summaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/lld/ELF/InputSection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/lld/ELF/InputSection.cpp')
-rw-r--r--contrib/llvm/tools/lld/ELF/InputSection.cpp850
1 files changed, 850 insertions, 0 deletions
diff --git a/contrib/llvm/tools/lld/ELF/InputSection.cpp b/contrib/llvm/tools/lld/ELF/InputSection.cpp
new file mode 100644
index 000000000000..e87d92aa207c
--- /dev/null
+++ b/contrib/llvm/tools/lld/ELF/InputSection.cpp
@@ -0,0 +1,850 @@
+//===- InputSection.cpp ---------------------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InputSection.h"
+#include "Config.h"
+#include "EhFrame.h"
+#include "Error.h"
+#include "InputFiles.h"
+#include "LinkerScript.h"
+#include "Memory.h"
+#include "OutputSections.h"
+#include "Relocations.h"
+#include "SyntheticSections.h"
+#include "Target.h"
+#include "Thunks.h"
+#include "llvm/Support/Compression.h"
+#include "llvm/Support/Endian.h"
+#include <mutex>
+
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support;
+using namespace llvm::support::endian;
+
+using namespace lld;
+using namespace lld::elf;
+
+// Returns a string to construct an error message.
+template <class ELFT>
+std::string lld::toString(const InputSectionBase<ELFT> *Sec) {
+ return (Sec->getFile()->getName() + ":(" + Sec->Name + ")").str();
+}
+
+template <class ELFT>
+static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File,
+ const typename ELFT::Shdr *Hdr) {
+ if (!File || Hdr->sh_type == SHT_NOBITS)
+ return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size);
+ return check(File->getObj().getSectionContents(Hdr));
+}
+
+template <class ELFT>
+InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
+ uintX_t Flags, uint32_t Type,
+ uintX_t Entsize, uint32_t Link,
+ uint32_t Info, uintX_t Addralign,
+ ArrayRef<uint8_t> Data, StringRef Name,
+ Kind SectionKind)
+ : InputSectionData(SectionKind, Name, Data,
+ !Config->GcSections || !(Flags & SHF_ALLOC)),
+ File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link),
+ Info(Info), Repl(this) {
+ NumRelocations = 0;
+ AreRelocsRela = false;
+
+ // The ELF spec states that a value of 0 means the section has
+ // no alignment constraits.
+ uint64_t V = std::max<uint64_t>(Addralign, 1);
+ if (!isPowerOf2_64(V))
+ fatal(toString(File) + ": section sh_addralign is not a power of 2");
+
+ // We reject object files having insanely large alignments even though
+ // they are allowed by the spec. I think 4GB is a reasonable limitation.
+ // We might want to relax this in the future.
+ if (V > UINT32_MAX)
+ fatal(toString(File) + ": section sh_addralign is too large");
+ Alignment = V;
+
+ // If it is not a mergeable section, overwrite the flag so that the flag
+ // is consistent with the class. This inconsistency could occur when
+ // string merging is disabled using -O0 flag.
+ if (!Config->Relocatable && !isa<MergeInputSection<ELFT>>(this))
+ this->Flags &= ~(SHF_MERGE | SHF_STRINGS);
+}
+
+template <class ELFT>
+InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
+ const Elf_Shdr *Hdr, StringRef Name,
+ Kind SectionKind)
+ : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type,
+ Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info,
+ Hdr->sh_addralign, getSectionContents(File, Hdr), Name,
+ SectionKind) {
+ this->Offset = Hdr->sh_offset;
+}
+
+template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const {
+ if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this))
+ return S->getSize();
+
+ if (auto *D = dyn_cast<InputSection<ELFT>>(this))
+ if (D->getThunksSize() > 0)
+ return D->getThunkOff() + D->getThunksSize();
+
+ return Data.size();
+}
+
+// Returns a string for an error message.
+template <class SectionT> static std::string getName(SectionT *Sec) {
+ return (Sec->getFile()->getName() + ":(" + Sec->Name + ")").str();
+}
+
+template <class ELFT>
+typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) const {
+ switch (kind()) {
+ case Regular:
+ return cast<InputSection<ELFT>>(this)->OutSecOff + Offset;
+ case Synthetic:
+ // For synthetic sections we treat offset -1 as the end of the section.
+ // The same approach is used for synthetic symbols (DefinedSynthetic).
+ return cast<InputSection<ELFT>>(this)->OutSecOff +
+ (Offset == uintX_t(-1) ? getSize() : Offset);
+ case EHFrame:
+ // The file crtbeginT.o has relocations pointing to the start of an empty
+ // .eh_frame that is known to be the first in the link. It does that to
+ // identify the start of the output .eh_frame.
+ return Offset;
+ case Merge:
+ return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset);
+ }
+ llvm_unreachable("invalid section kind");
+}
+
+template <class ELFT> bool InputSectionBase<ELFT>::isCompressed() const {
+ return (Flags & SHF_COMPRESSED) || Name.startswith(".zdebug");
+}
+
+// Returns compressed data and its size when uncompressed.
+template <class ELFT>
+std::pair<ArrayRef<uint8_t>, uint64_t>
+InputSectionBase<ELFT>::getElfCompressedData(ArrayRef<uint8_t> Data) {
+ // Compressed section with Elf_Chdr is the ELF standard.
+ if (Data.size() < sizeof(Elf_Chdr))
+ fatal(toString(this) + ": corrupted compressed section");
+ auto *Hdr = reinterpret_cast<const Elf_Chdr *>(Data.data());
+ if (Hdr->ch_type != ELFCOMPRESS_ZLIB)
+ fatal(toString(this) + ": unsupported compression type");
+ return {Data.slice(sizeof(*Hdr)), Hdr->ch_size};
+}
+
+// Returns compressed data and its size when uncompressed.
+template <class ELFT>
+std::pair<ArrayRef<uint8_t>, uint64_t>
+InputSectionBase<ELFT>::getRawCompressedData(ArrayRef<uint8_t> Data) {
+ // Compressed sections without Elf_Chdr header contain this header
+ // instead. This is a GNU extension.
+ struct ZlibHeader {
+ char Magic[4]; // Should be "ZLIB"
+ char Size[8]; // Uncompressed size in big-endian
+ };
+
+ if (Data.size() < sizeof(ZlibHeader))
+ fatal(toString(this) + ": corrupted compressed section");
+ auto *Hdr = reinterpret_cast<const ZlibHeader *>(Data.data());
+ if (memcmp(Hdr->Magic, "ZLIB", 4))
+ fatal(toString(this) + ": broken ZLIB-compressed section");
+ return {Data.slice(sizeof(*Hdr)), read64be(Hdr->Size)};
+}
+
+// Uncompress section contents. Note that this function is called
+// from parallel_for_each, so it must be thread-safe.
+template <class ELFT> void InputSectionBase<ELFT>::uncompress() {
+ if (!zlib::isAvailable())
+ fatal(toString(this) +
+ ": build lld with zlib to enable compressed sections support");
+
+ // This section is compressed. Here we decompress it. Ideally, all
+ // compressed sections have SHF_COMPRESSED bit and their contents
+ // start with headers of Elf_Chdr type. However, sections whose
+ // names start with ".zdebug_" don't have the bit and contains a raw
+ // ZLIB-compressed data (which is a bad thing because section names
+ // shouldn't be significant in ELF.) We need to be able to read both.
+ ArrayRef<uint8_t> Buf; // Compressed data
+ size_t Size; // Uncompressed size
+ if (Flags & SHF_COMPRESSED)
+ std::tie(Buf, Size) = getElfCompressedData(Data);
+ else
+ std::tie(Buf, Size) = getRawCompressedData(Data);
+
+ // Uncompress Buf.
+ char *OutputBuf;
+ {
+ static std::mutex Mu;
+ std::lock_guard<std::mutex> Lock(Mu);
+ OutputBuf = BAlloc.Allocate<char>(Size);
+ }
+ if (zlib::uncompress(toStringRef(Buf), OutputBuf, Size) != zlib::StatusOK)
+ fatal(toString(this) + ": error while uncompressing section");
+ Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size);
+}
+
+template <class ELFT>
+typename ELFT::uint
+InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) const {
+ return getOffset(Sym.Value);
+}
+
+template <class ELFT>
+InputSectionBase<ELFT> *InputSectionBase<ELFT>::getLinkOrderDep() const {
+ if ((Flags & SHF_LINK_ORDER) && Link != 0)
+ return getFile()->getSections()[Link];
+ return nullptr;
+}
+
+// Returns a source location string. Used to construct an error message.
+template <class ELFT>
+std::string InputSectionBase<ELFT>::getLocation(typename ELFT::uint Offset) {
+ // First check if we can get desired values from debugging information.
+ std::string LineInfo = File->getLineInfo(this, Offset);
+ if (!LineInfo.empty())
+ return LineInfo;
+
+ // File->SourceFile contains STT_FILE symbol that contains a
+ // source file name. If it's missing, we use an object file name.
+ std::string SrcFile = File->SourceFile;
+ if (SrcFile.empty())
+ SrcFile = toString(File);
+
+ // Find a function symbol that encloses a given location.
+ for (SymbolBody *B : File->getSymbols())
+ if (auto *D = dyn_cast<DefinedRegular<ELFT>>(B))
+ if (D->Section == this && D->Type == STT_FUNC)
+ if (D->Value <= Offset && Offset < D->Value + D->Size)
+ return SrcFile + ":(function " + toString(*D) + ")";
+
+ // If there's no symbol, print out the offset in the section.
+ return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
+}
+
+template <class ELFT>
+InputSection<ELFT>::InputSection() : InputSectionBase<ELFT>() {}
+
+template <class ELFT>
+InputSection<ELFT>::InputSection(uintX_t Flags, uint32_t Type,
+ uintX_t Addralign, ArrayRef<uint8_t> Data,
+ StringRef Name, Kind K)
+ : InputSectionBase<ELFT>(nullptr, Flags, Type,
+ /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign,
+ Data, Name, K) {}
+
+template <class ELFT>
+InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F,
+ const Elf_Shdr *Header, StringRef Name)
+ : InputSectionBase<ELFT>(F, Header, Name, Base::Regular) {}
+
+template <class ELFT>
+bool InputSection<ELFT>::classof(const InputSectionData *S) {
+ return S->kind() == Base::Regular || S->kind() == Base::Synthetic;
+}
+
+template <class ELFT>
+InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() {
+ assert(this->Type == SHT_RELA || this->Type == SHT_REL);
+ ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections();
+ return Sections[this->Info];
+}
+
+template <class ELFT> void InputSection<ELFT>::addThunk(const Thunk<ELFT> *T) {
+ Thunks.push_back(T);
+}
+
+template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const {
+ return this->Data.size();
+}
+
+template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const {
+ uint64_t Total = 0;
+ for (const Thunk<ELFT> *T : Thunks)
+ Total += T->size();
+ return Total;
+}
+
+// This is used for -r. We can't use memcpy to copy relocations because we need
+// to update symbol table offset and section index for each relocation. So we
+// copy relocations one by one.
+template <class ELFT>
+template <class RelTy>
+void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
+ InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection();
+
+ for (const RelTy &Rel : Rels) {
+ uint32_t Type = Rel.getType(Config->Mips64EL);
+ SymbolBody &Body = this->File->getRelocTargetSym(Rel);
+
+ Elf_Rela *P = reinterpret_cast<Elf_Rela *>(Buf);
+ Buf += sizeof(RelTy);
+
+ if (Config->Rela)
+ P->r_addend = getAddend<ELFT>(Rel);
+ P->r_offset = RelocatedSection->getOffset(Rel.r_offset);
+ P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL);
+ }
+}
+
+static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A,
+ uint32_t P) {
+ switch (Type) {
+ case R_ARM_THM_JUMP11:
+ return P + 2;
+ case R_ARM_CALL:
+ case R_ARM_JUMP24:
+ case R_ARM_PC24:
+ case R_ARM_PLT32:
+ case R_ARM_PREL31:
+ case R_ARM_THM_JUMP19:
+ case R_ARM_THM_JUMP24:
+ return P + 4;
+ case R_ARM_THM_CALL:
+ // We don't want an interworking BLX to ARM
+ return P + 5;
+ default:
+ return A;
+ }
+}
+
+static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
+ uint64_t P) {
+ switch (Type) {
+ case R_AARCH64_CALL26:
+ case R_AARCH64_CONDBR19:
+ case R_AARCH64_JUMP26:
+ case R_AARCH64_TSTBR14:
+ return P + 4;
+ default:
+ return A;
+ }
+}
+
+template <class ELFT>
+static typename ELFT::uint
+getRelocTargetVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P,
+ const SymbolBody &Body, RelExpr Expr) {
+ switch (Expr) {
+ case R_HINT:
+ case R_TLSDESC_CALL:
+ llvm_unreachable("cannot relocate hint relocs");
+ case R_TLSLD:
+ return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize();
+ case R_TLSLD_PC:
+ return In<ELFT>::Got->getTlsIndexVA() + A - P;
+ case R_THUNK_ABS:
+ return Body.getThunkVA<ELFT>() + A;
+ case R_THUNK_PC:
+ case R_THUNK_PLT_PC:
+ return Body.getThunkVA<ELFT>() + A - P;
+ case R_PPC_TOC:
+ return getPPC64TocBase() + A;
+ case R_TLSGD:
+ return In<ELFT>::Got->getGlobalDynOffset(Body) + A -
+ In<ELFT>::Got->getSize();
+ case R_TLSGD_PC:
+ return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P;
+ case R_TLSDESC:
+ return In<ELFT>::Got->getGlobalDynAddr(Body) + A;
+ case R_TLSDESC_PAGE:
+ return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) -
+ getAArch64Page(P);
+ case R_PLT:
+ return Body.getPltVA<ELFT>() + A;
+ case R_PLT_PC:
+ case R_PPC_PLT_OPD:
+ return Body.getPltVA<ELFT>() + A - P;
+ case R_SIZE:
+ return Body.getSize<ELFT>() + A;
+ case R_GOTREL:
+ return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA();
+ case R_GOTREL_FROM_END:
+ return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() -
+ In<ELFT>::Got->getSize();
+ case R_RELAX_TLS_GD_TO_IE_END:
+ case R_GOT_FROM_END:
+ return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize();
+ case R_RELAX_TLS_GD_TO_IE_ABS:
+ case R_GOT:
+ return Body.getGotVA<ELFT>() + A;
+ case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
+ case R_GOT_PAGE_PC:
+ return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P);
+ case R_RELAX_TLS_GD_TO_IE:
+ case R_GOT_PC:
+ return Body.getGotVA<ELFT>() + A - P;
+ case R_GOTONLY_PC:
+ return In<ELFT>::Got->getVA() + A - P;
+ case R_GOTONLY_PC_FROM_END:
+ return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize();
+ case R_RELAX_TLS_LD_TO_LE:
+ case R_RELAX_TLS_IE_TO_LE:
+ case R_RELAX_TLS_GD_TO_LE:
+ case R_TLS:
+ // A weak undefined TLS symbol resolves to the base of the TLS
+ // block, i.e. gets a value of zero. If we pass --gc-sections to
+ // lld and .tbss is not referenced, it gets reclaimed and we don't
+ // create a TLS program header. Therefore, we resolve this
+ // statically to zero.
+ if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) &&
+ Body.symbol()->isWeak())
+ return 0;
+ if (Target->TcbSize)
+ return Body.getVA<ELFT>(A) +
+ alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align);
+ return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz;
+ case R_RELAX_TLS_GD_TO_LE_NEG:
+ case R_NEG_TLS:
+ return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A);
+ case R_ABS:
+ case R_RELAX_GOT_PC_NOPIC:
+ return Body.getVA<ELFT>(A);
+ case R_GOT_OFF:
+ return Body.getGotOffset<ELFT>() + A;
+ case R_MIPS_GOT_LOCAL_PAGE:
+ // If relocation against MIPS local symbol requires GOT entry, this entry
+ // should be initialized by 'page address'. This address is high 16-bits
+ // of sum the symbol's value and the addend.
+ return In<ELFT>::MipsGot->getVA() +
+ In<ELFT>::MipsGot->getPageEntryOffset(Body, A) -
+ In<ELFT>::MipsGot->getGp();
+ case R_MIPS_GOT_OFF:
+ case R_MIPS_GOT_OFF32:
+ // In case of MIPS if a GOT relocation has non-zero addend this addend
+ // should be applied to the GOT entry content not to the GOT entry offset.
+ // That is why we use separate expression type.
+ return In<ELFT>::MipsGot->getVA() +
+ In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) -
+ In<ELFT>::MipsGot->getGp();
+ case R_MIPS_GOTREL:
+ return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp();
+ case R_MIPS_TLSGD:
+ return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
+ In<ELFT>::MipsGot->getGlobalDynOffset(Body) -
+ In<ELFT>::MipsGot->getGp();
+ case R_MIPS_TLSLD:
+ return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
+ In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp();
+ case R_PPC_OPD: {
+ uint64_t SymVA = Body.getVA<ELFT>(A);
+ // If we have an undefined weak symbol, we might get here with a symbol
+ // address of zero. That could overflow, but the code must be unreachable,
+ // so don't bother doing anything at all.
+ if (!SymVA)
+ return 0;
+ if (Out<ELF64BE>::Opd) {
+ // If this is a local call, and we currently have the address of a
+ // function-descriptor, get the underlying code address instead.
+ uint64_t OpdStart = Out<ELF64BE>::Opd->Addr;
+ uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->Size;
+ bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd;
+ if (InOpd)
+ SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]);
+ }
+ return SymVA - P;
+ }
+ case R_PC:
+ if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) {
+ // On ARM and AArch64 a branch to an undefined weak resolves to the
+ // next instruction, otherwise the place.
+ if (Config->EMachine == EM_ARM)
+ return getARMUndefinedRelativeWeakVA(Type, A, P);
+ if (Config->EMachine == EM_AARCH64)
+ return getAArch64UndefinedRelativeWeakVA(Type, A, P);
+ }
+ case R_RELAX_GOT_PC:
+ return Body.getVA<ELFT>(A) - P;
+ case R_PLT_PAGE_PC:
+ case R_PAGE_PC:
+ if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
+ return getAArch64Page(A);
+ return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P);
+ }
+ llvm_unreachable("Invalid expression");
+}
+
+// This function applies relocations to sections without SHF_ALLOC bit.
+// Such sections are never mapped to memory at runtime. Debug sections are
+// an example. Relocations in non-alloc sections are much easier to
+// handle than in allocated sections because it will never need complex
+// treatement such as GOT or PLT (because at runtime no one refers them).
+// So, we handle relocations for non-alloc sections directly in this
+// function as a performance optimization.
+template <class ELFT>
+template <class RelTy>
+void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
+ for (const RelTy &Rel : Rels) {
+ uint32_t Type = Rel.getType(Config->Mips64EL);
+ uintX_t Offset = this->getOffset(Rel.r_offset);
+ uint8_t *BufLoc = Buf + Offset;
+ uintX_t Addend = getAddend<ELFT>(Rel);
+ if (!RelTy::IsRela)
+ Addend += Target->getImplicitAddend(BufLoc, Type);
+
+ SymbolBody &Sym = this->File->getRelocTargetSym(Rel);
+ if (Target->getRelExpr(Type, Sym) != R_ABS) {
+ error(this->getLocation(Offset) + ": has non-ABS reloc");
+ return;
+ }
+
+ uintX_t AddrLoc = this->OutSec->Addr + Offset;
+ uint64_t SymVA = 0;
+ if (!Sym.isTls() || Out<ELFT>::TlsPhdr)
+ SymVA = SignExtend64<sizeof(uintX_t) * 8>(
+ getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS));
+ Target->relocateOne(BufLoc, Type, SymVA);
+ }
+}
+
+template <class ELFT>
+void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) {
+ // scanReloc function in Writer.cpp constructs Relocations
+ // vector only for SHF_ALLOC'ed sections. For other sections,
+ // we handle relocations directly here.
+ auto *IS = dyn_cast<InputSection<ELFT>>(this);
+ if (IS && !(IS->Flags & SHF_ALLOC)) {
+ if (IS->AreRelocsRela)
+ IS->relocateNonAlloc(Buf, IS->relas());
+ else
+ IS->relocateNonAlloc(Buf, IS->rels());
+ return;
+ }
+
+ const unsigned Bits = sizeof(uintX_t) * 8;
+ for (const Relocation &Rel : Relocations) {
+ uintX_t Offset = getOffset(Rel.Offset);
+ uint8_t *BufLoc = Buf + Offset;
+ uint32_t Type = Rel.Type;
+ uintX_t A = Rel.Addend;
+
+ uintX_t AddrLoc = OutSec->Addr + Offset;
+ RelExpr Expr = Rel.Expr;
+ uint64_t TargetVA = SignExtend64<Bits>(
+ getRelocTargetVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, Expr));
+
+ switch (Expr) {
+ case R_RELAX_GOT_PC:
+ case R_RELAX_GOT_PC_NOPIC:
+ Target->relaxGot(BufLoc, TargetVA);
+ break;
+ case R_RELAX_TLS_IE_TO_LE:
+ Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
+ break;
+ case R_RELAX_TLS_LD_TO_LE:
+ Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
+ break;
+ case R_RELAX_TLS_GD_TO_LE:
+ case R_RELAX_TLS_GD_TO_LE_NEG:
+ Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
+ break;
+ case R_RELAX_TLS_GD_TO_IE:
+ case R_RELAX_TLS_GD_TO_IE_ABS:
+ case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
+ case R_RELAX_TLS_GD_TO_IE_END:
+ Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
+ break;
+ case R_PPC_PLT_OPD:
+ // Patch a nop (0x60000000) to a ld.
+ if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000)
+ write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1)
+ // fallthrough
+ default:
+ Target->relocateOne(BufLoc, Type, TargetVA);
+ break;
+ }
+ }
+}
+
+template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) {
+ if (this->Type == SHT_NOBITS)
+ return;
+
+ if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) {
+ S->writeTo(Buf + OutSecOff);
+ return;
+ }
+
+ // If -r is given, then an InputSection may be a relocation section.
+ if (this->Type == SHT_RELA) {
+ copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rela>());
+ return;
+ }
+ if (this->Type == SHT_REL) {
+ copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rel>());
+ return;
+ }
+
+ // Copy section contents from source object file to output file.
+ ArrayRef<uint8_t> Data = this->Data;
+ memcpy(Buf + OutSecOff, Data.data(), Data.size());
+
+ // Iterate over all relocation sections that apply to this section.
+ uint8_t *BufEnd = Buf + OutSecOff + Data.size();
+ this->relocate(Buf, BufEnd);
+
+ // The section might have a data/code generated by the linker and need
+ // to be written after the section. Usually these are thunks - small piece
+ // of code used to jump between "incompatible" functions like PIC and non-PIC
+ // or if the jump target too far and its address does not fit to the short
+ // jump istruction.
+ if (!Thunks.empty()) {
+ Buf += OutSecOff + getThunkOff();
+ for (const Thunk<ELFT> *T : Thunks) {
+ T->writeTo(Buf);
+ Buf += T->size();
+ }
+ }
+}
+
+template <class ELFT>
+void InputSection<ELFT>::replace(InputSection<ELFT> *Other) {
+ this->Alignment = std::max(this->Alignment, Other->Alignment);
+ Other->Repl = this->Repl;
+ Other->Live = false;
+}
+
+template <class ELFT>
+EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F,
+ const Elf_Shdr *Header, StringRef Name)
+ : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::EHFrame) {
+ // Mark .eh_frame sections as live by default because there are
+ // usually no relocations that point to .eh_frames. Otherwise,
+ // the garbage collector would drop all .eh_frame sections.
+ this->Live = true;
+}
+
+template <class ELFT>
+bool EhInputSection<ELFT>::classof(const InputSectionData *S) {
+ return S->kind() == InputSectionBase<ELFT>::EHFrame;
+}
+
+// Returns the index of the first relocation that points to a region between
+// Begin and Begin+Size.
+template <class IntTy, class RelTy>
+static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
+ unsigned &RelocI) {
+ // Start search from RelocI for fast access. That works because the
+ // relocations are sorted in .eh_frame.
+ for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
+ const RelTy &Rel = Rels[RelocI];
+ if (Rel.r_offset < Begin)
+ continue;
+
+ if (Rel.r_offset < Begin + Size)
+ return RelocI;
+ return -1;
+ }
+ return -1;
+}
+
+// .eh_frame is a sequence of CIE or FDE records.
+// This function splits an input section into records and returns them.
+template <class ELFT> void EhInputSection<ELFT>::split() {
+ // Early exit if already split.
+ if (!this->Pieces.empty())
+ return;
+
+ if (this->NumRelocations) {
+ if (this->AreRelocsRela)
+ split(this->relas());
+ else
+ split(this->rels());
+ return;
+ }
+ split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr));
+}
+
+template <class ELFT>
+template <class RelTy>
+void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) {
+ ArrayRef<uint8_t> Data = this->Data;
+ unsigned RelI = 0;
+ for (size_t Off = 0, End = Data.size(); Off != End;) {
+ size_t Size = readEhRecordSize<ELFT>(this, Off);
+ this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
+ // The empty record is the end marker.
+ if (Size == 4)
+ break;
+ Off += Size;
+ }
+}
+
+static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) {
+ // Optimize the common case.
+ StringRef S((const char *)A.data(), A.size());
+ if (EntSize == 1)
+ return S.find(0);
+
+ for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
+ const char *B = S.begin() + I;
+ if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
+ return I;
+ }
+ return StringRef::npos;
+}
+
+// Split SHF_STRINGS section. Such section is a sequence of
+// null-terminated strings.
+template <class ELFT>
+void MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data,
+ size_t EntSize) {
+ size_t Off = 0;
+ bool IsAlloc = this->Flags & SHF_ALLOC;
+ while (!Data.empty()) {
+ size_t End = findNull(Data, EntSize);
+ if (End == StringRef::npos)
+ fatal(toString(this) + ": string is not null terminated");
+ size_t Size = End + EntSize;
+ Pieces.emplace_back(Off, !IsAlloc);
+ Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size))));
+ Data = Data.slice(Size);
+ Off += Size;
+ }
+}
+
+// Split non-SHF_STRINGS section. Such section is a sequence of
+// fixed size records.
+template <class ELFT>
+void MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data,
+ size_t EntSize) {
+ size_t Size = Data.size();
+ assert((Size % EntSize) == 0);
+ bool IsAlloc = this->Flags & SHF_ALLOC;
+ for (unsigned I = 0, N = Size; I != N; I += EntSize) {
+ Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize))));
+ Pieces.emplace_back(I, !IsAlloc);
+ }
+}
+
+template <class ELFT>
+MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F,
+ const Elf_Shdr *Header,
+ StringRef Name)
+ : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::Merge) {}
+
+// This function is called after we obtain a complete list of input sections
+// that need to be linked. This is responsible to split section contents
+// into small chunks for further processing.
+//
+// Note that this function is called from parallel_for_each. This must be
+// thread-safe (i.e. no memory allocation from the pools).
+template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() {
+ ArrayRef<uint8_t> Data = this->Data;
+ uintX_t EntSize = this->Entsize;
+ if (this->Flags & SHF_STRINGS)
+ splitStrings(Data, EntSize);
+ else
+ splitNonStrings(Data, EntSize);
+
+ if (Config->GcSections && (this->Flags & SHF_ALLOC))
+ for (uintX_t Off : LiveOffsets)
+ this->getSectionPiece(Off)->Live = true;
+}
+
+template <class ELFT>
+bool MergeInputSection<ELFT>::classof(const InputSectionData *S) {
+ return S->kind() == InputSectionBase<ELFT>::Merge;
+}
+
+// Do binary search to get a section piece at a given input offset.
+template <class ELFT>
+SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) {
+ auto *This = static_cast<const MergeInputSection<ELFT> *>(this);
+ return const_cast<SectionPiece *>(This->getSectionPiece(Offset));
+}
+
+template <class It, class T, class Compare>
+static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
+ size_t Size = std::distance(First, Last);
+ assert(Size != 0);
+ while (Size != 1) {
+ size_t H = Size / 2;
+ const It MI = First + H;
+ Size -= H;
+ First = Comp(Value, *MI) ? First : First + H;
+ }
+ return Comp(Value, *First) ? First : First + 1;
+}
+
+template <class ELFT>
+const SectionPiece *
+MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const {
+ uintX_t Size = this->Data.size();
+ if (Offset >= Size)
+ fatal(toString(this) + ": entry is past the end of the section");
+
+ // Find the element this offset points to.
+ auto I = fastUpperBound(
+ Pieces.begin(), Pieces.end(), Offset,
+ [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; });
+ --I;
+ return &*I;
+}
+
+// Returns the offset in an output section for a given input offset.
+// Because contents of a mergeable section is not contiguous in output,
+// it is not just an addition to a base output offset.
+template <class ELFT>
+typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const {
+ // Initialize OffsetMap lazily.
+ std::call_once(InitOffsetMap, [&] {
+ OffsetMap.reserve(Pieces.size());
+ for (const SectionPiece &Piece : Pieces)
+ OffsetMap[Piece.InputOff] = Piece.OutputOff;
+ });
+
+ // Find a string starting at a given offset.
+ auto It = OffsetMap.find(Offset);
+ if (It != OffsetMap.end())
+ return It->second;
+
+ if (!this->Live)
+ return 0;
+
+ // If Offset is not at beginning of a section piece, it is not in the map.
+ // In that case we need to search from the original section piece vector.
+ const SectionPiece &Piece = *this->getSectionPiece(Offset);
+ if (!Piece.Live)
+ return 0;
+
+ uintX_t Addend = Offset - Piece.InputOff;
+ return Piece.OutputOff + Addend;
+}
+
+template class elf::InputSectionBase<ELF32LE>;
+template class elf::InputSectionBase<ELF32BE>;
+template class elf::InputSectionBase<ELF64LE>;
+template class elf::InputSectionBase<ELF64BE>;
+
+template class elf::InputSection<ELF32LE>;
+template class elf::InputSection<ELF32BE>;
+template class elf::InputSection<ELF64LE>;
+template class elf::InputSection<ELF64BE>;
+
+template class elf::EhInputSection<ELF32LE>;
+template class elf::EhInputSection<ELF32BE>;
+template class elf::EhInputSection<ELF64LE>;
+template class elf::EhInputSection<ELF64BE>;
+
+template class elf::MergeInputSection<ELF32LE>;
+template class elf::MergeInputSection<ELF32BE>;
+template class elf::MergeInputSection<ELF64LE>;
+template class elf::MergeInputSection<ELF64BE>;
+
+template std::string lld::toString(const InputSectionBase<ELF32LE> *);
+template std::string lld::toString(const InputSectionBase<ELF32BE> *);
+template std::string lld::toString(const InputSectionBase<ELF64LE> *);
+template std::string lld::toString(const InputSectionBase<ELF64BE> *);