal(LI->getOperand(0)); - if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) { - Ptr = FoldedPtr; - LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant " - "folding: " - << *Ptr << "\n"); - } - InstResult = ComputeLoadResult(Ptr); - if (!InstResult) { - LLVM_DEBUG( - dbgs() << "Failed to compute load result. Can not evaluate load." - "\n"); - return false; // Could not evaluate load. - } - - LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); - } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { - if (AI->isArrayAllocation()) { - LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); - return false; // Cannot handle array allocs. - } - Type *Ty = AI->getAllocatedType(); - AllocaTmps.push_back(llvm::make_unique<GlobalVariable>( - Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), - AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal, - AI->getType()->getPointerAddressSpace())); - InstResult = AllocaTmps.back().get(); - LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); - } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { - CallSite CS(&*CurInst); - - // Debug info can safely be ignored here. - if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { - LLVM_DEBUG(dbgs() << "Ignoring debug info.\n"); - ++CurInst; - continue; - } - - // Cannot handle inline asm. - if (isa<InlineAsm>(CS.getCalledValue())) { - LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); - return false; - } - - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { - if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { - if (MSI->isVolatile()) { - LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset " - << "intrinsic.\n"); - return false; - } - Constant *Ptr = getVal(MSI->getDest()); - Constant *Val = getVal(MSI->getValue()); - Constant *DestVal = ComputeLoadResult(getVal(Ptr)); - if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { - // This memset is a no-op. - LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n"); - ++CurInst; - continue; - } - } - - if (II->isLifetimeStartOrEnd()) { - LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); - ++CurInst; - continue; - } - - if (II->getIntrinsicID() == Intrinsic::invariant_start) { - // We don't insert an entry into Values, as it doesn't have a - // meaningful return value. - if (!II->use_empty()) { - LLVM_DEBUG(dbgs() - << "Found unused invariant_start. Can't evaluate.\n"); - return false; - } - ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); - Value *PtrArg = getVal(II->getArgOperand(1)); - Value *Ptr = PtrArg->stripPointerCasts(); - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { - Type *ElemTy = GV->getValueType(); - if (!Size->isMinusOne() && - Size->getValue().getLimitedValue() >= - DL.getTypeStoreSize(ElemTy)) { - Invariants.insert(GV); - LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: " - << *GV << "\n"); - } else { - LLVM_DEBUG(dbgs() - << "Found a global var, but can not treat it as an " - "invariant.\n"); - } - } - // Continue even if we do nothing. - ++CurInst; - continue; - } else if (II->getIntrinsicID() == Intrinsic::assume) { - LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n"); - ++CurInst; - continue; - } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { - LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); - ++CurInst; - continue; - } - - LLVM_DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); - return false; - } - - // Resolve function pointers. - SmallVector<Constant *, 8> Formals; - Function *Callee = getCalleeWithFormalArgs(CS, Formals); - if (!Callee || Callee->isInterposable()) { - LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n"); - return false; // Cannot resolve. - } - - if (Callee->isDeclaration()) { - // If this is a function we can constant fold, do it. - if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), - Callee, Formals, TLI)) { - InstResult = castCallResultIfNeeded(CS.getCalledValue(), C); - if (!InstResult) - return false; - LLVM_DEBUG(dbgs() << "Constant folded function call. Result: " - << *InstResult << "\n"); - } else { - LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n"); - return false; - } - } else { - if (Callee->getFunctionType()->isVarArg()) { - LLVM_DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); - return false; - } - - Constant *RetVal = nullptr; - // Execute the call, if successful, use the return value. - ValueStack.emplace_back(); - if (!EvaluateFunction(Callee, RetVal, Formals)) { - LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n"); - return false; - } - ValueStack.pop_back(); - InstResult = castCallResultIfNeeded(CS.getCalledValue(), RetVal); - if (RetVal && !InstResult) - return false; - - if (InstResult) { - LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: " - << *InstResult << "\n\n"); - } else { - LLVM_DEBUG(dbgs() - << "Successfully evaluated function. Result: 0\n\n"); - } - } - } else if (CurInst->isTerminator()) { - LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n"); - - if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { - if (BI->isUnconditional()) { - NextBB = BI->getSuccessor(0); - } else { - ConstantInt *Cond = - dyn_cast<ConstantInt>(getVal(BI->getCondition())); - if (!Cond) return false; // Cannot determine. - - NextBB = BI->getSuccessor(!Cond->getZExtValue()); - } - } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { - ConstantInt *Val = - dyn_cast<ConstantInt>(getVal(SI->getCondition())); - if (!Val) return false; // Cannot determine. - NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); - } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { - Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); - if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) - NextBB = BA->getBasicBlock(); - else - return false; // Cannot determine. - } else if (isa<ReturnInst>(CurInst)) { - NextBB = nullptr; - } else { - // invoke, unwind, resume, unreachable. - LLVM_DEBUG(dbgs() << "Can not handle terminator."); - return false; // Cannot handle this terminator. - } - - // We succeeded at evaluating this block! - LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n"); - return true; - } else { - // Did not know how to evaluate this! - LLVM_DEBUG( - dbgs() << "Failed to evaluate block due to unhandled instruction." - "\n"); - return false; - } - - if (!CurInst->use_empty()) { - if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI)) - InstResult = FoldedInstResult; - - setVal(&*CurInst, InstResult); - } - - // If we just processed an invoke, we finished evaluating the block. - if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { - NextBB = II->getNormalDest(); - LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); - return true; - } - - // Advance program counter. - ++CurInst; - } -} - -/// Evaluate a call to function F, returning true if successful, false if we -/// can't evaluate it. ActualArgs contains the formal arguments for the -/// function. -bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, - const SmallVectorImpl<Constant*> &ActualArgs) { - // Check to see if this function is already executing (recursion). If so, - // bail out. TODO: we might want to accept limited recursion. - if (is_contained(CallStack, F)) - return false; - - CallStack.push_back(F); - - // Initialize arguments to the incoming values specified. - unsigned ArgNo = 0; - for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; - ++AI, ++ArgNo) - setVal(&*AI, ActualArgs[ArgNo]); - - // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, - // we can only evaluate any one basic block at most once. This set keeps - // track of what we have executed so we can detect recursive cases etc. - SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; - - // CurBB - The current basic block we're evaluating. - BasicBlock *CurBB = &F->front(); - - BasicBlock::iterator CurInst = CurBB->begin(); - - while (true) { - BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. - LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); - - if (!EvaluateBlock(CurInst, NextBB)) - return false; - - if (!NextBB) { - // Successfully running until there's no next block means that we found - // the return. Fill it the return value and pop the call stack. - ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); - if (RI->getNumOperands()) - RetVal = getVal(RI->getOperand(0)); - CallStack.pop_back(); - return true; - } - - // Okay, we succeeded in evaluating this control flow. See if we have - // executed the new block before. If so, we have a looping function, - // which we cannot evaluate in reasonable time. - if (!ExecutedBlocks.insert(NextBB).second) - return false; // looped! - - // Okay, we have never been in this block before. Check to see if there - // are any PHI nodes. If so, evaluate them with information about where - // we came from. - PHINode *PN = nullptr; - for (CurInst = NextBB->begin(); - (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) - setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); - - // Advance to the next block. - CurBB = NextBB; - } -} |
