summaryrefslogtreecommitdiff
path: root/lib/CodeGen/CGCall.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/CGCall.cpp')
-rw-r--r--lib/CodeGen/CGCall.cpp510
1 files changed, 308 insertions, 202 deletions
diff --git a/lib/CodeGen/CGCall.cpp b/lib/CodeGen/CGCall.cpp
index 38d7344572d3..f066ce168588 100644
--- a/lib/CodeGen/CGCall.cpp
+++ b/lib/CodeGen/CGCall.cpp
@@ -29,15 +29,15 @@
#include "clang/CodeGen/SwiftCallingConv.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
-#include "llvm/IR/CallingConv.h"
#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
-#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/Intrinsics.h"
using namespace clang;
using namespace CodeGen;
@@ -255,6 +255,16 @@ CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
}
+/// Set calling convention for CUDA/HIP kernel.
+static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
+ const FunctionDecl *FD) {
+ if (FD->hasAttr<CUDAGlobalAttr>()) {
+ const FunctionType *FT = FTy->getAs<FunctionType>();
+ CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
+ FTy = FT->getCanonicalTypeUnqualified();
+ }
+}
+
/// Arrange the argument and result information for a declaration or
/// definition of the given C++ non-static member function. The
/// member function must be an ordinary function, i.e. not a
@@ -264,7 +274,9 @@ CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
- CanQual<FunctionProtoType> prototype = GetFormalType(MD);
+ CanQualType FT = GetFormalType(MD).getAs<Type>();
+ setCUDAKernelCallingConvention(FT, CGM, MD);
+ auto prototype = FT.getAs<FunctionProtoType>();
if (MD->isInstance()) {
// The abstract case is perfectly fine.
@@ -424,6 +436,7 @@ CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
assert(isa<FunctionType>(FTy));
+ setCUDAKernelCallingConvention(FTy, CGM, FD);
// When declaring a function without a prototype, always use a
// non-variadic type.
@@ -513,8 +526,8 @@ CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
/// correct type, and the caller will bitcast the function to the correct
/// prototype.
const CGFunctionInfo &
-CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
- assert(MD->isVirtual() && "only virtual memptrs have thunks");
+CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
+ assert(MD->isVirtual() && "only methods have thunks");
CanQual<FunctionProtoType> FTP = GetFormalType(MD);
CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
@@ -803,6 +816,7 @@ CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
FI->NoReturn = info.getNoReturn();
FI->ReturnsRetained = info.getProducesResult();
FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
+ FI->NoCfCheck = info.getNoCfCheck();
FI->Required = required;
FI->HasRegParm = info.getHasRegParm();
FI->RegParm = info.getRegParm();
@@ -904,8 +918,7 @@ getTypeExpansion(QualType Ty, const ASTContext &Context) {
CharUnits UnionSize = CharUnits::Zero();
for (const auto *FD : RD->fields()) {
- // Skip zero length bitfields.
- if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
+ if (FD->isZeroLengthBitField(Context))
continue;
assert(!FD->isBitField() &&
"Cannot expand structure with bit-field members.");
@@ -926,8 +939,7 @@ getTypeExpansion(QualType Ty, const ASTContext &Context) {
}
for (const auto *FD : RD->fields()) {
- // Skip zero length bitfields.
- if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
+ if (FD->isZeroLengthBitField(Context))
continue;
assert(!FD->isBitField() &&
"Cannot expand structure with bit-field members.");
@@ -1040,42 +1052,49 @@ void CodeGenFunction::ExpandTypeFromArgs(
}
void CodeGenFunction::ExpandTypeToArgs(
- QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
+ QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
auto Exp = getTypeExpansion(Ty, getContext());
if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
- forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
- [&](Address EltAddr) {
- RValue EltRV =
- convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
- ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
- });
+ Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
+ : Arg.getKnownRValue().getAggregateAddress();
+ forConstantArrayExpansion(
+ *this, CAExp, Addr, [&](Address EltAddr) {
+ CallArg EltArg = CallArg(
+ convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
+ CAExp->EltTy);
+ ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
+ IRCallArgPos);
+ });
} else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
- Address This = RV.getAggregateAddress();
+ Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
+ : Arg.getKnownRValue().getAggregateAddress();
for (const CXXBaseSpecifier *BS : RExp->Bases) {
// Perform a single step derived-to-base conversion.
Address Base =
GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
/*NullCheckValue=*/false, SourceLocation());
- RValue BaseRV = RValue::getAggregate(Base);
+ CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
// Recurse onto bases.
- ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
+ ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
IRCallArgPos);
}
LValue LV = MakeAddrLValue(This, Ty);
for (auto FD : RExp->Fields) {
- RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
- ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
+ CallArg FldArg =
+ CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
+ ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
IRCallArgPos);
}
} else if (isa<ComplexExpansion>(Exp.get())) {
- ComplexPairTy CV = RV.getComplexVal();
+ ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
IRCallArgs[IRCallArgPos++] = CV.first;
IRCallArgs[IRCallArgPos++] = CV.second;
} else {
assert(isa<NoExpansion>(Exp.get()));
+ auto RV = Arg.getKnownRValue();
assert(RV.isScalar() &&
"Unexpected non-scalar rvalue during struct expansion.");
@@ -1479,7 +1498,8 @@ void ClangToLLVMArgMapping::construct(const ASTContext &Context,
/***/
bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
- return FI.getReturnInfo().isIndirect();
+ const auto &RI = FI.getReturnInfo();
+ return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
}
bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
@@ -1672,7 +1692,7 @@ static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
return;
if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
- FPT->isNothrow(Ctx))
+ FPT->isNothrow())
FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
}
@@ -1714,12 +1734,19 @@ void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
FuncAttrs.addAttribute("less-precise-fpmad",
llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
+ if (CodeGenOpts.NullPointerIsValid)
+ FuncAttrs.addAttribute("null-pointer-is-valid", "true");
if (!CodeGenOpts.FPDenormalMode.empty())
FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
FuncAttrs.addAttribute("no-trapping-math",
llvm::toStringRef(CodeGenOpts.NoTrappingMath));
+ // Strict (compliant) code is the default, so only add this attribute to
+ // indicate that we are trying to workaround a problem case.
+ if (!CodeGenOpts.StrictFloatCastOverflow)
+ FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
+
// TODO: Are these all needed?
// unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
FuncAttrs.addAttribute("no-infs-fp-math",
@@ -1738,6 +1765,10 @@ void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
"correctly-rounded-divide-sqrt-fp-math",
llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
+ if (getLangOpts().OpenCL)
+ FuncAttrs.addAttribute("denorms-are-zero",
+ llvm::toStringRef(CodeGenOpts.FlushDenorm));
+
// TODO: Reciprocal estimate codegen options should apply to instructions?
const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
if (!Recips.empty())
@@ -1769,7 +1800,7 @@ void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
// Respect -fcuda-flush-denormals-to-zero.
- if (getLangOpts().CUDADeviceFlushDenormalsToZero)
+ if (CodeGenOpts.FlushDenorm)
FuncAttrs.addAttribute("nvptx-f32ftz", "true");
}
}
@@ -1793,7 +1824,7 @@ void CodeGenModule::ConstructAttributeList(
FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
// If we have information about the function prototype, we can learn
- // attributes form there.
+ // attributes from there.
AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
CalleeInfo.getCalleeFunctionProtoType());
@@ -1838,18 +1869,20 @@ void CodeGenModule::ConstructAttributeList(
}
if (TargetDecl->hasAttr<RestrictAttr>())
RetAttrs.addAttribute(llvm::Attribute::NoAlias);
- if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
+ if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
+ !CodeGenOpts.NullPointerIsValid)
RetAttrs.addAttribute(llvm::Attribute::NonNull);
if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
FuncAttrs.addAttribute("no_caller_saved_registers");
+ if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
+ FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
Optional<unsigned> NumElemsParam;
- // alloc_size args are base-1, 0 means not present.
- if (unsigned N = AllocSize->getNumElemsParam())
- NumElemsParam = N - 1;
- FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1,
+ if (AllocSize->getNumElemsParam().isValid())
+ NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
+ FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
NumElemsParam);
}
}
@@ -1870,53 +1903,40 @@ void CodeGenModule::ConstructAttributeList(
}
}
- if (!AttrOnCallSite) {
- bool DisableTailCalls =
- CodeGenOpts.DisableTailCalls ||
- (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
- TargetDecl->hasAttr<AnyX86InterruptAttr>()));
- FuncAttrs.addAttribute("disable-tail-calls",
- llvm::toStringRef(DisableTailCalls));
-
- // Add target-cpu and target-features attributes to functions. If
- // we have a decl for the function and it has a target attribute then
- // parse that and add it to the feature set.
- StringRef TargetCPU = getTarget().getTargetOpts().CPU;
- std::vector<std::string> Features;
- const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
- if (FD && FD->hasAttr<TargetAttr>()) {
- llvm::StringMap<bool> FeatureMap;
- getFunctionFeatureMap(FeatureMap, FD);
-
- // Produce the canonical string for this set of features.
- for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
- ie = FeatureMap.end();
- it != ie; ++it)
- Features.push_back((it->second ? "+" : "-") + it->first().str());
-
- // Now add the target-cpu and target-features to the function.
- // While we populated the feature map above, we still need to
- // get and parse the target attribute so we can get the cpu for
- // the function.
- const auto *TD = FD->getAttr<TargetAttr>();
- TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
- if (ParsedAttr.Architecture != "" &&
- getTarget().isValidCPUName(ParsedAttr.Architecture))
- TargetCPU = ParsedAttr.Architecture;
+ if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
+ if (getLangOpts().OpenCLVersion <= 120) {
+ // OpenCL v1.2 Work groups are always uniform
+ FuncAttrs.addAttribute("uniform-work-group-size", "true");
} else {
- // Otherwise just add the existing target cpu and target features to the
- // function.
- Features = getTarget().getTargetOpts().Features;
+ // OpenCL v2.0 Work groups may be whether uniform or not.
+ // '-cl-uniform-work-group-size' compile option gets a hint
+ // to the compiler that the global work-size be a multiple of
+ // the work-group size specified to clEnqueueNDRangeKernel
+ // (i.e. work groups are uniform).
+ FuncAttrs.addAttribute("uniform-work-group-size",
+ llvm::toStringRef(CodeGenOpts.UniformWGSize));
}
+ }
- if (TargetCPU != "")
- FuncAttrs.addAttribute("target-cpu", TargetCPU);
- if (!Features.empty()) {
- std::sort(Features.begin(), Features.end());
- FuncAttrs.addAttribute(
- "target-features",
- llvm::join(Features, ","));
+ if (!AttrOnCallSite) {
+ bool DisableTailCalls = false;
+
+ if (CodeGenOpts.DisableTailCalls)
+ DisableTailCalls = true;
+ else if (TargetDecl) {
+ if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
+ TargetDecl->hasAttr<AnyX86InterruptAttr>())
+ DisableTailCalls = true;
+ else if (CodeGenOpts.NoEscapingBlockTailCalls) {
+ if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
+ if (!BD->doesNotEscape())
+ DisableTailCalls = true;
+ }
}
+
+ FuncAttrs.addAttribute("disable-tail-calls",
+ llvm::toStringRef(DisableTailCalls));
+ GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs);
}
ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
@@ -1925,9 +1945,9 @@ void CodeGenModule::ConstructAttributeList(
const ABIArgInfo &RetAI = FI.getReturnInfo();
switch (RetAI.getKind()) {
case ABIArgInfo::Extend:
- if (RetTy->hasSignedIntegerRepresentation())
+ if (RetAI.isSignExt())
RetAttrs.addAttribute(llvm::Attribute::SExt);
- else if (RetTy->hasUnsignedIntegerRepresentation())
+ else
RetAttrs.addAttribute(llvm::Attribute::ZExt);
LLVM_FALLTHROUGH;
case ABIArgInfo::Direct:
@@ -1957,7 +1977,8 @@ void CodeGenModule::ConstructAttributeList(
if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
.getQuantity());
- else if (getContext().getTargetAddressSpace(PTy) == 0)
+ else if (getContext().getTargetAddressSpace(PTy) == 0 &&
+ !CodeGenOpts.NullPointerIsValid)
RetAttrs.addAttribute(llvm::Attribute::NonNull);
}
@@ -1967,7 +1988,8 @@ void CodeGenModule::ConstructAttributeList(
// Attach attributes to sret.
if (IRFunctionArgs.hasSRetArg()) {
llvm::AttrBuilder SRETAttrs;
- SRETAttrs.addAttribute(llvm::Attribute::StructRet);
+ if (!RetAI.getSuppressSRet())
+ SRETAttrs.addAttribute(llvm::Attribute::StructRet);
hasUsedSRet = true;
if (RetAI.getInReg())
SRETAttrs.addAttribute(llvm::Attribute::InReg);
@@ -2006,14 +2028,10 @@ void CodeGenModule::ConstructAttributeList(
// sense to do it here because parameters are so messed up.
switch (AI.getKind()) {
case ABIArgInfo::Extend:
- if (ParamType->isSignedIntegerOrEnumerationType())
+ if (AI.isSignExt())
Attrs.addAttribute(llvm::Attribute::SExt);
- else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
- if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
- Attrs.addAttribute(llvm::Attribute::SExt);
- else
- Attrs.addAttribute(llvm::Attribute::ZExt);
- }
+ else
+ Attrs.addAttribute(llvm::Attribute::ZExt);
LLVM_FALLTHROUGH;
case ABIArgInfo::Direct:
if (ArgNo == 0 && FI.isChainCall())
@@ -2070,7 +2088,8 @@ void CodeGenModule::ConstructAttributeList(
if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
.getQuantity());
- else if (getContext().getTargetAddressSpace(PTy) == 0)
+ else if (getContext().getTargetAddressSpace(PTy) == 0 &&
+ !CodeGenOpts.NullPointerIsValid)
Attrs.addAttribute(llvm::Attribute::NonNull);
}
@@ -2255,11 +2274,16 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
i != e; ++i, ++info_it, ++ArgNo) {
const VarDecl *Arg = *i;
- QualType Ty = info_it->type;
const ABIArgInfo &ArgI = info_it->info;
bool isPromoted =
isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
+ // We are converting from ABIArgInfo type to VarDecl type directly, unless
+ // the parameter is promoted. In this case we convert to
+ // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
+ QualType Ty = isPromoted ? info_it->type : Arg->getType();
+ assert(hasScalarEvaluationKind(Ty) ==
+ hasScalarEvaluationKind(Arg->getType()));
unsigned FirstIRArg, NumIRArgs;
std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
@@ -2325,7 +2349,8 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
- PVD->getFunctionScopeIndex()))
+ PVD->getFunctionScopeIndex()) &&
+ !CGM.getCodeGenOpts().NullPointerIsValid)
AI->addAttr(llvm::Attribute::NonNull);
QualType OTy = PVD->getOriginalType();
@@ -2344,7 +2369,8 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
Attrs.addDereferenceableAttr(
getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
AI->addAttrs(Attrs);
- } else if (getContext().getTargetAddressSpace(ETy) == 0) {
+ } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
+ !CGM.getCodeGenOpts().NullPointerIsValid) {
AI->addAttr(llvm::Attribute::NonNull);
}
}
@@ -2354,7 +2380,8 @@ void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
// we can't use the dereferenceable attribute, but in addrspace(0)
// we know that it must be nonnull.
if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
- !getContext().getTargetAddressSpace(ArrTy->getElementType()))
+ !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
+ !CGM.getCodeGenOpts().NullPointerIsValid)
AI->addAttr(llvm::Attribute::NonNull);
}
@@ -3022,7 +3049,8 @@ static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
Ty.getQualifiers(),
AggValueSlot::IsNotDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
- AggValueSlot::IsNotAliased);
+ AggValueSlot::IsNotAliased,
+ AggValueSlot::DoesNotOverlap);
}
void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
@@ -3062,6 +3090,19 @@ void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
} else {
args.add(convertTempToRValue(local, type, loc), type);
}
+
+ // Deactivate the cleanup for the callee-destructed param that was pushed.
+ if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
+ type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
+ type.isDestructedType()) {
+ EHScopeStack::stable_iterator cleanup =
+ CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
+ assert(cleanup.isValid() &&
+ "cleanup for callee-destructed param not recorded");
+ // This unreachable is a temporary marker which will be removed later.
+ llvm::Instruction *isActive = Builder.CreateUnreachable();
+ args.addArgCleanupDeactivation(cleanup, isActive);
+ }
}
static bool isProvablyNull(llvm::Value *addr) {
@@ -3143,7 +3184,6 @@ static void emitWritebacks(CodeGenFunction &CGF,
static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
const CallArgList &CallArgs) {
- assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
ArrayRef<CallArgList::CallArgCleanup> Cleanups =
CallArgs.getCleanupsToDeactivate();
// Iterate in reverse to increase the likelihood of popping the cleanup.
@@ -3430,13 +3470,17 @@ void CodeGenFunction::EmitCallArgs(
assert(InitialArgSize + 1 == Args.size() &&
"The code below depends on only adding one arg per EmitCallArg");
(void)InitialArgSize;
- RValue RVArg = Args.back().RV;
- EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
- ParamsToSkip + Idx);
- // @llvm.objectsize should never have side-effects and shouldn't need
- // destruction/cleanups, so we can safely "emit" it after its arg,
- // regardless of right-to-leftness
- MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
+ // Since pointer argument are never emitted as LValue, it is safe to emit
+ // non-null argument check for r-value only.
+ if (!Args.back().hasLValue()) {
+ RValue RVArg = Args.back().getKnownRValue();
+ EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
+ ParamsToSkip + Idx);
+ // @llvm.objectsize should never have side-effects and shouldn't need
+ // destruction/cleanups, so we can safely "emit" it after its arg,
+ // regardless of right-to-leftness
+ MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
+ }
}
if (!LeftToRight) {
@@ -3456,10 +3500,15 @@ struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
QualType Ty;
void Emit(CodeGenFunction &CGF, Flags flags) override {
- const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
- assert(!Dtor->isTrivial());
- CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
- /*Delegating=*/false, Addr);
+ QualType::DestructionKind DtorKind = Ty.isDestructedType();
+ if (DtorKind == QualType::DK_cxx_destructor) {
+ const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
+ assert(!Dtor->isTrivial());
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
+ /*Delegating=*/false, Addr);
+ } else {
+ CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
+ }
}
};
@@ -3478,6 +3527,33 @@ struct DisableDebugLocationUpdates {
} // end anonymous namespace
+RValue CallArg::getRValue(CodeGenFunction &CGF) const {
+ if (!HasLV)
+ return RV;
+ LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
+ CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
+ LV.isVolatile());
+ IsUsed = true;
+ return RValue::getAggregate(Copy.getAddress());
+}
+
+void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
+ LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
+ if (!HasLV && RV.isScalar())
+ CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
+ else if (!HasLV && RV.isComplex())
+ CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
+ else {
+ auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
+ LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
+ // We assume that call args are never copied into subobjects.
+ CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
+ HasLV ? LV.isVolatileQualified()
+ : RV.isVolatileQualified());
+ }
+ IsUsed = true;
+}
+
void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
QualType type) {
DisableDebugLocationUpdates Dis(*this, E);
@@ -3501,7 +3577,7 @@ void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
// However, we still have to push an EH-only cleanup in case we unwind before
// we make it to the call.
if (HasAggregateEvalKind &&
- CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
+ type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
// If we're using inalloca, use the argument memory. Otherwise, use a
// temporary.
AggValueSlot Slot;
@@ -3510,10 +3586,12 @@ void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
else
Slot = CreateAggTemp(type, "agg.tmp");
- const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
- bool DestroyedInCallee =
- RD && RD->hasNonTrivialDestructor() &&
- CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
+ bool DestroyedInCallee = true, NeedsEHCleanup = true;
+ if (const auto *RD = type->getAsCXXRecordDecl())
+ DestroyedInCallee = RD->hasNonTrivialDestructor();
+ else
+ NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
+
if (DestroyedInCallee)
Slot.setExternallyDestructed();
@@ -3521,7 +3599,7 @@ void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
RValue RV = Slot.asRValue();
args.add(RV, type);
- if (DestroyedInCallee) {
+ if (DestroyedInCallee && NeedsEHCleanup) {
// Create a no-op GEP between the placeholder and the cleanup so we can
// RAUW it successfully. It also serves as a marker of the first
// instruction where the cleanup is active.
@@ -3538,15 +3616,7 @@ void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
assert(L.isSimple());
- if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
- args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
- } else {
- // We can't represent a misaligned lvalue in the CallArgList, so copy
- // to an aligned temporary now.
- Address tmp = CreateMemTemp(type);
- EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
- args.add(RValue::getAggregate(tmp), type);
- }
+ args.addUncopiedAggregate(L, type);
return;
}
@@ -3608,20 +3678,21 @@ CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
// Calls which may throw must have operand bundles indicating which funclet
// they are nested within.
-static void
-getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
- SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
+SmallVector<llvm::OperandBundleDef, 1>
+CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
+ SmallVector<llvm::OperandBundleDef, 1> BundleList;
// There is no need for a funclet operand bundle if we aren't inside a
// funclet.
if (!CurrentFuncletPad)
- return;
+ return BundleList;
// Skip intrinsics which cannot throw.
auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
- return;
+ return BundleList;
BundleList.emplace_back("funclet", CurrentFuncletPad);
+ return BundleList;
}
/// Emits a simple call (never an invoke) to the given runtime function.
@@ -3629,10 +3700,8 @@ llvm::CallInst *
CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
ArrayRef<llvm::Value*> args,
const llvm::Twine &name) {
- SmallVector<llvm::OperandBundleDef, 1> BundleList;
- getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
-
- llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
+ llvm::CallInst *call =
+ Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
call->setCallingConv(getRuntimeCC());
return call;
}
@@ -3640,8 +3709,8 @@ CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
/// Emits a call or invoke to the given noreturn runtime function.
void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
ArrayRef<llvm::Value*> args) {
- SmallVector<llvm::OperandBundleDef, 1> BundleList;
- getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
+ SmallVector<llvm::OperandBundleDef, 1> BundleList =
+ getBundlesForFunclet(callee);
if (getInvokeDest()) {
llvm::InvokeInst *invoke =
@@ -3684,8 +3753,8 @@ CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
ArrayRef<llvm::Value *> Args,
const Twine &Name) {
llvm::BasicBlock *InvokeDest = getInvokeDest();
- SmallVector<llvm::OperandBundleDef, 1> BundleList;
- getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
+ SmallVector<llvm::OperandBundleDef, 1> BundleList =
+ getBundlesForFunclet(Callee);
llvm::Instruction *Inst;
if (!InvokeDest)
@@ -3705,16 +3774,6 @@ CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
return llvm::CallSite(Inst);
}
-/// \brief Store a non-aggregate value to an address to initialize it. For
-/// initialization, a non-atomic store will be used.
-static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
- LValue Dst) {
- if (Src.isScalar())
- CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
- else
- CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
-}
-
void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
llvm::Value *New) {
DeferredReplacements.push_back(std::make_pair(Old, New));
@@ -3728,7 +3787,7 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
SourceLocation Loc) {
// FIXME: We no longer need the types from CallArgs; lift up and simplify.
- assert(Callee.isOrdinary());
+ assert(Callee.isOrdinary() || Callee.isVirtual());
// Handle struct-return functions by passing a pointer to the
// location that we would like to return into.
@@ -3775,17 +3834,17 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
// If the call returns a temporary with struct return, create a temporary
// alloca to hold the result, unless one is given to us.
Address SRetPtr = Address::invalid();
- size_t UnusedReturnSize = 0;
+ Address SRetAlloca = Address::invalid();
+ llvm::Value *UnusedReturnSizePtr = nullptr;
if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
if (!ReturnValue.isNull()) {
SRetPtr = ReturnValue.getValue();
} else {
- SRetPtr = CreateMemTemp(RetTy);
+ SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
if (HaveInsertPoint() && ReturnValue.isUnused()) {
uint64_t size =
CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
- if (EmitLifetimeStart(size, SRetPtr.getPointer()))
- UnusedReturnSize = size;
+ UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
}
}
if (IRFunctionArgs.hasSRetArg()) {
@@ -3807,7 +3866,6 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
I != E; ++I, ++info_it, ++ArgNo) {
const ABIArgInfo &ArgInfo = info_it->info;
- RValue RV = I->RV;
// Insert a padding argument to ensure proper alignment.
if (IRFunctionArgs.hasPaddingArg(ArgNo))
@@ -3821,13 +3879,16 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
case ABIArgInfo::InAlloca: {
assert(NumIRArgs == 0);
assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
- if (RV.isAggregate()) {
+ if (I->isAggregate()) {
// Replace the placeholder with the appropriate argument slot GEP.
+ Address Addr = I->hasLValue()
+ ? I->getKnownLValue().getAddress()
+ : I->getKnownRValue().getAggregateAddress();
llvm::Instruction *Placeholder =
- cast<llvm::Instruction>(RV.getAggregatePointer());
+ cast<llvm::Instruction>(Addr.getPointer());
CGBuilderTy::InsertPoint IP = Builder.saveIP();
Builder.SetInsertPoint(Placeholder);
- Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
+ Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
Builder.restoreIP(IP);
deferPlaceholderReplacement(Placeholder, Addr.getPointer());
} else {
@@ -3840,22 +3901,20 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
// from {}* to (%struct.foo*)*.
if (Addr.getType() != MemType)
Addr = Builder.CreateBitCast(Addr, MemType);
- LValue argLV = MakeAddrLValue(Addr, I->Ty);
- EmitInitStoreOfNonAggregate(*this, RV, argLV);
+ I->copyInto(*this, Addr);
}
break;
}
case ABIArgInfo::Indirect: {
assert(NumIRArgs == 1);
- if (RV.isScalar() || RV.isComplex()) {
+ if (!I->isAggregate()) {
// Make a temporary alloca to pass the argument.
- Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
- "indirect-arg-temp", false);
+ Address Addr = CreateMemTempWithoutCast(
+ I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
IRCallArgs[FirstIRArg] = Addr.getPointer();
- LValue argLV = MakeAddrLValue(Addr, I->Ty);
- EmitInitStoreOfNonAggregate(*this, RV, argLV);
+ I->copyInto(*this, Addr);
} else {
// We want to avoid creating an unnecessary temporary+copy here;
// however, we need one in three cases:
@@ -3863,30 +3922,51 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
// source. (This case doesn't occur on any common architecture.)
// 2. If the argument is byval, RV is not sufficiently aligned, and
// we cannot force it to be sufficiently aligned.
- // 3. If the argument is byval, but RV is located in an address space
- // different than that of the argument (0).
- Address Addr = RV.getAggregateAddress();
+ // 3. If the argument is byval, but RV is not located in default
+ // or alloca address space.
+ Address Addr = I->hasLValue()
+ ? I->getKnownLValue().getAddress()
+ : I->getKnownRValue().getAggregateAddress();
+ llvm::Value *V = Addr.getPointer();
CharUnits Align = ArgInfo.getIndirectAlign();
const llvm::DataLayout *TD = &CGM.getDataLayout();
- const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
- const unsigned ArgAddrSpace =
- (FirstIRArg < IRFuncTy->getNumParams()
- ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
- : 0);
- if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
- (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
- llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
- Align.getQuantity(), *TD)
- < Align.getQuantity()) ||
- (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
+
+ assert((FirstIRArg >= IRFuncTy->getNumParams() ||
+ IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
+ TD->getAllocaAddrSpace()) &&
+ "indirect argument must be in alloca address space");
+
+ bool NeedCopy = false;
+
+ if (Addr.getAlignment() < Align &&
+ llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
+ Align.getQuantity()) {
+ NeedCopy = true;
+ } else if (I->hasLValue()) {
+ auto LV = I->getKnownLValue();
+ auto AS = LV.getAddressSpace();
+ if ((!ArgInfo.getIndirectByVal() &&
+ (LV.getAlignment() >=
+ getContext().getTypeAlignInChars(I->Ty))) ||
+ (ArgInfo.getIndirectByVal() &&
+ ((AS != LangAS::Default && AS != LangAS::opencl_private &&
+ AS != CGM.getASTAllocaAddressSpace())))) {
+ NeedCopy = true;
+ }
+ }
+ if (NeedCopy) {
// Create an aligned temporary, and copy to it.
- Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
- "byval-temp", false);
+ Address AI = CreateMemTempWithoutCast(
+ I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
IRCallArgs[FirstIRArg] = AI.getPointer();
- EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
+ I->copyInto(*this, AI);
} else {
// Skip the extra memcpy call.
- IRCallArgs[FirstIRArg] = Addr.getPointer();
+ auto *T = V->getType()->getPointerElementType()->getPointerTo(
+ CGM.getDataLayout().getAllocaAddrSpace());
+ IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
+ *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
+ true);
}
}
break;
@@ -3903,10 +3983,12 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
ArgInfo.getDirectOffset() == 0) {
assert(NumIRArgs == 1);
llvm::Value *V;
- if (RV.isScalar())
- V = RV.getScalarVal();
+ if (!I->isAggregate())
+ V = I->getKnownRValue().getScalarVal();
else
- V = Builder.CreateLoad(RV.getAggregateAddress());
+ V = Builder.CreateLoad(
+ I->hasLValue() ? I->getKnownLValue().getAddress()
+ : I->getKnownRValue().getAggregateAddress());
// Implement swifterror by copying into a new swifterror argument.
// We'll write back in the normal path out of the call.
@@ -3944,12 +4026,12 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
// FIXME: Avoid the conversion through memory if possible.
Address Src = Address::invalid();
- if (RV.isScalar() || RV.isComplex()) {
+ if (!I->isAggregate()) {
Src = CreateMemTemp(I->Ty, "coerce");
- LValue SrcLV = MakeAddrLValue(Src, I->Ty);
- EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
+ I->copyInto(*this, Src);
} else {
- Src = RV.getAggregateAddress();
+ Src = I->hasLValue() ? I->getKnownLValue().getAddress()
+ : I->getKnownRValue().getAggregateAddress();
}
// If the value is offset in memory, apply the offset now.
@@ -4003,22 +4085,26 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
llvm::Value *tempSize = nullptr;
Address addr = Address::invalid();
- if (RV.isAggregate()) {
- addr = RV.getAggregateAddress();
+ Address AllocaAddr = Address::invalid();
+ if (I->isAggregate()) {
+ addr = I->hasLValue() ? I->getKnownLValue().getAddress()
+ : I->getKnownRValue().getAggregateAddress();
+
} else {
+ RValue RV = I->getKnownRValue();
assert(RV.isScalar()); // complex should always just be direct
llvm::Type *scalarType = RV.getScalarVal()->getType();
auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
- tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
-
// Materialize to a temporary.
addr = CreateTempAlloca(RV.getScalarVal()->getType(),
- CharUnits::fromQuantity(std::max(layout->getAlignment(),
- scalarAlign)));
- EmitLifetimeStart(scalarSize, addr.getPointer());
+ CharUnits::fromQuantity(std::max(
+ layout->getAlignment(), scalarAlign)),
+ "tmp",
+ /*ArraySize=*/nullptr, &AllocaAddr);
+ tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
Builder.CreateStore(RV.getScalarVal(), addr);
}
@@ -4036,7 +4122,7 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
assert(IRArgPos == FirstIRArg + NumIRArgs);
if (tempSize) {
- EmitLifetimeEnd(tempSize, addr.getPointer());
+ EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
}
break;
@@ -4044,13 +4130,14 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
case ABIArgInfo::Expand:
unsigned IRArgPos = FirstIRArg;
- ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
+ ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
assert(IRArgPos == FirstIRArg + NumIRArgs);
break;
}
}
- llvm::Value *CalleePtr = Callee.getFunctionPointer();
+ const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
+ llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
// If we're using inalloca, set up that argument.
if (ArgMemory.isValid()) {
@@ -4191,10 +4278,19 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
llvm::Attribute::NoUnwind);
}
+
+ // If we made a temporary, be sure to clean up after ourselves. Note that we
+ // can't depend on being inside of an ExprWithCleanups, so we need to manually
+ // pop this cleanup later on. Being eager about this is OK, since this
+ // temporary is 'invisible' outside of the callee.
+ if (UnusedReturnSizePtr)
+ pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
+ UnusedReturnSizePtr);
+
llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
- SmallVector<llvm::OperandBundleDef, 1> BundleList;
- getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList);
+ SmallVector<llvm::OperandBundleDef, 1> BundleList =
+ getBundlesForFunclet(CalleePtr);
// Emit the actual call/invoke instruction.
llvm::CallSite CS;
@@ -4244,9 +4340,8 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
// insertion point; this allows the rest of IRGen to discard
// unreachable code.
if (CS.doesNotReturn()) {
- if (UnusedReturnSize)
- EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
- SRetPtr.getPointer());
+ if (UnusedReturnSizePtr)
+ PopCleanupBlock();
// Strip away the noreturn attribute to better diagnose unreachable UB.
if (SanOpts.has(SanitizerKind::Unreachable)) {
@@ -4315,9 +4410,8 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
case ABIArgInfo::InAlloca:
case ABIArgInfo::Indirect: {
RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
- if (UnusedReturnSize)
- EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
- SRetPtr.getPointer());
+ if (UnusedReturnSizePtr)
+ PopCleanupBlock();
return ret;
}
@@ -4395,7 +4489,8 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
OffsetValue);
} else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
llvm::Value *ParamVal =
- CallArgs[AA->getParamIndex() - 1].RV.getScalarVal();
+ CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue(
+ *this).getScalarVal();
EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
}
}
@@ -4403,6 +4498,17 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
return Ret;
}
+CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
+ if (isVirtual()) {
+ const CallExpr *CE = getVirtualCallExpr();
+ return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
+ CGF, getVirtualMethodDecl(), getThisAddress(),
+ getFunctionType(), CE ? CE->getLocStart() : SourceLocation());
+ }
+
+ return *this;
+}
+
/* VarArg handling */
Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {