summaryrefslogtreecommitdiff
path: root/crypto/openssl/doc/crypto/lhash.pod
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/openssl/doc/crypto/lhash.pod')
-rw-r--r--crypto/openssl/doc/crypto/lhash.pod155
1 files changed, 155 insertions, 0 deletions
diff --git a/crypto/openssl/doc/crypto/lhash.pod b/crypto/openssl/doc/crypto/lhash.pod
new file mode 100644
index 000000000000..af2c9a7102d3
--- /dev/null
+++ b/crypto/openssl/doc/crypto/lhash.pod
@@ -0,0 +1,155 @@
+=pod
+
+=head1 NAME
+
+lh_new, lh_free, lh_insert, lh_delete, lh_retrieve, lh_doall,
+lh_doall_arg, lh_error - dynamic hash table
+
+=head1 SYNOPSIS
+
+ #include <openssl/lhash.h>
+
+ LHASH *lh_new(unsigned long (*hash)(/*void *a*/),
+ int (*compare)(/*void *a,void *b*/));
+ void lh_free(LHASH *table);
+
+ void *lh_insert(LHASH *table, void *data);
+ void *lh_delete(LHASH *table, void *data);
+ void *lh_retrieve(LHASH *table, void *data);
+
+ void lh_doall(LHASH *table, void (*func)(/*void *b*/));
+ void lh_doall_arg(LHASH *table, void (*func)(/*void *a,void *b*/),
+ void *arg);
+
+ int lh_error(LHASH *table);
+
+=head1 DESCRIPTION
+
+This library implements dynamic hash tables. The hash table entries
+can be arbitrary structures. Usually they consist of key and value
+fields.
+
+lh_new() creates a new B<LHASH> structure. B<hash> takes a pointer to
+the structure and returns an unsigned long hash value of its key
+field. The hash value is normally truncated to a power of 2, so make
+sure that your hash function returns well mixed low order
+bits. B<compare> takes two arguments, and returns 0 if their keys are
+equal, non-zero otherwise.
+
+lh_free() frees the B<LHASH> structure B<table>. Allocated hash table
+entries will not be freed; consider using lh_doall() to deallocate any
+remaining entries in the hash table.
+
+lh_insert() inserts the structure pointed to by B<data> into B<table>.
+If there already is an entry with the same key, the old value is
+replaced. Note that lh_insert() stores pointers, the data are not
+copied.
+
+lh_delete() deletes an entry from B<table>.
+
+lh_retrieve() looks up an entry in B<table>. Normally, B<data> is
+a structure with the key field(s) set; the function will return a
+pointer to a fully populated structure.
+
+lh_doall() will, for every entry in the hash table, call B<func> with
+the data item as parameters.
+This function can be quite useful when used as follows:
+ void cleanup(STUFF *a)
+ { STUFF_free(a); }
+ lh_doall(hash,cleanup);
+ lh_free(hash);
+This can be used to free all the entries. lh_free() then cleans up the
+'buckets' that point to nothing. When doing this, be careful if you
+delete entries from the hash table in B<func>: the table may decrease
+in size, moving item that you are currently on down lower in the hash
+table. This could cause some entries to be skipped. The best
+solution to this problem is to set hash-E<gt>down_load=0 before you
+start. This will stop the hash table ever being decreased in size.
+
+lh_doall_arg() is the same as lh_doall() except that B<func> will
+be called with B<arg> as the second argument.
+
+lh_error() can be used to determine if an error occurred in the last
+operation. lh_error() is a macro.
+
+=head1 RETURN VALUES
+
+lh_new() returns B<NULL> on error, otherwise a pointer to the new
+B<LHASH> structure.
+
+When a hash table entry is replaced, lh_insert() returns the value
+being replaced. B<NULL> is returned on normal operation and on error.
+
+lh_delete() returns the entry being deleted. B<NULL> is returned if
+there is no such value in the hash table.
+
+lh_retrieve() returns the hash table entry if it has been found,
+B<NULL> otherwise.
+
+lh_error() returns 1 if an error occurred in the last operation, 0
+otherwise.
+
+lh_free(), lh_doall() and lh_doall_arg() return no values.
+
+=head1 BUGS
+
+lh_insert() returns B<NULL> both for success and error.
+
+=head1 INTERNALS
+
+The following description is based on the SSLeay documentation:
+
+The B<lhash> library implements a hash table described in the
+I<Communications of the ACM> in 1991. What makes this hash table
+different is that as the table fills, the hash table is increased (or
+decreased) in size via Realloc(). When a 'resize' is done, instead of
+all hashes being redistributed over twice as many 'buckets', one
+bucket is split. So when an 'expand' is done, there is only a minimal
+cost to redistribute some values. Subsequent inserts will cause more
+single 'bucket' redistributions but there will never be a sudden large
+cost due to redistributing all the 'buckets'.
+
+The state for a particular hash table is kept in the B<LHASH> structure.
+The decision to increase or decrease the hash table size is made
+depending on the 'load' of the hash table. The load is the number of
+items in the hash table divided by the size of the hash table. The
+default values are as follows. If (hash->up_load E<lt> load) =E<gt>
+expand. if (hash-E<gt>down_load E<gt> load) =E<gt> contract. The
+B<up_load> has a default value of 1 and B<down_load> has a default value
+of 2. These numbers can be modified by the application by just
+playing with the B<up_load> and B<down_load> variables. The 'load' is
+kept in a form which is multiplied by 256. So
+hash-E<gt>up_load=8*256; will cause a load of 8 to be set.
+
+If you are interested in performance the field to watch is
+num_comp_calls. The hash library keeps track of the 'hash' value for
+each item so when a lookup is done, the 'hashes' are compared, if
+there is a match, then a full compare is done, and
+hash-E<gt>num_comp_calls is incremented. If num_comp_calls is not equal
+to num_delete plus num_retrieve it means that your hash function is
+generating hashes that are the same for different values. It is
+probably worth changing your hash function if this is the case because
+even if your hash table has 10 items in a 'bucket', it can be searched
+with 10 B<unsigned long> compares and 10 linked list traverses. This
+will be much less expensive that 10 calls to you compare function.
+
+lh_strhash() is a demo string hashing function:
+
+ unsigned long lh_strhash(const char *c);
+
+Since the B<LHASH> routines would normally be passed structures, this
+routine would not normally be passed to lh_new(), rather it would be
+used in the function passed to lh_new().
+
+=head1 SEE ALSO
+
+L<lh_stats(3)|lh_stats(3)>
+
+=head1 HISTORY
+
+The B<lhash> library is available in all versions of SSLeay and OpenSSL.
+lh_error() was added in SSLeay 0.9.1b.
+
+This manpage is derived from the SSLeay documentation.
+
+=cut