diff options
Diffstat (limited to 'gold/dynobj.cc')
| -rw-r--r-- | gold/dynobj.cc | 1647 | 
1 files changed, 1647 insertions, 0 deletions
| diff --git a/gold/dynobj.cc b/gold/dynobj.cc new file mode 100644 index 000000000000..1bd5a85e4392 --- /dev/null +++ b/gold/dynobj.cc @@ -0,0 +1,1647 @@ +// dynobj.cc -- dynamic object support for gold + +#include "gold.h" + +#include <vector> +#include <cstring> + +#include "elfcpp.h" +#include "symtab.h" +#include "dynobj.h" + +namespace gold +{ + +// Class Dynobj. + +// Return the string to use in a DT_NEEDED entry. + +const char* +Dynobj::soname() const +{ +  if (!this->soname_.empty()) +    return this->soname_.c_str(); +  return this->name().c_str(); +} + +// Class Sized_dynobj. + +template<int size, bool big_endian> +Sized_dynobj<size, big_endian>::Sized_dynobj( +    const std::string& name, +    Input_file* input_file, +    off_t offset, +    const elfcpp::Ehdr<size, big_endian>& ehdr) +  : Dynobj(name, input_file, offset), +    elf_file_(this, ehdr) +{ +} + +// Set up the object. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::setup( +    const elfcpp::Ehdr<size, big_endian>& ehdr) +{ +  this->set_target(ehdr.get_e_machine(), size, big_endian, +		   ehdr.get_e_ident()[elfcpp::EI_OSABI], +		   ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]); + +  const unsigned int shnum = this->elf_file_.shnum(); +  this->set_shnum(shnum); +} + +// Find the SHT_DYNSYM section and the various version sections, and +// the dynamic section, given the section headers. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::find_dynsym_sections( +    const unsigned char* pshdrs, +    unsigned int* pdynsym_shndx, +    unsigned int* pversym_shndx, +    unsigned int* pverdef_shndx, +    unsigned int* pverneed_shndx, +    unsigned int* pdynamic_shndx) +{ +  *pdynsym_shndx = -1U; +  *pversym_shndx = -1U; +  *pverdef_shndx = -1U; +  *pverneed_shndx = -1U; +  *pdynamic_shndx = -1U; + +  const unsigned int shnum = this->shnum(); +  const unsigned char* p = pshdrs; +  for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size) +    { +      typename This::Shdr shdr(p); + +      unsigned int* pi; +      switch (shdr.get_sh_type()) +	{ +	case elfcpp::SHT_DYNSYM: +	  pi = pdynsym_shndx; +	  break; +	case elfcpp::SHT_GNU_versym: +	  pi = pversym_shndx; +	  break; +	case elfcpp::SHT_GNU_verdef: +	  pi = pverdef_shndx; +	  break; +	case elfcpp::SHT_GNU_verneed: +	  pi = pverneed_shndx; +	  break; +	case elfcpp::SHT_DYNAMIC: +	  pi = pdynamic_shndx; +	  break; +	default: +	  pi = NULL; +	  break; +	} + +      if (pi == NULL) +	continue; + +      if (*pi != -1U) +	{ +	  fprintf(stderr, +		  _("%s: %s: unexpected duplicate type %u section: %u, %u\n"), +		  program_name, this->name().c_str(), shdr.get_sh_type(), +		  *pi, i); +	  gold_exit(false); +	} + +      *pi = i; +    } +} + +// Read the contents of section SHNDX.  PSHDRS points to the section +// headers.  TYPE is the expected section type.  LINK is the expected +// section link.  Store the data in *VIEW and *VIEW_SIZE.  The +// section's sh_info field is stored in *VIEW_INFO. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::read_dynsym_section( +    const unsigned char* pshdrs, +    unsigned int shndx, +    elfcpp::SHT type, +    unsigned int link, +    File_view** view, +    off_t* view_size, +    unsigned int* view_info) +{ +  if (shndx == -1U) +    { +      *view = NULL; +      *view_size = 0; +      *view_info = 0; +      return; +    } + +  typename This::Shdr shdr(pshdrs + shndx * This::shdr_size); + +  gold_assert(shdr.get_sh_type() == type); + +  if (shdr.get_sh_link() != link) +    { +      fprintf(stderr, +	      _("%s: %s: unexpected link in section %u header: %u != %u\n"), +	      program_name, this->name().c_str(), shndx, +	      shdr.get_sh_link(), link); +      gold_exit(false); +    } + +  *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size()); +  *view_size = shdr.get_sh_size(); +  *view_info = shdr.get_sh_info(); +} + +// Set the soname field if this shared object has a DT_SONAME tag. +// PSHDRS points to the section headers.  DYNAMIC_SHNDX is the section +// index of the SHT_DYNAMIC section.  STRTAB_SHNDX, STRTAB, and +// STRTAB_SIZE are the section index and contents of a string table +// which may be the one associated with the SHT_DYNAMIC section. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::set_soname(const unsigned char* pshdrs, +					   unsigned int dynamic_shndx, +					   unsigned int strtab_shndx, +					   const unsigned char* strtabu, +					   off_t strtab_size) +{ +  typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size); +  gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC); + +  const off_t dynamic_size = dynamicshdr.get_sh_size(); +  const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(), +						 dynamic_size); + +  const unsigned int link = dynamicshdr.get_sh_link(); +  if (link != strtab_shndx) +    { +      if (link >= this->shnum()) +	{ +	  fprintf(stderr, +		  _("%s: %s: DYNAMIC section %u link out of range: %u\n"), +		  program_name, this->name().c_str(), +		  dynamic_shndx, link); +	  gold_exit(false); +	} + +      typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size); +      if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) +	{ +	  fprintf(stderr, +		  _("%s: %s: DYNAMIC section %u link %u is not a strtab\n"), +		  program_name, this->name().c_str(), +		  dynamic_shndx, link); +	  gold_exit(false); +	} + +      strtab_size = strtabshdr.get_sh_size(); +      strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size); +    } + +  for (const unsigned char* p = pdynamic; +       p < pdynamic + dynamic_size; +       p += This::dyn_size) +    { +      typename This::Dyn dyn(p); + +      if (dyn.get_d_tag() == elfcpp::DT_SONAME) +	{ +	  off_t val = dyn.get_d_val(); +	  if (val >= strtab_size) +	    { +	      fprintf(stderr, +		      _("%s: %s: DT_SONAME value out of range: " +			"%lld >= %lld\n"), +		      program_name, this->name().c_str(), +		      static_cast<long long>(val), +		      static_cast<long long>(strtab_size)); +	      gold_exit(false); +	    } + +	  const char* strtab = reinterpret_cast<const char*>(strtabu); +	  this->set_soname_string(strtab + val); +	  return; +	} + +      if (dyn.get_d_tag() == elfcpp::DT_NULL) +	return; +    } + +  fprintf(stderr, _("%s: %s: missing DT_NULL in dynamic segment\n"), +	  program_name, this->name().c_str()); +  gold_exit(false); +} + +// Read the symbols and sections from a dynamic object.  We read the +// dynamic symbols, not the normal symbols. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd) +{ +  this->read_section_data(&this->elf_file_, sd); + +  const unsigned char* const pshdrs = sd->section_headers->data(); + +  unsigned int dynsym_shndx; +  unsigned int versym_shndx; +  unsigned int verdef_shndx; +  unsigned int verneed_shndx; +  unsigned int dynamic_shndx; +  this->find_dynsym_sections(pshdrs, &dynsym_shndx, &versym_shndx, +			     &verdef_shndx, &verneed_shndx, &dynamic_shndx); + +  unsigned int strtab_shndx = -1U; + +  if (dynsym_shndx == -1U) +    { +      sd->symbols = NULL; +      sd->symbols_size = 0; +      sd->symbol_names = NULL; +      sd->symbol_names_size = 0; +    } +  else +    { +      // Get the dynamic symbols. +      typename This::Shdr dynsymshdr(pshdrs + dynsym_shndx * This::shdr_size); +      gold_assert(dynsymshdr.get_sh_type() == elfcpp::SHT_DYNSYM); + +      sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(), +					   dynsymshdr.get_sh_size()); +      sd->symbols_size = dynsymshdr.get_sh_size(); + +      // Get the symbol names. +      strtab_shndx = dynsymshdr.get_sh_link(); +      if (strtab_shndx >= this->shnum()) +	{ +	  fprintf(stderr, +		  _("%s: %s: invalid dynamic symbol table name index: %u\n"), +		  program_name, this->name().c_str(), strtab_shndx); +	  gold_exit(false); +	} +      typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); +      if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) +	{ +	  fprintf(stderr, +		  _("%s: %s: dynamic symbol table name section " +		    "has wrong type: %u\n"), +		  program_name, this->name().c_str(), +		  static_cast<unsigned int>(strtabshdr.get_sh_type())); +	  gold_exit(false); +	} + +      sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(), +						strtabshdr.get_sh_size()); +      sd->symbol_names_size = strtabshdr.get_sh_size(); + +      // Get the version information. + +      unsigned int dummy; +      this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym, +				dynsym_shndx, &sd->versym, &sd->versym_size, +				&dummy); + +      // We require that the version definition and need section link +      // to the same string table as the dynamic symbol table.  This +      // is not a technical requirement, but it always happens in +      // practice.  We could change this if necessary. + +      this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef, +				strtab_shndx, &sd->verdef, &sd->verdef_size, +				&sd->verdef_info); + +      this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed, +				strtab_shndx, &sd->verneed, &sd->verneed_size, +				&sd->verneed_info); +    } + +  // Read the SHT_DYNAMIC section to find whether this shared object +  // has a DT_SONAME tag.  This doesn't really have anything to do +  // with reading the symbols, but this is a convenient place to do +  // it. +  if (dynamic_shndx != -1U) +    this->set_soname(pshdrs, dynamic_shndx, strtab_shndx, +		     (sd->symbol_names == NULL +		      ? NULL +		      : sd->symbol_names->data()), +		     sd->symbol_names_size); +} + +// Lay out the input sections for a dynamic object.  We don't want to +// include sections from a dynamic object, so all that we actually do +// here is check for .gnu.warning sections. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::do_layout(const General_options&, +					  Symbol_table* symtab, +					  Layout*, +					  Read_symbols_data* sd) +{ +  const unsigned int shnum = this->shnum(); +  if (shnum == 0) +    return; + +  // Get the section headers. +  const unsigned char* pshdrs = sd->section_headers->data(); + +  // Get the section names. +  const unsigned char* pnamesu = sd->section_names->data(); +  const char* pnames = reinterpret_cast<const char*>(pnamesu); + +  // Skip the first, dummy, section. +  pshdrs += This::shdr_size; +  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) +    { +      typename This::Shdr shdr(pshdrs); + +      if (shdr.get_sh_name() >= sd->section_names_size) +	{ +	  fprintf(stderr, +		  _("%s: %s: bad section name offset for section %u: %lu\n"), +		  program_name, this->name().c_str(), i, +		  static_cast<unsigned long>(shdr.get_sh_name())); +	  gold_exit(false); +	} + +      const char* name = pnames + shdr.get_sh_name(); + +      this->handle_gnu_warning_section(name, i, symtab); +    } + +  delete sd->section_headers; +  sd->section_headers = NULL; +  delete sd->section_names; +  sd->section_names = NULL; +} + +// Add an entry to the vector mapping version numbers to version +// strings. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::set_version_map( +    Version_map* version_map, +    unsigned int ndx, +    const char* name) const +{ +  if (ndx >= version_map->size()) +    version_map->resize(ndx + 1); +  if ((*version_map)[ndx] != NULL) +    { +      fprintf(stderr, _("%s: %s: duplicate definition for version %u\n"), +	      program_name, this->name().c_str(), ndx); +      gold_exit(false); +    } +  (*version_map)[ndx] = name; +} + +// Add mappings for the version definitions to VERSION_MAP. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::make_verdef_map( +    Read_symbols_data* sd, +    Version_map* version_map) const +{ +  if (sd->verdef == NULL) +    return; + +  const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); +  off_t names_size = sd->symbol_names_size; + +  const unsigned char* pverdef = sd->verdef->data(); +  off_t verdef_size = sd->verdef_size; +  const unsigned int count = sd->verdef_info; + +  const unsigned char* p = pverdef; +  for (unsigned int i = 0; i < count; ++i) +    { +      elfcpp::Verdef<size, big_endian> verdef(p); + +      if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT) +	{ +	  fprintf(stderr, _("%s: %s: unexpected verdef version %u\n"), +		  program_name, this->name().c_str(), verdef.get_vd_version()); +	  gold_exit(false); +	} + +      const unsigned int vd_ndx = verdef.get_vd_ndx(); + +      // The GNU linker clears the VERSYM_HIDDEN bit.  I'm not +      // sure why. + +      // The first Verdaux holds the name of this version.  Subsequent +      // ones are versions that this one depends upon, which we don't +      // care about here. +      const unsigned int vd_cnt = verdef.get_vd_cnt(); +      if (vd_cnt < 1) +	{ +	  fprintf(stderr, _("%s: %s: verdef vd_cnt field too small: %u\n"), +		  program_name, this->name().c_str(), vd_cnt); +	  gold_exit(false); +	} + +      const unsigned int vd_aux = verdef.get_vd_aux(); +      if ((p - pverdef) + vd_aux >= verdef_size) +	{ +	  fprintf(stderr, +		  _("%s: %s: verdef vd_aux field out of range: %u\n"), +		  program_name, this->name().c_str(), vd_aux); +	  gold_exit(false); +	} + +      const unsigned char* pvda = p + vd_aux; +      elfcpp::Verdaux<size, big_endian> verdaux(pvda); + +      const unsigned int vda_name = verdaux.get_vda_name(); +      if (vda_name >= names_size) +	{ +	  fprintf(stderr, +		  _("%s: %s: verdaux vda_name field out of range: %u\n"), +		  program_name, this->name().c_str(), vda_name); +	  gold_exit(false); +	} + +      this->set_version_map(version_map, vd_ndx, names + vda_name); + +      const unsigned int vd_next = verdef.get_vd_next(); +      if ((p - pverdef) + vd_next >= verdef_size) +	{ +	  fprintf(stderr, +		  _("%s: %s: verdef vd_next field out of range: %u\n"), +		  program_name, this->name().c_str(), vd_next); +	  gold_exit(false); +	} + +      p += vd_next; +    } +} + +// Add mappings for the required versions to VERSION_MAP. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::make_verneed_map( +    Read_symbols_data* sd, +    Version_map* version_map) const +{ +  if (sd->verneed == NULL) +    return; + +  const char* names = reinterpret_cast<const char*>(sd->symbol_names->data()); +  off_t names_size = sd->symbol_names_size; + +  const unsigned char* pverneed = sd->verneed->data(); +  const off_t verneed_size = sd->verneed_size; +  const unsigned int count = sd->verneed_info; + +  const unsigned char* p = pverneed; +  for (unsigned int i = 0; i < count; ++i) +    { +      elfcpp::Verneed<size, big_endian> verneed(p); + +      if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT) +	{ +	  fprintf(stderr, _("%s: %s: unexpected verneed version %u\n"), +		  program_name, this->name().c_str(), +		  verneed.get_vn_version()); +	  gold_exit(false); +	} + +      const unsigned int vn_aux = verneed.get_vn_aux(); + +      if ((p - pverneed) + vn_aux >= verneed_size) +	{ +	  fprintf(stderr, +		  _("%s: %s: verneed vn_aux field out of range: %u\n"), +		  program_name, this->name().c_str(), vn_aux); +	  gold_exit(false); +	} + +      const unsigned int vn_cnt = verneed.get_vn_cnt(); +      const unsigned char* pvna = p + vn_aux; +      for (unsigned int j = 0; j < vn_cnt; ++j) +	{ +	  elfcpp::Vernaux<size, big_endian> vernaux(pvna); + +	  const unsigned int vna_name = vernaux.get_vna_name(); +	  if (vna_name >= names_size) +	    { +	      fprintf(stderr, +		      _("%s: %s: vernaux vna_name field " +			"out of range: %u\n"), +		      program_name, this->name().c_str(), vna_name); +	      gold_exit(false); +	    } + +	  this->set_version_map(version_map, vernaux.get_vna_other(), +				names + vna_name); + +	  const unsigned int vna_next = vernaux.get_vna_next(); +	  if ((pvna - pverneed) + vna_next >= verneed_size) +	    { +	      fprintf(stderr, +		      _("%s: %s: verneed vna_next field " +			"out of range: %u\n"), +		      program_name, this->name().c_str(), vna_next); +	      gold_exit(false); +	    } + +	  pvna += vna_next; +	} + +      const unsigned int vn_next = verneed.get_vn_next(); +      if ((p - pverneed) + vn_next >= verneed_size) +	{ +	  fprintf(stderr, +		  _("%s: %s: verneed vn_next field out of range: %u\n"), +		  program_name, this->name().c_str(), vn_next); +	  gold_exit(false); +	} + +      p += vn_next; +    } +} + +// Create a vector mapping version numbers to version strings. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::make_version_map( +    Read_symbols_data* sd, +    Version_map* version_map) const +{ +  if (sd->verdef == NULL && sd->verneed == NULL) +    return; + +  // A guess at the maximum version number we will see.  If this is +  // wrong we will be less efficient but still correct. +  version_map->reserve(sd->verdef_info + sd->verneed_info * 10); + +  this->make_verdef_map(sd, version_map); +  this->make_verneed_map(sd, version_map); +} + +// Add the dynamic symbols to the symbol table. + +template<int size, bool big_endian> +void +Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab, +					       Read_symbols_data* sd) +{ +  if (sd->symbols == NULL) +    { +      gold_assert(sd->symbol_names == NULL); +      gold_assert(sd->versym == NULL && sd->verdef == NULL +		  && sd->verneed == NULL); +      return; +    } + +  const int sym_size = This::sym_size; +  const size_t symcount = sd->symbols_size / sym_size; +  if (symcount * sym_size != sd->symbols_size) +    { +      fprintf(stderr, +	      _("%s: %s: size of dynamic symbols is not " +		"multiple of symbol size\n"), +	      program_name, this->name().c_str()); +      gold_exit(false); +    } + +  Version_map version_map; +  this->make_version_map(sd, &version_map); + +  const char* sym_names = +    reinterpret_cast<const char*>(sd->symbol_names->data()); +  symtab->add_from_dynobj(this, sd->symbols->data(), symcount, +			  sym_names, sd->symbol_names_size, +			  (sd->versym == NULL +			   ? NULL +			   : sd->versym->data()), +			  sd->versym_size, +			  &version_map); + +  delete sd->symbols; +  sd->symbols = NULL; +  delete sd->symbol_names; +  sd->symbol_names = NULL; +  if (sd->versym != NULL) +    { +      delete sd->versym; +      sd->versym = NULL; +    } +  if (sd->verdef != NULL) +    { +      delete sd->verdef; +      sd->verdef = NULL; +    } +  if (sd->verneed != NULL) +    { +      delete sd->verneed; +      sd->verneed = NULL; +    } +} + +// Given a vector of hash codes, compute the number of hash buckets to +// use. + +unsigned int +Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes, +			     bool for_gnu_hash_table) +{ +  // FIXME: Implement optional hash table optimization. + +  // Array used to determine the number of hash table buckets to use +  // based on the number of symbols there are.  If there are fewer +  // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 +  // buckets, fewer than 37 we use 17 buckets, and so forth.  We never +  // use more than 32771 buckets.  This is straight from the old GNU +  // linker. +  static const unsigned int buckets[] = +  { +    1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, +    16411, 32771 +  }; +  const int buckets_count = sizeof buckets / sizeof buckets[0]; + +  unsigned int symcount = hashcodes.size(); +  unsigned int ret = 1; +  for (int i = 0; i < buckets_count; ++i) +    { +      if (symcount < buckets[i]) +	break; +      ret = buckets[i]; +    } + +  if (for_gnu_hash_table && ret < 2) +    ret = 2; + +  return ret; +} + +// The standard ELF hash function.  This hash function must not +// change, as the dynamic linker uses it also. + +uint32_t +Dynobj::elf_hash(const char* name) +{ +  const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); +  uint32_t h = 0; +  unsigned char c; +  while ((c = *nameu++) != '\0') +    { +      h = (h << 4) + c; +      uint32_t g = h & 0xf0000000; +      if (g != 0) +	{ +	  h ^= g >> 24; +	  // The ELF ABI says h &= ~g, but using xor is equivalent in +	  // this case (since g was set from h) and may save one +	  // instruction. +	  h ^= g; +	} +    } +  return h; +} + +// Create a standard ELF hash table, setting *PPHASH and *PHASHLEN. +// DYNSYMS is a vector with all the global dynamic symbols. +// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic +// symbol table. + +void +Dynobj::create_elf_hash_table(const Target* target, +			      const std::vector<Symbol*>& dynsyms, +			      unsigned int local_dynsym_count, +			      unsigned char** pphash, +			      unsigned int* phashlen) +{ +  unsigned int dynsym_count = dynsyms.size(); + +  // Get the hash values for all the symbols. +  std::vector<uint32_t> dynsym_hashvals(dynsym_count); +  for (unsigned int i = 0; i < dynsym_count; ++i) +    dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name()); + +  const unsigned int bucketcount = +    Dynobj::compute_bucket_count(dynsym_hashvals, false); + +  std::vector<uint32_t> bucket(bucketcount); +  std::vector<uint32_t> chain(local_dynsym_count + dynsym_count); + +  for (unsigned int i = 0; i < dynsym_count; ++i) +    { +      unsigned int dynsym_index = dynsyms[i]->dynsym_index(); +      unsigned int bucketpos = dynsym_hashvals[i] % bucketcount; +      chain[dynsym_index] = bucket[bucketpos]; +      bucket[bucketpos] = dynsym_index; +    } + +  unsigned int hashlen = ((2 +			   + bucketcount +			   + local_dynsym_count +			   + dynsym_count) +			  * 4); +  unsigned char* phash = new unsigned char[hashlen]; + +  if (target->is_big_endian()) +    Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash, hashlen); +  else +    Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash, hashlen); + +  *pphash = phash; +  *phashlen = hashlen; +} + +// Fill in an ELF hash table. + +template<bool big_endian> +void +Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket, +				    const std::vector<uint32_t>& chain, +				    unsigned char* phash, +				    unsigned int hashlen) +{ +  unsigned char* p = phash; + +  const unsigned int bucketcount = bucket.size(); +  const unsigned int chaincount = chain.size(); + +  elfcpp::Swap<32, big_endian>::writeval(p, bucketcount); +  p += 4; +  elfcpp::Swap<32, big_endian>::writeval(p, chaincount); +  p += 4; + +  for (unsigned int i = 0; i < bucketcount; ++i) +    { +      elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]); +      p += 4; +    } + +  for (unsigned int i = 0; i < chaincount; ++i) +    { +      elfcpp::Swap<32, big_endian>::writeval(p, chain[i]); +      p += 4; +    } + +  gold_assert(static_cast<unsigned int>(p - phash) == hashlen); +} + +// The hash function used for the GNU hash table.  This hash function +// must not change, as the dynamic linker uses it also. + +uint32_t +Dynobj::gnu_hash(const char* name) +{ +  const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name); +  uint32_t h = 5381; +  unsigned char c; +  while ((c = *nameu++) != '\0') +    h = (h << 5) + h + c; +  return h; +} + +// Create a GNU hash table, setting *PPHASH and *PHASHLEN.  GNU hash +// tables are an extension to ELF which are recognized by the GNU +// dynamic linker.  They are referenced using dynamic tag DT_GNU_HASH. +// TARGET is the target.  DYNSYMS is a vector with all the global +// symbols which will be going into the dynamic symbol table. +// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic +// symbol table. + +void +Dynobj::create_gnu_hash_table(const Target* target, +			      const std::vector<Symbol*>& dynsyms, +			      unsigned int local_dynsym_count, +			      unsigned char** pphash, +			      unsigned int* phashlen) +{ +  const unsigned int count = dynsyms.size(); + +  // Sort the dynamic symbols into two vectors.  Symbols which we do +  // not want to put into the hash table we store into +  // UNHASHED_DYNSYMS.  Symbols which we do want to store we put into +  // HASHED_DYNSYMS.  DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS, +  // and records the hash codes. + +  std::vector<Symbol*> unhashed_dynsyms; +  unhashed_dynsyms.reserve(count); + +  std::vector<Symbol*> hashed_dynsyms; +  hashed_dynsyms.reserve(count); + +  std::vector<uint32_t> dynsym_hashvals; +  dynsym_hashvals.reserve(count); +   +  for (unsigned int i = 0; i < count; ++i) +    { +      Symbol* sym = dynsyms[i]; + +      // FIXME: Should put on unhashed_dynsyms if the symbol is +      // hidden. +      if (sym->is_undefined()) +	unhashed_dynsyms.push_back(sym); +      else +	{ +	  hashed_dynsyms.push_back(sym); +	  dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name())); +	} +    } + +  // Put the unhashed symbols at the start of the global portion of +  // the dynamic symbol table. +  const unsigned int unhashed_count = unhashed_dynsyms.size(); +  unsigned int unhashed_dynsym_index = local_dynsym_count; +  for (unsigned int i = 0; i < unhashed_count; ++i) +    { +      unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index); +      ++unhashed_dynsym_index; +    } + +  // For the actual data generation we call out to a templatized +  // function. +  int size = target->get_size(); +  bool big_endian = target->is_big_endian(); +  if (size == 32) +    { +      if (big_endian) +	Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms, +						      dynsym_hashvals, +						      unhashed_dynsym_index, +						      pphash, +						      phashlen); +      else +	Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms, +						       dynsym_hashvals, +						       unhashed_dynsym_index, +						       pphash, +						       phashlen); +    } +  else if (size == 64) +    { +      if (big_endian) +	Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms, +						      dynsym_hashvals, +						      unhashed_dynsym_index, +						      pphash, +						      phashlen); +      else +	Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms, +						       dynsym_hashvals, +						       unhashed_dynsym_index, +						       pphash, +						       phashlen); +    } +  else +    gold_unreachable(); +} + +// Create the actual data for a GNU hash table.  This is just a copy +// of the code from the old GNU linker. + +template<int size, bool big_endian> +void +Dynobj::sized_create_gnu_hash_table( +    const std::vector<Symbol*>& hashed_dynsyms, +    const std::vector<uint32_t>& dynsym_hashvals, +    unsigned int unhashed_dynsym_count, +    unsigned char** pphash, +    unsigned int* phashlen) +{ +  if (hashed_dynsyms.empty()) +    { +      // Special case for the empty hash table. +      unsigned int hashlen = 5 * 4 + size / 8; +      unsigned char* phash = new unsigned char[hashlen]; +      // One empty bucket. +      elfcpp::Swap<32, big_endian>::writeval(phash, 1); +      // Symbol index above unhashed symbols. +      elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count); +      // One word for bitmask. +      elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1); +      // Only bloom filter. +      elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0); +      // No valid hashes. +      elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0); +      // No hashes in only bucket. +      elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0); + +      *phashlen = hashlen; +      *pphash = phash; + +      return; +    } + +  const unsigned int bucketcount = +    Dynobj::compute_bucket_count(dynsym_hashvals, true); + +  const unsigned int nsyms = hashed_dynsyms.size(); + +  uint32_t maskbitslog2 = 1; +  uint32_t x = nsyms >> 1; +  while (x != 0) +    { +      ++maskbitslog2; +      x >>= 1; +    } +  if (maskbitslog2 < 3) +    maskbitslog2 = 5; +  else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0) +    maskbitslog2 += 3; +  else +    maskbitslog2 += 2; + +  uint32_t shift1; +  if (size == 32) +    shift1 = 5; +  else +    { +      if (maskbitslog2 == 5) +	maskbitslog2 = 6; +      shift1 = 6; +    } +  uint32_t mask = (1U << shift1) - 1U; +  uint32_t shift2 = maskbitslog2; +  uint32_t maskbits = 1U << maskbitslog2; +  uint32_t maskwords = 1U << (maskbitslog2 - shift1); + +  typedef typename elfcpp::Elf_types<size>::Elf_WXword Word; +  std::vector<Word> bitmask(maskwords); +  std::vector<uint32_t> counts(bucketcount); +  std::vector<uint32_t> indx(bucketcount); +  uint32_t symindx = unhashed_dynsym_count; + +  // Count the number of times each hash bucket is used. +  for (unsigned int i = 0; i < nsyms; ++i) +    ++counts[dynsym_hashvals[i] % bucketcount]; + +  unsigned int cnt = symindx; +  for (unsigned int i = 0; i < bucketcount; ++i) +    { +      indx[i] = cnt; +      cnt += counts[i]; +    } + +  unsigned int hashlen = (4 + bucketcount + nsyms) * 4; +  hashlen += maskbits / 8; +  unsigned char* phash = new unsigned char[hashlen]; + +  elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount); +  elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx); +  elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords); +  elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2); + +  unsigned char* p = phash + 16 + maskbits / 8; +  for (unsigned int i = 0; i < bucketcount; ++i) +    { +      if (counts[i] == 0) +	elfcpp::Swap<32, big_endian>::writeval(p, 0); +      else +	elfcpp::Swap<32, big_endian>::writeval(p, indx[i]); +      p += 4; +    } + +  for (unsigned int i = 0; i < nsyms; ++i) +    { +      Symbol* sym = hashed_dynsyms[i]; +      uint32_t hashval = dynsym_hashvals[i]; + +      unsigned int bucket = hashval % bucketcount; +      unsigned int val = ((hashval >> shift1) +			  & ((maskbits >> shift1) - 1)); +      bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask); +      bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask); +      val = hashval & ~ 1U; +      if (counts[bucket] == 1) +	{ +	  // Last element terminates the chain. +	  val |= 1; +	} +      elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4, +					     val); +      --counts[bucket]; + +      sym->set_dynsym_index(indx[bucket]); +      ++indx[bucket]; +    } + +  p = phash + 16; +  for (unsigned int i = 0; i < maskwords; ++i) +    { +      elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]); +      p += size / 8; +    } + +  *phashlen = hashlen; +  *pphash = phash; +} + +// Verdef methods. + +// Write this definition to a buffer for the output section. + +template<int size, bool big_endian> +unsigned char* +Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb +              ACCEPT_SIZE_ENDIAN) const +{ +  const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; +  const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; + +  elfcpp::Verdef_write<size, big_endian> vd(pb); +  vd.set_vd_version(elfcpp::VER_DEF_CURRENT); +  vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0) +		  | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)); +  vd.set_vd_ndx(this->index()); +  vd.set_vd_cnt(1 + this->deps_.size()); +  vd.set_vd_hash(Dynobj::elf_hash(this->name())); +  vd.set_vd_aux(verdef_size); +  vd.set_vd_next(is_last +		 ? 0 +		 : verdef_size + (1 + this->deps_.size()) * verdaux_size); +  pb += verdef_size; + +  elfcpp::Verdaux_write<size, big_endian> vda(pb); +  vda.set_vda_name(dynpool->get_offset(this->name())); +  vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size); +  pb += verdaux_size; + +  Deps::const_iterator p; +  unsigned int i; +  for (p = this->deps_.begin(), i = 0; +       p != this->deps_.end(); +       ++p, ++i) +    { +      elfcpp::Verdaux_write<size, big_endian> vda(pb); +      vda.set_vda_name(dynpool->get_offset(*p)); +      vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size); +      pb += verdaux_size; +    } + +  return pb; +} + +// Verneed methods. + +Verneed::~Verneed() +{ +  for (Need_versions::iterator p = this->need_versions_.begin(); +       p != this->need_versions_.end(); +       ++p) +    delete *p; +} + +// Add a new version to this file reference. + +Verneed_version* +Verneed::add_name(const char* name) +{ +  Verneed_version* vv = new Verneed_version(name); +  this->need_versions_.push_back(vv); +  return vv; +} + +// Set the version indexes starting at INDEX. + +unsigned int +Verneed::finalize(unsigned int index) +{ +  for (Need_versions::iterator p = this->need_versions_.begin(); +       p != this->need_versions_.end(); +       ++p) +    { +      (*p)->set_index(index); +      ++index; +    } +  return index; +} + +// Write this list of referenced versions to a buffer for the output +// section. + +template<int size, bool big_endian> +unsigned char* +Verneed::write(const Stringpool* dynpool, bool is_last, +	       unsigned char* pb ACCEPT_SIZE_ENDIAN) const +{ +  const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; +  const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; + +  elfcpp::Verneed_write<size, big_endian> vn(pb); +  vn.set_vn_version(elfcpp::VER_NEED_CURRENT); +  vn.set_vn_cnt(this->need_versions_.size()); +  vn.set_vn_file(dynpool->get_offset(this->filename())); +  vn.set_vn_aux(verneed_size); +  vn.set_vn_next(is_last +		 ? 0 +		 : verneed_size + this->need_versions_.size() * vernaux_size); +  pb += verneed_size; + +  Need_versions::const_iterator p; +  unsigned int i; +  for (p = this->need_versions_.begin(), i = 0; +       p != this->need_versions_.end(); +       ++p, ++i) +    { +      elfcpp::Vernaux_write<size, big_endian> vna(pb); +      vna.set_vna_hash(Dynobj::elf_hash((*p)->version())); +      // FIXME: We need to sometimes set VER_FLG_WEAK here. +      vna.set_vna_flags(0); +      vna.set_vna_other((*p)->index()); +      vna.set_vna_name(dynpool->get_offset((*p)->version())); +      vna.set_vna_next(i + 1 >= this->need_versions_.size() +		       ? 0 +		       : vernaux_size); +      pb += vernaux_size; +    } + +  return pb; +} + +// Versions methods. + +Versions::~Versions() +{ +  for (Defs::iterator p = this->defs_.begin(); +       p != this->defs_.end(); +       ++p) +    delete *p; + +  for (Needs::iterator p = this->needs_.begin(); +       p != this->needs_.end(); +       ++p) +    delete *p; +} + +// Record version information for a symbol going into the dynamic +// symbol table. + +void +Versions::record_version(const General_options* options, +			 Stringpool* dynpool, const Symbol* sym) +{ +  gold_assert(!this->is_finalized_); +  gold_assert(sym->version() != NULL); + +  Stringpool::Key version_key; +  const char* version = dynpool->add(sym->version(), &version_key); + +  if (!sym->is_from_dynobj()) +    this->add_def(options, sym, version, version_key); +  else +    { +      // This is a version reference. + +      Object* object = sym->object(); +      gold_assert(object->is_dynamic()); +      Dynobj* dynobj = static_cast<Dynobj*>(object); + +      this->add_need(dynpool, dynobj->soname(), version, version_key); +    } +} + +// We've found a symbol SYM defined in version VERSION. + +void +Versions::add_def(const General_options* options, const Symbol* sym, +		  const char* version, Stringpool::Key version_key) +{ +  Key k(version_key, 0); +  Version_base* const vbnull = NULL; +  std::pair<Version_table::iterator, bool> ins = +    this->version_table_.insert(std::make_pair(k, vbnull)); + +  if (!ins.second) +    { +      // We already have an entry for this version. +      Version_base* vb = ins.first->second; + +      // We have now seen a symbol in this version, so it is not +      // weak. +      vb->clear_weak(); + +      // FIXME: When we support version scripts, we will need to +      // check whether this symbol should be forced local. +    } +  else +    { +      // If we are creating a shared object, it is an error to +      // find a definition of a symbol with a version which is not +      // in the version script. +      if (options->is_shared()) +	{ +	  fprintf(stderr, _("%s: symbol %s has undefined version %s\n"), +		  program_name, sym->name(), version); +	  gold_exit(false); +	} + +      // If this is the first version we are defining, first define +      // the base version.  FIXME: Should use soname here when +      // creating a shared object. +      Verdef* vdbase = new Verdef(options->output_file_name(), true, false, +				  true); +      this->defs_.push_back(vdbase); + +      // When creating a regular executable, automatically define +      // a new version. +      Verdef* vd = new Verdef(version, false, false, false); +      this->defs_.push_back(vd); +      ins.first->second = vd; +    } +} + +// Add a reference to version NAME in file FILENAME. + +void +Versions::add_need(Stringpool* dynpool, const char* filename, const char* name, +		   Stringpool::Key name_key) +{ +  Stringpool::Key filename_key; +  filename = dynpool->add(filename, &filename_key); + +  Key k(name_key, filename_key); +  Version_base* const vbnull = NULL; +  std::pair<Version_table::iterator, bool> ins = +    this->version_table_.insert(std::make_pair(k, vbnull)); + +  if (!ins.second) +    { +      // We already have an entry for this filename/version. +      return; +    } + +  // See whether we already have this filename.  We don't expect many +  // version references, so we just do a linear search.  This could be +  // replaced by a hash table. +  Verneed* vn = NULL; +  for (Needs::iterator p = this->needs_.begin(); +       p != this->needs_.end(); +       ++p) +    { +      if ((*p)->filename() == filename) +	{ +	  vn = *p; +	  break; +	} +    } + +  if (vn == NULL) +    { +      // We have a new filename. +      vn = new Verneed(filename); +      this->needs_.push_back(vn); +    } + +  ins.first->second = vn->add_name(name); +} + +// Set the version indexes.  Create a new dynamic version symbol for +// each new version definition. + +unsigned int +Versions::finalize(const Target* target, Symbol_table* symtab, +		   unsigned int dynsym_index, std::vector<Symbol*>* syms) +{ +  gold_assert(!this->is_finalized_); + +  unsigned int vi = 1; + +  for (Defs::iterator p = this->defs_.begin(); +       p != this->defs_.end(); +       ++p) +    { +      (*p)->set_index(vi); +      ++vi; + +      // Create a version symbol if necessary. +      if (!(*p)->is_symbol_created()) +	{ +	  Symbol* vsym = symtab->define_as_constant(target, (*p)->name(), +						    (*p)->name(), 0, 0, +						    elfcpp::STT_OBJECT, +						    elfcpp::STB_GLOBAL, +						    elfcpp::STV_DEFAULT, 0, +						    false); +	  vsym->set_needs_dynsym_entry(); +	  ++dynsym_index; +	  syms->push_back(vsym); +	  // The name is already in the dynamic pool. +	} +    } + +  // Index 1 is used for global symbols. +  if (vi == 1) +    { +      gold_assert(this->defs_.empty()); +      vi = 2; +    } + +  for (Needs::iterator p = this->needs_.begin(); +       p != this->needs_.end(); +       ++p) +    vi = (*p)->finalize(vi); + +  this->is_finalized_ = true; + +  return dynsym_index; +} + +// Return the version index to use for a symbol.  This does two hash +// table lookups: one in DYNPOOL and one in this->version_table_. +// Another approach alternative would be store a pointer in SYM, which +// would increase the size of the symbol table.  Or perhaps we could +// use a hash table from dynamic symbol pointer values to Version_base +// pointers. + +unsigned int +Versions::version_index(const Stringpool* dynpool, const Symbol* sym) const +{ +  Stringpool::Key version_key; +  const char* version = dynpool->find(sym->version(), &version_key); +  gold_assert(version != NULL); + +  Key k; +  if (!sym->is_from_dynobj()) +    k = Key(version_key, 0); +  else +    { +      Object* object = sym->object(); +      gold_assert(object->is_dynamic()); +      Dynobj* dynobj = static_cast<Dynobj*>(object); + +      Stringpool::Key filename_key; +      const char* filename = dynpool->find(dynobj->soname(), &filename_key); +      gold_assert(filename != NULL); + +      k = Key(version_key, filename_key); +    } + +  Version_table::const_iterator p = this->version_table_.find(k); +  gold_assert(p != this->version_table_.end()); + +  return p->second->index(); +} + +// Return an allocated buffer holding the contents of the symbol +// version section. + +template<int size, bool big_endian> +void +Versions::symbol_section_contents(const Stringpool* dynpool, +				  unsigned int local_symcount, +				  const std::vector<Symbol*>& syms, +				  unsigned char** pp, +				  unsigned int* psize +                                  ACCEPT_SIZE_ENDIAN) const +{ +  gold_assert(this->is_finalized_); + +  unsigned int sz = (local_symcount + syms.size()) * 2; +  unsigned char* pbuf = new unsigned char[sz]; + +  for (unsigned int i = 0; i < local_symcount; ++i) +    elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2, +					   elfcpp::VER_NDX_LOCAL); + +  for (std::vector<Symbol*>::const_iterator p = syms.begin(); +       p != syms.end(); +       ++p) +    { +      unsigned int version_index; +      const char* version = (*p)->version(); +      if (version == NULL) +	version_index = elfcpp::VER_NDX_GLOBAL; +      else +	version_index = this->version_index(dynpool, *p); +      elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2, +					     version_index); +    } + +  *pp = pbuf; +  *psize = sz; +} + +// Return an allocated buffer holding the contents of the version +// definition section. + +template<int size, bool big_endian> +void +Versions::def_section_contents(const Stringpool* dynpool, +			       unsigned char** pp, unsigned int* psize, +			       unsigned int* pentries +                               ACCEPT_SIZE_ENDIAN) const +{ +  gold_assert(this->is_finalized_); +  gold_assert(!this->defs_.empty()); + +  const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size; +  const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size; + +  unsigned int sz = 0; +  for (Defs::const_iterator p = this->defs_.begin(); +       p != this->defs_.end(); +       ++p) +    { +      sz += verdef_size + verdaux_size; +      sz += (*p)->count_dependencies() * verdaux_size; +    } + +  unsigned char* pbuf = new unsigned char[sz]; + +  unsigned char* pb = pbuf; +  Defs::const_iterator p; +  unsigned int i; +  for (p = this->defs_.begin(), i = 0; +       p != this->defs_.end(); +       ++p, ++i) +    pb = (*p)->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)( +            dynpool, i + 1 >= this->defs_.size(), pb +            SELECT_SIZE_ENDIAN(size, big_endian)); + +  gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); + +  *pp = pbuf; +  *psize = sz; +  *pentries = this->defs_.size(); +} + +// Return an allocated buffer holding the contents of the version +// reference section. + +template<int size, bool big_endian> +void +Versions::need_section_contents(const Stringpool* dynpool, +				unsigned char** pp, unsigned int *psize, +				unsigned int *pentries +                                ACCEPT_SIZE_ENDIAN) const +{ +  gold_assert(this->is_finalized_); +  gold_assert(!this->needs_.empty()); + +  const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size; +  const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size; + +  unsigned int sz = 0; +  for (Needs::const_iterator p = this->needs_.begin(); +       p != this->needs_.end(); +       ++p) +    { +      sz += verneed_size; +      sz += (*p)->count_versions() * vernaux_size; +    } + +  unsigned char* pbuf = new unsigned char[sz]; + +  unsigned char* pb = pbuf; +  Needs::const_iterator p; +  unsigned int i; +  for (p = this->needs_.begin(), i = 0; +       p != this->needs_.end(); +       ++p, ++i) +    pb = (*p)->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)( +	    dynpool, i + 1 >= this->needs_.size(), pb +            SELECT_SIZE_ENDIAN(size, big_endian)); + +  gold_assert(static_cast<unsigned int>(pb - pbuf) == sz); + +  *pp = pbuf; +  *psize = sz; +  *pentries = this->needs_.size(); +} + +// Instantiate the templates we need.  We could use the configure +// script to restrict this to only the ones for implemented targets. + +template +class Sized_dynobj<32, false>; + +template +class Sized_dynobj<32, true>; + +template +class Sized_dynobj<64, false>; + +template +class Sized_dynobj<64, true>; + +template +void +Versions::symbol_section_contents<32, false>( +    const Stringpool*, +    unsigned int, +    const std::vector<Symbol*>&, +    unsigned char**, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(32, false)) const; + +template +void +Versions::symbol_section_contents<32, true>( +    const Stringpool*, +    unsigned int, +    const std::vector<Symbol*>&, +    unsigned char**, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(32, true)) const; + +template +void +Versions::symbol_section_contents<64, false>( +    const Stringpool*, +    unsigned int, +    const std::vector<Symbol*>&, +    unsigned char**, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(64, false)) const; + +template +void +Versions::symbol_section_contents<64, true>( +    const Stringpool*, +    unsigned int, +    const std::vector<Symbol*>&, +    unsigned char**, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(64, true)) const; + +template +void +Versions::def_section_contents<32, false>( +    const Stringpool*, +    unsigned char**, +    unsigned int*, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(32, false)) const; + +template +void +Versions::def_section_contents<32, true>( +    const Stringpool*, +    unsigned char**, +    unsigned int*, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(32, true)) const; + +template +void +Versions::def_section_contents<64, false>( +    const Stringpool*, +    unsigned char**, +    unsigned int*, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(64, false)) const; + +template +void +Versions::def_section_contents<64, true>( +    const Stringpool*, +    unsigned char**, +    unsigned int*, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(64, true)) const; + +template +void +Versions::need_section_contents<32, false>( +    const Stringpool*, +    unsigned char**, +    unsigned int*, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(32, false)) const; + +template +void +Versions::need_section_contents<32, true>( +    const Stringpool*, +    unsigned char**, +    unsigned int*, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(32, true)) const; + +template +void +Versions::need_section_contents<64, false>( +    const Stringpool*, +    unsigned char**, +    unsigned int*, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(64, false)) const; + +template +void +Versions::need_section_contents<64, true>( +    const Stringpool*, +    unsigned char**, +    unsigned int*, +    unsigned int* +    ACCEPT_SIZE_ENDIAN_EXPLICIT(64, true)) const; + +} // End namespace gold. | 
