diff options
Diffstat (limited to 'include/llvm/Support/JSON.h')
-rw-r--r-- | include/llvm/Support/JSON.h | 704 |
1 files changed, 704 insertions, 0 deletions
diff --git a/include/llvm/Support/JSON.h b/include/llvm/Support/JSON.h new file mode 100644 index 000000000000..da3c5ea0b25d --- /dev/null +++ b/include/llvm/Support/JSON.h @@ -0,0 +1,704 @@ +//===--- JSON.h - JSON values, parsing and serialization -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===---------------------------------------------------------------------===// +/// +/// \file +/// This file supports working with JSON data. +/// +/// It comprises: +/// +/// - classes which hold dynamically-typed parsed JSON structures +/// These are value types that can be composed, inspected, and modified. +/// See json::Value, and the related types json::Object and json::Array. +/// +/// - functions to parse JSON text into Values, and to serialize Values to text. +/// See parse(), operator<<, and format_provider. +/// +/// - a convention and helpers for mapping between json::Value and user-defined +/// types. See fromJSON(), ObjectMapper, and the class comment on Value. +/// +/// Typically, JSON data would be read from an external source, parsed into +/// a Value, and then converted into some native data structure before doing +/// real work on it. (And vice versa when writing). +/// +/// Other serialization mechanisms you may consider: +/// +/// - YAML is also text-based, and more human-readable than JSON. It's a more +/// complex format and data model, and YAML parsers aren't ubiquitous. +/// YAMLParser.h is a streaming parser suitable for parsing large documents +/// (including JSON, as YAML is a superset). It can be awkward to use +/// directly. YAML I/O (YAMLTraits.h) provides data mapping that is more +/// declarative than the toJSON/fromJSON conventions here. +/// +/// - LLVM bitstream is a space- and CPU- efficient binary format. Typically it +/// encodes LLVM IR ("bitcode"), but it can be a container for other data. +/// Low-level reader/writer libraries are in Bitcode/Bitstream*.h +/// +//===---------------------------------------------------------------------===// + +#ifndef LLVM_SUPPORT_JSON_H +#define LLVM_SUPPORT_JSON_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/FormatVariadic.h" +#include "llvm/Support/raw_ostream.h" +#include <map> + +namespace llvm { +namespace json { + +// === String encodings === +// +// JSON strings are character sequences (not byte sequences like std::string). +// We need to know the encoding, and for simplicity only support UTF-8. +// +// - When parsing, invalid UTF-8 is a syntax error like any other +// +// - When creating Values from strings, callers must ensure they are UTF-8. +// with asserts on, invalid UTF-8 will crash the program +// with asserts off, we'll substitute the replacement character (U+FFFD) +// Callers can use json::isUTF8() and json::fixUTF8() for validation. +// +// - When retrieving strings from Values (e.g. asString()), the result will +// always be valid UTF-8. + +/// Returns true if \p S is valid UTF-8, which is required for use as JSON. +/// If it returns false, \p Offset is set to a byte offset near the first error. +bool isUTF8(llvm::StringRef S, size_t *ErrOffset = nullptr); +/// Replaces invalid UTF-8 sequences in \p S with the replacement character +/// (U+FFFD). The returned string is valid UTF-8. +/// This is much slower than isUTF8, so test that first. +std::string fixUTF8(llvm::StringRef S); + +class Array; +class ObjectKey; +class Value; +template <typename T> Value toJSON(const llvm::Optional<T> &Opt); + +/// An Object is a JSON object, which maps strings to heterogenous JSON values. +/// It simulates DenseMap<ObjectKey, Value>. ObjectKey is a maybe-owned string. +class Object { + using Storage = DenseMap<ObjectKey, Value, llvm::DenseMapInfo<StringRef>>; + Storage M; + +public: + using key_type = ObjectKey; + using mapped_type = Value; + using value_type = Storage::value_type; + using iterator = Storage::iterator; + using const_iterator = Storage::const_iterator; + + explicit Object() = default; + // KV is a trivial key-value struct for list-initialization. + // (using std::pair forces extra copies). + struct KV; + explicit Object(std::initializer_list<KV> Properties); + + iterator begin() { return M.begin(); } + const_iterator begin() const { return M.begin(); } + iterator end() { return M.end(); } + const_iterator end() const { return M.end(); } + + bool empty() const { return M.empty(); } + size_t size() const { return M.size(); } + + void clear() { M.clear(); } + std::pair<iterator, bool> insert(KV E); + template <typename... Ts> + std::pair<iterator, bool> try_emplace(const ObjectKey &K, Ts &&... Args) { + return M.try_emplace(K, std::forward<Ts>(Args)...); + } + template <typename... Ts> + std::pair<iterator, bool> try_emplace(ObjectKey &&K, Ts &&... Args) { + return M.try_emplace(std::move(K), std::forward<Ts>(Args)...); + } + + iterator find(StringRef K) { return M.find_as(K); } + const_iterator find(StringRef K) const { return M.find_as(K); } + // operator[] acts as if Value was default-constructible as null. + Value &operator[](const ObjectKey &K); + Value &operator[](ObjectKey &&K); + // Look up a property, returning nullptr if it doesn't exist. + Value *get(StringRef K); + const Value *get(StringRef K) const; + // Typed accessors return None/nullptr if + // - the property doesn't exist + // - or it has the wrong type + llvm::Optional<std::nullptr_t> getNull(StringRef K) const; + llvm::Optional<bool> getBoolean(StringRef K) const; + llvm::Optional<double> getNumber(StringRef K) const; + llvm::Optional<int64_t> getInteger(StringRef K) const; + llvm::Optional<llvm::StringRef> getString(StringRef K) const; + const json::Object *getObject(StringRef K) const; + json::Object *getObject(StringRef K); + const json::Array *getArray(StringRef K) const; + json::Array *getArray(StringRef K); +}; +bool operator==(const Object &LHS, const Object &RHS); +inline bool operator!=(const Object &LHS, const Object &RHS) { + return !(LHS == RHS); +} + +/// An Array is a JSON array, which contains heterogeneous JSON values. +/// It simulates std::vector<Value>. +class Array { + std::vector<Value> V; + +public: + using value_type = Value; + using iterator = std::vector<Value>::iterator; + using const_iterator = std::vector<Value>::const_iterator; + + explicit Array() = default; + explicit Array(std::initializer_list<Value> Elements); + template <typename Collection> explicit Array(const Collection &C) { + for (const auto &V : C) + emplace_back(V); + } + + Value &operator[](size_t I) { return V[I]; } + const Value &operator[](size_t I) const { return V[I]; } + Value &front() { return V.front(); } + const Value &front() const { return V.front(); } + Value &back() { return V.back(); } + const Value &back() const { return V.back(); } + Value *data() { return V.data(); } + const Value *data() const { return V.data(); } + + iterator begin() { return V.begin(); } + const_iterator begin() const { return V.begin(); } + iterator end() { return V.end(); } + const_iterator end() const { return V.end(); } + + bool empty() const { return V.empty(); } + size_t size() const { return V.size(); } + + void clear() { V.clear(); } + void push_back(const Value &E) { V.push_back(E); } + void push_back(Value &&E) { V.push_back(std::move(E)); } + template <typename... Args> void emplace_back(Args &&... A) { + V.emplace_back(std::forward<Args>(A)...); + } + void pop_back() { V.pop_back(); } + // FIXME: insert() takes const_iterator since C++11, old libstdc++ disagrees. + iterator insert(iterator P, const Value &E) { return V.insert(P, E); } + iterator insert(iterator P, Value &&E) { + return V.insert(P, std::move(E)); + } + template <typename It> iterator insert(iterator P, It A, It Z) { + return V.insert(P, A, Z); + } + template <typename... Args> iterator emplace(const_iterator P, Args &&... A) { + return V.emplace(P, std::forward<Args>(A)...); + } + + friend bool operator==(const Array &L, const Array &R) { return L.V == R.V; } +}; +inline bool operator!=(const Array &L, const Array &R) { return !(L == R); } + +/// A Value is an JSON value of unknown type. +/// They can be copied, but should generally be moved. +/// +/// === Composing values === +/// +/// You can implicitly construct Values from: +/// - strings: std::string, SmallString, formatv, StringRef, char* +/// (char*, and StringRef are references, not copies!) +/// - numbers +/// - booleans +/// - null: nullptr +/// - arrays: {"foo", 42.0, false} +/// - serializable things: types with toJSON(const T&)->Value, found by ADL +/// +/// They can also be constructed from object/array helpers: +/// - json::Object is a type like map<ObjectKey, Value> +/// - json::Array is a type like vector<Value> +/// These can be list-initialized, or used to build up collections in a loop. +/// json::ary(Collection) converts all items in a collection to Values. +/// +/// === Inspecting values === +/// +/// Each Value is one of the JSON kinds: +/// null (nullptr_t) +/// boolean (bool) +/// number (double or int64) +/// string (StringRef) +/// array (json::Array) +/// object (json::Object) +/// +/// The kind can be queried directly, or implicitly via the typed accessors: +/// if (Optional<StringRef> S = E.getAsString() +/// assert(E.kind() == Value::String); +/// +/// Array and Object also have typed indexing accessors for easy traversal: +/// Expected<Value> E = parse(R"( {"options": {"font": "sans-serif"}} )"); +/// if (Object* O = E->getAsObject()) +/// if (Object* Opts = O->getObject("options")) +/// if (Optional<StringRef> Font = Opts->getString("font")) +/// assert(Opts->at("font").kind() == Value::String); +/// +/// === Converting JSON values to C++ types === +/// +/// The convention is to have a deserializer function findable via ADL: +/// fromJSON(const json::Value&, T&)->bool +/// Deserializers are provided for: +/// - bool +/// - int and int64_t +/// - double +/// - std::string +/// - vector<T>, where T is deserializable +/// - map<string, T>, where T is deserializable +/// - Optional<T>, where T is deserializable +/// ObjectMapper can help writing fromJSON() functions for object types. +/// +/// For conversion in the other direction, the serializer function is: +/// toJSON(const T&) -> json::Value +/// If this exists, then it also allows constructing Value from T, and can +/// be used to serialize vector<T>, map<string, T>, and Optional<T>. +/// +/// === Serialization === +/// +/// Values can be serialized to JSON: +/// 1) raw_ostream << Value // Basic formatting. +/// 2) raw_ostream << formatv("{0}", Value) // Basic formatting. +/// 3) raw_ostream << formatv("{0:2}", Value) // Pretty-print with indent 2. +/// +/// And parsed: +/// Expected<Value> E = json::parse("[1, 2, null]"); +/// assert(E && E->kind() == Value::Array); +class Value { +public: + enum Kind { + Null, + Boolean, + /// Number values can store both int64s and doubles at full precision, + /// depending on what they were constructed/parsed from. + Number, + String, + Array, + Object, + }; + + // It would be nice to have Value() be null. But that would make {} null too. + Value(const Value &M) { copyFrom(M); } + Value(Value &&M) { moveFrom(std::move(M)); } + Value(std::initializer_list<Value> Elements); + Value(json::Array &&Elements) : Type(T_Array) { + create<json::Array>(std::move(Elements)); + } + Value(json::Object &&Properties) : Type(T_Object) { + create<json::Object>(std::move(Properties)); + } + // Strings: types with value semantics. Must be valid UTF-8. + Value(std::string V) : Type(T_String) { + if (LLVM_UNLIKELY(!isUTF8(V))) { + assert(false && "Invalid UTF-8 in value used as JSON"); + V = fixUTF8(std::move(V)); + } + create<std::string>(std::move(V)); + } + Value(const llvm::SmallVectorImpl<char> &V) + : Value(std::string(V.begin(), V.end())){}; + Value(const llvm::formatv_object_base &V) : Value(V.str()){}; + // Strings: types with reference semantics. Must be valid UTF-8. + Value(StringRef V) : Type(T_StringRef) { + create<llvm::StringRef>(V); + if (LLVM_UNLIKELY(!isUTF8(V))) { + assert(false && "Invalid UTF-8 in value used as JSON"); + *this = Value(fixUTF8(V)); + } + } + Value(const char *V) : Value(StringRef(V)) {} + Value(std::nullptr_t) : Type(T_Null) {} + // Boolean (disallow implicit conversions). + // (The last template parameter is a dummy to keep templates distinct.) + template < + typename T, + typename = typename std::enable_if<std::is_same<T, bool>::value>::type, + bool = false> + Value(T B) : Type(T_Boolean) { + create<bool>(B); + } + // Integers (except boolean). Must be non-narrowing convertible to int64_t. + template < + typename T, + typename = typename std::enable_if<std::is_integral<T>::value>::type, + typename = typename std::enable_if<!std::is_same<T, bool>::value>::type> + Value(T I) : Type(T_Integer) { + create<int64_t>(int64_t{I}); + } + // Floating point. Must be non-narrowing convertible to double. + template <typename T, + typename = + typename std::enable_if<std::is_floating_point<T>::value>::type, + double * = nullptr> + Value(T D) : Type(T_Double) { + create<double>(double{D}); + } + // Serializable types: with a toJSON(const T&)->Value function, found by ADL. + template <typename T, + typename = typename std::enable_if<std::is_same< + Value, decltype(toJSON(*(const T *)nullptr))>::value>, + Value * = nullptr> + Value(const T &V) : Value(toJSON(V)) {} + + Value &operator=(const Value &M) { + destroy(); + copyFrom(M); + return *this; + } + Value &operator=(Value &&M) { + destroy(); + moveFrom(std::move(M)); + return *this; + } + ~Value() { destroy(); } + + Kind kind() const { + switch (Type) { + case T_Null: + return Null; + case T_Boolean: + return Boolean; + case T_Double: + case T_Integer: + return Number; + case T_String: + case T_StringRef: + return String; + case T_Object: + return Object; + case T_Array: + return Array; + } + llvm_unreachable("Unknown kind"); + } + + // Typed accessors return None/nullptr if the Value is not of this type. + llvm::Optional<std::nullptr_t> getAsNull() const { + if (LLVM_LIKELY(Type == T_Null)) + return nullptr; + return llvm::None; + } + llvm::Optional<bool> getAsBoolean() const { + if (LLVM_LIKELY(Type == T_Boolean)) + return as<bool>(); + return llvm::None; + } + llvm::Optional<double> getAsNumber() const { + if (LLVM_LIKELY(Type == T_Double)) + return as<double>(); + if (LLVM_LIKELY(Type == T_Integer)) + return as<int64_t>(); + return llvm::None; + } + // Succeeds if the Value is a Number, and exactly representable as int64_t. + llvm::Optional<int64_t> getAsInteger() const { + if (LLVM_LIKELY(Type == T_Integer)) + return as<int64_t>(); + if (LLVM_LIKELY(Type == T_Double)) { + double D = as<double>(); + if (LLVM_LIKELY(std::modf(D, &D) == 0.0 && + D >= double(std::numeric_limits<int64_t>::min()) && + D <= double(std::numeric_limits<int64_t>::max()))) + return D; + } + return llvm::None; + } + llvm::Optional<llvm::StringRef> getAsString() const { + if (Type == T_String) + return llvm::StringRef(as<std::string>()); + if (LLVM_LIKELY(Type == T_StringRef)) + return as<llvm::StringRef>(); + return llvm::None; + } + const json::Object *getAsObject() const { + return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr; + } + json::Object *getAsObject() { + return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr; + } + const json::Array *getAsArray() const { + return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr; + } + json::Array *getAsArray() { + return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr; + } + + /// Serializes this Value to JSON, writing it to the provided stream. + /// The formatting is compact (no extra whitespace) and deterministic. + /// For pretty-printing, use the formatv() format_provider below. + friend llvm::raw_ostream &operator<<(llvm::raw_ostream &, const Value &); + +private: + void destroy(); + void copyFrom(const Value &M); + // We allow moving from *const* Values, by marking all members as mutable! + // This hack is needed to support initializer-list syntax efficiently. + // (std::initializer_list<T> is a container of const T). + void moveFrom(const Value &&M); + friend class Array; + friend class Object; + + template <typename T, typename... U> void create(U &&... V) { + new (reinterpret_cast<T *>(Union.buffer)) T(std::forward<U>(V)...); + } + template <typename T> T &as() const { + return *reinterpret_cast<T *>(Union.buffer); + } + + template <typename Indenter> + void print(llvm::raw_ostream &, const Indenter &) const; + friend struct llvm::format_provider<llvm::json::Value>; + + enum ValueType : char { + T_Null, + T_Boolean, + T_Double, + T_Integer, + T_StringRef, + T_String, + T_Object, + T_Array, + }; + // All members mutable, see moveFrom(). + mutable ValueType Type; + mutable llvm::AlignedCharArrayUnion<bool, double, int64_t, llvm::StringRef, + std::string, json::Array, json::Object> + Union; +}; + +bool operator==(const Value &, const Value &); +inline bool operator!=(const Value &L, const Value &R) { return !(L == R); } +llvm::raw_ostream &operator<<(llvm::raw_ostream &, const Value &); + +/// ObjectKey is a used to capture keys in Object. Like Value but: +/// - only strings are allowed +/// - it's optimized for the string literal case (Owned == nullptr) +/// Like Value, strings must be UTF-8. See isUTF8 documentation for details. +class ObjectKey { +public: + ObjectKey(const char *S) : ObjectKey(StringRef(S)) {} + ObjectKey(std::string S) : Owned(new std::string(std::move(S))) { + if (LLVM_UNLIKELY(!isUTF8(*Owned))) { + assert(false && "Invalid UTF-8 in value used as JSON"); + *Owned = fixUTF8(std::move(*Owned)); + } + Data = *Owned; + } + ObjectKey(llvm::StringRef S) : Data(S) { + if (LLVM_UNLIKELY(!isUTF8(Data))) { + assert(false && "Invalid UTF-8 in value used as JSON"); + *this = ObjectKey(fixUTF8(S)); + } + } + ObjectKey(const llvm::SmallVectorImpl<char> &V) + : ObjectKey(std::string(V.begin(), V.end())) {} + ObjectKey(const llvm::formatv_object_base &V) : ObjectKey(V.str()) {} + + ObjectKey(const ObjectKey &C) { *this = C; } + ObjectKey(ObjectKey &&C) : ObjectKey(static_cast<const ObjectKey &&>(C)) {} + ObjectKey &operator=(const ObjectKey &C) { + if (C.Owned) { + Owned.reset(new std::string(*C.Owned)); + Data = *Owned; + } else { + Data = C.Data; + } + return *this; + } + ObjectKey &operator=(ObjectKey &&) = default; + + operator llvm::StringRef() const { return Data; } + std::string str() const { return Data.str(); } + +private: + // FIXME: this is unneccesarily large (3 pointers). Pointer + length + owned + // could be 2 pointers at most. + std::unique_ptr<std::string> Owned; + llvm::StringRef Data; +}; + +inline bool operator==(const ObjectKey &L, const ObjectKey &R) { + return llvm::StringRef(L) == llvm::StringRef(R); +} +inline bool operator!=(const ObjectKey &L, const ObjectKey &R) { + return !(L == R); +} +inline bool operator<(const ObjectKey &L, const ObjectKey &R) { + return StringRef(L) < StringRef(R); +} + +struct Object::KV { + ObjectKey K; + Value V; +}; + +inline Object::Object(std::initializer_list<KV> Properties) { + for (const auto &P : Properties) { + auto R = try_emplace(P.K, nullptr); + if (R.second) + R.first->getSecond().moveFrom(std::move(P.V)); + } +} +inline std::pair<Object::iterator, bool> Object::insert(KV E) { + return try_emplace(std::move(E.K), std::move(E.V)); +} + +// Standard deserializers are provided for primitive types. +// See comments on Value. +inline bool fromJSON(const Value &E, std::string &Out) { + if (auto S = E.getAsString()) { + Out = *S; + return true; + } + return false; +} +inline bool fromJSON(const Value &E, int &Out) { + if (auto S = E.getAsInteger()) { + Out = *S; + return true; + } + return false; +} +inline bool fromJSON(const Value &E, int64_t &Out) { + if (auto S = E.getAsInteger()) { + Out = *S; + return true; + } + return false; +} +inline bool fromJSON(const Value &E, double &Out) { + if (auto S = E.getAsNumber()) { + Out = *S; + return true; + } + return false; +} +inline bool fromJSON(const Value &E, bool &Out) { + if (auto S = E.getAsBoolean()) { + Out = *S; + return true; + } + return false; +} +template <typename T> bool fromJSON(const Value &E, llvm::Optional<T> &Out) { + if (E.getAsNull()) { + Out = llvm::None; + return true; + } + T Result; + if (!fromJSON(E, Result)) + return false; + Out = std::move(Result); + return true; +} +template <typename T> bool fromJSON(const Value &E, std::vector<T> &Out) { + if (auto *A = E.getAsArray()) { + Out.clear(); + Out.resize(A->size()); + for (size_t I = 0; I < A->size(); ++I) + if (!fromJSON((*A)[I], Out[I])) + return false; + return true; + } + return false; +} +template <typename T> +bool fromJSON(const Value &E, std::map<std::string, T> &Out) { + if (auto *O = E.getAsObject()) { + Out.clear(); + for (const auto &KV : *O) + if (!fromJSON(KV.second, Out[llvm::StringRef(KV.first)])) + return false; + return true; + } + return false; +} + +// Allow serialization of Optional<T> for supported T. +template <typename T> Value toJSON(const llvm::Optional<T> &Opt) { + return Opt ? Value(*Opt) : Value(nullptr); +} + +/// Helper for mapping JSON objects onto protocol structs. +/// +/// Example: +/// \code +/// bool fromJSON(const Value &E, MyStruct &R) { +/// ObjectMapper O(E); +/// if (!O || !O.map("mandatory_field", R.MandatoryField)) +/// return false; +/// O.map("optional_field", R.OptionalField); +/// return true; +/// } +/// \endcode +class ObjectMapper { +public: + ObjectMapper(const Value &E) : O(E.getAsObject()) {} + + /// True if the expression is an object. + /// Must be checked before calling map(). + operator bool() { return O; } + + /// Maps a property to a field, if it exists. + template <typename T> bool map(StringRef Prop, T &Out) { + assert(*this && "Must check this is an object before calling map()"); + if (const Value *E = O->get(Prop)) + return fromJSON(*E, Out); + return false; + } + + /// Maps a property to a field, if it exists. + /// (Optional requires special handling, because missing keys are OK). + template <typename T> bool map(StringRef Prop, llvm::Optional<T> &Out) { + assert(*this && "Must check this is an object before calling map()"); + if (const Value *E = O->get(Prop)) + return fromJSON(*E, Out); + Out = llvm::None; + return true; + } + +private: + const Object *O; +}; + +/// Parses the provided JSON source, or returns a ParseError. +/// The returned Value is self-contained and owns its strings (they do not refer +/// to the original source). +llvm::Expected<Value> parse(llvm::StringRef JSON); + +class ParseError : public llvm::ErrorInfo<ParseError> { + const char *Msg; + unsigned Line, Column, Offset; + +public: + static char ID; + ParseError(const char *Msg, unsigned Line, unsigned Column, unsigned Offset) + : Msg(Msg), Line(Line), Column(Column), Offset(Offset) {} + void log(llvm::raw_ostream &OS) const override { + OS << llvm::formatv("[{0}:{1}, byte={2}]: {3}", Line, Column, Offset, Msg); + } + std::error_code convertToErrorCode() const override { + return llvm::inconvertibleErrorCode(); + } +}; +} // namespace json + +/// Allow printing json::Value with formatv(). +/// The default style is basic/compact formatting, like operator<<. +/// A format string like formatv("{0:2}", Value) pretty-prints with indent 2. +template <> struct format_provider<llvm::json::Value> { + static void format(const llvm::json::Value &, raw_ostream &, StringRef); +}; +} // namespace llvm + +#endif |