summaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp852
1 files changed, 0 insertions, 852 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp b/contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp
deleted file mode 100644
index bdf24d80bd17..000000000000
--- a/contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp
+++ /dev/null
@@ -1,852 +0,0 @@
-//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------===//
-//
-// This file implements the PredicateInfo class.
-//
-//===----------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/PredicateInfo.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/CFG.h"
-#include "llvm/IR/AssemblyAnnotationWriter.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/DebugCounter.h"
-#include "llvm/Support/FormattedStream.h"
-#include "llvm/Transforms/Utils.h"
-#include <algorithm>
-#define DEBUG_TYPE "predicateinfo"
-using namespace llvm;
-using namespace PatternMatch;
-using namespace llvm::PredicateInfoClasses;
-
-INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
- "PredicateInfo Printer", false, false)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
- "PredicateInfo Printer", false, false)
-static cl::opt<bool> VerifyPredicateInfo(
- "verify-predicateinfo", cl::init(false), cl::Hidden,
- cl::desc("Verify PredicateInfo in legacy printer pass."));
-DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
- "Controls which variables are renamed with predicateinfo");
-
-namespace {
-// Given a predicate info that is a type of branching terminator, get the
-// branching block.
-const BasicBlock *getBranchBlock(const PredicateBase *PB) {
- assert(isa<PredicateWithEdge>(PB) &&
- "Only branches and switches should have PHIOnly defs that "
- "require branch blocks.");
- return cast<PredicateWithEdge>(PB)->From;
-}
-
-// Given a predicate info that is a type of branching terminator, get the
-// branching terminator.
-static Instruction *getBranchTerminator(const PredicateBase *PB) {
- assert(isa<PredicateWithEdge>(PB) &&
- "Not a predicate info type we know how to get a terminator from.");
- return cast<PredicateWithEdge>(PB)->From->getTerminator();
-}
-
-// Given a predicate info that is a type of branching terminator, get the
-// edge this predicate info represents
-const std::pair<BasicBlock *, BasicBlock *>
-getBlockEdge(const PredicateBase *PB) {
- assert(isa<PredicateWithEdge>(PB) &&
- "Not a predicate info type we know how to get an edge from.");
- const auto *PEdge = cast<PredicateWithEdge>(PB);
- return std::make_pair(PEdge->From, PEdge->To);
-}
-}
-
-namespace llvm {
-namespace PredicateInfoClasses {
-enum LocalNum {
- // Operations that must appear first in the block.
- LN_First,
- // Operations that are somewhere in the middle of the block, and are sorted on
- // demand.
- LN_Middle,
- // Operations that must appear last in a block, like successor phi node uses.
- LN_Last
-};
-
-// Associate global and local DFS info with defs and uses, so we can sort them
-// into a global domination ordering.
-struct ValueDFS {
- int DFSIn = 0;
- int DFSOut = 0;
- unsigned int LocalNum = LN_Middle;
- // Only one of Def or Use will be set.
- Value *Def = nullptr;
- Use *U = nullptr;
- // Neither PInfo nor EdgeOnly participate in the ordering
- PredicateBase *PInfo = nullptr;
- bool EdgeOnly = false;
-};
-
-// Perform a strict weak ordering on instructions and arguments.
-static bool valueComesBefore(OrderedInstructions &OI, const Value *A,
- const Value *B) {
- auto *ArgA = dyn_cast_or_null<Argument>(A);
- auto *ArgB = dyn_cast_or_null<Argument>(B);
- if (ArgA && !ArgB)
- return true;
- if (ArgB && !ArgA)
- return false;
- if (ArgA && ArgB)
- return ArgA->getArgNo() < ArgB->getArgNo();
- return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B));
-}
-
-// This compares ValueDFS structures, creating OrderedBasicBlocks where
-// necessary to compare uses/defs in the same block. Doing so allows us to walk
-// the minimum number of instructions necessary to compute our def/use ordering.
-struct ValueDFS_Compare {
- OrderedInstructions &OI;
- ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {}
-
- bool operator()(const ValueDFS &A, const ValueDFS &B) const {
- if (&A == &B)
- return false;
- // The only case we can't directly compare them is when they in the same
- // block, and both have localnum == middle. In that case, we have to use
- // comesbefore to see what the real ordering is, because they are in the
- // same basic block.
-
- bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut);
-
- // We want to put the def that will get used for a given set of phi uses,
- // before those phi uses.
- // So we sort by edge, then by def.
- // Note that only phi nodes uses and defs can come last.
- if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
- return comparePHIRelated(A, B);
-
- if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
- return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) <
- std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U);
- return localComesBefore(A, B);
- }
-
- // For a phi use, or a non-materialized def, return the edge it represents.
- const std::pair<BasicBlock *, BasicBlock *>
- getBlockEdge(const ValueDFS &VD) const {
- if (!VD.Def && VD.U) {
- auto *PHI = cast<PHINode>(VD.U->getUser());
- return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
- }
- // This is really a non-materialized def.
- return ::getBlockEdge(VD.PInfo);
- }
-
- // For two phi related values, return the ordering.
- bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
- auto &ABlockEdge = getBlockEdge(A);
- auto &BBlockEdge = getBlockEdge(B);
- // Now sort by block edge and then defs before uses.
- return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U);
- }
-
- // Get the definition of an instruction that occurs in the middle of a block.
- Value *getMiddleDef(const ValueDFS &VD) const {
- if (VD.Def)
- return VD.Def;
- // It's possible for the defs and uses to be null. For branches, the local
- // numbering will say the placed predicaeinfos should go first (IE
- // LN_beginning), so we won't be in this function. For assumes, we will end
- // up here, beause we need to order the def we will place relative to the
- // assume. So for the purpose of ordering, we pretend the def is the assume
- // because that is where we will insert the info.
- if (!VD.U) {
- assert(VD.PInfo &&
- "No def, no use, and no predicateinfo should not occur");
- assert(isa<PredicateAssume>(VD.PInfo) &&
- "Middle of block should only occur for assumes");
- return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
- }
- return nullptr;
- }
-
- // Return either the Def, if it's not null, or the user of the Use, if the def
- // is null.
- const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
- if (Def)
- return cast<Instruction>(Def);
- return cast<Instruction>(U->getUser());
- }
-
- // This performs the necessary local basic block ordering checks to tell
- // whether A comes before B, where both are in the same basic block.
- bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
- auto *ADef = getMiddleDef(A);
- auto *BDef = getMiddleDef(B);
-
- // See if we have real values or uses. If we have real values, we are
- // guaranteed they are instructions or arguments. No matter what, we are
- // guaranteed they are in the same block if they are instructions.
- auto *ArgA = dyn_cast_or_null<Argument>(ADef);
- auto *ArgB = dyn_cast_or_null<Argument>(BDef);
-
- if (ArgA || ArgB)
- return valueComesBefore(OI, ArgA, ArgB);
-
- auto *AInst = getDefOrUser(ADef, A.U);
- auto *BInst = getDefOrUser(BDef, B.U);
- return valueComesBefore(OI, AInst, BInst);
- }
-};
-
-} // namespace PredicateInfoClasses
-
-bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
- const ValueDFS &VDUse) const {
- if (Stack.empty())
- return false;
- // If it's a phi only use, make sure it's for this phi node edge, and that the
- // use is in a phi node. If it's anything else, and the top of the stack is
- // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
- // the defs they must go with so that we can know it's time to pop the stack
- // when we hit the end of the phi uses for a given def.
- if (Stack.back().EdgeOnly) {
- if (!VDUse.U)
- return false;
- auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
- if (!PHI)
- return false;
- // Check edge
- BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
- if (EdgePred != getBranchBlock(Stack.back().PInfo))
- return false;
-
- // Use dominates, which knows how to handle edge dominance.
- return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
- }
-
- return (VDUse.DFSIn >= Stack.back().DFSIn &&
- VDUse.DFSOut <= Stack.back().DFSOut);
-}
-
-void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
- const ValueDFS &VD) {
- while (!Stack.empty() && !stackIsInScope(Stack, VD))
- Stack.pop_back();
-}
-
-// Convert the uses of Op into a vector of uses, associating global and local
-// DFS info with each one.
-void PredicateInfo::convertUsesToDFSOrdered(
- Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
- for (auto &U : Op->uses()) {
- if (auto *I = dyn_cast<Instruction>(U.getUser())) {
- ValueDFS VD;
- // Put the phi node uses in the incoming block.
- BasicBlock *IBlock;
- if (auto *PN = dyn_cast<PHINode>(I)) {
- IBlock = PN->getIncomingBlock(U);
- // Make phi node users appear last in the incoming block
- // they are from.
- VD.LocalNum = LN_Last;
- } else {
- // If it's not a phi node use, it is somewhere in the middle of the
- // block.
- IBlock = I->getParent();
- VD.LocalNum = LN_Middle;
- }
- DomTreeNode *DomNode = DT.getNode(IBlock);
- // It's possible our use is in an unreachable block. Skip it if so.
- if (!DomNode)
- continue;
- VD.DFSIn = DomNode->getDFSNumIn();
- VD.DFSOut = DomNode->getDFSNumOut();
- VD.U = &U;
- DFSOrderedSet.push_back(VD);
- }
- }
-}
-
-// Collect relevant operations from Comparison that we may want to insert copies
-// for.
-void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
- auto *Op0 = Comparison->getOperand(0);
- auto *Op1 = Comparison->getOperand(1);
- if (Op0 == Op1)
- return;
- CmpOperands.push_back(Comparison);
- // Only want real values, not constants. Additionally, operands with one use
- // are only being used in the comparison, which means they will not be useful
- // for us to consider for predicateinfo.
- //
- if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
- CmpOperands.push_back(Op0);
- if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
- CmpOperands.push_back(Op1);
-}
-
-// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
-void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op,
- PredicateBase *PB) {
- OpsToRename.insert(Op);
- auto &OperandInfo = getOrCreateValueInfo(Op);
- AllInfos.push_back(PB);
- OperandInfo.Infos.push_back(PB);
-}
-
-// Process an assume instruction and place relevant operations we want to rename
-// into OpsToRename.
-void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
- SmallPtrSetImpl<Value *> &OpsToRename) {
- // See if we have a comparison we support
- SmallVector<Value *, 8> CmpOperands;
- SmallVector<Value *, 2> ConditionsToProcess;
- CmpInst::Predicate Pred;
- Value *Operand = II->getOperand(0);
- if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
- m_Cmp(Pred, m_Value(), m_Value()))
- .match(II->getOperand(0))) {
- ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
- ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
- ConditionsToProcess.push_back(Operand);
- } else if (isa<CmpInst>(Operand)) {
-
- ConditionsToProcess.push_back(Operand);
- }
- for (auto Cond : ConditionsToProcess) {
- if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
- collectCmpOps(Cmp, CmpOperands);
- // Now add our copy infos for our operands
- for (auto *Op : CmpOperands) {
- auto *PA = new PredicateAssume(Op, II, Cmp);
- addInfoFor(OpsToRename, Op, PA);
- }
- CmpOperands.clear();
- } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
- // Otherwise, it should be an AND.
- assert(BinOp->getOpcode() == Instruction::And &&
- "Should have been an AND");
- auto *PA = new PredicateAssume(BinOp, II, BinOp);
- addInfoFor(OpsToRename, BinOp, PA);
- } else {
- llvm_unreachable("Unknown type of condition");
- }
- }
-}
-
-// Process a block terminating branch, and place relevant operations to be
-// renamed into OpsToRename.
-void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
- SmallPtrSetImpl<Value *> &OpsToRename) {
- BasicBlock *FirstBB = BI->getSuccessor(0);
- BasicBlock *SecondBB = BI->getSuccessor(1);
- SmallVector<BasicBlock *, 2> SuccsToProcess;
- SuccsToProcess.push_back(FirstBB);
- SuccsToProcess.push_back(SecondBB);
- SmallVector<Value *, 2> ConditionsToProcess;
-
- auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
- for (auto *Succ : SuccsToProcess) {
- // Don't try to insert on a self-edge. This is mainly because we will
- // eliminate during renaming anyway.
- if (Succ == BranchBB)
- continue;
- bool TakenEdge = (Succ == FirstBB);
- // For and, only insert on the true edge
- // For or, only insert on the false edge
- if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
- continue;
- PredicateBase *PB =
- new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
- addInfoFor(OpsToRename, Op, PB);
- if (!Succ->getSinglePredecessor())
- EdgeUsesOnly.insert({BranchBB, Succ});
- }
- };
-
- // Match combinations of conditions.
- CmpInst::Predicate Pred;
- bool isAnd = false;
- bool isOr = false;
- SmallVector<Value *, 8> CmpOperands;
- if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
- m_Cmp(Pred, m_Value(), m_Value()))) ||
- match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
- m_Cmp(Pred, m_Value(), m_Value())))) {
- auto *BinOp = cast<BinaryOperator>(BI->getCondition());
- if (BinOp->getOpcode() == Instruction::And)
- isAnd = true;
- else if (BinOp->getOpcode() == Instruction::Or)
- isOr = true;
- ConditionsToProcess.push_back(BinOp->getOperand(0));
- ConditionsToProcess.push_back(BinOp->getOperand(1));
- ConditionsToProcess.push_back(BI->getCondition());
- } else if (isa<CmpInst>(BI->getCondition())) {
- ConditionsToProcess.push_back(BI->getCondition());
- }
- for (auto Cond : ConditionsToProcess) {
- if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
- collectCmpOps(Cmp, CmpOperands);
- // Now add our copy infos for our operands
- for (auto *Op : CmpOperands)
- InsertHelper(Op, isAnd, isOr, Cmp);
- } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
- // This must be an AND or an OR.
- assert((BinOp->getOpcode() == Instruction::And ||
- BinOp->getOpcode() == Instruction::Or) &&
- "Should have been an AND or an OR");
- // The actual value of the binop is not subject to the same restrictions
- // as the comparison. It's either true or false on the true/false branch.
- InsertHelper(BinOp, false, false, BinOp);
- } else {
- llvm_unreachable("Unknown type of condition");
- }
- CmpOperands.clear();
- }
-}
-// Process a block terminating switch, and place relevant operations to be
-// renamed into OpsToRename.
-void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
- SmallPtrSetImpl<Value *> &OpsToRename) {
- Value *Op = SI->getCondition();
- if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
- return;
-
- // Remember how many outgoing edges there are to every successor.
- SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
- for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
- BasicBlock *TargetBlock = SI->getSuccessor(i);
- ++SwitchEdges[TargetBlock];
- }
-
- // Now propagate info for each case value
- for (auto C : SI->cases()) {
- BasicBlock *TargetBlock = C.getCaseSuccessor();
- if (SwitchEdges.lookup(TargetBlock) == 1) {
- PredicateSwitch *PS = new PredicateSwitch(
- Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
- addInfoFor(OpsToRename, Op, PS);
- if (!TargetBlock->getSinglePredecessor())
- EdgeUsesOnly.insert({BranchBB, TargetBlock});
- }
- }
-}
-
-// Build predicate info for our function
-void PredicateInfo::buildPredicateInfo() {
- DT.updateDFSNumbers();
- // Collect operands to rename from all conditional branch terminators, as well
- // as assume statements.
- SmallPtrSet<Value *, 8> OpsToRename;
- for (auto DTN : depth_first(DT.getRootNode())) {
- BasicBlock *BranchBB = DTN->getBlock();
- if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
- if (!BI->isConditional())
- continue;
- // Can't insert conditional information if they all go to the same place.
- if (BI->getSuccessor(0) == BI->getSuccessor(1))
- continue;
- processBranch(BI, BranchBB, OpsToRename);
- } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
- processSwitch(SI, BranchBB, OpsToRename);
- }
- }
- for (auto &Assume : AC.assumptions()) {
- if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
- if (DT.isReachableFromEntry(II->getParent()))
- processAssume(II, II->getParent(), OpsToRename);
- }
- // Now rename all our operations.
- renameUses(OpsToRename);
-}
-
-// Create a ssa_copy declaration with custom mangling, because
-// Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
-// all unnamed types get mangled to the same string. We use the pointer
-// to the type as name here, as it guarantees unique names for different
-// types and we remove the declarations when destroying PredicateInfo.
-// It is a workaround for PR38117, because solving it in a fully general way is
-// tricky (FIXME).
-static Function *getCopyDeclaration(Module *M, Type *Ty) {
- std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
- return cast<Function>(
- M->getOrInsertFunction(Name,
- getType(M->getContext(), Intrinsic::ssa_copy, Ty))
- .getCallee());
-}
-
-// Given the renaming stack, make all the operands currently on the stack real
-// by inserting them into the IR. Return the last operation's value.
-Value *PredicateInfo::materializeStack(unsigned int &Counter,
- ValueDFSStack &RenameStack,
- Value *OrigOp) {
- // Find the first thing we have to materialize
- auto RevIter = RenameStack.rbegin();
- for (; RevIter != RenameStack.rend(); ++RevIter)
- if (RevIter->Def)
- break;
-
- size_t Start = RevIter - RenameStack.rbegin();
- // The maximum number of things we should be trying to materialize at once
- // right now is 4, depending on if we had an assume, a branch, and both used
- // and of conditions.
- for (auto RenameIter = RenameStack.end() - Start;
- RenameIter != RenameStack.end(); ++RenameIter) {
- auto *Op =
- RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
- ValueDFS &Result = *RenameIter;
- auto *ValInfo = Result.PInfo;
- // For edge predicates, we can just place the operand in the block before
- // the terminator. For assume, we have to place it right before the assume
- // to ensure we dominate all of our uses. Always insert right before the
- // relevant instruction (terminator, assume), so that we insert in proper
- // order in the case of multiple predicateinfo in the same block.
- if (isa<PredicateWithEdge>(ValInfo)) {
- IRBuilder<> B(getBranchTerminator(ValInfo));
- Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
- if (empty(IF->users()))
- CreatedDeclarations.insert(IF);
- CallInst *PIC =
- B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
- PredicateMap.insert({PIC, ValInfo});
- Result.Def = PIC;
- } else {
- auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
- assert(PAssume &&
- "Should not have gotten here without it being an assume");
- IRBuilder<> B(PAssume->AssumeInst);
- Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
- if (empty(IF->users()))
- CreatedDeclarations.insert(IF);
- CallInst *PIC = B.CreateCall(IF, Op);
- PredicateMap.insert({PIC, ValInfo});
- Result.Def = PIC;
- }
- }
- return RenameStack.back().Def;
-}
-
-// Instead of the standard SSA renaming algorithm, which is O(Number of
-// instructions), and walks the entire dominator tree, we walk only the defs +
-// uses. The standard SSA renaming algorithm does not really rely on the
-// dominator tree except to order the stack push/pops of the renaming stacks, so
-// that defs end up getting pushed before hitting the correct uses. This does
-// not require the dominator tree, only the *order* of the dominator tree. The
-// complete and correct ordering of the defs and uses, in dominator tree is
-// contained in the DFS numbering of the dominator tree. So we sort the defs and
-// uses into the DFS ordering, and then just use the renaming stack as per
-// normal, pushing when we hit a def (which is a predicateinfo instruction),
-// popping when we are out of the dfs scope for that def, and replacing any uses
-// with top of stack if it exists. In order to handle liveness without
-// propagating liveness info, we don't actually insert the predicateinfo
-// instruction def until we see a use that it would dominate. Once we see such
-// a use, we materialize the predicateinfo instruction in the right place and
-// use it.
-//
-// TODO: Use this algorithm to perform fast single-variable renaming in
-// promotememtoreg and memoryssa.
-void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpSet) {
- // Sort OpsToRename since we are going to iterate it.
- SmallVector<Value *, 8> OpsToRename(OpSet.begin(), OpSet.end());
- auto Comparator = [&](const Value *A, const Value *B) {
- return valueComesBefore(OI, A, B);
- };
- llvm::sort(OpsToRename, Comparator);
- ValueDFS_Compare Compare(OI);
- // Compute liveness, and rename in O(uses) per Op.
- for (auto *Op : OpsToRename) {
- LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
- unsigned Counter = 0;
- SmallVector<ValueDFS, 16> OrderedUses;
- const auto &ValueInfo = getValueInfo(Op);
- // Insert the possible copies into the def/use list.
- // They will become real copies if we find a real use for them, and never
- // created otherwise.
- for (auto &PossibleCopy : ValueInfo.Infos) {
- ValueDFS VD;
- // Determine where we are going to place the copy by the copy type.
- // The predicate info for branches always come first, they will get
- // materialized in the split block at the top of the block.
- // The predicate info for assumes will be somewhere in the middle,
- // it will get materialized in front of the assume.
- if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
- VD.LocalNum = LN_Middle;
- DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
- if (!DomNode)
- continue;
- VD.DFSIn = DomNode->getDFSNumIn();
- VD.DFSOut = DomNode->getDFSNumOut();
- VD.PInfo = PossibleCopy;
- OrderedUses.push_back(VD);
- } else if (isa<PredicateWithEdge>(PossibleCopy)) {
- // If we can only do phi uses, we treat it like it's in the branch
- // block, and handle it specially. We know that it goes last, and only
- // dominate phi uses.
- auto BlockEdge = getBlockEdge(PossibleCopy);
- if (EdgeUsesOnly.count(BlockEdge)) {
- VD.LocalNum = LN_Last;
- auto *DomNode = DT.getNode(BlockEdge.first);
- if (DomNode) {
- VD.DFSIn = DomNode->getDFSNumIn();
- VD.DFSOut = DomNode->getDFSNumOut();
- VD.PInfo = PossibleCopy;
- VD.EdgeOnly = true;
- OrderedUses.push_back(VD);
- }
- } else {
- // Otherwise, we are in the split block (even though we perform
- // insertion in the branch block).
- // Insert a possible copy at the split block and before the branch.
- VD.LocalNum = LN_First;
- auto *DomNode = DT.getNode(BlockEdge.second);
- if (DomNode) {
- VD.DFSIn = DomNode->getDFSNumIn();
- VD.DFSOut = DomNode->getDFSNumOut();
- VD.PInfo = PossibleCopy;
- OrderedUses.push_back(VD);
- }
- }
- }
- }
-
- convertUsesToDFSOrdered(Op, OrderedUses);
- // Here we require a stable sort because we do not bother to try to
- // assign an order to the operands the uses represent. Thus, two
- // uses in the same instruction do not have a strict sort order
- // currently and will be considered equal. We could get rid of the
- // stable sort by creating one if we wanted.
- llvm::stable_sort(OrderedUses, Compare);
- SmallVector<ValueDFS, 8> RenameStack;
- // For each use, sorted into dfs order, push values and replaces uses with
- // top of stack, which will represent the reaching def.
- for (auto &VD : OrderedUses) {
- // We currently do not materialize copy over copy, but we should decide if
- // we want to.
- bool PossibleCopy = VD.PInfo != nullptr;
- if (RenameStack.empty()) {
- LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
- } else {
- LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
- << RenameStack.back().DFSIn << ","
- << RenameStack.back().DFSOut << ")\n");
- }
-
- LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
- << VD.DFSOut << ")\n");
-
- bool ShouldPush = (VD.Def || PossibleCopy);
- bool OutOfScope = !stackIsInScope(RenameStack, VD);
- if (OutOfScope || ShouldPush) {
- // Sync to our current scope.
- popStackUntilDFSScope(RenameStack, VD);
- if (ShouldPush) {
- RenameStack.push_back(VD);
- }
- }
- // If we get to this point, and the stack is empty we must have a use
- // with no renaming needed, just skip it.
- if (RenameStack.empty())
- continue;
- // Skip values, only want to rename the uses
- if (VD.Def || PossibleCopy)
- continue;
- if (!DebugCounter::shouldExecute(RenameCounter)) {
- LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
- continue;
- }
- ValueDFS &Result = RenameStack.back();
-
- // If the possible copy dominates something, materialize our stack up to
- // this point. This ensures every comparison that affects our operation
- // ends up with predicateinfo.
- if (!Result.Def)
- Result.Def = materializeStack(Counter, RenameStack, Op);
-
- LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
- << *VD.U->get() << " in " << *(VD.U->getUser())
- << "\n");
- assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
- "Predicateinfo def should have dominated this use");
- VD.U->set(Result.Def);
- }
- }
-}
-
-PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
- auto OIN = ValueInfoNums.find(Operand);
- if (OIN == ValueInfoNums.end()) {
- // This will grow it
- ValueInfos.resize(ValueInfos.size() + 1);
- // This will use the new size and give us a 0 based number of the info
- auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
- assert(InsertResult.second && "Value info number already existed?");
- return ValueInfos[InsertResult.first->second];
- }
- return ValueInfos[OIN->second];
-}
-
-const PredicateInfo::ValueInfo &
-PredicateInfo::getValueInfo(Value *Operand) const {
- auto OINI = ValueInfoNums.lookup(Operand);
- assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
- assert(OINI < ValueInfos.size() &&
- "Value Info Number greater than size of Value Info Table");
- return ValueInfos[OINI];
-}
-
-PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
- AssumptionCache &AC)
- : F(F), DT(DT), AC(AC), OI(&DT) {
- // Push an empty operand info so that we can detect 0 as not finding one
- ValueInfos.resize(1);
- buildPredicateInfo();
-}
-
-// Remove all declarations we created . The PredicateInfo consumers are
-// responsible for remove the ssa_copy calls created.
-PredicateInfo::~PredicateInfo() {
- // Collect function pointers in set first, as SmallSet uses a SmallVector
- // internally and we have to remove the asserting value handles first.
- SmallPtrSet<Function *, 20> FunctionPtrs;
- for (auto &F : CreatedDeclarations)
- FunctionPtrs.insert(&*F);
- CreatedDeclarations.clear();
-
- for (Function *F : FunctionPtrs) {
- assert(F->user_begin() == F->user_end() &&
- "PredicateInfo consumer did not remove all SSA copies.");
- F->eraseFromParent();
- }
-}
-
-void PredicateInfo::verifyPredicateInfo() const {}
-
-char PredicateInfoPrinterLegacyPass::ID = 0;
-
-PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
- : FunctionPass(ID) {
- initializePredicateInfoPrinterLegacyPassPass(
- *PassRegistry::getPassRegistry());
-}
-
-void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<DominatorTreeWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
-}
-
-// Replace ssa_copy calls created by PredicateInfo with their operand.
-static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
- for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
- Instruction *Inst = &*I++;
- const auto *PI = PredInfo.getPredicateInfoFor(Inst);
- auto *II = dyn_cast<IntrinsicInst>(Inst);
- if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
- continue;
-
- Inst->replaceAllUsesWith(II->getOperand(0));
- Inst->eraseFromParent();
- }
-}
-
-bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
- PredInfo->print(dbgs());
- if (VerifyPredicateInfo)
- PredInfo->verifyPredicateInfo();
-
- replaceCreatedSSACopys(*PredInfo, F);
- return false;
-}
-
-PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- OS << "PredicateInfo for function: " << F.getName() << "\n";
- auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
- PredInfo->print(OS);
-
- replaceCreatedSSACopys(*PredInfo, F);
- return PreservedAnalyses::all();
-}
-
-/// An assembly annotator class to print PredicateInfo information in
-/// comments.
-class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
- friend class PredicateInfo;
- const PredicateInfo *PredInfo;
-
-public:
- PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
-
- virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
- formatted_raw_ostream &OS) {}
-
- virtual void emitInstructionAnnot(const Instruction *I,
- formatted_raw_ostream &OS) {
- if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
- OS << "; Has predicate info\n";
- if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
- OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
- << " Comparison:" << *PB->Condition << " Edge: [";
- PB->From->printAsOperand(OS);
- OS << ",";
- PB->To->printAsOperand(OS);
- OS << "] }\n";
- } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
- OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
- << " Switch:" << *PS->Switch << " Edge: [";
- PS->From->printAsOperand(OS);
- OS << ",";
- PS->To->printAsOperand(OS);
- OS << "] }\n";
- } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
- OS << "; assume predicate info {"
- << " Comparison:" << *PA->Condition << " }\n";
- }
- }
- }
-};
-
-void PredicateInfo::print(raw_ostream &OS) const {
- PredicateInfoAnnotatedWriter Writer(this);
- F.print(OS, &Writer);
-}
-
-void PredicateInfo::dump() const {
- PredicateInfoAnnotatedWriter Writer(this);
- F.print(dbgs(), &Writer);
-}
-
-PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
-
- return PreservedAnalyses::all();
-}
-}