summaryrefslogtreecommitdiff
path: root/lib/CodeGen/CGExprScalar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/CGExprScalar.cpp')
-rw-r--r--lib/CodeGen/CGExprScalar.cpp684
1 files changed, 397 insertions, 287 deletions
diff --git a/lib/CodeGen/CGExprScalar.cpp b/lib/CodeGen/CGExprScalar.cpp
index 2af0639f5ce3..cc81256032af 100644
--- a/lib/CodeGen/CGExprScalar.cpp
+++ b/lib/CodeGen/CGExprScalar.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
+#include "CGObjCRuntime.h"
#include "CodeGenModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
@@ -49,20 +50,23 @@ class VISIBILITY_HIDDEN ScalarExprEmitter
CodeGenFunction &CGF;
CGBuilderTy &Builder;
bool IgnoreResultAssign;
-
+ llvm::LLVMContext &VMContext;
public:
ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
- : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira) {
+ : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
+ VMContext(cgf.getLLVMContext()) {
}
-
+
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
bool TestAndClearIgnoreResultAssign() {
- bool I = IgnoreResultAssign; IgnoreResultAssign = false;
- return I; }
+ bool I = IgnoreResultAssign;
+ IgnoreResultAssign = false;
+ return I;
+ }
const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
@@ -70,25 +74,25 @@ public:
Value *EmitLoadOfLValue(LValue LV, QualType T) {
return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
}
-
+
/// EmitLoadOfLValue - Given an expression with complex type that represents a
/// value l-value, this method emits the address of the l-value, then loads
/// and returns the result.
Value *EmitLoadOfLValue(const Expr *E) {
return EmitLoadOfLValue(EmitLValue(E), E->getType());
}
-
+
/// EmitConversionToBool - Convert the specified expression value to a
/// boolean (i1) truth value. This is equivalent to "Val != 0".
Value *EmitConversionToBool(Value *Src, QualType DstTy);
-
+
/// EmitScalarConversion - Emit a conversion from the specified type to the
/// specified destination type, both of which are LLVM scalar types.
Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
/// EmitComplexToScalarConversion - Emit a conversion from the specified
- /// complex type to the specified destination type, where the destination
- /// type is an LLVM scalar type.
+ /// complex type to the specified destination type, where the destination type
+ /// is an LLVM scalar type.
Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
QualType SrcTy, QualType DstTy);
@@ -106,10 +110,10 @@ public:
// Leaves.
Value *VisitIntegerLiteral(const IntegerLiteral *E) {
- return llvm::ConstantInt::get(E->getValue());
+ return llvm::ConstantInt::get(VMContext, E->getValue());
}
Value *VisitFloatingLiteral(const FloatingLiteral *E) {
- return llvm::ConstantFP::get(E->getValue());
+ return llvm::ConstantFP::get(VMContext, E->getValue());
}
Value *VisitCharacterLiteral(const CharacterLiteral *E) {
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
@@ -130,32 +134,33 @@ public:
}
Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
- llvm::Value *V =
- llvm::ConstantInt::get(llvm::Type::Int32Ty,
+ llvm::Value *V =
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
CGF.GetIDForAddrOfLabel(E->getLabel()));
-
+
return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
}
-
+
// l-values.
Value *VisitDeclRefExpr(DeclRefExpr *E) {
if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
- return llvm::ConstantInt::get(EC->getInitVal());
+ return llvm::ConstantInt::get(VMContext, EC->getInitVal());
return EmitLoadOfLValue(E);
}
- Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
- return CGF.EmitObjCSelectorExpr(E);
+ Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
+ return CGF.EmitObjCSelectorExpr(E);
}
- Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
- return CGF.EmitObjCProtocolExpr(E);
+ Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
+ return CGF.EmitObjCProtocolExpr(E);
}
- Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
return EmitLoadOfLValue(E);
}
Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
return EmitLoadOfLValue(E);
}
- Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
+ Value *VisitObjCImplicitSetterGetterRefExpr(
+ ObjCImplicitSetterGetterRefExpr *E) {
return EmitLoadOfLValue(E);
}
Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
@@ -173,7 +178,7 @@ public:
Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
return EmitLValue(E).getAddress();
}
-
+
Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
Value *VisitInitListExpr(InitListExpr *E) {
@@ -181,66 +186,67 @@ public:
(void)Ignore;
assert (Ignore == false && "init list ignored");
unsigned NumInitElements = E->getNumInits();
-
+
if (E->hadArrayRangeDesignator()) {
CGF.ErrorUnsupported(E, "GNU array range designator extension");
}
- const llvm::VectorType *VType =
+ const llvm::VectorType *VType =
dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
-
+
// We have a scalar in braces. Just use the first element.
- if (!VType)
+ if (!VType)
return Visit(E->getInit(0));
-
+
unsigned NumVectorElements = VType->getNumElements();
const llvm::Type *ElementType = VType->getElementType();
// Emit individual vector element stores.
llvm::Value *V = llvm::UndefValue::get(VType);
-
+
// Emit initializers
unsigned i;
for (i = 0; i < NumInitElements; ++i) {
Value *NewV = Visit(E->getInit(i));
- Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
+ Value *Idx =
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), i);
V = Builder.CreateInsertElement(V, NewV, Idx);
}
-
+
// Emit remaining default initializers
for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
- Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
+ Value *Idx =
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), i);
llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
V = Builder.CreateInsertElement(V, NewV, Idx);
}
-
+
return V;
}
-
+
Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
return llvm::Constant::getNullValue(ConvertType(E->getType()));
}
- Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
Value *VisitCastExpr(const CastExpr *E) {
// Make sure to evaluate VLA bounds now so that we have them for later.
if (E->getType()->isVariablyModifiedType())
CGF.EmitVLASize(E->getType());
- return EmitCastExpr(E->getSubExpr(), E->getType());
+ return EmitCastExpr(E);
}
- Value *EmitCastExpr(const Expr *E, QualType T);
+ Value *EmitCastExpr(const CastExpr *E);
Value *VisitCallExpr(const CallExpr *E) {
if (E->getCallReturnType()->isReferenceType())
return EmitLoadOfLValue(E);
-
+
return CGF.EmitCallExpr(E).getScalarVal();
}
Value *VisitStmtExpr(const StmtExpr *E);
Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
-
+
// Unary Operators.
Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
Value *VisitUnaryPostDec(const UnaryOperator *E) {
@@ -273,22 +279,40 @@ public:
return Visit(E->getSubExpr());
}
Value *VisitUnaryOffsetOf(const UnaryOperator *E);
-
+
// C++
Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
return Visit(DAE->getExpr());
}
Value *VisitCXXThisExpr(CXXThisExpr *TE) {
return CGF.LoadCXXThis();
- }
-
+ }
+
Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
}
Value *VisitCXXNewExpr(const CXXNewExpr *E) {
return CGF.EmitCXXNewExpr(E);
}
-
+ Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
+ CGF.EmitCXXDeleteExpr(E);
+ return 0;
+ }
+
+ Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
+ // C++ [expr.pseudo]p1:
+ // The result shall only be used as the operand for the function call
+ // operator (), and the result of such a call has type void. The only
+ // effect is the evaluation of the postfix-expression before the dot or
+ // arrow.
+ CGF.EmitScalarExpr(E->getBase());
+ return 0;
+ }
+
+ Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+ }
+
// Binary Operators.
Value *EmitMul(const BinOpInfo &Ops) {
if (CGF.getContext().getLangOptions().OverflowChecking
@@ -355,7 +379,7 @@ public:
VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
#undef VISITCOMP
-
+
Value *VisitBinAssign (const BinaryOperator *E);
Value *VisitBinLAnd (const BinaryOperator *E);
@@ -381,21 +405,30 @@ public:
/// boolean (i1) truth value. This is equivalent to "Val != 0".
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
-
+
if (SrcType->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
return Builder.CreateFCmpUNE(Src, Zero, "tobool");
}
-
+
+ if (SrcType->isMemberPointerType()) {
+ // FIXME: This is ABI specific.
+
+ // Compare against -1.
+ llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
+ return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
+ }
+
assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
"Unknown scalar type to convert");
-
+
// Because of the type rules of C, we often end up computing a logical value,
// then zero extending it to int, then wanting it as a logical value again.
// Optimize this common case.
if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
- if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
+ if (ZI->getOperand(0)->getType() ==
+ llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
Value *Result = ZI->getOperand(0);
// If there aren't any more uses, zap the instruction to save space.
// Note that there can be more uses, for example if this
@@ -405,7 +438,7 @@ Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
return Result;
}
}
-
+
// Compare against an integer or pointer null.
llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
return Builder.CreateICmpNE(Src, Zero, "tobool");
@@ -418,61 +451,66 @@ Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
SrcType = CGF.getContext().getCanonicalType(SrcType);
DstType = CGF.getContext().getCanonicalType(DstType);
if (SrcType == DstType) return Src;
-
+
if (DstType->isVoidType()) return 0;
+ llvm::LLVMContext &VMContext = CGF.getLLVMContext();
+
// Handle conversions to bool first, they are special: comparisons against 0.
if (DstType->isBooleanType())
return EmitConversionToBool(Src, SrcType);
-
+
const llvm::Type *DstTy = ConvertType(DstType);
// Ignore conversions like int -> uint.
if (Src->getType() == DstTy)
return Src;
- // Handle pointer conversions next: pointers can only be converted
- // to/from other pointers and integers. Check for pointer types in
- // terms of LLVM, as some native types (like Obj-C id) may map to a
- // pointer type.
+ // Handle pointer conversions next: pointers can only be converted to/from
+ // other pointers and integers. Check for pointer types in terms of LLVM, as
+ // some native types (like Obj-C id) may map to a pointer type.
if (isa<llvm::PointerType>(DstTy)) {
// The source value may be an integer, or a pointer.
if (isa<llvm::PointerType>(Src->getType()))
return Builder.CreateBitCast(Src, DstTy, "conv");
+
assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
// First, convert to the correct width so that we control the kind of
// extension.
- const llvm::Type *MiddleTy = llvm::IntegerType::get(CGF.LLVMPointerWidth);
+ const llvm::Type *MiddleTy =
+ llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
bool InputSigned = SrcType->isSignedIntegerType();
llvm::Value* IntResult =
Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
// Then, cast to pointer.
return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
}
-
+
if (isa<llvm::PointerType>(Src->getType())) {
// Must be an ptr to int cast.
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
return Builder.CreatePtrToInt(Src, DstTy, "conv");
}
-
+
// A scalar can be splatted to an extended vector of the same element type
- if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
+ if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
// Cast the scalar to element type
- QualType EltTy = DstType->getAsExtVectorType()->getElementType();
+ QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
// Insert the element in element zero of an undef vector
llvm::Value *UnV = llvm::UndefValue::get(DstTy);
- llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
+ llvm::Value *Idx =
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
// Splat the element across to all elements
llvm::SmallVector<llvm::Constant*, 16> Args;
unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
for (unsigned i = 0; i < NumElements; i++)
- Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
-
+ Args.push_back(llvm::ConstantInt::get(
+ llvm::Type::getInt32Ty(VMContext), 0));
+
llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
return Yay;
@@ -482,7 +520,7 @@ Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
if (isa<llvm::VectorType>(Src->getType()) ||
isa<llvm::VectorType>(DstTy))
return Builder.CreateBitCast(Src, DstTy, "conv");
-
+
// Finally, we have the arithmetic types: real int/float.
if (isa<llvm::IntegerType>(Src->getType())) {
bool InputSigned = SrcType->isSignedIntegerType();
@@ -493,7 +531,7 @@ Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
else
return Builder.CreateUIToFP(Src, DstTy, "conv");
}
-
+
assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
if (isa<llvm::IntegerType>(DstTy)) {
if (DstType->isSignedIntegerType())
@@ -509,15 +547,15 @@ Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
return Builder.CreateFPExt(Src, DstTy, "conv");
}
-/// EmitComplexToScalarConversion - Emit a conversion from the specified
-/// complex type to the specified destination type, where the destination
-/// type is an LLVM scalar type.
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
QualType SrcTy, QualType DstTy) {
// Get the source element type.
- SrcTy = SrcTy->getAsComplexType()->getElementType();
-
+ SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
+
// Handle conversions to bool first, they are special: comparisons against 0.
if (DstTy->isBooleanType()) {
// Complex != 0 -> (Real != 0) | (Imag != 0)
@@ -525,11 +563,11 @@ EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
return Builder.CreateOr(Src.first, Src.second, "tobool");
}
-
+
// C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
// the imaginary part of the complex value is discarded and the value of the
// real part is converted according to the conversion rules for the
- // corresponding real type.
+ // corresponding real type.
return EmitScalarConversion(Src.first, SrcTy, DstTy);
}
@@ -565,72 +603,122 @@ Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
// so we can't get it as an lvalue.
if (!E->getBase()->getType()->isVectorType())
return EmitLoadOfLValue(E);
-
+
// Handle the vector case. The base must be a vector, the index must be an
// integer value.
Value *Base = Visit(E->getBase());
Value *Idx = Visit(E->getIdx());
bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
- Idx = Builder.CreateIntCast(Idx, llvm::Type::Int32Ty, IdxSigned,
+ Idx = Builder.CreateIntCast(Idx,
+ llvm::Type::getInt32Ty(CGF.getLLVMContext()),
+ IdxSigned,
"vecidxcast");
return Builder.CreateExtractElement(Base, Idx, "vecext");
}
-/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
-/// also handle things like function to pointer-to-function decay, and array to
-/// pointer decay.
-Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
- const Expr *Op = E->getSubExpr();
+// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
+// have to handle a more broad range of conversions than explicit casts, as they
+// handle things like function to ptr-to-function decay etc.
+Value *ScalarExprEmitter::EmitCastExpr(const CastExpr *CE) {
+ const Expr *E = CE->getSubExpr();
+ QualType DestTy = CE->getType();
+ CastExpr::CastKind Kind = CE->getCastKind();
- // If this is due to array->pointer conversion, emit the array expression as
- // an l-value.
- if (Op->getType()->isArrayType()) {
- Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
+ if (!DestTy->isVoidType())
+ TestAndClearIgnoreResultAssign();
+
+ switch (Kind) {
+ default:
+ // FIXME: Assert here.
+ // assert(0 && "Unhandled cast kind!");
+ break;
+ case CastExpr::CK_Unknown:
+ // FIXME: We should really assert here - Unknown casts should never get
+ // as far as to codegen.
+ break;
+ case CastExpr::CK_BitCast: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+ return Builder.CreateBitCast(Src, ConvertType(DestTy));
+ }
+ case CastExpr::CK_ArrayToPointerDecay: {
+ assert(E->getType()->isArrayType() &&
+ "Array to pointer decay must have array source type!");
+
+ Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
// Note that VLA pointers are always decayed, so we don't need to do
// anything here.
- if (!Op->getType()->isVariableArrayType()) {
+ if (!E->getType()->isVariableArrayType()) {
assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
->getElementType()) &&
"Expected pointer to array");
V = Builder.CreateStructGEP(V, 0, "arraydecay");
}
-
+
// The resultant pointer type can be implicitly casted to other pointer
// types as well (e.g. void*) and can be implicitly converted to integer.
- const llvm::Type *DestTy = ConvertType(E->getType());
- if (V->getType() != DestTy) {
- if (isa<llvm::PointerType>(DestTy))
- V = Builder.CreateBitCast(V, DestTy, "ptrconv");
+ const llvm::Type *DestLTy = ConvertType(DestTy);
+ if (V->getType() != DestLTy) {
+ if (isa<llvm::PointerType>(DestLTy))
+ V = Builder.CreateBitCast(V, DestLTy, "ptrconv");
else {
- assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
- V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
+ assert(isa<llvm::IntegerType>(DestLTy) && "Unknown array decay");
+ V = Builder.CreatePtrToInt(V, DestLTy, "ptrconv");
}
}
return V;
}
+ case CastExpr::CK_NullToMemberPointer:
+ return CGF.CGM.EmitNullConstant(DestTy);
+
+ case CastExpr::CK_DerivedToBase: {
+ const RecordType *DerivedClassTy =
+ E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
+ CXXRecordDecl *DerivedClassDecl =
+ cast<CXXRecordDecl>(DerivedClassTy->getDecl());
+
+ const RecordType *BaseClassTy =
+ DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
+ CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
+
+ Value *Src = Visit(const_cast<Expr*>(E));
- return EmitCastExpr(Op, E->getType());
-}
+ bool NullCheckValue = true;
+
+ if (isa<CXXThisExpr>(E)) {
+ // We always assume that 'this' is never null.
+ NullCheckValue = false;
+ } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
+ // And that lvalue casts are never null.
+ if (ICE->isLvalueCast())
+ NullCheckValue = false;
+ }
+ return CGF.GetAddressCXXOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
+ NullCheckValue);
+ }
+ case CastExpr::CK_IntegralToPointer: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+ return Builder.CreateIntToPtr(Src, ConvertType(DestTy));
+ }
-// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
-// have to handle a more broad range of conversions than explicit casts, as they
-// handle things like function to ptr-to-function decay etc.
-Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
- if (!DestTy->isVoidType())
- TestAndClearIgnoreResultAssign();
+ case CastExpr::CK_PointerToIntegral: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+ return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
+ }
+
+ }
// Handle cases where the source is an non-complex type.
-
+
if (!CGF.hasAggregateLLVMType(E->getType())) {
Value *Src = Visit(const_cast<Expr*>(E));
// Use EmitScalarConversion to perform the conversion.
return EmitScalarConversion(Src, E->getType(), DestTy);
}
-
+
if (E->getType()->isAnyComplexType()) {
// Handle cases where the source is a complex type.
bool IgnoreImag = true;
@@ -661,7 +749,10 @@ Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
}
Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
- return Builder.CreateLoad(CGF.GetAddrOfBlockDecl(E), false, "tmp");
+ llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
+ if (E->getType().isObjCGCWeak())
+ return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
+ return Builder.CreateLoad(V, false, "tmp");
}
//===----------------------------------------------------------------------===//
@@ -673,55 +764,80 @@ Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
LValue LV = EmitLValue(E->getSubExpr());
QualType ValTy = E->getSubExpr()->getType();
Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
-
+
+ llvm::LLVMContext &VMContext = CGF.getLLVMContext();
+
int AmountVal = isInc ? 1 : -1;
if (ValTy->isPointerType() &&
- ValTy->getAsPointerType()->isVariableArrayType()) {
+ ValTy->getAs<PointerType>()->isVariableArrayType()) {
// The amount of the addition/subtraction needs to account for the VLA size
CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
}
Value *NextVal;
- if (const llvm::PointerType *PT =
+ if (const llvm::PointerType *PT =
dyn_cast<llvm::PointerType>(InVal->getType())) {
- llvm::Constant *Inc =llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
+ llvm::Constant *Inc =
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
if (!isa<llvm::FunctionType>(PT->getElementType())) {
- NextVal = Builder.CreateGEP(InVal, Inc, "ptrincdec");
+ QualType PTEE = ValTy->getPointeeType();
+ if (const ObjCInterfaceType *OIT =
+ dyn_cast<ObjCInterfaceType>(PTEE)) {
+ // Handle interface types, which are not represented with a concrete type.
+ int size = CGF.getContext().getTypeSize(OIT) / 8;
+ if (!isInc)
+ size = -size;
+ Inc = llvm::ConstantInt::get(Inc->getType(), size);
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
+ InVal = Builder.CreateBitCast(InVal, i8Ty);
+ NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
+ llvm::Value *lhs = LV.getAddress();
+ lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
+ LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
+ } else
+ NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
} else {
- const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
}
- } else if (InVal->getType() == llvm::Type::Int1Ty && isInc) {
+ } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
// Bool++ is an interesting case, due to promotion rules, we get:
// Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
// Bool = ((int)Bool+1) != 0
// An interesting aspect of this is that increment is always true.
// Decrement does not have this property.
- NextVal = llvm::ConstantInt::getTrue();
+ NextVal = llvm::ConstantInt::getTrue(VMContext);
} else if (isa<llvm::IntegerType>(InVal->getType())) {
NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
- NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
+
+ // Signed integer overflow is undefined behavior.
+ if (ValTy->isSignedIntegerType())
+ NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
+ else
+ NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
} else {
// Add the inc/dec to the real part.
- if (InVal->getType() == llvm::Type::FloatTy)
- NextVal =
- llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
- else if (InVal->getType() == llvm::Type::DoubleTy)
- NextVal =
- llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
+ if (InVal->getType()->isFloatTy())
+ NextVal =
+ llvm::ConstantFP::get(VMContext,
+ llvm::APFloat(static_cast<float>(AmountVal)));
+ else if (InVal->getType()->isDoubleTy())
+ NextVal =
+ llvm::ConstantFP::get(VMContext,
+ llvm::APFloat(static_cast<double>(AmountVal)));
else {
llvm::APFloat F(static_cast<float>(AmountVal));
bool ignored;
F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
&ignored);
- NextVal = llvm::ConstantFP::get(F);
+ NextVal = llvm::ConstantFP::get(VMContext, F);
}
NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
}
-
+
// Store the updated result through the lvalue.
if (LV.isBitfield())
CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
@@ -752,12 +868,12 @@ Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
// Compare operand to zero.
Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
-
+
// Invert value.
// TODO: Could dynamically modify easy computations here. For example, if
// the operand is an icmp ne, turn into icmp eq.
BoolVal = Builder.CreateNot(BoolVal, "lnot");
-
+
// ZExt result to the expr type.
return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
}
@@ -768,7 +884,7 @@ Value *
ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
QualType TypeToSize = E->getTypeOfArgument();
if (E->isSizeOf()) {
- if (const VariableArrayType *VAT =
+ if (const VariableArrayType *VAT =
CGF.getContext().getAsVariableArrayType(TypeToSize)) {
if (E->isArgumentType()) {
// sizeof(type) - make sure to emit the VLA size.
@@ -778,16 +894,16 @@ ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
// VLA, it is evaluated.
CGF.EmitAnyExpr(E->getArgumentExpr());
}
-
+
return CGF.GetVLASize(VAT);
}
}
- // If this isn't sizeof(vla), the result must be constant; use the
- // constant folding logic so we don't have to duplicate it here.
+ // If this isn't sizeof(vla), the result must be constant; use the constant
+ // folding logic so we don't have to duplicate it here.
Expr::EvalResult Result;
E->Evaluate(Result, CGF.getContext());
- return llvm::ConstantInt::get(Result.Val.getInt());
+ return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
}
Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
@@ -800,7 +916,7 @@ Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
Expr *Op = E->getSubExpr();
if (Op->getType()->isAnyComplexType())
return CGF.EmitComplexExpr(Op, true, false, true, false).second;
-
+
// __imag on a scalar returns zero. Emit the subexpr to ensure side
// effects are evaluated, but not the actual value.
if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
@@ -810,8 +926,7 @@ Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
return llvm::Constant::getNullValue(ConvertType(E->getType()));
}
-Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
-{
+Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
const llvm::Type* ResultType = ConvertType(E->getType());
return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
@@ -839,10 +954,10 @@ Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
BinOpInfo OpInfo;
if (E->getComputationResultType()->isAnyComplexType()) {
- // This needs to go through the complex expression emitter, but
- // it's a tad complicated to do that... I'm leaving it out for now.
- // (Note that we do actually need the imaginary part of the RHS for
- // multiplication and division.)
+ // This needs to go through the complex expression emitter, but it's a tad
+ // complicated to do that... I'm leaving it out for now. (Note that we do
+ // actually need the imaginary part of the RHS for multiplication and
+ // division.)
CGF.ErrorUnsupported(E, "complex compound assignment");
return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
}
@@ -857,17 +972,17 @@ Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
E->getComputationLHSType());
-
+
// Expand the binary operator.
Value *Result = (this->*Func)(OpInfo);
-
+
// Convert the result back to the LHS type.
Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
- // Store the result value into the LHS lvalue. Bit-fields are
- // handled specially because the result is altered by the store,
- // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
- // the left operand after the assignment...'.
+ // Store the result value into the LHS lvalue. Bit-fields are handled
+ // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
+ // 'An assignment expression has the value of the left operand after the
+ // assignment...'.
if (LHSLV.isBitfield()) {
if (!LHSLV.isVolatileQualified()) {
CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
@@ -949,31 +1064,31 @@ Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
Builder.SetInsertPoint(overflowBB);
// Handler is:
- // long long *__overflow_handler)(long long a, long long b, char op,
+ // long long *__overflow_handler)(long long a, long long b, char op,
// char width)
std::vector<const llvm::Type*> handerArgTypes;
- handerArgTypes.push_back(llvm::Type::Int64Ty);
- handerArgTypes.push_back(llvm::Type::Int64Ty);
- handerArgTypes.push_back(llvm::Type::Int8Ty);
- handerArgTypes.push_back(llvm::Type::Int8Ty);
- llvm::FunctionType *handlerTy = llvm::FunctionType::get(llvm::Type::Int64Ty,
- handerArgTypes, false);
+ handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
+ handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
+ handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
+ handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
+ llvm::FunctionType *handlerTy = llvm::FunctionType::get(
+ llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
llvm::Value *handlerFunction =
CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
llvm::PointerType::getUnqual(handlerTy));
handlerFunction = Builder.CreateLoad(handlerFunction);
llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
- Builder.CreateSExt(Ops.LHS, llvm::Type::Int64Ty),
- Builder.CreateSExt(Ops.RHS, llvm::Type::Int64Ty),
- llvm::ConstantInt::get(llvm::Type::Int8Ty, OpID),
- llvm::ConstantInt::get(llvm::Type::Int8Ty,
+ Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
+ Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
+ llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
+ llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
cast<llvm::IntegerType>(opTy)->getBitWidth()));
handlerResult = Builder.CreateTrunc(handlerResult, opTy);
Builder.CreateBr(continueBB);
-
+
// Set up the continuation
Builder.SetInsertPoint(continueBB);
// Get the correct result
@@ -986,31 +1101,39 @@ Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
}
Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
- if (!Ops.Ty->isPointerType()) {
+ if (!Ops.Ty->isAnyPointerType()) {
if (CGF.getContext().getLangOptions().OverflowChecking &&
Ops.Ty->isSignedIntegerType())
return EmitOverflowCheckedBinOp(Ops);
-
+
if (Ops.LHS->getType()->isFPOrFPVector())
return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
-
+
+ // Signed integer overflow is undefined behavior.
+ if (Ops.Ty->isSignedIntegerType())
+ return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
+
return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
}
- if (Ops.Ty->getAsPointerType()->isVariableArrayType()) {
+ if (Ops.Ty->isPointerType() &&
+ Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
// The amount of the addition needs to account for the VLA size
CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
}
Value *Ptr, *Idx;
Expr *IdxExp;
- const PointerType *PT;
- if ((PT = Ops.E->getLHS()->getType()->getAsPointerType())) {
+ const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
+ const ObjCObjectPointerType *OPT =
+ Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
+ if (PT || OPT) {
Ptr = Ops.LHS;
Idx = Ops.RHS;
IdxExp = Ops.E->getRHS();
- } else { // int + pointer
- PT = Ops.E->getRHS()->getType()->getAsPointerType();
- assert(PT && "Invalid add expr");
+ } else { // int + pointer
+ PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
+ OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
+ assert((PT || OPT) && "Invalid add expr");
Ptr = Ops.RHS;
Idx = Ops.LHS;
IdxExp = Ops.E->getLHS();
@@ -1020,38 +1143,37 @@ Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
if (Width < CGF.LLVMPointerWidth) {
// Zero or sign extend the pointer value based on whether the index is
// signed or not.
- const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
+ const llvm::Type *IdxType =
+ llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
if (IdxExp->getType()->isSignedIntegerType())
Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
else
Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
}
-
- const QualType ElementType = PT->getPointeeType();
- // Handle interface types, which are not represented with a concrete
- // type.
+ const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
+ // Handle interface types, which are not represented with a concrete type.
if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
- llvm::Value *InterfaceSize =
+ llvm::Value *InterfaceSize =
llvm::ConstantInt::get(Idx->getType(),
CGF.getContext().getTypeSize(OIT) / 8);
Idx = Builder.CreateMul(Idx, InterfaceSize);
- const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
return Builder.CreateBitCast(Res, Ptr->getType());
- }
+ }
- // Explicitly handle GNU void* and function pointer arithmetic
- // extensions. The GNU void* casts amount to no-ops since our void*
- // type is i8*, but this is future proof.
+ // Explicitly handle GNU void* and function pointer arithmetic extensions. The
+ // GNU void* casts amount to no-ops since our void* type is i8*, but this is
+ // future proof.
if (ElementType->isVoidType() || ElementType->isFunctionType()) {
- const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
return Builder.CreateBitCast(Res, Ptr->getType());
- }
-
- return Builder.CreateGEP(Ptr, Idx, "add.ptr");
+ }
+
+ return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
}
Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
@@ -1065,7 +1187,8 @@ Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
}
- if (Ops.E->getLHS()->getType()->getAsPointerType()->isVariableArrayType()) {
+ if (Ops.E->getLHS()->getType()->isPointerType() &&
+ Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
// The amount of the addition needs to account for the VLA size for
// ptr-int
// The amount of the division needs to account for the VLA size for
@@ -1074,7 +1197,7 @@ Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
}
const QualType LHSType = Ops.E->getLHS()->getType();
- const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
+ const QualType LHSElementType = LHSType->getPointeeType();
if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
// pointer - int
Value *Idx = Ops.RHS;
@@ -1082,7 +1205,8 @@ Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
if (Width < CGF.LLVMPointerWidth) {
// Zero or sign extend the pointer value based on whether the index is
// signed or not.
- const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
+ const llvm::Type *IdxType =
+ llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
if (Ops.E->getRHS()->getType()->isSignedIntegerType())
Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
else
@@ -1090,36 +1214,35 @@ Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
}
Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
- // Handle interface types, which are not represented with a concrete
- // type.
- if (const ObjCInterfaceType *OIT =
+ // Handle interface types, which are not represented with a concrete type.
+ if (const ObjCInterfaceType *OIT =
dyn_cast<ObjCInterfaceType>(LHSElementType)) {
- llvm::Value *InterfaceSize =
+ llvm::Value *InterfaceSize =
llvm::ConstantInt::get(Idx->getType(),
CGF.getContext().getTypeSize(OIT) / 8);
Idx = Builder.CreateMul(Idx, InterfaceSize);
- const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
return Builder.CreateBitCast(Res, Ops.LHS->getType());
- }
+ }
// Explicitly handle GNU void* and function pointer arithmetic
- // extensions. The GNU void* casts amount to no-ops since our
- // void* type is i8*, but this is future proof.
+ // extensions. The GNU void* casts amount to no-ops since our void* type is
+ // i8*, but this is future proof.
if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
- const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+ const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
return Builder.CreateBitCast(Res, Ops.LHS->getType());
- }
-
- return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
+ }
+
+ return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
} else {
// pointer - pointer
Value *LHS = Ops.LHS;
Value *RHS = Ops.RHS;
-
+
uint64_t ElementSize;
// Handle GCC extension for pointer arithmetic on void* and function pointer
@@ -1129,28 +1252,21 @@ Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
} else {
ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
}
-
+
const llvm::Type *ResultType = ConvertType(Ops.Ty);
LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
-
+
// Optimize out the shift for element size of 1.
if (ElementSize == 1)
return BytesBetween;
-
- // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
- // remainder. As such, we handle common power-of-two cases here to generate
- // better code. See PR2247.
- if (llvm::isPowerOf2_64(ElementSize)) {
- Value *ShAmt =
- llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
- return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
- }
-
- // Otherwise, do a full sdiv.
+
+ // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
+ // pointer difference in C is only defined in the case where both operands
+ // are pointing to elements of an array.
Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
- return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
+ return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
}
}
@@ -1160,7 +1276,7 @@ Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
Value *RHS = Ops.RHS;
if (Ops.LHS->getType() != RHS->getType())
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
-
+
return Builder.CreateShl(Ops.LHS, RHS, "shl");
}
@@ -1170,7 +1286,7 @@ Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
Value *RHS = Ops.RHS;
if (Ops.LHS->getType() != RHS->getType())
RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
-
+
if (Ops.Ty->isUnsignedIntegerType())
return Builder.CreateLShr(Ops.LHS, RHS, "shr");
return Builder.CreateAShr(Ops.LHS, RHS, "shr");
@@ -1181,11 +1297,11 @@ Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
TestAndClearIgnoreResultAssign();
Value *Result;
QualType LHSTy = E->getLHS()->getType();
- if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
+ if (!LHSTy->isAnyComplexType()) {
Value *LHS = Visit(E->getLHS());
Value *RHS = Visit(E->getRHS());
-
- if (LHS->getType()->isFloatingPoint()) {
+
+ if (LHS->getType()->isFPOrFPVector()) {
Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
LHS, RHS, "cmp");
} else if (LHSTy->isSignedIntegerType()) {
@@ -1196,29 +1312,19 @@ Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
LHS, RHS, "cmp");
}
- } else if (LHSTy->isVectorType()) {
- Value *LHS = Visit(E->getLHS());
- Value *RHS = Visit(E->getRHS());
-
- if (LHS->getType()->isFPOrFPVector()) {
- Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
- LHS, RHS, "cmp");
- } else if (LHSTy->isUnsignedIntegerType()) {
- Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
- LHS, RHS, "cmp");
- } else {
- // Signed integers and pointers.
- Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
- LHS, RHS, "cmp");
- }
- return Result;
+
+ // If this is a vector comparison, sign extend the result to the appropriate
+ // vector integer type and return it (don't convert to bool).
+ if (LHSTy->isVectorType())
+ return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
+
} else {
// Complex Comparison: can only be an equality comparison.
CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
-
- QualType CETy = LHSTy->getAsComplexType()->getElementType();
-
+
+ QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
+
Value *ResultR, *ResultI;
if (CETy->isRealFloatingType()) {
ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
@@ -1233,7 +1339,7 @@ Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
LHS.second, RHS.second, "cmp.i");
}
-
+
if (E->getOpcode() == BinaryOperator::EQ) {
Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
} else {
@@ -1253,7 +1359,7 @@ Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
// improve codegen just a little.
Value *RHS = Visit(E->getRHS());
LValue LHS = EmitLValue(E->getLHS());
-
+
// Store the value into the LHS. Bit-fields are handled specially
// because the result is altered by the store, i.e., [C99 6.5.16p1]
// 'An assignment expression has the value of the left operand after
@@ -1281,12 +1387,12 @@ Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
// ZExt result to int.
return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
}
-
+
// 0 && RHS: If it is safe, just elide the RHS, and return 0.
if (!CGF.ContainsLabel(E->getRHS()))
return llvm::Constant::getNullValue(CGF.LLVMIntTy);
}
-
+
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
@@ -1296,17 +1402,18 @@ Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
// Any edges into the ContBlock are now from an (indeterminate number of)
// edges from this first condition. All of these values will be false. Start
// setting up the PHI node in the Cont Block for this.
- llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
+ "", ContBlock);
PN->reserveOperandSpace(2); // Normal case, two inputs.
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
PI != PE; ++PI)
- PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
-
+ PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
+
CGF.PushConditionalTempDestruction();
CGF.EmitBlock(RHSBlock);
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
CGF.PopConditionalTempDestruction();
-
+
// Reaquire the RHS block, as there may be subblocks inserted.
RHSBlock = Builder.GetInsertBlock();
@@ -1314,7 +1421,7 @@ Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
// into the phi node for the edge with the value of RHSCond.
CGF.EmitBlock(ContBlock);
PN->addIncoming(RHSCond, RHSBlock);
-
+
// ZExt result to int.
return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
}
@@ -1328,43 +1435,44 @@ Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
// ZExt result to int.
return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
}
-
+
// 1 || RHS: If it is safe, just elide the RHS, and return 1.
if (!CGF.ContainsLabel(E->getRHS()))
return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
}
-
+
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
-
+
// Branch on the LHS first. If it is true, go to the success (cont) block.
CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
// Any edges into the ContBlock are now from an (indeterminate number of)
// edges from this first condition. All of these values will be true. Start
// setting up the PHI node in the Cont Block for this.
- llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
+ "", ContBlock);
PN->reserveOperandSpace(2); // Normal case, two inputs.
for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
PI != PE; ++PI)
- PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
+ PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
CGF.PushConditionalTempDestruction();
// Emit the RHS condition as a bool value.
CGF.EmitBlock(RHSBlock);
Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
-
+
CGF.PopConditionalTempDestruction();
-
+
// Reaquire the RHS block, as there may be subblocks inserted.
RHSBlock = Builder.GetInsertBlock();
-
+
// Emit an unconditional branch from this block to ContBlock. Insert an entry
// into the phi node for the edge with the value of RHSCond.
CGF.EmitBlock(ContBlock);
PN->addIncoming(RHSCond, RHSBlock);
-
+
// ZExt result to int.
return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
}
@@ -1386,19 +1494,19 @@ Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
-
+
// TODO: Allow anything we can constant fold to an integer or fp constant.
if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
isa<FloatingLiteral>(E))
return true;
-
+
// Non-volatile automatic variables too, to get "cond ? X : Y" where
// X and Y are local variables.
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
return true;
-
+
return false;
}
@@ -1412,7 +1520,7 @@ VisitConditionalOperator(const ConditionalOperator *E) {
Expr *Live = E->getLHS(), *Dead = E->getRHS();
if (Cond == -1)
std::swap(Live, Dead);
-
+
// If the dead side doesn't have labels we need, and if the Live side isn't
// the gnu missing ?: extension (which we could handle, but don't bother
// to), just emit the Live part.
@@ -1420,8 +1528,8 @@ VisitConditionalOperator(const ConditionalOperator *E) {
Live) // Live part isn't missing.
return Visit(Live);
}
-
-
+
+
// If this is a really simple expression (like x ? 4 : 5), emit this as a
// select instead of as control flow. We can only do this if it is cheap and
// safe to evaluate the LHS and RHS unconditionally.
@@ -1432,15 +1540,15 @@ VisitConditionalOperator(const ConditionalOperator *E) {
llvm::Value *RHS = Visit(E->getRHS());
return Builder.CreateSelect(CondV, LHS, RHS, "cond");
}
-
-
+
+
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
Value *CondVal = 0;
- // If we don't have the GNU missing condition extension, emit a branch on
- // bool the normal way.
+ // If we don't have the GNU missing condition extension, emit a branch on bool
+ // the normal way.
if (E->getLHS()) {
// Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
// the branch on bool.
@@ -1450,7 +1558,7 @@ VisitConditionalOperator(const ConditionalOperator *E) {
// convert it to bool the hard way. We do this explicitly because we need
// the unconverted value for the missing middle value of the ?:.
CondVal = CGF.EmitScalarExpr(E->getCond());
-
+
// In some cases, EmitScalarConversion will delete the "CondVal" expression
// if there are no extra uses (an optimization). Inhibit this by making an
// extra dead use, because we're going to add a use of CondVal later. We
@@ -1458,7 +1566,7 @@ VisitConditionalOperator(const ConditionalOperator *E) {
// away. This leaves dead code, but the ?: extension isn't common.
new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
Builder.GetInsertBlock());
-
+
Value *CondBoolVal =
CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
CGF.getContext().BoolTy);
@@ -1467,33 +1575,33 @@ VisitConditionalOperator(const ConditionalOperator *E) {
CGF.PushConditionalTempDestruction();
CGF.EmitBlock(LHSBlock);
-
+
// Handle the GNU extension for missing LHS.
Value *LHS;
if (E->getLHS())
LHS = Visit(E->getLHS());
else // Perform promotions, to handle cases like "short ?: int"
LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
-
+
CGF.PopConditionalTempDestruction();
LHSBlock = Builder.GetInsertBlock();
CGF.EmitBranch(ContBlock);
-
+
CGF.PushConditionalTempDestruction();
CGF.EmitBlock(RHSBlock);
-
+
Value *RHS = Visit(E->getRHS());
CGF.PopConditionalTempDestruction();
RHSBlock = Builder.GetInsertBlock();
CGF.EmitBranch(ContBlock);
-
+
CGF.EmitBlock(ContBlock);
-
+
if (!LHS || !RHS) {
assert(E->getType()->isVoidType() && "Non-void value should have a value");
return 0;
}
-
+
// Create a PHI node for the real part.
llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
PN->reserveOperandSpace(2);
@@ -1511,7 +1619,7 @@ Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
// If EmitVAArg fails, we fall back to the LLVM instruction.
- if (!ArgPtr)
+ if (!ArgPtr)
return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
// FIXME Volatility.
@@ -1526,12 +1634,12 @@ Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
// Entry Point into this File
//===----------------------------------------------------------------------===//
-/// EmitScalarExpr - Emit the computation of the specified expression of
-/// scalar type, ignoring the result.
+/// EmitScalarExpr - Emit the computation of the specified expression of scalar
+/// type, ignoring the result.
Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
assert(E && !hasAggregateLLVMType(E->getType()) &&
"Invalid scalar expression to emit");
-
+
return ScalarExprEmitter(*this, IgnoreResultAssign)
.Visit(const_cast<Expr*>(E));
}
@@ -1545,9 +1653,9 @@ Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
}
-/// EmitComplexToScalarConversion - Emit a conversion from the specified
-/// complex type to the specified destination type, where the destination
-/// type is an LLVM scalar type.
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
QualType SrcTy,
QualType DstTy) {
@@ -1560,38 +1668,40 @@ Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
assert(V1->getType() == V2->getType() &&
"Vector operands must be of the same type");
- unsigned NumElements =
+ unsigned NumElements =
cast<llvm::VectorType>(V1->getType())->getNumElements();
-
+
va_list va;
va_start(va, V2);
-
+
llvm::SmallVector<llvm::Constant*, 16> Args;
for (unsigned i = 0; i < NumElements; i++) {
int n = va_arg(va, int);
- assert(n >= 0 && n < (int)NumElements * 2 &&
+ assert(n >= 0 && n < (int)NumElements * 2 &&
"Vector shuffle index out of bounds!");
- Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
+ Args.push_back(llvm::ConstantInt::get(
+ llvm::Type::getInt32Ty(VMContext), n));
}
-
+
const char *Name = va_arg(va, const char *);
va_end(va);
-
+
llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
-
+
return Builder.CreateShuffleVector(V1, V2, Mask, Name);
}
-llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
+llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
unsigned NumVals, bool isSplat) {
llvm::Value *Vec
= llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
-
+
for (unsigned i = 0, e = NumVals; i != e; ++i) {
llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
- llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
+ llvm::Value *Idx = llvm::ConstantInt::get(
+ llvm::Type::getInt32Ty(VMContext), i);
Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
}
-
- return Vec;
+
+ return Vec;
}