summaryrefslogtreecommitdiff
path: root/hal/ar9300/ar9300_eeprom.c
diff options
context:
space:
mode:
Diffstat (limited to 'hal/ar9300/ar9300_eeprom.c')
-rw-r--r--hal/ar9300/ar9300_eeprom.c4522
1 files changed, 4522 insertions, 0 deletions
diff --git a/hal/ar9300/ar9300_eeprom.c b/hal/ar9300/ar9300_eeprom.c
new file mode 100644
index 000000000000..63a5a43acd18
--- /dev/null
+++ b/hal/ar9300/ar9300_eeprom.c
@@ -0,0 +1,4522 @@
+/*
+ * Copyright (c) 2013 Qualcomm Atheros, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
+ * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
+ * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
+ * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
+ * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
+ * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
+ * PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#include "opt_ah.h"
+
+#ifdef AH_SUPPORT_AR9300
+
+#include "ah.h"
+#include "ah_internal.h"
+#include "ah_devid.h"
+#ifdef AH_DEBUG
+#include "ah_desc.h" /* NB: for HAL_PHYERR* */
+#endif
+#include "ar9300/ar9300.h"
+#include "ar9300/ar9300eep.h"
+#include "ar9300/ar9300template_generic.h"
+#include "ar9300/ar9300template_xb112.h"
+#include "ar9300/ar9300template_hb116.h"
+#include "ar9300/ar9300template_xb113.h"
+#include "ar9300/ar9300template_hb112.h"
+#include "ar9300/ar9300template_ap121.h"
+#include "ar9300/ar9300template_osprey_k31.h"
+#include "ar9300/ar9300template_wasp_2.h"
+#include "ar9300/ar9300template_wasp_k31.h"
+#include "ar9300/ar9300template_aphrodite.h"
+#include "ar9300/ar9300reg.h"
+#include "ar9300/ar9300phy.h"
+
+
+
+#if AH_BYTE_ORDER == AH_BIG_ENDIAN
+void ar9300_swap_eeprom(ar9300_eeprom_t *eep);
+void ar9300_eeprom_template_swap(void);
+#endif
+
+static u_int16_t ar9300_eeprom_get_spur_chan(struct ath_hal *ah,
+ u_int16_t spur_chan, HAL_BOOL is_2ghz);
+#ifdef UNUSED
+static inline HAL_BOOL ar9300_fill_eeprom(struct ath_hal *ah);
+static inline HAL_STATUS ar9300_check_eeprom(struct ath_hal *ah);
+#endif
+
+static ar9300_eeprom_t *default9300[] =
+{
+ &ar9300_template_generic,
+ &ar9300_template_xb112,
+ &ar9300_template_hb116,
+ &ar9300_template_hb112,
+ &ar9300_template_xb113,
+ &ar9300_template_ap121,
+ &ar9300_template_wasp_2,
+ &ar9300_template_wasp_k31,
+ &ar9300_template_osprey_k31,
+ &ar9300_template_aphrodite,
+};
+
+/*
+ * Different types of memory where the calibration data might be stored.
+ * All types are searched in ar9300_eeprom_restore()
+ * in the order flash, eeprom, otp.
+ * To disable searching a type, set its parameter to 0.
+ */
+
+/*
+ * This is where we look for the calibration data.
+ * must be set before ath_attach() is called
+ */
+static int calibration_data_try = calibration_data_none;
+static int calibration_data_try_address = 0;
+
+/*
+ * Set the type of memory used to store calibration data.
+ * Used by nart to force reading/writing of a specific type.
+ * The driver can normally allow autodetection
+ * by setting source to calibration_data_none=0.
+ */
+void ar9300_calibration_data_set(struct ath_hal *ah, int32_t source)
+{
+ if (ah != 0) {
+ AH9300(ah)->calibration_data_source = source;
+ } else {
+ calibration_data_try = source;
+ }
+}
+
+int32_t ar9300_calibration_data_get(struct ath_hal *ah)
+{
+ if (ah != 0) {
+ return AH9300(ah)->calibration_data_source;
+ } else {
+ return calibration_data_try;
+ }
+}
+
+/*
+ * Set the address of first byte used to store calibration data.
+ * Used by nart to force reading/writing at a specific address.
+ * The driver can normally allow autodetection by setting size=0.
+ */
+void ar9300_calibration_data_address_set(struct ath_hal *ah, int32_t size)
+{
+ if (ah != 0) {
+ AH9300(ah)->calibration_data_source_address = size;
+ } else {
+ calibration_data_try_address = size;
+ }
+}
+
+int32_t ar9300_calibration_data_address_get(struct ath_hal *ah)
+{
+ if (ah != 0) {
+ return AH9300(ah)->calibration_data_source_address;
+ } else {
+ return calibration_data_try_address;
+ }
+}
+
+/*
+ * This is the template that is loaded if ar9300_eeprom_restore()
+ * can't find valid data in the memory.
+ */
+static int Ar9300_eeprom_template_preference = ar9300_eeprom_template_generic;
+
+void ar9300_eeprom_template_preference(int32_t value)
+{
+ Ar9300_eeprom_template_preference = value;
+}
+
+/*
+ * Install the specified default template.
+ * Overwrites any existing calibration and configuration information in memory.
+ */
+int32_t ar9300_eeprom_template_install(struct ath_hal *ah, int32_t value)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ ar9300_eeprom_t *mptr, *dptr;
+ int mdata_size;
+
+ mptr = &ahp->ah_eeprom;
+ mdata_size = ar9300_eeprom_struct_size();
+ if (mptr != 0) {
+#if 0
+ calibration_data_source = calibration_data_none;
+ calibration_data_source_address = 0;
+#endif
+ dptr = ar9300_eeprom_struct_default_find_by_id(value);
+ if (dptr != 0) {
+ OS_MEMCPY(mptr, dptr, mdata_size);
+ return 0;
+ }
+ }
+ return -1;
+}
+
+static int
+ar9300_eeprom_restore_something(struct ath_hal *ah, ar9300_eeprom_t *mptr,
+ int mdata_size)
+{
+ int it;
+ ar9300_eeprom_t *dptr;
+ int nptr;
+
+ nptr = -1;
+ /*
+ * if we didn't find any blocks in the memory,
+ * put the prefered template in place
+ */
+ if (nptr < 0) {
+ AH9300(ah)->calibration_data_source = calibration_data_none;
+ AH9300(ah)->calibration_data_source_address = 0;
+ dptr = ar9300_eeprom_struct_default_find_by_id(
+ Ar9300_eeprom_template_preference);
+ if (dptr != 0) {
+ OS_MEMCPY(mptr, dptr, mdata_size);
+ nptr = 0;
+ }
+ }
+ /*
+ * if we didn't find the prefered one,
+ * put the normal default template in place
+ */
+ if (nptr < 0) {
+ AH9300(ah)->calibration_data_source = calibration_data_none;
+ AH9300(ah)->calibration_data_source_address = 0;
+ dptr = ar9300_eeprom_struct_default_find_by_id(
+ ar9300_eeprom_template_default);
+ if (dptr != 0) {
+ OS_MEMCPY(mptr, dptr, mdata_size);
+ nptr = 0;
+ }
+ }
+ /*
+ * if we can't find the best template, put any old template in place
+ * presume that newer ones are better, so search backwards
+ */
+ if (nptr < 0) {
+ AH9300(ah)->calibration_data_source = calibration_data_none;
+ AH9300(ah)->calibration_data_source_address = 0;
+ for (it = ar9300_eeprom_struct_default_many() - 1; it >= 0; it--) {
+ dptr = ar9300_eeprom_struct_default(it);
+ if (dptr != 0) {
+ OS_MEMCPY(mptr, dptr, mdata_size);
+ nptr = 0;
+ break;
+ }
+ }
+ }
+ return nptr;
+}
+
+/*
+ * Read 16 bits of data from offset into *data
+ */
+HAL_BOOL
+ar9300_eeprom_read_word(struct ath_hal *ah, u_int off, u_int16_t *data)
+{
+ if (AR_SREV_OSPREY(ah) || AR_SREV_POSEIDON(ah))
+ {
+ (void) OS_REG_READ(ah, AR9300_EEPROM_OFFSET + (off << AR9300_EEPROM_S));
+ if (!ath_hal_wait(ah,
+ AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA),
+ AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS,
+ 0, AH_WAIT_TIMEOUT))
+ {
+ return AH_FALSE;
+ }
+ *data = MS(OS_REG_READ(ah,
+ AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA)), AR_EEPROM_STATUS_DATA_VAL);
+ return AH_TRUE;
+ }
+ else
+ {
+ *data = 0;
+ return AH_FALSE;
+ }
+}
+
+
+HAL_BOOL
+ar9300_otp_read(struct ath_hal *ah, u_int off, u_int32_t *data, HAL_BOOL is_wifi)
+{
+ int time_out = 1000;
+ int status = 0;
+ u_int32_t addr;
+
+ addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah))?
+ OTP_MEM_START_ADDRESS_WASP : OTP_MEM_START_ADDRESS;
+ if (!is_wifi) {
+ addr = BTOTP_MEM_START_ADDRESS;
+ }
+ addr += off * 4; /* OTP is 32 bit addressable */
+ (void) OS_REG_READ(ah, addr);
+
+ addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
+ OTP_STATUS0_OTP_SM_BUSY_WASP : OTP_STATUS0_OTP_SM_BUSY;
+ if (!is_wifi) {
+ addr = BTOTP_STATUS0_OTP_SM_BUSY;
+ }
+ while ((time_out > 0) && (!status)) { /* wait for access complete */
+ /* Read data valid, access not busy, sm not busy */
+ status = ((OS_REG_READ(ah, addr) & 0x7) == 0x4) ? 1 : 0;
+ time_out--;
+ }
+ if (time_out == 0) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Timed out during OTP Status0 validation\n", __func__);
+ return AH_FALSE;
+ }
+
+ addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
+ OTP_STATUS1_EFUSE_READ_DATA_WASP : OTP_STATUS1_EFUSE_READ_DATA;
+ if (!is_wifi) {
+ addr = BTOTP_STATUS1_EFUSE_READ_DATA;
+ }
+ *data = OS_REG_READ(ah, addr);
+ return AH_TRUE;
+}
+
+
+
+
+static HAL_STATUS
+ar9300_flash_map(struct ath_hal *ah)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+#if defined(AR9100) || defined(__NetBSD__)
+ ahp->ah_cal_mem = OS_REMAP(ah, AR9300_EEPROM_START_ADDR, AR9300_EEPROM_MAX);
+#else
+ ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
+ (AR9300_EEPROM_MAX + AR9300_FLASH_CAL_START_OFFSET));
+#endif
+ if (!ahp->ah_cal_mem) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: cannot remap eeprom region \n", __func__);
+ return HAL_EIO;
+ }
+ return HAL_OK;
+}
+
+HAL_BOOL
+ar9300_flash_read(struct ath_hal *ah, u_int off, u_int16_t *data)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+
+ *data = ((u_int16_t *)ahp->ah_cal_mem)[off];
+ return AH_TRUE;
+}
+
+HAL_BOOL
+ar9300_flash_write(struct ath_hal *ah, u_int off, u_int16_t data)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+
+ ((u_int16_t *)ahp->ah_cal_mem)[off] = data;
+ return AH_TRUE;
+}
+
+#ifdef UNUSED
+#endif
+
+HAL_STATUS
+ar9300_eeprom_attach(struct ath_hal *ah)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ ahp->try_dram = 1;
+ ahp->try_eeprom = 1;
+ ahp->try_otp = 1;
+#ifdef ATH_CAL_NAND_FLASH
+ ahp->try_nand = 1;
+#else
+ ahp->try_flash = 1;
+#endif
+ ahp->calibration_data_source = calibration_data_none;
+ ahp->calibration_data_source_address = 0;
+ ahp->calibration_data_try = calibration_data_try;
+ ahp->calibration_data_try_address = 0;
+
+ /*
+ * In case flash will be used for EEPROM. Otherwise ahp->ah_cal_mem
+ * must be set to NULL or the real EEPROM address.
+ */
+ ar9300_flash_map(ah);
+ /*
+ * ###### This function always return NO SPUR.
+ * This is not AH_TRUE for many board designs.
+ * Does anyone use this?
+ */
+ AH_PRIVATE(ah)->ah_eeprom_get_spur_chan = ar9300_eeprom_get_spur_chan;
+
+#ifdef OLDCODE
+ /* XXX Needs to be moved for dynamic selection */
+ ahp->ah_eeprom = *(default9300[ar9300_eeprom_template_default]);
+
+
+ if (AR_SREV_HORNET(ah)) {
+ /* Set default values for Hornet. */
+ ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
+ AR9300_OPFLAGS_11G;
+ ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
+ } else if (AR_SREV_POSEIDON(ah)) {
+ /* Set default values for Poseidon. */
+ ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
+ AR9300_OPFLAGS_11G;
+ ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
+ }
+
+ if (AH_PRIVATE(ah)->ah_config.ath_hal_skip_eeprom_read) {
+ ahp->ah_emu_eeprom = 1;
+ return HAL_OK;
+ }
+
+ ahp->ah_emu_eeprom = 1;
+
+#ifdef UNUSED
+#endif
+
+ if (!ar9300_fill_eeprom(ah)) {
+ return HAL_EIO;
+ }
+
+ return HAL_OK;
+ /* return ar9300_check_eeprom(ah); */
+#else
+ ahp->ah_emu_eeprom = 1;
+
+#if 0
+/*#ifdef MDK_AP*/ /* MDK_AP is defined only in NART AP build */
+ u_int8_t buffer[10];
+ int caldata_check = 0;
+
+ ar9300_calibration_data_read_flash(
+ ah, FLASH_BASE_CALDATA_OFFSET, buffer, 4);
+ printf("flash caldata:: %x\n", buffer[0]);
+ if (buffer[0] != 0xff) {
+ caldata_check = 1;
+ }
+ if (!caldata_check) {
+ ar9300_eeprom_t *mptr;
+ int mdata_size;
+ if (AR_SREV_HORNET(ah)) {
+ /* XXX: For initial testing */
+ mptr = &ahp->ah_eeprom;
+ mdata_size = ar9300_eeprom_struct_size();
+ ahp->ah_eeprom = ar9300_template_ap121;
+ ahp->ah_emu_eeprom = 1;
+ /* need it to let art save in to flash ????? */
+ calibration_data_source = calibration_data_flash;
+ } else if (AR_SREV_WASP(ah)) {
+ /* XXX: For initial testing */
+ ath_hal_printf(ah, " wasp eep attach\n");
+ mptr = &ahp->ah_eeprom;
+ mdata_size = ar9300_eeprom_struct_size();
+ ahp->ah_eeprom = ar9300_template_generic;
+ ahp->ah_eeprom.mac_addr[0] = 0x00;
+ ahp->ah_eeprom.mac_addr[1] = 0x03;
+ ahp->ah_eeprom.mac_addr[2] = 0x7F;
+ ahp->ah_eeprom.mac_addr[3] = 0xBA;
+ ahp->ah_eeprom.mac_addr[4] = 0xD0;
+ ahp->ah_eeprom.mac_addr[5] = 0x00;
+ ahp->ah_emu_eeprom = 1;
+ ahp->ah_eeprom.base_eep_header.txrx_mask = 0x33;
+ ahp->ah_eeprom.base_eep_header.txrxgain = 0x10;
+ /* need it to let art save in to flash ????? */
+ calibration_data_source = calibration_data_flash;
+ }
+ return HAL_OK;
+ }
+#endif
+ if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) {
+ ahp->try_eeprom = 0;
+ }
+
+ if (!ar9300_eeprom_restore(ah)) {
+ return HAL_EIO;
+ }
+ return HAL_OK;
+#endif
+}
+
+u_int32_t
+ar9300_eeprom_get(struct ath_hal_9300 *ahp, EEPROM_PARAM param)
+{
+ ar9300_eeprom_t *eep = &ahp->ah_eeprom;
+ OSPREY_BASE_EEP_HEADER *p_base = &eep->base_eep_header;
+ OSPREY_BASE_EXTENSION_1 *base_ext1 = &eep->base_ext1;
+
+ switch (param) {
+#if NOTYET
+ case EEP_NFTHRESH_5:
+ return p_modal[0].noise_floor_thresh_ch[0];
+ case EEP_NFTHRESH_2:
+ return p_modal[1].noise_floor_thresh_ch[0];
+#endif
+ case EEP_MAC_LSW:
+ return eep->mac_addr[0] << 8 | eep->mac_addr[1];
+ case EEP_MAC_MID:
+ return eep->mac_addr[2] << 8 | eep->mac_addr[3];
+ case EEP_MAC_MSW:
+ return eep->mac_addr[4] << 8 | eep->mac_addr[5];
+ case EEP_REG_0:
+ return p_base->reg_dmn[0];
+ case EEP_REG_1:
+ return p_base->reg_dmn[1];
+ case EEP_OP_CAP:
+ return p_base->device_cap;
+ case EEP_OP_MODE:
+ return p_base->op_cap_flags.op_flags;
+ case EEP_RF_SILENT:
+ return p_base->rf_silent;
+#if NOTYET
+ case EEP_OB_5:
+ return p_modal[0].ob;
+ case EEP_DB_5:
+ return p_modal[0].db;
+ case EEP_OB_2:
+ return p_modal[1].ob;
+ case EEP_DB_2:
+ return p_modal[1].db;
+ case EEP_MINOR_REV:
+ return p_base->eeprom_version & AR9300_EEP_VER_MINOR_MASK;
+#endif
+ case EEP_TX_MASK:
+ return (p_base->txrx_mask >> 4) & 0xf;
+ case EEP_RX_MASK:
+ return p_base->txrx_mask & 0xf;
+#if NOTYET
+ case EEP_FSTCLK_5G:
+ return p_base->fast_clk5g;
+ case EEP_RXGAIN_TYPE:
+ return p_base->rx_gain_type;
+#endif
+ case EEP_DRIVE_STRENGTH:
+#define AR9300_EEP_BASE_DRIVE_STRENGTH 0x1
+ return p_base->misc_configuration & AR9300_EEP_BASE_DRIVE_STRENGTH;
+ case EEP_INTERNAL_REGULATOR:
+ /* Bit 4 is internal regulator flag */
+ return ((p_base->feature_enable & 0x10) >> 4);
+ case EEP_SWREG:
+ return (p_base->swreg);
+ case EEP_PAPRD_ENABLED:
+ /* Bit 5 is paprd flag */
+ return ((p_base->feature_enable & 0x20) >> 5);
+ case EEP_ANTDIV_control:
+ return (u_int32_t)(base_ext1->ant_div_control);
+ case EEP_CHAIN_MASK_REDUCE:
+ return ((p_base->misc_configuration >> 3) & 0x1);
+ case EEP_OL_PWRCTRL:
+ return 0;
+ case EEP_DEV_TYPE:
+ return p_base->device_type;
+ default:
+ HALASSERT(0);
+ return 0;
+ }
+}
+
+
+
+/******************************************************************************/
+/*!
+** \brief EEPROM fixup code for INI values
+**
+** This routine provides a place to insert "fixup" code for specific devices
+** that need to modify INI values based on EEPROM values, BEFORE the INI values
+** are written.
+** Certain registers in the INI file can only be written once without
+** undesired side effects, and this provides a place for EEPROM overrides
+** in these cases.
+**
+** This is called at attach time once. It should not affect run time
+** performance at all
+**
+** \param ah Pointer to HAL object (this)
+** \param p_eep_data Pointer to (filled in) eeprom data structure
+** \param reg register being inspected on this call
+** \param value value in INI file
+**
+** \return Updated value for INI file.
+*/
+u_int32_t
+ar9300_ini_fixup(struct ath_hal *ah, ar9300_eeprom_t *p_eep_data,
+ u_int32_t reg, u_int32_t value)
+{
+ HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
+ "ar9300_eeprom_def_ini_fixup: FIXME\n");
+#if 0
+ BASE_EEPDEF_HEADER *p_base = &(p_eep_data->base_eep_header);
+
+ switch (AH_PRIVATE(ah)->ah_devid)
+ {
+ case AR9300_DEVID_AR9300_PCI:
+ /*
+ ** Need to set the external/internal regulator bit to the proper value.
+ ** Can only write this ONCE.
+ */
+
+ if ( reg == 0x7894 )
+ {
+ /*
+ ** Check for an EEPROM data structure of "0x0b" or better
+ */
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "ini VAL: %x EEPROM: %x\n",
+ value, (p_base->version & 0xff));
+
+ if ( (p_base->version & 0xff) > 0x0a) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "PWDCLKIND: %d\n", p_base->pwdclkind);
+ value &= ~AR_AN_TOP2_PWDCLKIND;
+ value |=
+ AR_AN_TOP2_PWDCLKIND &
+ (p_base->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "PWDCLKIND Earlier Rev\n");
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "final ini VAL: %x\n", value);
+ }
+ break;
+
+ }
+
+ return (value);
+#else
+ return 0;
+#endif
+}
+
+/*
+ * Returns the interpolated y value corresponding to the specified x value
+ * from the np ordered pairs of data (px,py).
+ * The pairs do not have to be in any order.
+ * If the specified x value is less than any of the px,
+ * the returned y value is equal to the py for the lowest px.
+ * If the specified x value is greater than any of the px,
+ * the returned y value is equal to the py for the highest px.
+ */
+static int
+interpolate(int32_t x, int32_t *px, int32_t *py, u_int16_t np)
+{
+ int ip = 0;
+ int lx = 0, ly = 0, lhave = 0;
+ int hx = 0, hy = 0, hhave = 0;
+ int dx = 0;
+ int y = 0;
+ int bf, factor, plus;
+
+ lhave = 0;
+ hhave = 0;
+ /*
+ * identify best lower and higher x calibration measurement
+ */
+ for (ip = 0; ip < np; ip++) {
+ dx = x - px[ip];
+ /* this measurement is higher than our desired x */
+ if (dx <= 0) {
+ if (!hhave || dx > (x - hx)) {
+ /* new best higher x measurement */
+ hx = px[ip];
+ hy = py[ip];
+ hhave = 1;
+ }
+ }
+ /* this measurement is lower than our desired x */
+ if (dx >= 0) {
+ if (!lhave || dx < (x - lx)) {
+ /* new best lower x measurement */
+ lx = px[ip];
+ ly = py[ip];
+ lhave = 1;
+ }
+ }
+ }
+ /* the low x is good */
+ if (lhave) {
+ /* so is the high x */
+ if (hhave) {
+ /* they're the same, so just pick one */
+ if (hx == lx) {
+ y = ly;
+ } else {
+ /* interpolate with round off */
+ bf = (2 * (hy - ly) * (x - lx)) / (hx - lx);
+ plus = (bf % 2);
+ factor = bf / 2;
+ y = ly + factor + plus;
+ }
+ } else {
+ /* only low is good, use it */
+ y = ly;
+ }
+ } else if (hhave) {
+ /* only high is good, use it */
+ y = hy;
+ } else {
+ /* nothing is good,this should never happen unless np=0, ???? */
+ y = -(1 << 30);
+ }
+
+ return y;
+}
+
+u_int8_t
+ar9300_eeprom_get_legacy_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
+ u_int16_t freq, HAL_BOOL is_2ghz)
+{
+ u_int16_t num_piers, i;
+ int32_t target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
+ int32_t freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
+ u_int8_t *p_freq_bin;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ CAL_TARGET_POWER_LEG *p_eeprom_target_pwr;
+
+ if (is_2ghz) {
+ num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
+ p_eeprom_target_pwr = eep->cal_target_power_2g;
+ p_freq_bin = eep->cal_target_freqbin_2g;
+ } else {
+ num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
+ p_eeprom_target_pwr = eep->cal_target_power_5g;
+ p_freq_bin = eep->cal_target_freqbin_5g;
+ }
+
+ /*
+ * create array of channels and targetpower from
+ * targetpower piers stored on eeprom
+ */
+ for (i = 0; i < num_piers; i++) {
+ freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
+ target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
+ }
+
+ /* interpolate to get target power for given frequency */
+ return
+ ((u_int8_t)interpolate(
+ (int32_t)freq, freq_array, target_power_array, num_piers));
+}
+
+u_int8_t
+ar9300_eeprom_get_ht20_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
+ u_int16_t freq, HAL_BOOL is_2ghz)
+{
+ u_int16_t num_piers, i;
+ int32_t target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
+ int32_t freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
+ u_int8_t *p_freq_bin;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
+
+ if (is_2ghz) {
+ num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
+ p_eeprom_target_pwr = eep->cal_target_power_2g_ht20;
+ p_freq_bin = eep->cal_target_freqbin_2g_ht20;
+ } else {
+ num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
+ p_eeprom_target_pwr = eep->cal_target_power_5g_ht20;
+ p_freq_bin = eep->cal_target_freqbin_5g_ht20;
+ }
+
+ /*
+ * create array of channels and targetpower from
+ * targetpower piers stored on eeprom
+ */
+ for (i = 0; i < num_piers; i++) {
+ freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
+ target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
+ }
+
+ /* interpolate to get target power for given frequency */
+ return
+ ((u_int8_t)interpolate(
+ (int32_t)freq, freq_array, target_power_array, num_piers));
+}
+
+u_int8_t
+ar9300_eeprom_get_ht40_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
+ u_int16_t freq, HAL_BOOL is_2ghz)
+{
+ u_int16_t num_piers, i;
+ int32_t target_power_array[OSPREY_NUM_5G_40_TARGET_POWERS];
+ int32_t freq_array[OSPREY_NUM_5G_40_TARGET_POWERS];
+ u_int8_t *p_freq_bin;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
+
+ if (is_2ghz) {
+ num_piers = OSPREY_NUM_2G_40_TARGET_POWERS;
+ p_eeprom_target_pwr = eep->cal_target_power_2g_ht40;
+ p_freq_bin = eep->cal_target_freqbin_2g_ht40;
+ } else {
+ num_piers = OSPREY_NUM_5G_40_TARGET_POWERS;
+ p_eeprom_target_pwr = eep->cal_target_power_5g_ht40;
+ p_freq_bin = eep->cal_target_freqbin_5g_ht40;
+ }
+
+ /*
+ * create array of channels and targetpower from
+ * targetpower piers stored on eeprom
+ */
+ for (i = 0; i < num_piers; i++) {
+ freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
+ target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
+ }
+
+ /* interpolate to get target power for given frequency */
+ return
+ ((u_int8_t)interpolate(
+ (int32_t)freq, freq_array, target_power_array, num_piers));
+}
+
+u_int8_t
+ar9300_eeprom_get_cck_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
+ u_int16_t freq)
+{
+ u_int16_t num_piers = OSPREY_NUM_2G_CCK_TARGET_POWERS, i;
+ int32_t target_power_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
+ int32_t freq_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ u_int8_t *p_freq_bin = eep->cal_target_freqbin_cck;
+ CAL_TARGET_POWER_LEG *p_eeprom_target_pwr = eep->cal_target_power_cck;
+
+ /*
+ * create array of channels and targetpower from
+ * targetpower piers stored on eeprom
+ */
+ for (i = 0; i < num_piers; i++) {
+ freq_array[i] = FBIN2FREQ(p_freq_bin[i], 1);
+ target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
+ }
+
+ /* interpolate to get target power for given frequency */
+ return
+ ((u_int8_t)interpolate(
+ (int32_t)freq, freq_array, target_power_array, num_piers));
+}
+
+/*
+ * Set tx power registers to array of values passed in
+ */
+int
+ar9300_transmit_power_reg_write(struct ath_hal *ah, u_int8_t *p_pwr_array)
+{
+#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
+ /* make sure forced gain is not set */
+#if 0
+ field_write("force_dac_gain", 0);
+ OS_REG_WRITE(ah, 0xa3f8, 0);
+ field_write("force_tx_gain", 0);
+#endif
+
+ OS_REG_WRITE(ah, 0xa458, 0);
+
+ /* Write the OFDM power per rate set */
+ /* 6 (LSB), 9, 12, 18 (MSB) */
+ OS_REG_WRITE(ah, 0xa3c0,
+ POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)
+ );
+ /* 24 (LSB), 36, 48, 54 (MSB) */
+ OS_REG_WRITE(ah, 0xa3c4,
+ POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0)
+ );
+
+ /* Write the CCK power per rate set */
+ /* 1L (LSB), reserved, 2L, 2S (MSB) */
+ OS_REG_WRITE(ah, 0xa3c8,
+ POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
+/* | POW_SM(tx_power_times2, 8)*/ /* this is reserved for Osprey */
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
+ );
+ /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
+ OS_REG_WRITE(ah, 0xa3cc,
+ POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
+ );
+
+ /* write the power for duplicated frames - HT40 */
+ /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
+ OS_REG_WRITE(ah, 0xa3e0,
+ POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0)
+ );
+
+ /* Write the HT20 power per rate set */
+ /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
+ OS_REG_WRITE(ah, 0xa3d0,
+ POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_4], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16], 0)
+ );
+
+ /* 6 (LSB), 7, 12, 13 (MSB) */
+ OS_REG_WRITE(ah, 0xa3d4,
+ POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_12], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_7], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_6], 0)
+ );
+
+ /* 14 (LSB), 15, 20, 21 */
+ OS_REG_WRITE(ah, 0xa3e4,
+ POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_20], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_15], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_14], 0)
+ );
+
+ /* Mixed HT20 and HT40 rates */
+ /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
+ OS_REG_WRITE(ah, 0xa3e8,
+ POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_22], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_23], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT20_22], 0)
+ );
+
+ /* Write the HT40 power per rate set */
+ /* correct PAR difference between HT40 and HT20/LEGACY */
+ /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
+ OS_REG_WRITE(ah, 0xa3d8,
+ POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_4], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16], 0)
+ );
+
+ /* 6 (LSB), 7, 12, 13 (MSB) */
+ OS_REG_WRITE(ah, 0xa3dc,
+ POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_12], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0)
+ );
+
+ /* 14 (LSB), 15, 20, 21 */
+ OS_REG_WRITE(ah, 0xa3ec,
+ POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_20], 16)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_15], 8)
+ | POW_SM(p_pwr_array[ALL_TARGET_HT40_14], 0)
+ );
+
+ return 0;
+#undef POW_SM
+}
+
+static void
+ar9300_selfgen_tpc_reg_write(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
+ u_int8_t *p_pwr_array)
+{
+ u_int32_t tpc_reg_val;
+
+ /* Set the target power values for self generated frames (ACK,RTS/CTS) to
+ * be within limits. This is just a safety measure.With per packet TPC mode
+ * enabled the target power value used with self generated frames will be
+ * MIN( TPC reg, BB_powertx_rate register)
+ */
+
+ if (IS_CHAN_2GHZ(chan)) {
+ tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
+ SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
+ SM(0x3f, AR_TPC_CHIRP) |
+ SM(0x3f, AR_TPC_RPT));
+ } else {
+ tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
+ SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
+ SM(0x3f, AR_TPC_CHIRP) |
+ SM(0x3f, AR_TPC_RPT));
+ }
+ OS_REG_WRITE(ah, AR_TPC, tpc_reg_val);
+}
+
+void
+ar9300_set_target_power_from_eeprom(struct ath_hal *ah, u_int16_t freq,
+ u_int8_t *target_power_val_t2)
+{
+ /* hard code for now, need to get from eeprom struct */
+ u_int8_t ht40_power_inc_for_pdadc = 0;
+ HAL_BOOL is_2ghz = 0;
+
+ if (freq < 4000) {
+ is_2ghz = 1;
+ }
+
+ target_power_val_t2[ALL_TARGET_LEGACY_6_24] =
+ ar9300_eeprom_get_legacy_trgt_pwr(
+ ah, LEGACY_TARGET_RATE_6_24, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_LEGACY_36] =
+ ar9300_eeprom_get_legacy_trgt_pwr(
+ ah, LEGACY_TARGET_RATE_36, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_LEGACY_48] =
+ ar9300_eeprom_get_legacy_trgt_pwr(
+ ah, LEGACY_TARGET_RATE_48, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_LEGACY_54] =
+ ar9300_eeprom_get_legacy_trgt_pwr(
+ ah, LEGACY_TARGET_RATE_54, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_LEGACY_1L_5L] =
+ ar9300_eeprom_get_cck_trgt_pwr(
+ ah, LEGACY_TARGET_RATE_1L_5L, freq);
+ target_power_val_t2[ALL_TARGET_LEGACY_5S] =
+ ar9300_eeprom_get_cck_trgt_pwr(
+ ah, LEGACY_TARGET_RATE_5S, freq);
+ target_power_val_t2[ALL_TARGET_LEGACY_11L] =
+ ar9300_eeprom_get_cck_trgt_pwr(
+ ah, LEGACY_TARGET_RATE_11L, freq);
+ target_power_val_t2[ALL_TARGET_LEGACY_11S] =
+ ar9300_eeprom_get_cck_trgt_pwr(
+ ah, LEGACY_TARGET_RATE_11S, freq);
+ target_power_val_t2[ALL_TARGET_HT20_0_8_16] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_1_3_9_11_17_19] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_4] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_4, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_5] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_5, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_6] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_6, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_7] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_7, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_12] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_12, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_13] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_13, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_14] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_14, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_15] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_15, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_20] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_20, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_21] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_21, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_22] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_22, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT20_23] =
+ ar9300_eeprom_get_ht20_trgt_pwr(
+ ah, HT_TARGET_RATE_23, freq, is_2ghz);
+ target_power_val_t2[ALL_TARGET_HT40_0_8_16] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz) +
+ ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_1_3_9_11_17_19] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz) +
+ ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_4] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_4, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_5] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_5, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_6] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_6, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_7] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_7, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_12] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_12, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_13] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_13, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_14] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_14, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_15] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_15, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_20] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_20, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_21] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_21, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_22] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_22, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+ target_power_val_t2[ALL_TARGET_HT40_23] =
+ ar9300_eeprom_get_ht40_trgt_pwr(
+ ah, HT_TARGET_RATE_23, freq, is_2ghz) + ht40_power_inc_for_pdadc;
+
+#ifdef AH_DEBUG
+ {
+ int i = 0;
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: APPLYING TARGET POWERS\n", __func__);
+ while (i < ar9300_rate_size) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
+ __func__, i, target_power_val_t2[i]);
+ i++;
+ if (i == ar9300_rate_size) {
+ break;
+ }
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
+ __func__, i, target_power_val_t2[i]);
+ i++;
+ if (i == ar9300_rate_size) {
+ break;
+ }
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
+ __func__, i, target_power_val_t2[i]);
+ i++;
+ if (i == ar9300_rate_size) {
+ break;
+ }
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x \n",
+ __func__, i, target_power_val_t2[i]);
+ i++;
+ }
+ }
+#endif
+}
+
+u_int16_t *ar9300_regulatory_domain_get(struct ath_hal *ah)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ return eep->base_eep_header.reg_dmn;
+}
+
+
+int32_t
+ar9300_eeprom_write_enable_gpio_get(struct ath_hal *ah)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ return eep->base_eep_header.eeprom_write_enable_gpio;
+}
+
+int32_t
+ar9300_wlan_disable_gpio_get(struct ath_hal *ah)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ return eep->base_eep_header.wlan_disable_gpio;
+}
+
+int32_t
+ar9300_wlan_led_gpio_get(struct ath_hal *ah)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ return eep->base_eep_header.wlan_led_gpio;
+}
+
+int32_t
+ar9300_rx_band_select_gpio_get(struct ath_hal *ah)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ return eep->base_eep_header.rx_band_select_gpio;
+}
+
+/*
+ * since valid noise floor values are negative, returns 1 on error
+ */
+int32_t
+ar9300_noise_floor_cal_or_power_get(struct ath_hal *ah, int32_t frequency,
+ int32_t ichain, HAL_BOOL use_cal)
+{
+ int nf_use = 1; /* start with an error return value */
+ int32_t fx[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
+ int32_t nf[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
+ int nnf;
+ int is_2ghz;
+ int ipier, npier;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ u_int8_t *p_cal_pier;
+ OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
+
+ /*
+ * check chain value
+ */
+ if (ichain < 0 || ichain >= OSPREY_MAX_CHAINS) {
+ return 1;
+ }
+
+ /* figure out which band we're using */
+ is_2ghz = (frequency < 4000);
+ if (is_2ghz) {
+ npier = OSPREY_NUM_2G_CAL_PIERS;
+ p_cal_pier = eep->cal_freq_pier_2g;
+ p_cal_pier_struct = eep->cal_pier_data_2g[ichain];
+ } else {
+ npier = OSPREY_NUM_5G_CAL_PIERS;
+ p_cal_pier = eep->cal_freq_pier_5g;
+ p_cal_pier_struct = eep->cal_pier_data_5g[ichain];
+ }
+ /* look for valid noise floor values */
+ nnf = 0;
+ for (ipier = 0; ipier < npier; ipier++) {
+ fx[nnf] = FBIN2FREQ(p_cal_pier[ipier], is_2ghz);
+ nf[nnf] = use_cal ?
+ p_cal_pier_struct[ipier].rx_noisefloor_cal :
+ p_cal_pier_struct[ipier].rx_noisefloor_power;
+ if (nf[nnf] < 0) {
+ nnf++;
+ }
+ }
+ /*
+ * If we have some valid values, interpolate to find the value
+ * at the desired frequency.
+ */
+ if (nnf > 0) {
+ nf_use = interpolate(frequency, fx, nf, nnf);
+ }
+
+ return nf_use;
+}
+
+int32_t ar9300_rx_gain_index_get(struct ath_hal *ah)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+
+ return (eep->base_eep_header.txrxgain) & 0xf; /* bits 3:0 */
+}
+
+
+int32_t ar9300_tx_gain_index_get(struct ath_hal *ah)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+
+ return (eep->base_eep_header.txrxgain >> 4) & 0xf; /* bits 7:4 */
+}
+
+HAL_BOOL ar9300_internal_regulator_apply(struct ath_hal *ah)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ int internal_regulator = ar9300_eeprom_get(ahp, EEP_INTERNAL_REGULATOR);
+ int reg_pmu1, reg_pmu2, reg_pmu1_set, reg_pmu2_set;
+ u_int32_t reg_PMU1, reg_PMU2;
+ unsigned long eep_addr;
+ u_int32_t reg_val, reg_usb = 0, reg_pmu = 0;
+ int usb_valid = 0, pmu_valid = 0;
+ unsigned char pmu_refv;
+
+ if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
+ reg_PMU1 = AR_PHY_PMU1_JUPITER;
+ reg_PMU2 = AR_PHY_PMU2_JUPITER;
+ }
+ else {
+ reg_PMU1 = AR_PHY_PMU1;
+ reg_PMU2 = AR_PHY_PMU2;
+ }
+
+ if (internal_regulator) {
+ if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
+ if (AR_SREV_HORNET(ah)) {
+ /* Read OTP first */
+ for (eep_addr = 0x14; ; eep_addr -= 0x10) {
+
+ ar9300_otp_read(ah, eep_addr / 4, &reg_val, 1);
+
+ if ((reg_val & 0x80) == 0x80){
+ usb_valid = 1;
+ reg_usb = reg_val & 0x000000ff;
+ }
+
+ if ((reg_val & 0x80000000) == 0x80000000){
+ pmu_valid = 1;
+ reg_pmu = (reg_val & 0xff000000) >> 24;
+ }
+
+ if (eep_addr == 0x4) {
+ break;
+ }
+ }
+
+ if (pmu_valid) {
+ pmu_refv = reg_pmu & 0xf;
+ } else {
+ pmu_refv = 0x8;
+ }
+
+ /*
+ * If (valid) {
+ * Usb_phy_ctrl2_tx_cal_en -> 0
+ * Usb_phy_ctrl2_tx_cal_sel -> 0
+ * Usb_phy_ctrl2_tx_man_cal -> 0, 1, 3, 7 or 15 from OTP
+ * }
+ */
+ if (usb_valid) {
+ OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_EN, 0x0);
+ OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_SEL, 0x0);
+ OS_REG_RMW_FIELD(ah, 0x16c88,
+ AR_PHY_CTRL2_TX_MAN_CAL, (reg_usb & 0xf));
+ }
+
+ } else {
+ pmu_refv = 0x8;
+ }
+ /*#ifndef USE_HIF*/
+ /* Follow the MDK settings for Hornet PMU.
+ * my $pwd = 0x0;
+ * my $Nfdiv = 0x3; # xtal_freq = 25MHz
+ * my $Nfdiv = 0x4; # xtal_freq = 40MHz
+ * my $Refv = 0x7; # 0x5:1.22V; 0x8:1.29V
+ * my $Gm1 = 0x3; #Poseidon $Gm1=1
+ * my $classb = 0x0;
+ * my $Cc = 0x1; #Poseidon $Cc=7
+ * my $Rc = 0x6;
+ * my $ramp_slope = 0x1;
+ * my $Segm = 0x3;
+ * my $use_local_osc = 0x0;
+ * my $force_xosc_stable = 0x0;
+ * my $Selfb = 0x0; #Poseidon $Selfb=1
+ * my $Filterfb = 0x3; #Poseidon $Filterfb=0
+ * my $Filtervc = 0x0;
+ * my $disc = 0x0;
+ * my $discdel = 0x4;
+ * my $spare = 0x0;
+ * $reg_PMU1 =
+ * $pwd | ($Nfdiv<<1) | ($Refv<<4) | ($Gm1<<8) |
+ * ($classb<<11) | ($Cc<<14) | ($Rc<<17) | ($ramp_slope<<20) |
+ * ($Segm<<24) | ($use_local_osc<<26) |
+ * ($force_xosc_stable<<27) | ($Selfb<<28) | ($Filterfb<<29);
+ * $reg_PMU2 = $handle->reg_rd("ch0_PMU2");
+ * $reg_PMU2 = ($reg_PMU2 & 0xfe3fffff) | ($Filtervc<<22);
+ * $reg_PMU2 = ($reg_PMU2 & 0xe3ffffff) | ($discdel<<26);
+ * $reg_PMU2 = ($reg_PMU2 & 0x1fffffff) | ($spare<<29);
+ */
+ if (ahp->clk_25mhz) {
+ reg_pmu1_set = 0 |
+ (3 << 1) | (pmu_refv << 4) | (3 << 8) | (0 << 11) |
+ (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
+ (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29);
+ } else {
+ if (AR_SREV_POSEIDON(ah)) {
+ reg_pmu1_set = 0 |
+ (5 << 1) | (7 << 4) | (2 << 8) | (0 << 11) |
+ (2 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
+ (0 << 26) | (0 << 27) | (1 << 28) | (0 << 29) ;
+ } else {
+ reg_pmu1_set = 0 |
+ (4 << 1) | (7 << 4) | (3 << 8) | (0 << 11) |
+ (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
+ (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29) ;
+ }
+ }
+ OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
+
+ OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set); /* 0x638c8376 */
+ reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
+ while (reg_pmu1 != reg_pmu1_set) {
+ OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set); /* 0x638c8376 */
+ OS_DELAY(10);
+ reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
+ }
+
+ reg_pmu2_set =
+ (OS_REG_READ(ah, reg_PMU2) & (~0xFFC00000)) | (4 << 26);
+ OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
+ reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
+ while (reg_pmu2 != reg_pmu2_set) {
+ OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
+ OS_DELAY(10);
+ reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
+ }
+ reg_pmu2_set =
+ (OS_REG_READ(ah, reg_PMU2) & (~0x00200000)) | (1 << 21);
+ OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
+ reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
+ while (reg_pmu2 != reg_pmu2_set) {
+ OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
+ OS_DELAY(10);
+ reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
+ }
+ /*#endif*/
+ } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
+ /* Internal regulator is ON. Write swreg register. */
+ int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
+ OS_REG_WRITE(ah, reg_PMU1, swreg);
+ } else {
+ /* Internal regulator is ON. Write swreg register. */
+ int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
+ OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
+ OS_REG_READ(ah, AR_RTC_REG_CONTROL1) &
+ (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
+ OS_REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
+ /* Set REG_CONTROL1.SWREG_PROGRAM */
+ OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
+ OS_REG_READ(ah, AR_RTC_REG_CONTROL1) |
+ AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
+ }
+ } else {
+ if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
+ OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
+ reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
+ while (reg_pmu2) {
+ OS_DELAY(10);
+ reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
+ }
+ OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
+ reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
+ while (!reg_pmu1) {
+ OS_DELAY(10);
+ reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
+ }
+ OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x1);
+ reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
+ while (!reg_pmu2) {
+ OS_DELAY(10);
+ reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
+ }
+ } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
+ OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
+ } else {
+ OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK,
+ (OS_REG_READ(ah, AR_RTC_SLEEP_CLK) |
+ AR_RTC_FORCE_SWREG_PRD | AR_RTC_PCIE_RST_PWDN_EN));
+ }
+ }
+
+ return 0;
+}
+
+HAL_BOOL ar9300_drive_strength_apply(struct ath_hal *ah)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ int drive_strength;
+ unsigned long reg;
+
+ drive_strength = ar9300_eeprom_get(ahp, EEP_DRIVE_STRENGTH);
+ if (drive_strength) {
+ reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
+ reg &= ~0x00ffffc0;
+ reg |= 0x5 << 21;
+ reg |= 0x5 << 18;
+ reg |= 0x5 << 15;
+ reg |= 0x5 << 12;
+ reg |= 0x5 << 9;
+ reg |= 0x5 << 6;
+ OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
+
+ reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
+ reg &= ~0xffffffe0;
+ reg |= 0x5 << 29;
+ reg |= 0x5 << 26;
+ reg |= 0x5 << 23;
+ reg |= 0x5 << 20;
+ reg |= 0x5 << 17;
+ reg |= 0x5 << 14;
+ reg |= 0x5 << 11;
+ reg |= 0x5 << 8;
+ reg |= 0x5 << 5;
+ OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
+
+ reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
+ reg &= ~0xff800000;
+ reg |= 0x5 << 29;
+ reg |= 0x5 << 26;
+ reg |= 0x5 << 23;
+ OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
+ }
+ return 0;
+}
+
+int32_t ar9300_xpa_bias_level_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ if (is_2ghz) {
+ return eep->modal_header_2g.xpa_bias_lvl;
+ } else {
+ return eep->modal_header_5g.xpa_bias_lvl;
+ }
+}
+
+HAL_BOOL ar9300_xpa_bias_level_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
+{
+ /*
+ * In ar9330 emu, we can't access radio registers,
+ * merlin is used for radio part.
+ */
+ int bias;
+ bias = ar9300_xpa_bias_level_get(ah, is_2ghz);
+
+ if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_HORNET_CH0_TOP2, AR_HORNET_CH0_TOP2_XPABIASLVL, bias);
+ } else if (AR_SREV_SCORPION(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_SCORPION_CH0_TOP, AR_SCORPION_CH0_TOP_XPABIASLVL, bias);
+ } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_TOP_JUPITER, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
+ } else {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_TOP, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB,
+ bias >> 2);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPASHORT2GND, 1);
+ }
+ return 0;
+}
+
+u_int32_t ar9300_ant_ctrl_common_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ if (is_2ghz) {
+ return eep->modal_header_2g.ant_ctrl_common;
+ } else {
+ return eep->modal_header_5g.ant_ctrl_common;
+ }
+}
+static u_int16_t
+ar9300_switch_com_spdt_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ if (is_2ghz) {
+ return eep->modal_header_2g.switchcomspdt;
+ } else {
+ return eep->modal_header_5g.switchcomspdt;
+ }
+}
+u_int32_t ar9300_ant_ctrl_common2_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ if (is_2ghz) {
+ return eep->modal_header_2g.ant_ctrl_common2;
+ } else {
+ return eep->modal_header_5g.ant_ctrl_common2;
+ }
+}
+
+u_int16_t ar9300_ant_ctrl_chain_get(struct ath_hal *ah, int chain,
+ HAL_BOOL is_2ghz)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
+ if (is_2ghz) {
+ return eep->modal_header_2g.ant_ctrl_chain[chain];
+ } else {
+ return eep->modal_header_5g.ant_ctrl_chain[chain];
+ }
+ }
+ return 0;
+}
+
+HAL_BOOL ar9300_ant_ctrl_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
+{
+ u_int32_t value;
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ u_int32_t regval;
+ struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
+#if ATH_ANT_DIV_COMB
+ HAL_CAPABILITIES *pcap = &ahpriv->ah_caps;
+#endif /* ATH_ANT_DIV_COMB */
+ u_int32_t xlan_gpio_cfg;
+ u_int8_t i;
+
+ if (AR_SREV_POSEIDON(ah)) {
+ xlan_gpio_cfg = ahpriv->ah_config.ath_hal_ext_lna_ctl_gpio;
+ if (xlan_gpio_cfg) {
+ for (i = 0; i < 32; i++) {
+ if (xlan_gpio_cfg & (1 << i)) {
+ ath_hal_gpio_cfg_output(ah, i,
+ HAL_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
+ }
+ }
+ }
+ }
+#define AR_SWITCH_TABLE_COM_ALL (0xffff)
+#define AR_SWITCH_TABLE_COM_ALL_S (0)
+#define AR_SWITCH_TABLE_COM_JUPITER_ALL (0xffffff)
+#define AR_SWITCH_TABLE_COM_JUPITER_ALL_S (0)
+#define AR_SWITCH_TABLE_COM_SCORPION_ALL (0xffffff)
+#define AR_SWITCH_TABLE_COM_SCORPION_ALL_S (0)
+#define AR_SWITCH_TABLE_COM_SPDT (0x00f00000)
+ value = ar9300_ant_ctrl_common_get(ah, is_2ghz);
+ if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
+ if (AR_SREV_JUPITER_10(ah)) {
+ /* Force SPDT setting for Jupiter 1.0 chips. */
+ value &= ~AR_SWITCH_TABLE_COM_SPDT;
+ value |= 0x00100000;
+ }
+ OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
+ AR_SWITCH_TABLE_COM_JUPITER_ALL, value);
+ }
+ else if (AR_SREV_SCORPION(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
+ AR_SWITCH_TABLE_COM_SCORPION_ALL, value);
+ }
+ else {
+ OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
+ AR_SWITCH_TABLE_COM_ALL, value);
+ }
+/*
+* Jupiter2.0 defines new switch table for BT/WLAN,
+* here's new field name in WB222.ref for both 2G and 5G.
+* Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
+* 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX SWITCH_TABLE_COM_SPDT_WLAN_RX
+* 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX SWITCH_TABLE_COM_SPDT_WLAN_TX
+* 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE SWITCH_TABLE_COM_SPDT_WLAN_IDLE
+*/
+#define AR_SWITCH_TABLE_COM_SPDT_ALL (0x0000fff0)
+#define AR_SWITCH_TABLE_COM_SPDT_ALL_S (4)
+ if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) {
+ value = ar9300_switch_com_spdt_get(ah, is_2ghz);
+ OS_REG_RMW_FIELD(ah, AR_GLB_CONTROL,
+ AR_SWITCH_TABLE_COM_SPDT_ALL, value);
+
+ OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
+ AR_BTCOEX_CTRL_SPDT_ENABLE);
+ //OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
+ // AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
+ }
+
+#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
+#define AR_SWITCH_TABLE_COM2_ALL_S (0)
+ value = ar9300_ant_ctrl_common2_get(ah, is_2ghz);
+#if ATH_ANT_DIV_COMB
+ if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
+ value &= ~AR_SWITCH_TABLE_COM2_ALL;
+ value |= ahpriv->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable;
+ }
+#endif /* ATH_ANT_DIV_COMB */
+ OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
+
+#define AR_SWITCH_TABLE_ALL (0xfff)
+#define AR_SWITCH_TABLE_ALL_S (0)
+ value = ar9300_ant_ctrl_chain_get(ah, 0, is_2ghz);
+ OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
+
+ if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) {
+ value = ar9300_ant_ctrl_chain_get(ah, 1, is_2ghz);
+ OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
+
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ value = ar9300_ant_ctrl_chain_get(ah, 2, is_2ghz);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
+ }
+ }
+ if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
+ value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control);
+ /* main_lnaconf, alt_lnaconf, main_tb, alt_tb */
+ regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
+ regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */
+ regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S;
+ /* enable_lnadiv */
+ regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK);
+ regval |= ((value >> 6) & 0x1) <<
+ MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT;
+#if ATH_ANT_DIV_COMB
+ if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
+ regval |= ANT_DIV_ENABLE;
+ }
+#endif /* ATH_ANT_DIV_COMB */
+ OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
+
+ /* enable fast_div */
+ regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
+ regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
+ regval |= ((value >> 7) & 0x1) <<
+ BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT;
+#if ATH_ANT_DIV_COMB
+ if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
+ regval |= FAST_DIV_ENABLE;
+ }
+#endif /* ATH_ANT_DIV_COMB */
+ OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
+ }
+
+#if ATH_ANT_DIV_COMB
+ if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON_11_OR_LATER(ah)) {
+ if (pcap->hal_ant_div_comb_support) {
+ /* If support DivComb, set MAIN to LNA1, ALT to LNA2 at beginning */
+ regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
+ /* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */
+ regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK |
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK));
+ regval |= (HAL_ANT_DIV_COMB_LNA1 <<
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
+ regval |= (HAL_ANT_DIV_COMB_LNA2 <<
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
+ OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
+ }
+
+ }
+#endif /* ATH_ANT_DIV_COMB */
+ if (AR_SREV_POSEIDON(ah) && ( ahp->ah_diversity_control == HAL_ANT_FIXED_A
+ || ahp->ah_diversity_control == HAL_ANT_FIXED_B))
+ {
+ u_int32_t reg_val = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
+ reg_val &= ~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
+ MULTICHAIN_GAIN_CTRL__ANT_FAST_DIV_BIAS__MASK |
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK |
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK );
+
+ switch (ahp->ah_diversity_control) {
+ case HAL_ANT_FIXED_A:
+ /* Enable first antenna only */
+ reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
+ reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
+ /* main/alt gain table and Fast Div Bias all set to 0 */
+ OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
+ regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
+ regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
+ OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
+ break;
+ case HAL_ANT_FIXED_B:
+ /* Enable second antenna only, after checking capability */
+ reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
+ reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
+ MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
+ /* main/alt gain table and Fast Div all set to 0 */
+ OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
+ regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
+ regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
+ OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
+ /* For WB225, need to swith ANT2 from BT to Wifi
+ * This will not affect HB125 LNA diversity feature.
+ */
+ OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL,
+ ahpriv->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable);
+ break;
+ default:
+ break;
+ }
+ }
+ return 0;
+}
+
+static u_int16_t
+ar9300_attenuation_chain_get(struct ath_hal *ah, int chain, u_int16_t channel)
+{
+ int32_t f[3], t[3];
+ u_int16_t value;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
+ if (channel < 4000) {
+ return eep->modal_header_2g.xatten1_db[chain];
+ } else {
+ if (eep->base_ext2.xatten1_db_low[chain] != 0) {
+ t[0] = eep->base_ext2.xatten1_db_low[chain];
+ f[0] = 5180;
+ t[1] = eep->modal_header_5g.xatten1_db[chain];
+ f[1] = 5500;
+ t[2] = eep->base_ext2.xatten1_db_high[chain];
+ f[2] = 5785;
+ value = interpolate(channel, f, t, 3);
+ return value;
+ } else {
+ return eep->modal_header_5g.xatten1_db[chain];
+ }
+ }
+ }
+ return 0;
+}
+
+static u_int16_t
+ar9300_attenuation_margin_chain_get(struct ath_hal *ah, int chain,
+ u_int16_t channel)
+{
+ int32_t f[3], t[3];
+ u_int16_t value;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
+ if (channel < 4000) {
+ return eep->modal_header_2g.xatten1_margin[chain];
+ } else {
+ if (eep->base_ext2.xatten1_margin_low[chain] != 0) {
+ t[0] = eep->base_ext2.xatten1_margin_low[chain];
+ f[0] = 5180;
+ t[1] = eep->modal_header_5g.xatten1_margin[chain];
+ f[1] = 5500;
+ t[2] = eep->base_ext2.xatten1_margin_high[chain];
+ f[2] = 5785;
+ value = interpolate(channel, f, t, 3);
+ return value;
+ } else {
+ return eep->modal_header_5g.xatten1_margin[chain];
+ }
+ }
+ }
+ return 0;
+}
+
+HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
+{
+ u_int32_t value;
+ struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
+
+ /* Test value. if 0 then attenuation is unused. Don't load anything. */
+ value = ar9300_attenuation_chain_get(ah, 0, channel);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
+ value = ar9300_attenuation_margin_chain_get(ah, 0, channel);
+ if (ar9300_rx_gain_index_get(ah) == 0
+ && ahpriv->ah_config.ath_hal_ext_atten_margin_cfg)
+ {
+ value = 5;
+ }
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
+
+ if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
+ value = ar9300_attenuation_chain_get(ah, 1, channel);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
+ value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
+ value);
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ value = ar9300_attenuation_chain_get(ah, 2, channel);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
+ value = ar9300_attenuation_margin_chain_get(ah, 2, channel);
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
+ value);
+ }
+ }
+ return 0;
+}
+
+static u_int16_t ar9300_quick_drop_get(struct ath_hal *ah,
+ int chain, u_int16_t channel)
+{
+ int32_t f[3], t[3];
+ u_int16_t value;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+
+ if (channel < 4000) {
+ return eep->modal_header_2g.quick_drop;
+ } else {
+ t[0] = eep->base_ext1.quick_drop_low;
+ f[0] = 5180;
+ t[1] = eep->modal_header_5g.quick_drop;
+ f[1] = 5500;
+ t[2] = eep->base_ext1.quick_drop_high;
+ f[2] = 5785;
+ value = interpolate(channel, f, t, 3);
+ return value;
+ }
+}
+
+
+static HAL_BOOL ar9300_quick_drop_apply(struct ath_hal *ah, u_int16_t channel)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ u_int32_t value;
+ //
+ // Test value. if 0 then quickDrop is unused. Don't load anything.
+ //
+ if (eep->base_eep_header.misc_configuration & 0x10)
+ {
+ if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
+ {
+ value = ar9300_quick_drop_get(ah, 0, channel);
+ OS_REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, value);
+ }
+ }
+ return 0;
+}
+
+static u_int16_t ar9300_tx_end_to_xpa_off_get(struct ath_hal *ah, u_int16_t channel)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+
+ if (channel < 4000) {
+ return eep->modal_header_2g.tx_end_to_xpa_off;
+ } else {
+ return eep->modal_header_5g.tx_end_to_xpa_off;
+ }
+}
+
+static HAL_BOOL ar9300_tx_end_to_xpab_off_apply(struct ath_hal *ah, u_int16_t channel)
+{
+ u_int32_t value;
+
+ value = ar9300_tx_end_to_xpa_off_get(ah, channel);
+ /* Apply to both xpaa and xpab */
+ if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
+ {
+ OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
+ AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
+ OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
+ AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
+ }
+ return 0;
+}
+
+static int
+ar9300_eeprom_cal_pier_get(struct ath_hal *ah, int mode, int ipier, int ichain,
+ int *pfrequency, int *pcorrection, int *ptemperature, int *pvoltage)
+{
+ u_int8_t *p_cal_pier;
+ OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
+ int is_2ghz;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+
+ if (ichain >= OSPREY_MAX_CHAINS) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Invalid chain index, must be less than %d\n",
+ __func__, OSPREY_MAX_CHAINS);
+ return -1;
+ }
+
+ if (mode) {/* 5GHz */
+ if (ipier >= OSPREY_NUM_5G_CAL_PIERS){
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Invalid 5GHz cal pier index, must be less than %d\n",
+ __func__, OSPREY_NUM_5G_CAL_PIERS);
+ return -1;
+ }
+ p_cal_pier = &(eep->cal_freq_pier_5g[ipier]);
+ p_cal_pier_struct = &(eep->cal_pier_data_5g[ichain][ipier]);
+ is_2ghz = 0;
+ } else {
+ if (ipier >= OSPREY_NUM_2G_CAL_PIERS){
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Invalid 2GHz cal pier index, must be less than %d\n",
+ __func__, OSPREY_NUM_2G_CAL_PIERS);
+ return -1;
+ }
+
+ p_cal_pier = &(eep->cal_freq_pier_2g[ipier]);
+ p_cal_pier_struct = &(eep->cal_pier_data_2g[ichain][ipier]);
+ is_2ghz = 1;
+ }
+ *pfrequency = FBIN2FREQ(*p_cal_pier, is_2ghz);
+ *pcorrection = p_cal_pier_struct->ref_power;
+ *ptemperature = p_cal_pier_struct->temp_meas;
+ *pvoltage = p_cal_pier_struct->volt_meas;
+ return 0;
+}
+
+/*
+ * Apply the recorded correction values.
+ */
+static int
+ar9300_calibration_apply(struct ath_hal *ah, int frequency)
+{
+ int ichain, ipier, npier;
+ int mode;
+ int fdiff;
+ int pfrequency, pcorrection, ptemperature, pvoltage;
+ int bf, factor, plus;
+
+ int lfrequency[AR9300_MAX_CHAINS];
+ int hfrequency[AR9300_MAX_CHAINS];
+
+ int lcorrection[AR9300_MAX_CHAINS];
+ int hcorrection[AR9300_MAX_CHAINS];
+ int correction[AR9300_MAX_CHAINS];
+
+ int ltemperature[AR9300_MAX_CHAINS];
+ int htemperature[AR9300_MAX_CHAINS];
+ int temperature[AR9300_MAX_CHAINS];
+
+ int lvoltage[AR9300_MAX_CHAINS];
+ int hvoltage[AR9300_MAX_CHAINS];
+ int voltage[AR9300_MAX_CHAINS];
+
+ mode = (frequency >= 4000);
+ npier = (mode) ? OSPREY_NUM_5G_CAL_PIERS : OSPREY_NUM_2G_CAL_PIERS;
+
+ for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
+ lfrequency[ichain] = 0;
+ hfrequency[ichain] = 100000;
+ }
+ /*
+ * identify best lower and higher frequency calibration measurement
+ */
+ for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
+ for (ipier = 0; ipier < npier; ipier++) {
+ if (ar9300_eeprom_cal_pier_get(
+ ah, mode, ipier, ichain,
+ &pfrequency, &pcorrection, &ptemperature, &pvoltage) == 0)
+ {
+ fdiff = frequency - pfrequency;
+ /*
+ * this measurement is higher than our desired frequency
+ */
+ if (fdiff <= 0) {
+ if (hfrequency[ichain] <= 0 ||
+ hfrequency[ichain] >= 100000 ||
+ fdiff > (frequency - hfrequency[ichain]))
+ {
+ /*
+ * new best higher frequency measurement
+ */
+ hfrequency[ichain] = pfrequency;
+ hcorrection[ichain] = pcorrection;
+ htemperature[ichain] = ptemperature;
+ hvoltage[ichain] = pvoltage;
+ }
+ }
+ if (fdiff >= 0) {
+ if (lfrequency[ichain] <= 0 ||
+ fdiff < (frequency - lfrequency[ichain]))
+ {
+ /*
+ * new best lower frequency measurement
+ */
+ lfrequency[ichain] = pfrequency;
+ lcorrection[ichain] = pcorrection;
+ ltemperature[ichain] = ptemperature;
+ lvoltage[ichain] = pvoltage;
+ }
+ }
+ }
+ }
+ }
+ /* interpolate */
+ for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: ch=%d f=%d low=%d %d h=%d %d\n",
+ __func__, ichain, frequency,
+ lfrequency[ichain], lcorrection[ichain],
+ hfrequency[ichain], hcorrection[ichain]);
+ /*
+ * they're the same, so just pick one
+ */
+ if (hfrequency[ichain] == lfrequency[ichain]) {
+ correction[ichain] = lcorrection[ichain];
+ voltage[ichain] = lvoltage[ichain];
+ temperature[ichain] = ltemperature[ichain];
+ } else if (frequency - lfrequency[ichain] < 1000) {
+ /* the low frequency is good */
+ if (hfrequency[ichain] - frequency < 1000) {
+ /*
+ * The high frequency is good too -
+ * interpolate with round off.
+ */
+ int mult, div, diff;
+ mult = frequency - lfrequency[ichain];
+ div = hfrequency[ichain] - lfrequency[ichain];
+
+ diff = hcorrection[ichain] - lcorrection[ichain];
+ bf = 2 * diff * mult / div;
+ plus = (bf % 2);
+ factor = bf / 2;
+ correction[ichain] = lcorrection[ichain] + factor + plus;
+
+ diff = htemperature[ichain] - ltemperature[ichain];
+ bf = 2 * diff * mult / div;
+ plus = (bf % 2);
+ factor = bf / 2;
+ temperature[ichain] = ltemperature[ichain] + factor + plus;
+
+ diff = hvoltage[ichain] - lvoltage[ichain];
+ bf = 2 * diff * mult / div;
+ plus = (bf % 2);
+ factor = bf / 2;
+ voltage[ichain] = lvoltage[ichain] + factor + plus;
+ } else {
+ /* only low is good, use it */
+ correction[ichain] = lcorrection[ichain];
+ temperature[ichain] = ltemperature[ichain];
+ voltage[ichain] = lvoltage[ichain];
+ }
+ } else if (hfrequency[ichain] - frequency < 1000) {
+ /* only high is good, use it */
+ correction[ichain] = hcorrection[ichain];
+ temperature[ichain] = htemperature[ichain];
+ voltage[ichain] = hvoltage[ichain];
+ } else {
+ /* nothing is good, presume 0???? */
+ correction[ichain] = 0;
+ temperature[ichain] = 0;
+ voltage[ichain] = 0;
+ }
+ }
+
+ /* GreenTx */
+ if (AH_PRIVATE(ah)->ah_config.ath_hal_sta_update_tx_pwr_enable) {
+ if (AR_SREV_POSEIDON(ah)) {
+ /* Get calibrated OLPC gain delta value for GreenTx */
+ AH_PRIVATE(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET] =
+ (u_int32_t) correction[0];
+ }
+ }
+
+ ar9300_power_control_override(
+ ah, frequency, correction, voltage, temperature);
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: for frequency=%d, calibration correction = %d %d %d\n",
+ __func__, frequency, correction[0], correction[1], correction[2]);
+
+ return 0;
+}
+
+int
+ar9300_power_control_override(struct ath_hal *ah, int frequency,
+ int *correction, int *voltage, int *temperature)
+{
+ int temp_slope = 0;
+ int temp_slope_1 = 0;
+ int temp_slope_2 = 0;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ int32_t f[8], t[8],t1[3], t2[3];
+ int i;
+
+ OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
+ (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
+ AR_PHY_TPC_OLPC_GAIN_DELTA);
+ if (!AR_SREV_POSEIDON(ah)) {
+ OS_REG_RMW(ah, AR_PHY_TPC_11_B1,
+ (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
+ AR_PHY_TPC_OLPC_GAIN_DELTA);
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ OS_REG_RMW(ah, AR_PHY_TPC_11_B2,
+ (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
+ AR_PHY_TPC_OLPC_GAIN_DELTA);
+ }
+ }
+ /*
+ * enable open loop power control on chip
+ */
+ OS_REG_RMW(ah, AR_PHY_TPC_6_B0,
+ (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
+ if (!AR_SREV_POSEIDON(ah)) {
+ OS_REG_RMW(ah, AR_PHY_TPC_6_B1,
+ (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ OS_REG_RMW(ah, AR_PHY_TPC_6_B2,
+ (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
+ AR_PHY_TPC_6_ERROR_EST_MODE);
+ }
+ }
+
+ /*
+ * Enable temperature compensation
+ * Need to use register names
+ */
+ if (frequency < 4000) {
+ temp_slope = eep->modal_header_2g.temp_slope;
+ } else {
+ if ((eep->base_eep_header.misc_configuration & 0x20) != 0)
+ {
+ for(i=0;i<8;i++)
+ {
+ t[i]=eep->base_ext1.tempslopextension[i];
+ f[i]=FBIN2FREQ(eep->cal_freq_pier_5g[i], 0);
+ }
+ temp_slope=interpolate(frequency,f,t,8);
+ }
+ else
+ {
+ if(!AR_SREV_SCORPION(ah)) {
+ if (eep->base_ext2.temp_slope_low != 0) {
+ t[0] = eep->base_ext2.temp_slope_low;
+ f[0] = 5180;
+ t[1] = eep->modal_header_5g.temp_slope;
+ f[1] = 5500;
+ t[2] = eep->base_ext2.temp_slope_high;
+ f[2] = 5785;
+ temp_slope = interpolate(frequency, f, t, 3);
+ } else {
+ temp_slope = eep->modal_header_5g.temp_slope;
+ }
+ } else {
+ /*
+ * Scorpion has individual chain tempslope values
+ */
+ t[0] = eep->base_ext1.tempslopextension[2];
+ t1[0]= eep->base_ext1.tempslopextension[3];
+ t2[0]= eep->base_ext1.tempslopextension[4];
+ f[0] = 5180;
+ t[1] = eep->modal_header_5g.temp_slope;
+ t1[1]= eep->base_ext1.tempslopextension[0];
+ t2[1]= eep->base_ext1.tempslopextension[1];
+ f[1] = 5500;
+ t[2] = eep->base_ext1.tempslopextension[5];
+ t1[2]= eep->base_ext1.tempslopextension[6];
+ t2[2]= eep->base_ext1.tempslopextension[7];
+ f[2] = 5785;
+ temp_slope = interpolate(frequency, f, t, 3);
+ temp_slope_1=interpolate(frequency, f, t1,3);
+ temp_slope_2=interpolate(frequency, f, t2,3);
+ }
+ }
+ }
+
+ if (!AR_SREV_SCORPION(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
+ } else {
+ /*Scorpion has tempSlope register for each chain*/
+ /*Check whether temp_compensation feature is enabled or not*/
+ if (eep->base_eep_header.feature_enable & 0x1){
+ if(frequency < 4000) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
+ eep->base_ext2.temp_slope_low);
+ OS_REG_RMW_FIELD(ah,
+ AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
+ temp_slope);
+ OS_REG_RMW_FIELD(ah,
+ AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
+ eep->base_ext2.temp_slope_high);
+ } else {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
+ temp_slope);
+ OS_REG_RMW_FIELD(ah,
+ AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
+ temp_slope_1);
+ OS_REG_RMW_FIELD(ah,
+ AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
+ temp_slope_2);
+ }
+ }else {
+ /* If temp compensation is not enabled, set all registers to 0*/
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, 0);
+ OS_REG_RMW_FIELD(ah,
+ AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, 0);
+ OS_REG_RMW_FIELD(ah,
+ AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, 0);
+ }
+ }
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE, temperature[0]);
+
+ return 0;
+}
+
+/**************************************************************
+ * ar9300_eep_def_get_max_edge_power
+ *
+ * Find the maximum conformance test limit for the given channel and CTL info
+ */
+static inline u_int16_t
+ar9300_eep_def_get_max_edge_power(ar9300_eeprom_t *p_eep_data, u_int16_t freq,
+ int idx, HAL_BOOL is_2ghz)
+{
+ u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
+ u_int8_t *ctl_freqbin = is_2ghz ?
+ &p_eep_data->ctl_freqbin_2G[idx][0] :
+ &p_eep_data->ctl_freqbin_5G[idx][0];
+ u_int16_t num_edges = is_2ghz ?
+ OSPREY_NUM_BAND_EDGES_2G : OSPREY_NUM_BAND_EDGES_5G;
+ int i;
+
+ /* Get the edge power */
+ for (i = 0; (i < num_edges) && (ctl_freqbin[i] != AR9300_BCHAN_UNUSED); i++)
+ {
+ /*
+ * If there's an exact channel match or an inband flag set
+ * on the lower channel use the given rd_edge_power
+ */
+ if (freq == fbin2freq(ctl_freqbin[i], is_2ghz)) {
+ if (is_2ghz) {
+ twice_max_edge_power =
+ p_eep_data->ctl_power_data_2g[idx].ctl_edges[i].t_power;
+ } else {
+ twice_max_edge_power =
+ p_eep_data->ctl_power_data_5g[idx].ctl_edges[i].t_power;
+ }
+ break;
+ } else if ((i > 0) && (freq < fbin2freq(ctl_freqbin[i], is_2ghz))) {
+ if (is_2ghz) {
+ if (fbin2freq(ctl_freqbin[i - 1], 1) < freq &&
+ p_eep_data->ctl_power_data_2g[idx].ctl_edges[i - 1].flag)
+ {
+ twice_max_edge_power =
+ p_eep_data->ctl_power_data_2g[idx].
+ ctl_edges[i - 1].t_power;
+ }
+ } else {
+ if (fbin2freq(ctl_freqbin[i - 1], 0) < freq &&
+ p_eep_data->ctl_power_data_5g[idx].ctl_edges[i - 1].flag)
+ {
+ twice_max_edge_power =
+ p_eep_data->ctl_power_data_5g[idx].
+ ctl_edges[i - 1].t_power;
+ }
+ }
+ /*
+ * Leave loop - no more affecting edges possible
+ * in this monotonic increasing list
+ */
+ break;
+ }
+ }
+ /*
+ * EV89475: EEPROM might contain 0 txpower in CTL table for certain
+ * 2.4GHz channels. We workaround it by overwriting 60 (30 dBm) here.
+ */
+ if (is_2ghz && (twice_max_edge_power == 0)) {
+ twice_max_edge_power = 60;
+ }
+
+ HALASSERT(twice_max_edge_power > 0);
+ return twice_max_edge_power;
+}
+
+HAL_BOOL
+ar9300_eeprom_set_power_per_rate_table(
+ struct ath_hal *ah,
+ ar9300_eeprom_t *p_eep_data,
+ HAL_CHANNEL_INTERNAL *chan,
+ u_int8_t *p_pwr_array,
+ u_int16_t cfg_ctl,
+ u_int16_t antenna_reduction,
+ u_int16_t twice_max_regulatory_power,
+ u_int16_t power_limit,
+ u_int8_t chainmask)
+{
+ /* Local defines to distinguish between extension and control CTL's */
+#define EXT_ADDITIVE (0x8000)
+#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
+#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
+#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
+#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
+#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
+#define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
+#define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
+#define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
+
+ static const u_int16_t tp_scale_reduction_table[5] =
+ { 0, 3, 6, 9, AR9300_MAX_RATE_POWER };
+ int i;
+ int16_t twice_largest_antenna;
+ u_int16_t twice_antenna_reduction = 2*antenna_reduction ;
+ int16_t scaled_power = 0, min_ctl_power, max_reg_allowed_power;
+#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
+#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
+ u_int16_t ctl_modes_for11a[] =
+ {CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40};
+ u_int16_t ctl_modes_for11g[] =
+ {CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
+ u_int16_t num_ctl_modes, *p_ctl_mode, ctl_mode, freq;
+ CHAN_CENTERS centers;
+ int tx_chainmask;
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ u_int8_t *ctl_index;
+ u_int8_t ctl_num;
+ u_int16_t twice_min_edge_power;
+ u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
+
+ tx_chainmask = chainmask ? chainmask : ahp->ah_tx_chainmask;
+
+ ar9300_get_channel_centers(ah, chan, &centers);
+
+ if (IS_CHAN_2GHZ(chan)) {
+ ahp->twice_antenna_gain = p_eep_data->modal_header_2g.antenna_gain;
+ } else {
+ ahp->twice_antenna_gain = p_eep_data->modal_header_5g.antenna_gain;
+ }
+
+ /* Save max allowed antenna gain to ease future lookups */
+ ahp->twice_antenna_reduction = twice_antenna_reduction;
+
+ /* Deduct antenna gain from EIRP to get the upper limit */
+ twice_largest_antenna = (int16_t)AH_MIN((twice_antenna_reduction -
+ ahp->twice_antenna_gain), 0);
+ max_reg_allowed_power = twice_max_regulatory_power + twice_largest_antenna;
+
+ /* Use ah_tp_scale - see bug 30070. */
+ if (AH_PRIVATE(ah)->ah_tp_scale != HAL_TP_SCALE_MAX) {
+ max_reg_allowed_power -=
+ (tp_scale_reduction_table[(AH_PRIVATE(ah)->ah_tp_scale)] * 2);
+ }
+
+ scaled_power = AH_MIN(power_limit, max_reg_allowed_power);
+
+ /*
+ * Reduce scaled Power by number of chains active to get to
+ * per chain tx power level
+ */
+ /* TODO: better value than these? */
+ switch (ar9300_get_ntxchains(tx_chainmask)) {
+ case 1:
+ ahp->upper_limit[0] = AH_MAX(0, scaled_power);
+ break;
+ case 2:
+ scaled_power -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
+ ahp->upper_limit[1] = AH_MAX(0, scaled_power);
+ break;
+ case 3:
+ scaled_power -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
+ ahp->upper_limit[2] = AH_MAX(0, scaled_power);
+ break;
+ default:
+ HALASSERT(0); /* Unsupported number of chains */
+ }
+
+ scaled_power = AH_MAX(0, scaled_power);
+
+ /* Get target powers from EEPROM - our baseline for TX Power */
+ if (IS_CHAN_2GHZ(chan)) {
+ /* Setup for CTL modes */
+ /* CTL_11B, CTL_11G, CTL_2GHT20 */
+ num_ctl_modes =
+ ARRAY_LENGTH(ctl_modes_for11g) - SUB_NUM_CTL_MODES_AT_2G_40;
+ p_ctl_mode = ctl_modes_for11g;
+
+ if (IS_CHAN_HT40(chan)) {
+ num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11g); /* All 2G CTL's */
+ }
+ } else {
+ /* Setup for CTL modes */
+ /* CTL_11A, CTL_5GHT20 */
+ num_ctl_modes =
+ ARRAY_LENGTH(ctl_modes_for11a) - SUB_NUM_CTL_MODES_AT_5G_40;
+ p_ctl_mode = ctl_modes_for11a;
+
+ if (IS_CHAN_HT40(chan)) {
+ num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11a); /* All 5G CTL's */
+ }
+ }
+
+ /*
+ * For MIMO, need to apply regulatory caps individually across dynamically
+ * running modes: CCK, OFDM, HT20, HT40
+ *
+ * The outer loop walks through each possible applicable runtime mode.
+ * The inner loop walks through each ctl_index entry in EEPROM.
+ * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
+ *
+ */
+ for (ctl_mode = 0; ctl_mode < num_ctl_modes; ctl_mode++) {
+ HAL_BOOL is_ht40_ctl_mode =
+ (p_ctl_mode[ctl_mode] == CTL_5GHT40) ||
+ (p_ctl_mode[ctl_mode] == CTL_2GHT40);
+ if (is_ht40_ctl_mode) {
+ freq = centers.synth_center;
+ } else if (p_ctl_mode[ctl_mode] & EXT_ADDITIVE) {
+ freq = centers.ext_center;
+ } else {
+ freq = centers.ctl_center;
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
+ "LOOP-Mode ctl_mode %d < %d, "
+ "is_ht40_ctl_mode %d, EXT_ADDITIVE %d\n",
+ ctl_mode, num_ctl_modes, is_ht40_ctl_mode,
+ (p_ctl_mode[ctl_mode] & EXT_ADDITIVE));
+ /* walk through each CTL index stored in EEPROM */
+ if (IS_CHAN_2GHZ(chan)) {
+ ctl_index = p_eep_data->ctl_index_2g;
+ ctl_num = OSPREY_NUM_CTLS_2G;
+ } else {
+ ctl_index = p_eep_data->ctl_index_5g;
+ ctl_num = OSPREY_NUM_CTLS_5G;
+ }
+
+ for (i = 0; (i < ctl_num) && ctl_index[i]; i++) {
+ HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
+ " LOOP-Ctlidx %d: cfg_ctl 0x%2.2x p_ctl_mode 0x%2.2x "
+ "ctl_index 0x%2.2x chan %d chanctl 0x%x\n",
+ i, cfg_ctl, p_ctl_mode[ctl_mode], ctl_index[i],
+ chan->channel, chan->conformance_test_limit);
+
+ /*
+ * compare test group from regulatory channel list
+ * with test mode from p_ctl_mode list
+ */
+ if ((((cfg_ctl & ~CTL_MODE_M) |
+ (p_ctl_mode[ctl_mode] & CTL_MODE_M)) == ctl_index[i]) ||
+ (((cfg_ctl & ~CTL_MODE_M) |
+ (p_ctl_mode[ctl_mode] & CTL_MODE_M)) ==
+ ((ctl_index[i] & CTL_MODE_M) | SD_NO_CTL)))
+ {
+ twice_min_edge_power =
+ ar9300_eep_def_get_max_edge_power(
+ p_eep_data, freq, i, IS_CHAN_2GHZ(chan));
+
+ HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
+ " MATCH-EE_IDX %d: ch %d is2 %d "
+ "2xMinEdge %d chainmask %d chains %d\n",
+ i, freq, IS_CHAN_2GHZ(chan),
+ twice_min_edge_power, tx_chainmask,
+ ar9300_get_ntxchains(tx_chainmask));
+
+ if ((cfg_ctl & ~CTL_MODE_M) == SD_NO_CTL) {
+ /*
+ * Find the minimum of all CTL edge powers
+ * that apply to this channel
+ */
+ twice_max_edge_power =
+ AH_MIN(twice_max_edge_power, twice_min_edge_power);
+ } else {
+ /* specific */
+ twice_max_edge_power = twice_min_edge_power;
+ break;
+ }
+ }
+ }
+
+ min_ctl_power = (u_int8_t)AH_MIN(twice_max_edge_power, scaled_power);
+
+ HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
+ " SEL-Min ctl_mode %d p_ctl_mode %d "
+ "2xMaxEdge %d sP %d min_ctl_pwr %d\n",
+ ctl_mode, p_ctl_mode[ctl_mode],
+ twice_max_edge_power, scaled_power, min_ctl_power);
+
+ /* Apply ctl mode to correct target power set */
+ switch (p_ctl_mode[ctl_mode]) {
+ case CTL_11B:
+ for (i = ALL_TARGET_LEGACY_1L_5L; i <= ALL_TARGET_LEGACY_11S; i++) {
+ p_pwr_array[i] =
+ (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
+ }
+ break;
+ case CTL_11A:
+ case CTL_11G:
+ for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) {
+ p_pwr_array[i] =
+ (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
+#ifdef ATH_BT_COEX
+ if ((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
+ (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
+ {
+ if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR)
+ && (ahp->ah_bt_wlan_isolation
+ < HAL_BT_COEX_ISOLATION_FOR_NO_COEX))
+ {
+
+ u_int8_t reduce_pow;
+
+ reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
+ - ahp->ah_bt_wlan_isolation) << 1;
+
+ if (reduce_pow <= p_pwr_array[i]) {
+ p_pwr_array[i] -= reduce_pow;
+ }
+ }
+ if ((ahp->ah_bt_coex_flag &
+ HAL_BT_COEX_FLAG_LOW_ACK_PWR) &&
+ (i != ALL_TARGET_LEGACY_36) &&
+ (i != ALL_TARGET_LEGACY_48) &&
+ (i != ALL_TARGET_LEGACY_54) &&
+ (p_ctl_mode[ctl_mode] == CTL_11G))
+ {
+ p_pwr_array[i] = 0;
+ }
+ }
+#endif
+ }
+ break;
+ case CTL_5GHT20:
+ case CTL_2GHT20:
+ for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_23; i++) {
+ p_pwr_array[i] =
+ (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
+#ifdef ATH_BT_COEX
+ if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
+ (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
+ (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
+ (ahp->ah_bt_wlan_isolation
+ < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
+
+ u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
+ - ahp->ah_bt_wlan_isolation) << 1;
+
+ if (reduce_pow <= p_pwr_array[i]) {
+ p_pwr_array[i] -= reduce_pow;
+ }
+ }
+#if ATH_SUPPORT_MCI
+ else if ((ahp->ah_bt_coex_flag &
+ HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
+ (p_ctl_mode[ctl_mode] == CTL_2GHT20) &&
+ (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
+ {
+ u_int8_t max_pwr;
+
+ max_pwr = MS(mci_concur_tx_max_pwr[2][1],
+ ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
+ if (p_pwr_array[i] > max_pwr) {
+ p_pwr_array[i] = max_pwr;
+ }
+ }
+#endif
+#endif
+ }
+ break;
+ case CTL_11B_EXT:
+#ifdef NOT_YET
+ target_power_cck_ext.t_pow2x[0] = (u_int8_t)
+ AH_MIN(target_power_cck_ext.t_pow2x[0], min_ctl_power);
+#endif /* NOT_YET */
+ break;
+ case CTL_11A_EXT:
+ case CTL_11G_EXT:
+#ifdef NOT_YET
+ target_power_ofdm_ext.t_pow2x[0] = (u_int8_t)
+ AH_MIN(target_power_ofdm_ext.t_pow2x[0], min_ctl_power);
+#endif /* NOT_YET */
+ break;
+ case CTL_5GHT40:
+ case CTL_2GHT40:
+ for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_23; i++) {
+ p_pwr_array[i] = (u_int8_t)
+ AH_MIN(p_pwr_array[i], min_ctl_power);
+#ifdef ATH_BT_COEX
+ if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
+ (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
+ (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
+ (ahp->ah_bt_wlan_isolation
+ < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
+
+ u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
+ - ahp->ah_bt_wlan_isolation) << 1;
+
+ if (reduce_pow <= p_pwr_array[i]) {
+ p_pwr_array[i] -= reduce_pow;
+ }
+ }
+#if ATH_SUPPORT_MCI
+ else if ((ahp->ah_bt_coex_flag &
+ HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
+ (p_ctl_mode[ctl_mode] == CTL_2GHT40) &&
+ (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
+ {
+ u_int8_t max_pwr;
+
+ max_pwr = MS(mci_concur_tx_max_pwr[3][1],
+ ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
+ if (p_pwr_array[i] > max_pwr) {
+ p_pwr_array[i] = max_pwr;
+ }
+ }
+#endif
+#endif
+ }
+ break;
+ default:
+ HALASSERT(0);
+ break;
+ }
+ } /* end ctl mode checking */
+
+ return AH_TRUE;
+#undef EXT_ADDITIVE
+#undef CTL_11A_EXT
+#undef CTL_11G_EXT
+#undef CTL_11B_EXT
+#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
+#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
+}
+
+/**************************************************************
+ * ar9300_eeprom_set_transmit_power
+ *
+ * Set the transmit power in the baseband for the given
+ * operating channel and mode.
+ */
+HAL_STATUS
+ar9300_eeprom_set_transmit_power(struct ath_hal *ah,
+ ar9300_eeprom_t *p_eep_data, HAL_CHANNEL_INTERNAL *chan, u_int16_t cfg_ctl,
+ u_int16_t antenna_reduction, u_int16_t twice_max_regulatory_power,
+ u_int16_t power_limit)
+{
+#define ABS(_x, _y) ((int)_x > (int)_y ? (int)_x - (int)_y : (int)_y - (int)_x)
+#define INCREASE_MAXPOW_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
+#define INCREASE_MAXPOW_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
+ u_int8_t target_power_val_t2[ar9300_rate_size];
+ u_int8_t target_power_val_t2_eep[ar9300_rate_size];
+ int16_t twice_array_gain = 0, max_power_level = 0;
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ int i = 0;
+ u_int32_t tmp_paprd_rate_mask = 0, *tmp_ptr = NULL;
+ int paprd_scale_factor = 5;
+
+ u_int8_t *ptr_mcs_rate2power_table_index;
+ u_int8_t mcs_rate2power_table_index_ht20[24] =
+ {
+ ALL_TARGET_HT20_0_8_16,
+ ALL_TARGET_HT20_1_3_9_11_17_19,
+ ALL_TARGET_HT20_1_3_9_11_17_19,
+ ALL_TARGET_HT20_1_3_9_11_17_19,
+ ALL_TARGET_HT20_4,
+ ALL_TARGET_HT20_5,
+ ALL_TARGET_HT20_6,
+ ALL_TARGET_HT20_7,
+ ALL_TARGET_HT20_0_8_16,
+ ALL_TARGET_HT20_1_3_9_11_17_19,
+ ALL_TARGET_HT20_1_3_9_11_17_19,
+ ALL_TARGET_HT20_1_3_9_11_17_19,
+ ALL_TARGET_HT20_12,
+ ALL_TARGET_HT20_13,
+ ALL_TARGET_HT20_14,
+ ALL_TARGET_HT20_15,
+ ALL_TARGET_HT20_0_8_16,
+ ALL_TARGET_HT20_1_3_9_11_17_19,
+ ALL_TARGET_HT20_1_3_9_11_17_19,
+ ALL_TARGET_HT20_1_3_9_11_17_19,
+ ALL_TARGET_HT20_20,
+ ALL_TARGET_HT20_21,
+ ALL_TARGET_HT20_22,
+ ALL_TARGET_HT20_23
+ };
+
+ u_int8_t mcs_rate2power_table_index_ht40[24] =
+ {
+ ALL_TARGET_HT40_0_8_16,
+ ALL_TARGET_HT40_1_3_9_11_17_19,
+ ALL_TARGET_HT40_1_3_9_11_17_19,
+ ALL_TARGET_HT40_1_3_9_11_17_19,
+ ALL_TARGET_HT40_4,
+ ALL_TARGET_HT40_5,
+ ALL_TARGET_HT40_6,
+ ALL_TARGET_HT40_7,
+ ALL_TARGET_HT40_0_8_16,
+ ALL_TARGET_HT40_1_3_9_11_17_19,
+ ALL_TARGET_HT40_1_3_9_11_17_19,
+ ALL_TARGET_HT40_1_3_9_11_17_19,
+ ALL_TARGET_HT40_12,
+ ALL_TARGET_HT40_13,
+ ALL_TARGET_HT40_14,
+ ALL_TARGET_HT40_15,
+ ALL_TARGET_HT40_0_8_16,
+ ALL_TARGET_HT40_1_3_9_11_17_19,
+ ALL_TARGET_HT40_1_3_9_11_17_19,
+ ALL_TARGET_HT40_1_3_9_11_17_19,
+ ALL_TARGET_HT40_20,
+ ALL_TARGET_HT40_21,
+ ALL_TARGET_HT40_22,
+ ALL_TARGET_HT40_23,
+ };
+
+ HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
+ "%s[%d] +++chan %d,cfgctl 0x%04x "
+ "antenna_reduction 0x%04x, twice_max_regulatory_power 0x%04x "
+ "power_limit 0x%04x\n",
+ __func__, __LINE__, chan->channel, cfg_ctl,
+ antenna_reduction, twice_max_regulatory_power, power_limit);
+ ar9300_set_target_power_from_eeprom(ah, chan->channel, target_power_val_t2);
+
+ if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
+ if (IS_CHAN_2GHZ(chan)) {
+ if (IS_CHAN_HT40(chan)) {
+ tmp_paprd_rate_mask =
+ p_eep_data->modal_header_2g.paprd_rate_mask_ht40;
+ tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht40;
+ } else {
+ tmp_paprd_rate_mask =
+ p_eep_data->modal_header_2g.paprd_rate_mask_ht20;
+ tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht20;
+ }
+ } else {
+ if (IS_CHAN_HT40(chan)) {
+ tmp_paprd_rate_mask =
+ p_eep_data->modal_header_5g.paprd_rate_mask_ht40;
+ tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht40;
+ } else {
+ tmp_paprd_rate_mask =
+ p_eep_data->modal_header_5g.paprd_rate_mask_ht20;
+ tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht20;
+ }
+ }
+ AH_PAPRD_GET_SCALE_FACTOR(
+ paprd_scale_factor, p_eep_data, IS_CHAN_2GHZ(chan), chan->channel);
+ HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d] paprd_scale_factor %d\n",
+ __func__, __LINE__, paprd_scale_factor);
+ /* PAPRD is not done yet, Scale down the EEP power */
+ if (IS_CHAN_HT40(chan)) {
+ ptr_mcs_rate2power_table_index =
+ &mcs_rate2power_table_index_ht40[0];
+ } else {
+ ptr_mcs_rate2power_table_index =
+ &mcs_rate2power_table_index_ht20[0];
+ }
+ if (!chan->paprd_table_write_done) {
+ for (i = 0; i < 24; i++) {
+ /* PAPRD is done yet, so Scale down Power for PAPRD Rates*/
+ if (tmp_paprd_rate_mask & (1 << i)) {
+ target_power_val_t2[ptr_mcs_rate2power_table_index[i]] -=
+ paprd_scale_factor;
+ HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
+ "%s[%d]: Chan %d "
+ "Scale down target_power_val_t2[%d] = 0x%04x\n",
+ __func__, __LINE__,
+ chan->channel, i, target_power_val_t2[i]);
+ }
+ }
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
+ "%s[%d]: PAPRD Done No TGT PWR Scaling\n", __func__, __LINE__);
+ }
+ }
+
+ /* Save the Target power for future use */
+ OS_MEMCPY(target_power_val_t2_eep, target_power_val_t2,
+ sizeof(target_power_val_t2));
+ ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
+ target_power_val_t2, cfg_ctl,
+ antenna_reduction,
+ twice_max_regulatory_power,
+ power_limit, 0);
+
+ /* Save this for quick lookup */
+ ahp->reg_dmn = chan->conformance_test_limit;
+
+ /*
+ * Always use CDD/direct per rate power table for register based approach.
+ * For FCC, CDD calculations should factor in the array gain, hence
+ * this adjust call. ETSI and MKK does not have this requirement.
+ */
+ if (is_reg_dmn_fcc(ahp->reg_dmn)) {
+ ar9300_adjust_reg_txpower_cdd(ah, target_power_val_t2);
+ }
+
+ if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
+ for (i = 0; i < ar9300_rate_size; i++) {
+ /*
+ * EEPROM TGT PWR is not same as current TGT PWR,
+ * so Disable PAPRD for this rate.
+ * Some of APs might ask to reduce Target Power,
+ * if target power drops significantly,
+ * disable PAPRD for that rate.
+ */
+ if (tmp_paprd_rate_mask & (1 << i)) {
+ if (ABS(target_power_val_t2_eep[i], target_power_val_t2[i]) >
+ paprd_scale_factor)
+ {
+ tmp_paprd_rate_mask &= ~(1 << i);
+ HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
+ "%s: EEP TPC[%02d] 0x%08x "
+ "Curr TPC[%02d] 0x%08x mask = 0x%08x\n",
+ __func__, i, target_power_val_t2_eep[i], i,
+ target_power_val_t2[i], tmp_paprd_rate_mask);
+ }
+ }
+
+ }
+ HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
+ "%s: Chan %d After tmp_paprd_rate_mask = 0x%08x\n",
+ __func__, chan->channel, tmp_paprd_rate_mask);
+ if (tmp_ptr) {
+ *tmp_ptr = tmp_paprd_rate_mask;
+ }
+ }
+
+ /* Write target power array to registers */
+ ar9300_transmit_power_reg_write(ah, target_power_val_t2);
+
+ /* Write target power for self generated frames to the TPC register */
+ ar9300_selfgen_tpc_reg_write(ah, chan, target_power_val_t2);
+
+ /* GreenTx or Paprd */
+ if (AH_PRIVATE(ah)->ah_config.ath_hal_sta_update_tx_pwr_enable ||
+ AH_PRIVATE(ah)->ah_caps.hal_paprd_enabled)
+ {
+ if (AR_SREV_POSEIDON(ah)) {
+ /*For HAL_RSSI_TX_POWER_NONE array*/
+ OS_MEMCPY(ahp->ah_default_tx_power,
+ target_power_val_t2,
+ sizeof(target_power_val_t2));
+ /* Get defautl tx related register setting for GreenTx */
+ /* Record OB/DB */
+ AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB] =
+ OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2);
+ /* Record TPC settting */
+ AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC] =
+ OS_REG_READ(ah, AR_TPC);
+ /* Record BB_powertx_rate9 setting */
+ AH_PRIVATE(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9] =
+ OS_REG_READ(ah, AR_PHY_BB_POWERTX_RATE9);
+ }
+ }
+
+ /*
+ * Return tx power used to iwconfig.
+ * Since power is rate dependent, use one of the indices from the
+ * AR9300_Rates enum to select an entry from target_power_val_t2[]
+ * to report.
+ * Currently returns the power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
+ * as CCK power is less interesting (?).
+ */
+ i = ALL_TARGET_LEGACY_6_24; /* legacy */
+ if (IS_CHAN_HT40(chan)) {
+ i = ALL_TARGET_HT40_0_8_16; /* ht40 */
+ } else if (IS_CHAN_HT20(chan)) {
+ i = ALL_TARGET_HT20_0_8_16; /* ht20 */
+ }
+ max_power_level = target_power_val_t2[i];
+ /* Adjusting the ah_max_power_level based on chains and antennaGain*/
+ switch (ar9300_get_ntxchains(ahp->ah_tx_chainmask))
+ {
+ case 1:
+ break;
+ case 2:
+ twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
+ ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
+ (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_TWO_CHAIN)), 0));
+ /* Adjusting maxpower with antennaGain */
+ max_power_level -= twice_array_gain;
+ /* Adjusting maxpower based on chain */
+ max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
+ break;
+ case 3:
+ twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
+ ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
+ (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_THREE_CHAIN)), 0));
+
+ /* Adjusting maxpower with antennaGain */
+ max_power_level -= twice_array_gain;
+ /* Adjusting maxpower based on chain */
+ max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
+ break;
+ default:
+ HALASSERT(0); /* Unsupported number of chains */
+ }
+ AH_PRIVATE(ah)->ah_max_power_level = (int8_t)max_power_level;
+
+ ar9300_calibration_apply(ah, chan->channel);
+#undef ABS
+
+ /* Handle per packet TPC initializations */
+ if (AH_PRIVATE(ah)->ah_config.ath_hal_desc_tpc) {
+ /* Transmit Power per-rate per-chain are computed here. A separate
+ * power table is maintained for different MIMO modes (i.e. TXBF ON,
+ * STBC) to enable easy lookup during packet transmit.
+ * The reason for maintaing each of these tables per chain is that
+ * the transmit power used for different number of chains is different
+ * depending on whether the power has been limited by the target power,
+ * the regulatory domain or the CTL limits.
+ */
+ u_int mode = ath_hal_get_curmode(ah, chan);
+ u_int32_t val = 0;
+ u_int8_t chainmasks[AR9300_MAX_CHAINS] =
+ {OSPREY_1_CHAINMASK, OSPREY_2LOHI_CHAINMASK, OSPREY_3_CHAINMASK};
+ for (i = 0; i < AR9300_MAX_CHAINS; i++) {
+ OS_MEMCPY(target_power_val_t2, target_power_val_t2_eep,
+ sizeof(target_power_val_t2_eep));
+ ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
+ target_power_val_t2, cfg_ctl,
+ antenna_reduction,
+ twice_max_regulatory_power,
+ power_limit, chainmasks[i]);
+ HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
+ " Channel = %d Chainmask = %d, Upper Limit = [%2d.%1d dBm]\n",
+ chan->channel, i, ahp->upper_limit[i]/2,
+ ahp->upper_limit[i]%2 * 5);
+ ar9300_init_rate_txpower(ah, mode, chan, target_power_val_t2,
+ chainmasks[i]);
+
+ }
+
+ /* Enable TPC */
+ OS_REG_WRITE(ah, AR_PHY_PWRTX_MAX, AR_PHY_PWRTX_MAX_TPC_ENABLE);
+ /*
+ * Disable per chain power reduction since we are already
+ * accounting for this in our calculations
+ */
+ val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
+ if (AR_SREV_WASP(ah)) {
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
+ val & AR_PHY_POWER_TX_SUB_2_DISABLE);
+ } else {
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
+ val & AR_PHY_POWER_TX_SUB_3_DISABLE);
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**************************************************************
+ * ar9300_eeprom_set_addac
+ *
+ * Set the ADDAC from eeprom.
+ */
+void
+ar9300_eeprom_set_addac(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+
+ HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
+ "FIXME: ar9300_eeprom_def_set_addac called\n");
+#if 0
+ MODAL_EEPDEF_HEADER *p_modal;
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
+ u_int8_t biaslevel;
+
+ if (AH_PRIVATE(ah)->ah_macVersion != AR_SREV_VERSION_SOWL) {
+ return;
+ }
+
+ HALASSERT(owl_get_eepdef_ver(ahp) == AR9300_EEP_VER);
+
+ /* Xpa bias levels in eeprom are valid from rev 14.7 */
+ if (owl_get_eepdef_rev(ahp) < AR9300_EEP_MINOR_VER_7) {
+ return;
+ }
+
+ if (ahp->ah_emu_eeprom) {
+ return;
+ }
+
+ p_modal = &(eep->modal_header[IS_CHAN_2GHZ(chan)]);
+
+ if (p_modal->xpa_bias_lvl != 0xff) {
+ biaslevel = p_modal->xpa_bias_lvl;
+ } else {
+ /* Use freqeuncy specific xpa bias level */
+ u_int16_t reset_freq_bin, freq_bin, freq_count = 0;
+ CHAN_CENTERS centers;
+
+ ar9300_get_channel_centers(ah, chan, &centers);
+
+ reset_freq_bin = FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan));
+ freq_bin = p_modal->xpa_bias_lvl_freq[0] & 0xff;
+ biaslevel = (u_int8_t)(p_modal->xpa_bias_lvl_freq[0] >> 14);
+
+ freq_count++;
+
+ while (freq_count < 3) {
+ if (p_modal->xpa_bias_lvl_freq[freq_count] == 0x0) {
+ break;
+ }
+
+ freq_bin = p_modal->xpa_bias_lvl_freq[freq_count] & 0xff;
+ if (reset_freq_bin >= freq_bin) {
+ biaslevel =
+ (u_int8_t)(p_modal->xpa_bias_lvl_freq[freq_count] >> 14);
+ } else {
+ break;
+ }
+ freq_count++;
+ }
+ }
+
+ /* Apply bias level to the ADDAC values in the INI array */
+ if (IS_CHAN_2GHZ(chan)) {
+ INI_RA(&ahp->ah_ini_addac, 7, 1) =
+ (INI_RA(&ahp->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
+ } else {
+ INI_RA(&ahp->ah_ini_addac, 6, 1) =
+ (INI_RA(&ahp->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
+ }
+#endif
+}
+
+u_int
+ar9300_eeprom_dump_support(struct ath_hal *ah, void **pp_e)
+{
+ *pp_e = &(AH9300(ah)->ah_eeprom);
+ return sizeof(ar9300_eeprom_t);
+}
+
+u_int8_t
+ar9300_eeprom_get_num_ant_config(struct ath_hal_9300 *ahp,
+ HAL_FREQ_BAND freq_band)
+{
+#if 0
+ ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
+ MODAL_EEPDEF_HEADER *p_modal =
+ &(eep->modal_header[HAL_FREQ_BAND_2GHZ == freq_band]);
+ BASE_EEPDEF_HEADER *p_base = &eep->base_eep_header;
+ u_int8_t num_ant_config;
+
+ num_ant_config = 1; /* default antenna configuration */
+
+ if (p_base->version >= 0x0E0D) {
+ if (p_modal->use_ant1) {
+ num_ant_config += 1;
+ }
+ }
+
+ return num_ant_config;
+#else
+ return 1;
+#endif
+}
+
+HAL_STATUS
+ar9300_eeprom_get_ant_cfg(struct ath_hal_9300 *ahp, HAL_CHANNEL_INTERNAL *chan,
+ u_int8_t index, u_int16_t *config)
+{
+#if 0
+ ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
+ MODAL_EEPDEF_HEADER *p_modal = &(eep->modal_header[IS_CHAN_2GHZ(chan)]);
+ BASE_EEPDEF_HEADER *p_base = &eep->base_eep_header;
+
+ switch (index) {
+ case 0:
+ *config = p_modal->ant_ctrl_common & 0xFFFF;
+ return HAL_OK;
+ case 1:
+ if (p_base->version >= 0x0E0D) {
+ if (p_modal->use_ant1) {
+ *config = ((p_modal->ant_ctrl_common & 0xFFFF0000) >> 16);
+ return HAL_OK;
+ }
+ }
+ break;
+ default:
+ break;
+ }
+#endif
+ return HAL_EINVAL;
+}
+
+u_int8_t*
+ar9300_eeprom_get_cust_data(struct ath_hal_9300 *ahp)
+{
+ return (u_int8_t *)ahp;
+}
+
+#ifdef UNUSED
+static inline HAL_STATUS
+ar9300_check_eeprom(struct ath_hal *ah)
+{
+#if 0
+ u_int32_t sum = 0, el;
+ u_int16_t *eepdata;
+ int i;
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ HAL_BOOL need_swap = AH_FALSE;
+ ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom.def;
+ u_int16_t magic, magic2;
+ int addr;
+ u_int16_t temp;
+
+ /*
+ ** We need to check the EEPROM data regardless of if it's in flash or
+ ** in EEPROM.
+ */
+
+ if (!ahp->ah_priv.priv.ah_eeprom_read(
+ ah, AR9300_EEPROM_MAGIC_OFFSET, &magic))
+ {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Reading Magic # failed\n", __func__);
+ return AH_FALSE;
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Read Magic = 0x%04X\n", __func__, magic);
+
+ if (!ar9300_eep_data_in_flash(ah)) {
+
+ if (magic != AR9300_EEPROM_MAGIC) {
+ magic2 = SWAP16(magic);
+
+ if (magic2 == AR9300_EEPROM_MAGIC) {
+ need_swap = AH_TRUE;
+ eepdata = (u_int16_t *)(&ahp->ah_eeprom);
+
+ for (addr = 0;
+ addr < sizeof(ar9300_eeprom_t) / sizeof(u_int16_t);
+ addr++)
+ {
+ temp = SWAP16(*eepdata);
+ *eepdata = temp;
+ eepdata++;
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "0x%04X ", *eepdata);
+ if (((addr + 1) % 6) == 0) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "\n");
+ }
+ }
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "Invalid EEPROM Magic. endianness missmatch.\n");
+ return HAL_EEBADSUM;
+ }
+ }
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "EEPROM being read from flash @0x%p\n", AH_PRIVATE(ah)->ah_st);
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "need_swap = %s.\n", need_swap?"True":"False");
+
+ if (need_swap) {
+ el = SWAP16(ahp->ah_eeprom.def.base_eep_header.length);
+ } else {
+ el = ahp->ah_eeprom.def.base_eep_header.length;
+ }
+
+ eepdata = (u_int16_t *)(&ahp->ah_eeprom.def);
+ for (i = 0;
+ i < AH_MIN(el, sizeof(ar9300_eeprom_t)) / sizeof(u_int16_t);
+ i++) {
+ sum ^= *eepdata++;
+ }
+
+ if (need_swap) {
+ /*
+ * preddy: EEPROM endianness does not match. So change it
+ * 8bit values in eeprom data structure does not need to be swapped
+ * Only >8bits (16 & 32) values need to be swapped
+ * If a new 16 or 32 bit field is added to the EEPROM contents,
+ * please make sure to swap the field here
+ */
+ u_int32_t integer, j;
+ u_int16_t word;
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "EEPROM Endianness is not native.. Changing \n");
+
+ /* convert Base Eep header */
+ word = SWAP16(eep->base_eep_header.length);
+ eep->base_eep_header.length = word;
+
+ word = SWAP16(eep->base_eep_header.checksum);
+ eep->base_eep_header.checksum = word;
+
+ word = SWAP16(eep->base_eep_header.version);
+ eep->base_eep_header.version = word;
+
+ word = SWAP16(eep->base_eep_header.reg_dmn[0]);
+ eep->base_eep_header.reg_dmn[0] = word;
+
+ word = SWAP16(eep->base_eep_header.reg_dmn[1]);
+ eep->base_eep_header.reg_dmn[1] = word;
+
+ word = SWAP16(eep->base_eep_header.rf_silent);
+ eep->base_eep_header.rf_silent = word;
+
+ word = SWAP16(eep->base_eep_header.blue_tooth_options);
+ eep->base_eep_header.blue_tooth_options = word;
+
+ word = SWAP16(eep->base_eep_header.device_cap);
+ eep->base_eep_header.device_cap = word;
+
+ /* convert Modal Eep header */
+ for (j = 0; j < ARRAY_LENGTH(eep->modal_header); j++) {
+ MODAL_EEPDEF_HEADER *p_modal = &eep->modal_header[j];
+ integer = SWAP32(p_modal->ant_ctrl_common);
+ p_modal->ant_ctrl_common = integer;
+
+ for (i = 0; i < AR9300_MAX_CHAINS; i++) {
+ integer = SWAP32(p_modal->ant_ctrl_chain[i]);
+ p_modal->ant_ctrl_chain[i] = integer;
+ }
+
+ for (i = 0; i < AR9300_EEPROM_MODAL_SPURS; i++) {
+ word = SWAP16(p_modal->spur_chans[i].spur_chan);
+ p_modal->spur_chans[i].spur_chan = word;
+ }
+ }
+ }
+
+ /* Check CRC - Attach should fail on a bad checksum */
+ if (sum != 0xffff || owl_get_eepdef_ver(ahp) != AR9300_EEP_VER ||
+ owl_get_eepdef_rev(ahp) < AR9300_EEP_NO_BACK_VER) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
+ sum, owl_get_eepdef_ver(ahp));
+ return HAL_EEBADSUM;
+ }
+#ifdef EEPROM_DUMP
+ ar9300_eeprom_def_dump(ah, eep);
+#endif
+
+#if 0
+#ifdef AH_AR9300_OVRD_TGT_PWR
+
+ /*
+ * 14.4 EEPROM contains low target powers.
+ * Hardcode until EEPROM > 14.4
+ */
+ if (owl_get_eepdef_ver(ahp) == 14 && owl_get_eepdef_rev(ahp) <= 4) {
+ MODAL_EEPDEF_HEADER *p_modal;
+
+#ifdef EEPROM_DUMP
+ HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Original Target Powers\n");
+ ar9300_eep_def_dump_tgt_power(ah, eep);
+#endif
+ HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE,
+ "Override Target Powers. EEPROM Version is %d.%d, "
+ "Device Type %d\n",
+ owl_get_eepdef_ver(ahp),
+ owl_get_eepdef_rev(ahp),
+ eep->base_eep_header.device_type);
+
+
+ ar9300_eep_def_override_tgt_power(ah, eep);
+
+ if (eep->base_eep_header.device_type == 5) {
+ /* for xb72 only: improve transmit EVM for interop */
+ p_modal = &eep->modal_header[1];
+ p_modal->tx_frame_to_data_start = 0x23;
+ p_modal->tx_frame_to_xpa_on = 0x23;
+ p_modal->tx_frame_to_pa_on = 0x23;
+ }
+
+#ifdef EEPROM_DUMP
+ HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Modified Target Powers\n");
+ ar9300_eep_def_dump_tgt_power(ah, eep);
+#endif
+ }
+#endif /* AH_AR9300_OVRD_TGT_PWR */
+#endif
+#endif
+ return HAL_OK;
+}
+#endif
+
+static u_int16_t
+ar9300_eeprom_get_spur_chan(struct ath_hal *ah, u_int16_t i, HAL_BOOL is_2ghz)
+{
+ u_int16_t spur_val = AR_NO_SPUR;
+#if 0
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom;
+
+ HALASSERT(i < AR_EEPROM_MODAL_SPURS );
+
+ HALDEBUG(ah, HAL_DEBUG_ANI,
+ "Getting spur idx %d is2Ghz. %d val %x\n",
+ i, is_2ghz,
+ AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz]);
+
+ switch (AH_PRIVATE(ah)->ah_config.ath_hal_spur_mode) {
+ case SPUR_DISABLE:
+ /* returns AR_NO_SPUR */
+ break;
+ case SPUR_ENABLE_IOCTL:
+ spur_val = AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz];
+ HALDEBUG(ah, HAL_DEBUG_ANI,
+ "Getting spur val from new loc. %d\n", spur_val);
+ break;
+ case SPUR_ENABLE_EEPROM:
+ spur_val = eep->modal_header[is_2ghz].spur_chans[i].spur_chan;
+ break;
+
+ }
+#endif
+ return spur_val;
+}
+
+#ifdef UNUSED
+static inline HAL_BOOL
+ar9300_fill_eeprom(struct ath_hal *ah)
+{
+ return ar9300_eeprom_restore(ah);
+}
+#endif
+
+u_int16_t
+ar9300_eeprom_struct_size(void)
+{
+ return sizeof(ar9300_eeprom_t);
+}
+
+int ar9300_eeprom_struct_default_many(void)
+{
+ return ARRAY_LENGTH(default9300);
+}
+
+
+ar9300_eeprom_t *
+ar9300_eeprom_struct_default(int default_index)
+{
+ if (default_index >= 0 &&
+ default_index < ARRAY_LENGTH(default9300))
+ {
+ return default9300[default_index];
+ } else {
+ return 0;
+ }
+}
+
+ar9300_eeprom_t *
+ar9300_eeprom_struct_default_find_by_id(int id)
+{
+ int it;
+
+ for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
+ if (default9300[it] != 0 && default9300[it]->template_version == id) {
+ return default9300[it];
+ }
+ }
+ return 0;
+}
+
+
+HAL_BOOL
+ar9300_calibration_data_read_flash(struct ath_hal *ah, long address,
+ u_int8_t *buffer, int many)
+{
+
+ if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE - 1)) {
+ return AH_FALSE;
+ }
+ return AH_FALSE;
+}
+
+HAL_BOOL
+ar9300_calibration_data_read_eeprom(struct ath_hal *ah, long address,
+ u_int8_t *buffer, int many)
+{
+ int i;
+ u_int8_t value[2];
+ unsigned long eep_addr;
+ unsigned long byte_addr;
+ u_int16_t *svalue;
+ struct ath_hal_9300 *ahp = AH9300(ah);
+
+ if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE)) {
+ return AH_FALSE;
+ }
+
+ for (i = 0; i < many; i++) {
+ eep_addr = (u_int16_t) (address + i) / 2;
+ byte_addr = (u_int16_t) (address + i) % 2;
+ svalue = (u_int16_t *) value;
+ if (!ahp->ah_priv.priv.ah_eeprom_read(ah, eep_addr, svalue)) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Unable to read eeprom region \n", __func__);
+ return AH_FALSE;
+ }
+ buffer[i] = (*svalue >> (8 * byte_addr)) & 0xff;
+ }
+ return AH_TRUE;
+}
+
+HAL_BOOL
+ar9300_calibration_data_read_otp(struct ath_hal *ah, long address,
+ u_int8_t *buffer, int many, HAL_BOOL is_wifi)
+{
+ int i;
+ unsigned long eep_addr;
+ unsigned long byte_addr;
+ u_int32_t svalue;
+
+ if (((address) < 0) || ((address + many) > 0x400)) {
+ return AH_FALSE;
+ }
+
+ for (i = 0; i < many; i++) {
+ eep_addr = (u_int16_t) (address + i) / 4; /* otp is 4 bytes long???? */
+ byte_addr = (u_int16_t) (address + i) % 4;
+ if (!ar9300_otp_read(ah, eep_addr, &svalue, is_wifi)) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Unable to read otp region \n", __func__);
+ return AH_FALSE;
+ }
+ buffer[i] = (svalue >> (8 * byte_addr)) & 0xff;
+ }
+ return AH_TRUE;
+}
+
+#ifdef ATH_CAL_NAND_FLASH
+HAL_BOOL
+ar9300_calibration_data_read_nand(struct ath_hal *ah, long address,
+ u_int8_t *buffer, int many)
+{
+ int ret_len;
+ int ret_val = 1;
+
+ /* Calling OS based API to read NAND */
+ ret_val = OS_NAND_FLASH_READ(ATH_CAL_NAND_PARTITION, address, many, &ret_len, buffer);
+
+ return (ret_val ? AH_FALSE: AH_TRUE);
+}
+#endif
+
+HAL_BOOL
+ar9300_calibration_data_read(struct ath_hal *ah, long address,
+ u_int8_t *buffer, int many)
+{
+ switch (AH9300(ah)->calibration_data_source) {
+ case calibration_data_flash:
+ return ar9300_calibration_data_read_flash(ah, address, buffer, many);
+ case calibration_data_eeprom:
+ return ar9300_calibration_data_read_eeprom(ah, address, buffer, many);
+ case calibration_data_otp:
+ return ar9300_calibration_data_read_otp(ah, address, buffer, many, 1);
+#ifdef ATH_CAL_NAND_FLASH
+ case calibration_data_nand:
+ return ar9300_calibration_data_read_nand(ah,address,buffer,many);
+#endif
+
+ }
+ return AH_FALSE;
+}
+
+
+HAL_BOOL
+ar9300_calibration_data_read_array(struct ath_hal *ah, int address,
+ u_int8_t *buffer, int many)
+{
+ int it;
+
+ for (it = 0; it < many; it++) {
+ (void)ar9300_calibration_data_read(ah, address - it, buffer + it, 1);
+ }
+ return AH_TRUE;
+}
+
+
+/*
+ * the address where the first configuration block is written
+ */
+static const int base_address = 0x3ff; /* 1KB */
+static const int base_address_512 = 0x1ff; /* 512Bytes */
+
+/*
+ * the address where the NAND first configuration block is written
+ */
+#ifdef ATH_CAL_NAND_FLASH
+static const int base_address_nand = AR9300_FLASH_CAL_START_OFFSET;
+#endif
+
+
+/*
+ * the lower limit on configuration data
+ */
+static const int low_limit = 0x040;
+
+/*
+ * returns size of the physical eeprom in bytes.
+ * 1024 and 2048 are normal sizes.
+ * 0 means there is no eeprom.
+ */
+int32_t
+ar9300_eeprom_size(struct ath_hal *ah)
+{
+ u_int16_t data;
+ /*
+ * first we'll try for 4096 bytes eeprom
+ */
+ if (ar9300_eeprom_read_word(ah, 2047, &data)) {
+ if (data != 0) {
+ return 4096;
+ }
+ }
+ /*
+ * then we'll try for 2048 bytes eeprom
+ */
+ if (ar9300_eeprom_read_word(ah, 1023, &data)) {
+ if (data != 0) {
+ return 2048;
+ }
+ }
+ /*
+ * then we'll try for 1024 bytes eeprom
+ */
+ if (ar9300_eeprom_read_word(ah, 511, &data)) {
+ if (data != 0) {
+ return 1024;
+ }
+ }
+ return 0;
+}
+
+/*
+ * returns size of the physical otp in bytes.
+ * 1024 and 2048 are normal sizes.
+ * 0 means there is no eeprom.
+ */
+int32_t ar9300_otp_size(struct ath_hal *ah);
+int32_t
+ar9300_otp_size(struct ath_hal *ah)
+{
+ if (AR_SREV_POSEIDON(ah) || AR_SREV_HORNET(ah)) {
+ return base_address_512+1;
+ } else {
+ return base_address+1;
+ }
+}
+
+
+/*
+ * find top of memory
+ */
+int
+ar9300_eeprom_base_address(struct ath_hal *ah)
+{
+ int size;
+
+ if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
+ return ar9300_otp_size(ah)-1;
+ }
+ else
+ {
+ size = ar9300_eeprom_size(ah);
+ if (size > 0) {
+ return size - 1;
+ } else {
+ return ar9300_otp_size(ah)-1;
+ }
+ }
+}
+
+int
+ar9300_eeprom_volatile(struct ath_hal *ah)
+{
+ if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
+ return 0; /* no eeprom, use otp */
+ } else {
+ return 1; /* board has eeprom or flash */
+ }
+}
+
+/*
+ * need to change this to look for the pcie data in the low parts of memory
+ * cal data needs to stop a few locations above
+ */
+int
+ar9300_eeprom_low_limit(struct ath_hal *ah)
+{
+ return low_limit;
+}
+
+u_int16_t
+ar9300_compression_checksum(u_int8_t *data, int dsize)
+{
+ int it;
+ int checksum = 0;
+
+ for (it = 0; it < dsize; it++) {
+ checksum += data[it];
+ checksum &= 0xffff;
+ }
+
+ return checksum;
+}
+
+int
+ar9300_compression_header_unpack(u_int8_t *best, int *code, int *reference,
+ int *length, int *major, int *minor)
+{
+ unsigned long value[4];
+
+ value[0] = best[0];
+ value[1] = best[1];
+ value[2] = best[2];
+ value[3] = best[3];
+ *code = ((value[0] >> 5) & 0x0007);
+ *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
+ *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
+ *major = (value[2] & 0x000f);
+ *minor = (value[3] & 0x00ff);
+
+ return 4;
+}
+
+
+static HAL_BOOL
+ar9300_uncompress_block(struct ath_hal *ah, u_int8_t *mptr, int mdata_size,
+ u_int8_t *block, int size)
+{
+ int it;
+ int spot;
+ int offset;
+ int length;
+
+ spot = 0;
+ for (it = 0; it < size; it += (length + 2)) {
+ offset = block[it];
+ offset &= 0xff;
+ spot += offset;
+ length = block[it + 1];
+ length &= 0xff;
+ if (length > 0 && spot >= 0 && spot + length <= mdata_size) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Restore at %d: spot=%d offset=%d length=%d\n",
+ __func__, it, spot, offset, length);
+ OS_MEMCPY(&mptr[spot], &block[it + 2], length);
+ spot += length;
+ } else if (length > 0) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Bad restore at %d: spot=%d offset=%d length=%d\n",
+ __func__, it, spot, offset, length);
+ return AH_FALSE;
+ }
+ }
+ return AH_TRUE;
+}
+
+static int
+ar9300_eeprom_restore_internal_address(struct ath_hal *ah,
+ ar9300_eeprom_t *mptr, int mdata_size, int cptr, u_int8_t blank)
+{
+ u_int8_t word[MOUTPUT];
+ ar9300_eeprom_t *dptr; /* was uint8 */
+ int code;
+ int reference, length, major, minor;
+ int osize;
+ int it;
+ int restored;
+ u_int16_t checksum, mchecksum;
+
+ restored = 0;
+ for (it = 0; it < MSTATE; it++) {
+ (void) ar9300_calibration_data_read_array(
+ ah, cptr, word, compression_header_length);
+ if (word[0] == blank && word[1] == blank && word[2] == blank && word[3] == blank)
+ {
+ break;
+ }
+ ar9300_compression_header_unpack(
+ word, &code, &reference, &length, &major, &minor);
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Found block at %x: "
+ "code=%d ref=%d length=%d major=%d minor=%d\n",
+ __func__, cptr, code, reference, length, major, minor);
+#ifdef DONTUSE
+ if (length >= 1024) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Skipping bad header\n", __func__);
+ cptr -= compression_header_length;
+ continue;
+ }
+#endif
+ osize = length;
+ (void) ar9300_calibration_data_read_array(
+ ah, cptr, word,
+ compression_header_length + osize + compression_checksum_length);
+ checksum = ar9300_compression_checksum(
+ &word[compression_header_length], length);
+ mchecksum =
+ word[compression_header_length + osize] |
+ (word[compression_header_length + osize + 1] << 8);
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: checksum %x %x\n", __func__, checksum, mchecksum);
+ if (checksum == mchecksum) {
+ switch (code) {
+ case _compress_none:
+ if (length != mdata_size) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: EEPROM structure size mismatch "
+ "memory=%d eeprom=%d\n", __func__, mdata_size, length);
+ return -1;
+ }
+ OS_MEMCPY((u_int8_t *)mptr,
+ (u_int8_t *)(word + compression_header_length), length);
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: restored eeprom %d: uncompressed, length %d\n",
+ __func__, it, length);
+ restored = 1;
+ break;
+#ifdef UNUSED
+ case _compress_lzma:
+ if (reference == reference_current) {
+ dptr = mptr;
+ } else {
+ dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
+ reference);
+ if (dptr == 0) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Can't find reference eeprom struct %d\n",
+ __func__, reference);
+ goto done;
+ }
+ }
+ usize = -1;
+ if (usize != mdata_size) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: uncompressed data is wrong size %d %d\n",
+ __func__, usize, mdata_size);
+ goto done;
+ }
+
+ for (ib = 0; ib < mdata_size; ib++) {
+ mptr[ib] = dptr[ib] ^ word[ib + overhead];
+ }
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: restored eeprom %d: compressed, "
+ "reference %d, length %d\n",
+ __func__, it, reference, length);
+ break;
+ case _compress_pairs:
+ if (reference == reference_current) {
+ dptr = mptr;
+ } else {
+ dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
+ reference);
+ if (dptr == 0) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: Can't find the reference "
+ "eeprom structure %d\n",
+ __func__, reference);
+ goto done;
+ }
+ }
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: restored eeprom %d: "
+ "pairs, reference %d, length %d,\n",
+ __func__, it, reference, length);
+ break;
+#endif
+ case _compress_block:
+ if (reference == reference_current) {
+ dptr = mptr;
+ } else {
+ dptr = ar9300_eeprom_struct_default_find_by_id(reference);
+ if (dptr == 0) {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: cant find reference eeprom struct %d\n",
+ __func__, reference);
+ break;
+ }
+ OS_MEMCPY(mptr, dptr, mdata_size);
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: restore eeprom %d: block, reference %d, length %d\n",
+ __func__, it, reference, length);
+ (void) ar9300_uncompress_block(ah,
+ (u_int8_t *) mptr, mdata_size,
+ (u_int8_t *) (word + compression_header_length), length);
+ restored = 1;
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: unknown compression code %d\n", __func__, code);
+ break;
+ }
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,
+ "%s: skipping block with bad checksum\n", __func__);
+ }
+ cptr -= compression_header_length + osize + compression_checksum_length;
+ }
+
+ if (!restored) {
+ cptr = -1;
+ }
+ return cptr;
+}
+
+static int
+ar9300_eeprom_restore_from_dram(struct ath_hal *ah, ar9300_eeprom_t *mptr,
+ int mdata_size)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+#if !defined(USE_PLATFORM_FRAMEWORK)
+ char *cal_ptr;
+#endif
+
+
+ HALASSERT(mdata_size > 0);
+
+ /* if cal_in_flash is AH_TRUE, the address sent by LMAC to HAL
+ (i.e. ah->ah_st) is corresponding to Flash. so return from
+ here if ar9300_eep_data_in_flash(ah) returns AH_TRUE */
+ if(ar9300_eep_data_in_flash(ah))
+ return -1;
+
+ /* check if LMAC sent DRAM address is valid */
+ if (!(uintptr_t)(AH_PRIVATE(ah)->ah_st)) {
+ return -1;
+ }
+
+ /* When calibration data is from host, Host will copy the
+ compressed data to the predefined DRAM location saved at ah->ah_st */
+ ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
+ ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
+ HOST_CALDATA_SIZE);
+ if (!ahp->ah_cal_mem)
+ {
+ HALDEBUG(ah, HAL_DEBUG_EEPROM,"%s: can't remap dram region\n", __func__);
+ return -1;
+ }
+#if !defined(USE_PLATFORM_FRAMEWORK)
+ cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
+ OS_MEMCPY(mptr, cal_ptr, mdata_size);
+#else
+ OS_MEMCPY(mptr, ahp->ah_cal_mem, mdata_size);
+#endif
+
+ if (mptr->eeprom_version == 0xff ||
+ mptr->template_version == 0xff ||
+ mptr->eeprom_version == 0 ||
+ mptr->template_version == 0)
+ {
+ /* The board is uncalibrated */
+ return -1;
+ }
+ if (mptr->eeprom_version != 0x2)
+ {
+ return -1;
+ }
+
+ return mdata_size;
+
+}
+
+static int
+ar9300_eeprom_restore_from_flash(struct ath_hal *ah, ar9300_eeprom_t *mptr,
+ int mdata_size)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ char *cal_ptr;
+
+ HALASSERT(mdata_size > 0);
+
+ if (!ahp->ah_cal_mem) {
+ return -1;
+ }
+
+ ath_hal_printf(ah, "Restoring Cal data from Flash\n");
+ /*
+ * When calibration data is saved in flash, read
+ * uncompressed eeprom structure from flash and return
+ */
+ cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
+ OS_MEMCPY(mptr, cal_ptr, mdata_size);
+#if 0
+ ar9300_swap_eeprom((ar9300_eeprom_t *)mptr); DONE IN ar9300_restore()
+#endif
+ if (mptr->eeprom_version == 0xff ||
+ mptr->template_version == 0xff ||
+ mptr->eeprom_version == 0 ||
+ mptr->template_version == 0)
+ {
+ /* The board is uncalibrated */
+ return -1;
+ }
+ if (mptr->eeprom_version != 0x2)
+ {
+ return -1;
+ }
+ return mdata_size;
+}
+
+/*
+ * Read the configuration data from the storage. We try the order with:
+ * EEPROM, Flash, OTP. If all of above failed, use the default template.
+ * The data can be put in any specified memory buffer.
+ *
+ * Returns -1 on error.
+ * Returns address of next memory location on success.
+ */
+int
+ar9300_eeprom_restore_internal(struct ath_hal *ah, ar9300_eeprom_t *mptr,
+ int mdata_size)
+{
+ int nptr;
+
+ nptr = -1;
+
+ if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
+ AH9300(ah)->calibration_data_try == calibration_data_dram) &&
+ AH9300(ah)->try_dram && nptr < 0)
+ {
+ AH9300(ah)->calibration_data_source = calibration_data_dram;
+ AH9300(ah)->calibration_data_source_address = 0;
+ nptr = ar9300_eeprom_restore_from_dram(ah, mptr, mdata_size);
+ if (nptr < 0) {
+ AH9300(ah)->calibration_data_source = calibration_data_none;
+ AH9300(ah)->calibration_data_source_address = 0;
+ }
+ }
+
+ if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
+ AH9300(ah)->calibration_data_try == calibration_data_eeprom) &&
+ AH9300(ah)->try_eeprom && nptr < 0)
+ {
+ /*
+ * need to look at highest eeprom address as well as at
+ * base_address=0x3ff where we used to write the data
+ */
+ AH9300(ah)->calibration_data_source = calibration_data_eeprom;
+ if (AH9300(ah)->calibration_data_try_address != 0) {
+ AH9300(ah)->calibration_data_source_address =
+ AH9300(ah)->calibration_data_try_address;
+ nptr = ar9300_eeprom_restore_internal_address(
+ ah, mptr, mdata_size,
+ AH9300(ah)->calibration_data_source_address, 0xff);
+ } else {
+ AH9300(ah)->calibration_data_source_address =
+ ar9300_eeprom_base_address(ah);
+ nptr = ar9300_eeprom_restore_internal_address(
+ ah, mptr, mdata_size,
+ AH9300(ah)->calibration_data_source_address, 0xff);
+ if (nptr < 0 &&
+ AH9300(ah)->calibration_data_source_address != base_address)
+ {
+ AH9300(ah)->calibration_data_source_address = base_address;
+ nptr = ar9300_eeprom_restore_internal_address(
+ ah, mptr, mdata_size,
+ AH9300(ah)->calibration_data_source_address, 0xff);
+ }
+ }
+ if (nptr < 0) {
+ AH9300(ah)->calibration_data_source = calibration_data_none;
+ AH9300(ah)->calibration_data_source_address = 0;
+ }
+ }
+
+ /*
+ * ##### should be an ifdef test for any AP usage,
+ * either in driver or in nart
+ */
+ if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
+ AH9300(ah)->calibration_data_try == calibration_data_flash) &&
+ AH9300(ah)->try_flash && nptr < 0)
+ {
+ AH9300(ah)->calibration_data_source = calibration_data_flash;
+ /* how are we supposed to set this for flash? */
+ AH9300(ah)->calibration_data_source_address = 0;
+ nptr = ar9300_eeprom_restore_from_flash(ah, mptr, mdata_size);
+ if (nptr < 0) {
+ AH9300(ah)->calibration_data_source = calibration_data_none;
+ AH9300(ah)->calibration_data_source_address = 0;
+ }
+ }
+
+ if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
+ AH9300(ah)->calibration_data_try == calibration_data_otp) &&
+ AH9300(ah)->try_otp && nptr < 0)
+ {
+ AH9300(ah)->calibration_data_source = calibration_data_otp;
+ if (AH9300(ah)->calibration_data_try_address != 0) {
+ AH9300(ah)->calibration_data_source_address =
+ AH9300(ah)->calibration_data_try_address;
+ } else {
+ AH9300(ah)->calibration_data_source_address =
+ ar9300_eeprom_base_address(ah);
+ }
+ nptr = ar9300_eeprom_restore_internal_address(
+ ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0);
+ if (nptr < 0) {
+ AH9300(ah)->calibration_data_source = calibration_data_none;
+ AH9300(ah)->calibration_data_source_address = 0;
+ }
+ }
+
+#ifdef ATH_CAL_NAND_FLASH
+ if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
+ AH9300(ah)->calibration_data_try == calibration_data_nand) &&
+ AH9300(ah)->try_nand && nptr < 0)
+ {
+ AH9300(ah)->calibration_data_source = calibration_data_nand;
+ AH9300(ah)->calibration_data_source_address = ((unsigned int)(AH_PRIVATE(ah)->ah_st)) + base_address_nand;
+ if(ar9300_calibration_data_read(
+ ah, AH9300(ah)->calibration_data_source_address,
+ (u_int8_t *)mptr, mdata_size) == AH_TRUE)
+ {
+ nptr = mdata_size;
+ }
+ /*nptr=ar9300EepromRestoreInternalAddress(ah, mptr, mdataSize, CalibrationDataSourceAddress);*/
+ if(nptr < 0)
+ {
+ AH9300(ah)->calibration_data_source = calibration_data_none;
+ AH9300(ah)->calibration_data_source_address = 0;
+ }
+ }
+#endif
+ if (nptr < 0) {
+ ath_hal_printf(ah, "%s[%d] No vaid CAL, calling default template\n",
+ __func__, __LINE__);
+ nptr = ar9300_eeprom_restore_something(ah, mptr, mdata_size);
+ }
+
+ return nptr;
+}
+
+/******************************************************************************/
+/*!
+** \brief Eeprom Swapping Function
+**
+** This function will swap the contents of the "longer" EEPROM data items
+** to ensure they are consistent with the endian requirements for the platform
+** they are being compiled for
+**
+** \param eh Pointer to the EEPROM data structure
+** \return N/A
+*/
+#if AH_BYTE_ORDER == AH_BIG_ENDIAN
+void
+ar9300_swap_eeprom(ar9300_eeprom_t *eep)
+{
+ u_int32_t dword;
+ u_int16_t word;
+ int i;
+
+ word = __bswap16(eep->base_eep_header.reg_dmn[0]);
+ eep->base_eep_header.reg_dmn[0] = word;
+
+ word = __bswap16(eep->base_eep_header.reg_dmn[1]);
+ eep->base_eep_header.reg_dmn[1] = word;
+
+ dword = __bswap32(eep->base_eep_header.swreg);
+ eep->base_eep_header.swreg = dword;
+
+ dword = __bswap32(eep->modal_header_2g.ant_ctrl_common);
+ eep->modal_header_2g.ant_ctrl_common = dword;
+
+ dword = __bswap32(eep->modal_header_2g.ant_ctrl_common2);
+ eep->modal_header_2g.ant_ctrl_common2 = dword;
+
+ dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht20);
+ eep->modal_header_2g.paprd_rate_mask_ht20 = dword;
+
+ dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht40);
+ eep->modal_header_2g.paprd_rate_mask_ht40 = dword;
+
+ dword = __bswap32(eep->modal_header_5g.ant_ctrl_common);
+ eep->modal_header_5g.ant_ctrl_common = dword;
+
+ dword = __bswap32(eep->modal_header_5g.ant_ctrl_common2);
+ eep->modal_header_5g.ant_ctrl_common2 = dword;
+
+ dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht20);
+ eep->modal_header_5g.paprd_rate_mask_ht20 = dword;
+
+ dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht40);
+ eep->modal_header_5g.paprd_rate_mask_ht40 = dword;
+
+ for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
+ word = __bswap16(eep->modal_header_2g.ant_ctrl_chain[i]);
+ eep->modal_header_2g.ant_ctrl_chain[i] = word;
+
+ word = __bswap16(eep->modal_header_5g.ant_ctrl_chain[i]);
+ eep->modal_header_5g.ant_ctrl_chain[i] = word;
+ }
+}
+
+void ar9300_eeprom_template_swap(void)
+{
+ int it;
+ ar9300_eeprom_t *dptr;
+
+ for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
+ dptr = ar9300_eeprom_struct_default(it);
+ if (dptr != 0) {
+ ar9300_swap_eeprom(dptr);
+ }
+ }
+}
+#endif
+
+
+/*
+ * Restore the configuration structure by reading the eeprom.
+ * This function destroys any existing in-memory structure content.
+ */
+HAL_BOOL
+ar9300_eeprom_restore(struct ath_hal *ah)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ ar9300_eeprom_t *mptr;
+ int mdata_size;
+ HAL_BOOL status = AH_FALSE;
+
+ mptr = &ahp->ah_eeprom;
+ mdata_size = ar9300_eeprom_struct_size();
+
+ if (mptr != 0 && mdata_size > 0) {
+#if AH_BYTE_ORDER == AH_BIG_ENDIAN
+ ar9300_eeprom_template_swap();
+ ar9300_swap_eeprom(mptr);
+#endif
+ /*
+ * At this point, mptr points to the eeprom data structure
+ * in it's "default" state. If this is big endian, swap the
+ * data structures back to "little endian" form.
+ */
+ if (ar9300_eeprom_restore_internal(ah, mptr, mdata_size) >= 0) {
+ status = AH_TRUE;
+ }
+
+#if AH_BYTE_ORDER == AH_BIG_ENDIAN
+ /* Second Swap, back to Big Endian */
+ ar9300_eeprom_template_swap();
+ ar9300_swap_eeprom(mptr);
+#endif
+
+ }
+ ahp->ah_2g_paprd_rate_mask_ht40 =
+ mptr->modal_header_2g.paprd_rate_mask_ht40;
+ ahp->ah_2g_paprd_rate_mask_ht20 =
+ mptr->modal_header_2g.paprd_rate_mask_ht20;
+ ahp->ah_5g_paprd_rate_mask_ht40 =
+ mptr->modal_header_5g.paprd_rate_mask_ht40;
+ ahp->ah_5g_paprd_rate_mask_ht20 =
+ mptr->modal_header_5g.paprd_rate_mask_ht20;
+ return status;
+}
+
+int32_t ar9300_thermometer_get(struct ath_hal *ah)
+{
+ struct ath_hal_9300 *ahp = AH9300(ah);
+ int thermometer;
+ thermometer =
+ (ahp->ah_eeprom.base_eep_header.misc_configuration >> 1) & 0x3;
+ thermometer--;
+ return thermometer;
+}
+
+HAL_BOOL ar9300_thermometer_apply(struct ath_hal *ah)
+{
+ int thermometer = ar9300_thermometer_get(ah);
+
+/* ch0_RXTX4 */
+/*#define AR_PHY_65NM_CH0_RXTX4 AR_PHY_65NM(ch0_RXTX4)*/
+#define AR_PHY_65NM_CH1_RXTX4 AR_PHY_65NM(ch1_RXTX4)
+#define AR_PHY_65NM_CH2_RXTX4 AR_PHY_65NM(ch2_RXTX4)
+/*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON 0x10000000*/
+/*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_S 28*/
+#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S 29
+#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR \
+ (0x1<<AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S)
+
+ if (thermometer < 0) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
+ if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
+ AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
+ }
+ }
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
+ if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
+ }
+ }
+ } else {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
+ if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
+ AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
+ }
+ }
+ if (thermometer == 0) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
+ if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
+ AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
+ }
+ }
+ } else if (thermometer == 1) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
+ if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
+ AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
+ }
+ }
+ } else if (thermometer == 2) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
+ if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
+ if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
+ AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
+ }
+ }
+ }
+ }
+ return AH_TRUE;
+}
+
+static int32_t ar9300_tuning_caps_params_get(struct ath_hal *ah)
+{
+ int tuning_caps_params;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ tuning_caps_params = eep->base_eep_header.params_for_tuning_caps[0];
+ return tuning_caps_params;
+}
+
+/*
+ * Read the tuning caps params from eeprom and set to correct register.
+ * To regulation the frequency accuracy.
+ */
+HAL_BOOL ar9300_tuning_caps_apply(struct ath_hal *ah)
+{
+ int tuning_caps_params;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ tuning_caps_params = ar9300_tuning_caps_params_get(ah);
+ if ((eep->base_eep_header.feature_enable & 0x40) >> 6) {
+ tuning_caps_params &= 0x7f;
+
+ if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah)) {
+ return AH_TRUE;
+ } else if (AR_SREV_SCORPION(ah)) {
+ OS_REG_RMW_FIELD(ah,
+ AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
+ tuning_caps_params);
+ OS_REG_RMW_FIELD(ah,
+ AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
+ tuning_caps_params);
+ } else {
+ OS_REG_RMW_FIELD(ah,
+ AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
+ tuning_caps_params);
+ OS_REG_RMW_FIELD(ah,
+ AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
+ tuning_caps_params);
+ }
+
+ }
+ return AH_TRUE;
+}
+
+/*
+ * Read the tx_frame_to_xpa_on param from eeprom and apply the value to
+ * correct register.
+ */
+HAL_BOOL ar9300_xpa_timing_control_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
+{
+ u_int8_t xpa_timing_control;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+ if ((eep->base_eep_header.feature_enable & 0x80) >> 7) {
+ if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah)) {
+ if (is_2ghz) {
+ xpa_timing_control = eep->modal_header_2g.tx_frame_to_xpa_on;
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON,
+ xpa_timing_control);
+ } else {
+ xpa_timing_control = eep->modal_header_5g.tx_frame_to_xpa_on;
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON,
+ xpa_timing_control);
+ }
+ }
+ }
+ return AH_TRUE;
+}
+
+
+/*
+ * Read the xLNA_bias_strength param from eeprom and apply the value to
+ * correct register.
+ */
+HAL_BOOL ar9300_x_lNA_bias_strength_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
+{
+ u_int8_t x_lNABias;
+ u_int32_t value = 0;
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+
+ if ((eep->base_eep_header.misc_configuration & 0x40) >> 6) {
+ if (AR_SREV_OSPREY(ah)) {
+ if (is_2ghz) {
+ x_lNABias = eep->modal_header_2g.xLNA_bias_strength;
+ } else {
+ x_lNABias = eep->modal_header_5g.xLNA_bias_strength;
+ }
+ value = x_lNABias & ( 0x03 ); // bit0,1 for chain0
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
+ value = (x_lNABias >> 2) & ( 0x03 ); // bit2,3 for chain1
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
+ value = (x_lNABias >> 4) & ( 0x03 ); // bit4,5 for chain2
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
+ }
+ }
+ return AH_TRUE;
+}
+
+
+/*
+ * Read EEPROM header info and program the device for correct operation
+ * given the channel value.
+ */
+HAL_BOOL
+ar9300_eeprom_set_board_values(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+ ar9300_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
+
+ ar9300_xpa_timing_control_apply(ah, IS_CHAN_2GHZ(chan));
+
+ ar9300_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
+ ar9300_drive_strength_apply(ah);
+
+ ar9300_x_lNA_bias_strength_apply(ah, IS_CHAN_2GHZ(chan));
+
+ /* wait for Poseidon internal regular turnning */
+ /* for Hornet we move it before initPLL to avoid an access issue */
+ /* Function not used when EMULATION. */
+ if (!AR_SREV_HORNET(ah) && !AR_SREV_WASP(ah)) {
+ ar9300_internal_regulator_apply(ah);
+ }
+
+ ar9300_attenuation_apply(ah, chan->channel);
+ ar9300_quick_drop_apply(ah, chan->channel);
+ ar9300_thermometer_apply(ah);
+ if(!AR_SREV_WASP(ah))
+ {
+ ar9300_tuning_caps_apply(ah);
+ }
+
+ ar9300_tx_end_to_xpab_off_apply(ah, chan->channel);
+
+ return AH_TRUE;
+}
+
+u_int8_t *
+ar9300_eeprom_get_spur_chans_ptr(struct ath_hal *ah, HAL_BOOL is_2ghz)
+{
+ ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
+
+ if (is_2ghz) {
+ return &(eep->modal_header_2g.spur_chans[0]);
+ } else {
+ return &(eep->modal_header_5g.spur_chans[0]);
+ }
+}
+
+static u_int8_t ar9300_eeprom_get_tx_gain_table_number_max(struct ath_hal *ah)
+{
+ unsigned long tx_gain_table_max;
+ tx_gain_table_max = OS_REG_READ_FIELD(ah,
+ AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX);
+ return tx_gain_table_max;
+}
+
+u_int8_t ar9300_eeprom_tx_gain_table_index_max_apply(struct ath_hal *ah, u_int16_t channel)
+{
+ unsigned int index;
+ ar9300_eeprom_t *ahp_Eeprom;
+ struct ath_hal_9300 *ahp = AH9300(ah);
+
+ ahp_Eeprom = &ahp->ah_eeprom;
+
+ if (ahp_Eeprom->base_ext1.misc_enable == 0)
+ return AH_FALSE;
+
+ if (channel < 4000)
+ {
+ index = ahp_Eeprom->modal_header_2g.tx_gain_cap;
+ }
+ else
+ {
+ index = ahp_Eeprom->modal_header_5g.tx_gain_cap;
+ }
+
+ OS_REG_RMW_FIELD(ah,
+ AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX, index);
+ return AH_TRUE;
+}
+
+static u_int8_t ar9300_eeprom_get_pcdac_tx_gain_table_i(struct ath_hal *ah,
+ int i, u_int8_t *pcdac)
+{
+ unsigned long tx_gain;
+ u_int8_t tx_gain_table_max;
+ tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
+ if (i <= 0 || i > tx_gain_table_max) {
+ *pcdac = 0;
+ return AH_FALSE;
+ }
+
+ tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4);
+ *pcdac = ((tx_gain >> 24) & 0xff);
+ return AH_TRUE;
+}
+
+u_int8_t ar9300_eeprom_set_tx_gain_cap(struct ath_hal *ah,
+ int *tx_gain_max)
+// pcdac read back from reg, read back value depends on reset 2GHz/5GHz ini
+// tx_gain_table, this function will be called twice after each
+// band's calibration.
+// after 2GHz cal, tx_gain_max[0] has 2GHz, calibration max txgain,
+// tx_gain_max[1]=-100
+// after 5GHz cal, tx_gain_max[0],tx_gain_max[1] have calibration
+// value for both band
+// reset is on 5GHz, reg reading from tx_gain_table is for 5GHz,
+// so program can't recalculate 2g.tx_gain_cap at this point.
+{
+ int i = 0, ig, im = 0;
+ u_int8_t pcdac = 0;
+ u_int8_t tx_gain_table_max;
+ ar9300_eeprom_t *ahp_Eeprom;
+ struct ath_hal_9300 *ahp = AH9300(ah);
+
+ ahp_Eeprom = &ahp->ah_eeprom;
+
+ if (ahp_Eeprom->base_ext1.misc_enable == 0)
+ return AH_FALSE;
+
+ tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
+
+ for (i = 0; i < 2; i++) {
+ if (tx_gain_max[i]>-100) { // -100 didn't cal that band.
+ if ( i== 0) {
+ if (tx_gain_max[1]>-100) {
+ continue;
+ // both band are calibrated, skip 2GHz 2g.tx_gain_cap reset
+ }
+ }
+ for (ig = 1; ig <= tx_gain_table_max; ig++) {
+ if (ah != 0 && ah->ah_reset != 0)
+ {
+ ar9300_eeprom_get_pcdac_tx_gain_table_i(ah, ig, &pcdac);
+ if (pcdac >= tx_gain_max[i])
+ break;
+ }
+ }
+ if (ig+1 <= tx_gain_table_max) {
+ if (pcdac == tx_gain_max[i])
+ im = ig;
+ else
+ im = ig + 1;
+ if (i == 0) {
+ ahp_Eeprom->modal_header_2g.tx_gain_cap = im;
+ } else {
+ ahp_Eeprom->modal_header_5g.tx_gain_cap = im;
+ }
+ } else {
+ if (i == 0) {
+ ahp_Eeprom->modal_header_2g.tx_gain_cap = ig;
+ } else {
+ ahp_Eeprom->modal_header_5g.tx_gain_cap = ig;
+ }
+ }
+ }
+ }
+ return AH_TRUE;
+}
+
+#endif /* AH_SUPPORT_AR9300 */